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Nonperturbative confinement in quantum chromodynamics.llI. Improved 
gluon propagator 

D. Atkinson,a) H. Boelens,a) S. J. Hiemstra,a) P. W. Johnson,b) W. J. Schoenmaker,C) 
and K. Stama) 
High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 

(Received 18 November 1983; accepted for publication 27 January 1984) 

An ansatz is introduced for the three-gluon vertex that is consistent with the Slavnov-Taylor 
identity in Landau gauge. It is shown that the gluon has a confining infrared singularity; but there 
is also a tachyon, indicating an insufficiency either of quarkless QCD or at least of our 
approximation to it. 

PACS numbers: 12.35.Cn 

I. INTRODUCTION 

It is an attractive hypothesis that a severe infrared sin
gularity is a signal of confinement in quarkless quantum 
chromodynamics (QCD).1.2 Although the gluon self-energy 
is gauge-dependent, the gauge-invariant Wilson loop can be 
constructed from it; and it has been shown that a sufficiently 
singular propagator leads to an area law in leading order. 3 A 
proper study of such singularities entails a nonperturbative 
approximation. As an alternative to the lattice approach, 
with attendant uncertainties concerning the continuum lim
it, one may study truncated continuum Dyson-Schwinger 
(DS) equations, using either covariant or axial gauges. The 
DS equation for the gluon propagator may be truncated 
through use of Slav nov-Taylor (ST) identities, parametriz
ing longitudinal parts of vertex-functions. 

In an axial gauge, the gluon field decouples from the 
ghost field, so that the DS equations and the ST identities 
have a simple form. If one makes the ad hoc assumption that 
the full propagator has the same tensor structure as the bare 
propagator, then the scalar function that multiplies it may be 
obtained as the solution of the scalar equation obtained by 
projection ofthe DS equation onto the direction of the axial 
vector n. This equation does not contain the four-gluon ver
tex. A disadvantage is that the equation involves the unphy
sical, gauge-dependent parameter (pn)2, where p is the mo
mentum variable. Furthermore, since the ST identity 
involves projection onto p, rather than n, there is a certain 
arbitrariness in the projected DS equation. 4 

In the Landau gauge, the DS equation for the gluon 
propagator involves a single tensor structure, and hence re
duces to a scalar equation. However, both the DS equations 
and the ST identities involve ghost couplings. We do not 
expect the ghost fields themselves to produce infrared singu
larities, so we replace the ghost propagator and ghost
ghost-gluon vertex by bare values. The four-gluon vertex 
does appear in the scalar equation, but we drop it in the 
interest of simplicity, not expecting cancellations between 
three- and four-gluon couplings. 

The approximation of MandelstamS in Landau gauge 
involved the replacement of one internal gluon line and of 
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the three-gluon vertex by free values. Such a replacement is 
motivated by the form of the ST identity, but is not strictly 
consistent with it. In our analysis of Mandelstam's equation 
in Refs. 1 and 2, we confirm that the gluon propagator is of 
order p-4 at small spacelike momenta. However, there are 
first-sheet branch points in the variable p2, which accumu
late at p2 = 0 in the timelike direction. These singularities 
are presumably unphysical, and in any event they invalidate 
the Wick rotation to Euclidean momenta. 

In this paper we propose an ansatz for the vertex func
tion that has the same tensor structure as the corresponding 
bare vertex. The multiplicative scalar function can be chosen 
so that the ST identity in the external leg is automatically 
satisfied. The resultant scalar equation, which is generally 
similar to that obtained in Mandelstam's approach, with, 
however, a somewhat more intricate structure, is derived in 
Sec. II. We analyze this equation in Sec. III, and show by 
methods similar to those of Refs. I and 2 that there is a 
solution which is free from complex branch points. This so
lution has the infrared asymptote p-4, uniformly in the cut 
p2-plane, and is therefore suggestive of confinement. 

The resultant gluon propagator also has a simple pole at 
a real, spacelike momentum. Such a pole does not spoil the 
Wick rotation, but would imply the existence of an unstable 
tachyon, if it were taken seriously. Recall that in perturba
tive QED there is a tachyon (Landau ghost), which would 
not be expected in perturbative QCD because of the opposite 
sign in the self-energy. Our nonperturbative tachyon might 
conceivably be an indication of the insufficiency of quarkless 
QCD; unless it is merely a deficiency of our approximation 
scheme. It may be that neglect of the four-gluon vertex has 
produced an instability of the type familiar in a scalar theory 
with t/J 3 interaction. 

