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ABSTRACT 
With knowledge on the photovoltaic potential of individual 
residential buildings, solar companies, energy service providers 
and electric utilities can identify suitable customers for new PV 
installations and directly address them in renewable energy rollout 
and maintenance campaigns. However, many currently used 
solutions for the simulation of energy generation require detailed 
information about houses (roof tilt, shading, etc.) that is usually 
not available at scale. On the other hand, the methodologies 
enabling extraction of such details require costly remote-sensing 
data from three-dimensional (3D) laser scanners or aerial images. 
To bridge this gap, we present a decision support system (DSS) 
that estimates the potential amount of electric energy that could be 
generated at a given location if a photovoltaic system would be 
installed. The DSS automatically generates insights about 
photovoltaic yields of individual roofs by analyzing freely available 
data sources, including the crowdsourced volunteered geospatial 
information systems OpenStreetMap and climate databases. The 
resulting estimates pose a valuable foundation for selecting the 
most prospective households (e.g., for personal visit and screening 
by an expert) and targeted solar panel kit offerings, ultimately 
leading to significant reduction of manual human efforts, and to 
cost-effective personalized renewables adoption.  

CCS CONCEPTS 
• Information systems~Decision support systems
• Information systems~Data analytics   • Information
systems~Location based services   • Information systems~Data 
mining   • Hardware~Renewable energy 
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1 INTRODUCTION 
Photovoltaic (PV) is one of the most promising energy suppliers in 
the future energy system and was the second-largest source of 
newly built renewable energy capacity in 2015 [26]. According to 
a recent study by Gagnon et al. [17], 39% of U.S. national electric-
sector sales could be covered by PV installations on rooftops. By 
the end of 2015, the cumulative installed solar PV power capacity 
world-wide was 229 GW, but new investments decline currently 
due to the drop of subsidies (e.g., attractive incentive programs in 
Europe ended or will end in the near future) and concerns of 
investors on how fast renewables can be integrated in the grid 
infrastructure. These sorrows reduce the long-term investor 
conviction to invest in PV [25, 28, 53]. Nevertheless, the political 
will is to achieve large extension of renewables. For example, the 
EU members committed themselves to the binding goal that at 
least 27 % of consumed energy shall be produced by renewables by 
2030 [13], in 2013 this portion was only 11.8% [14].  

Rising energy prices in the future [57] will make PV 
investments profitable [4], and make them highly attractive for 
self-consumption or storage settings in residential home owners 
that can convert their rooftop into a profitable local solar plant 
already now. 

One barrier for private investors to adopt solar installations on 
their rooftop is their unawareness of the actual potential of their 
home [55], because they are often unaware of the important 
determinants for the solar potential of their housing (different 
rooftop types, tilt, orientation, objects causing shadow, etc.) and 
how to evaluate the relevant variables for such an investment 
decision. On the other hand, PV providers go astray manually 
collecting and updating information about houses in the 
potentially appropriate areas. Thereby, knowledge on the solar PV 
potential of single residential building roofs is extremely valuable 
for solar companies, energy service providers and utilities. By 
having this location-based information for a large number of 
residencies energy companies can then select the most suitable 
households to promote new PV installations or maintenance 
support for already plugged-in solar panels. Furthermore, having 
these insights utilities and regional communities (including city 
planners and energy policy makers) can make more informed 
decisions about regional renewable energy strategies, better plan 
their local smart grid infrastructure development and design 
targeted green incentive campaigns [3, 61]. This will consequently 
lead to the increase of renewable energy share and support the 
achievement of ambitious sustainability goals. 
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The automatic prediction of the roof PV potential has been a 
subject to considerable amount of research, but existing studies 
rely on expensive data collection and are therefore regionally 
limited. The work presented in this paper goes beyond the 
state-of-the-art by presenting a new data-mining-based 
DSS that utilizes freely available sensory and 
crowdsourced Volunteered Geographic Information (VGI) 
data from OpenStreetMap as well as solar irradiation and 
temperature to automatically assess the PV potential of 
individual residential building roofs.  

