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1 Introduction

1 Introduction

In the middle of every month the German Federal Statistical Office relea-

ses the new consumer price index reporting the current cost of living of a

typical German household. Everymonth it is reported that the amount that

a German household has to pay for a typical market basket changed at a

certain degree given as a percentage number. The German media month-

ly report the current inflation rate for Germany based on this percentage

number, which is called price index. Even though reported for years, every

month there is still an important question left unanswered: Do price levels

differ among regions? The public attention mostly focuses on the national

inflation representing the change of the price level over time. A spatial

point of view remains unobserved.

Exploring the regional disparities should be of great public interest. It goes

beyond answering the question where we have to pay more or less. There

are a lot of public transfer payments that are given according to needs. Of

course the costs of these needs measured in money depends on the local

price level. Recipients of the public transfer payments have to pay more

for their livelihood in a high price region than persons living in a low price

region. Also the salary of civil servants should be aligned to the local cost

of living. For this reason, a Bavarian policeman took the state to court as

he wanted his salary adjusted for the region he lived in. This lawsuit was

one of the rare events when regional cost of living appeared in the public

arena. The court refused the lawsuit.(BVerfG, 2007)

In science the question of regional price disparities plays a bigger role than

in public discourse. There are a lot of publications about regional price le-

vels. We are going to discuss some of them later. Economic and social

scientists need regional cost of living for adjusting all kinds of income and

payment variables in their studies. For example, if an economic scientist

13



1 Introduction

is analysing people’s income, it is not the nominal amount which is of in-

terest, but what we can buy for it. The latter is the real value, which is the

nominal income adjusted for the regional price level.

Contrary to the need of regional price indices, there are not much data

available on that high level of fragmentation. There are two relevant stu-

dies surveying regional data on prices in Germany, i.e. Rostin (1979) and

Ströhl (1994), but these are rather old. The newer study of Ströhl (1994)

only inspects prices in 50 cities, which is not enough for an investigation

of regional price disparities. For these reasons there have been efforts to

extend the data base by regression imputation, e.g. Roos (2006), or even

with multiple imputation, e.g. Blien et al. (2009).

This thesis is written in the context of a project group with the objective

of solving the various problems associated with computing regional price

indices. There are several tasks to be solved: a regional price index needs

to be developed, price data for all regions need to be surveyed or predic-

ted, there are special problems with housing costs etc. For this reason, this

thesis only plays a part in solving the various problems involved with ac-

quiring a regional cost of living value. However, it is complete in providing

statistical models to generate predictions of the prices in unsurveyed regi-

ons.

The single imputation by regression generates good results, i.e. means

are correct in the long run. However, the interest is not to analyse regional

prices itself, but to use the regional price level for subsequent studies. As

regression imputation always underestimates variances of estimators, all

succeeding significance levels are seriously biased. Donald B. Rubin de-

veloped a method to overcome the problem of underestimating variances

by using Bayesian theory.(Rubin, 1987) The uncertainty brought in by the

missing data is represented by imputing more times than once. Here, we

14



1 Introduction

define the regions where no price data were surveyed as missing values.

The problem of unknown regional price levels becomes a problem of mis-

sing data which can be solved with missing data techniques, i.e. multiple

imputation. In the second chapter we will introduce the argumentation

and method of multiple imputation.

Actually, the problem of predicting the prices in unsurveyed regions is a

matter of geostatistics. The models of geostatistics allow the modelling

of spatial dependencies and inter-dependencies of neighbouring regions.

Probably the prices in neighbouring regions are dependent on each other,

making such a spatial modelling necessary. Geostatistics keeps a group

of models at hand which are developed for predicting spatial dependent

observations: kriging. In the third chapter, we will introduce kriging. The

focus is on modelling spatial dependencies via correlation functions and

covariances.

Both approaches solve one problem that we face when predicting unsur-

veyed regional prices.Multiple imputation allows proper inferences in suc-

ceeding statistical analysis. Kriging preserves spatial dependencies of the

predicted values. If we want both, it seems a promising idea to combine

both methods to get spatially dependent values for the unobserved pri-

ces that allow succeeding inference. In chapter 4 we derive two ways to

implement kriging into the multiple imputation scheme. First, kriging is

modelled as a mixed model where spatial dependencies are modelled in

the variance-covariance matrix. The Bayesian formulation of the formed

mixed model is then used to generate multiple imputations. Second, the

familiarity of kriging to P-spline smoothing is exploited to derive a model

that is closer to the given data. Again the Bayesian formulation is used to

implement kriging into the multiple imputation model. We call these two

models KriMI models as they are an amalgamation of kriging and multi-

ple imputation.
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1 Introduction

In the seventh chapter we use all introduced statistical models to predict

the unobserved prices in Bavarian regions. The Bavarian State Office for

Statistics provided the data that are surveyed for the official consumer price

index on a regional level. There are huge blank areas in the map of regio-

nal prices. For this reason the Bavarian data are a prime example to test

our models. However, before we estimate and predict the missing price

data, a short introduction to prices and price indices is given, as we need

to know the observation object. We also mention briefly the special pro-

blems of regional price indices. For all statistical models we need to know

relevant influencing factors. These are also derived in chapter 5. After this

we create a baseline by imputing regional prices with a simple regression

approach. Following sections identify the missing price data by multiple

imputation and kriging to use themodels in their pure form. In a final step

we use the developed KriMI models for a multiple imputation of regional

prices that preserves spatial dependencies. For all methods used, we report

the regional price indices of the Bavarian regions.

All analyses and all graphs, including the maps, are made using the sta-

tistical software R Core Team (2015a), Belitz et al. (2015), and the geo-

information system GRASS Development Team (2012). We used several

packages in R. All references for those R-packages can be found in the

appendix.
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2 Multiple Imputation

2 Multiple Imputation

Multiple imputation is amethod of handlingmissing data problems. (Zha-

ng, 2003) As in single imputation, missing values are replaced by sensible

values, but the replacement is done several times as
”
the inserted values

should reflect variation within a model as well as variation due to the va-

riety of reasonable models.“(Rubin, 1978). The aim is to still have a statis-

tically valid inference in the case of missing data: In single imputation a

correct variance imputation is no longer possible due to the replacements.

Multiple imputation by contrast uses the differences between the several

replacements to correct variance estimation to allow a valid statistical in-

ference. Moreover, multiple imputation allows valid statistical inference

in the case where the data analyst and the data manager are not the same

person.(Rubin, 1996) These two arguments allow the use of multiple im-

putation in the case of missing regional price information.

Other techniques for incomplete data are based on the likelihood approach

(e.g.the EM algorithm, the random effects model), but are inferior for the

reason of greater complexity.(Zhang, 2003) As the problem of regionalised

price indices can only be solved by providing completed data, imputation

methods should be preferred to the likelihood based methods.

Zhang (2003) names three steps with which to conduct data analysis with

multiple imputation:

1. Create𝑚 > 1 completed data sets by filling in each missing value𝑚
times using a proper imputation model. Following the description

of Schafer (1999) to get the multiple draws it becomes clear that it is

not that easy:

• First, specify a parametric model for the complete data.

17



2 Multiple Imputation

• Second, according to Bayesian statistics, a prior has to be spe-

cified for the model parameters which are unknown, and

• 𝑚 independent draws from the conditional distributions are

simulated.

2. Conduct a complete data analysis on each of the𝑚 filled data sets.

3. Combine the statistics from step two by the combining rule.

Similarly, Rubin (1988) subsumes multiple imputation:
”
As its name sug-

gests, multiple imputation replaces each missing value by a vector com-

posed of 𝑀 ≥ 2 possible values. The 𝑀 values are ordered in the sense

that the first components of the vectors for the missing values are used to

create one completed data set, the second components of the vectors are

used to create the second completed data set and so on; each completed da-

ta set is analysed using standard complete-data methods.“(Rubin, 1988) A

similar introduction can be found in Schafer (1999). Here, we emphasise

step one while leaving the second step completely up to the researcher of

regional prices. For step three, we give a short instruction. To do so we first

describe the problem: In the next section we attend to themissingnessme-

chanisms. Subsequently, a short insight is given into reasoning multiple

imputation, followed by the combining rules. After having described the

main body of multiple imputation, we spend some time on the details.

2.1 Describing the Missingness Mechanism

Before presenting a solution of missing values, we need to describe the

problem itself. Ordinarily, there are data that are not observed when being

collected. These data are missing. We distinguish three kinds of missing-

ness described in this chapter.
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2 Multiple Imputation

Defining the variable R, with

𝑟௜௝ = ቐ
1 if 𝑦௜௝ is observed
0 if 𝑦௜௝ is missing

with 𝑖 = 1,… , 𝑛 denoting observations and 𝑗 = 1,… , 𝑝 denoting variables.
The probability distribution belonging to 𝑅 is 𝑃 (𝑅|𝜑, 𝑌) with the parame-
ters𝜑 and the datamatrix𝑌. The joint distribution of data andmissingness
indicator is (Zhang, 2003):

𝑃 (𝑌, 𝑅|𝜃, 𝜑) = 𝑃 (𝑌|𝜃) 𝑃 (𝑅|𝜑, 𝑌)

where 𝜃 is a parameter or parameter vector for the data 𝑌. We denote the
missing data as 𝑌௠௜௦ meaning that these are the cases where 𝑟௜௝ = 0.
Observed data are 𝑌௢௕௦ where 𝑟௜௝ = 1.
According to Rubin (1987), Zhang (2003), and several other authors, the

following missingness mechanisms can be distinguished:

1. Missing Completely at Random (MCAR)(Rubin, 1987, Zhang, 2003)

𝑃 (𝑅|𝜑, 𝑌) = 𝑃 (𝑅|𝜑)

”
The probability of missing data on one variable is not related to the

value of that variable or other variables in the data set.“ (Patrician,

2002) By a comparison of the data of respondents to the data of non-

respondents, the assumption of MCAR can be verified.(Patrician,

2002)

2. Missing at Random (MAR)(Rubin, 1987, Zhang, 2003)

𝑃 (𝑅|𝜑, 𝑌) = 𝑃 (𝑅|𝜑, 𝑌௢௕௦)
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The probability of missingness of one value does not depend on the

variable that is missing itself, but may depend on other variables in-

cluded in the data set.(Patrician, 2002) According to Patrician (2002),

the assumption MAR cannot be tested. MAR is relative to the varia-

bles included in the data set. All variables that are responsible for the

missingness must be considered in the data set.(Schafer and Olsen,

1998)

3. Not Missing at Random (NMAR)(Rubin, 1987, Zhang, 2003)

𝑃 (𝑅|𝜑, 𝑌) ≠ 𝑃 (𝑅|𝜑)

Following, we assume at least MAR, even though there are also possibili-

ties to handle NMAR.(Rubin, 1987)

2.2 Introduction to Multiple Imputation

One way to identify appropriate values for missing data is multiple im-

putation (MI) introduced by Rubin (1987) and among others described in

Little and Rubin (2002). The underlying idea is to impute𝑚 credible values
for each missing value to create𝑚 filled data sets instead of imputing just

one value to get one filled data set. Doing so, MI has all the advantages of

single imputation thereby solving the problem of variances.

Multiple imputation uses the available information to find sensible values

replacing the missing data. These are the observed data and information

due to the data model (prior). A model connecting observed and unobser-

ved values is needed to find proper imputations.(Rubin, 1987) This is done

in the following subsubsection. In subsubsection 2.2.3 we describe how to

find these proper values for missings, followed by a short insight into the
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special case of a monotone distinct missingness structure. We do not de-

scribe how to combine the multiple data sets until the following section.

2.2.1 Reasoning Multiple Imputation

Explicitly, MI means to repeatedly fill in values for the missing data 𝑌௠௜௦.

In the end, we get: 𝑌ଵ௠௜௦ , ; 𝑌ଶ௠௜௦ , ; ⋯ , 𝑌௠௠௜௦. The different sets of missing

values are drawn from the posterior predictive.(Rubin, 1996) Rubin (1987)

justifies this using the Bayesian Theory. One bunch of replacements for

missings are got by drawing from the posterior distribution employing

the Bayesian theory. As posteriors often cannot be computed, proper va-

lues for unobserved data are found by iterative simulation methods.(Little

and Rubin, 2002) Due to drawing, Schafer (1997) states:
”
Like parameter

simulation, multiple imputation is a Monte Carlo approach to the analy-

sis of incomplete data. (...) solving an incomplete-data problem by repea-

tedly solving the complete data version.“(Schafer, 1997, S.104) Thereby,

Bayesian theory is justification, theoretical background and prescription

of MI.(Rubin, 1987)

In this section we first show the reason why inferential statistics can be

done using imputed data instead of using the complete data. This is the

justification and theoretical background of MI.

Little and Rubin (2002) and other authors ofMI consider the complete data

posterior:

𝑃(𝜂|𝑌௢௕௦ , 𝑌௠௜௦ , 𝑋) ∝ 𝑃(𝜂)𝐿(𝜂|𝑌௢௕௦ , 𝑌௠௜௦ , 𝑋). (1)

In compliance with the three Bayes Postulates and especially the Bayes Co-

rollary, inferences shall only bemade on the basis of the complete data pos-

teriori 𝑃 (𝜂|𝑌, 𝑋) = 𝑃(𝜂|𝑌௢௕௦ , 𝑌௠௜௦ , 𝑋).(Rüger, 1999) Until now, we only
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formulated classic Bayesian inference. Returning to the missing data pro-

blem, it becomes clear that we cannot observe the complete-data posterior

𝑃(𝜂|𝑌௢௕௦ , 𝑌௠௜௦ , 𝑋) due to the missing data. As we know the observed-data
posterior, the relationship between observed-data-posterior and complete-

data-posterior needs to be drawn (Little and Rubin, 2002, Zhang, 2003):

𝑃 (𝜂|𝑌௢௕௦ , 𝑋) = න𝑃 (𝜂, 𝑌௠௜௦|𝑌௢௕௦ , 𝑋) 𝑑𝑌௠௜௦

= න𝑃 (𝜂|𝑌௠௜௦ , 𝑌௢௕௦ , 𝑋) 𝑃(𝑌௠௜௦|𝑌௢௕௦ , 𝑋)𝑑𝑌௠௜௦ (2)

First the rule of Total Probability is used to integrate 𝑌௠௜௦ out and, in a

second step, again the Bayes Rule is employed.

Rubin (1987) summarises formula 2 in result 3.1:
”
Averaging the Com-

plete-Data Posterior Distribution of (...) [𝜂] over the Posterior Distribution
of 𝑌௠௜௦ to obtain the Actual Posterior Distribution of (...) [𝜂]“(Rubin, 1987,
S.82). Rubin (1987) states that it

”
can be applied to simulate the actual pos-

terior distribution of 𝑄 (here: 𝜂) using repeated draws from the posterior

distribution of the missing values.“(Rubin, 1987). As no additional infor-

mation should be added to the estimation than the observed data and the

prior knowledge expressed in the prior distribution, inferences should on-

ly be made on the basis of the observed data posterior. The derived link

between observed-data posterior and complete-data posterior shows that

this still holds if inference is made on the multiply imputed data.

Moreover, the integral 2 justifies Rubin’s combining rules described later

on in section 2.3, too.(Rubin, 1996) The integral is just approximated by

the respective sum.

2.2.2 More than a Little Inaccuracy

Before turning to the sampling mechanism for the replacement of mis-

sing values, we need to confess a little inaccuracy. Correctly, Rubin (1987)
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adds in every formula mentioned above an indicator for inclusion to the

survey 𝐼 and an indicator for response 𝑅. This is because of the statistical
validity of the estimates.(Rubin, 1996) Rubin (1987) shows that it is not

necessary to condition on the inclusion indicator under the assumption of

an ignorable sampling mechanism. More importantly, he also shows the

same for the indicator of non-response 𝑅 when the response mechanism
is ignorable. The importance of this is due to the ignorance of most stu-

dies in respect to the possibility of non-response. Rubin (1987) states that

most surveys just ignore non-response and, therefore, do not include con-

ditioning on 𝑅. However, the assumption of ignorable non-response still
remains even if 𝑅 is just ignored. To keep the necessary assumptions in
mind, we note this inaccuracy.

However, the result implies more than just a simplification of notification.

In ordinarily used statistical models the most employed assumption is the

assumption of independent and identical distribution. For this very com-

mon and widely used assumption, Rubin (1987) states in his Result 3.4:

”
The Equality of Completed-Data and Complete-Data Posterior Distributi-

ons When Using i.i.d. Models.“(Rubin, 1987)

𝑃 (𝜂|𝑋, 𝑌௜௡௖ , 𝑅௜௡௖) = 𝑃 (𝜂|𝑋, 𝑌௜௡௖)

The subscipt 𝑖𝑛𝑐 indicates whether the case was included in the study or
not, 𝑖𝑛𝑐 = (𝑜𝑏𝑠,𝑚𝑖𝑠). We show the proof of result 3.4, i.e. the equality of
completed-data and complete-data posterior under the assumption of i.i.d.

in the appendix.

Result 3.4 reasons that the same statisticsmay be computed on basis of the

completed-data sets as would be done on the basis of the complete-data set.

It is a further justification of the combining rules. Only if the same statis-
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tics can be computed, is it possible to estimate them by combining several

completed data sets.

Later on, we assume ignorable non-response in the first instance. For all

non-ignorable cases, this reformulation usingBayes’ Rule is very useful:(Ru-

bin, 1987)

𝑃 (𝜂|𝑋, 𝑌௜௡௖ , 𝑅௜௡௖)⎫⎪⎪⎬⎪⎪⎭

completed-data posterior

= 𝑃 (𝜂|𝑋, 𝑌௜௡௖)⎫⎪⎬⎪⎭

complete-data posterior

𝑃 (𝑅௜௡௖|𝑋, 𝑌௜௡௖ , 𝜂)
𝑃 (𝑅௜௡௖|𝑋, 𝑌௜௡௖)⎫⎪⎪⎬⎪⎪⎭

adjustment factor

, (3)

In the case of ignorable non-response, the adjustment factor becomes 1,

which refers to the equality of both in that case (see Rubin’s Result 3.3),

otherwise the adjustment factor needs to be employed. According to Rubin

(1978)
”
the trick is to tie the parameters for the different groups of units

together so that the values we do see tell us something about the values we

do not see.“(Rubin, 1978)

2.2.3 Getting Multiple Draws

However, we did not clarify yet how to actually get multiple replacements

for the missing values. A short insight is given in this chapter. Let’s start

again with the underlying idea of drawing𝑚-times from the posterior dis-
tribution𝑃 (𝑌௠௜௦|𝑋, 𝑌௢௕௦) to get𝑚 sets of imputations𝑌ଵ௠௜௦ , ; 𝑌ଶ௠௜௦ , … , 𝑌௠௠௜௦
and 𝑚 completed data sets 𝑌ଵ௜௡௖ , 𝑌ଶ௜௡௖ , … , 𝑌௠௜௡௖. (Rubin, 1987) Now we are
engaged in creating one completed data set by finding sensible replace-

ments for the missing values.

”
[I]n order to insert sensible values for missing data we must rely on some

model relating unobserved values to observed values“(Rubin, 1978) which

is done when drawing from the posterior predictive which displays
”
the
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sensitivity of inferences to reasonable choices of models“(Rubin, 1978).

Therefore, the𝑚 draws should be made from the posterior of 𝑌௠௜௦ which

can be reformulated by the use of the rule of Bayes and the law of total

probability (Rubin, 1987):

𝑃 (𝑌௠௜௦|𝑋, 𝑌௢௕௦) =
𝑃 (𝑋, 𝑌)

∫𝑃 (𝑋, 𝑌) 𝑑𝑌௠௜௦

It is sufficient to consider 𝑃 (𝑋, 𝑌) to determine themodel for the data.(Ru-
bin, 1987, 1978) The aim is to formulate the prior knowledge of the da-

ta.(Rubin, 1978)

Then Rubin (1987) reformulates to get a connection to the parameter 𝜃
which is the parameter describing the distribution of 𝑌 for using MCMC
methods to simulate the complex distribution:

𝑃 (𝑋, 𝑌) = න𝑃 (𝑋, 𝑌|𝜃) 𝑃 (𝜃) 𝑑𝜃

= න቎
ே

ෑ
௜ୀଵ

𝑓 (𝑋௜ , 𝑌௜|𝜃)቏ 𝑃 (𝜃) 𝑑𝜃

= න቎
ே

ෑ
௜ୀଵ

𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ 𝑓௑ (𝑋௜|𝜃௑)቏ 𝑃 (𝜃) 𝑑𝜃

The last step using the rule of Bayes again does not seem necessary at the

beginning, but as stated in Result 5.1 it greatly facilitates getting multiple

imputations. It is not necessary to specify a model for the parameters. It

is sufficient to model the conditional parameters and data models.(Rubin,

1987) For example, this can be done by simple regression.

After having specified the data model, we need to find a way to draw sensi-

ble values for themissing data. Starting again with the posterior predictive,

which is the only distribution for drawing missing values, another facto-
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risation is helpful. It can be found, among others, in Rubin (1987) and

Zhang (2003):

𝑃 (𝑌௠௜௦|𝑌௢௕௦ , 𝑋) = 𝐸ఏ[𝑃(𝑌௠௜௦|𝑌௢௕௦ , 𝑋, 𝜃)]

= න𝑃(𝑌௠௜௦|𝑌௢௕௦ , 𝑋, 𝜃)𝑃(𝜃|𝑌௢௕௦ , 𝑋)𝑑𝜃 (4)

The posterior predictive distribution now is factorised into:

1. conditional predictive distribution of 𝑌௠௜௦: 𝑃(𝑌௠௜௦|𝑌௢௕௦ , 𝑋, 𝜃)

2. observed data posterior distribution of 𝜃: 𝑃(𝜃|𝑌௢௕௦ , 𝑋)(Zhang, 2003)

To define the distribution of 𝑌, we need to determine a prior 𝑃(𝜃) and a
distribution for the data 𝑃(𝑌௢௕௦|𝜃). Schafer (1997) also uses this expecta-
tion over the parameter 𝜃. He emphasises that a proper Bayesian multiple
imputation uses the averaging over the observed data posterior to reflect

the uncertainty of missing data given the parameters and the uncertainty

of the model parameter themselves.(Schafer, 1997)

Using the Integral 4, Schafer (1999) describes the drawing scheme to get

one set of imputations: first, a random draw of the parameter following

the observed data posterior shall be done. Second, determined by the draw

of the parameter, the missing values 𝑌௠௜௦ shall be drawn from the condi-

tional predictive distribution.(Schafer, 1999)

According to Zhang (2003) and Schafer (1999) it is rarely possible to ex-

press the posterior predictive in closed form or to draw from it. However,

he also states it is often easy to obtain the conditional predictive. This rea-

sons the drawing mechanisms described later on. The drawing mechanis-

ms are mostly MCMC-methods.(Schafer, 1999) In a lot of cases it is still

quite difficult to simulate the draws from the observed data posterior. For

this reason Rubin (1987) proposes a simplification in his Results 5.1 and

5.2. First, we should quote the
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Result 5.1
”
The Imputation Task with Ignorable Nonresponse“:

”
Given 𝜃,

the 𝑌௜,௠௜௦ are a posteriori independent with distribution depending on 𝜃
only through 𝜃௒|௑:“(Rubin, 1987)

𝑃 (𝑌௠௜௦|𝑋, 𝑌௢௕௦ , 𝜃) =ෑ
௠௦

𝑃 ൫𝑌௜,௠௜௦|𝑋௜ , 𝑌௜,௢௕௦ , 𝜃௒|௑൯

The proof is given in the appendix. In a lot of cases, it is much easier

to compute 𝑃 ൫𝑌௜,௠௜௦|𝑋௜ , 𝑌௜,௢௕௦ , 𝜃௒|௑൯ than to compute 𝑃 (𝑌௠௜௦|𝑋, 𝑌௢௕௦ , 𝜃).
Just bear the possibility of linear regression in mind.

According to this result, it is possible to take 𝑃 ൫𝑌௠௜௦|𝑋, 𝑌௢௕௦ , 𝜃௒|௑൯ into ac-
count instead of the unconditioned 𝑃 (𝑌௠௜௦|𝑋, 𝑌௢௕௦ , 𝜃). Now, it all breaks
down to specify 𝑃 ൫𝑌௠௜௦|𝑋, 𝑌௢௕௦ , 𝜃௒|௑൯, which can often be simulated by
MCMC methods. If the missings are ignorable, standard Bayes methods

can be used.(Rubin, 1987) Zhang (2003) recommends simulating the ob-

served data posterior distribution by a Gibbs-Sampling or to use the Pre-

dictive Model Method as alternative to the sampling.

In turn, Rubin (1987) exposes a simplification. He states this in Result 5.2:

”
The Estimation Task with Ignorable NonresponseWhen 𝜃௒|௑ and 𝜃௑ Are
a Priori Independent“:

”
Suppose 𝜃௒|௑ and 𝜃௑ are a priori independent

𝑃𝑟 (𝜃) = 𝑃𝑟 ൫𝜃௒|௑൯ 𝑃𝑟 (𝜃௑)

Then they are a posteriori independent; moreover, the posterior distributi-

on of 𝜃௒|௑ involves only (a) the specifications 𝑓௒|௑ (⋅|⋅) and 𝑃𝑟 ൫𝜃௒|௑൯ and
(b) data from units with some 𝑌௜௝ observed.“(Rubin, 1987). For the reason
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of independence, it is possible to use only 𝑃 ൫𝜃௒|௑|𝑋, 𝑌௢௕௦൯, which simpli-
fies computation:1

𝑃 ൫𝜃௒|௑|𝑋, 𝑌௢௕௦൯ (5)

=
ቂ∏ே

௜ୀଵ ∫𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ 𝑑𝑌௜,௡௢௕ቃ 𝑃 ൫𝜃௒|௑൯

∫ ቂ∏ே
௜ୀଵ ∫𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ 𝑑𝑌௜,௡௢௕ቃ 𝑃 ൫𝜃௒|௑൯ 𝑑𝜃௒|௑

(6)

According to Rubin (1987), it is sufficient to multiply over the units with

observed values. A further simplification is the case of univariate 𝑌௜ as
Rubin (1987) states in Result 5.3:

”
The Estimation Task with Ignorable

Nonresponse, 𝜃௒|௑ and 𝜃௑ a Priori Independent, and Univariate 𝑌௜
If 𝜃௒|௑ and 𝜃௑ are a priori independent and 𝑌௜ is univariate so that the
respondents have𝑌௜ and the non-respondents aremissing𝑌௜, the posterior
distribution of 𝜃௒|௑ involves only the respondents.“ For this reason, the
conditional posterior becomes (Rubin, 1987):

𝑃 ൫𝜃௒|௑|𝑋, 𝑌௢௕௦൯ =
ቂ∏௢௕௦ 𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ቃ 𝑃 ൫𝜃௒|௑൯

∫ ቂ∏௢௕௦ 𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ቃ 𝑃 ൫𝜃௒|௑൯ 𝑑𝜃௒|௑
(7)

To subsume the last section, these steps were discussed:

1. 𝑌௜,௠௜௦ are a posteriori independent.

2. The distribution of 𝑌௜,௠௜௦ only depends on 𝜃 through 𝜃௒|௑.

3. 𝑃 ൫𝜃௒|௑൯ and 𝑃 (𝜃௑) are a priori independent.

In this case we only have to specify 𝑓௒|௑, 𝑃 ൫𝑌|𝑋, 𝜃௒|௑൯ and data from ob-

served units. In the case of univariate 𝑌 we only need the data of the re-
spondents.

1Jackman (2009) shows the same for regression models which is the main reason why
Rubin’s result makes computations easier.
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2.2.4 The Gibbs-Sampler

The basic rule to get multiple draws for multiple imputation is stated in

Conclusion 4.1 by Rubin (1987):
”
If imputations are drawn to approximate

repetitions from a Bayesian posterior distribution of 𝑌௠௜௦ under the posi-

ted response mechanism and an appropriate model for the data, then in

large samples the imputation model is proper.“(Rubin, 1987) Therefore,

the drawing scheme should be based on a Bayesian idea to preserve cor-

rect variance estimation.(Rubin, 1987) Zhang (2003) describes the sam-

pling idea to create multiple draws. First, draw ෥𝜃 from its observed data

posterior distribution given in equation 4. Then draw one set of 𝑌௠௜௦ from

𝑃 ൫𝑌௠௜௦|𝑌௢௕௦ , 𝑋, ෥𝜃൯. In order to create 𝑚 sets of missing data, repeat this

𝑚 times independently.(Zhang, 2003)

Under the assumption of normality the imputation problem can be solved

by using a linear regression where the missing values are the predictions.

The parameters of the regression are the distributional parameters being

drawn to assess the model uncertainty.(Zhang, 2003)

Define 𝑋 as the data matrix with the variables observed and assume 𝑌 ∼
𝑁 ൫𝜇, 𝜎ଶ൯ and non-informative priors, then according to Zhang (2003) the
observed data posterior distributions are:

• 𝛽|𝑌௢௕௦ , 𝜎ଶ ∼ 𝑁 ቀෝ𝛽, 𝜎ଶ ൫𝑋ᇱ௢௕௦𝑋௢௕௦൯
ᇱቁ

• 𝜎ଶ|𝑌௢௕௦ ∼ ෝ𝜖ᇱො𝜖𝜒ଶ௡ି௣

with the MLE estimator ෝ𝛽 = ൫𝑋ᇱ𝑋൯ିଵ 𝑋ᇱ𝑌௢௕௦ and the residual vector ො𝜖 =
𝑌௢௕௦ − 𝑋ෝ𝛽. First, the 𝜎ଶ are drawn and, afterwards, 𝛽s are drawn from
their observed data posterior distributions. Each set of randomly drawn

parameters defines a regression leading to a set of predictions for the mis-

sing values.(Zhang, 2003)
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If the case cannot be solved that easily, we need a solution based onMarkov

chains. In general, to conduct a Bayesian estimation, complex integrals ha-

ve to be computed, but, for the reason of complexity a closed solution does

not exist. Several techniques to find a solution have been introduced. An

overview is given by Carlin and Louis (2008).