II. ANSATZ FOR VERTEX FUNCTION 

We shall use a consistent notation, in which primes dis
tinguish full from bare propagators and vertex functions. We 
suppress all color indices, since they only yield a trivial mul
tiplicative factor in the final equation. The full propagator is 

D ~v(q) = F( - q2)D/.tv(q) = - q-2F( - q2).J/w(q) , 

where 

~I'v(q) = gl'v - ql'qjq2 • 

(2.1) 

(2.2) 
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The object is to obtain an equation for the scalar function 
F( _q2). 

The Slavnov-Taylor identity relating the full three
gluon vertex, r I, to the propagator6 is 

pAr ~ftv (p,q,rjD IftC7(qjD IV1'(r) 

= G ( - p2)D IftC7(q).:j V1'(r)F ~v(p,r:q) (2.3) 

- G ( - p2).1 ft C7(q)D IV1'(r)F ~v (p,q:r) . 

Here F ~v is the full ghost-ghost-gluon vertex, and the ghost 
propagator is - p - 2G ( - p2). As discussed in the Introduc
tion, we replace the ghost functions by their bare values, 
F ~v -gftV and G-l. With use of (2.1), we then obtain 

pAr ~ftv(p,q,r)D IftC7(q)D IV1'(r) 

= [F( - r)lr - F( - q2)1q2] .1 ft C7(q).:j V1'(r)gftv ' (2.4) 

Our basic ansatz 7 is to suppose that 

r ~ILV( p,q,r)D IftC7(q)D IV1'(r) 

= I( p,q,rjFAftV (p,q,rjD ftC7(q)D V1'(r) , (2.5) 

where lis some scalar function that is to be related to Fby 
requiring that the Slavnov-Taylor identity (2.4) is satisfied. 
Since the bare version of (2.4) is obtained by removing the 
primes and setting F equal to unity, we find, by contracting 
both sides of (2.5) against pA, 

F( - r) _ F( - q2) =/( r) (~ _ ~) (2.6) 
r q2 p,q, r q2' 

so that 

I(p,q,r) = [rF( - q2) _ q2F( - r)]I(r _ q2), (2.7) 

which can be inserted into (2.5). For comparison, the Man
delstam ansatz, in which the three-gluon vertex and one, but 
not both, of the gluon propagators are replaced by their bare 
values, is of the form (2.5), with the function 1(P,q,r) equal to 
F ( - q2). It must be emphasized that this form, unlike (2.7), 
in inconsistent with the Slavnov-Taylor identity (2.4). 

The Dyson-Schwinger equation for the gluon propaga
tor, in which only the three-gluon vertex contribution is re
tained, with the ansatz (2.5), takes the form 

D ~p(p) =DAp(p) = DAft (p)II ftV(p)D~p(p), 

where the self-energy is 

II ftV(p) = (~~4 f d 4ql(p,q,r)r ftC71'(p,q,r) 

Xr Vp"'(p,q,r)D"p(q)D1'",(r) . 

(2.S) 

(2.9) 

Contracting both sides of (2.S) by g'-P and dividing through
out by F( - p2), we find 

lIF( - p2) = 1 + (lIp2)II( - p2), (2.10) 

where 

with 

2096 
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(2.11) 

(2.12) 

We next make a Wick rotation to Euclidean space: 
- p2 -p~ucJ ==x. The angular integrations can be performed 

and we obtain 

_1_= 1-~ (00 dy F(y) _ 9 r" dy F(y) 
F~ 4 k y k x 

_ x
2 

("" d-; F(y) + (" dy [~(1 _~) 
SLy Jo x 2 y 

7 (X2 Y ) 1 y2 1 x3] +- --- - --:; + -- F(y) 
4y2 X 4x- Sy3 

+ (X/4 dy (6 + ~ ~ _ 
Jo x 2 y 

( )

112 

X 1 - 4 ~ F(y). (2.13) 

Here the coupling constant and other multiplicative factors 
have been scaled away, as in Ref. 1. This form is similar in its 
general shape to the Mandelstam equation, except for the 
last term, involving the square root. This comes from princi
pal-value integrals that are engendered by the quotient (2.7). 