VGI digital data sources have emerged and millions of 
companies donate their information while users constantly 
generating new data online [9]. One prominent example is the 
project OpenStreetMap (OSM), that contains currently 3.8 billion 
entries on geographic places, streets, buildings, roads etc. [46]. 
Alongside preloaded digital maps from around the globe, the 
information within OSM is currently enhanced by a large group of 
volunteers who upload their sensory information such as satellite 
images, GPS tracks, but also field surveys to adjust and enrich the 
data for a region of interest. Some recent works already use OSM 
data for the PV potential prediction. In [31, 58] the total world 
solar energy potential on building roofs was estimated. Mainzer et 
al. [38] tested OSM data with satellite images to calculate the 
summarized areas of all building roofs in two cities  

 The methodology presented herein estimates a range of annual 
electricity energy (in kWh) that can be produced by a PV 
installation covering individual roofs. We combine several data 
mining related techniques to develop the decision support system 
[34]: our approach combines knowledge modeling with predictive 
analytics. Based on the location data of buildings and related 
unstructured crowdsourced geographic information [21, 65], we 
infer knowledge about private houses that is relevant for the PV 
potential estimation. On the other hand, quantitative domain-
specific predictive models are applied for the roof area estimation 
and the amount of potentially generated PV energy at the given 
location. Thus, we apply knowledge on PV generation and 
geographic data to interpret and extract relevant features from 
OSM database, as well as use Monte-Carlo-Simulation [45] and 
mathematical models for electricity yield to estimate roof area and 
PV energy generation. From the engineering viewpoint, energy 
production yield across the roof was defined by Hookwijk [23] 
which is the solar energy irradiated at the earth point (known as 
theoretical or geographical potential) lowered by several influence 
factors (e.g., conversion efficiency, shading, or losses due to 
cabling or transformation). The amount of PV power that is 
actually installed on building roofs can be lower than this 
estimated technical potential by considering non-technical aspects 
(e.g., available investment capital, subsidies, laws). 

We have made four assumptions that are justified in the 
following sections: our approach works for residential buildings 
with (i) a rectangular basal area, that have (ii) a gabled rooftop 
with (iii) a tilt-angle of 35°. Besides that, (iv) structural limitations 
to the rooftop area (such as roof windows, antennas or chimneys) 
are not assessed individually (due to the lack of data), but included 
as averages. 

This remainder of the paper is structured as follows: An 
overview to related work is given in the next section. We describe 
the methodology in Section 3. In Section 4, we show the results of 
validation with two real-world datasets, and in Section 5, we 
discuss possible improvements and current limitations. 

 

2 LITERATURE REVIEW 
Multiple studies suggest approaches for the prediction of the roof 
PV potential. The existing works rely upon various data sources 
with data granularities ranging from detailed three-dimensional 
data with a raster size of lower than 0.5m, raised in locally limited 
remote sensing studies [e.g., 33, 48], to globally aggregated 
statistics [e.g., 31, 58]. The data types include airborne Light 
Detection and Ranging (LiDAR) data, aerial images from satellite 
photogrammetry [47, 64], digital earth surface models [18], 3-
dimensional (3D) building data [60] or two-dimensional (2D) 
cadaster data from official land surveying offices. An interested 
reader is referred to [5, 16, 41, 52] for detailed surveys on the PV 
potential estimation in urban landscapes. The existing approaches 
can be divided into four categories that we briefly describe below. 

Constant-Value Methods: These works use generalized 
statistics (e.g., population, gross domestic product, construction 
statistics in a country) to roughly estimate the overall solar 
potential of larger regions [e.g., 36]. Due to the simplifications and 
assumptions, the methods are unsuitable to discriminate between 
individual buildings. 

Manual Selection and Sampling Methods: Samples of 
rooftops from limited study areas are used to assess the typical 
solar potential of related buildings. The solar potential estimates 
for the selected rooftops are then calculated, based on aerial 
images, three-dimensional LiDAR data, or manual considerations, 
and the resulting estimate per building is extrapolated to the whole 
study region [e.g., 6, 47, 64]. Some works seek to draw correlations 
between population density and available roof area [e.g., 61] to 
support their estimation. Such manual sampling of houses and 
their solar potential assessment are hard to automate. 

Solar potential estimation based on digital terrain 
models: Works in this category [e.g., 18, 31, 58] focus on the solar 
capabilities of complete regions with digital terrain models and 
environmental data (solar irradiation and weather), using 
geographic information software (such as ESRI ArcGIS, GRASS 
GIS, or others). The results are obviously more reliable than those 
from constant-value works, but assessment of individual roof solar 
potential is also not possible.  

