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A Centrality-Based Security Game for Multi-Hop Networks
James R. Riehl† and Ming Cao†

Abstract—We formulate a network security problem as a
zero-sum game between an attacker who tries to disrupt a
network by disabling one or more nodes, and the nodes
of the network who must allocate limited resources in
defense of the network. The utility of the zero-sum game
can be one of several network performance metrics that
correspond to node centrality measures. We first present a
fast centralized algorithm that uses a monotone property
of the utility function to compute saddle-point equilibrium
strategies for the case of single-node attacks and single- or
multiple-node defense. We then extend the approach to the
distributed setting by computing the necessary quantities
using a finite-time distributed averaging algorithm. For
simultaneous attacks to multiple nodes the computational
complexity becomes quite high, so we propose a method to
approximate the saddle-point equilibrium strategies based
on a sequential simplification, which performs well in
simulations.

I. INTRODUCTION

As society grows more reliant upon networked and
cyber-physical systems for communication, transporta-
tion, sensing, control, and other applications, these sys-
tems occupy larger and more complex networks and
are thus increasingly vulnerable to attack by malicious
adversaries. With consequences ranging from costly
inefficiencies to catastrophic failures, it is critical to
understand how to secure these networks against such
attacks. The field of research related to the security
of such systems has consequently seen rapid growth
in recent years [1], [2], and there are many angles
from which to approach these problems. The first line
of defense against attacks is to make the network as
secure and resilient as possible, from physical and cyber
security at the node level to robustness and redundancy
at the network level [3], [4], [5]. Nevertheless, there
will always be some vulnerabilities in large networks
and resource limitations that may prevent every node in
the network from being defended to the fullest extent.
The question then becomes how to optimally distribute
limited defense resources around the network to achieve
some security objective.
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Research (NWO-vidi-14134).
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In order to answer this question, it is necessary
to know how important each node or link is to the
network. As a result, the use of centrality measures,
first introduced to study the most influential people in
social networks [6], [7], is starting to gain traction in the
communication and control literature. For example, the
authors of [8] studied the effects of coordinated attacks
to wireless mesh networks and showed that targeting
the nodes with the highest betweenness centrality results
in a more effective attack than targeting nodes with
the highest degree, a result supported by earlier studies
on the attack vulnerability of complex networks [9].
However, this strategy might easily be predicted and
thwarted by a smart defender. Game theory is ideally
suited to such competitive settings and for this reason has
become widely adopted in the study of network security
[10][11]. Despite these emerging research trends, the
use of centrality measures towards the game-theoretic
solution of practical network security problems remains
largely unexplored.

We specifically consider the case where network per-
formance is of primary concern and the effectiveness of
an attack is measured by the resulting change to a given
performance metric. Since from the defender’s point
of view, a worst-case attacker will minimize exactly
this performance metric, the problem fits naturally into
the framework of zero-sum games, as do many other
network security problems [12], [13], [14], [15]. Our
approach is further motivated by two key observations.
The first is that several important network performance
metrics such as throughput, latency, and efficiency, can
be decomposed into individual contributions from each
node, in the form of a centrality measure. The second
observation is that both attack and defense to a network
generally require energy or some other finite resource,
which is often costly or in short supply. For example,
a denial of service (DoS) attack requires energy and
bandwidth from one or more attackers who try to deplete
the resources of the targeted system, and one way to
defend such an attack is to add memory or bandwidth
capacity to vulnerable nodes in the network [16]. Since
there may not be enough resources to defend every node
in a network, the critical decision becomes which nodes
to protect, and the complexity of this decision depends
on the topology of the underlying network. Moreover,



depending on whether the network has a centralized or
distributed implementation, this decision may fall either
to a central network administrator or to the individual
nodes working in collaboration. We began to address
the centralized case in [17]. In this paper we expand
on those results and extend to the distributed case for a
range of different attack and defense scenarios.

Closely-related to this topic are interdiction problems,
which involve identifying the most critical nodes or
links in a network with respect to various flow or path-
distance metrics [18]. In particular, when one party is
responsible for choosing the paths and/or flows along
which information or products are transported in the
presence of full or partial disruptions to the nodes or
links, this is commonly referred to as an interdiction
game [19], [20]. Typically, interdiction games are multi-
stage, with players acting in turn based on observed
changes to the network. Here we assume that the attacker
knows only the topology of the network and not the
level of defense at each node. Conversely, the nodes
of the network do not know where the attacker will
target, so we effectively have simultaneous play between
the attacker and defender. This scenario is both highly
plausible and in many cases allows for relatively fast
computation of the solution, as we will show later.