The most simple way to get such an approximate solution is the Gibbs

sampling. It bases on the Monte Carlo integration. This is an iterative me-

thod where a Markov chain is generated. The idea underlying the Gibbs-

Sampler is that we can simulate a Markov chain by drawing from the 𝑝
conditional posteriors instead of the joint posterior.(Albert, 2009) The out-

put of the draws of the Markov chain corresponds to draws from the re-

quired density.(Carlin and Louis, 2008) Robert and Casella (2004) conclu-

de:
”
The Gibbs Sampler is a technique for generating random variables

from a (marginal) distribution indirectly, without having to calculate the

density.“ Therefore, the Gibbs sampler is a Monte-Carlo-Markov-Chain-

Method, where values of the parameter are sequentially drawn from aMar-

kov Chain with a stationary distribution that corresponds to the density

that cannot be computed.(Carlin and Louis, 2008) For generating draws,

the conditional posteriors are used instead of the joint posterior.(Albert,

2009) The Gibbs-Sampler is an approximation of the joint posterior.(Hoff,

2009)

Schafer (1997, 1999) stresses the similarity of multiple imputation and da-

ta augmentation, because themost simple way to sample the𝑌௠௜௦ from the

factorisation given in equation 4 is by Gibbs Sampling. The stationary dis-

tribution of the sampling scheme is the target distribution 𝑃 (𝑌௠௜௦|𝑌௢௕௦).
(Schafer, 1997, 1999)

We just want to draw directly from the posterior predictive, which is often

not possible. Using Monte-Carlo-Integration we get:

𝑃 ൫𝑦௠௜௦|𝑦௢௕௦൯ = න𝑃 ൫𝑦௠௜௦|𝜃, 𝑦௢௕௦൯ 𝑝 ൫𝜃|𝑦௢௕௦൯ 𝑑𝜃 (8)
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Now, we can approximate the posterior expectation by the mean of values

drawn from the distributions inside the integral. As𝜃ଵ, … , 𝜃ௌ ∼ 𝑃 ൫𝜃|𝑦௢௕௦൯
are i.i.d. draws, 𝑃 ൫෥𝑦|𝑦௢௕௦൯ can be approximated by

ଵ
ௌ ∑

ௌ
௦ୀଵ 𝑃 ൫𝑦௠௜௦|𝜃

௦൯.
The draws of 𝑃 ൫𝑦௠௜௦|𝜃

௦൯ are generated by the following procedure:(Hoff,
2009)

draw 𝜃(ଵ) ∼ 𝑃 ൫𝜃|𝑦௢௕௦൯ → draw෦𝑦(ଵ) ∼ 𝑃 ቀ𝑦௠௜௦|𝜃
(ଵ)ቁ

draw 𝜃(ଶ) ∼ 𝑃 ൫𝜃|𝑦௢௕௦൯ → draw෦𝑦(ଶ) ∼ 𝑃 ቀ𝑦௠௜௦|𝜃
(ଶ)ቁ

⋮
draw 𝜃(ௌ) ∼ 𝑃 ൫𝜃|𝑦௢௕௦൯ → draw෦𝑦(ௌ) ∼ 𝑃 ቀ𝑦௠௜௦|𝜃

(ௌ)ቁ (9)

The sequence ൜൫𝜃, 𝑦௠௜௦൯
(ଵ) , … , ൫𝜃, 𝑦௠௜௦൯

(ௌ)ൠ consists of 𝑆 independent
draws from the joint distribution ൫𝜃, 𝑦௠௜௦൯ and the sequence ቄ𝑦

(ଵ)
௠௜௦ , … ,

𝑦(ௌ)௠௜௦ቅ consists of independent draws from the marginal posterior of 𝑦௠௜௦.

(Hoff, 2009)

To assure that draws are independent from each other, there are two pos-

sibilities: First, only every 𝑘th iteration should be taken, where 𝑘 is large
enough to guarantee independence. Or , second, the other possibility is

to run 𝑚 independent chains of length 𝑘 and take the last simulated va-
lue.(Schafer, 1997, 1999) The disadvantage of the latter approach is the

computational burden to run that many chains. The disadvantage of the

former procedure is that the chain can get stuck in a small subspace lea-

ding to realisations that are not from the whole parameter space.(Robert

and Casella, 2004, Carlin and Louis, 2008)
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2 Multiple Imputation

2.2.5 Monotone Distinct Structure

Amonotone distinct missing data structure helps to simplify multiple im-

putation. According to Rubin (1987) a monotone pattern of missing data

is given if data can be sorted in the way that all cases of 𝑌[௝] are observed
in 𝑌[௜] for all 𝑖 < 𝑗. Rubin (1987) defines a monotone patter as: 𝑌[௜] is at
least that observed as 𝑌[௝] is observed. Data having a monotone pattern of
missingness look like a staircase.

A formal definition of a monotone missing data pattern is also given in

Rubin (1987): Let 𝑜𝑏𝑠 [𝑗] = ൛𝑖|𝐼௜௝𝑅௜௝ = 1ൟ be the set of units where the
variable 𝑌௝ is observed. Then a monotone pattern of missingness can be
formally defined by:

𝑜𝑏𝑠 [1] ⊇ 𝑜𝑏𝑠 [2] ⊇ …𝑜𝑏𝑠 [𝑝] (10)

The assumption of a distinct structure refers to the parameter space as the

assumption of amonotone structure aims at the data. Rubin (1987) defines

a distinct structure for the parameters 𝜃ଵ, 𝜃ଶ, … , 𝜃௣ using the factorisation:

𝑓 (𝑌௜|𝑋௜ , 𝜃) = 𝑓ଵ (𝑌௜ଵ|𝑋௜ , 𝜃ଵ) 𝑓ଶ (𝑌௜ଶ|𝑋௜ , 𝜃ଶ)…𝑓௣ ൫𝑌௜௣|𝑋௜ , 𝜃௣൯ (11)

then 𝜃ଵ, 𝜃ଶ, … , 𝜃௣ are distinct, if they are a priori independent: 𝑃 (𝜃) =
∏௣
௝ୀଵ 𝑃 ൫𝜃௝൯. (Rubin, 1987) Reading Rubin (1974) clarifies this assumpti-

on: only if a distinct structure is assumed, a factorisation is possible that

allows an estimation even on the ground of parts of the data. Following,

we write 𝑓௜௝ = 𝑓௝ ൫𝑌௜௝|𝑋௜ , 𝜃௝൯.

Rubin (1987) points out in two results that the estimation and the impu-

tation tasks are much easier under the assumption of a monotone distinct

pattern:
”
Result 5.4 The Estimation Task with a Monotone-Distinct Struc-

ture
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2 Multiple Imputation

Suppose the missingness-modelling structure is monotone-distinct. Then

the estimation task is equivalent to a series of 𝑝 independent estimation
tasks, each with univariate 𝑌௜: the 𝑗th task estimates the conditional distri-
bution of 𝑌[௝] given the more observed variables ൫𝑋, 𝑌[ଵ], … , 𝑌[௝ିଵ]൯ using
the sets of units with 𝑌[௝] observed, 𝑜𝑏𝑠 [𝑗]. Explicitly, the claim is that

𝜃ଵ, … , 𝜃௣ are a posteriori independent with

𝑃𝑟 ൫𝜃௝|𝑋, 𝑌௢௕௦൯ =
∏௜∈௢௕௦[௝] 𝑓௜௝𝑃𝑟 ൫𝜃௝൯

∫∏௜∈௢௕௦[௝] 𝑓௜௝𝑃𝑟 ൫𝜃௝൯ 𝑑𝜃௝
(12)

“(Rubin, 1987)

If the pattern of missing data is monotone distinct, then we are allowed to

formulate the posterior distributions independently.(Rubin, 1987) Moreo-

ver, if the pattern is monotone distinct it is also admissible to impute the

missing data independently. Rubin (1987) states this in Result 5.5:

”
Result 5.5 The Imputation Task with a Monotone-Distinct Structure

Suppose that the missingness-modelling structure is monotone-distinct.

Then the imputation task is equivalent to a sequence of 𝑝 independent
imputation tasks, each with univariate 𝑌௜: the 𝑗th task independently im-
putes the missing values of 𝑌[௝] using their conditional distributions given
𝜃 and the observed values 𝑋௜ , 𝑌௜ଵ, … , 𝑌௜௣ିଵ Explicitly, the claim is that the

posterior distribution of 𝑌௠௜௦ given 𝜃 is

𝑃𝑟 (𝑌௠௜௦|𝑋, 𝑌௢௕௦ , 𝜃) =
௣

ෑ
௝ୀଵ

ෑ
௜∈௠௜௦[௝]

𝑓௜௝ (13)

where 𝑚𝑖𝑠 [𝑗] = ൛𝑖|𝐼௜௝ = 1 and 𝑅௜௝ = 0ൟ =the units missing variable 𝑌[௝]
and (13) is the product of 𝑝 conditional distributions, each of which is for-
mally equivalent to (...) the posterior distribution of 𝑌௠௜௦ given 𝜃௒|௑ with
univariate 𝑌௜.“(Rubin, 1987)
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2 Multiple Imputation

Since a monotone distinct pattern of missingness helps to simplify multi-

ple imputation, Rubin (1987) proposes to discard data destroying monoto-

nicity, if it is only a few data. Another way is to create blocks withmonotone

patterns of missingness.(Rubin, 1987) A hint of how to create these blocks

can be found in Rubin (1974) even though in this text a possibility is de-

scribed to estimate the parameters, and not a way of multiple imputation.

2.3 Combining Multiple Values

Each of the 𝑚 created data sets without missing values can be analysed

with standard statistical methods. As methods are not determined, a lot of

different methods can be used.(Rubin, 1987, Schafer, 1997, Rubin, 1996)

How to combine and compute statistics on the basis of multiple imputed

data is written in the following section.

We have𝑚 completed data sets. For every completed data set it is possible

to compute a complete data statistic. This delivers 𝑚 estimates ො𝜂∗ଵ, ො𝜂∗ଶ,
⋯ , ො𝜂∗௠ and 𝑚 estimated variances ෝ𝑈∗ଵ, ෝ𝑈∗ଶ, ⋯ , ෝ𝑈∗௠(Rubin, 1987). We
need to combine the estimates and the estimated variances to get one esti-

mate and a corresponding estimated variance that accounts for the uncer-

tainty brought in by missing values.

2.3.1 Multiple Imputation Estimation

Starting again with the integral described in formula 2: Rubin (1987) states

here that the posterior distribution of the missing data can be simulated

using the posterior distribution of the observed values. Accordingly, an

estimator for the parameter of interest bases on the completed-data pos-

terior. (Rubin, 1987) Interpreting the integral in 2 as an expectation over

the missing values 𝑌௠௜௦, it becomes clear that a sensible approximation is
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2 Multiple Imputation

the average. Doing so, Little and Rubin (2002) write:
”
Multiple imputati-

on effectively approximates the integral (...) over the missing values as the

average“(Little and Rubin, 2002):

𝑃 (𝜂|𝑌௢௕௦ , 𝑋) ≈
1
𝑚

௠

෍
௟ୀଵ

𝑃 ቀ𝜂|𝑌௟௠௜௦ , 𝑌௢௕௦ , 𝑋ቁ

Ordinarily, Bayesian estimators are derived by taking the mode of the pos-

terior distribution. Here this course of action is complicated. Because of

the integral-relationship between posterior distribution of observed data

and the completed data posterior distribution using expectations, the inte-

grals can be interchanged. Using the mode which is the ordinary Bayesian

estimator, this procedure is not possible. Rubin (1987) uses the expectation

instead. Little and Rubin (2002) conclude that the mean and the variance

are interpreted as
”
adequate summaries“(Little and Rubin, 2002) in this

case.

The expectation is a Bayesian estimator on the background of decision

theory. It can be shown (Rüger, 1999) that the expectation is the Bayes

estimator using a quadratic loss function. In this case Rubin (1987) shows

in Result 3.2:

𝐸 (𝜂|𝑌௢௕௦ , 𝑋) = 𝐸 (𝐸 (𝜂|𝑌௢௕௦ , 𝑌௠௜௦ , 𝑋) |𝑌௢௕௦ , 𝑋)
= 𝐸 (ො𝜂|𝑌௢௕௦ , 𝑋) (14)

as the Bayesian estimator for the parameter of interest is: ො𝜂 = 𝐸 (𝜂|𝑌௢௕௦ ,
𝑌௠௜௦ , 𝑋) (Rubin, 1987). Equation 14 shows that the expectation of the in-
teresting parameter equals the expectation of the estimator which is the

same as themean of the completed-data posterior. Schafer (1997) appoints

this as one assumption necessary for inference with multiply imputed da-

ta. Zhang (2003) uses another argument: the mean as an estimator is de-

rived by the moment summaries. The formula itself can be so interpreted
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2 Multiple Imputation

that in the long run an estimation via the completed-data posterior, e.g.

the imputed data sets, is feasible. Similarly, Schafer (1999) argues that the

mean over the𝑚 completed data sets is the approximate expectation of the
posterior.

Since the limiting value is (Rubin, 1987)

𝜂ஶ = 𝑙𝑖𝑚௠→ஶ

௠

෍
௟ୀଵ

ෝ𝜂௟
𝑚 = 𝐸 (ො𝜂|𝑌௢௕௦ , 𝑋)

the first combining rule can be constituted. The 𝑚 different estimations

of the parameter (for every completed data set one) can be combined ac-

cording to the rules described in Rubin (1987), Rubin (1988), Schafer and

Olsen (1998):

𝜂௠ = 1
𝑚

௠

෍
௟ୀଵ

ෝ𝜂௟ (15)

The integral is approximated by the average.(Little and Rubin, 2002) Rubin

(1996) generalises that this is equivalent to equating the actual posterior

distribution of 𝜂 and the average over the complete data posterior distri-
bution of 𝜂.

2.3.2 Multiple Imputation Variance Estimation

Similar to the expectation, a combining rule for the variance is derived in

Result 3.2: (Rubin, 1987, Zhang, 2003, Rubin, 1996)

𝑉𝑎𝑟 (𝜂|𝑌௢௕௦ , 𝑋) = 𝑉𝑎𝑟 (𝐸 (𝜂|𝑌௢௕௦ , 𝑌௠௜௦ , 𝑋) |𝑌௢௕௦ , 𝑋)
+𝐸 (𝑉𝑎𝑟 (𝜂|𝑌௢௕௦ , 𝑌௠௜௦ , 𝑋) |𝑌௢௕௦ , 𝑋)

= 𝑉𝑎𝑟 (ො𝜂|𝑌௢௕௦ , 𝑋) + 𝐸 (𝑈|𝑌௢௕௦ , 𝑋) (16)
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The first part of the sum is the variance between the expectations of the

estimations based on the imputed data sets. The second part is the expecta-

tion of the variances. Using this reformulation and the following limiting

values given in Rubin (1987), the combining rule for the variances is ac-

quired. The limiting values are: (Rubin, 1987)

𝑈ஶ = 𝑙𝑖𝑚௠→ஶ

௠

෍
௟ୀଵ

𝑈௟
𝑚 = 𝐸 (𝑈|𝑌௢௕௦ , 𝑋) (17)

and

𝐵ஶ = 𝑙𝑖𝑚௠→ஶ

௠

෍
௟ୀଵ

൫ෝ𝜂௟ − 𝜂൯ᇱ ൫ෝ𝜂௟ − 𝜂൯
𝑚 = 𝑉𝑎𝑟 (ො𝜂|𝑌௢௕௦) (18)

Therefore, the second part of the sum above can be estimated by the mean

of the posterior variance: (Rubin, 1987, Schafer and Olsen, 1998, Schafer,

1999)

𝑈௠ = 1
𝑚

௠

෍
௟ୀଵ

𝑈௟ (19)

whereas 𝑈௟ is the variance of the variable in the 𝑙th completed data set
(Rubin, 1987) and 𝑈 can be interpreted as the mean of the variances of the
data sets. Again the integral is approximated by an average. The second

part, the variance between the completed data sets, can be evaluated by:

(Rubin, 1987)

𝐵௠ = 1
𝑚− 1

௠

෍
௟ୀଵ

൫ෝ𝜂௟ − 𝜂௠൯
ᇱ ൫ෝ𝜂௟ − 𝜂௠൯ (20)
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in the multivariate case. Similarly, the between imputation variance in the

univariate case is: (Rubin, 1988)

𝐵 =
௠

෍
௟ୀଵ

൫𝜂௟ − 𝜂൯ଶ

(𝑀 − 1) (21)

The formula for the within imputation variance is the same in the univa-

riate and the multivariate case except that 𝑈௟ is a scalar in the former and

a vector in the latter case. Combined together, it leads to the total variance

of the statistic: (Rubin, 1987, Rubin, 1988, Little and Rubin, 2002)

𝑇ஶ = 𝑈ஶ + 𝐵ஶ (22)

For small𝑚, an improved approximation of the variance is (Little and Ru-
bin, 2002):

𝑉௠ = 𝑈௠ + ቆ1 + 1
𝑚ቇ𝐵௠ (23)

There is additional uncertainty brought in by the missing values and this

is reflected by an increased variance. Schafer (1999) argues the same when

justifying the inference formultiple imputed data. Schafer andOlsen (1998)

interpret it as a correction factor for the simulation error.

According to Zhang (2003) ൫1 + 𝑚ିଵ൯ accounts for the additional variance,
because of the number of imputations being finite. The relative increase

of variance that can be reasoned by missing data is:(Schafer, 1999, Schafer

and Olsen, 1998)

𝑟 = ൫1 +𝑚ିଵ൯ 𝐵
𝑈
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An estimator for the amount of missing information can be derived from

the first derivation of the log posterior of the parameter 𝜂: (Schafer, 1999,
Schafer and Olsen, 1998)

ො𝜆 =
௥ାଶ
ఔାଷ
𝑟 + 1

=
ቀ𝑈 − (𝜈 + 1) (𝜈 + 3) 𝑇ିଵቁ

𝑈

2.4 Requirements

Schafer and Olsen (1998) mention three assumptions made by multiple

imputation: First, a probability model describing the complete data is ne-

cessary. Although multiple imputation is not very sensitive for data mo-

del misspecifications, Schafer and Olsen (1998) stress that the data model

should be chosen carefully. We need to consider all variables that are high-

ly correlated with the variables havingmissing values. In this case it is very

easy to predict values for the missing data.(Rubin, 1978) Moreover, as sub-

sequent analysis should not be restricted, as much variables as possible

should be considered.(Schafer and Olsen, 1998) All important associati-

ons between the variables in the data set should be included. If they are

not preserved, inference will be biased.(Patrician, 2002) For this reason,

data imputers tend to include as many variables as possible, ruling out the

case of an omitted variable bias.

Second, the prior distribution of the model parameter must be specified.

This is reasoned by the underlying Bayesian theory. According to Schafer

and Olsen (1998) a non-informative prior works well in most cases.

Third, themechanismdescribing themissingness has to be ignorable. The

easiest case is missing at random. Because of the MAR assumption it is

possible to exploit the relationships between the observed data to estimate

the missing values.(Schafer and Olsen, 1998, Patrician, 2002) According
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to Rubin (1978) it is possible to model the missingness with the help of

variables highly correlated with the indicator of missingness 𝐼 to make it
ignorable.(Rubin, 1978)

2.5 Advantages and Disadvantages

Let us start with the disadvantages and then go over to the manifold ad-

vantages of multiple imputation as a missing data technique.

Rubin (1987) only refers to the bigger efforts that are needed for conduc-

tingmultiple imputation and for handlingmultiply imputed data. Of cour-

se the efforts to impute and to analyse data need to be increased as every

step has to be repeated 𝑚-times.(Rubin, 1987) Today the argument that
more memory space is needed is not convincing any more. However ano-

ther problem arises through the repeated imputation and the ambiguity of

multiple imputation. Throughmultiple imputation, some kind of random

noise is brought into the analysis. Finally, it is difficult to understand and

difficult to be accepted by unexperienced users.(Patrician, 2002)

More importantly, the modelling of non-response mechanisms and of the

imputation scheme has to be donewith great care: The validity of the analy-

sis depends on correctly capturing the missingness mechanism.(Schafer,

1999) Moreover, the imputation model and analysis model must be com-

patible: If the imputation model is less restrictive then the analysis loses

efficiency. If the imputation model is too restrictive and the model is not

plausible, the inference is too conservative. Only in the case of correct as-

sumptions, the analysis is efficient and unbiased. The major problem is

that all variables which are not considered in the imputation model will

not be correlated in every analysis.(Schafer, 1999)

However, multiple imputation does not suffer very serious disadvantages,

indeed it has some very compelling advantages. First and most import-
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antly for our application, suitable statistical methods are not determined.

All complete datamethods are possible. For this reason, any statistical soft-

ware can be used formultiple imputed data sets.(Rubin, 1987, Rubin, 1988,

Patrician, 2002, Schafer andOlsen, 1998)Moreover, data usersmay be very

different with regard to their statistical knowledge and abilities. Each per-

son can use those methods that he knows.(Rubin, 1996) Multiple imputa-

tion does not restrict the set of applicants, the application, the statistical

methods or the statistical software. Moreover, as the missing dataproblem

is handled once, consistency among different persons is assured.(Rubin,

1988) The knowledge of the data collector which is not applicable to the da-

ta analyst (e.g. for the reasons of confidentiality) can be used.(Rubin, 1996,

Rubin, 1987, Patrician, 2002) This improves the quality of the imputation

as a lot of information can be exploited.

Multiple imputation also has advantages in respect to statistical quality

measures. First, it increases the efficiency of the estimation.(Rubin, 1987)

Multiple imputation is highly efficient and shows in many cases excellent

results with only a few imputed data sets.(Schafer and Olsen, 1998)

The problem of single imputation is that model uncertainty is not reflect-

ed.(Rubin, 1988) Through the multiple data sets, some kind of random

variation is included in the imputation.(Patrician, 2002) Two modes of

uncertainty can be considered: Sampling uncertainty and the reasons of

missingness by choosing an appropriate model of non-response.(Rubin,

1987) The standard errors, p-values and so on, are valid.(Schafer and Ol-

sen, 1998) The differences between the data sets allow valid inferential

statistics.(Rubin, 1987)
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3 Kriging

As noted above, multiple imputation needs to consider all relevant correla-

tions. This also includes spatial relationships. For this reason, we need to

look for a method that can be implemented in MI and accounts for spatial

correlations. One such procedure is kriging.

Our application is the estimation of regional price indices. Obviously, the

price level of one region partially depends on the price level of its neigh-

bours, as there are local price alignments. For this reason, kriging seems

to be a promising method for capturing the relevant information required

to predict regional price levels.

Kriging itself is an optimal prediction using spatial correlations. Informa-

tion of neighbours is considered in the estimation by a spatial correlati-

on function generating an interpolation over a spatial random process,

which is assumed to be stationary2. Doing so, the correlation depends

on the distance between the region of interest and the other observation

points.(Cressie, 1990) Therewith, the aim of kriging is not the estimation,

but rather the prediction of values of unobserved regions. A regression

type estimation extended by a spatial random process is done creating a

linear prediction.(Cressie, 1990) The spatial correlation is represented in

the regression by a parametric correlation function, which is a Gaussian

random field.(Fahrmeir et al., 2007) As the model is just a regression it

seems very straightforward to implement kriging into multiple imputati-

on.

2Voltz and Webster (1990) note that the stationary assumption just needs to be local as
only close neighbours have a significant influence.
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3.1 Introduction into One-dimensional Kriging

Here, we describe the spatial modelling of one-dimensional kriging to get

started. The one-dimensional case is more familiar and much easier than

the two-dimensional case which we actually need for predicting regional

price levels.

The model of one-dimensional kriging is:(Fahrmeir et al., 2007)

𝑦௦ = 𝑥ᇱ௦𝛽 + 𝜖௦; 𝑠 ∈ ℝ (24)

𝜇 = 𝑥ᇱ௧𝛽 is the spatial trend. In the one-dimensional case, it may be a
temporal trend, too. We assume that 𝜖௧ is multivariate normal with the
expectation 𝐸 (𝜖) = 0 and the covariance matrix 𝐶𝑜𝑣 (𝜖) = 𝜎ଶ𝐼 + 𝜏ଶ𝑅,
because of the underlying stochastic process which models the spatial or

temporal dependencies.(Fahrmeir et al., 2007)

The underlying stochastic process is assumed to beGaussian. It is themost

usual assumption guaranteeing that the common distribution of observed

and unobserved values is also normal. Moreover the expectation is linear

in 𝑦 in this case.(Cressie, 1993) Model 24 borrows from time series analy-

sis, modelling the correlation implicitly in the variance-covariance matrix.

Here, we prefer a mixed model representation where the correlation is ex-

plicitly represented in the model. This can be done by adding a random

process to the model, which we do later in this section.

Through the covariance we assume that errors are correlated in a typical

way. (Fahrmeir et al., 2007, Cressie, 1990) The spatial correlation is expres-

sed in 𝜏ଶ𝑅.𝑅 itself is a correlationmatrix consisting of the correlation func-
tion 𝜌(⋅, ⋅) which models how the distances between two observed points
influence the correlation:(Fahrmeir et al., 2007)

𝑅(𝑠௜ , 𝑠௝) = 𝐶𝑜𝑟𝑟 ൫𝑠௜ , 𝑠௝൯ = 𝜌 ൫𝑠௜ , 𝑠௝൯ (25)
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The covariance consists of two parts:

1. uncorrelated part: 𝜎ଶ𝐼

2. correlated part modelling the spatial dependencies: 𝜏ଶ𝑅

The covariance is parameterised by three parameters: 𝜎ଶ, 𝜏ଶ, and 𝜌. If all
three are known, it is possible to estimate the parameter vector of fixed

effects 𝛽 by GLS:(Fahrmeir et al., 2007)

ෝ𝛽 = ቀ𝑋ᇱ𝑉ିଵ𝑋ቁ
ିଵ
𝑋ᇱ𝑉ିଵ𝑦

where 𝑋 is a 𝑛⨯𝑝 design-matrix and 𝑉 defines the 𝑛⨯𝑛 covariance-matrix.
𝛽 and 𝑦 are as usually vectors. The parameter of the covariance can be esti-
mated by appropriate methods as REML.(Fahrmeir et al., 2007)

3.2 The Method of Kriging

Kriging is a method that was developed for mining. In mining the aim

is to find profit-yielding areas in a block. Before D. G. Krige, who worked

at the Witwaterstand goldmines in South Africa (Schabenberger and Got-

way, 2005), it was common practice to use the
”
sample mean of nearby

core-sample assays to estimate the average grade in a prospective mining

block. Those estimates were then used tomine selectively.“ (Cressie, 1990)

Krige criticised this method defining a new approach that can now be na-

med as a
”
two dimensional moving average (...) with predetermined radi-

us“ (Cressie, 1990). Krige’s contribution to the method kriging is to propo-

se that covariances are used as weights in the BLUE estimation. (Cressie,

1990) A third component, defining the spatial BLUP characterising kriging
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was added by Matheron.(Cressie, 1990)3 Matheron named the developed

method kriging to honour D.G. Krige.(Schabenberger and Gotway, 2005)

The covariances can be described by a spatial stochastic process. To sum

up, Cressie (1990) enumerates three components characterising kriging:

1. covariances are used as weights,

2. the BLUE estimator ෝ𝜇 is used, and,

3. covariances are determined by a spatial stochastic process.(Cressie,

1990)

The second point is equivalent to assuming a normal distribution of the

error term as this is the definition of the BLUE estimator.

3.2.1 Continuous Kriging

The model representation of kriging is a typical regression model empha-

sising the first three components of kriging:(Schabenberger and Gotway,

2005)

𝑦(𝑠) = 𝑥(𝑠)ᇱ𝛽 + 𝛾(𝑠) + 𝜖(𝑠) (26)

where the covariables 𝑥 parameterise the spatial trend by 𝜇 = 𝑥ᇱ𝛽, also cal-
led the drift component (Kitanidis, 1997), 𝛾(𝑠) is assumed in the easiest
case to be a stationary Gaussian random field and the normal error 𝜖(𝑠)
where 𝜖(𝑠) ∼ 𝑁(0, 𝜎ଶ) is independent from 𝛾(𝑠).(Fahrmeir et al., 2007,
Schabenberger and Gotway, 2005, Kitanidis, 1997) The model formulati-

on differs from the model given above in making the underlying spatial

process explicit.

3In meteorology the same method was developed by Gandin at the same time. Here it is
called objective analysis.(Schabenberger and Gotway, 2005)
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The spatial trend component can be estimated by a BLUE where the co-

variances determined by the assumed random field are the weights. The

deterministic component 𝑥(𝑠)ᇱ𝛽 is also called
”
large scale component of

spatial variability that can be represented with reasonable assurance as a

determinist function.“ (Kitanidis, 1997) However in kriging the estimati-

on of parameters is only themeans to the end of predicting 𝑦(𝑠).(Schaben-
berger and Gotway, 2005) The prediction is described below.

The spatial dependent variation in 𝑦(𝑠) is characterised by a Gaussian ran-
dom field.4 (Stein, 1999) ቄ𝛾(𝑠), 𝑠 ∈ ℝଶቅ for which we assume stationarity,
meaning that:

• expectation function: 𝐸(𝛾(𝑠)) = 𝜇(𝑠) = 0

• variance function: 𝑉𝑎𝑟(𝛾(𝑠)) = 𝜏ଶ(𝑠) = 𝜏ଶ

• correlation function: 𝐶𝑜𝑟𝑟(𝛾(𝑠), 𝛾(𝑡)) = 𝜌(𝑠, 𝑡) = 𝜌(ℎ), where ℎ is
the distance between 𝑠 and 𝑡. (Fahrmeir et al., 2007)

The stationarity assumption defines the expectation of the random field

and the variance of the random field as spatially constant quantities.(Fahr-

meir et al., 2007)

In matrix notation we can write the model representation as (Fahrmeir

et al., 2007)

𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖 (27)

4There are are lot of other possibilities to characterise the spatial random process descri-
bing the spatial dependencies.
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where the vector 𝛾 = (𝛾(𝑠(ଵ)),⋯, 𝛾(𝑠(ௗ)))ᇱ is comprised of the values of
the stationary Gaussian random process at the 𝑑 spatial observation points
𝑠(ଵ), … , 𝑠(ௗ). 𝑍 is the (𝑛 ⨯ 𝑇)matrix of incidence

𝑍[𝑖, 𝑗] = ቐ
1, if 𝑦௜ was observed at location 𝑠(௝)
0, else

.

(Fahrmeir et al., 2007)

The covariance matrix of 𝑦௜ can easily be derived:

𝐶𝑜𝑣(𝑦) = 𝑉𝑎𝑟 (𝑋𝛽 + 𝑍𝛾 + 𝜖)
= 𝑉𝑎𝑟(𝑍𝛾) + 𝑉𝑎𝑟(𝜖) = 𝜏ଶ𝑍𝑅𝑍ᇱ + 𝜎ଶ𝐼

where 𝑅 is the 𝑇 ⨯ 𝑇 correlation-matrix of the spatial effects, and not the
covariance-matrix as Fahrmeir et al. (2007) define 𝑅.