Solar potential estimation of individual roofs: Multiple 
studies on the solar potential of individual rooftops have been 
conducted, using 3-dimensional LiDAR data [e.g., 22, 27, 30, 33, 37, 
44, 59]. The works rely on advanced cartographic collections from 
regionally limited remote sensing studies and show the possibility 
to assess the photovoltaic perspective for individual roofs at a high 
level of detail. Some authors [7, 12, 48, 49] even estimate the solar 
potential of building facades for vertical installations. These 
models achieve performance of up to 9% root-mean-square 
deviation from the real PV production figures [29]. However, these 
studies are regionally limited, since expensive data collection is 
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necessary. Moreover, solar companies and utilities usually do not 
have access to this kind of detailed data. 

 

3 METHODOLOGY  
Figure 1 illustrates the decision support methodology, which 
encompasses six steps enumerated in the figure and consequently 
described in the following subsection. As an input, the artifact 
employs the postal address of a residential building. In addition, 
the method relies on freely available sensory and crowdsourced 
data: building geometries from OSM, solar irradiation and 
temperature. Further the model requires the values of parameters 
and influence factors (solar panel efficiency, roof shading etc.) to 
derive the expected range of PV yield on the rooftop per annum.   

3.1 Retrieval of the building geometry from 
OpenStreetMap 

At the initial stage, the shape of the building base as a polygon 
(specified by the coordinates of its corners) is retrieved from the 
OSM web service. After online request, the given address of the 
residency is converted to geocoded coordinates.  

The data provided by the OSM web service consists of points 
and polylines on a 2D map, annotated with so called “tags”. These 
tags give semantic meaning to the objects (e.g., they identify lines 
as streets and polygons as buildings). Tags also contain further 
information to describe the geometries (e.g., street / building type, 
name, or opening hours of shops). Technically, tags are key-value 
pairs that users can add to objects. The OSM community maintains 
a comprehensive taxonomy of recommended tags, but the 
existence and quality of the tags associated with objects in the 
database varies to a large extend [1]. In our implementation, we 
select the closest building (polygon tagged with the key “building”) 
to the given location. Buildings with a larger Euclidean distance 

than 50m to the location are excluded to avoid errors that are 
caused by the lack of data in OSM (this was the case in ca. 15% of 
our tested addresses).  

The building type does not actually influence the roof area 
estimation, but we extract this information from OSM and use it in 
our validation. We distinguish thereby between residential 
buildings (that have an estimated rooftop area of lower than 
400m2 and are tagged with the OSM key building, together with 
one of the values: apartments, detached, dwelling_house, house, 
residential, terrace semi_detached, semidetached_house,) and 
other buildings (e.g., commercial, industrial or unspecified 
buildings). For our purposes, only residential buildings are of 
interest. 

3.2 Estimation of the rooftop area (𝑨𝒄) and 
orientation in the space (𝜷) 

From the shape of the building base, we extract the rooftop area 
available for PV installations and the roof orientation in space.  

The roof area is mainly determined by the roof type. Since roof 
type information is rarely existent in OSM [19] we consider the 
most frequent roof type gabled roof in official cadaster data (Table 
1 shows the distribution of roof types based on [2] in a random 
sample of 3,627 buildings in Southern Germany). As the rooftop 
tilt, we consider 𝛼 = 35° for all buildings, according to previous 
studies [36]. 

We calculate the available rooftop area for solar installations 
𝐴( with the building footprint area 𝐴)	and the rooftop tilt 𝛼 [36]: 

 𝐴( =
1
2
∗

𝐴)
cos 𝛼

 (1) 

In the VGI data, no structural limitations to the available 
rooftop area (like windows, antennas or chimneys) are included 
and therefore we leave them out in this study, because even in 

 

Figure 1: Decision support methodology for estimating solar energy production potential of individual building roofs  
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studies using highly detailed 3D data, the exact identification of 
such limitations was not possible [30, 41]. 

Table 1: Roof types [2] and their frequency in a random 
sample of 3,627 buildings in Southern Germany. 

Roof type Gabled roofs Flat roofs Other (11 types) 

   

Frequency 2,328 540 759 

Relative frequency 64% 15% 21% 

To determine the roof ridge orientation, we use the building 
footprint corner coordinates, identify the longer side of the 
building and take the angle towards the sun, since a large majority 
of buildings are predominantly rectangular [54].  