Since the problem under consideration is essentially
how to allocate defense resources to the nodes in a
network, the most relevant literature to our approach in-
volves the application of game theory to resource alloca-
tion in the presence of an adversary. One such example is
[21], where two teams allocate power between commu-
nicating with teammates and jamming the other team’s
communications. After formulating the problem as a
zero-sum differential game, the authors give sufficient
conditions on the agent parameters for existence of a
pure-strategy Nash equilibrium. Agent-based simulations
are used in [22] to determine saddle-point equilibrium
strategies in a network security game where both attacker
and defender are subject to cost constraints. Coming
from a different angle, the optimal design of resource
allocation networks subject to attacks is studied in [23],
where it is shown that networks with a star topology
are often optimal from the perspective of a defender.
In a transportation setting, path-planning against adver-
saries was formulated as a distributed resource allocation
problem to which a linear-programming (LP) solution
was proposed in [24]. Although our formulation also
admits an LP solution in the centralized case, large
networks can still pose a computational burden and the
combinatorial growth of payoff matrices for multiple-
node attack and defense further motivates faster solution

algorithms. Moreover, the standard LP solution does not
apply to the distributed case.

After summarizing some important background ma-
terial on centrality and zero-sum game theory in Sec-
tion II, we state the problem under consideration in
Section III. In Section IV, we introduce a linear-time
centralized algorithm to compute saddle-point equilib-
rium strategies for both the attacker and defender in the
case of single-node attacks and multiple-node defense.
These algorithms provide a network administrator with
the probabilities that each node should be protected.
We then extend the results for single-node attacks to
the distributed setting in Section V, using a finite-time
distributed averaging algorithm to compute the same
result as in the centralized case. Finally, when multiple
nodes are attacked simultaneously, we propose a central-
ized approximation algorithm in Section VI based on a
sequential simplification of the attack strategies, which
performs very well in a pair of simulation studies.

II. PRELIMINARIES

Before presenting the main results, we briefly two
subjects that are fundamental to understanding the prob-
lem and solution approach: node centrality and zero-sum
game theory.

A. Node Centrality as Performance Metric

The centrality of a node can be thought of as the
importance of a node in the context of the network, and
there are many different measures of centrality related
to various notions of importance. We are particularly
interested in centrality measures that represent each
node’s contribution to a network performance metric.
One notable example is betweenness, which is the frac-
tion of all shortest paths in the network on which a node
lies.

0.40 0.75

0.50

0.50

0.45

a b

c

d

e

Fig. 1. Betweenness centrality on a small network

Consider the five-node undirected network shown in
Fig. 1. There are ten different node pairings in this
network but twelve paths that are shortest paths between
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pairs of nodes:

ab, abc, abd, {abce, abde}, bc, bd,
{bce, bde}, {cbd, ced}, ce, de, (1)

where bracketed sets of paths indicate that there are
multiple shortest paths connecting two nodes. The be-
tweenness of each node is obtained by counting the
total number of shortest paths in which a node appears,
dividing by k when the path is one of k shortest paths
connecting two nodes. Finally, we divide by the total
number of node pairs in the network so that the result
lies between zero and one. Checking each path in (1),
we see that node b lies on 1 + 1 + 1 + ( 1

2 + 1
2 ) + 1 + 1 +

( 1
2 + 1

2 ) + 1
2 = 7.5 out of the 10 node pairs, or 0.75 of

the shortest paths in the network, supporting the intuitive
observation that b is an important node in this network.
Note that this definition of betweenness actually differs
slightly from standard betweenness definitions because
we count being an endpoint of a path as being on the
path while standard definitions typically do not. The
reason is that for our purposes the endpoint nodes are
just as important to the communication link as any
intermediate node. This also prevents nodes from having
a betweenness of zero. Our methods still apply if some
nodes have centrality values of zero, but the result is
trivially that these nodes should never be attacked or
defended since they are negligible to the network with
respect to the corresponding performance metric. We
do restrict the centrality measures to take non-negative
values, but this is quite a mild assumption since the vast
majority of standard centrality measures are non-negative
by definition.

Suppose now that every pair of nodes in a network ex-
changes a message using the shortest path between them,
and that we measure the performance of the network by
the fraction of successfully transmitted messages, i.e. the
total throughput of the network. Betweenness centrality
can equivalently be thought of as the fraction of all
messages sent through the network that pass through
a given node. The removal of this node will cause
these transmissions to fail, until the node’s removal is
detected and the messages can be rerouted. Betweenness
thus measures the contribution of each node to the total
throughput of a network where traffic between all pairs
of nodes is approximately uniform.

In the case that traffic varies significantly between
node pairs, one can still define the importance of a node
as the fraction of all flow from source to destination
that passes through a given node. This is a kind of
flow centrality. Other notable centrality measures include
degree centrality, which corresponds to the fraction of all

links in the network that connect to a given node, and
closeness centrality, which is the average distance of a
node to all other nodes in the network and is related to
how long it takes to broadcast a message to the entire
network, alternatively referred to as the efficiency of a
network.

If multiple performance metrics are of concern, e.g.
throughput and latency, these can be weighted and com-
bined into a single performance metric to be used in the
security problem, provided that each constituent metric
can be decomposed into individual node contributions as
described above.

Lastly, when multiple nodes are attacked simultane-
ously, it will not generally be possible to measure the
effect of the attack on network performance from the
individual node centrality values. Therefore we need
to define the centrality of a node set, which we can
motivate with an example. Consider two-node attacks to
sets {a, b} and {b, e} in the network of Fig. 1. We want
to evaluate the removal of these node pairs from the
network, which in the case of betweenness, corresponds
to the fraction of shortest paths containing at least one
of the removed nodes. For {a, b} this comes to 0.75
since every path that contains a also contains b. On the
other hand, node e is on every shortest path that does
not contain b, so the betweenness of {b, e} is 1. Similar
modifications can often be made to adapt other single-
node centrality measures to node sets.