𝑅 = ൫𝐶𝑜𝑟𝑟(𝛾(𝑠(௜)), 𝛾(𝑠(௝)))൯ = ൫𝜌(𝑠(௜), 𝑠(௝))൯

=
⎛
⎜⎜⎜

⎝

1 𝜌(𝑠ଵ, 𝑠ଶ) … 𝜌(𝑠ଵ, 𝑠்)
𝜌(𝑠ଵ, 𝑠ଶ) 1 𝜌(𝑠ଶ, 𝑠ଷ) … 𝜌(𝑠ଶ, 𝑠்)

⋱
⋮ ⋮

𝜌(𝑠ଵ, 𝑠்) … 1

⎞
⎟⎟⎟

⎠

transferring the spatial correlations from 𝛾 to 𝑦.(Fahrmeir et al., 2007)
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3.3 Prediction

The initial aim of kriging is an optimal prediction of unobserved values

while using the information of observed points.(Fahrmeir et al., 2007, Stein,

1999, Schabenberger and Gotway, 2005) This aim even can be used as a

definition of kriging, as is done by Stein (1999):
”
Best linear unbiased pre-

diction is frequently used in spatial statistics where it is commonly called

(...) kriging.“ (Stein, 1999) Almost the same definition can be found in

Cressie (1993), where the author contrasts kriging from spatial prediction

as the former is a mean squared error optimal spatial linear prediction and

the latter is just a spatial prediction.(Cressie, 1993)

We can distinguish two cases: First, the case of the known mean 𝜇, which
is called simple kriging, and, second, the case of the unknown 𝜇, called
ordinary kriging and universal kriging.(Cressie, 1990, 1993) The definiti-

on of Stein (1999) makes the differences clearer: Simple kriging assumes

a mean of 0, ordinary kriging assumes a constant, but unknown mean,

and universal kriging assumes a
”
more general“ (Stein, 1999) mean. Ac-

cording to Cressie (1993), the difference between universal and ordinary

kriging is: in ordinary kriging the mean of the spatially correlated variable

is unknown, but a constant, and is implemented in the optimal prediction

scheme via the assumption that predictions weights sumup to one. In uni-

versal kriging it is assumed that the mean can be estimated by a function

of some other variables. The function of some other variables is the known

linear predictor 𝑋𝛽.(Cressie, 1993)
Here we only discuss predictions that can be made under the assumpti-

on of stationarity. The literature on kriging discusses two moment based

predictors for the case of non-stationarity: the variogram and the covario-

gram predictors. A discussion of these two can be found among others in

Schabenberger and Gotway (2005) and Cressie (1990).
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To simplify notation we write for the vector of predictions

ෞ𝑦ᇱ଴ = ቀෝ𝑦(𝑠଴ଵ) ෝ𝑦(𝑠଴ଶ) … ෝ𝑦(𝑠଴௡బ)ቁ ,

where 𝑠଴௜ denotes that the region is not observed. The observed values 𝑦ᇱ =
ቀ𝑦(𝑠ଵ) 𝑦(𝑠ଶ) ⋯ 𝑦(𝑠௡)ቁ have the variance-covariance matrix 𝑉𝑎𝑟(𝑦).
The covariances of unobserved and observed values are denoted in the (𝑛⨯
𝑛଴)-matrix

𝐶𝑜𝑣(𝑦, 𝑦଴) = ቀ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴ଵ)) 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴ଶ)) … 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴௡బ))ቁ =

⎛
⎜

⎝

𝐶𝑜𝑣(𝑦(𝑠ଵ), 𝑦(𝑠଴ଵ)) 𝐶𝑜𝑣(𝑦(𝑠ଵ), 𝑦(𝑠଴ଶ)) … 𝐶𝑜𝑣(𝑦(𝑠ଵ), 𝑦(𝑠଴௡బ))
𝐶𝑜𝑣(𝑦(𝑠ଶ), 𝑦(𝑠଴ଵ)) 𝐶𝑜𝑣(𝑦(𝑠ଶ), 𝑦(𝑠଴ଶ)) … 𝐶𝑜𝑣(𝑦(𝑠ଶ), 𝑦(𝑠଴௡బ))

⋮ ⋮ ⋮
𝐶𝑜𝑣(𝑦(𝑠௡), 𝑦(𝑠଴ଵ)) 𝐶𝑜𝑣(𝑦(𝑠௡), 𝑦(𝑠଴ଶ)) … 𝐶𝑜𝑣(𝑦(𝑠௡), 𝑦(𝑠଴௡బ))

⎞
⎟

⎠

If we write just 𝑦(𝑠଴), we refer to any unobserved region, which simplifies
the subscription. Additionally, we define

𝜇ᇱ = ቀ𝜇(𝑠ଵ) 𝜇(𝑠ଶ) … 𝜇(𝑠௡)ቁ

as the vector of expectations of the observed regions.

3.3.1 Simple Kriging Predictor

Let us start with the easiest case: the simplification of a fixed and known

mean defining the simple kriging predictor. For the reason of simplifying

readability, the derivations of this and the next sections can be found in

the appendix.
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As already mentioned, the aim is to predict the unobserved points using

the information of the observed data points. The idea is to interpolate the

observed data which means that the prediction is a linear mixture of the

observed data points:

ෝ𝑦(𝑠଴) = 𝜆଴ + 𝜆ᇱ𝑦

As we are looking for the best prediction,ෞ𝑦଴ should be as close as possible
to the real data 𝑦଴. To measure how well data support the prediction, the
mean squared prediction error (MSPE) is used. The MSPE is equivalent

to the mean squared error of estimation when predicting. In the case of

simple kriging theMSPE of one unobserved point is: (Stein, 1999, Cressie,

1993, Kitanidis, 1997)

𝐸 ൤൫𝑦(𝑠଴) − 𝜆଴ − 𝜆ᇱ𝑦൯ଶ൨

= 𝑉𝑎𝑟 (𝑦(𝑠଴)) + 𝐸 (𝑦(𝑠଴))
ଶ − 2𝜆଴𝐸 (𝑦(𝑠଴)) − 2𝜆ᇱ𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴))

− 2𝜆ᇱ𝐸 (𝑦) 𝐸 (𝑦(𝑠଴))
+ 𝜆ଶ଴ + 2𝜆଴𝜆ᇱ𝐸 (𝑦) + 𝜆ᇱ𝑉𝑎𝑟 (𝑦) 𝜆 + 𝜆ᇱ𝐸 (𝑦)ଶ 𝜆

= 𝑉𝑎𝑟 (𝑦(𝑠଴)) − 2𝜆ᇱ𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) + 𝜆ᇱ𝑉𝑎𝑟 (𝑦) 𝜆 + ൫𝜇(𝑠଴) − 𝜆଴ − 𝜆ᇱ𝜇൯ଶ

where 𝜆଴ + 𝜆ᇱ𝑦 is the linear predictor and 𝜆 and 𝑦 are vectors of weights
and observed values.

The MSPE has to be minimised as we want to get as close to the real data

as possible. After partially derivating the MSPE to 𝜆 and 𝜆଴ we get the
following estimators minimising the MSPE. :(Stein, 1999, Cressie, 1993,

Schabenberger and Gotway, 2005)

ෟ𝜆଴,௦௞ = 𝜇(𝑠଴) − ෝ𝜆ᇱ𝜇
ෞ𝜆௦௞ = 𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣 (𝑦(𝑠଴), 𝑦)
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These estimators define theMSPE-optimal predictor: (Stein, 1999, Cressie,

1993, Schabenberger and Gotway, 2005)

ෝ𝑦(𝑠଴) = 𝜇(𝑠଴) + ቀ𝑉𝑎𝑟 (𝑦)ିଵ 𝐶𝑜𝑣 (𝑦(𝑠଴), 𝑦)ቁ
ᇱ
(𝑦 − 𝜇) (28)

The according MSPE is: (Cressie, 1990)

𝑀𝑆𝑃𝐸௦௞ = 𝐸 ቀ(𝑦 (𝑠଴) − ෝ𝑦(𝑠଴))
ଶቁ

= 𝑉𝑎𝑟(𝑦(𝑠଴)) − 𝐶𝑜𝑣 (𝑦(𝑠଴), 𝑦)
ᇱ 𝑉𝑎𝑟 (𝑦)ିଵ 𝐶𝑜𝑣 (𝑦(𝑠଴), 𝑦)

The MSPE clarifies that the variance of the prediction, which is the latter

term, has to be smaller than the variance of the data, because the MSPE is

a positive value.(Schabenberger and Gotway, 2005)

From this point of view, is the simple kriging prediction a good prediction?

To check this, we predict the observed values:(Schabenberger and Gotway,

2005)

ෝ𝑦(𝑠) = 𝜇(𝑠) + ΣΣିଵ [𝑦(𝑠) − 𝜇(𝑠)] = 𝑦(𝑠)

showing that the prediction is an interpolation of the observed values.

Hence, the simple kriging predictor is an
”
exact interpolator“ or simple

kriging predictors
”
honor the data“.(Schabenberger and Gotway, 2005)
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3.3.2 Ordinary Kriging Predictor

In ordinary kriging we assume that the expectation 𝜇௙ is constant, but un-
known with 𝐸 ൫𝑦଴൯ = 𝜇௙𝑖, where 𝑖 is a vector of ones with the respective
dimension and 𝜇௙ is a scalar denoting the constant mean. In the case of a
fixed but unknown mean, which constrains to linear predictors, does not

give a unique solution for minimising theMSPE.(Schabenberger and Got-

way, 2005)

In the notation of Cressie (1990) the interpolation of ordinary kriging be-

comes evident: the uniform linear prediction that Cressie (1990) proposes

starts with the idea that 𝑦(𝑠଴) is a weighted mixture of all other regions:
∑௡
௦ୀଵ 𝜆௦𝑦(𝑠). The additional restriction is: ∑

௡
௦ୀଵ 𝜆௦ = 1, guaranteeing uni-

form unbiasedness.(Cressie, 1990) In matrix notation the interpolation is

𝜆ᇱ𝑦 and 𝜆ᇱ𝑖, where 𝑖 is of length 𝑛.

A justification of the unbiasedness-condition can be found in Schaben-

berger and Gotway (2005): an unbiased prediction means that

𝐸 ൫𝜆଴ + 𝜆ᇱ𝑦൯ = 𝐸 (𝑦(𝑠଴)) = 𝜇(𝑠଴)

which leads to the following condition:

𝜆଴ + 𝜇௙ ൫𝜆
ᇱ𝑖 − 1൯ = 0

The equality has to hold for all 𝜇, and therefore for 𝜇௙ = 1, too, leading to

𝜆଴ = 0
𝜆ᇱ𝑖 = 1
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which means that the interpolation weights should sum up to 1.(Schaben-
berger and Gotway, 2005) The mean is covered by 𝜇௙ making 𝜆଴ equal to
0.

Again it boils down to a minimisation problem: the predictions should be

as close as possible to the real data under the given restriction that the

prediction is a linear mixture of the observed regions. Again the closeness

is measured by the MSPE. The prediction is derived by minimising MSPE

subject to 𝜆:(Cressie, 1990, Schabenberger and Gotway, 2005)

𝐸 ൦ቌ𝑦(𝑠଴) −
௡

෍
௦ୀଵ

𝜆௦𝑦(𝑠)ଶቍ

ଶ

൪ 𝑠.𝑡.
௡

෍
௜ୀଵ

𝜆 = 1

As this is an optimisation problemunder constraints, a Lagrange approach

has to be applied. According to Schabenberger and Gotway (2005) the mi-

nimisation rule under constraint is:

min
ఒ

𝐸 ൤൫𝜆ᇱ𝑦 − 𝑦(𝑠଴)൯
ଶ൨ − 2𝑚 ൫𝜆ᇱ𝑖 − 1൯

where 𝑚 is the Lagrange-multiplier. This is almost the same as in the fo-

regoing equation, but in matrix notation. The optimisation leads to the

following weights:(Cressie, 1990, Schabenberger and Gotway, 2005)

ෞ𝜆ᇱ௢௞ =൥𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) + 𝑖 1 − 𝑖ᇱ𝑉𝑎𝑟 (𝑦)ିଵ 𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴))
𝑖ᇱ𝑉𝑎𝑟 (𝑦)ିଵ 𝑖

൩
ᇱ

𝑉𝑎𝑟 (𝑦)ିଵ
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Again all derivations are given in the appendix. The prediction of the un-

observed value is then the interpolation of observed values using the given

weights.

ෞ𝑦଴ =ෞ𝜆
ᇱ
௢௞𝑦

൥𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) + 𝑖 1 − 𝑖ᇱ𝑉𝑎𝑟 (𝑦)ିଵ 𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴))
𝑖ᇱ𝑉𝑎𝑟 (𝑦)ିଵ 𝑖

൩
ᇱ

𝑉𝑎𝑟 (𝑦)ିଵ 𝑦

The mean 𝜇௙ is implicitly estimated. For this reason Schabenberger and
Gotway (2005) prefer the explicit formulation by using the BLUP-estima-

tion of the mean:(Cressie, 1990, Schabenberger and Gotway, 2005)

ෟ𝑦଴,௢௞ = 𝜆ᇱ௢௞𝑦

=ෞ𝜇௙ + 𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴))
ᇱ 𝑉𝑎𝑟 (𝑦)ିଵ ቀ𝑦 − 𝑖ෞ𝜇௙ቁ

In this formula the estimator of 𝜇௙ is explicit and not 𝜇௙ itself, which is
the difference to the simple kriging estimator. The constant mean can be

estimated by the GLS-estimator:(Schabenberger and Gotway, 2005)

ෞ𝜇௙ = ൫𝑖ᇱ𝑉𝑎𝑟(𝑦)𝑖൯ିଵ 𝑖ᇱ𝑉𝑎𝑟(𝑦)𝑦௦

To measure the uncertainty of the ordinary kriging predictor, the MSPE of

the ordinary kriging predictor can be used. It is:

𝑀𝑆𝑃𝐸௢௞ =𝑉𝑎𝑟(𝑦(𝑠଴)) − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

+
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

ଶ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
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3.3.3 Universal Kriging Predictor

Now we drop the assumption of a fixed mean. The mean varies spatially,

i.e. it is a function in space: 𝜇(𝑠). The spatial trend 𝜇(𝑠) is assumed to be
linear in covariables, i.e.

𝜇(𝑠) = 𝑋(𝑠)𝛽

where 𝑋(𝑠) is a matrix of spatially varying covariables and 𝛽 are the coeffi-
cients denoting fixed effects.(Schabenberger and Gotway, 2005) Kitanidis

(1997) refers to this linear modelling as estimation with a drift. Later we

discuss a non-parametric alternative to this parameterisation in the section

about kriging as a smoothing spline. The model is now:

𝑦(𝑠) = 𝑋(𝑠)𝛽 + 𝑒(𝑠)

where the random variable 𝑒(𝑠) defines the spatial correlations.(Schaben-
berger and Gotway, 2005).

We prefer the formulation of Fahrmeir et al. (2007) where the spatial cor-

relations are written down explicitly. Fahrmeir et al. (2007) extend the nor-

mal linear regression equation by a Gaussian random field parameterising

the spatial dependencies that underly the kriging. Of course other random

fields are possible, too, but for simplification we restrict modelling to the

Gaussian case. Moreover, the Gaussian assumption is needed for the opti-

mality of the kriging predictions.(Pollice and Bilancia, 2002) Later we use

the conditional distribution to specify the random field as described by

Besag (1974). This assumption leads to the correlation matrix defining the

spatial dependencies.

The model of universal kriging is under the assumption of a Gaussian

random field:(Fahrmeir et al., 2007, Pollice and Bilancia, 2002)

𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖 (29)
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with the design-matrizes 𝑋 and 𝑍, where 𝑋 includes all fixed effects that
parameterise the spatial trend and the incidence-matrix 𝑍:

𝑍[𝑖, 𝑗] = ቐ
1 if 𝑦௜ was observed in region 𝑗
0 else

with the fixed effects 𝛽 and the random effects 𝛾 ∼ 𝑁(0, 𝐺) with the
variance-covariance matrix

𝐺 = 𝜏ଶ𝑅 = 𝜏ଶ⎛⎜

⎝

1 𝜌(⋅) ⋯ 𝜌(⋅)
𝜌(⋅) 1 𝜌(⋅) ⋮
⋮ ⋱

𝜌(⋅) ⋯ 𝜌(⋅) 1

⎞
⎟

⎠

where 𝜌(⋅) is the correlation between two regions defined by a correlati-
on function defined in chapter 3.4.2. 𝑅 is the correlation-matrix and 𝜏ଶ is
the nugget effect of the assumed random field. It is convenient to split the

total variability in the systematic term 𝛾, explaining the spatial variability,
and the error term 𝜖.(Pollice and Bilancia, 2002)

Starting from a model based approach (Cicchitelli and Montanari, 2012),

we need to specify the distribution of 𝑦(𝑠). Assume a common normal
distribution for observed values and points for which we want to predict

the unobserved values (Fahrmeir et al., 2007, Schabenberger and Gotway,

2005), then the common distribution of the observed values and the value

that we want to predict is defined by

൭ 𝑦
𝑦(𝑠଴)

൱ ∼ 𝑁൭൥ 𝜇
𝜇(𝑠଴)

൩ , ൥ 𝑉𝑎𝑟(𝑦) 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) 𝑉𝑎𝑟(𝑦(𝑠଴))

൩൱

= 𝑁൭൥ 𝑋𝛽
𝑥(𝑠଴)𝛽

൩ , ൥ 𝜏ଶ𝑍𝑅𝑍 + 𝜎ଶ𝐼 𝜏ଶ𝑟
𝜏ଶ𝑟 𝜏ଶ + 𝜎ଶ ൩൱
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where 𝑟 is the vector of 𝜌(𝑠௢ , 𝑠௜). The parameters of the observed values 𝑦
are defined by the regression equation in the case of universal kriging (the

mean is unknown), the parameters of the unobserved 𝑦଴ are the expectati-
on and the variance 𝜏ଶ+𝜎ଶ as it is a prediction, and both have a covariance
of 𝜏ଶ𝑟 as we assumed in the correlation function.(Fahrmeir et al., 2007,
Schabenberger and Gotway, 2005)5 If we consider several unobserved va-

lues, the given normal distribution has to be extended accordingly.

There arises a problem when using the given distribution for prediction.

The predictors of universal kriging are defined such that they are exact “

i.e. to the feature of predicting observed points by the points themselves.

This is only reasonable when no random noise is assumed for the spati-

al process and predictions must coincide with observed measurements at

sampled locations, but can lead to over-fitting of the predicted surface in

the presence ofmeasurement error“ (Pollice and Bilancia, 2002). The solu-

tion is to use a spatial model with a covariance function assuming no error

variance for unobserved regions.(Pollice and Bilancia, 2002) This procedu-

re means to predict just 𝑦(𝑠଴) = 𝑥(𝑠଴)ᇱ𝛽 + 𝛾(𝑠଴).(Fahrmeir et al., 2007)
This leads to the following distribution:(Fahrmeir et al., 2007, Pollice and

Bilancia, 2002)

൭ 𝑦
𝑦(𝑠଴)

൱ ∼ 𝑁൭൥ 𝜇
𝜇(𝑠଴)

൩ , ൥ 𝑉𝑎𝑟(𝑦) 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) 𝑉𝑎𝑟(𝑦(𝑠଴))

൩൱

= 𝑁൭൥ 𝑋𝛽
𝑥(𝑠଴)𝛽

൩ , ൥ 𝜏ଶ𝑍𝑅𝑍 + 𝜎ଶ𝐼 𝜏ଶ𝑟
𝜏ଶ𝑟 𝜏ଶ ൩൱

In the case of simple kriging (the mean is known), the expectation 𝑋𝛽 can
be replaced by the known mean.(Cressie, 1990) Starting from this posi-

tion: An easy device to get the optimal prediction of universal kriging is

5Note that there is a difference to the distribution referred in Fahrmeir et al. (2007): the
authors onlywrite down the parameters of௬(௦బ) ୀ ௫(௦బ)ఉାఊ(௦బ)which is not the definition
that we use. We use the prediction ௬(௦బ) ୀ ௫(௦బ)ఉ ା ఊ(௦బ) ା ఢ, defining another variance.
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to replace the unknown 𝜇 by its linear predictor 𝑋𝛽.(Stein, 1999, Cressie,
1993) As the unknown mean is substituted by the function of some other

variables 𝑋𝛽, it is called plug-in predictor.(Fahrmeir et al., 2007, Cressie,
1993, 1990)

The parameters of the mean function 𝛽 are estimated by GLS and ins-
erted in the simple kriging predictor, defined in equation 28, leading to

following estimator and predictor:(Cressie, 1993)

ෞ𝛽௚௟௦ = ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑋ቁ
ିଵ
𝑋ᇱ𝑉𝑎𝑟(𝑦)𝑦

ෝ𝑦(𝑠଴) = 𝜇(𝑠଴) + ቀ𝑉𝑎𝑟 (𝑦)ିଵ 𝐶𝑜𝑣 (𝑦(𝑠଴), 𝑦)ቁ
ᇱ
൫𝑦 − 𝑋ᇱෟ𝛽ீ௅ௌ൯

𝜆ᇱ = ቄ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) + 𝑋 ൫𝑋ᇱ𝑉𝑎𝑟(𝑦)𝑋൯ିଵ ቀ𝑥 − 𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ

𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)))
ᇱቅ 𝑉𝑎𝑟(𝑦)ିଵ

This predictor is the best homogeneous linear unbiased predictor.(Cressie,

1993) Schabenberger and Gotway (2005) name the problems of this ap-

proach: first, for the GLS estimation of the trend parameters 𝛽 the va-
riances have to be known. If they are unknown, the EGLS procedure is

possible, but the estimation of the variances using the residuals questions

the power of estimation. Moreover the uncertainty introduced by using an

estimator ෝ𝛽 instead of the known trend is not considered, resulting in an
underestimation of the uncertainty of predicted values ෝ𝑦.(Schabenberger
and Gotway, 2005)

Another possibility is to derive the universal kriging predictor as we did

before with the simple and the ordinary kriging predictor. We use an op-

timisation criterion for the prediction at point 𝑦(𝑠଴), given the observed
points 𝑦. According to Cressie (1990), Schabenberger and Gotway (2005)
and Stein (1999), the mean squared prediction error (MSPE) based on the

quadratic loss function is the adequate optimisation criterion. Minimising
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the MSPE provides a prediction that minimises the Bayes risk, that is un-

biased 6 and that is linear in the case of a Gaussian random field. If the

assumption of normality is dropped, a way to ensure the quality of esti-

mation is to constrain the method to BLUPs.(Schabenberger and Gotway,

2005)

As we restrict ourselves to linear predictors, the prediction is again a mix-

ture of the observed values: 𝑎ᇱ𝑦. Again we minimise the MSPE:(Schaben-
berger and Gotway, 2005)

𝑀𝑆𝑃𝐸 = 𝐸 ቂ(𝑎ᇱ𝑦 − 𝑦(𝑠଴))
ଶቃ

= 𝑎ᇱ𝑉𝑎𝑟(𝑦)𝑎 + 𝑉𝑎𝑟(𝑦(𝑠଴)) − 2𝑎ᇱ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
= 𝑎ᇱ𝜏ଶ𝑍𝑅𝑍 + 𝜎ଶ𝐼𝑎 + 𝜏ଶ + 𝜎ଶ − 2𝑎ᇱ𝜏ଶ𝑟

It is almost the same derivation as that for ordinary kriging. Therefore we

need not write it down again. As we need an unbiased predictor which

means that(Schabenberger and Gotway, 2005)

𝑎ᇱ𝑋𝛽 = 𝑥(𝑠଴)ᇱ𝛽

we can derive the unbiasdeness constraint(Schabenberger and Gotway,

2005)

𝑎ᇱ𝑋 = 𝑥(𝑠଴)ᇱ

To minimise the MSPE under the unbiasedness constraint we get the fol-

lowing Lagrange-equation:(Schabenberger and Gotway, 2005)

min
௔

𝑎ᇱ𝑉𝑎𝑟(𝑦)𝑎 + 𝑉𝑎𝑟(𝑦(𝑠଴)) − 2𝑎ᇱ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) + 2𝑚ᇱ(𝑋ᇱ𝑎 − 𝑥(𝑠଴))

The optimisation, which is computed in the appendix, gives the following

coefficients:(Schabenberger and Gotway, 2005)

6The unbiasedness can easily be shown by using the law of iterated expectations
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3 Kriging

• 𝑚 = 𝑋ିଵ𝑉𝑎𝑟(𝑦)𝑋ᇱିଵ ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) − 𝑥(𝑠଴)ቁ

• 𝑎 = ቈ𝑉𝑎𝑟(𝑦)ିଵ − 𝑉𝑎𝑟(𝑦)ିଵ𝑋 ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑋ቁ
ିଵ
𝑋ᇱ𝑉𝑎𝑟ିଵ቉

𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) + 𝑉𝑎𝑟(𝑦)ିଵ𝑋 ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑋ቁ
ିଵ
𝑥(𝑠଴)

These coefficients lead to the universal kriging predictor:(Schabenberger

and Gotway, 2005)

ෞ𝑦௨௞(𝑠଴) = 𝑎ᇱ𝑦 = 𝑥(𝑠଴)ᇱෟ𝛽ீ௅ௌ + 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))𝑉𝑎𝑟(𝑦)ିଵ ൫𝑦 − 𝑋ෟ𝛽ீ௅ௌ൯

It is evident that in the case of universal kriging the prediction is the con-

ditional mean at the unobserved data point 𝑥(𝑠଴)ᇱෟ𝛽ீ௅ௌ and a variance-
weighted residual. To measure the uncertainty of the prediction, we need

to look at the MSPE of the universal kriging predictor:(Schabenberger and

Gotway, 2005)

𝑀𝑆𝑃𝐸௨௞ = 𝑉𝑎𝑟(𝑦(𝑠଴)) − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

+ ቀ𝑥(𝑠଴)ᇱ − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋ቁ ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋ቁ
ିଵ

ቀ𝑥(𝑠଴)ᇱ − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋ቁ
ᇱ

Schabenberger and Gotway (2005) give a generalisation for multiple un-

observed regions: we define the first two moments as 𝐸 ൭ 𝑦𝑦଴
൱ = ൭ 𝜇𝜇଴

൱ =

൭ 𝑋𝛽𝑋଴𝛽
൱ and 𝑉𝑎𝑟 ൭ 𝑦𝑦଴

൱ = ൭Σ௬௬ Σ௬଴
Σ଴௬ Σ଴଴

൱ which defines the multiple univer-

sal kriging predictor (Schabenberger and Gotway, 2005)

ෟ𝑦଴,௨௞ = 𝑋଴ෟ𝛽ீ௅ௌ + Σ଴௬Σିଵ௬௬ ൫𝑦 − 𝑋ෟ𝛽ீ௅ௌ൯ (30)
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with the MSPE:

𝑀𝑆𝑃𝐸௠௨௟௧,௨௞ =Σ଴଴ − Σ଴௬Σିଵ௬௬Σ௬଴ + ቀ𝑋଴ − Σ଴௬Σିଵ௬௬𝑋ቁ

ቀ𝑋ᇱΣିଵ௬௬𝑋ቁ
ିଵ
ቀ𝑋଴ − Σ଴௬Σିଵ௬௬𝑋ቁ

ᇱ

Another way of deriving the optimal predictor can be done via the distribu-

tional assumption.(Fahrmeir et al., 2007, Pollice and Bilancia, 2002) The

optimal predictor is the conditional expectation when using the MSPE as

loss-function.(Angrist and Pischke, 2009, Grimmett and Stirzaker, 2009).

Fahrmeir et al. (2007) show that under normality the optimal predictor is

the one given above. Setting the parameters of the normal distribution gi-

ven above into formula 28, we get:(Fahrmeir et al., 2007)

ෞ𝑦଴ = 𝐸 ൫𝑦଴|𝑦൯ = 𝜇଴ + 𝜏ଶ𝑟ᇱ(𝜏ଶ𝑍𝑅𝑍ᇱ + 𝜎ଶ𝐼)ିଵ(𝑦 − 𝑋𝛽) (31)

The conditional variance of the estimators can be derived by the normal

distribution and the law of iterated expectations as: (Fahrmeir et al., 2007)

𝑉𝑎𝑟 ൫𝑦଴|𝑦൯ = 𝜏ଶ + 𝜎ଶ − 𝜏ଶ𝑟ᇱ(𝜏ଶ𝑍𝑅𝑍ᇱ + 𝜎ଶ𝐼)ିଵ𝑟𝜏ଶ (32)

Even without the assumption of normality, the predictionෞ𝑦଴ still fulfills
some optimality properties: It is still the best linear unbiased prediction.

(Fahrmeir et al., 2007, Pollice and Bilancia, 2002) 7

The distributional assumption is also needed for the ML-estimation:

𝑦(𝑠) ∼ 𝑁(𝑋(𝑠)𝛽, 𝑉𝑎𝑟(𝑦; 𝜃)).(Schabenberger and Gotway, 2005) Defining
𝑉𝑎𝑟 (𝑦; 𝜃) = 𝜏ଶ𝑍𝑅𝑍ᇱ+𝜎ଶ𝐼 as the covariance matrix of the marginal mixed
model with the parameterisation 𝜃, the log likelihood of the variance as

7It has to be noted that the difference of the normal distribution that wemade compared to
Fahrmeir et al. (2007) only is apparent in the variance of the predictor which can be reasoned
with the error term having an expectation equal to 0.
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well as the regression-parameters is:(Stein, 1999, Schabenberger and Got-

way, 2005, Pollice and Bilancia, 2002)

𝑙 (𝜃, 𝛽) = −𝑛2 − 1
2 log 𝑑𝑒𝑡𝑉𝑎𝑟 (𝑦; 𝜃) (33)

−12 (𝑦 − 𝑋𝛽)ᇱ 𝑉𝑎𝑟 (𝑦; 𝜃)ିଵ (𝑦 − 𝑋𝛽) (34)

Maximising equation 33 leads to the well knownML estimator(Stein, 1999,

Schabenberger and Gotway, 2005)

ෝ𝛽 (𝜃) = ቀ𝑋ᇱ𝑉𝑎𝑟 (𝑦; 𝜃)ିଵ 𝑋ቁ
ିଵ
𝑋ᇱ𝑉𝑎𝑟 (𝑦; 𝜃)ିଵ 𝑦 (35)

which is the same as the often used GLS estimator.

3.3.4 Comparison by MSPEs

The three kriging predictors which now have been introduced can be com-

pared by their MSPEs. The MSPE of the simple kriging predictor serves

as the basis of comparison.

The ordinary kriging predictor differs by adding
ቀଵି௜ᇲ௏௔௥(௬)షభ஼௢௩(௬,௬(௦బ))ቁ

మ

௜ᇲ௏௔௥(௬)షభ௜ .

For the reason of having quadratic terms in the nominator and the deno-

minator, the ordinary kriging predictor has a higherMSPE than the simple

kriging predictor. However keep inmind that we assumed that all assump-

tions are met for these MSPEs to be the true prediction error. The assump-

tions of the simple kriging predictor are much more restrictive.

The ordinary kriging predictor gets a smallerMSPE if the covariance struc-

ture of the unobserved points is more similar to the variance structure of

the observed points. It means that the covariance structure is represented

correctly by the observed points.
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The universal kriging predictor adds something like a squared covariance

adjusted residual to theMSPE of the simple kriging predictor representing

the mixed effects model of universal kriging. Its MSPE is always as least

as big as the MSPE of the simple kriging predictor. It equals the MSPE

of the simple kriging prediction if the underlying regression has no resi-

duals, i.e. all points are exactly on the regression line. The MSPE of the

universal kriging and the ordinary kriging predictor cannot be compared

without determining the vectors and the matrices.