3.3 Computation of the amount of solar 
irradiation per area ( ) 

For the PV potential estimation, the amount of solar energy per 
area irradiated on the building roof and converted by PV modules 
to electrical energy is needed. We use Lamigueiro’s [32]
methodology and implementation that employs monthly solar 
radiation and temperature data at the specific location of the 
building (we use data from EUMETSAT [50]), together with the 
roof ridge orientation  and the roof tilt  to calculate the amount 
of energy. Since the measurements are faced with inaccuracies and 
variations (local weather conditions, reflections, etc.), we use the 
10-year average readings in order to get a general picture of the 
solar potential at a specific location. 

3.4 Definition of the main features that 
influence PV yield 

The conversion of the irradiated solar energy to electric energy 
that can be fed into the power grid is subject to losses. We 
conducted a comprehensive literature review to identify the factors 
that influence the PV electricity generation, and found 13 factors 
that we list Table 2 together with published statistics (min., 
average, max.).  

Solar panel efficiency ( ) refers to the percentage of solar 
energy that can be technically transformed into electricity by a PV 
installation. The PV panel efficiencies differ heavily between 
manufactures [63] and become more efficient with progress in the 
technical development. With the efficiency of up to 25%, silicon 
crystalline is today one of the most efficient solar panels. In our 
estimation, we assume an average efficiency of 16% which was a 
common standard in the year 2012 when the solar panels of our 
validation-data were installed [20]. 

The solar electric energy production is faced with 
environmental influences. First, shading ( ) reflects what 
percentage of the roof area is shaded (e.g., by a tree or by 
neighboring buildings). Dust, snow and other soiling on the 
surface of a PV module ( ) prevent solar radiation from reaching 
the solar cells thus lowering the efficiency. Furthermore, the 

system shutdowns due to maintenance, grid outages, etc. reduce 
energy availability and output ( ).  

Besides that, technical losses lower the solar energy 
production. Within the solar cell where direct current (DC) 
electricity is produced, energy is lost due the wire connection 
between inverters, transformers and other parts of the installation 
( ). Inverter losses ( ) happen during the conversion of DC in 
alternating current (AC) electricity mode. Cable mismatch ( ) 
describes the electrical losses caused by slight differences of the 
manufacturing imperfections between modules in the array and 
different current-voltage characteristics. The initial light-induced 
degradation ( ) describes the deposit of oxygen with silicon 
caused by a chemical process inside crystalline silicon solar cells 
during the photovoltaic effect. Further losses arise in the 
transportation of AC power ( ), losses due to diodes ( ) and 
connections of the solar installation and of the transformers ( ) 
are also considered in the literature.  

Table 2: Variables and constants used in our methodology 
to estimate the PV potential of building roofs  

Estimated variables 
 Available rooftop area, see (1)   Estimated PV potential 

 Area of the building footprint  Mean annual solar irradiation at 
the roof location 

 Roof orientation in space  Power conversion efficiency 
coefficient 

Constants from literature 
Symbol and name Value Ref.

  Rooftop tilt 35° [36, 38] 

 Solar panel efficiency 0.16 / 0.25 [20] 

 Min,  Average,  Max,   

 Shading 0.00 1.00 1.00 [11, 39, 47] 

 Soiling 0.75 0.95 0.98 [11, 39, 40]  

 Availability 0.00 0.98 0.995 [6, 11, 39] 

 Wiring AC 0.98 0.99 0.993 [11, 39] 

 Inverter 0.93 0.96 0.98 [4, 11, 39] 

 Cable mismatch 0.97 0.98 0.985 [11, 39] 

 Initial light-induced 
degradation 

0.90 0.98 0.99 [6, 35, 39]

 Cabling DC 0.97 0.98 0.99 [11, 39] 

 Diodes and 
connections 

0.99 0.995 0.997 [11, 39] 

 Transformers 0.96 0.97 0.98 [11, 39] 

 Manufacturer’s 
nameplate rating 

0.85 1.00 1.05 [11, 39, 56] 

 Error rooftop area 
(availability for 
panels) 

0.49 0.73 0.95 [43, 51, 61] 

Finally, we consider two other coefficients. The manufacturer’s 
nameplate rating ( ) is the differences between the solar panel 
efficiency figures published by the manufacturer and efficiency 
values that are measured under standard test conditions. The 
available rooftop has to be reduced due to structural limitations 
(e.g., windows, chimneys, antennas) by a ratio of the complete 
rooftop area and the area available for PV ( ).
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3.5 Definition of a cumulative performance 
measure (𝜼𝒆) based on Monte Carlo 
simulation  