B. Zero-Sum Game Theory
In a game, two or more players choose from a set

of strategies in pursuit of different and often competing
objectives and receive payoffs that depend on the strate-
gies of all players. A two-player zero-sum matrix game
is a game in which one player’s gain is equal to the
other player’s loss and can be modeled using a payoff
matrix where one player is the minimizer and the other
is the maximizer. A familiar example is the classic Rock-
Scissors-Paper game, where the players choose between
rock (R), scissors (S), and paper (P), knowing that rock
beats scissors, scissors beats paper, paper beats rock, and
otherwise there is no winner. A typical payoff matrix is
as follows:

A =


R S P

R 0 −1 1

S 1 0 −1

P −1 1 0

,
where player 1 selects a row and wants to minimize
the payoff and player 2 selects a column and wants to
maximize the payoff. Players can play deterministically
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by selecting a pure strategy in the set S := {R,S, P}
or they can randomize their strategies using a mixed
strategy y := [yR, yS , yP ]T where yR, yS , yP ≥ 0 are
the probabilities of playing each respective strategy and
thus yR + yS + yP = 1. One can compute the expected
payoff resulting from any two mixed-strategies y, z by
evaluating v = yTAz. Following are three particularly
important concepts in game theory:

• a strategy X is a best response to Y if there is no
other available strategy that will improve the payoff
when played against strategy Y ;

• a strategy is strictly dominated if it is not a best
response to any strategy of the opponent;

• a Nash equilibrium is a state of a game in which
both players are playing best responses to each
other’s strategy.

Nash equilibria of zero-sum games are commonly re-
ferred to as saddle-point equilibria since the players
share a common utility function. In the Rock-Scissors-
Paper example, each pure strategy is a best-response to
a different pure strategy, but there is no pair of pure
strategies that are best responses to each other. However,
there is a saddle-point equilibrium in mixed strategies,
when both players play each of the three strategies
with one-third probability. We can express this by the
mixed-strategy pair y∗ = z∗ = [ 1

3 ,
1
3 ,

1
3 ]T . In fact, two-

player games with finite strategies always admit a unique
saddle-point equilibrium in mixed strategies [25]. This
result illustrates another key concept in game theory,
which is the principle of indifference, the idea being that
if I am playing a saddle-point equilibrium mixed strategy,
my opponent can pick from several strategies without
seeing any change in payoff, and is thus indifferent to
which strategy to play.

III. PROBLEM FORMULATION

Suppose now that an attacker has the ability to disable
one or more nodes, effectively removing them from the
network, but that a limited number of nodes can be
protected and thus immunized from attack. Whether
from the perspective of a central administrator or the dis-
tributed collective of nodes, the critical question becomes
which nodes to protect in order to maximize a particular
performance metric in the presence of such an attack.
Depending on the specific network application, there will
be many different means of attack and potential security
measures. The approach we present here is applicable to
contexts in which the following assumptions hold:

1) Resource limitations prevent every node from de-
fending itself.

2) The network does not recover fast enough to
reroute traffic/information before the performance
loss is assessed.

3) The attacker and defender make decisions in-
dependently, without knowledge of each other’s
decisions.

Assumption 1 holds particularly true in the case of
physical attacks to a network. When security is simply
a matter of implementing code, resource constraints
would most likely not be the key limiting factor for
network security. The second assumption will hold for
networks in which speed is critical or recovery is slow.
Although the problem is still solvable if the network is
allowed to reroute traffic, it becomes significantly more
complex, and we leave these dynamic extensions for
future research. The third assumption establishes that this
is not a sequential game but a simultaneous game; in
fact, the sequential game is less interesting in this case,
because the choices for either the attacker or defender
become quite clear once the opposing player has acted.
Mixed strategies therefore capture the players’ ability to
independently randomize their choices. Since a worst-
case attacker wants to minimize the same performance
metric that the defender wants to maximize, this problem
fits well into the setting of a two-player zero-sum game.
In fact we can already express the problem in general
form as the following minimax problem:

v∗ = min
y∈∆A

max
z∈∆D

yTAz, (2)

where y and z are mixed strategies of the attacker
and defender, respectively, A is a payoff matrix whose
entries represent the performance change in the network
resulting from each pair of pure attack and defense
strategies, and v∗ is the saddle-point equilibrium value
of the game. We denote by ∆A and ∆D the mixed-
strategy simplexes over pure strategy attack and defense
sets A and D, which will depend on the number of
nodes attacked (α) and defended (δ) as described in the
following sections. Finally, we say that a pure strategy
is contained in the support of a mixed strategy if the
corresponding element of the mixed strategy is strictly
positive.