3.3.5 Bayesian Prediction

Let us start with the underlying spatial Gaussian model (Pollice and Bi-

lancia, 2002) defined in 29. Now we need to assume that the Gaussian

random field is independent from 𝛽, for which we introduce a normal pri-
or: 𝛽 ∼ 𝑁 ቀ𝜇ఉ , 𝑉ఉቁ.(Stein, 1999, Pollice and Bilancia, 2002) The variable 𝑦
has the marginal probability distribution: (Pollice and Bilancia, 2002)

𝑓(𝑦|𝛽, 𝜎ଶ, 𝜏ଶ, 𝜙, 𝑋) = න𝑓(𝑦|𝛽, 𝜎ଶ, 𝛾, 𝑋)𝑃(𝛾|𝜎ଶ, 𝜙, 𝑋)𝑑𝛾

The likelihood, together with an appropriate prior, defines the posterior

distribution: (Pollice and Bilancia, 2002)

𝑃(𝛽, 𝜎ଶ, 𝜏ଶ, 𝜙|𝑦, 𝑋) =
∫𝑓(𝑦|𝛽, 𝜎ଶ, 𝛾, 𝑋)𝑃(𝛾|𝜎ଶ, 𝜙, 𝑋)𝑃(𝛽)𝑃(𝜎ଶ)𝑃(𝜏ଶ, 𝜙)𝑑𝛾

∫…∫𝑓(𝑦|𝛽, 𝜎ଶ, 𝛾, 𝑋)𝑃(𝛾|𝜎ଶ, 𝜙, 𝑋)𝑃(𝛽)𝑃(𝜎ଶ)𝑃(𝜏ଶ, 𝜙)𝑑𝛽𝑑𝛾𝑑𝜎ଶ𝑑𝜏ଶ𝑑𝜙
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The joint distribution of the three random components of themodel (𝑦, 𝛽,
𝛾) is: (Pollice and Bilancia, 2002)

൮
𝑦
𝛽
𝛾
൲ ∼ 𝑁ଶ௡ା௣ ൮൮

𝑋𝜇ఉ
𝜇ఉ
𝟎

൲ ,൮
𝑋𝑉ఉ𝑋ᇱ + Σ௬௬ 𝑋𝑉ఉ 𝜏ଶ𝑅

𝑉ఉ𝑋 𝑉ఉ 𝟎
𝜏ଶ𝑅 𝟎 𝜏ଶ𝑅

൲൲

where 𝟎 is a vector or a matrix with the dimensions needed.
Treating the variance components as fixed, the posterior of 𝛽 is:(Stein,
1999, Pollice and Bilancia, 2002)

𝛽|𝑌 ∼ 𝑁 ቆቀ𝑋ᇱΣିଵ௬௬𝑋 + 𝑉ିଵఉ ቁ
ିଵ
ቀ𝑋ᇱΣିଵ௬௬𝑦 + 𝑉ఉ𝜇ఉቁ ,

ቀ𝑋ᇱΣିଵ௬௬𝑋 + 𝑉ିଵఉ ቁ
ିଵ
ቇ ,

However, we are not that interested in estimating parameters using the

given posterior, but in predicting unobserved values. The joint distribution

of the parameters, observed values, and unobserved values can be denoted

as:(Pollice and Bilancia, 2002)

⎛
⎜⎜⎜

⎝

𝑦
𝑦଴
𝛽
𝛾
𝛾଴

⎞
⎟⎟⎟

⎠

∼ 𝑁ଶ௡ା௣

⎛
⎜⎜⎜

⎝

⎛
⎜⎜⎜

⎝

𝑋𝜇ఉ
𝑋଴𝜇ఉ
𝜇ఉ
𝟎
𝟎

⎞
⎟⎟⎟

⎠

,

⎛
⎜⎜⎜

⎝

𝑋𝑉ఉ𝑋ᇱ + Σ௬௬ 𝑋𝑉ఉ𝑋ᇱ଴ + Σ௬଴ 𝑋𝑉𝑎𝑟ఉ 𝜏ଶ𝑅 Σ௬଴
𝑋𝑉ఉ𝑋ᇱ଴ + Σ௬଴ 𝑋଴𝑉ఉ𝑋ᇱ଴ + Σ଴଴ 𝑋଴𝑉𝑎𝑟ఉ Σ௬଴ 𝜏ଶ𝑅

𝑉𝑎𝑟ఉ𝑋 𝑉𝑎𝑟ఉ𝑋଴ 𝑉𝑎𝑟ఉ 𝟎 𝟎
𝜏ଶ𝑅 Σ௬଴ 𝟎 𝜏ଶ𝑅 Σ௬଴
Σ௬଴ 𝜏ଶ𝑅 0 Σ௬଴ 𝜏ଶ𝑅

⎞
⎟⎟⎟

⎠

⎞
⎟⎟⎟

⎠
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We need the predictive distribution.(Pollice and Bilancia, 2002) The pre-

dictive distribution depends on the observed values and does not depend

on unknown quantities. If something is unknown, there is the possibili-

ty to integrate it out. For example unknown parameters can be integrated

out.(Hoff, 2009) This idea is the same as that which underlies multiple

imputation and, therefore, it looks the same. The predictive distribution

describes the distribution of the value 𝑌௙ that has to be predicted under
the knowledge of the observed values of that variable 𝑌: (Hoff, 2009, Wag-
ner, 03.02.2014, Pollice and Bilancia, 2002)

𝑃 ൫𝑌௙|𝑌൯ = න
஀
𝑃 ൫𝑌௙ , 𝜃|𝑌൯ 𝑑𝜃

= න𝑃 ൫𝑌௙|𝜃൯ 𝑃 (𝜃|𝑌) 𝑑𝜃

This is the posterior predictive as the data is already observed. If the pri-

or and the likelihood are conjugated distributions, the posterior predictive

is in closed form and can be computed.(Wagner, 03.02.2014, Hoff, 2009)

If the posterior predictive is not in closed form, a sampling scheme can

easily be created. First, parameters are sampled from 𝑃 (𝜃|𝑌), and second
the values 𝑌 are sampled from 𝑃 ൫𝑌௙|𝜃൯, where 𝜃 is specified through the
draws in the first step.(Hoff, 2009) Ordinarily, variance parameters are un-

known, too. Pollice and Bilancia (2002) propose to use an empirical Bayes

estimator in the case of unknown variance.

In order to get a prediction, we need to derivate the posterior predictive.

Stein (1999) proposes the use of a uninformative prior and the posterior

predictive to be normal. According to Pollice and Bilancia (2002) the Baye-

sian predictor under normality is:

𝐸 ൫𝑦଴|𝑦൯ = 𝑋଴𝜇ఉ + ቀ𝑋𝑉ఉబ𝑋
ᇱ
଴ + Σ௬଴ቁ ቀ𝑋𝑉ఉబ𝑋଴ + Σ௬௬ቁ

ିଵ
൫𝑦 − 𝑋𝛽଴൯
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𝐶𝑜𝑣 ൫𝑦଴|𝑦൯ =𝑋଴𝑉ఉ𝑋
ᇱ
଴ + Σ଴଴ − ቀ𝑋𝑉ఉబ𝑋

ᇱ
଴ + Σ௬଴ቁ ቀ𝑋𝑉ఉబ𝑋଴ + Σ௬௬ቁ

ିଵ

൫𝑋𝑉ఉ𝑋଴ + Σ௬଴൯

Using a non-informative prior, the best prediction is again the conditional

expectation with the conditional variance.(Stein, 1999)

A more general approach to find a Bayesian prediction is to use a loss

function and tominimise the risk of the prediction. The aim is tominimise

the risk which is the expected loss.(Wagner, 03.02.2014, Cressie, 1993)

𝐸 ൫𝑅 ൫ෞ𝑌௙ , 𝑌௙൯൯ = න𝑅 ൫ෞ𝑌௙ , 𝑌௙൯ 𝑃 ൫ෞ𝑌௙ , 𝑌௙൯ 𝑑𝑌௙

The MSPE can also be interpreted as a loss function. In the Bayesian sen-

se, it corresponds to a quadratic loss function. Minimising the quadratic

loss function leads to the expectation of the posterior predictive as optimal

prediction.(Wagner, 03.02.2014)8

Cressie (1993) states that
”
simple kriging corresponds to a degenerate pri-

or and universal kriging corresponds to a diffuse prior.“ (Cressie, 1993)

The relationship is shown by Omre and Halvorsen (1989). The MSPE is

used as the risk-function leading to nearly the same prediction-equation

as in non-Bayesian kriging with the exception of not including the cons-

traint of unbiasdeness. If the parameters of the spatial trend are estimated

8Cressie (1993) enumerates other possible loss functions that can be used:

• The absolute loss function ௟ (௬, ෝ௬) ୀ ห௬బ ି ෝ௬ห leads to the conditional mean of the
posterior predictive as optimal prediction.

• The 0-1 loss function ௟ (௬, ෝ௬) ୀ ூ ൫ห௬బ ି ෝ௬ห൯ implies that the conditional mode is the
optimal prediction.

• Asymmetric loss functions as the linex loss function can represent unequal weights
of under-estimation and over-estimations.(Cressie, 1993) Metric loss functions as the
linex loss function can represent unequal weights of under-estimations and over-
estimations.(Cressie, 1993)
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with the MSPE-risk-function, a distinction of cases can be made: If there

is no uncertainty about the values of the coefficients, it results in a simple

kriging approach. This congruency reflects that in simple kriging the me-

an structure is assumed known, hence there is no uncertainty about it. If

there is no knowledge of the coefficients, the Bayesian approach of Omre

and Halvorsen (1989) leads to universal kriging. In the latter case the un-

certainty is reflected by a flat prior.(Omre and Halvorsen, 1989)

Cressie (1993) proposes an empirical Bayes predictor to overcome the pro-

blem of not knowing the parameters of the prior. Cressie (1993) also states

that not only the mean parameter, but also the covariance parameter, can

be determined by the empirical Bayes approach.

3.4 The Correlation Structure

The variance-covariance-matrix is a 𝑛 ⨯ 𝑛 matrix consisting of the varian-
ces on the diagonal and of the covariances of two regions. It specifies the

correlations of the Gaussian random field and the variances of the data.

Ordinarily the matrix is unknown, so it needs to be estimated. A structu-

ral identification needs to be done before the kriging predictors are esti-

mated.(Zimmerman, 1989) Instead of estimating all ௡(௡ିଵ)ଶ values of the

matrix, it is convenient to assume a special kind of correlation to reduce

the number of parameters that need to be estimated.(Schabenberger and

Gotway, 2005) The specifications that are typical for the kriging case are

described in the next section. Two factors determine the spatial correlati-

on: the kind of assumed neighbourhood including the question of how to

measure the grade of neighbourhood (inherent is the choice of a distance

measure) and the assumptions determining the auto-regressive structure

of the random field.(Schabenberger and Gotway, 2005) Later we describe
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how to estimate these parameters, before we show how they can be gra-

phically represented by the variogram.

3.4.1 Neighbourships

Often the space is divided into discrete regions. In this case it is not possi-

ble to measure the distances between two regions continuously. A defini-

tion of neighbourhood becomes necessary.(Fahrmeir et al., 2007)

It is common sense that neighbours are defined as two regions that share

a common border.(Fahrmeir et al., 2007). Using this idea we can order all

regions by their degree of neighborhood. The first neighbours are regions

sharing the same border. Second order neighbours are regions that are at

least the first neighbours of the first neighbours. And so on. The following

two graphs show the first neighbours of Munich. The next figure shows

the second order neighbours of the city.

However, other concepts of measuring the degree of neighbourhood are

possible. Some of them are described in Fahrmeir et al. (2007) The length

of the shared border could be such a measure or the distance of the cen-

troids.(Fahrmeir et al., 2007) The latter is the concept that was used here.

In amore common sense, the degree of neighbourhood can be interpreted

as the degree of similarity of two regions, giving neighbourhood a more

statistical than spatial connotation. Statistical because data and statistical

methods such as data fusion could be used to find neighbours, or to define

neighbours, respectively measure the degree of neighbourhood. Although

it would be interesting to step into that issue more deeply, this is not the

place to do so.
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1st Neighbours of Munich 2nd Neighbours of Munich

Abbildung 1: First and Second Neighbours of Munich

Source: Bayerische Vermessungsverwaltung (2015)

3.4.2 Correlation Functions

In geostatistics it is more common to specify the correlation function 𝑅
than the covariance 𝑉𝑎𝑟(𝑦) of the stochastic process. Here we introduce
some correlation functions useful for kriging.

The common assumptions for the correlation functions are:

1. stationarity: 𝜌(𝑡, 𝑠) only depends on the distances ℎ = |𝑡 − 𝑠|. For
this reason we can usually write 𝜌(ℎ).(Fahrmeir et al., 2007) This
assumption is the weak stationarity, meaning that only themoments

are stationary. Schabenberger and Gotway (2005) call it second order

stationarity. The distribution need not be stationary, which would

define the strict stationarity not assumed here.(Stein, 1999)
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2. The correlation disappears for huge distances: 𝜌(ℎ) → 0 is for ℎ →
∞.

3. 𝜌(ℎ) is monotone decreasing. The further away two points are loca-
ted, the less they are correlated.(Fahrmeir et al., 2007)

There are several correlation functions that fulfill the conditions. First, the-

re is the spherical correlation function:

𝜌 (ℎ, 𝜙) = ቐ1 −
ଷ
ଶ ฬ

௛
థ ฬ +

ଵ
ଶ ฬ

௛
థ ฬ

ଷ
if 0 ≤ ℎ ≤ 𝜙

0 if ℎ ≥ 𝜙

where 𝜙 > 0 is the range determining the distance where no correlation
is assumed. The problem of this function is that it cannot be differentiated

at ℎ = 𝜙, which is a problem for all ML-methods.(Fahrmeir et al., 2007)

Second, Fahrmeir et al. (2007) list the potency exponential family:

𝜌 (ℎ, 𝜙, 𝜅) = 𝑒𝑥𝑝 ൝− ቤ ℎ𝜙 ቤ
఑
ൡ

where 𝜙 > 0 and 0 < 𝜅 < 2. For 𝜅 = 1 the potency exponential family
becomes the Gaussian correlation function. In the potency exponential fa-

mily, all points are still correlated, even if they are located far away from

each other. However, in reality the correlations are set to zero if they are

too far away. This effective range is controlled by the scaling parameter 𝜙.
The 𝐴𝑅(1)-process can be interpreted as a discrete version of this fami-
ly.(Fahrmeir et al., 2007)

The third family which is enumerated by Fahrmeir et al. (2007) is the

Matérn-family. This is a quite general family basing on Bessel-functions.

The covariance-function in this case is:(Schabenberger and Gotway, 2005)

𝐶(ℎ) = 𝜎ଶ 1
Γ(𝜅) ቆ

𝜙ℎ
2 ቇ

఑
2𝐾఑(𝜙ℎ), 𝜅 > 0, 𝜙 > 0
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where 𝐾఑ is the modified Bessel-function of the second kind of order 𝜅
and 𝜙 determines the range defining spatial dependency.(Schabenberger
and Gotway, 2005) 𝜅 controls the respective range (Fahrmeir et al., 2007),
which implies that it controls the degree of smoothness.(Stein, 1999) The

smoothness increaseswith 𝜅. If 𝜅 → ∞ it becomes aGaussian-Model:(Fahr-
meir et al., 2007, Schabenberger and Gotway, 2005)

𝐶(ℎ) = 𝜎ଶ exp ቄ−𝜙ℎଶቅ

Kitanidis (1997) describes the Gaussian case as a model family of its own.

He reports the corresponding variograms, too. The scale parameter 𝜙 de-
scribes the point

”
at which the correlation is 0.05.“ (Kitanidis, 1997)

If 𝜅 = ଵ
ଶ the family becomes the exponential model. The covariance func-

tion is:(Schabenberger and Gotway, 2005)

𝐶(ℎ) = 𝜎ଶ exp {−𝜙ℎ}

and the respective correlation function:(Fahrmeir et al., 2007)

𝜌 (ℎ; 𝜙, 𝜅 = 0.5) = 𝑒𝑥𝑝 ቆ− ቤ ℎ𝜙 ቤቇ

The exponential model is the well-known time-series model of a first order

auto-regressive process.(Schabenberger and Gotway, 2005)

The Matérn family is the most flexible class of correlation functions, ma-

king them a standard.(Fahrmeir et al., 2007) Stein (1999) even mentions

them as a canonical model. The spectral density can be found here, too.

The respective auto-covariance function and the spectral density can be

found in Stein (1999). For a further simplification, the parameter 𝜅 is re-
stricted to 𝜅 = 𝑚+ 0.5 where𝑚 is a non-negative integer.(Stein, 1999).
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Dubrule (1983) proposes to use the following general covariance model,

which is in fact the correlation function multiplied with the variance. The-

refore he defines the correlation function this way:

𝐶𝑜𝑣(ℎ) = 𝐶଴𝛿(ℎ) − 𝑏଴|ℎ| + 𝑏௦|ℎ|ଶ log |ℎ| + 𝑏ଵ|ℎ|ଷ

where 𝐶଴ is the nugget effect. If 𝑏଴ and 𝑏ଵ are assumed to equal zero,
the covariance function defines a thin-plate leading to the equivalence of

kriging and spline smoothing discussed later.

The thin-plate defines a radial basis-function in the spline approach. A

radial basis-function uses the euclidean distance between observations𝑦 =
(𝑦ଵ, 𝑦ଶ) and the knots 𝑘 = (𝑘ଵ, 𝑘ଶ):(Fahrmeir et al., 2007)

𝐵௞(𝑦) = 𝐵 (‖𝑦 − 𝑘‖) = 𝐵(𝑟) (36)

where 𝐵(⋅) is an appropriate function and 𝑟 = ‖𝑦 − 𝑘‖ = ቂ(𝑧ଵ − 𝑘ଵ)
ଶ

(𝑧ଶ − 𝑘ଶ)
ଶቃ
଴,ହ
. The function defined by Dubrule (1983) is one such ap-

propriate function. The functions define radial lines in a contour plot.

All basis-functions have the same functional form and every single basis-

function is located at one knot.(Fahrmeir et al., 2007)

3.4.3 Iteratively Re-weighted Generalised Least Squares

For a spatial prediction we not only have aim of estimating the 𝛽’s of the
regression model, but also the parameter of the underlying random field,

i.e. the parameters of the covariance-matrix defining the spatial correlati-

ons. Moreover it is necessary to estimate the parameters of the covariance

matrix to be able to estimate the 𝛽’s by EGLS.(Schabenberger and Gotway,
2005) As the coefficients of the regression model parameterising the spa-

tial trend are estimated using least squares, a method using the same idea

is obvious.
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The concept is to alternate between the estimation of the 𝛽’s by GLS and
the estimation of 𝑉𝑎𝑟(𝑦). For the GLS-estimation of the 𝛽’s the estimati-
on of the variance-covariance-matrix is used and𝑉𝑎𝑟(𝑦) is estimated using
the residuals that are computed using the 𝛽’s. This establishes the follo-
wing iterated process.

1. The starting point is an OLS-estimation to get sensible estimations
ෞ𝛽଴.

2. The residuals are computed usingෞ𝛽଴: 𝑟 = 𝑦(𝑠) − 𝑋(𝑠)ෞ𝛽଴.

3. The variogram is estimated using the residuals: The variogram is

splitted into a deterministic part and a residual part: ෝ𝜔(ℎ) = 𝜔(ℎ; 𝜃)+
𝑒. The residuals are used to compute the variance-covariance matrix
of 𝑒. The parameters 𝜃 of the variogram are estimated by minimi-

sing the following least squares condition:

ෝ𝜔(ℎ) − 𝜔(ℎ; 𝜃)ᇱ𝑅(𝜃) (ෝ𝜔(ℎ − 𝜔(ℎ; 𝜃))

If the parameters of the variogram are known, 𝑉𝑎𝑟(𝑦)௜ can be deter-
mined.

4. A new GLS-estimation using 𝑉𝑎𝑟(𝑦)௜ givesෞ𝛽௜

After the first round, the process is iterated from the second to the last

step until no relevant improvements compared to the former iteration are

found.(Schabenberger and Gotway, 2005)

The problem of this procedure is that it is not known whether the process

converges or not. After stopping we only know that it does not improve

any more.(Schabenberger and Gotway, 2005) We are therefore not sure

whether we have found the global optimum.
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3.4.4 Maximum Likelihood (ML)

The estimator 35 described in the universal kriging chapter can be used

to derive the profile log likelihood of 𝜃.(Schabenberger and Gotway, 2005)
Inserting it into the log likelihood 33 and maximising this so-called pro-

file log likelihood with respect to 𝜃 gives the ML estimator of the varian-
ce components 𝜃, which is biased.(Stein, 1999, Schabenberger and Got-
way, 2005) For the reason of asymptotically unbiased estimators, the ML-

estimator needs large sample sizes, as it can be severely biased in small

samples.(Cressie and Lahiri, 1993, Pollice and Bilancia, 2002)

The minus twice the log likelihood profiled for 𝛽 is: (Schabenberger and
Gotway, 2005)

𝑙𝑛 ൫|𝜎ଶ𝑉𝑎𝑟 (𝑦; 𝜃∗) |൯ + 𝑛𝑙𝑛(2𝜋) + 𝜎ଶ𝑟ᇱ𝑉𝑎𝑟 (𝑦; 𝜃∗)ିଵ 𝑟

where 𝑉𝑎𝑟 (𝑦; 𝜃) = 𝜎ଶ𝑉𝑎𝑟 (𝑦; 𝜃∗) and the GLS-residuals:(Schabenberger
and Gotway, 2005)

𝑟 = 𝑦(𝑠) − ቀ𝑋(𝑠)ᇱ𝑉𝑎𝑟 (𝑦; 𝜃)ିଵ 𝑋(𝑠)ቁ𝑋(𝑠)ᇱ𝑉𝑎𝑟 (𝑦; 𝜃)ିଵ 𝑦(𝑠)

Profiling for the variance 𝜎ଶ gives(Schabenberger and Gotway, 2005)

ෞ𝜎ଶெ௅ =
1
𝑛𝑟

ᇱ𝑉𝑎𝑟 (𝑦; 𝜃∗)ିଵ 𝑟

Profiling for both gives the optimisation problem for the parameters de-

fining the correlation structure, which is minimised with respect to 𝜃∗:
(Schabenberger and Gotway, 2005)

𝑙𝑛 (|𝑉𝑎𝑟 (𝑦; 𝜃∗) |) + 𝑛𝑙𝑛(ෞ𝜎ଶ) + 𝑛𝑙𝑛(2𝜋 − 1)

Starting from the last optimisation problem, the ML-estimations can be

computed following the profiling recursively.
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In most cases the profile likelihood of 𝜃∗ cannot be optimised in closed
form, necessitating the use of approximativemethods.(Schabenberger and

Gotway, 2005) For this reason, algorithms such as the well knownNewton-

Raphson have been established.

In the spatial setting there is the additional problem of dimensionality.

To overcome this problem, Stein (1999) mentions two ways to facilitate

computations: First, there is the method of Veccia. He proposes the parti-

tioning of the likelihood according to the regions:

𝑃 ൫𝑦ଵ, … , 𝑦௡൯ = 𝑃 ൫𝑦ଵ൯
௡

ෑ
௝ୀଶ

ቀ𝑦௝|𝑦ଵ, … , 𝑦௝ିଵቁ

The latter is simplified by approximating the conditioning by the 𝑚 next

neighbours. Of course, the fewer neighbours are taken into account, the

less efficient is the analysis.(Stein, 1999) The second approach is more

intuitive: The area of interest is divided into sub-regions. For every sub-

region, an indiviudal likelihood is computed. The overall likelihood is ap-

proximated by the multiplication of the likelihoods of the sub-regions that

have been computed.(Stein, 1999)

3.4.5 Restricted Maximum Likelihood

TheREML estimation solves the problemof biasedness of theML-estimator

by considering the number of estimatedmean parameters and leads to the

well known estimator of the variance ଵ
௡ି௣ (𝑦 − 𝑋𝛽)ᇱ (𝑦 − 𝑋𝛽).(Fahrmeir

et al., 2007, Stein, 1999, Schabenberger and Gotway, 2005)

The advantage of the REML-estimation is the possibility to estimate the

auto-covariance function as well as to estimate the variance.(Stein, 1999)

The disadvantages of the REML-estimation is that the functional form of
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the distribution of the depending variable needs to be specified for this ex-

tensive computations (Zimmerman, 1989), and this often leads to negative

variance estimations(Kneib, Greven, 2011).

The data are transformed by 𝐾𝑦(𝑠) such that 𝐸 (𝐾𝑦(𝑠)) = 0. 𝐾 is called
the (𝑛 − 𝑘) ⨯ 𝑛-matrix of error contrast.
In the case of simple and ordinary kriging, which is equivalent to assuming

a constant mean, Schabenberger and Gotway (2005) propose the use of

൮
1 − ଵ

௡ − ଵ
௡ … − ଵ

௡
− ଵ

௡ 1 − ଵ
௡ − ଵ

௡ …
⋱

൲ ,

which means that 𝐾𝑦(𝑠) is the vector of differences.
𝐾𝑦(𝑠) ∼ 𝑁 (𝜃, 𝐾𝑉𝑎𝑟(𝑦; 𝜃)𝐾ᇱ൯minus twice the log likelihood is:(Schaben-
berger and Gotway, 2005)

𝑙𝑛 ൛|𝐾𝑉𝑎𝑟(𝑦; 𝜃)𝐾ᇱ|ൟ + (𝑛 − 1)𝑙𝑛(2𝜋) + 𝑦(𝑠)ᇱ𝐾ᇱ(𝐾𝑉𝑎𝑟(𝑦; 𝜃)𝐾ᇱ)ିଵ𝐾𝑦(𝑠)

which does not include the mean 𝜇. The REML-estimator for 𝜇 can be
derived by plugging in the REML-covariance estimator into the GLS-esti-

mator.(Schabenberger and Gotway, 2005)

A REML-estimator in the case of universal kriging means to optimise mi-

nus two-times the log likelihood of the transformed data:(Schabenberger

and Gotway, 2005, Zimmerman, 1989, Cressie and Lahiri, 1993)

𝑙𝑛 ൛|𝐾𝑉𝑎𝑟(𝑦; 𝜃)𝐾ᇱ|ൟ + (𝑛 − 𝑘)𝑙𝑛(2𝜋) + 𝑦(𝑠)ᇱ𝐾ᇱ ൫𝐾𝑉𝑎𝑟(𝑦)𝐾ᇱ൯ିଵ 𝐾𝑦(𝑠)

When using REML-estimations, the vector 𝛽 of the spatial trend seems
to vanish. The optimisation of the likelihood function leads to the REML-
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estimators of the variance-components. This can be done by several well-

known algorithms such as the Newton-Raphson or the Fisher-Scoring. The

REML-estimator of 𝛽 means inserting the REML-estimations of the vari-
ance-components into the GLS-estimator of the regression coefficient.-

(Schabenberger and Gotway, 2005) After some computations it seems as

though the transformation 𝐾𝑦(𝑠) vanishes in the log likelihood due to
the characteristics of the transformation. Minus twice the log likelihood

is now:(Schabenberger and Gotway, 2005)

𝑙𝑛 (|𝑉𝑎𝑟(𝑦; 𝜃)|) +𝑙𝑛 ൫|𝑋(𝑠)ᇱ𝑉𝑎𝑟(𝑦; 𝜃)𝑋(𝑠)|൯ − 𝑙𝑛 ൫𝑋(𝑠)ᇱ𝑋(𝑠)൯
+𝑟𝑉𝑎𝑟(𝑦; 𝜃)ିଵ𝑟 + (𝑛 − 𝑘)𝑙𝑛 (2𝜋)

where 𝑟 is the OLS-residual to differentiate the fixed effects away.(Searle
et al., 2006) The REML-estimator becomes a ML-estimator based on the

residuals. (Pollice and Bilancia, 2002)

Again profiling is possible whereෟ𝜎ଶோாெ௅ =
ଵ

௡ି௞𝑟
ᇱ𝑉𝑎𝑟(𝑦; 𝜃∗)ିଵ𝑟 which gi-

ves minus twice the profiled log likelihood:(Schabenberger and Gotway,

2005)

𝑙𝑛 (|𝑉𝑎𝑟(𝑦; 𝜃∗)|) +𝑙𝑛 ൫|𝑋(𝑠)ᇱ𝑉𝑎𝑟(𝑦; 𝜃∗)𝑋(𝑠)|൯ + (𝑛 − 𝑘)𝑙𝑛(ෟ𝜎ଶோாெ௅)
+(𝑛 − 𝑘) (𝑙𝑛 (2𝜋))

The estimated variance-parameters can be plugged into the estimators for

the spatial trend. The MSPE and the variances of the estimators are slight-

ly biased, but in
”
other words, the use of a plug-in estimator of the kriging

variance is fine for most spatial problems with moderate to strong spatial

auto-correlations.“ (Schabenberger and Gotway, 2005)

The REML-estimator can be compared to a Bayesian estimator with a non-

informative prior. If prior independence of the variance parameters is as-

sumed, the REML-estimator is the same as the mode of the posterior. The
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REML-estimator, therefore, is a compromise between the ML-estimator

and the Bayes-estimator under quadratic loss. The full likelihood is avera-

ged over 𝛽 and afterwards maximised for the variance parameters.(Cressie
and Lahiri, 1993)

3.4.6 Bayesian Estimation

Pollice and Bilancia (2002) note that under the most common case of a

conjugate prior for 𝛽 and a flat prior for the variance parameters, the pre-
dictor is the same as discussed in the chapter about Bayesian prediction

of kriging. Otherwise there are strong restrictions of the variance parame-

ters needed to get a closed form predictor. A case is described in Pollice

and Bilancia (2002). In general, numerical iterative methods are needed

to get a Bayesian estimator of the variance parameters and the according

estimators for 𝛽 and the prediction.(Pollice and Bilancia, 2002)

3.4.7 Variogram

The variogram, also called semi-variogram, measures the variance bet-

ween two observation points. The semi-variance between the two units

can be computed by:(Schabenberger and Gotway, 2005)

𝜔(𝑠௜ , 𝑠௝) = 𝜔(ℎ) = 1
2𝑉𝑎𝑟 ൣ𝑦(𝑠௜) − 𝑦(𝑠௝)൧

= 1
2𝑉𝑎𝑟 [𝑦(𝑠௜)] +

1
2𝑉𝑎𝑟 ൣ𝑦(𝑠௝)൧ − 𝐶𝑜𝑣 ൣ𝑦(𝑠௜), 𝑦(𝑠௝)൧

= 𝐶(0) − 𝐶(𝑠௜ , 𝑠௝) = 𝐶(0) − 𝐶(ℎ)

where 𝐶(⋅) denotes the value of the covariance function.
If the underlying stochastic process is stationary, the variogram is a pa-

rameter of the process.(Schabenberger and Gotway, 2005) As we always
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3 Kriging

assume second order stationarity, the variogram is a parameter.

However, we do not use the variogram as a parameter that needs to be esti-

mated. Insteadwe just use its graphical representation as a way to illustrate

the variances and correlations. In Schabenberger and Gotway (2005) a de-

tailed introduction to the variogram and its estimators can be found.