The identified influence factors must be combined to one single 
power conversion efficiency coefficient 𝜂G that is used in the PV 
potential estimation. A simple multiplication of all factors would 
ignore the distribution of each factor and leads to a large 
difference between the minimum and maximum estimated PV 
potential, due to the large range of some factors (e.g., 𝑐6, 𝑐8, 𝑐57). 
Therefore, we use repeated random sampling for the aggregation 
of all influence factors 𝑐6, … , 𝑐57. This method is known as Monte 
Carlo simulation and has its application in math, physics, and 
business, when probabilistic problems with multiple variables must 
be solved [15].  

In the Monte Carlo simulation, we assume all influence factors 
𝑐6, … , 𝑐57 to be independent from each other and they can take a 

random value between 𝑐HIHJ and 𝑐HIKL, with the arithmetic mean 
of 𝑐H∗. The solar panel efficiency (𝑐5) is considered as a constant, 
because this factor depends on the technological state of the art 
and we use it as a parameter to the calculation. We approximate 
the cumulative density function 𝐶H 𝑥  for each coefficient 
stepwise, using the cumulative density function 𝐹U;W(𝑥) of the 

normal distribution 𝒩(𝜇, 𝜎6) , where we define the mean as 

𝜇 = 𝑐H∗, and the standard deviation by 𝜎IHJ;H =
5
[
(𝑐H∗ − 𝑐HIHJ) and 

𝜎IKL;H =
5
[
(𝑐HIKL − 𝑐H∗) according to 𝑐HIHJ  and 𝑐HIKL ; 𝑧 equals to 

the number standard deviations between 𝑐H∗ and  𝑐HIHJ / 𝑐HIKL: 

 𝐶H 𝑥 =
𝐹U;W^_`;_(𝑥)

𝑐H∗
𝐹U;W^ab;_(𝑥)

:
:
:

𝑥 < 𝑐H∗
𝑥 = 	 𝑐H∗
𝑥 > 𝑐H∗

 (2) 

 
For the Monte Carlo simulation, we generated 10,000 

independent random values for each influence factor, following the 
distribution 𝐶H 𝑥  that are within the range of the respective 

coefficient [𝑐HIHJ; 𝑐HIKL]. We calculate the aggregated influence 
factors 𝜂H∗ as the product Π of all coefficients, according to [6]: 

 𝜂H∗ = 𝑐i

Jj57

ij5

= 𝑐5 ∗ 𝑐6 ∗ … ∗ 𝑐J (3) 

 
The resulting distribution of 𝜂H∗ is shown in Figure 2 for 𝑧 ∈

{2,3,4,5}. We choose 𝑧 = 3 for the use in our implementation, 
because 99.73% of all values in the normal distribution are within 
the interval of [𝜇 − 3𝜎; 	𝜇 − 3𝜎] and the distribution of 𝜂G seems 
not to be overfitted.  

As the result of the aggregated PV performance influence 
factors, we compute the power conversion efficiency coefficient 
𝜂G as the expected value of the aggregated 𝜂H∗ values: 

 𝜂G =
1

10,000
𝜂H∗

5>r>>>

Hj5
 (4) 

 
 
 

 

Figure 2: Distribution of the aggregated influence factors 
𝜼𝒊∗ as a result of Monte Carlo simulation for different 
numbers of standard deviations (𝒛)  

3.6 Roof photovoltaic potential estimation 
To finally assess the electric energy 𝐸ABCthat can be generated by a 
PV installation and fed into the grid, we consider Hofierka and 
Kaňuk’s model [22] with three determinants (Equation 5): 
Available rooftop area for solar cell installation 𝐴𝑐 (in m2), annual 
solar irradiation at the roof location 𝐺E (in Wh/m2), and mean 
annual power conversion efficiency coefficient (power input from 
the sun / power output from the system) 𝜂G from Equation 4.  

 𝐸ABC = 𝐴( ∗ 𝐺E ∗ 𝜂G  (5) 

As an extension to Hofierka and Kaňuk’s [22] model, we 
express the vagueness of this estimation with an interval rather 
than with a single value and replace 𝜂G with an interval [𝜂G, 𝜂G] 
that contains 90% of the values for 𝜂H∗ (Equation 3). We define 𝜂G 
as the 5%-quintile and 𝜂G as the 95%-quintile of the distribution of 

𝜂H∗.Therefore, we provide an estimation of 𝐸ABCand a range of the 

PV production [𝐸ABC; 𝐸ABC]. 
 