A. Single-Node Attack / Single-Node Defense

We begin with the case where both the attacker and
defender possess only enough resources to target one
node, resulting in pure strategy sets that map directly
to the nodes in the network, i.e. A = D := V , where
V := {1, . . . , n}. To construct the payoff matrix, each
entry Aij should correspond to the change in network
performance when node i is attacked and node j is
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defended. Since a defended attack results in no change
to the network, A should have zeros on the diagonal.
All other entries correspond to an undefended attack on
node i, whose removal from the network results in a
performance loss exactly equal to its centrality value,
which we denote by ai. The payoff matrix can therefore
be expressed as

A =



def1 def2 · · · defn

att1 0 −a1 · · · −a1

att2 −a2 0 · · · −a2

...
...

...
. . .

...
attn −an −an · · · 0

, (3)

where atti and defj respectively indicate attack to node
i and defense of node j.

B. Single-Node Attack / Multiple-Node Defense

In the previous section we assumed that both the
attacker and defender could only target a single node,
but it is easy to imagine that the defender might have
enough resources to protect δ > 1 nodes. In this case, the
attack strategy set ∆A remains the same, but the defense
strategy set expands to cover all possible combinations
of defended nodes. Let Vk denote the set of all subsets
consisting of k distinct nodes in the network. Then we
have the pure strategy set D := Vδ and ∆D becomes
the mixed-strategy simplex over D. Let D(j) denote the
jth set of δ nodes under some enumeration of the set D.
Each entry Aij in the payoff matrix now corresponds to
the expected change in network performance when node
i is attacked and the nodes D(j) are defended. Therefore
Aij = 0 whenever i ∈ D(j) and Aij = −ai otherwise.

C. Multiple-Node Attack / Multiple-Node Defense

Next we consider the case where the attacker also has
enough resources to target α > 1 nodes. Now the pure
attack strategy set is A := Vα, the pure defense strategy
set remains D := Vδ , and each entry Aij corresponds to
the expected network performance change when nodes
A(i) are attacked and nodes D(j) are defended. Recall
that we defined the centrality of a node set in Section
II-A as the effect on network performance when that set
of nodes is removed from the network. Hence Aij is
equal to the centrality of the node set Aα(i) − Dδ(j)
whenever this set is nonempty, and 0 otherwise.

IV. CENTRALIZED SOLUTION

We begin by considering the problem from the per-
spective of a network administrator who has access to

full information about the network. Problem (2) is in a
standard form that admits a linear programming solution,
and although there are algorithms that can solve linear
programming problems in polynomial time [26], this
can still pose a computational burden when working
with very large networks. Moreover, the fact that payoff
matrices grow combinatorially with the number of attack
and defense nodes provides even stronger motivation to
develop faster solution algorithms. We present here a
simple and linear-time algorithm to compute the saddle-
point equilibrium strategies in the case of single-node
attacks.

A. Algorithm Design: Single-Node Defense

The key insight behind our approach is that the
expected payoff resulting from a mixed attack strategy is
monotone in the addition of pure strategies or nodes. In
other words, when choosing between two nodes to add to
the support of a mixed attack strategy, it is always better
to choose the node with the higher centrality. This means
we can incrementally construct a mixed defense strategy
by adding support nodes in order of decreasing centrality
until all remaining pure strategies are dominated. This
approach is made possible by the following propositions.

Proposition 1: At a saddle-point equilibrium, all pure
strategies not contained in the support are strictly dom-
inated.
Proposition 1 follows directly from the fact that strictly
dominated pure strategies always correspond to the zero-
entries of equilibrium mixed strategies [25].

Proposition 2: Support nodes are those with the high-
est centrality.

Proof: Suppose there exist nodes i and j such that
i ∈ S , j /∈ S , and aj > ai. Since zj = 0, this node is
undefended and the attacker can achieve a lower payoff
with a mixed strategy y′ such that y′j = yi, y′i = 0,
and y′k = yk for all k /∈ {i, j}. Therefore, node j is
not strictly dominated, a contradiction of Proposition 1,
which means that the support nodes must be those with
the highest centrality.

Proposition 3: The principle of indifference applies to
support nodes.
Proposition 3 is a direct consequence of the properties
of mixed-strategy equilibria (see for example [27]).

In light of these propositions, the node centralities
should first be sorted from highest to lowest in the vector
ã := Pa, where P is the appropriate permutation matrix.
Algorithm 1 then proceeds as follows. The counting
index k is initialized to 1 and incremented for every
node that is added to the mixed strategy, while σk is

5



the negated cumulative sum of reciprocal centralities.†

These quantities are used to update the expected payoff
value vk, and the loop is repeated until either vk is less
than the next highest negated centrality value −ãk+1 or
k = n. Note that if vk < −ãk+1, then all remaining
pure strategies are strictly dominated, i.e. there is no
reason for the attacker to consider attacking any of the
remaining nodes because it would only decrease the
effectiveness of the attack. This value of vk is in fact the
saddle-point equilibrium value, and the corresponding
strategies ỹ and z̃ are calculated in steps 9 and 10.

1 k := 1
2 σk := 1

−ã1
3 repeat
4 k := k + 1
5 σk := σk−1 + 1

−ãk
6 vk := k−nd

σk
7 until vk < −ak+1 or k = n
8 foreach i ∈ {1, . . . , k} do
9 ỹi := 1

−ãiσk
10 z̃i := 1− vk

−ãi
11 end
12 v∗ := vk

Algorithm 1: Computes saddle-point equilibrium value
and strategies of (2) for the case of single-node attacks.