In figure 2 The intercept of the variogram is called the nugget effect, repre-
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Abbildung 2: Example of a Variogram

Source: Own computation using a simulation example found in Ribeiro and
Diggle (2015)

senting the chaotic part of the underlying random process.(Schabenberger

and Gotway, 2005) It is the variance that is inherent to the spatial random

field 𝜏ଶ. Kitanidis (1997) describes the nugget-effect as representing
”
mi-

crovariablilty in addition to measurement error.“

The asymptote of the variogram is the total variance 𝜏ଶ + 𝜎ଶ of the sto-
chastic model we look at. It is called sill. The lag at which the asymptote is

approximately reached is called range.(Schabenberger and Gotway, 2005)

The covariance at lag ℎ is the distance between the variogram at lag ℎ to

79



3 Kriging

the sill. It can be interpreted as the part of the variance at lag ℎ that is ex-
plained by the spatial modelling. The part under the variogram at lag ℎ is
the unexplained part, i.e. the variability that two points with that distance

have. Of course the bigger the lag, the smaller is the explained part, as we

assume declining correlations.

There are several methods to estimate the variogram. Schabenberger and

Gotway (2005) describe several of them. The easiest method is the estima-

tor of Matheron (Schabenberger and Gotway, 2005):

ෝ𝜔(ℎ) = 1
2𝑁(ℎ) ෍

ே(௛)
൫𝑦(𝑠௜) − 𝑦(𝑠௝)൯

ଶ

where𝑁(ℎ) is the number of observation pairs with the lag ℎ. The problem
with the Matheron’s estimator is that it is very wiggly.

As we only want a graphical representation of the spatial correlation, this

estimator seems appropriate, as it is simple to compute and unbiased.

(Schabenberger and Gotway, 2005) To address the wigglyness, we smooth

the function by using a LOESS estimator. The disadvantages of the pro-

posed estimators are not relevant for our purpose, as we do not need the

distributional features of the variogram.

We define the variogram in the same way as is done by Kitanidis (1997):

”
Plot the square difference“ ଵ

ଶ ൫𝑦(𝑠௜) − 𝑦(𝑠௝)൯
ଶ
”
against the separation

distance (...) for all measurement pairs (...). The experimental variogram

is a smooth line through this scatter plot.“(Kitanidis, 1997). Of course a

sparsing is done by computing intervals for the lags as Kitanidis (1997)

proposes.
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4 KriMI: Multiple Imputation Using Kriging

To preserve both covariance and variance at once,MI can be combinedwith

kriging. If correlation between observations are disregarded in a Bayesian

estimation, the posterior inference becomes too precise. More seriously,

predictions become inaccurate.(Gelman et al., 2004) The latter is most re-

levant for our case. If there are reasons to believe that data are spatially

correlated, we need to reflect this in the modelling.

The buildup needs a Bayesian perspective on kriging: a Bayesian formula-

tion of the kriging model is needed to implement the Bayesian estimation

in the MI sampling scheme. There are two ways to formulate a Bayesi-

an kriging scheme: first, kriging is interpreted as a mixed model that can

be estimated using Bayesian methods. Second, the relationship of kriging

and spline smoothing is exploited to find a Bayesian version of kriging.

4.1 Predicting Using Mixed Modelling

Using kriging as an imputation model by mixed modelling can also be

found in Munoz et al. (2010), though in this article there are some serious

mistakes in understanding multiple imputation and the underlying sam-

pling mechanism. In Zhu et al. (2003) kriging is used as the imputation

model, too. However the exact approach of multiple imputation using kri-

ging is not described, the authors just note that theymultiply impute using

kriging to preserve spatial dependencies.(Zhu et al., 2003) This latter fact

and the abscence of a description of MI using kriging make it necessary to

describe the mixed model approach.
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4.1.1 The Model

As shown in the kriging chapter, universal kriging can be reformulated as

the following mixed model:(Fahrmeir et al., 2007)

𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖

with

• the design matrices 𝑋 and 𝑍, where 𝑋 includes all fixed effects that
parameterise the spatial trend. X has dimensions 𝑛 ⨯ 𝑝 and the in-
cidence matrix 𝑍 defining a 𝑛 ⨯ 𝑆 matrix (𝑛 is the number of obser-
vations and 𝑆 is the number of observed regions) as

𝑍[𝑖, 𝑗] = ቐ
1 if 𝑦௜ was observed in region 𝑗
0 else

• the effects 𝛽 ∼ 𝑁(𝑚,𝑀) as a vector of fixed effects having length 𝑝
and the 𝑆 vector 𝛾 ∼ 𝑁(0, 𝐺) for the random effects defined as

𝐺 = 𝜏ଶ𝑅 = 𝜏ଶ⎛⎜

⎝

1 𝜌(⋅) ⋯ 𝜌(⋅)
𝜌(⋅) 1 𝜌(⋅) ⋮
⋮ ⋱

𝜌(⋅) ⋯ 𝜌(⋅) 1

⎞
⎟

⎠

where 𝜌(⋅) is the correlation between two regions defined by a cor-
relation function defined in the kriging chapter.

• the usually used error term is 𝜖 ∼ 𝑁(0, 𝜎ଶ).

The hyper-parameters of this mixedmodel are the variance parameters 𝜎ଶ,
𝜏ଶ, and the parameters defining 𝜌(⋅), if they are seen as parameters, too.
We propose to use the parameters defining 𝜌(⋅) as fixed parameters.(Fahr-
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meir et al., 2007)Otherwise it seems to create toomuch difficults in finding

a proper prior for these correlation parameters, in addition to the fact that

in the data the observations are sparse that it is likely that we won’t find a

spatial correlation in the data.

As usual, we estimate the marginal model, and therefore the expectation

of the response is 𝐸 (𝑦) = 𝑋𝛽 and the variance-covariance is

𝑉𝑎𝑟 (𝑦) = 𝑉𝑎𝑟 (𝑋𝛽 + 𝑍𝛾 + 𝜖) = 𝜏ଶ𝑍𝑅𝑍ᇱ + 𝜎ଶ𝐼.

As 𝑍 is not quite familiar it seems reasonable to show two short examples
of how 𝑍 and accordingly 𝑉𝑎𝑟 (𝑦). For a graphical representation look at
table 1. where 𝑦[௜,௝] is observation 𝑖 in region 𝑗. The fields are four regi-

𝑦[ଵ,ଵ] 𝑦[ଶ,ଶ]

𝑦[ଷ,ଷ] 𝑦[ସ,ସ]

Tabelle 1: KriMI Example 1

Source: Own diagram
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ons. This defines a matrix 𝑍 = ⎛
⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟

⎠

. In this case the variance

covariance matrix of 𝑦 is

𝑉𝑎𝑟(𝑦) = ⎛
⎜

⎝

𝜏ଶ + 𝜎ଶ 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅)
𝜏ଶ𝜌(⋅) 𝜏ଶ + 𝜎ଶ 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅)
𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ + 𝜎ଶ 𝜏ଶ𝜌(⋅)
𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ + 𝜎ଶ

⎞
⎟

⎠

which is the quite familiar case of simple exponential correlation.

The second case shown in table 2 is a little more complicated as some regi-

ons are observed twice and one region is not observed at all. The incidence

𝑦[ଵ,ଵ] 𝑦[ଶ,ଵ] 𝑦[ଷ,ଶ]

𝑦[ସ,ଷ] 𝑦[ହ,ଷ]

Tabelle 2: KriMI Example 2

Source: Own diagram
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matrix becomes: 𝑍 =
⎛
⎜⎜⎜

⎝

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎟

⎠

and it follows the variance covariance

matrix of 𝑦:

𝑉𝑎𝑟(𝑦) =
⎛
⎜⎜⎜

⎝

𝜏ଶ + 𝜎ଶ 𝜏ଶ 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅)
𝜏ଶ 𝜏ଶ + 𝜎ଶ 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅)

𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ + 𝜎ଶ 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅)
𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ + 𝜎ଶ 𝜏ଶ
𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ𝜌(⋅) 𝜏ଶ 𝜏ଶ + 𝜎ଶ

⎞
⎟⎟⎟

⎠

The grouping according to regions is evident: observations in one region

have a spatial correlation of 1, forming a covariance of 𝜏ଶ. On the diagonal
we can find the variance of one observation, which consists of the variance

of the spatial random process 𝜏ଶ and the variance of the error term 𝜎ଶ.
The correlation of observations from different regions is described by the

correlation function 𝜌(⋅) depending on the distance between two regions.
In the kriging chapter, some correlation functions were introduced.

4.1.2 Bayesian Modelling

As variances are unknown, we need to develop a full Bayesian estimati-

on to create a convenient Gibbs sampler to estimate the Bayesian kriging

model. Gelman et al. (2004) propose to separate the problem in two steps:

first, determine the regression coefficients with fixed variance parameters.

Second, we define the variance parameters.(Gelman et al., 2004) The esti-

mation of the Bayesian kriging model can be implemented in the multiple
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imputation scheme to simulate draws from the posterior predictive.9Here

we use the mixed model representation of kriging similar to the sampling

scheme of Liu et al. (2000) establishing a model for hierarchical data. Later

we use the reformulation as P-Spline to get better predictions.

As it is prior knowledge, let us start with the prior on the parameters of

the kriging model. For simplicity, we chose a conjugated Normal-Inverse-

Gamma-model (Fahrmeir et al., 2007), which is a different choice from

Liu et al. (2000) taking a flat prior for the fixed effects. In our case of re-

gional prices it is necessary to exploit prior knowledge as the data base is

very small. In our application the prior knowledge comes from all analy-

sed products. We use the information of all products of a product-group

defined by the COICOP-classification.

• The prior for 𝛽 is a normal distribution with the hyper-parameters
𝑚 and𝑀: 𝛽 ∼ 𝑁(𝑚,𝑀).

• For the random effect 𝛾 we also assume a normal distribution:

𝛾 ∼ 𝑁(0, 𝜏ଶ𝑅(𝜙))

The spatial dependencies are implemented in the correlation-matrix

𝑅(𝜙), which depends on the scaling parameter 𝜙, if we assume a
Gaussian correlation function, which is the most simple case. If we

assume another correlation function, additional hyper-parameters

determining the correlation-function need to be specified.(Fahrmeir

et al., 2007) It is necessary to find a parametric model for the spatial

correlation to get a Bayesian estimation(Gelman et al., 2004) of the

kriging model.

9In the Munoz et al. (2010) paper one serious mistake is made at this point: it seems that
the authors do not distinguish between parameters and variables leading to confusion about
the full conditionals. Munoz et al. (2010) write the Gibbs-sampler down as they draw from a
full conditional of the random process after drawing the parameters of the random process.
This procedure is not in the line of the imputation scheme legitimated by equation 4.
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• For the error term we also assume a normal distribution which is

homoscedastic and uncorrelated: 𝜖 ∼ 𝑁(0, 𝜎ଶ𝐼).
• The priors of the variance parameters are inverse gamma distribu-

ted: 𝜎ଶ ∼ 𝐼𝐺(𝑎ఙ , 𝑏ఙ) and 𝜏ଶ ∼ 𝐼𝐺(𝑎ఛ , 𝑏ఛ).

The joint prior is:

𝑃(𝛽, 𝛾, 𝜎ଶ, 𝜏ଶ) = 𝑃(𝛽, 𝜎ଶ)𝑃(𝛾, 𝜏ଶ)
= 𝑃(𝛽|𝜎ଶ)𝑃(𝜎ଶ)𝑃(𝛾|𝜏ଶ)𝑃(𝜏ଶ)

as we assume that the parameters are a priori block-wise independent: the

parameters of the fixed effects are independent from the parameters of the

random effects.

Next, we specify the model for the data. Again, we assume a normal distri-

bution:(Fahrmeir et al., 2007)

𝑃 ൫𝑦|𝛽, 𝛾, 𝜏ଶ, 𝜎ଶ൯ = (2𝜋)ି
೛
మ |𝜎ଶ𝐼|ି

భ
మ exp { − 1

2 (𝑦 − 𝑋𝛽 − 𝑍𝛾)ᇱ ൫𝜎ଶ𝐼൯ିଵ

(𝑦 − 𝑋𝛽 − 𝑍𝛾)}

∝ exp ቊ−12(𝑦 − 𝑋𝛽 − 𝑍𝛾)ᇱ ൫𝜎ଶ𝐼൯ିଵ (𝑦 − 𝑋𝛽 − 𝑍𝛾)ቋ

The result of multiplying the priors and the data likelihood is the posterior.

The posterior of the mixed model representation of kriging is:

𝑃 ൫𝛽, 𝛾, 𝜏ଶ, 𝜎ଶ|𝑦௢௕௦ , 𝑋൯ ∝ |𝜎ଶ𝐼|ି
భ
మ exp ቊ−12(𝑦 − 𝑋𝛽 − 𝑍𝛾)ᇱ ൫𝜎ଶ𝐼൯ିଵ

(𝑦 − 𝑋𝛽 − 𝑍𝛾)} |𝜎ଶ𝑀|ି
భ
మ exp ቊ−12 (𝛽 −𝑚)ᇱ |𝜎ଶ𝑀|ିଵ (𝛽 − 𝑚)ቋ

|𝜏ଶ𝑅|ି
భ
మ exp ቊ−12 (𝛾 − 0)ᇱ |𝜏ଶ𝑅|ିଵ (𝛾 − 0)ቋ

൫𝜎ଶ൯ି(௔഑ାଵ) exp ቊ−𝑏ఙ𝜎ଶ ቋ ൫𝜏
ଶ൯ି(௔ഓାଵ) exp ቊ−𝑏ఛ𝜏ଶ ቋ
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We need the full conditionals to create the appropriate Gibbs-sampler. The

full conditional of 𝛽 is the derivation of the spatial case that can be found
in the appendix.10

𝑃 ൫𝛽|𝛾, 𝜏ଶ, 𝜎ଶ, 𝑦௢௕௦ , 𝑋൯ ∝ exp { − 1
2 [ 𝛽

ᇱ ( 𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑋+

൫𝜎ଶ𝑀൯൯𝛽൧ + 𝛽ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ (𝑦 − 𝑍𝛾)

+ 𝛽ᇱ ൫𝜎ଶ𝑀൯ିଵ𝑚 }

which is a multivariate normal with the variance Σఉ = ቂ( 𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑋+
൫𝜎ଶ𝑀൯ )𝛽൧ିଵ and mean vector 𝜇ఉ = Σ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ (𝑦 − 𝑍𝛾) + (𝜎ଶ𝑀)ିଵ𝑚.
The derivation in the appendix shows that the full conditional of 𝛽 is usual-
ly a mixture between data likelihood and the prior on 𝛽.(Fahrmeir et al.,
2007)

The full conditional of the random effects 𝛾 is a normal distribution, too:

𝑃 ൫𝛾|𝛽, 𝜏ଶ, 𝜎ଶ, 𝑦௢௕௦ , 𝑋൯ ∝ exp ቊ−
1
2𝛾

ᇱ ቀ𝑍ᇱ(𝜎ଶ𝐼)ିଵ𝑍 + (𝜏ଶ)ିଵቁ 𝛾

+𝛾ᇱ ቂ𝑍ᇱ(𝜎ଶ𝐼)ିଵ𝑦 − 𝑍(𝜎ଶ𝐼)ିଵ𝑋𝛽ቃቅ

Therefore, we can draw the random effects 𝛾 from the normal distributi-

on 𝑁(𝜇ఊ , Σఊ), where 𝜇ఊ = Σఊ𝑍ᇱ(𝜎ଶ𝐼)ିଵ(𝑦 − 𝑋𝛽) and Σఊ = ቀ𝑍ᇱ(𝜎ଶ𝐼)ିଵ𝑍+

(𝜏ଶ𝑅)ିଵቁ
ିଵ
.

Fahrmeir et al. (2007) propose to use a slight informative inverse Gamma-

distribution for the variance parameters 𝜏ଶ and 𝜎ଶ. Moreover we assume,
10A similar derivation of the full conditionals for a longitudinal case can be found in Fahr-

meir et al. (2007).
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that the variances are constant for all observations, i.e. we a priori exclude

cases of heteroscedasticity. The full conditionals of the variance parameters

are again inverse Gamma-distributions. For 𝜎ଶ it computes to:

𝑃 ൫𝜎ଶ|𝛽, 𝛾, 𝜏ଶ, 𝑦௢௕௦ , 𝑋൯ = (𝜎ଶ)ି(௔഑మା௡ାଵ)

exp ቊ− 1
𝜎ଶ [𝑏ఙమ+

1
2(𝑦 − 𝑋𝛽 − 𝑍𝛾)ᇱ(𝑦 − 𝑋𝛽 − 𝑍𝛾)+

1
2(𝛽 − 𝑚)ᇱ𝑀ିଵ(𝛽 − 𝑚)቉ቋ

which means that 𝜎ଶ ∼ 𝐼𝐺(𝑎ఙమ +𝑛, 𝑏ఙమ +
ଵ
ଶ(𝑦−𝑋𝛽−𝑍𝛾)

ᇱ(𝑦−𝑋𝛽−𝑍𝛾)+
ଵ
ଶ(𝛽 − 𝑚)ᇱ𝑀ିଵ(𝛽 − 𝑚)).
For 𝜏ଶ we get:

𝑃 ൫𝜏ଶ|𝛽, 𝛾, 𝜎ଶ, 𝑦௢௕௦ , 𝑋൯ = (𝜏ଶ)ି(௔഑మା
೙
మାଵ) exp ቊ− 1

𝜏ଶ ቈ𝑏ఛమ +
1
2𝛾

ᇱ𝑅ିଵ𝛾቉ቋ

That is an inverse Gamma-distribution, too:

𝜏ଶ ∼ 𝐼𝐺(𝑎ఛ +
𝑛
2 , 𝑏ఛ +

1
2𝛾

ᇱ𝑅ିଵ𝛾)

The derivations of these full conditionals can be found in the appendix.

4.1.3 Criticism of Mixed Modelling of Kriging for Multiple Imputation

Munoz et al. (2010) conduct a simulation study and analyse the effect ofMI

under the krigingmodel on a salmon data set. For the simulation study the

authors try different missing rates of an MAR missing mechanism. They

compare the results to some other missing data methods. The authors re-

port the more data are missing the worse all methods get, but compared

to the other techniques the better the MImethods are. All MI results show

relatively equal results with regards to coverage rates.(Munoz et al., 2010)

89



4 KriMI: Multiple Imputation Using Kriging

The idea to use the mixed model representation of kriging is also used

by Munoz et al. (2010). In their point of view the Gaussian random field

defines a
”
model for the variance-covariance matrix“, which does not hit

the mark exactly. The linear model that underlies the kriging prediction

is a mixed model. The fixed effects are the parametric trend and the ran-

dom effects are the random field. In spite of this equivalence, the mixed

model aims to estimate the fixed effects, which are the parameters of the

parametric trend, whereas kriging is just interested in predicting values.

Focusing on the mixed model approach, the estimation by a marginal mo-

del where the random effect representing the spatial correlation is located

in the variance-covariance matrix is straight forward. However it does not

match the idea of kriging to find the best prediction by interpolating from

neighbours. A better representation of the idea of interpolation is given in

the estimation by P-Splines in the next section.

4.2 Predicting Using P-Splines

Above we have chosen a known specification of 𝑃(𝑌௠௜௦|𝑋, 𝑌௢௕௦ , 𝜃) to im-
pute unobserved values. According to Rubin (1987) the modelling of a re-

gression can be used to parameterise the conditional posterior predictive:

𝑦௜ ∼ 𝑁 (𝑋𝛽, Ω) (37)

It can be generalised to 𝑦௜ ∼ 𝑁 (𝜇, Ω) and we parameterise the expecta-
tion 𝜇 = 𝐸 (𝑦|𝑋) = ℎ(𝜂) with the response function ℎ(⋅) and the linear
predictor 𝜂.
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4.2.1 P-Splines

If the functional form of the linear (in parameters) relationship between

𝑋 and 𝑦 is not known, it is only possible to specify the regression equation
as (Lang and Brezger, 2001):

𝜂 = 𝛾଴ + 𝑓ଵ(𝑥ଵ) + … + 𝑓௣(𝑥௣) + 𝑣ᇱ௜𝛾 (38)

with 𝑣ᇱ௜𝛾 as the parametric part of the linear predictor.(Lang and Brezger,
2001) The model is a so-called additive model. The metric variable 𝑦 is ex-
plained by a smooth function 𝑓௝(⋅) which is unknown. Additionally, we
assume a homoscedastic, normal error.(Lang and Brezger, 2004)

As the primary interest is not in the interpretation of the parameters, but

rather to get a smooth function reflecting the data, the B-spline as well as

the P-Spline approach are called nonparametric methods. We want to use

the P-spline approach to implement kriging into the multiple imputation

scheme. There are two reasons to do so: first, there is a link between the

P-Spline approach and kriging as an exact interpolator. We will show this

link in the following chapter. Second, splines can be used for an out-of-

sample prediction as they are close to the data.11

11We have to distinguish this nonparametric modelling from the method described by
Schafer (1999). He describes a nonparametricmethod to impute if no parametric assumption
is made. This kind of nonparametric method is to be distinguished from the nonparametric
regression approach that underlines our multiple imputation. Schafer (1999) does not mean
the spline approach. He supposes to create a pool by drawing ௔ values from the respondents,
if ௔ is the number of observed values in the data set of size ௡. A set of imputed values is crea-
ted by drawing the ௡ି௔missing values from the pool. Doing so, approximative draws from
௉ (௒೘೔ೞ|௒೚್ೞ) are made. This procedure simulates draws from a multinomial distribution.
Schafer (1999) mentions two possibilities to use covariables: If the covariables are discrete,
the data can be classified by them, and the proposed approximative bootstrap is conducted by
every subgroup. If the covariables are continuous, Schafer (1999) proposes a logistic regres-
sion. The estimated probabilities are the grouping variables and the approximative Bayesian
Bootstrap is done for the defined groups.(Schafer, 1999)
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We need an identifying assumption for the functions 𝑓௝(⋅). Ordinarely, it
is assumed that they are zero-mean function: ଵ

௥௔௡௚௘(௫ೕ)
∫𝑓௝(𝑥௝)𝑑𝑥௝ = 0

(Lang and Brezger, 2004)12

According to the idea of splines, it is possible to approximate the unknown

functions 𝑓௝(⋅) by a spline of order 𝑙:

𝑓௝(𝑥௝) =
ௗ

෍
௞ୀଵ

𝛽௝,௞𝐵௝,௞(𝑥௝) (39)

with 𝐵௝,௞(𝑥௝) as basis functions that are locally defined. Locally means that
the basis functions are located between defined knots with 𝑘 = 1,⋯, 𝑑, and
a specified number of neighbouring knots, usually 2 + 𝑙 knots.(Fahrmeir
et al., 2007, Lang and Brezger, 2004) 𝐵௝(𝑥௝) is equivalent to a 𝑛⨯𝑘matrix
of regressors including a number of explanatory variables. The 𝛽௝,௞ can be
interpretd as parameters of a linear predictor, hence, we can use ordinary

ML-methods for estimation.(Lang and Brezger, 2004)

At every knot we try to approximate the function explaining the data by a

weighted sum of basis-functions. Usually, the basis-functions are polyno-

mial functions defined by their degree. A closer description of the basis-

functions can be found in Fahrmeir et al. (2007). In the spatial case we

need a two-dimensional equivalent: the tensor-product. These kind of ba-

ses lead to the so-called tensor-product or thin plate splines.(Hastie and

Tibshirani, 1990, Wood, 2003) As already mentioned in chapter 3.4.2, Du-

brule (1983) defines the correlation function of kriging by tensor product

splines leading to a smooth estimation. This course of action leads to a

smooth estimation of kriging, which is very similar to our parametrisati-

on of kriging as a P-spline described in this chapter.

12This assumptions needs to be implemented in the MCMC-algorithm used later. Lang
and Brezger (2004) propose to centralize the functions ௙ೕ in every iteration step around 0.
The posteriori needs to be unchanged. For that reason we need to add the means to the
constant.(Lang and Brezger, 2004)
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B-Splines tend to reproduce the data exactlymaking the identified function

very hooked. To balance between the closeness to data and the smoothing

of the estimated function, it is possible to implement penalising terms pu-

nishing for data closeness. The penalising terms account for similarity of

the local parameters.(Fahrmeir et al., 2007)

The idea behind P-Splines is that the basis functions 𝐵௞ located at the
neighbouring knots should be similar.(Fahrmeir et al., 2007) Otherwise

the approximating function would connect all observation points making

a wiggly function. However, the penalising term guarantees smoothness

of the function. The function is smooth, if neighbouring parameters are

similar.(Fahrmeir et al., 2007, Lang and Brezger, 2004)

To force the parameters to be similar it is necessary to add a penalisation

term to the likelihood(Fahrmeir et al., 2007, Lang and Brezger, 2004)

𝐿 = 𝑙(𝑦, 𝛽ଵ, … , 𝛽𝑝) − 𝜆ଵ
ௗ

෍
௟ୀ௞ାଵ

ቀΔ௞𝛽ଵ௟ቁ
ଶ
−…− 𝜆௣

ௗ

෍
௟ୀ௞ାଵ

ቀΔ௞𝛽௣௟ቁ
ଶ

where 𝜆௝ is the so called smoothing parameter determining the rough-
ness of the function. Δ௞ define the 𝑘’th order differences of the parame-
ters 𝛽.(Fahrmeir et al., 2007) The penalisation bases on the differences of
neighbouring B-spline coefficients.(Lang and Brezger, 2004)

Equivalently it is possible to add a penalisation term to the least squares

criterion:(Fahrmeir et al., 2007)

𝑃𝐿𝑆 =
௡

෍
௜ୀଵ

ቌ𝑦௜ −
ௗ

෍
௝ୀଵ

𝛾௝𝐵௝(𝑧௜)ቍ

ଶ

+ 𝜆
ௗ

෍
௃ୀ௞ାଵ

ቀΔ௞𝛾௝ቁ
ଶ

The likelihood has to be maximised whereas the least squares have to to

minimised. For that reason the penalisation term is substracted in the for-

mer and is added in the latter formula.(Fahrmeir et al., 2007) To find the

optimum of the penalised likelihood, Lang and Brezger (2004) enumera-
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te two methods: first, the backfitting where the zero mean constraint of

smooth functions is assured by centralising around zero described above.

Second, the penalised likelihood can be maximised directly. Moreover,

Lang and Brezger (2004) propose to choose the smoothing parameter 𝜆
by crossvalidation. It is also possible to choose the smoothing parameter

by Bayesian methods. For a description see Fahrmeir et al. (2007).

4.2.2 Bayesian P-Splines

To use the P-Splines in the multiple imputation scheme, we need a Bayes-

ian perspective. To implement the penalisation we need to model it as a

stochastic process.

To illuminate the idea, it is easier to start with a one-dimensional case,

for example a temporal one, than to start with the two-dimensional spatial

one. As we need a smooth curve, parameters of direct following periods

should not differ a lot. Otherwise the estimated curve would be very wiggly.

Instead the parameters should be similar, i.e. a parameter should depend

on the foregoing one:(Fahrmeir et al., 2007, Lang and Brezger, 2004)13

𝛾௞ = 𝛾௞ିଵ + 𝑢௞ , 𝑢௞ ∼ 𝑁(0, 𝜗ଶ) (40)

which is clearly the definition of a first order random walk. After a slight

reformulation of the random walk, it becomes evident that the first order

randomwalk defined here is analogous to the penalisation term using first

differences. The parameter depends on the parameters of the foregoing

period penalising for big differences. The analogy to the first differences

13It is also possible to define a second order randomwalk: ఊೖ ୀ ଶఊೖషభିଶఊೖషమା௨ೖ ௨ೖ ∼
ே(଴, ఛమ) (Fahrmeir et al., 2007, Lang and Brezger, 2004)
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can be seen more easy in the following formulation:(Fahrmeir et al., 2007,

Lang and Brezger, 2004)

𝛾௞ − 𝛾௞ିଵ = 𝑢௞ , 𝑢௞ ∼ 𝑁(0, 𝜗ଶ) (41)

The conditional distribution can be easily derived by computing its para-

meter: 𝜇ఊೖ|ఊೖషభ = 𝐸(𝛾௞|𝛾௞ିଵ) = 𝐸(𝛾௞ିଵ + 𝑢௞|𝛾௞ିଵ) = 𝛾௞ as 𝐸(𝑢௞) = 0
and 𝛾௞ିଵ is a constant due to the conditioning on it.

𝜎ଶఊೖ|ఊೖషభ = 𝑉𝑎𝑟(𝛾௞|𝛾௞ିଵ) = 𝑉𝑎𝑟(𝛾௞ିଵ + 𝑢௞|𝛾௞ିଵ) = 𝑉𝑎𝑟(𝑢௞) = 𝜗ଶ

In the temporal case the conditional distributions can be derived from the

random walk. In the two-dimensional, i.e. the spatial case this is not the

case anymore, because of the mutual dependencies defined by the neigh-

bourhood and the correlation function.

Equation 40 defines following conditional distribution:(Fahrmeir et al.,

2007)

𝛾௞|𝛾௞ିଵ, … 𝛾଴ ∼ 𝑁(𝛾௞ିଵ, 𝜗
ଶ) (42)

The dependencies of the parameters 𝛾௞ have the Markov-property: The
conditional distribution of 𝛾௞ only depends on the foregoing period 𝛾௞ିଵ
making the conditional expectation a constant term: 𝐸 ൫𝛾௞|𝛾௞ିଵ, … , 𝛾ଵ൯ =
𝛾௞ିଵ (Fahrmeir et al., 2007)
As the parameters have a distribution with location parameter depending

on the parameters of the neighbours, the parameters are relatively similar,

creating a smooth curve. The smoothing is done by choosing a smoothing

prior.(Kimeldorf and Whaba, 1970) It is necessary to define a prior for the

parameter of the first period. Fahrmeir et al. (2007) proposes to choose a

non-informative one.

The joint density of the smooth effects can be derived from the conditional
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distribution using the penalty matrix 𝐾:(Fahrmeir et al., 2007, Lang and
Brezger, 2004)

𝑃ఊ|ణమ =
ௗ

ෑ
௞ୀଵ

𝑃(𝛾௞|𝛾௞ିଵ, … , 𝛾ଵ)

= 𝑃(𝛾ଵ)
ௗ

ෑ
௞ୀଶ

𝑃(𝛾௞|𝛾௞ିଵ)

∝
ௗ

ෑ
௞ୀଶ

1
ඥ2𝜋𝜗ଶ

expቐ 1
2𝜗ଶ

ௗ

෍
௞ୀଶ

(𝛾௞ − 𝛾௞ିଵ)
ଶቑ

= 1

ቀ2𝜋𝜗ଶቁ
೏షభ
మ

exp ቊ 1
2𝜗ଶ

𝜸ᇱ𝐾ଵ𝜸ቋ

The common prior is a multivariate normal withmean 0 and the precision

matrix ଵ
ణమ௄భ

, where 𝐾ଵ = 𝐷ଵ𝐷ଵ where 𝐷ଵ is a matrix of first order diffe-

rences:(Fahrmeir et al., 2007, Lang and Brezger, 2004)

It is easy to adapt this to the two-dimensional case we need here. If we

interpret the foregoing period as direct neighbours, we can use the condi-

tional mean at a knot as the local linear fit.(Fahrmeir et al., 2007) Note that

we still use the discrete case for simplification.