The infrared analysis of (2.13) is a little more involved 
than that in Refs. 1 and 2. We replace the unknown function 
F by ¢ according to 

F(x) = A Ix + Bx + x 3¢ (x). (2.14) 

The coefficient of the incipient pole on the rhs of(2.13) is zero 
if 

A = - 0.34561"" dyF(y), 

while the constant term vanishes if 

1 = 6.25 (00 dy F(y). 
Jo y 

(2.15) 

(2.16) 

Finally, in order to match the linear term on the lhs of(2.14), 
xl A, we require 

B=rIA , 

where 

r= 0.616 97. 

(2.17) 

(2.1S) 

These requirements are formal, in the sense that the integrals 
(2.15) and (2.16) are actually divergent. However, it is worth 
stressing that the absence of logarithms when the first two 
terms of (2.14) are inserted into (2.13) is a result of delicate 
cancellations. 

After these manipulations, (2.13) can be cast into the 
form 

1 + rx2 + X4¢ (x) 

= - ~ LX? ( 1 - ~ r ¢ (y)P (~ ) 

++ f/4;(1 - ~r/2 ¢(Y)Q(~), 
where 

P (z) = 1 + lOz + Z2 , 

Q (z) = 1 + 20z + 12z2 . 

Atkinson et al. 

(2.19) 

(2.20) 

(2.21) 
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No divergences are left, and we propose to study this nonlin
ear equation for the unknown function l/J (x). 

III. ANALYSIS OF EQUATION 

In the following, we shall for simplicity replace the 
polynomials P and Q of (2.20) and (2.21) by constants, in such 
a way that the threshold value (x-o) of each integral is un
changed. The averaged equation reads 

r +x2l/J (x) 

1 + rx2 + x4l/J (x) 

= _ ~ r dY(1 _ L)3l/J(Y) 
30 Jo x x 

+ ~ r l4 
dy (1 _ 4y )3/2l/J (y). 

168 Jo x x 
(3.1) 

Our previous experience l .2leads us to expect that this aver
aging procedure will only have minor quantitative, but not 
qualitative effects on the solution. 

To examine the nature of the infrared singularity of 
l/J (x), we linearize the Ihs of (3.1), retaining the terms 
r - TX2 + x2l/J (x) only. Even with this linearization, we 
have been unable to give a complete analysis; but there are 
reasons for expecting the second integral on the rhs of(3.1) to 
be nondominant in the infrared (see the Appendix). Accord
ingly, we shall study the linear equation 

r - Tx2 + x2l/J (x) = - ~ (" dy (1 - L)3 l/J (P) . 
30 Jo x x 

(3.2) 

The corresponding homogeneous equation 

x6 4/1(x) = - - dy(x - y)34/1(y) 23 L" 
30 0 

(3.3) 

has solutions expressible in terms of Bessel and Neumann 
functions. The four independent solutions of the corre
sponding differential equation have the small-x asymptotic 
behavior 

(3.4) 

where Zi are the four fourth roots of - 1. These functions 
may be used to solve the inhomogeneous Eq. (3.2), using 
variation of parameters on the corresponding differential 
equation. Each of the homogeneous solutions 4/li becomes 
unbounded in certain sectors of the plane, cut along 
- 00 < x < 0, as x tends to zero. However, we find that there 

is one (and only one) function l/J (x) which satisfies the integral 
Eq' (3.2) in the cut x-plane. That function has the following 
asymptotic behavior as x approaches zero within the cut 
plane: 

4 

l/J (x)_rx-15/4 L Zi exp (KX- 1/2 Zi) 
i= I 

xr( - ¥,KX- 1/2 Zi)' (3.5) 

where K is a positive number and the incomplete gamma 
function is given by 

r(a,w) =100 dyya-Ie-y. (3.6) 

It follows from a standard asymptotic expression for r (a,w) 
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that l/J (x) approaches a constant value as x tends to zero 
throughout the cut plane. 

We wish to emphasize that uniform boundedness of l/J at 
small x is a significant improvement over the corresponding 
infrared behavior obtained for solutions of Mandel starn's 
equation. In the latter case, we obtained asymptotic behavior 
X- 7 / 2 for the corresponding function as x tends to zero on 
the left-hand cut. In the present case, the linear approxima
tion (3.2) remains under control at small x, even on the left
hand cut. As a consequence, we expect that the solutions of 
the nonlinear equation will be analytic in the cut plane, at 
least in the infrared. In the case of Mandelstam's equation, 
the linear approximation was out of control near the left
hand cut, and manifestation of this was the accumulation of 
first-sheet branch points of the full nonlinear equation. 