We denote by nd the number of nodes simultaneously
defended, and the role nd plays in the algorithm will be
made clear in the proof of Theorem 2. The strategies for
the original game can then easily be constructed using
the inverse permutations y := P−1ỹ and z := P−1z̃.
The following theorem confirms that this algorithm
achieves the desired result for single-node attack and
defense.

Theorem 1: Algorithm 1 computes the unique saddle-
point equilibrium value v∗ to problem (2) for single-node
attack and single-node defense strategies.

Proof: We start by considering Az, which is the
vector of expected payoffs for each pure strategy of the
attacker. Az =

0 −a1 · · · −a1

−a2 0 · · · −a2

...
...

. . .
...

−an −an · · · 0



z1

z2

...
zn

 =


−a1(1− z1)
−a2(1− z2)

...
−an(1− zn)

 ,
where we used the fact that

∑n
i=1 zi = 1. The saddle-

point equilibrium mixed-strategy z∗ will have support

†Trivially, there should be at least one node with non-zero centrality
(ã1 > 0). Otherwise, the problem is degenerate.

on a subset S ⊆ V of pure strategies. Let z̃ = Pz be a
reordering of the vector z, where P is a permutation
matrix to be determined later such that the support
strategies occupy the first k∗ entries of z̃. Using the same
P matrix, let ỹ = Py and ã = Pa. By Proposition 3,
the expected payoff to the attacker against each of these
support strategies must be equal:

ã1(1− z̃1) = ã2(1− z̃2) = · · · = ãk∗(1− z̃k∗). (4)

Since the summation over z̃ must equal one, we have

k∗∑
i=1

(1− z̃i) = k∗ − 1. (5)

Solving for z̃ from the linear system of equations (4)-(5)
yields:

z̃i = 1− (k∗ − 1)
1

−ãiσk∗
, for i ∈ {1, . . . , k∗},

where

σk∗ :=

k∗∑
j=1

1

−ãj
.

For all pure strategies not in the support (i > k∗), z̃i = 0.
Let us now write the expected payoff for a generic

attack strategy ỹ:

v = ỹT Ãz̃ = ỹT



−ã1(1− z̃1)
−ã2(1− z̃2)

...
−ãk∗(1− z̃k∗)
−ãk∗+1

...
−ãn


= ỹT



k∗−1
σ∗k


1
1
...
1

−ãk∗+1

...
−ãn




By Proposition 1, all pure strategies not belonging to the
support are strictly dominated. Therefore, the expected
payoff of the game is k∗−1

σk∗
, which the attacker can

achieve by targeting any combination of the k∗ support
nodes. Notice that this expected value k∗−1

σk∗
is monotone

in the centrality values ai, following Proposition 2. That
is, when choosing between adding two nodes i and
j to a mixed-strategy, where ai > aj , adding node
i will always decrease (improve) the expected payoff
for the attacker more than node j. Therefore ã should
contain the values of a sorted in decreasing value, which
determines the permutation matrix P . The saddle-point
equilibrium strategies for the original network are then
given by y = P−1ỹ and z = P−1z̃.

All that remains is to compute k∗, which we can do
incrementally by adding nodes in order of decreasing
centrality, computing the resulting value and checking
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to see of the next value is dominated. That is exactly
the procedure of Algorithm 1 and thus the proof is
completed.

B. Algorithm Design: Multiple-Node Defense
It turns out that Algorithm 1 can also be adapted to the

case of multiple-node defense with only a small modifi-
cation. To see how, note that the particular combination
of nodes defended does not matter in the single-node
attack case. All that does matter is whether a node is
defended or not. Recall that the mixed strategy vector z
now has length

(
n
δ

)
corresponding to the pure strategies

of defending every possible combination of δ nodes, but
let us define a new n-length vector z̄, which contains the
probability that each node in the network is defended.
We will also define z̃ = P z̄. Note that z̄ is not a
mixed strategy since its values do not sum to one, but
it serves the purpose of the algorithm, and later we
can construct a mixed-strategy z by solving the under-
determined system of equations Az = diag(−a)(1n−z̄).

Theorem 2: Algorithm 1 computes the unique saddle-
point equilibrium value v∗ to problem (2) for single-node
attack and multiple-node defense strategies.

Proof: We again start by expressing the expected
payoff to the attacker:

Az = diag(−a)(1n − z̄) =


−a1(1− z̄1)
−a2(1− z̄2)

...
−an(1− z̄n)

 ,
where diag(−a) is the diagonal n × n matrix with the
entries of −a on the diagonal. Similar to the proof of
Theorem 1, let z̃ = P z̄ and ã = Pa. Once again the
principle of indifference applies and we have a similar
set of equations to solve:

ã1(1− z̃1) = ã2(1− z̃2) = · · · = ãk∗(1− z̃k∗). (6)

However, the final equation given by the summation over
the entries of (1− z̃) has changed. The summation now
equals

k∗∑
i=1

(1− z̃i) = k∗ − nd, (7)

and the resulting solution to the system of equations (6)-
(7) is given by

z̃i = 1− (k∗ − nd)
1

σk∗ ãi
, for i ∈ {1, . . . , k∗},

which is exactly what is incrementally computed in step
6 of Algorithm 1. The remainder of the proof follows as
in Theorem 1.