4 VALIDATION 
We make a two-fold validation of our approach. On the one hand, 
we validate our estimation of the rooftop area 𝐴( using official 3D 
cadaster data from the Bavarian land surveying office [2], 
containing detailed information on the roofs of 3,627 buildings. On 
the other hand, we validate our estimation of the possible PV 
electricity production 𝐸ABC using real-world production data from 
85,806 existing solar collector installations throughout Germany 
[10]. Our primary focus in both validations lies – in line with the 
goal of this paper – in assessing the predictive quality of our 
method for the solar potential estimation of residential buildings 
with gabled rooftops. Therefore, we distinguish between these 
buildings and other buildings (e.g. industrial or unspecified 
building types), and other/flat rooftops, if this information is 
available to us.  The locations of all validation data are illustrated 
in Figure 3. For both validations, we provide detailed dataset 
descriptions, followed by the results and an interpretation in the 
sections below.  
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Figure 3: Map of Germany showing the places for rooftop 
area validation and the locations of the PV installations 
considered for the validation of PV potential estimates 

4.1 Validation of the rooftop area estimate  
4.1.1 Validation dataset 
The Bavarian land surveying office provided us with laser-scanned 
3D cadaster-data for 𝑛v =3,627 houses located in three places in 
Southern Germany. We selected the places in cooperation with the 
land surveying office, following the motivation to include 
residential houses in the countryside, in villages and in suburbs, 
according to the categorization of Lödl et al. [36]. We chose 
therefore study areas that show different townscapes: Würzburg/ 
Altstadt is an old district area of a large town, 
Würzburg/Sanderau and Bamberg/Gartenstadt are newer districts 
of towns that are characterized by many residential buildings. In 
contrast, the village Moosach is a rural area with larger buildings 
and more open space. 

The cadaster-data contains information on the buildings and 
the corresponding rooftops. Each building has one or more roofs 
associated. For each roof, the actual area 𝐴?  and the roof type (see 
Table 1) is known.  

4.1.2 Validation results  
We validate the methodology for estimation of rooftop area by 

comparing the calculated area 𝐴(H  (based on OSM data) with the 

true area 𝐴?w  (based on cadaster data) and calculating the error 

δHv = 𝐴?H − 𝐴?w  for each building 𝑖. As measure for the model 
performance, we use the mean absolute error 𝑀𝐴𝐸	 =
5
J{

δHv
J{
Hj5  and the model bias error 𝑀𝐵𝐸	 = 5

J{
δHv

J{
Hj5  

according to [62] and present the results in Table 3. Negative 
values of MBE indicate an underestimation. The results are 
separated by the building type (the categories residential buildings 
and other buildings are based on the OSM data, as we describe in 
Section 3.1) and the roof type (categories gabled rooftops and flat 
/ other rooftops, based on the information from the cadaster data, 
as included in Table 1). Existing studies that estimate the PV 
suitable rooftop area only rarely validate their results with real 
world data. In the lack of such benchmarks, we consider two 

random guess estimators (see Table 4) that we use to compare the 
MAE values with:  

1. Random guess: This estimator assumes that all buildings 
have the same average rooftop size. In the lack of existing statistics 
on the roof area in Germany, we consider the average floor area of 
91.4 m2 where residents in Germany are living on [8] and take the 
average rooftop area of 111.58 m2 (assuming a rooftop tilt of 35°) 
as a benchmark for the rooftop area estimation.  

2. Biased random guess: This estimator assumes that all 
buildings with the same roof type to have equal roof areas. We 
take the average rooftop area in our cadaster validation dataset for 
each of the three rooftop types (gabled, flat, other) and take these 
values as the estimated rooftop area. We assume that the roof type 
is known. The MBE for all roofs is therefore 0. 

In the main category of interest – residential buildings with a 
gabled rooftop – our algorithm has an average prediction error of 
20.14 m2. This is 27% of the mean residential building rooftop area 
(gabled roofs) in our validation data. The estimation for flat/other 
roof types and other building types is less accurate. 