The Markov-property has to be generalised for the spatial case by Mar-

kov random fields (Lang and Brezger, 2004). The set of all regions is 𝐷 =
{1,… , 𝑠, … 𝑑}. 𝛾 = ൛𝛾௦ , 𝑠 ∈ 𝐷ൟ is a Markov random field, if the conditional

distribution of 𝛾௦ given all other effects 𝛾௥ , 𝑟 ≠ 𝑠 only depends on the di-
rect neighbours. The according conditional density is 𝑃(𝛾௦|𝛾௥ , 𝑟 ≠ 𝑠) =
𝑃 ൫𝛾௦|𝛾௥ , 𝑟 ∈ 𝑁(𝑠)൯, where 𝑁(𝑠) is the set of neighbours.(Fahrmeir et al.,
2007) The equivalence of the spatial to the temporal case described above

is evident.

Whereas in the temporal case the conditional distribution can be derived

immediately from the underlying random walk, it is not possible to do
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so in the spatial case. It fails when trying to define the underlying spatial

random walk due to the dimensionality.(Besag, 1974) Therefore it is con-

ventional to define the random field by the common or by the conditional

distribution of the random parameters. The conditions for a probability

distribution to be a Markov random field are defined in the Hammersley-

Clifford thereom.(Besag, 1974) Here we choose to define the random field

by the conditional distribution and assume that the conditions are fulfil-

led.14 The presentation by conditional distributions has the advantage of

the direct link to Markov chains (Besag, 1974), which are important for the

simulation of distributions not available in closed form.

In the simple case of normality we take a Gaussian randomfield:(Fahrmeir

et al., 2007, Lang and Brezger, 2004)

𝛾௦|𝛾௥ , 𝑟 ∈ 𝑁(𝑠) ∼ 𝑁ቌ ෍
௥∶௥∈ே(௦)

1
|𝑁(𝑠)|𝛾௥ ,

𝜏ଶ
|𝑁(𝑠)|ቍ . (43)

where |𝑁(𝑠)| denotes the number of neighbours. The conditional expec-
tation is the arithmetic mean of the spatial effects in the neighbouring

regions. The variance 𝜏ଶ regulates, how much the spatial effect of one re-
gion 𝛾௦ differs from the mean. Again, this is the stochastic form of the

penalisation.(Fahrmeir et al., 2007)

Corresponding to the one-dimensional case, the joint distribution of all

smooth parameters is:(Fahrmeir et al., 2007, Lang and Brezger, 2004)

𝑝(𝛾|𝜗ଶ) ∝ ቆ 1
2𝜋𝜗ଶ

ቇ
೏షభ
మ
exp ቊ− 1

2𝜗ଶ
𝛾ᇱ𝐾𝛾ቋ (44)

14Due to Besag (1974) the most important condition is the positivity condition, assuming
that the conditional distribution can be computed. The second condition is that the number
of values that can be realised as one site is finite. Third the 0 can be realised at every site.
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where the elements of 𝐾 are 𝑘௦௥ =
⎧⎪
⎨⎪⎩

𝑁(𝑠) if 𝑠 = 𝑟
−1 if 𝑟 ∈ 𝑁(𝑠) or 𝑠 ∈ 𝑁(𝑟)
0 else

.(Lang

and Brezger, 2004)

Thematrix of neighbourships can be generalised by weighting neighbours

according to their distance, to the length of their common frontier and so

on. The conditional distribution is in the weighted case:(Fahrmeir et al.,

2007)

𝛾௦|𝛾௥ , 𝑟 ∈ 𝑁 ∈ 𝑁(𝑠) ∼ 𝑁ቌ෍
௥∶௥∼௦

𝑤௦௥
𝑤௦௧

𝛾௥ ,
𝜗ଶ

𝑤௦௧
ቍ . (45)

with the symmetric weights 𝑤௦௥ = 𝑤௥௦ and 𝑤௦௧ = ∑௥∶௥∼௦ 𝑤௦௥.(Fahrmeir

et al., 2007)

This leads to the global smoothness priors that define the Bayesian P-

spline approach(Lang and Brezger, 2004):

𝛾|𝜗ଶ ∝ exp ቊ− 1
2𝜗ଶ

𝛾ᇱ𝐾𝛾ቋ

with the according penalisation-matrix 𝐾.(Lang and Brezger, 2004)

𝜗ଶ is the variance parameter defining the variation of the conditional ex-
pectation. If it is small, no variation on the 𝛾௞’s is possible. The estimation
is constant in this case making the curve very smooth. The estimation gets

more wiggly the bigger the variances 𝜗ଶ are. The variance parameter can
be interpretd as a inverse smoothing parameter. (Fahrmeir et al., 2007)

For a full Bayes inference we need a hyper-prior for 𝜗ଶ. As it is a variance
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parameter the natural choice is an inverse gamma distribution.(Lang and

Brezger, 2004)

𝜗ଶ ∼ 𝐼𝐺(𝑎௝ , 𝑏௝)

Lang and Brezger (2004) propose to take 𝑎௝ = 1 and a small value for 𝑏௝
defining nearly a diffuse prior.(Lang and Brezger, 2004)

4.2.3 Kriging as a P-Spline

Cressie (1993) has already mentioned the possibility of estimating kriging

via nonparametric methods. He stresses that kriging and splines are con-

nected methods, but are used and interpreted differently. Nevertheless, he

only names kernel or nearest-neighbour techniques.(Cressie, 1993)

Laslett (1994), Watson (1984) and Voltz andWebster (1990) discuss the dif-

ferences between kriging and smoothing splines. According to the analysis

of Laslett (1994), the former over-performs the latter under special circum-

stances. Voltz and Webster (1990) show the same, but refer to very small

differences of the results of the two methods. However, Watson (1984)

shows the similarities between the two approaches: smoothing splines and

kriging are the same, if the underlying functions in smoothing are the co-

variance function of the model, but not all covariance functions can be

used in spline smoothing. Laslett (1994) and Watson (1984) use smoot-

hing splines, whereas we use P-splines. Following Fahrmeir et al. (2007)

we show that kriging can be formulated as a P-Spline which is a different

method from smoothing spline.
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Here, we parameterise kriging as a P-Spline. We start with the mixed mo-

del described above:

𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖

with 𝛾 = ൫𝛾ଵ, 𝛾ଶ, … , 𝛾ௗ൯ as vector of 𝑑 different spatial random effects. If

in all observed regions only one measurement is done, the incidence ma-

trix becomes the identity matrix: 𝑍 = 𝐼ௗ.(Fahrmeir et al., 2007)

Nowwe re-parameterise themixedmodel to get the connection to P-Splines

(Fahrmeir et al., 2007):

𝑦 = 𝑋𝛽 + 𝑍𝑅𝑅ିଵ𝛾 + 𝜖
= 𝑋𝛽 + ෥𝑍෤𝛾 + 𝜖

where ෥𝑍 = 𝑍𝑅 and ෤𝛾 = 𝑅ିଵ𝛾. As 𝛾 still has the same distribution, the
model did not change. In contrast, the interpretation of the design matrix
෥𝑍 changed:(Fahrmeir et al., 2007)

෥𝑍 [𝑖, 𝑗] = 𝜌 ൫𝑠௜ , 𝑠௝൯

෥𝑍 consists of the correlation function 𝜌(⋅). We interpret 𝜌(⋅) as basis func-
tion of a B-Spline-approach, i.e.𝐵௝(𝑠௜) = 𝜌(𝑠௜ , 𝑠௝). In the case of an istotro-
pic correlation function, especially when radial basis functions are used:

𝐵௝(𝑠௜) = 𝜌(ฮ𝑠௜ , 𝑠௝ฮ). The knots are the observational units. The underly-
ing basis functions are:(Fahrmeir et al., 2007)

𝑓(𝑠௜) =
ௗ

෍
௝ୀଵ

෦𝛾௝𝜌(𝑠௜ , 𝑠௝) (46)
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The parameters of all data points are considered according to their weights

that are defined in the correlation matrix at every single data point. ෤𝛾 are
spatially correlated effects. The familiarities to the Bayesian P-Spline-approach

are evident.(Fahrmeir et al., 2007)

Again it seems a good advice to look closely at thematrices to get a better in-

sight into the method. As a simplification, we use a three region case as an

example. In every region one data point has been observed. The correlation

matrix is𝑅 = ൮
1 𝜌ଵଶ 𝜌ଵଷ
𝜌ଵଶ 1 𝜌ଶଷ
𝜌ଵଷ 𝜌ଶଷ 1

൲ = 𝐵, which is exactly the same as thema-

trix of basis-function as 𝑍 is an identity matrix. In the case defined above if

𝑍 =
⎛
⎜⎜⎜

⎝

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎟

⎠

the matrix of basis-functions is 𝐵 =
⎛
⎜⎜⎜

⎝

1 𝜌ଵଶ 𝜌ଵଷ
1 𝜌ଵଶ 𝜌ଵଷ
𝜌ଵଶ 1 𝜌ଶଷ
𝜌ଵଷ 𝜌ଶଷ 1
𝜌ଵଷ 𝜌ଶଷ 1

⎞
⎟⎟⎟

⎠

.

The vector 𝛾ᇱ = ቀ𝛾ଵ 𝛾ଶ … 𝛾ௗቁ of random effects has the distributi-

on 𝛾 ∼ 𝑁(0, 𝐺) with the covariance-matrix 𝐺 = 𝜏ଶ𝑅 parameterising the
spatial dependencies. After re-parameterisation ෤𝛾 has another covariance:

𝑉𝑎𝑟(෤𝛾) = 𝑉𝑎𝑟(𝑅ିଵ𝛾)
=𝑅ିଵ𝑉𝑎𝑟(𝛾)𝑅ିଵ = 𝑅ିଵ𝜏ଶ𝑅𝑅ିଵ = 𝜏ଶ𝑅ିଵ

= 𝜏ଶ
3(1 − 𝜌ଶଵଶ − 𝜌ଶଵଷ − 𝜌ଶଶଷ + 2𝜌ଵଶ𝜌ଵଷ𝜌ଶଷ)

൮
1 − 𝜌ଶଶଷ −𝜌ଵଶ + 𝜌ଵଷ𝜌ଶଷ −𝜌ଵଷ + 𝜌ଵଶ𝜌ଶଷ

−𝜌ଵଶ + 𝜌ଵଷ𝜌ଶଷ 1 − 𝜌ଶଵଷ −𝜌ଶଷ + 𝜌ଵଶ𝜌ଵଷ
−𝜌ଵଷ + 𝜌ଵଶ𝜌ଶଷ −𝜌ଶଷ + 𝜌ଵଶ𝜌ଵଷ 1 − 𝜌ଶଵଶ

൲

The last line is the simple case of three regions observed once. In general,

෤𝛾 has the distribution ෤𝛾 ∼ 𝑁(0, 𝜏ଶ𝑅ିଵ).(Fahrmeir et al., 2007)
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The criterion to estimate the P-Spline is the following penalised least-squa-

res rule: 𝑃𝐿𝑆(𝜆) = (𝑦 − 𝑋𝛽 − ෥𝑍෤𝛾)ᇱ(𝑦 − 𝑋𝛽 − ෥𝑍෤𝛾) + 𝜆෥𝛾ᇱ𝑅෤𝛾 with the pe-
nalising matrix 𝑅 ൣ𝑠௜ , 𝑠௝൧ = 𝜌 ൫ห𝑠௜ − 𝑠௝ห൯ and the smoothing parameter
𝜆 = ఙమ

ఛమ .(Fahrmeir et al., 2007)

Starting from the kriging side, it is possible to define the correlation func-

tion making kriging itself a spline smoothing technique. Dubrule (1983)

defines the covariance function such that kriging becomes a thin-plate re-

gression spline. We have already noted this approach when describing the

covariance functions, which is in this case:

𝐶𝑜𝑣(ℎ) = |ℎ|ଶ𝑙𝑜𝑔(ℎ)

The similarity to the re-parameterisation of Fahrmeir et al. (2007) is evi-

dent. Whereas Fahrmeir et al. (2007) implement the correlation function

explicitly in the formula by the re-parameterisation leading to correlation

functions as basis functions, Dubrule (1983) defines the correlation func-

tion directly as basis function. The result is nearly the same, but with dif-

ferent basis functions. Dubrule (1983) notes that the difference between

kriging and splines are that kriging yields an exact prediction and spli-

ne smoothing aims to find the best representation of the regression line.

However, Fahrmeir et al. (2007) mention the possibility of defining a Ma-

térn correlation function to get a Matérn-spline.

Using the thin-plate-regression-spline in the two-dimensional case defines

a radial basis-function (Fahrmeir et al., 2007) as the Euclidean distance on

which the thin-plates are defined defines a circular basis. Kitanidis (1997)

notes that thin-plate splines are more elegant and flatter than cubic spli-

nes.

Another approach to implement smoothed spatial effects is described in

Cicchitelli and Montanari (2012). The authors directly use the spatial co-

ordinates as fixed effects and add a pseudo-variable consisting of transfor-
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mation of the coordinates to construct a thin-plate regression spline as a

random effect. Here the penalisation aims at the variability of the coeffi-

cients of the thin-plate-transformed random variables. If not all observed

cases are used in the thin-plate-transformation, Cicchitelli and Montana-

ri (2012) define a low-rank smoother, making estimation and prediction

faster depending on the grade of simplification. Kriging itself becomes a

full-rank smoother in this perspective.(Cicchitelli and Montanari, 2012)

Note that this is Kriging itself, its re-parameterisation as a P-spline is so-

mething different.

Dubrule (1983) also uses thin-plate regression-splines to show the equiva-

lence of kriging and splines.

4.2.4 Predictions

It is also possible to predict values of unobserved regions by the P-spline

approach:(Fahrmeir et al., 2007)

𝑦(𝑠) = 𝑥(𝑠)ᇱ𝛽 + 𝑓௚௘௢(𝑠) + 𝜖 (47)

where 𝑓௚௘௢(𝑠) = ∑ௗ
௝ୀଵ෦𝛾௝𝐵௝(𝑠) represents the spatial effect. The basis-

functions consist of the correlation function: 𝐵௝(𝑠) = 𝜌(𝑠, 𝑠(௝)). In our ca-
se, we assume an isotropic correlation function and radial basis functions

making 𝐵௝(𝑠) = 𝜌(ฮ𝑠 − 𝑠(௝)ฮ). The penalising term ෤𝛾 results from the

correlation matrix 𝑅 and equals 𝜆෥𝛾ᇱ𝐾෤𝛾 = ఙమ
ఛమ ෥𝛾

ᇱ𝑅෤𝛾.(Fahrmeir et al., 2007)

4.2.5 Choosing the Knots

When using the correspondence of kriging and splines, the knots are auto-

matically the observed data points. In this case, the number of knots equals
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the sample size. Doing so, the problem is that a lot of coefficients have to

be estimated. The number of knots needs to be reduced:(Fahrmeir et al.,

2007)

𝐷 = {𝜅ଵ, … , 𝜅௠} ⊂ 𝐶 = 𝑠ଵ, … , 𝑠௡

Fahrmeir et al. (2007) propose to use covering criteria to test the quality of

the subset. In the case of reduction the distribution of the vector of coef-

ficients becomes ෤𝛾 ∼ 𝑁(0, 𝜏ଶ)𝑅ିଵ with 𝑅[௜,௝] = 𝜌(𝜅௜ , 𝜅௝).(Fahrmeir et al.,
2007)

4.2.6 Bayesian Modelling and the Gibbs-Sampler

Here we derive the Bayesian perspective of the two-dimensional case. The

one-dimensional case is described earlier.

The posterior we can derive for our case is a simple version of the posterior

defined by Lang and Brezger (2004) as we do not have other smoothed ef-

fects than the spatial one andwe do not assume an additional unstructured

spatial effect:

𝑃(𝛽, ෤𝛾, 𝜎ଶ, 𝜏ଶ|𝑦, 𝑋) = 𝐿(𝛽, ෤𝛾, 𝜎ଶ, 𝜏ଶ; 𝑦, 𝑋)𝑃(𝛽)𝑃(𝜎ଶ)𝑃(෤𝛾|𝜏ଶ)𝑃(𝜏ଶ)

A simplification is that Lang and Brezger (2001) assume that the priors are

independent.

For the fixed effects we choose a diffuse prior 𝛽௝ ∼ 𝑐𝑜𝑛𝑠𝑡. as proposed
by Lang and Brezger (2004, 2001). The prior 𝑃(𝜎ଶ) is the inverse gamma
𝜎ଶ ∼ 𝐼𝐺(𝑎ఙ , 𝑏ఙ). As we assume a diffuse prior for the fixed effects 𝛽, con-
ditioning on the variance parameter is not necessary.(Lang and Brezger,

2004, 2001)
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In the two-dimensional, i.e. the spatial case, we also choose the smoot-

hing prior to be normal as in the one-dimensional case of the B-spline

approach:(Fahrmeir et al., 2007)

෤𝛾 ∼ 𝑁(0; 𝜏ଶ𝑅ିଵ)

where 𝑅 is a 𝑘⨯𝑘matrix and 𝑘 is the number of knots and the correlation
matrix 𝑅[𝑖, 𝑗] = 𝜌(𝑘௜ , 𝑘௝). Conditioning on the variance hyper-parameters
gives:(Fahrmeir et al., 2007)

𝑃(෤𝛾|𝜏) ∝ exp ቊ 1
2𝜏ଶ෥𝛾

ᇱ𝑅෤𝛾ቋ

This distribution equals the smoothing prior in a P-spline approach. The

smoothing prior corresponds to the penalising termmaking the approach

a P-spline. (Fahrmeir et al., 2007)

Fahrmeir et al. (2007) propose choosing a conjugate prior for the hyper-

parameter 𝜏ଶ, which is a inverse Gamma-distribution 𝐼𝐺(𝑎ఛమ , 𝑏ఛమ). To get
a diffuse-like hyper-prior, Lang and Brezger (2004) suggest to take 𝑎ఛమ = 1
and 𝑏ఛమ small.
The full conditionals can be divided into independent blocks of parame-

ters.(Lang and Brezger, 2004) According to Lang and Brezger (2001, 2004)

the posteriors for the fixed effects parameters are normal distributions

𝛽 ∼ 𝑁(𝑚ఉ , 𝑃𝑟𝑒ିଵఉ )with the precisionmatrix 𝑃𝑟𝑒ఉ = ଵ
ఙమ𝑋

ᇱ𝑋 and themean
vector𝑚ఉ = ൫𝑋ᇱ𝑋൯ିଵ 𝑋ᇱ (𝑦 − ෤𝜂) and ෤𝜂 is the part of the model depending
on the other effects.(Lang and Brezger, 2001, 2004)
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The re-parametrised spatial effects ෤𝛾 are also normal with the precision-
matrix that can be derived from Lang and Brezger (2004) by inserting the

kriging correlation matrix as basis functions and as the penalty matrix:

𝑃𝑟𝑒෥ఊ =
1
𝜎ଶ𝐵

ᇱ𝐵 + 1
𝜏ଶ𝐾

= 1
𝜎ଶ𝑅

ᇱ𝑅 + 1
𝜏ଶ𝑅

Ordinarily, this precisionmatrix is a sparsematrix and needs to be brought

into the band structure needed by a reverse Cuthill-McKee algorithm. The

mean vector is𝑚෥ఊ = 𝑃𝑟𝑒ିଵ෥ఊ
ଵ
ఙమ𝑅(𝑦 − 𝜂).(Lang and Brezger, 2004, 2001)

The full conditionals of the variance parameters are inverse gamma distri-

butions with the parameters 𝑎ఛమ = 𝑎ఛమ +
௥௔௡௞(ோ)

ଶ and 𝑏ఛమ = 𝑏ఛమ +
ଵ
ଶ෥𝛾

ᇱ𝑅෤𝛾
for 𝜏ଶ and 𝑎ఙమ = 𝑎ఙమ +

௡
ଶ and 𝑏ఙమ = 𝑏ఙమ +

ଵ
ଶ𝑒

ᇱ𝑒 with 𝑒 as residuals for
the variance component 𝜎ଶ.(Lang and Brezger, 2004, 2001)

4.2.7 Other Approaches for Including Nonparametric Methods

In this section we describe two other methods to implement nonpara-

metric regression methods into the multiple imputation scheme to com-

plete the picture. First, we briefly subsume the smoothing spline imple-

mentation of He et al. (2010) being quite similar to our approach, but just

using smoothing splines instead of P-splines. Second, we describe the im-

plementation of the Nadaraya-Watson estimator by Aerts et al. (2002).

The approach of He et al. (2010) produced the idea to implement kriging

via a spline approach in the multiple imputation. He et al. (2010) incor-
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porate a so called functional mixed model into the sampling scheme of

multiple imputation:

𝑦௜௝ = 𝑋௜௝𝛽 ൫𝑡௜௝൯ + 𝑍௜௝𝛼௜ ൫𝑡௜௝൯ + 𝜖௜௝

where:

• 𝑋௜௝ and 𝑍௜௝ are the design matrices of the fixed and the random ef-

fects,

• 𝛽 ൫𝑡௜௝൯ and 𝛼௜ ൫𝑡௜௝൯ are the fixed and random effects, and

• 𝜖௜௝ ∼ 𝑁 ൫0, 𝜎ଶ൯ is the idiosyncratic error term.

Moreover, the fixed and random effects are modeled as smooth functions

themselves. As a smoothing spline estimation also can be formulated as

a mixed model, the smooth functions of the given model can be grouped

into a fixed and a random effects part leading to a re-parameterisation by

which a new sorting in fixed and random effects is generated.(He et al.,

2010) The linear mixed model representation of the smoothed functions

can be estimated by a restricted maximum likelihood approach.(He et al.,

2010)

He et al. (2010) want to conduct a Gibbs sampling to get multiple draws for

the missing values. By imposing the usual conjugate priors of normality

for the slope parameters, inverse Gamma for the variance parameters in

the univariate case, and inverseWishart in themultivariate case, the Gibbs

sampler is formulated as the well known iterative procedure by drawing

successively from the full conditionals.(He et al., 2010) He et al. (2010)

address the problem of slow convergence of a simple Gibbs sampler by

a blocking strategy proposed by Chib and Carlin (1999). For the blocking

strategy, a group of 𝑋 variables and a group of 𝑍 variables is built. The
modified Gibbs sampler has three blocks:

1. for the 𝑋 variables,
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2. for the 𝑍 variables, and

3. for the variance components.(He et al., 2010)

In a final step, the missing values can be drawn from the posterior predic-

tive.

He et al. (2010) show in a simulation study as well as in an example that

their functional multiple imputation approach works well. In the simula-

tion study it becomes clear that their approach is reliably among the best

in a lot of different scenarios. As the functional multiple imputation ap-

proach and no other method is stably reliable, one can conclude that it is

the best. Moreover, the functional multiple imputation approach is bet-

ter across the two missingness patterns: a monotone and a non-monotone

one. However, He et al. (2010) also name the boundaries of their method:

the investigated methods were all linear ones, only ignorable missing me-

chanisms were taken into account, and only cubic spline smoothing has

been recognised.

Aerts et al. (2002) present an approach to include nonparametric smoot-

hing methods in multiple imputation without Bayesian theory. They solve

the problem of missing data via a bootstrap while still multiply imputing

the data with a local re-sampling technique. The local semi-parametric re-

sampling method is local for the reason of assuming local conditional dis-

tributions, but, allowing nonlinear mean structures. The nonparametric

approach is implemented in the distributions for the bootstrapp sample.

The data setting of Aerts et al. (2002) is quite easy: They assume a complete

observed variable𝑋 and a variable 𝑌 with some observationsmissing. Both
variables are connectable via a regression. Aerts et al. (2002) are interested

in a consistent estimation of the mean 𝜇௒. Aerts et al. (2002) reason that
with the nonparametric approach they avoid a parametric assumption and

allow a more flexible regression design.
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The starting point of Aerts et al. (2002) is to sample the missing 𝑌 from
their local distribution 𝐿 (𝑋) = ∑௡

௝ୀଵ𝑤௝ (𝑥) 𝐼 ൛𝑌௝ ≤ 𝑦ൟ. This hides the in-
cluded nonparametric regression a little, but a regression technique is the

way to determine the distribution of 𝑌 conditional on 𝑋. Aerts et al. (2002)
describe following sampling scheme:

1. Resampling step: The data are re-sampled in a nonparametric way.

If a case is missing (i.e. the missing indicator 𝛿௜ = 1) a replacement
𝑌௜ ∗ (𝑙) is created by drawing from 𝐿 (𝑋).
This step is needed to create the additional variance in the data that

is needed to catch the additional uncertainty by the missing data.

2. Imputation step:

Given the data set that was filled in step 1, imputations are produ-

ced by local re-sampling or local semi-parametric re-sampling tech-

niques. A second distribution 𝐿 ∗ (𝑋) is constructed on the basis of
the data set of step 1 for a local re-sampling, or (𝜇∗, 𝜎∗) are estima-
ted for local semi-parametric re-sampling. Next, replacements of the

missing data 𝑌ା are drawn from the distribution 𝐿 ∗ (𝑋) in the ca-
se of local re-sampling or drawn from 𝑁 (𝜇∗, 𝜎∗) in the case of local
semi-parametric re-sampling.

Repeating both steps 𝑚-times, creates 𝑚 imputations.(Aerts et al.,

2002)

The technique of Aerts et al. (2002) is a nonparametric one by the way the

re-sampling scheme for 𝐿 and 𝐿∗ are defined. This is done by the definition
of theweights𝑤௝ . Aerts et al. (2002) suggest twoways to define theweights:

• mean imputation: 𝑤௝ =
ఋೕ

∑ೕ ఋೕ
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• kernel density estimation: 𝑤௝ =
ఋೕ௄೓൫௫ି௑ೕ൯

∑೙ೖసభ ఋೖ௄೓(௫ି௑ೖ)
where 𝐾 are sym-

metric uni-modal density functions 𝐾௛ (𝑢) =
ೠ
೓
௛ and ℎ is the para-

meter defining the bandwidth.

It is possible to use different weights and different bandwidths in both

steps of imputation. If closer observations get a higher weight, a Nadaraya-

Watson estimator is defined in this way.(Aerts et al., 2002) Additionally to

the Nadaraya-Watson estimator, Aerts et al. (2002) also briefly discuss bia-

sed bootstrap weights as an alternative.

Aerts et al. (2002) state that the estimator 𝐿 is consistent, asymptotic nor-
mal and, in the case of missingness, the estimator is still consistent for

the conditional distribution function. In the latter case, the mean of the

estimator is the same as the Nadaraya-Watson estimator at 𝑋 = 𝑥. The va-
riance of 𝐿 is a nonparametric variance estimator of 𝐿.
In a simulation study, Aerts et al. (2002) show that their nonparametric

multiple imputation technique is robust against model mispecifications.

There are negligible differences between the specifications. There are ne-

gligible differences between the local re-sampling and the local semi-para-

metric re-sampling, but if model specification is correct the semi-para-

metric methods do not rule out the parametric multiple imputation.(Aerts

et al., 2002)
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5 Prices, Price Indices and the Official Price Statis-

tics in Germany

5.1 Prices

A price is the the relation of exchange of two goods: The value of the

amount of good A is measured in quantity units of good B. In this case

good B is the currency and the quantity units of good B are the price.(Neu-

bauer, 1996)

For the price-statistic, the definition of goods is broad: goods are physical

products, services, housing rents and shop rents. In contrast interest rates

and wages are not included in the definition of goods.(Neubauer, 1996)

Heske (1992) defines products, fees, rents, and rates as relevant for the

price-statistic. Very important for observing prices is that prices are not a

characteristic of an object, i.e. a good, but of an act of purchase.(Neubauer,

1996) Therefore the observed units should not be the good, but the purcha-

sing act. In fact, such an observation is not possible. The trick is to define

the price observation as the price that was typically relevant for a certain

period in time.

5.2 Price Indices

Price indices measure changes of the price-level over time, which is the

mean change of prices of a representative shopping basket.(Neubauer,

1996) Price indicesmeasure the price change of an aggregate of goods.(Hes-

ke, 1992) Contrary, price measure numbers mirror the variability of prices
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of one product. The former is always some kind of mean (arithmetic, geo-

metric) of the latter. The price measure number is:(Vogel, 2000)

𝑀௧,௦ =
𝑝௦
𝑝௧

The definition of the price index depends on the chosen type of averaging

of the price measure numbers to create the price of the typical market

basket. Here we discuss the most common index types. If we use an arith-

metic mean and the quantities of a fixed basis period is used, the index is

a Laspeyres type index:(Heske, 1992, Vogel, 2000)

𝑃௧,௦ =
∑𝑝௦𝑞௧
∑𝑝௧𝑞௧

The change in value of the shopping basket is measured only by the price

change as quantities are fixed over a specific basis period. As the arithmetic

mean is chosen, the Laspeyres index can be aggregated. The disadvantage

of the Laspeyers index is that it becomes obsolete.(Neubauer, 1996, Heske,

1992)

If the quantities of products that are relevant in the reporting period and

the harmonic mean is used, the index becomes the Paasche price index:

(Heske, 1992, Vogel, 2000)

𝑃௧,௦ =
∑𝑝௦𝑞௦
∑𝑝௧𝑞௦

The advantage of the Paasche index is that it does not become obsolete, as

quantities of the reporting period are used. Moreover it also can be aggre-

gated due to the harmonic averaging. However the Paasche index is more

complicated to observe as every period a new shopping basket is needed.

It is possible to compute a Paasche index from a Laspeyeres index by in-

version.(Neubauer, 1996, Heske, 1992)
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Using these indices, only the price changes are taken into account as the

quantities of the shopping basket are fixed both times.(Heske, 1992) The

Lowe index uses mean quantities (Vogel, 2000) Another well-known index

is the Fisher Index, which is a superlative index we will introduce later.

The price index should be summable: the price level changes of the aggre-

gate should be the sum of the single price level changes of the elements

of the aggregate.(Heske, 1992) The change rate denotes the relative chan-

ge and the difference the absolute change. Thereby the goods and their

amounts have to be temporal constant.(Neubauer, 1996) This uniformity

is one of the most crucial problems when translating the temporal price-

indices to spatial price-indices. A discussion of an adequate regional shop-

ping basket can be found below.

In general there are two types of price indices: the indices with a dynamic

basis period and the ones with a fixed basis. The latter are relevant for long

time observations. It is possible to compute a variable basis period from a

fixed one by multiplication (chain-linking) simplifying for price measure

numbers:(Heske, 1992)

𝑃଴,ଷ = 𝑃ଵ,଴𝑃ଶ,ଵ𝑃ଷ,ଶ =
𝑝ଵ
𝑝଴

𝑝ଶ
𝑝ଵ

𝑝ଷ
𝑝ଶ

= 𝑝ଷ
𝑝଴

One problem of the temporal price comparison is that the real price chan-

ges should be measured and only the nominal change can be reflected.