With the following theorem, we show that the compu-
tational complexity of Algorithm 1 is linear in the num-
ber of nodes in the network. For comparison purposes,
polynomial-time algorithms for linear programming have
worst-case computational complexity in the neighbor-
hood of O(n3.5) [26]. The reduction in complexity is
primarily a result of the monotonicity of the expected
payoffs in the pure attack strategies. We also note that the
computation of the algorithm itself is likely to run faster
than computing and sorting the centrality measures.

Theorem 3: Algorithm 1 requires a maximum of O(n)
operations.

Proof: The inside of each loop in Algorithm 1
contains a fixed number of operations and is repeated
a maximum of n times resulting in a total number of
operations that is in the worst case O(n).

V. DISTRIBUTED SOLUTION

We now turn our attention to the case in which there
is no central administrator and the nodes must come
to an agreement on the best defense strategy while
communicating only with neighbors. In this case, the
collection of nodes can be considered as one distributed
player whose objective is to implement the saddle-
point equilibrium defense policy through coordination of
individual decisions. Here we require that the network
performance metric be based on a centrality measure
that can be computed in a distributed way. This is
trivially true of strictly local measures such as degree
centrality and flow centrality (local throughput), but
it also turns out to be possible for betweenness and
closeness centrality, though the communication costs for
these will be significantly higher [28]. Since we are
not aware of a distributed method for computing the
centrality of node sets, we must also restrict our focus
in the distributed case to single-node attacks. Finally,
we restrict our attention in this section to undirected
connected networks.

In this context a collective mixed-strategy can be
interpreted in multiple ways. In the first interpretation,
a mixed strategy prescribes probabilities that each node
should be protected, but since nodes make these deci-
sions independently, it may happen that more than δ
nodes request protection, which is a violation of the
resource constraint implied by the problem statement.
However, since the game is likely to be repeated many
times, it is reasonable to relax this constraint to a
limit on the average amount of resources consumed per
iteration over a large number of repeated games. Since
this is a game of complete information, the extension
to repeated games has no effect on the saddle-point
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equilibrium and the resulting expected payoff of a long-
term distributed implementation of a given strategy is
equivalent to the one-shot expected payoff in the cen-
tralized case. As an alternative interpretation, one could
assume a linear relationship between defense resources
applied and success probability of the defense. That is,
a node that is defended with half resources has a one-
half probability of successfully defending an attack and
similarly for arbitrary fractions of resources. The result is
again mathematically equivalent to the centralized case,
although it can be computed in a distributed way.

For both interpretations, the objective is a distributed
method for arriving at the solution of (2). We see in
Algorithm 1 that the quantities each node needs to
compute are zi := 1− k−nd

−aiσk . Since we assume that nd is
known and that nodes can compute their own centrality
values ai, what remains to be computed are the values
of k and σk. Since σk is simply the sum of reciprocal-
centralities of the k support nodes, we propose a dis-
tributed averaging algorithm to compute σk

n for a given
set of k support nodes. The question then becomes how
to determine via distributed computation which nodes
are in the support. Here we can again use the monotone
property of the mixed attack strategies. By Proposition 1,
we have (i) if after node i computes the expected payoff
vk from σk, its negated centrality satisfies −ai > vk,
then the pure attack strategy corresponding to node i
is strictly dominated and is thus not in the support
of the equilibrium mixed defense strategy, and (ii) at
equilibrium there are no nodes such that −ai > vk.
This suggests initializing the algorithm to include all
nodes in the support and then letting them drop out of
the support if they fail this criteria. The algorithm then
iterates until no more nodes drop out at which point
the equilibrium has been reached. This is effectively a
distributed implementation of a process called iterated
elimination of strictly dominated strategies by a mixed
strategy [29].

In order to know how many nodes have dropped out
after each iteration, the nodes must also be able to
compute the new value of k. To update k, the nodes can
simultaneously compute k

n using distributed averaging,
by setting their initial values κi to 0 or 1 depending on
whether they have dropped out of the support at a given
iteration.

Although any valid distributed averaging algorithm
could be used to compute these values to sufficient
accuracy in practice, convergence rates may vary, so
we choose to use the finite-time distributed averaging
results of [30] to ensure that each node computes the
exact average in no greater than n steps. This way,

the nodes can ensure the completion of each averaging
computation before moving on to the next step in the
algorithm.†