Table 3: Performance of rooftop estimation based on OSM 
data for different building and rooftop types 

Roof type 

Residential buildings Other buildings 
Residential and other 
buildings 

M
A

E 
(m

2 ) 

M
B

E 
(m

2 ) 

N
um

. o
f 

bu
ild
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gs

 

M
A

E 
(m

2 ) 

M
B

E 
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2 ) 
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All  28.30 -17.2 1,114 159.97 27.4 2,513 119.53 13.7 3,627 
Gabled  20.14 -9.6 954 131.26 66.7 1,374 85.73 35.5 2,328 
Flat / other  76.94 -62.3  160 194.50 -20.0 1,139 180.11 -25.2 1,299 

 

Table 4: Average rooftop area values and random guess 
estimator results for the rooftop area estimation 

 Random 
guess 

Biased random guess 
gabled 
roof 

flat roof other roof 
types 

Average rooftop area (m2) 111.58 110.20 276.55 208.42 

All buildings MAE (m2)  90.73 95.37 
MBE (m2) -43.94 0 

Residential buildings 
with gabled rooftop 

MAE (m2) 49.91 48.94 
MBE (m2) 36.79 35.41 

 

4.1.3 Interpretation of the results 
We interpret the performance of the rooftop area estimation for 
residential buildings with gabled roofs as good, considering the 
fact that the prediction is only based on 2D VGI data with a 
varying data quality [1]. Besides that, in a related study where 
OSM data was used together with satellite images, an error rate of 
12-29% (amount of wrongly identified roof ridge lines) was 
achieved. In studies using 3D laser-scanning data, errors in the 
rooftop estimation of 15% are common [41, 61]. 

The roof area estimation for other buildings high errors and a 
large positive bias. We find two explanations for that: 1) entries in 
OSM are sometimes missing (some buildings are not mapped, so 
that the next building is considered by our implementation, and 
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many buildings have an unspecified type); 2) multiple houses are 
often mapped as one building (for example in the case of row 
houses, or semi-detached houses). One explanation for the 
underestimated roof area in the category of flat/other roofs lies in 
the used model (Equation 1) that is adapted to gabled roofs.  

4.2 Validation of the solar potential estimate 
4.2.1 Data description  
We use real production data from existing PV installations in 
Germany for the second validation step. This data was recorded 
until 31.12.2013 for accounting the German Renewable Energies 
Act [66] subsidies and was made available online [10]. Besides the 
electric energy produced in 2013, the location, the year of 
construction, and the nominal installed capacity in kW-peak is 
known. We selected all PV installations on building roofs that 
have been built in 2012 (the 85,806 installations are depicted in 
Figure 3), which is the year before the data recording ended, since 
we assume that the newest installations represent the best 
technical state regarding to solar panel efficiency.  

Some PV installations in the dataset have extreme large or low 
values that may distort our analysis. Therefore, we exclude about 
4% of the data points as outliers that match the following criteria: 
all installations with a real production higher than the 99% quintile 
( = 64,293 kWh), or lower than the 1% quintile ( = 1,690 
kWh), such as buildings with a predicted production that is higher 
than the 99% quintile ( = 77,637 kWh), or lower than the 1% 
quintile ( = 623 kWh). Besides that, we exclude 14,092 
installations that have no corresponding buildings mapped in the 
OSM database (as described in Section 3.1). In total,  71,330 
installations are used for our validation. 

4.2.2 Validation results 
To validate the prediction of the photovoltaic potential, we 
compare the actual electrical energy production  with the 
predicted solar potential . For each building , we compute the 

error  and use  and 

 as performance metrics.  

Table 5: Performance of the PV potential estimation model 
for different building types and installation sizes 
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All 4,805 55.94 -1,820 9,434 7,156 66.43 -1,767 61,896 
Small 3,992 52.80 -923 9,110 5,783 67.01 -253 57,456 
Large 27,643 73.76 -27,026 324 24,920 64.72 -21,354 4,440 

 

The MAE of our PV potential estimation is 6,845 kWh (65.29% 
of the average annual PV production in the complete validation 
dataset). The model underestimates the PV potential on average by 
17% (MBE -1774 kWh). The detailed results for residential 
buildings and other buildings (the type was obtained from OSM, 
as described in Section 3.1) are shown in Table 5, separated by the 

size of the PV installation (based on the nominal installed power in 
the validation data in small installations with 30 kWp [66], and 
large installations). 