The quality as well as the utility value of a product can vary over time. The

observed price index only reflects the nominal change.(Heske, 1992) For

example a record player had a higher utility value in the past, nowadays

it is only kept for nostalgia reasons. Both groups pay high prices for re-

cord players even though it has no utility value any more. This fact is also
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relevant for the spatial price comparison. There are products which have

regional importance but no value for other regions. For example a Spätzle

maker has only some value in southern Germany. To face this problem the

regional shopping basket should only include products that are regionally

comparable.(Heske, 1992)15

5.3 Computing with Price Measure Numbers and Price In-
dices

It is possible to calculate an price index from two other indices. If the in-

dices have the same basis period 𝑖, and if we want to use another basis
period 𝑙, it is possible to rebase by the following formula:(Vogel, 2000)

𝑃௟,௞ =
𝑃௜,௞
𝑃௜,௟

The reporting period is 𝑘.(Vogel, 2000)
If the Indices have variable, but directly following periods, you can use

chain-linking to compute another price index:(Vogel, 2000)

𝑃௟,௞ = 𝑃௟,௜𝑃௜,௞

The mean growth rate of prices 𝑔 can be computed as a geometric mean
of the price indices:(Vogel, 2000)

𝐺 = ೙షభඥ𝑃ଵ,ଶ𝑃ଶ,ଷ…𝑃௡ିଵ,௡ = 1 + 𝑔

15In the temporal case methods to measure the change of the utility value can be used (i.e.
hedonic methods.).(Heske, 1992)
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5.4 Price Statistics in Germany

The aim of the price-statistic is to value goods. There are two possible ways

to evaluate: to measure the price (market value) or to measure the utili-

ty (utility value). The price statistic is interested in the former.(Neubauer,

1996, Heske, 1992) The German offices of statistics cover and describe the

data of price changes of produced and consumed goods.(Heske, 1992)

5.4.1 German Price Survey

The German offices of statistics survey the price data to compute the re-

levant price indices.(Neubauer, 1996) Their aim is to represent the price

changes of different consumption patterns.We are only looking at the con-

sumer price index (CPI) which covers the changes in the living costs of

private households. A Laspeyres type index is computed and the basis is

adjusted every fifth year. The market basket used to compute the CPI is

supposed to represent the consumption pattern of a typical German hou-

sehold.(Heske, 1992, Neubauer, 1996)

The price data are observed several ways. It has to be noted that the sample

is not a random sample at all.

The first possibility is that the price observer visits a shop which she has

chosen herself in the region chosen by the statistical offices. She has a list

of products that are described in detail. In the shop the delegate chooses

the products that she considers to be typical for the products on the list.

The price of the product is the observation. This procedure is repeated

every month with the exact same goods in the shopping basket of that re-

gion.(Neubauer, 1996) As the products are exactly the same in one region

across time and the price index is a quotient, differences between observa-
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tion points due to quality differences cancel each other out. In the spatial

setting the differences in quality become of crucial importance, because

differences do not cancel out anymore. The price statistic is representative

only of the price trend in a period and not for the level itself.(Neubauer,

1996) The second possibility is that the price observer interviews people

who know the prices needed.(Neubauer, 1996) For example the regional

manager of a chain store. Finally, there is the possibility to get price infor-

mation from the internet.

The sample is chosen arbitrarily. The idea is to have a sample of typical

cases (Neubauer, 1996), rather than a random one. The expert knowledge

is decisive for constructing of the sample.(Neubauer, 1996) As Neubauer

(1996) enumerates, the disadvantages of a random sample for the offici-

al price statistics are: only a true random sample can be more objective.

Neubauer (1996) holds the view that the required random sampling sche-

me would be very complicated and, therefore is indanger of manipulati-

on. Even more relevant, the knowledge for designing a sampling scheme

is missing. For practical reasons the necessary sampling size cannot be

achieved. Probably the random sample will have a lot of missing values or

the chosen shop is not representative. The special products of which the

prices are observed cannot be at all chosen by random. The local import-

ance also has to be considered. The disadvantages of the arbitrary sample

become less significant with the number of products and with the number

of observations over time.(Neubauer, 1996)

5.4.2 The Consumer Price Index (CPI)

In this analysis we consider the consumer price index (CPI). The statistical

offices also observe other price indices, such as the producer price index.
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It is also possible to use the methods developed to fill in the gaps for those

prices indices.

The CPI measures the average prices that private households pay for the

products needed for their lifestyle. The consumption pattern should reflect

the needs of a typical household.(Heske, 1992)

The communities in the sample of the CPI are chosen by the German Fe-

deral Statistical Office and the Statistical Offices of the States (Bundeslän-

der). The underlying idea is to cover the cities with respect to their spatial

location and their citizens.

Only cities withmore than 5 000 citizens are in the sample. The number of

observation points in the cities depends on the number of citizens: at least

eight observation points in cities with more than 100 000 inhabitants and

at least four in municipalities with less than 20 000 residents.(Neubauer,

1996) There are 118 cities in the survey.(Heske, 1992)

The shops where the price data are collected are chosen by the municipali-

ties to consider local habits. The prices of supra-local providers are collec-

ted centrally by the statistical offices themselves.(Neubauer, 1996, Heske,

1992)

For the CPI, prices are observed monthly (mid-month) and housing rents

every quarter.(Neubauer, 1996) In every community the price observer

chooses arbitrarily relevant shops where she surveys the prices. To observe

the price, the delegate looks at the price tag or asks about the price.(Neu-

bauer, 1996)

The goods that are in the shopping basket of the price index are described

in detail by the German Statistical Office.(Neubauer, 1996) The products

in the shopping basket should represent the consumption behaviour of a

typical consumer. The goods are not chosen accordingly to their import-

ance in the national accounting system. However, as they should reflect
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consumption patterns, the shopping basket is designed according to the

consumption pattern surveyed in the national accounts.(Heske, 1992)

It is important that the descriptions of the products in the market bas-

ket are not too exact. The office does not instruct to observe a special pro-

duct. The observer can choose the regionally typical product according to

the given detailed descriptions, but she observes the same products every

time,(Neubauer, 1996) so that differences between the observation points

cancel out in the temporal view of price indices.

There are about 750 products and services for which the prices are cove-

red. In the end there are about 300 000 prices in the data set.(Neubauer,

1996)

The statistic offices compute a Laspeyres type index with the shopping bas-

ket adjusted every fifth year.(Heske, 1992) To get the index, means of the

surveyed prices categorized by COICOP-10 numbers are computed for ci-

ties, then for the states a mean of the community prices is also computed

and in the end as a weighted mean of that state price indices the nation

wide prices index is computed. Weights are the number of citizens of the

states. Only in the last step indices were computed, before price measu-

re numbers16 for the single product groups are given. At the state level a

correction for quality changes is made (hedonic price index), if necessa-

ry.(Neubauer, 1996, Heske, 1992, Statistisches Bundesamt, 2013)

The weighting scheme should reflect the consumption pattern of the ty-

pical private household. The average over one year is used to identify the

weighting. As the basis changes every five years, the weighting is also ad-

justed every five years.(Heske, 1992)

16Actually it is not a price measure number, but some kind of weighted mean. The weights
are determined by the shop category, number of shops in the community, and a multiplicator
for the region. The exact description can be found in Bayerisches Landesamt fuer Statistik
und Datenverarbeitung, Sachgebiet 35, Statistik der Verbraucherpreise (04.09.2013). As we
do not use the dimension time the most adjustments described there are not relevant and
not possible, e.g. the seasonal adjustment.
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6 Regional Price Levels

Only price indices of relatively large regional units can be found.(Neu-

bauer, 1996) The reason is that the observation of the price level is desi-

gned for temporal comparisons. The temporal price-level comparison out-

weights the spatial one.

At the highest spatial level, i.e. the state level, we call the price level the in-

flation rate. The comparison of inflation rates (mostly among countries) is

the most widely used spatial comparison of price levels.(Neubauer, 1996)

If we want to construct a regional price level measure, we have to be aware

of several problems. These come clear when reading the criticism of von

der Lippe and Breuer (2009) on the Bavarian price level comparison study

of 2003.

First, using the administrative price data, we have to be aware that this data

is surveyed for a temporal comparison, which is different from the requi-

red data for a spatial comparison. To overcome this difficulty, the regional

market basket and the weighting scheme are chosen with care.

Secondly, the regional shopping basket is a part of the normal shopping

basket, excluding all products having identical prices from all over the

country. For this reason, the regional price level comparison tends to ove-

restimate the regional price differences. This fact has to be considered,

when interpreting the regional price level.

The regional classification should not influence the chosen regional shop-

ping basket. Here we solve this difficulty by using a broad classification

of the products according to the COICOP-numbers and by implementing

a statistical criterion for choosing the shopping basket. The criterion has

been developed by Götz et al. (2009). The weighting scheme has to con-

form to the shopping basket. Von der Lippe and Breuer (2009) claim that

the weighted mean of the regional price indices should be the same as the

officially reported price index.(von der Lippe and Breuer, 2009)
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6.1 Regional Price Indices

There are two reasons for computing regional price indices: On the one

hand one is interested to compare the price level differences of two regions.

On the other hand, researcher can aim to deflate nominal quantities for

inter-regional differences.(Neubauer, 1996) For the former, it is sufficient

to have an price index allowing bilateral comparisons. For the latter an

index with multilateral comparisons is required. Von Auer (2012) defines

a multilateral price index as a function that maps the prices of all products

of a shopping basket of all regions to bilateral characteristic numbers.

A bilateral price index is 𝑃௕௚, where 𝑏 is the reporting region and 𝑔 is the
basis region. A multilateral index consists of all bilateral price indices:

⎛
⎜

⎝

𝑃ଵଵ 𝑃ଵଶ … 𝑃ଵோ
𝑃ଶଵ 𝑃ଶଶ … 𝑃ଶோ
⋮ ⋮

𝑃ோଵ … 𝑃ோோ

⎞
⎟

⎠

Several price indices are discussed in the following section. First we intro-

duce the relevant bilateral price indices. Afterwards we describe desirable

properties of regional price indices. As a third step we give an overview of

multilateral price indices and how the desirable properties are fulfilled.

6.1.1 Definition of Bilateral Regional Price Indices

Compared to the inter-temporal price level comparisons, the inter-regional

price-indices have some special features. The variability of the price in-

dex numbers can be very high because of the different consumption pat-

terns in the regions. For this reason a lot of goods should be taken into

account.(Neubauer, 1996) The products in the shopping basket need to be
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comparable in all regions. According to Neubauer (1996), there are three

solutions to this problem. Firstly, the shopping basket can be limited to

the products that are available in all regions. In that case it is questionable

if the selection of goods is representative. Secondly, a shopping basket that

is representative for only one region can be chosen. This reduces the com-

parability of the other regions. Thirdly, for every region a representative

index is computed by computing the mean of the Paasche and of the Las-

peyres Index. This comes at a price of loosing interpretability.(Neubauer,

1996)

Inter-regional price measure numbers can be defined by:(Neubauer, 1996)

𝑀௝
௕௚ =

𝑝௝௕
𝑝௝௚

which is the price measure number of product 𝑗 comparing the prices of
regions 𝑏, 𝑔, with 𝑔 as basis region and 𝑏 the report region, and the pri-
ces 𝑝௝௕ , 𝑝௝௚ of 𝑚 different products.(Neubauer, 1996) The regional price

measure number refers to a unit. To combine the single unit numbers to a

regional price measure number Götz et al. (2009) propose to compute the

arithmetic mean of the unit numbers in the regional unit of interest.

The 𝑚 price measure numbers can be combined by the arithmetic mean

which defines the inter-regional Laspeyres price index:(Neubauer, 1996,

Götz et al., 2009, Kawka, 2009)

𝐿௕௚ =
∑௠
௝ୀଵ 𝑝௝௕𝑞௝௚

∑௠
௝ୀଵ 𝑝௝௚𝑞௝௚

The basis is a national constant shopping basket.

If the reference region is the national mean, the interpretation is: the aver-

age citizen in region 𝑏 pays ...% more/less than the nationwide avera-

ge.(Götz et al., 2009) The latter defines the Lowe-type regional price index
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we are going to use. In the two basic German studies on regional prices -

the Rostin (1979)- and Ströhl (1994)-study - this modified regional Laspey-

res price index is computed:

𝐿௕௚,௠௢௙ =
∑௠
௝ୀଵ

௣ೕ್
௣ೕ೒

𝑝௝௚𝑞௝ௗ
∑௠
௝ୀଵ 𝑝௝௚𝑞௝ௗ

=
∑௠
௝ୀଵ 𝑝௝௕𝑞௝ௗ

∑௠
௝ୀଵ 𝑝௝௚𝑞௝ௗ

where 𝑞௝ௗ is the national averageweighting. Themodified index has slight-
ly different characteristics.(Kosfeld et al., 2007b, Rostin, 1979, Ströhl, 1994)

If we want to weight the products differently in the regions, the Paasche

index has to be computed. The Paasche type index can also be constructed

as the harmonic mean of the price measure numbers.(Neubauer, 1996)

The different preferences of consumers can be reflected by the different

weightings.(Götz et al., 2009) The inter-regional Paasche price index is:

(Neubauer, 1996, Götz et al., 2009)

𝑃௕௚ =
∑௠
௝ୀଵ 𝑝௝௕𝑞௝௕

∑௠
௝ୀଵ 𝑝௝௚𝑞௝௕

(48)

According to Neubauer (1996), the Paasche-type cannot face the problem

of comparability of different regions due to the varying weights, as there

is no order in the regions as it is in the temporal comparison.

Kosfeld et al. (2007b) notes that the Laspeyres price index is not a cost-of-

living index (COLI), but a cost-of-goods index (COGI). The COLI is better

for inter-regional comparisons. A COLI
”
compares the minimum expen-

ditures (...) necessary to attain the same utility level in region r as in a base

area b“(Kosfeld et al., 2007a). The comparison of the economic concept,

which is the COLI, and the statistical concept, which is the COGI, in the

regional case is discussed by Mehnert (1997). For example, the Paasche-

type index is not a COLI, too.(Koo et al., 2000)
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To construct a COLI, the utility of a market basket is made constant and

the relative influence of price changes is investigated. The
”
true COL in-

dex is the comparison of the cost of purchasing the goods and services that

provide the same utility in both a comparison area and a base area“ (Koo

et al., 2000). As an idea of utility is the basis, the result depends on the

used utility function. Mehnert (1997) describe the case of a Cobb-Douglas

and the more general case of a CES utility function.

However the COLI-approach is not operational in an empirical study. The

results of Mehnert (1997) using the well known Ströhl-data show that is

is not necessary to use the complicated economic indices as the results of

the two index concepts do not differ a lot.

The solution to the problem to construct a COLI are superlative indices

as the Fisher-, Törnquist- or Welsh-Index.(Kosfeld et al., 2007b, Koo et al.,

2000, Kosfeld et al., 2007a) The OECD describes these kind of indices as:

”
Superlative“ index numbers, which were developed as part of the econo-

mic approach to index numbers.17

The inter-regional Paasche and Laspeyres indices can be interpreted as ap-

proximations of the COLI, but including a substitution bias as both use

fixed shopping baskets excluding substitution.(Koo et al., 2000) Here we

only mention the concept of superlative indices as it would go beyond this

thesis.

17Under this approach, the microeconomic theory of producers or consumers serves as
a rationale for choosing between index numbers. Diewert (1976) introduced the notion of
“flexible aggregators”. These are functional forms that provide a second-order approximation
to an arbitrary, twice differentiable linear homogenous function. Flexible aggregators can be
interpreted as functional forms that cover a wide range of utility, production, distance, cost
or revenue functions. Furthermore, Diewert calls index numbers “exact” when they can be
directly derived from a particular flexible aggregator. For example, the Törnqvist index is exact
for the translog flexible functional form – a widely used specification in empirical economics.
Thus, if one accepts a translog form as an approximation to a production function, and uses
standard assumptions about producer behaviour, the Törnqvist quantity index provides an
exact formulation for inputs and outputs. An index that is exact for a flexible functional form
is called

”
superlative“.(OECD, 2001)
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A compromise between Laspeyres and Paasche is the inter-regional Fisher

index, which is the geometric mean of the both:(Götz et al., 2009)

𝐹௕௚ = ට𝑃௕௚𝐿௕௚

According to (Götz et al., 2009), the Fisher index accounts for both com-

parability and regional preferences. Moreover the Fisher-Index is an exact

COLI under the assumption of a homogenous quadratic utility function.

An exact COLI is also named a superlative index.(Koo et al., 2000) This ap-

proach mentions Neubauer (1996), as well, highlightning the compromi-

se between comparability assured by the Laspeyeres index and the reflec-

tion of regional consumer habits assured by the Paasche Index.(Neubauer,

1996)

If a superlative-index for the assumption of a the translog utility function is

needed, we get the Törnqvist inter-area price index, which is the geometric

mean of the price ratios:(Koo et al., 2000)

𝑇௕௚ =ෑ
௝
൭
𝑝௝௕
𝑝௝௚

൱
௦

where 𝑠 = ଵ
ଶ

௣ೕ೒௤ೕ೒
ቀ∑ೕ ௣ೕ೒ቁቀ∑ೕ ௚ೕ೒ቁ

+ ଵ
ଶ

௣ೕ್௤ೕ್
ቀ∑ೕ ௣ೕ್ቁቀ∑ೕ ௚ೕ್ቁ

as the average expenditure

for a good or service 𝑗.(Koo et al., 2000)

The inter-regional Lowe index is:(von der Lippe and Breuer, 2009)

𝐿𝑂ோ
௕௚ =෍

௝

𝑝௝௕
𝑝௝௚

𝑝௥௝𝑞௥௝
∑௝ 𝑝௝௥𝑞௝௥
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where the index 𝑟 denotes the reference region. The former quotient is
a price measure number of the two regions of interest. The second quo-

tient is the weighting computed using a region of reference. This solves

the problem of choosing the weights according to the regions under con-

sideration.(von der Lippe and Breuer, 2009) If the reference region is the

average of all regions, the Lowe index becomes the modified Laspeyres

index.(Mehnert, 1997)

6.1.2 Axioms for Regional Price Indices

For an inter-regional comparison the transitivity is crucial.(von Auer, 2012)

It
”
ensures internal consistency.“(Kosfeld et al., 2007a) Transitivity means

𝑃஺஼ = 𝑃஺஻𝑃஻஼ , making chain-linking possible that is to compute a price
index on the basis of two other price indices including the price index.18

The transitivity assures that the relative position of a region is independent

from the support of observed regions.(von der Lippe and Breuer, 2009,

von Auer, 2012) It is necessary to make the index consistent for an inter-

regional comparison by defining a regional structure.(Kosfeld et al., 2007b,

von Auer, 2012) Moreover the transitivity simplifies analysis, because not

all possible comparisons need to be computed as it is possible to conclude

from one index to the other. The index is multilaterally comparable.(Neu-

bauer, 1996, Kosfeld et al., 2007b)

The Laspeyeres index does not fulfill this requirement, whereas the Lowe

Index is transitive as the used weights are independent from the conside-

red regions.(von der Lippe and Breuer, 2009, von Auer, 2012) The easiest

way to construct a transitive index is to survey prices for identical goods in

every region of interest. The index is transitive in the case of a common

shopping basket, because the nominator and the denominator cancel. As

18We defined chain-linking in chapter 5.3.
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the shopping basket is not representative in this case, this is not a good

solution.(Neubauer, 1996)

Another requirement, which is linked to transitivity, is the location or re-

gional reversibility(Kosfeld et al., 2007b): 𝑃஺஻ = ଵ
௉ಳಲ

. It means that
”
it is

invariant to the choice of s or r (here A and B) as the base region in a bilate-

ral comparison.“(Kosfeld et al., 2007a) Regional reversibility is not reached

by Laspeyres.(von der Lippe and Breuer, 2009) The modified Laspeyres-

index of Ströhl (1994) and Rostin (1979) is regional reversible. (Kosfeld

et al., 2007b,a) According to von Auer (2012) the regionally reversibility is

a test for transitivity.

The basic requirement also linked with transitivity (von Auer, 2012) is

identity, meaning that a price index measures correctly. The identity is:

𝑃஺஺ = 1. Without the identity no sensible index is possible.
If identity and transitivity hold, the location reversibility is fulfilled. As the

Lowe index is transitive and has the identity property, it is also location

reversible.(von der Lippe and Breuer, 2009)

It is also common to claim that bilateral comparisons should be represen-

tative for two regions. The result should not depend on other regions. This

feature is called charactericity. It is not independent from transitivity: if an

index is transitive, all intermediate indices have an influence on the bilate-

ral comparison, hence the charactericity is violated.(Kosfeld et al., 2007b,

Koo et al., 2000, von Auer, 2012, Kosfeld et al., 2007a) Therefore the deci-

sion between transitivity and charactericity is a trade-off between the two.

Von Auer (2012) also mentions that a price index should be independent

of the basis chosen. All indices using a hypothetical basis fulfill the basis-
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invariance property. For example the Lowe index using the average of all

regions satisfies it.(von Auer, 2012)

6.1.3 Multilateral Regional Price Index

Amultilateral price index is more than thematrix of all bilateral price indi-

ces comparing the prices of every pair. As the natural ordering of temporal

price indices cannot hold in the two-dimensional spatial case, the given axi-

oms especially the transitivity cannot be easily fulfilled. Von Auer (2012)

gives a good insight into the theory and methods of multilateral price in-

dices without the discussion of superlative price indices. The methods try

to harmonise the transitivity with the charactericity. Von Auer (2012) clas-

sifies the methods in three types:

1. Correcting means to start with fully characterised indices for every

pair of regions. In a second step, changes to the given fully charac-

terised indices are made to reach transitivity. These changes should

be as small as possible.(von Auer, 2012) A familiar method of this

approach is the EKS(Koo et al., 2000) or GEKS as von Auer (2012)

names it, as he adds Gini to the list of authors.

In the GEKS method, the first step consists of computing a Fisher-

index for every region. Afterwards, the Fisher indices which fully

satisfy charactericity are corrected to fulfill transitivity, too. The mi-

nimisation rule is based on squared residuals of the corrected indi-

ces to the original indices.(von Auer, 2012) Koo et al. (2000) interpret

this procedure as minimising the distance to the Fisher-Index:

𝐸𝐾𝑆௜௝ = ቌෑ෍
௄
𝐹௜௄ෑ

௄
𝐹௝௄ቍ
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where 𝐾 denotes the basis region and 𝑖, 𝑗 are the regions which we
want to compare.19

2. The second class of multilateral price indices is the class of chain-

linking. (von Auer, 2012) Here one region is chosen to be the basis

for all bilateral price comparisons. All price-indices computed are

fully characteristic. To get multilateral price comparisons, all other

price indices are computed as quotients or products of the charac-

teristic bilateral price indices.(Koo et al., 2000) To reduce the com-

putational burden, we look for the minimal number of price indices

needed to conclude to all other price-indices. After all needed pri-

ce indices are computed in a way that they fulfill charactericity, the

rest of the price indices are computed by division or multiplication

to reach transitivity.(von Auer, 2012)

3. VonAuer (2012) names the third classharmonisation approach.Using

this approach, prices and volumes are standardised to define artifi-

cial standard units. In a second step the prices and transformed vo-

lumes are used to compute a price index for every region. The most

familiar index of this group is the Geary-Khamis-index. This class

leads to generalised unit values.(von Auer, 2012)

6.2 A Shopping Basket for Regional Price Indices

The fundamental decision for a shopping basket for regional price indi-

ces is to decide between a regionally typical or an identical market basket.

Neubauer (1996) names the most important criterion for this decision: the

homogeneity between the regions is decisive for the degree of regionali-

sation of the market basket. As we only use data from Bavaria it is not

19Koo et al. (2000) develop their own new price index which is tailor-made for the data they
use. It is a Fisher-type multilateral index as described above.(Koo et al., 2000) As it will not fit
to our data problem here, we do not discuss the new COL of Koo et al. (2000).
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necessary to regionalise the market basket, because regions are not that

different.

According to von der Lippe and Breuer (2009), there are three problems:

firstly products have to be comparable (their quality should be equal), se-

condly they must be available everywhere, and thirdly they must have dif-

ferent prices. Reading Götz et al. (2009) a fourth criterion gets evident:

The regional shopping basket should reflect the overall shopping basket

as good as possible. In the following sections, we describe how we are go-

ing to solve the four problems.

6.2.1 Products Should Be Comparable

We have to assure that the products in the shopping basket are compara-

ble in all regions. This aim can be achieved by choosing just the products

that are the same in every region. This course of action is taken by Rostin

(1979) and Ströhl (1994), reasoned by the aim of identity. Rostin (1979) ar-

gues that all products need to be perfectly identical due to the fact that price

differences could be caused by quality differences. However this leads to a

shopping basket that is not representative any more, if the administrative

data are used.

The opposite idea is to choose a shopping basket for every region reflec-

ting the regional consumption behaviour, but then no comparisons can be

drawn at all.(Neubauer, 1996) As we use data of the official statistic, it is

not possible to only take prices of identical goods and services into account.

Because the same products are surveyed every year, the identity is fulfil-

led in the temporal point of view.(Bayerisches Staatsministerium für Wirt-

schaft, Verkehr und Technologie, 2003) In the spatial point of view the pro-

ducts are not identical, but representative, because they are chosen to be

typical for the region. Moreover in a study from the Bayerisches Staats-

ministerium für Wirtschaft, Verkehr und Technologie (2003) it is argued
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that the goods need not to be perfectly identical, because most of them

can be substituted. Secondly, as the most shops are chain stores of supra-

regional brands, it is likely that the products are very similar among regi-

ons. These two facts should assure that the same products are available in

every German region, and therefore the regional shopping baskets should

be similar.(Bayerisches Staatsministerium für Wirtschaft, Verkehr und -

Technologie, 2003) We have to contradict von der Lippe and Breuer (2009)

claiming for identical products and identical shops for every observation

point in the survey. Firstly, some of the differences can be controlled for

in the estimation model, e.g. by including a variable for the shop quality.

Secondly, the regional shopping basket should reflect the regional charac-

teristics, allowing for some differences and some substitutes. Moreover

we follow the arguments of Kawka (2009) that differences of prices due to

different qualities can be interpreted as white noise to some degree.

The most important factor in making products comparable is ensuring

that the goods have the same quality. The differences in the prices bet-

ween regions should not reflect quality gaps. It needs to be distinguished

between price and quality differences. To do so, Götz et al. (2009) propose

to compute an intra-regional variance and an inter-regional variance for

the single products. The former compared to the latter reflects possible

quality differences. If the intra-regional variance is large compared to the

inter-regional variance, the prices differences are generated by the quali-

ty.(Götz et al., 2009) These products should be excluded from the analysis.

However, we have to keep in mind that the shopping basket should reflect

the behaviour of a typical consumer in the region justifying some degree

of quality differences.(Götz et al., 2009) Not all quality differences should

cancel out. The authors von der Lippe and Breuer (2009) state that the dif-

ferent consumers habits are respected by the construction of price repre-

sentatives. There is a trade-off between the aim of representativeness and

the aim of identity. For the price observation there are officially only broad

descriptions of the product for which the price should be surveyed. The
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local characteristics can be considered by choosing a product that is typi-

cal for the region following representativeness.(von der Lippe and Breuer,

2009)

As we use data of the price statistics of the Bavarian State Office for Sta-

tistics, we only can exclude cases that violate the comparability condition.

It is not possible to survey data in a way to reach identity or comparability.

Following the ideas of Götz et al. (2009), we construct a criterion to exclude

products with large differences in quality. If the intra-regional variance is

large compared to the inter-regional variance a great amount of variability

is due to quality differences as shops differ intra-regional and the structu-

re of chosen shops is the same across regions. The variance alone of one

product is not meaningful, because the nature of the product itself could

cause the high variance. The easiest way is to look at the quotient of the

intra- and the inter-regional variance:

𝑄 = 𝑉𝑎𝑟௜௡௧௥௔
𝑉𝑎𝑟௜௡௧௘௥

The advantage of the quotient is its simple interpretation: If 𝑄 = 1 the
inter- and the intra-regional variance are the same, there is no hint for

quality differences. If 𝑄 < 1, the intra-regional variance is smaller than
the inter-regional variance, which suggests that the product is a good in-

dicator for regional price disparities. We want to exclude the cases where

𝑄 is much bigger than 1, as it is a hint for quality differences. Here we
choose 𝑄 > 5 as the relevant threshold.

6.2.2 Products Must Be Available in Every Region

The more precise the description are of the products in the shopping bas-

ket, the easier it is to exclude quality gaps, but themore difficult it is to find
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the product in every region. In contrast, von der Lippe and Breuer (2009)

states that at least one representative for every shopping basket post must

be observed at the regions being subject to the estimation. This problem

can be solved by using broad categories of the products.

By default the international COICOP numbers are used to create the clas-

ses. The COICOP-numbers define a hierarchical classification of the shop-

ping basket: There are 12 main groups of products, composed of 40 pro-

duct groups that can be split into 106 classes of products.(Götz et al., 2009)

The COICOP-classification is part of the System of National Accounts and,

therefore, it is a classification of consumer expenditures. The COICOP-

classes are services, non-durables, semi-durables, and durables. The classi-

fication is not only made for expenditures of households, but also for non-

profit organizations serving households, and general government.(Depart-

ment of Economic and Social Affairs, 2000) For the CPI only households

are taken into account, and therefore we just use the COICOP-numbers 1

to 12 representing expenditures of private households.

Another way to assure that enough goods are available in every region is to

broaden the spatial classification. The broader the classification the more

realistic it is to get the prices of all products in the regions needed.(Kawka,

2009) We choose districts (Kreise) as spatial classification. Kawka (2009)

values this as a compromise between precise regional accountability and

the aim to have enough measurements per region.

This problem is our initial theme. We want to fill-in the missing regional

prices to obtain complete map. The definition of the shopping basket by

the offices of statistics guarantees that all products are theoretically avail-

able everywhere in Germany. For these two reasons we do not need to

consider the requirement that the products need to be available in every

region. However we need to assure that the regional classification is broad

enough to estimate prediction models, and that products are comparable
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across regions. The former is done by using districts, the latter is done by

the methods described in the previous chapter.

6.2.3 Products Must Have Different Prices

If products do not have different prices, a statistical analysis is not mea-

ningful. In this case it is not possible to estimate or predict. Moreover, it

is not necessary to compute regional prices, because they are always the

same. There are no regional price differences. If the inter-regional varian-

ce is small, the price is not varying regionally and therefore it should be

excluded from the regional shopping basket.(Götz et al., 2009) When com-

puting the price index, however, the number of products whose prices do

not vary regionally need to be taken into account by weighting, otherwise

the regional price differences are overestimated.

We can use some information given by results of studies described above.

The city comparison study of Ströhl (1994) gives some hints: the type of

product seems to be a deciding factor. For durables Ströhl (1994) cannot

find considerable regional differences. The differences are more promi-

nent for commodities, and the largest differences are seen for services.