Let x := [x1, . . . , xn]T denote the quantities we
wish to average. The finite-time averaging procedure
begins by computing up to n iterations using a standard
distributed averaging algorithm:

xi(t+ 1) = wiixi(t) +
∑
j∈Ni

wijxj(t), (8)

where the weights wij are elements of a weighting ma-
trix W . The conditions on W to guarantee convergence
are that W has one simple eigenvalue at 1 and the rest
strictly less than 1, with both left and right eigenvectors
equal to 1n (the vector of length n containing all ones)
[31]. It is always possible to find such a matrix W since
the underlying network is undirected and connected. One
standard choice that meets these requirements is the
following [32]:

wij =

{
1

1+max(di,dj)
, i 6= j

1−
∑
k∈Ni wik, i = j

,

where di denotes the degree of node i. With these
weights, each node only needs to know the degree
of itself and each neighbor. The finite-time averaging
technique is based on the observation that since x(τ) =
W τx(0) and every matrix satisfies its own minimal
polynomial, x(τ) can be expressed in terms of n or fewer
of its own previous values. Hence after n iterations, every
node has all the information needed to compute the exact
average. Let the minimal polynomial of W be given by
WD+1 +αDW

D+· · ·+α0I = 0, where D is the degree
of the minimal polynomial. The expression for the exact
average is then given by

x∗i =

[
xi(D) xi(D − 1) · · · xi(0)

]
s

1D+1
, (9)

where

s :=
[
1 1 + αD · · · 1 +

∑D
j=1 αj

]T
.

We refer the reader to [30] for a derivation of this result.
The complete distributed computation procedure to be

synchronously performed by each node i ∈ V such that
ai > 0 is shown in Algorithm 2.

Theorem 4: Algorithm 2 computes the unique saddle-
point equilibrium value v∗ to problem (2) for single-node
attack and multiple-node defense strategies.

†This method requires that the network topology remains fixed
during the period of computation, which is reasonable provided that
the communication rates are much faster than the rate of change to the
links in the network.
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1 κi(0) := 1
2 kprev := n
3 repeat
4 xi(0) := 1

−ai
5 Compute xi(1), . . . , xi(D) using (8)
6 Compute κi(1), . . . , κi(D) using (8)
7 Solve for x∗i and κ∗i using (9)
8 k := nκ∗i
9 σk := nx∗i

10 vk := k−nd
σk

11 if −ai > vk then
12 κi(0) := 0
13 end
14 ∆k := kprev − k
15 kprev := k
16 until ∆k = 0
17 yi := 1

−aiσk
18 zi := 1− vk

−ai
19 v∗ := vk

Algorithm 2: Distributed algorithm to compute saddle-
point equilibrium value and strategies of (2).

Proof: Since we already proved in Theorem 2 that y
and z are a saddle-point equilibrium strategy pair given
the correct value of k∗, it suffices to show that Algorithm
2 indeed computes the correct value of k∗. Since k∗

corresponds to the smallest k for which no strategies in
the support are strictly dominated, we need only show
that for any i ∈ V and k ≥ k∗, if −ai > vk then i /∈ S .
This follows directly from Proposition 1. Now, since we
start with k = n and k is monotone decreasing, we will
always obtain the correct value of k, and the proof is
completed.

Remark 1: In the centralized algorithm, nodes are
added to the support set one at a time, while in the
decentralized algorithm, multiple nodes can drop out
simultaneously. The result is that when there are many
nodes in the support set, the decentralized algorithm is
likely to terminate in fewer iterations than the central-
ized algorithm, and indeed that is what we observe in
simulation. However, since the decentralized algorithm
includes an extra averaging computation for k, it will
generally lead to longer total computation times.

VI. MULTIPLE-NODE ATTACKS

The case of simultaneous attacks to multiple nodes in
the network adds additional complexity to the problem
because the specific combination of nodes attacked be-
comes more important. We can no longer consider the re-

moval of nodes from the network in isolation, but rather
must capture the inter-dependencies of nodes on network
performance through the concept of node-set central-
ity, introduced in Section II-A. Although the resulting
problem (2) remains computable by linear programming,
the size of the payoff matrix grows combinatorially
in the number of nodes attacked and defended. As an
example, the payoff matrix for 5-node attack and defense
strategies on a 50 node network contains

(
50
5

)
×
(

50
5

)
(over 2 million × 2 million) entries. Unfortunately, we
no longer have monotonicity of the mixed-strategies with
respect to node-set centrality and therefore we cannot use
the methods of Algorithm 1 to simplify and solve this
problem exactly.

However, one can approximate the solution to the
problem while greatly reducing the computation. The
key observation is that similar to the single-node attack
case, it is likely that in most practical networks only a
few of the large number of possible attack combinations
will play a role in the equilibrium solution. If we could
somehow identify the most effective attacks without
computing the entire payoff matrix, we could save a
substantial amount of computation. The method we
propose in the next section computes the most effective
sequences of attacks in order to predict the most effective
parallel attack strategies from the full payoff matrix.

Remark 2: In general, it may not be known exactly
how many nodes will be attacked. If this is the case,
the following algorithm can be run several times for
different numbers of attack nodes and the results can
be weighted based on a probability distribution on the
expected number of nodes that will be attacked.