4.2.3 Interpretation of the results 
The average estimation error for the PV potential on residential 
building roofs is 55.15%. The error for small PV installations ( 30 
kWp) is even lower at 52.27%.  

The comparison of our validation results to the state of the art 
is difficult, because authors of PV potential studies lack frequently 
to validate their estimates with real production data [41]. Only 
Jakubiec and Reinhart [29] assess the performance of their 
algorithm for laser-scanning and daily solar irradiation data with 
two real roofs and found that they achieve 9% root-mean-square 
deviation from the real PV production figures. They also compare 
two other state of the art algorithms with their estimation and 
found that these estimations deviate by 32-37% in a test setting 
with 10 roofs. The results achieved in the test can therefore be 
interpreted as satisfactory, considering the quality and granularity 
of the underlying data (2D crowdsourced VGI data and averaged 
monthly solar irradiation and temperature).  

 

5 LIMITATIONS AND IMPLICATIONS FOR 
FURTHER RESEARCH 

Although the proposed DSS derives a good preliminary estimation 
of PV potential for individual residential building roofs, the 
following three limitations must be mentioned: First, the 
prediction quality depends heavily on the quality of the OSM data, 
that fortunately increases steadily [1], but in some regions data 
entries are still sparse. This leads to the problem that the yield 
prediction be made in particular cases due to the lack of data. In 
spite of this fact, our approach can be seen as an example for the 
quality assessment for VGI data based on application needs, as 
claimed by Mondzech and Sester [42]. Second, the approach is 
profiled to gabled building roofs with a tilt angle of 35°. Since flat 
roofs are also common, the parameters could be adjusted to 
provide also more accurate estimations for other roof types. Third, 
we included 13 influence factors and made assumptions on them 
(normal distribution of the factors, fixed value for the solar panel 
efficiency), that might have different distributions in specific 
regions (deserts, polar regions, etc.) or might change in the future. 
Our implementation allows changing these values and adapting 
the method to other local conditions.  

We believe, that our approach can be further extended with a 
more advanced querying of the building footprints from OSM. For 
that, a recently proposed algorithm by Hopf et al. [24] can be used, 
that selects OSM objects not only based on the distance, but also 
on semantics (objects tagged as residential buildings might be 
more applicable, even if they have a larger distance to the geo-
located address, than objects tagged with greenhouse or garage). 
Besides that, shadowing objects that are mapped in OSM, like trees 
or large buildings, or the sparsely recorded information on roof 
heights and roof types can be incorporated to provide a more 
accurate prediction of the solar energy assessment. Finally, our 
implementation could be further extended to provide estimations 
on further roof types to reduce estimation errors. For that, an 
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empirical study of existing roof types and the ability to recognize 
them from 2D data would be necessary. 

 

6 CONCLUSION 
In this paper, we presented a novel data-mining–based DSS that 
uses freely available crowdsourced data in combination with open 
sensory data (solar irradiation and temperature observations) to 
automatically assess the PV potential of individual residential 
building roofs. The estimation result can be used on large scale by 
solar companies, energy service providers and electric utility 
companies, supporting their decisions what (potential) residential 
customers to select for renewable energy rollout campaigns.  

In the validation with cadaster data we found, that our 
approach obtains the rooftop area for residential gabled roofs 
based on 2D data with an error of 20.14 m2 (27% of the actual roof 
area). The validation of the PV potential estimation for residential 
buildings with real production data showed, that our method has 
an average error of 52%. For the initial assessment of the 
residential roof PV potential, without the use of costly and hard to 
obtain remote-sensing data (e.g., 3D laser-scanning data or aerial 
images) as used in previous works, the presented results are 
reasonable. 

By going beyond the state of the art, this work makes both 
practical and theoretical contributions to the field of energy data 
analytics: Most importantly, we bridge the gap between the needs 
of solar energy companies to gain information about potential PV 
kit adopters and free broadly available VGI data. Moreover, this 
approach provides location-based PV yield estimations for the 
roofs at the individual level and is useable in manifold ways (for 
targeted marketing of solar energy providers, for personal decision 
support by household inhabitants, for policy preparation, etc.) 
Finally, this approach can be used for the quality assessment for 
VGI data based on the application needs [42]. All in all, this DSS is 
an obvious example of how crowdsourced and sensory data mining 
can contribute to the value generation for energy utilities, 
household residents and environmental sustainability. 
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