We have done an extensive numerical study ofEq. (3.1), 
with the second integral omitted. One may obtain an asymp
totic power series for l/J (x) at small x directly from the nonlin
ear integral equation, which is used for computation of l/J at 
small real x. The solution is then obtained at larger values of 
x by Runge-Kutta integration of the differential equation 

[x4G (x)] iv = - ¥ l/J (x), (3.7) 

where 

G (x) = [r + x 2l/J (x)]! [ 1 + rx2 + x4l/J (x)] . (3.8) 

Using the techniques of Refs. 1 and 2, we have contin
ued l/J (x) into the complex plane, and have not found any 
branch points on the first Riemann sheet, except at the in
frared point, x = O. On penetrating the cut along the time
like axis, - 00 < x < 0, however, we have picked up two 
branch points at - 0.3782 - 0.2239i and 
- 0.0241 - 0.0783i. It is a reasonable guess that more exist, 

probably accumulating at the origin on the second or higher 
Riemann sheets. The fact that the complex branch points, 
which were on the first sheet in the Mandelstam approxima
tion, are now on secondary sheets, where they cause no trou
ble, is a definite improvement. The function F(x) [cf. Eq. 
(2.14)] does indeed have the infrared asymptote 

F(x) -A Ix + Bx + ex3 , (3.9) 

as x-o in any direction on the first sheet. 
When we make an analytic continuation of l/J to larger x, 

we find a pole on the real axis atx = 2.1853. The pole inl/J (x) 
may be located directly as a zero of the function 1 - x 2G (x). 
Fortunately, the pole does not interfere with the Wick rota
tion to the Euclidean region, in contrast to the complex sin
gularities found in Refs. I and 2. The pole occurs some dis
tance from the infrared, where our approximation scheme is 
no longer necessarily good. Further details of the numerical 
work may be found in Ref. 8. 
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APPENDIX: TECHNICAL DETAIL 

We shall justify neglecting the second term on the right 
side of Eq. (3.1). The first remark is that, in the asymptotic 
power series expansion of that equation, the contribution 
from the first term to the coefficient of x2n dominates that of 
the second, except at the first few values of n. As a conse
quence, the asymptotic series ifJ (x) is, in effect, controlled by 
the first term. 

Let us consider the linearized, homogeneous version of 
that equation, 

x 6 1J1(x) = - - dy(x - y)31J1(y) 23 LX 
30 0 

+_x3 dy 1 - 1 lJI(y). 53 iX/4 
( 4 )3/2 

168 0 x 
(AI) 

We substitute the solutions IJIj(x) [Eq. (3.4)] into (AI), and 
note that, for x small within a sector of boundedness, the 
second term in (A 1) is asymptotically small compared with 
the first. Consequently, these functions IJIj(x) are asymptotic 
solutions ofEq. (AI) at smallx. 

Let us consider an extreme situation in which the first 
term in (AI) is dropped, and let us replace the "fractional~
power derivative" on the right by lJI(z)lr 12, to obtain 

x2 1J1(x) = AIJI(x/4). (A2) 

The solution to the difference Eq. (A2), 

[ 
1 2 ( InA lJI(x)=exp ---In x+ ---

21n2 21n2 
l)lnx], 

(A3) 

2098 J. Math. Phys., Vol. 25, No.6, June 1984 

decreases more rapidly than any power of x at small x, al
though less rapidly than the functions IJIj(x) [Eq. (3.4)}. The 
asymptotic solution of (A 1) with the first term dropped is 
essentially identical to (A3). In particular, it is analytic and 
uniformly small throughout the cut plane at small x, so that 
its infrared behavior is less quixotic than that of IJIj(x). 

In terms of the Mellin transform, 

W(p) = f" dx IJI(X}xP-l, 

Eq. (A. 1 ) becomes an algebraic difference equation 

W(p + 2) = [-E..B( -p + 1,4) 
30 

(A4) 

(A5) 

where B ( , ) is the beta function. We have not been able to 
solve (A5), subject to the requirement that W (p) be analytic in 
a vertical strip of width at least 2. However, we can prove 
that solutions exist, and that they behave as IJIj (x) at small x. 

The above arguments make it clear that the first inte
gral in (A 1) dominates the second in the infrared. Away from 
x = 0, however, the latter integral is not necessarily small. 
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