A. Sequential Approximation Algorithm

Let Ak ⊆ V denote a set of k nodes targeted by
an attack, and let Āk denote a set of k-node attacks.
Denote by Sδ(Ak) the set of support nodes resulting
from a single-node attack to a network in which the
nodes Ak have been removed, and δ nodes are defended.
The sequential approximation (Algorithm 3) works by
iteratively building (k+1)-node attack sets from k-node
attack sets. For each attack Ak in the k-node attack set
Āk, the nodes Ak are removed from the network, and
the support nodes for the resulting single-node attack
Sδ−k+b(Ak) are computed. Then, attacks containing the
original nodes Ak plus the new nodes are added to the
(k + 1)-node attack set Āk+1. The nonnegative integer
b is a free parameter in the algorithm; increasing b may
reduce the approximation error by expanding the set of
nodes added to the candidate attack sets, but this comes
at the cost of increased computation time.
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1 Ā0 := {∅}
2 for k := 0 to α− 1 do
3 foreach Ak ∈ Āk do
4 Compute Sδ−k+b(Ak) using Algorithm 1
5 foreach v ∈ Sδ−k+b(Ak) do
6 Āk+1 := Āk+1 ∪ {Ak ∪ {v}}
7 end
8 end
9 end

10 v̂ := miny∈∆Aα maxz∈∆Aα y
TAz

Algorithm 3: Algorithm to approximate saddle-point
equilibrium value and strategies of (2) for the case of
multiple-node attacks based on a sequential simplifica-
tion.

B. Simulations

It is quite difficult to derive analytical measures for
how closely Algorithm 3 approximates the saddle-point
equilibrium defense strategy in general, but we can test
it on a model of a real network as well as a range
of randomly generated networks and compare to other
potential defense strategies, including the exact solution
of (2) provided the networks are small enough. We begin
by testing the approach on connectivity data of the UCSB
MeshNet, a real experimental wireless mesh network
dataset that was also used in [8].

0.40

0.24

0.29

0.59

0.46
0.35

0.17 0.00

0.46
0.03

Fig. 2. Results of Algorithm 3 applied to the UCSB MeshNet data from
a particular instant of time. The shading of the nodes is proportional
to the adjacent numbers which are the probabilities that each node will
be defended as part of a three-node mixed defense strategy against a
three-node attack.

Fig. 2 shows the network along with the saddle-
point-equilibrium mixed-defense strategy for three-node

defense against three-node attack. We compared the
sequential approximation to two other defense strategies:
(1) a pure strategy, which defends the three nodes having
the highest betweenness centrality (equivalent to the
analysis in [8]), and (2) random sampling, which samples
the payoff matrix by randomly choosing 20% of the
possible node combinations and solving the game on the
resulting reduced payoff matrix. The random sampling
approach is inspired by [33] and has the advantage
of approximation guarantees assuming the attacker is
also using random sampling. However, in order to make
an unbiased comparison between strategies, we assume
the attacker plays the saddle-point equilibrium strategy
against whatever strategy the defender is using. For the
pure strategy, this means the attacker knows the defender
will defend the three most central nodes and thus will not
attack those nodes, while for the sequential approxima-
tion, this means the attacker knows which columns of the
payoff matrix have been selected by the defender. Table
I shows the expected payoffs for each of these defense
strategies as well as the sequential approximation and
the true saddle-point equilibrium strategy. Notice that the
attacker playing against the sequential approximation can
still not improve on the saddle-point equilibrium payoff
despite having a significant advantage.

TABLE I
MULTIPLE-NODE ATTACKS TO UCSB MESHNET

Defense strategy
Nodes attacked/defended

1 2 3

Saddle-Point Equil. -0.171 -0.273 -0.342

Sequential Approx. -0.171 -0.273 -0.342

Random Sampling -0.193 -0.279 -0.349

Pure Strategy -0.232 -0.402 -0.539

Next, we tested the accuracy of Algorithm 3 against
the two other approaches for a two-node attack and
defense scenario on 100 random geometric networks of
increasing size, generated by randomly placing n nodes
the unit square and connecting any pair of nodes that
are closer than a distance threshold of 0.4 from each
other. Fig. 3 shows the expected fraction of performance
loss ( v̂−v

∗

v∗ ) of the three approaches compared to the
equilibrium payoff, and Fig. 4 compares the average time
required to compute the sequential approximation to that
for the full payoff matrix and linear programming (LP)
solution. We see that the sequential approximation comes
quite close to the exact solution with a relatively flat
computation time compared to the LP.
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Fig. 3. Mean fraction of expected performance loss of the three
approximation algorithms on five sizes of random geometric networks.
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Fig. 4. Mean computation times of the sequential approximation
compared to solving the exact solution via linear programming.

VII. CONCLUSIONS AND FUTURE WORK

The main contributions of this work are fast algo-
rithms for allocating defense resources to the nodes of
a network with the goal of maximizing one of several
suitable centrality-based performance metrics in the pres-
ence of attacks. For single-node attacks, we presented
both centralized and distributed algorithms to compute
the saddle-point equilibrium defense policies against
worst-case attacks. The case of simultaneous attacks
to multiple nodes is computationally complex, so we
proposed a centralized approximation algorithm based
on a sequential simplification. Simulations demonstrated
that this approach very closely approximates the equilib-
rium strategies for a variety of cases at greatly reduced
computation. Interesting directions for future research
include extending the results to the case when links are
attacked in place of or in addition to nodes, developing
distributed solutions to the multiple-node attack case,
and investigating the effect of adversarial nodes in the
distributed case.
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