(Ströhl, 1994)

A look at the Bayerisches Staatsministerium für Wirtschaft, Verkehr und -

Technologie (2003) study is helpful, because it uses similar data as we are

going to use. The authors exclude products with identical prices by exclu-

ding the
”
Z-Positions“. These are fixed prices such as for books, medicine,

or and mail order products. According to von der Lippe and Breuer (2009)

the exclusion of products with constant prices leads to an overestimation

of regional differences. Of course, only including those products with un-

equal prices overvalues the differences, but for a prediction of the regional

price levels it is better to have a larger variability. It is possible to combine
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the predicted regional different prices with the spatially constant prices to

a shopping basket that is relevant in a second step.

To guarantee that enough variance is in the data for an estimation of pre-

dicting models, we excluded all variables with a too small variance. We

computed the variance coefficient to get a measure that is independent

from the scale of the products. A list of the products can be found in the

appendix. The changes in the shopping basket need to be considered in

the weighting scheme.

6.2.4 Regional Market Basket Must Be Representative

As the choice of a shopping basket is essential for calculating of regional

price indices it is worth mentioning the criteria to construct it. According

to Götz et al. (2009) there are two alternatives for constructing an optimal

regional shopping basket: first, the number of products in the shopping

basket is determined and then the most significant products are chosen.

The second criterion uses the amount of explained variation as measure

of the information included in the regional shopping basket.(Götz et al.,

2009)20

20Here, we do not mean the following notion of representativity: Götz et al. (2009) ask

”
which goods are necessary“ for a good representation of the original shopping basket. The
price index of the reduced shopping basket should be a good estimator of the price index ba-
sed on the whole shopping basket. The products with the best content to the overall shopping
basket should be in the reduced shopping basket.(Götz et al., 2009) This kind of represen-
tivity refers to the similarity between the original shopping basket and the shopping basket
of the regional comparison, and does not refer to the representivity of regional consumer
behaviour.
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Götz et al. (2009) define the following equation, which is chosen ad-hoc:

𝑚𝑖𝑛ீೕ⊂ீ1000
௡

෍
௜ୀଵ

𝑎௜ ቀ𝑝௜,௝ − 𝑝௜ቁ
ଶ
+

௡

෍
௜⊂௞

𝑉𝑎𝑟 ቀ𝑝௜௝ − 𝑝௞௝ቁ

under the restriction #𝐺௝ = 𝑐

where 𝑐 is the chosen number of products in the shopping basket and 𝑎௜
is the population share of a region. The first part of the equation refers

to the deviation of the single price from the regional price, whereas the

second part measures the variability of the batch of products. The latter is

necessary as constant batches need fewer observations. The weight of 1000

for the first part of the sum is arbitrarily chosen. It is necessary because of

the different scales of the two summands.(Götz et al., 2009, Bleninger and

Trojan, 15.05.2014)

For the second approach, the quality of the different regional shopping

baskets are measured via the correlation coefficient 𝑅ଶ and the rank corre-
lation coefficient. The price index of the overall shopping basket is regres-

sed on the price index of the reduced product bunches. Then the 𝑅ଶ are
compared.(Götz et al., 2009)

6.3 The Price Data

We use data provided by the Bavarian State Office for Statistics. The data

at hand are price data collected for the CPI of May 2011. There are 749

different products in the shopping basket. Some products are collected

centrally. Prices of these products do not differ regionally. For this reason

only the prices of 607 products are in the data set. In fact we face a number

of 27,418 prices.(Bayerisches Landesamt fuer Statistik und Datenverarbei-

tung, Sachgebiet 35, Statistik der Verbraucherpreise, 04.09.2013)
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The data set comprises of the regional price information of the single pro-

duct, some regional codes and characteristics of the observed product such

as the amount and the measurements. Additionally there is some infor-

mation about the shops where the products are bought.(Bayerisches Lan-

desamt für Statistik und Datenverarbeitung, Sachgebiet 35, Statistik der

Verbraucherpreise, 2013) The Bavarian State Office for Statistics provided

as an additional information the weighting scheme. The regional level of

the data refer to the 96 Bavarian counties (administrative).

In a first step, we adjusted the data: as the product description for the pri-

ce observers is broad, it was not possible to compare the prices of some

product groups. For example the category services for funerals included a

funeral as well as burials. These product groups including things that are

not comparable at all were excluded from the analysis. Moreover products

were observed using different measures (e.g. litres and grams) and in dif-

ferent amounts. We refined the data for these differences.21 After cleaning

there were 553 different products and 25 401 single prices left in the data

set.

In a second step, we have chosen those products relevant for a regional

price index according to the ideas described in chapter 6.2. Firstly, we ex-

cluded all products with fewer than 20 observations, due to the fact that a

statistical analysis needs some observation. A prediction based on less than

20 observed prices cannot be useful. Secondly, all products with a quotient

of intra-regional to inter-regional variance greater than 5 were removed.

We defined this criterion above. Its aim is to assure that price differences

are not caused by quality differences. After the necessary exclusion of data

using this criterion, 465 products with 21,385 price observations were left.

In a last step, we eliminated all products with a variance too small for a

21I have to thank Sören Abbenseth for his help at this point.
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spatial analysis. We decided to remove all products with a variation coef-

ficient smaller than 0.3. In the end the data set consists of 405 products

with overall 18,922 price observations.

When computing the regional price index below, we needed to adjust the

weighting scheme according to the changes made in the shopping basket.

According to von der Lippe and Breuer (2009), the weighting scheme of

regional prices should be external. As the weights of the official CPI are

external, von der Lippe and Breuer (2009) and Kosfeld et al. (2007b) pro-

pose to use them. Kawka (2009) also uses these weightings.

The weights of the regional shopping baskets can be aligned according to

the expenses of consumers living in that region as it is done for the overall

CPI. This idea leads to individual shopping baskets for every region re-

flecting the consumption habits in every region.(Götz et al., 2009, Kawka,

2009) The alternative is, as Götz et al. (2009) mention, to use only similar

goods leading to a homogeneous weighting scheme. The reason for this is

that we are interested in differences of real price rather than of the cost of

living. In the latter case a regional shopping basket is needed, in the former

case a shopping basket is needed that is identical for all regions.(Kawka,

2009) In the Bayerisches Staatsministerium für Wirtschaft, Verkehr und -

Technologie (2003) study a weighting scheme is described, but according

to von der Lippe and Breuer (2009) it is very problematic.(von der Lippe

and Breuer, 2009)22

Due to the fact that the national accounts do not report consumption be-

havior on a level smaller than the states level (Kawka, 2009), we choose an

identical shopping basket for all regions. This supports the decision to use

a statistical price index instead of a COLI. To use an external scheme, we

22Von der Lippe and Breuer (2009) give the following reasons: It is another weighting sche-
me as the one of the CPI of the German Federal Statistical Office. There are different weights
used in the study and it is not reasoned. There are some absurd issues: rents become more
important themore communities are included in the comparison. Other weights are adapted
to the survey size. There is no relationship between the number of price observations and the
used weights.
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decided to use the weighting scheme of the official price statistic which is

based on the consumer habits in Germany. We adjusted for the changes

in the shopping basket made by re-weighting for the new sum (afterwards

the sum of all weights is 1) and preserving the shares compared to each

other.

6.4 Influencing Factors of the Price Level: A Regression Mo-
del for Regional Prices

In the following section a model determining regional price levels is de-

veloped. We will define the relevant influencing factors and the best func-

tional form. The necessary literature view and theoretical background is

partly based on an article which is a joint work with Alexandra Trojan and

still work in progress. The empirical modelling and data analysis are not

yet completed for the the joint article. As it is required here, the empirical

evaluation is conducted by the author alone, but it is planned to be im-

plemented in the article, too. To make the relevant passages accountable,

every clause that bases on the joint work ends with a reference to the paper.

6.4.1 Discussion of Studies on Regional Price Levels

The most important studies on regional price levels in Germany are the

two linked studies by Rostin (1979) and her successor by Ströhl (1994).

Both studies collect data on regional prices in German cities with the aim

of a inter-regional price comparison.

The older study of Rostin (1979) uses data from 31 west German cities to

collect the data of the European purchasing power comparison. Rostin and

his colleagues observed 60 000 prices of 400 products that were relevant for

a regional price comparison.(Rostin, 1979) Housing costs were excluded
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from the analysis as it was to difficult to find comparable flats. Of course

this decreases the usefulness of the study. It can be assumed that price

differences are underestimated, if housing is excluded.(Kawka, 2009) The

selection of cities was done with respect to their spatial distribution, popu-

lation size, population density, and closeness to the border. The reporting

units were chosen to be equal with respect to quality in all cities. To control

for seasonally varying qualities, seasonal products were collected at a very

small time interval. Rostin (1979) computes a Laspeyres price index with

Bonn as reference point.(Rostin, 1979, Bleninger and Trojan, 15.05.2014)

The price differentials of the analysed product groups do not have the sa-

me value. Food products, clothing, shoes, and services are more expensive

in bigger cities. Durable goods as electrical products, furniture, and drugs-

tore articles are cheaper in larger cities than in smaller ones.

The study of Angermann was published in 1989. It uses data on regional

prices that were surveyed to adjust salaries of employees of international

organizations such as the European Community. Rents are included in the

study, but only prices of high-end flats were explored. Moreover the ana-

lysis is restricted to a small number of cities.(Kawka, 2009, Angermann,

1989) As in the Rostin-study a Laspeyers-type index with weights repre-

senting the average German consumption are taken. Angermann (1989)

reports large differences in prices in the four German cities which were

observed.(Angermann, 1989)

The study of Ströhl (1994) is a replication of the Rostin (1979) study.(Neu-

bauer, 1996) The successor study was undertaken 15 year later in 1993 and

the results were published in Ströhl (1994). As a lot of other studies use the

Ströhl-data for their analysis (Kawka, 2009), we describe it in more detail.

The collaboration of the Federal Statistical Office, the Statistical Offices of

the states and of the surveyed communities sampled price data in 50 cities
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in Germany. All 31 cities of the Rostin-study and additional Eastgerman

cities took part at the overall German price level comparison.

In this study 367 products were in the shopping basket. Again the federal

weighting scheme and the Laspeyres-type index with the basis Bonn were

used.(Ströhl, 1994, Bleninger and Trojan, 15.05.2014) In fact, a Lowe-type

index is constructed as the weights are federal averages and the prices are

from the basis and the reporting region.(Vogel, 2000, Mehnert, 1997) In

turn, housing costs are not included. The cities itself were chosen by the

German federal government to represent Germany spatially. Core areas as

well as economically underdeveloped areas should be taken into account.

Big cities are overrepresented. The cities were grouped according to their

size to make homogenous classes. These classes are mostly important for

the weighting. Although the CPI should reflect the prices a consumer in

a region pays and therefore the acts of purchase of inhabitants should be

surveyed in neighboring regions, only prices in the cities of interest can

be observed.(Ströhl, 1994) The former definition of a regional CPI cannot

be surveyed by a price observation in the shops. Instead a survey following

consumers is necessary. However, the official price data reflect the supply

prices in one region and not the demand prices.(Ströhl, 1994)

The shops themself were chosen by the communities, which were obser-

ved by the public offices. The retail structure was described and the ob-

served shops were classified according to it. The official statistical offices

prescribed some characteristics of the shops to prevent that they were too

different.(Ströhl, 1994)

There are 367 products in the regional shopping basket. The goods should

be the most popular product. To guarantee comparability, the description

of the product was very precise. The very important housing is again not

represented in the city comparison study as it was too difficult to find com-

parable flats.(Ströhl, 1994)

Ströhl (1994) uses two different weighting schemes: the first weighting

scheme is for computing the means of the country, states and east-west
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comparisons. Here the size classification is used. The cities of one class

have the same weight according to portion of people living in that class of

cities.(Ströhl, 1994)

For the weighting of the shopping basket the expenditure structure of the

national accounts was used. As they are not available at a regional level,

the weighting scheme is a national one. For that reason only a Laspeyres

and not a Paasche index could be computed.(Ströhl, 1994)

The two studies - Rostin (1979) and Ströhl (1994) - surveyed very good data

for a regional price index. Nowadays the data are worthless as they only re-

present that time. A temporal extrapolation as done by Haupt and Heinze

(2012) seems not sensible on basis of that data.

To repeat the studies is also not possible: firstly, it has to be noted that a

price survey for a regional price comparison is very cost and time inten-

sive. Secondly, it has to be realised that even the two studies themselves

have problems due to their inadequate regional basis. Moreover no rural

areas are taken into account. Therefore, we need to find other ways to get

a regional price level.

Of course there are similar efforts in other countries. Koo et al. (2000) de-

scribe two of those surveys. The American Chamber of Commerce Rese-

arch Association (ACCRA) publishes a comparison of more than 250 cities

including a lot of products and also rents. The aim is to represent the cost of

living of amid-levelmanager by 59 items in the shopping basket. The price

comparison of one item is computed as the quotient of the average price

in one region and the average price of all regions. The weights of the items

which base on the Bureau of Labor Statistics (BLS) Consumer Expenditu-

re Survey are constant for all regions defining a kind of Laspeyres-index.

The market basket and the sample size vary over time making a time se-

ries impossible. However Koo et al. (2000) show that the ACCRA index has

three problems: a sampling error, sampling bias, and an aggregation bi-
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as.(Koo et al., 2000) Another US-survey on regional prices is conducted by

the BLS itself. They tried to compute an index on the basis of the American

CPI. Based on this data, Kokoski, Cardiff and Moulton computed an index

which Koo et al. (2000) name a true Cost-of-living index. Their high-quality

data minimizes the sampling error from ACCRA-index. A regional index

for 44 areas is published. The computation of the index, which is a gene-

ralized EKS index, is quite complicated, but it has a smaller aggregation

bias as the ACCRA-index. It is described and discussed by Koo et al. (2000).

Walden (1998) also uses data of the ACCRA. In this very early study, he

imputes regional prices and also price indices by a regression approach,

using the national price level, the population size, the geographical size of

region, the population growth rate, the rate of persons having a manage-

rial or professional occupation, an educational indicator, and the tax rate

as explaining factors.(Walden, 1998) More interesting than the used co-

variables is that the authors use seemingly unrelated regressions to face

the problem that the prices of the single goods and services are correla-

ted.(Walden, 1998) Of course, this issue is also problematic in our analysis.

As we are going to estimate the prices of more than 400 products, it is not

possible to establish a SUR-system of equations.

Kawka (2009) starts his study with a literature view of a hundred years of

research on regional prices in Germany. In the 19th century some surveys

on regional prices of single products have been conducted. Kawka (2009)

notes that already in the studies of the Statistische Reichsamt in 1930 and

1941/42, which are large-scale surveys, agglomeration areas have a higher

price level than rural areas and small communities have higher prices, if

they have a special reputation (e.g. touristic spots). Later analysis are re-

stricted to special topics or regions described above.(Kawka, 2009) At the

end of the section Kawka (2009) subsumes a lot of international studies on

regional prices. Instead of repeating it, we subsume the result by a list of
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possible influencing factors identified. The list can be found in the table

at the end of this section.

Later in the Kawka (2009) study the influencing factors are analysed by

regression analysis. The income per capital, the wages per employee, the

population density, the number of hotel over nighstays per inhabitant, the

population growth rate and a east-west dummy are identified as having a

significant influence on the regional price level.(Kawka, 2009) As wages

are part of the income a problem of multicollinearity may arise. However

income measures the demand and wages measures the supply as it is a

factor cost.(Kawka, 2009)

Kawka (2009) collects his price data from several sources over a time-span

of 2 years (2006-2008). Overall there are 205 products which can be clas-

sified in 57 product groups. These data represent 73.2% of the shopping

basket which is used by German offices of statistics.(Kawka, 2009) The se-

veral data sources are of different qualities and the long time-span of data

collections are the reasons for not using that data here. The main result

of Kawka (2009) is a classifications of products according to geographical

pattern. Kawka (2009) defines following groups of products:

1. Products with homogenous prices:

Food products (except those products that can be bought at a counter

or at the market, e.g. bakery or butcher), products with fixed prices

(e.g. books), cars and motorbikes

2. Products with a centre-periphery difference:

Rents and procuration fees, hotel costs, local public traffic, sport

clubs, recreational facilities (e.g. swimming baths), tax on land and

buildings
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3. Products with a east-west difference:

Driving school costs, special-care home costs, craftsmen costs, electri-

city costs, tax accountant costs, taxi journeys

4. Products with a north-south difference:

Newspaper, education costs (e.g. costs for adult evening classes),

maps, betting fees, household insurance, heating oil, charges for car

insurances

5. Products without any identifiable pattern:

Petrol/diesel, drinking water, car insurance, bank account charges,

commercial advert, cinema(Kawka, 2009)

The most important result of the Kawka (2009) study is that the lower pri-

ces in East Germany result from the structural disadvantages there.

Kawka (2009) also discusses the Bayerisches Staatsministerium für Wirt-

schaft, Verkehr und Technologie (2003) study that is a follow up of a study

conducted by the GfK in 1982. Both studies analyze the price levels in 21

cities in Bavaria using the data of official statistics. Von der Lippe (2009)

criticize vehemently the methods used.(Kawka, 2009, Bleninger and Tro-

jan, 15.05.2014) Due to the fact that the number of different products that

are surveyed in the regions differ according to their size and importance,

Bayerisches Staatsministerium für Wirtschaft, Verkehr und Technologie

(2003) defines three different observational groups with their own shop-

ping basket. This leads to some odd results: the ranking between two regi-

ons can change, if other regions are included or excluded from analysis.23

This and the criticism by the von der Lippe and Breuer (2009) study are dis-

cussed later in this chapter. The study Bayerisches Staatsministerium für

Wirtschaft, Verkehr und Technologie (2003) use 17 sub-indices to compu-

te an overall-index which refers to differences from the Bavarian average.

The analysis uses three classes of products and groups of surveyed cities

23In rational choice literature this feature is named violation of independence of irrelevant
alternatives.
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Bayerisches Staatsministerium für Wirtschaft, Verkehr und Technologie

(2003), which creates the most problems.(von der Lippe and Breuer, 2009)

The study in 2003 is important for the reason of being cited in a court

decision about about the adjustment of civil service pay to regional price

levels.(Kawka, 2009) The Bundesverfassungsgericht has rejected the law-

suit of the Bavarian officers.(BVerfG, 2007)

We do not face these problems as we fill-up the shopping basket with all

prices by usingmissing data techniques before computing the price index.

For this reason we do not need different groups of surveyed cities and pro-

ducts.

The Grimmer and Schulz-Borck (1982) study evaluates the price levels of

smaller communities and in rural areas. Kawka (2009) subsumes the re-

sults: Smaller municipalities have lower prices as long as transportation

costs are not included in the analysis.(Kawka, 2009) Using empirical in-

formation on prices in rural areas Grimmer and Schulz-Borck (1982) ma-

ke a model calculation of transportation costs and prices on the aim of

utitilty optimisation. The underlying assumption is that the location cons-

traints of small and rural communities lead to unrealised consumer nee-

ds. The data result from an own survey of prices in rural areas including

362 randomly chosen rural municipalities and 116 goods and services of

the CPI shopping basket. Grimmer and Schulz-Borck (1982) identify the

community size, the centrality, the population growth and density, the

spending capacity and the north-south location as driving forces of the

prices.(Kawka, 2009)

Even though quite old, the analysis of Grimmer and Schulz-Borck (1982)

gives an interesting and unique insight into regional prices in peripherical

areas. The results show that a positive effect of population size, populati-

on density, spending capacity, and closeness to agglomeration areas. Pri-
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ces in southern regions are also assumed to be higher, but Grimmer and

Schulz-Borck (1982) do not find empirical evidences for this. The effect

of the growth of a community cannot be supported by the data.(Grimmer

and Schulz-Borck, 1982) The used variables are classes of community size,

Bundesland, rural, suburban and urban zones, development of populati-

on, per capita gross domestic product, communities per capita fiscal ca-

pacity and a measurement of spending capacity. In contrast, no effect of

economic structure and the size of the primary sector can be found.(Grim-

mer and Schulz-Borck, 1982)

Another intersting aspect that Grimmer and Schulz-Borck (1982) high-

light is that in 1982 nearly all products and services are available in the

rural neighbourhood. We do not share the conclusion of a gap in the pos-

sibilies of fulfillment of demand as the most sizes of the shopping basket

are available. However, the data are obsolete and nowadays the coverage

of stores is better than in the eighties.

There are also many studies using the data of the studies described above.

A short description of those studies can be found in Kawka (2009). Here

we only describe those articles that are relevant for modelling.

The Roos (2006) study predicts three kinds of price index of all counties

in Germany using the data of Rostin (1979) and Ströhl (1994). The pri-

ce indices are the price index of services, the price index of goods, and

the price index of durable goods. Roos (2006) imputes the missing price-

level information by a regression for which he reports a quite good model

fit.(Bleninger and Trojan, 15.05.2014)

Roos (2006) chooses his covariables according the following argumenta-

tion: if we assume a spatially segmented market structure without strate-

gic market behaviour, immobile market participants and no transportati-

on costs, the regional prices are determined by local demand and supply.
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Then looking at the influencing factors of the demand side: it is determi-

ned by the local income and local preferences. Across Bavaria and pres-

umably across whole Germany it is likely that preferences do not differ

that much. The local income can be measured by the regional per capi-

ta income. The regional prices of the supply are determined by the local

factor costs, which are retailing costs for trading goods, regional wages,

rents for retail outlets, and the degree of local competition. Roos (2006)

measures the demand side by the regional average wage level, the popula-

tion size, the population density and a dummy for tourism. Tabuchi (2001)

also reasons that the demand side is influenced how attractive a place is

for tourists. He argues that the higher number of tourists and business-

men in cities, the higher the reservation price, which rises the price-level,

of course.(Tabuchi, 2001) There are no variables representing local amen-

ities and the competition structure. For the latter Roos (2006) tries to find

empirical evidence, but he notes that its influence cannot be proven.(Roos,

2006, Bleninger and Trojan, 15.05.2014) In contrast, in a study about the

influence of the competition structure on food prices in Sweden Asplund

and Friberg (2002) find a significant effect. The authors measure the com-

petition structure by the number of shops, size of shop and the branch

affiliation structure. However, later in the analysis Asplund and Friberg

(2002) state that the results depend on the rigid identity of the products

that are compared.(Asplund and Friberg, 2002)24

The most important immobile good is housing which is very problematic,

because comparable flats need to be found. As housing has a large weight

in the shopping basket of German official statistic, the differences have

a great influence on the price-level differences. We cannot prove whether

the high differences of housing prices are caused by quality differences

24Asplund and Friberg (2002) use very rich data on food prices: there are about 1000 stores
across Sweden with about 30 items. The analyzed products are precisely defined and exact
the same products are surveyed in the shops. Second, a less exact data set is used. Asplund
and Friberg (2002) also take 732 price observations in 40 towns, which are data of the Swedish
government, into account.
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(then we have a measurement problem) or by the impossibility of arbitra-

ge.(Roos, 2006) This is important to bear in mind for the following analy-

sis.

The two studies, Roos (2006) and Tabuchi (2001) complement each other.

Tabuchi (2001) gives an equilibrium theory, which follows the same argu-

ment as Roos (2006), who explores the question empirically. In contrast,

Götz (2012) tries to derive conditions of a market equilibrium. His analy-

sis is quite theoretical and uses very strong assumptions. He underlines

the influence of the degree of product differentiation and the intensity of

the competition in the regional market. The analysis of Roos (2006) gives

reason to doubt the influence of the competition structure.(Bleninger and

Trojan, 15.05.2014) Here it is not possible to test the effect of the competi-

tion structure, because we do not have precise data. According to (Asplund

and Friberg, 2002) we need exact data to analyse the effect of competition

structure on price data.

Instead of a very theoretical model, Roos (2006) chooses those variables

that are correlated with the price index and assumes a simple linear re-

gression model:

𝐶𝑃𝐼 =𝛼଴ + 𝛼ଵpopsize+ 𝛼ଶGDP+ 𝛼ଷincome
+ 𝛼ସretailrent+ 𝛼ହdensity+ 𝛼଺tourism
+ 𝛼଻east+ 𝑢

where 𝑢 is a normal zero mean error term. Even though the model is quite
simple, Roos (2006) reports a good model fit and good predictions measu-

red by crossvalidation.(Roos, 2006, Bleninger and Trojan, 15.05.2014)

The already mentioned study of Asplund and Friberg (2002) on Swedish

food prices stresses the importance of shop characteristics. The store ty-

pe and size as well as the affiliation is controlled in the regression model.
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Beside regional characteristics as regional income, wages, and populati-

on density (defined as a proxy for housing costs) a random effect on the

store level is included in the anaylsis. However the emphasis of the study

is the influence of the market structure on food prices making the study

only comparable to a small part of our results as we are going to look at all

prices of the market basket.(Asplund and Friberg, 2002)

Following economic theory, Kosfeld et al. (2007b) derive two regression

models, one for housing rents and one for prices of consumer durables.

The authors enrich utility and production functions under a maximizati-

on calculus with demographic characteristics. A more precise description

can be found in the discussion paper Kosfeld et al. (2007a). On the demand

side the ordinary demand-functions arising from the utility maximisation

under the budget constraint are enriched by demographic characteristic

using translation. If a Stone-Geary-type utility function is assumed, the

established demand system becomes linear. From the supply side, a neo-

classical production function is used where prices depend on regional cha-

racteristics, too.(Kosfeld et al., 2007a)

Even though the derivation of the models is strictly economic and qui-

te complicted(Kosfeld et al., 2007a), it leads to a simple linear regression.

Looking for an equilibriumgives the two econometricmodels: one for hou-

sing and one for consumption costs(Kosfeld et al., 2007b, Bleninger and

Trojan, 15.05.2014) Here we only need the prices of durables:

𝐶𝑃𝐼 =𝛼଴ + 𝛼ଵincome+ 𝛼ଶovernight+ 𝛼ଷwage+ 𝛼ସdensity+ 𝑢

for the first three parameters Kosfeld et al. (2007b) assume a positive effect,

whereas the direction of 𝛼ସ cannot be assumed. The purchasing power is
measured by disposable income and increases withthe demand of travel-

lers measured by the number of hotel overnight stays. The concentration

of demand is reflected by the population density.(Kosfeld et al., 2007a) As
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wages, income and prices are simultaneously determined on the market,

wages and income cannot be seen as strictly exogenous. To solve the en-

dogeinity problem, Kosfeld et al. (2007b) propose the classic solution of

an instrumental variable approach with the possible instruments: over-

nigth stays, population density, population size and human capital. The

estimation proposed is a 2SLS.(Kosfeld et al., 2007b, Bleninger and Trojan,

15.05.2014, Kosfeld et al., 2007a) In our analysis later, it is not possible to

consider the endogeneity problem, because there are no solutions to in-

clude it into the multiple imputation.

In a second step, Kosfeld et al. (2007a) update the data into future using

inflation rates of the Bundesländer, to get regional prices beyond the year

1993. Fromour point of view, such an approach has toomuch uncertanties.

For example it needs to be assumed that the regional price level changes

parallelly to the state inflation.

Again the Ströhl (1994)-data were used as price data. For the explanatory

variables time series data of the regional statistic division of the federal bu-

reau of statistics and the federal bureau of labour are used. The available

income is measured by the purchasing power as all other available data

do not provide a complete time span. The wage level is represented by the

average wage. The purchasing power of tourists is measured by the num-

ber of hotel overnights stays. The population density is included as demo-

graphic characteristic. The authors develop a panel dataset by predicting

using regression analysis. The results are adjusted by the inflation rates of

the Bundesländer. Afterwards the two estimated price indices are combi-

ned by weighted means. All parameters are significant and have the assu-

med direction.(Kosfeld et al., 2007b, Bleninger and Trojan, 15.05.2014)

Suedekum (2004) also derives conditions for a regional equilibrium from

economic theory. He enriches the model of the new economic theory by

housing to explain price differences between agglomerated areas and pe-
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ripherical regions. The analysis only includes two regions to derive the

conditions of a symmetric and of a full agglomerated distribution between

the two regions. The formula and equations cannot be used to infer an

estimation equation, but there are some hints towards it. First Suedekum

(2004) names some variables that could be relevant: housing costs, size of

the local population, number of jobs, nominal wage per employee, and per

capita income.Moreover Suedekum (2004) takes a closer look at the supply

side. Tomeasure its specification, the number of producers, the number of

farmers, and the supply of housing should be evaluated.Moreover hemen-

tions that there is a relationship between the center-periphery differential

and the housing costs.(Suedekum, 2004) We are going to consider this by

including an interaction term of the two. The next problem that Suedekum

(2004) mentions is that all variables measuring income and wage are not

strictly exogeneous.(Suedekum, 2004, Bleninger and Trojan, 15.05.2014)

Blien et al. (2009) enhance the imputation idea of Roos (2006) by using

multiple imputation to acount for the unceratinty of missing data. The

authors analyze the agglomeration wage gap in West Germany. To distin-

giush between nominal and real wage Blien et al. (2009) need the regional

price level. Blien et al. (2009) do not discuss their operationalization in de-

tail. Themodel formultiple imputation is:(Blien et al., 2009, Bleninger and

Trojan, 15.05.2014)

𝐶𝑃𝐼 =𝛼଴ + 𝛼ଵ log size+ 𝛼ଶ log popsize+ 𝛼ଷ log landprice
+ 𝛼ସ log landpriceଶ + 𝛼ହtoursim+ 𝛼଺ logunemp
+ 𝛼଻dummydistrict + 𝛼଼dummyregtypes + 𝛼ଽwage+ 𝑢௜

where the variables are:(Blien et al., 2009, Bleninger andTrojan, 15.05.2014)

• log size is the logarithmic territorial size of the regions

• log popsize is the logarithmic population size
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• log landprice is the logarithmed price of building land

• tourism is an indicator of how attracttive a place is to tourists. It is

computed as the number of overnight stay divided by the number of

arrivals of visitors multiplied with the population density

• logunemp is the unemployment rate

• dummydistrict is an indictator variable for cities that are a region of

their own

• regtypes are dummies to include the region type of the Federal Of-

fice for Building and Regional Planning (BBR). These characteristics

allow us to distinguish between city centre and periphery, agglome-

rated and sparesly populated areas.25

• wage is the composition corrected wage (the correction bases on a

Mincer-type wage regression: only the residuals of a wage regression

based on human-capital theory are included in the imputation mo-

del. The explained part of the Mincer-type equation refers to other

characteristics.)(Blien et al., 2009, Bleninger and Trojan, 15.05. 2014)

The only reason given to use the logarithm is that several models have be-

en computed and this one is the best.(Blien et al., 2009)

Using the Ströhl-data for 32 West-German cities, 𝑚 = 5 imputations are
done. The analysis afterwards underlines the importance of having regio-

nal prices. Without regional prices it is not possible to correct sizes of in-

terest, e.g Blien et al. (2009) study real wages. Only the comparison of real

and nominal wages allows to answer the question of the agglomeration

wage differential.(Blien et al., 2009, Bleninger and Trojan, 15.05.2014)

25The region types can be found on this web page: http:// www.bbsr.bund.de/ BBSR/ DE/
Raumbeobachtung/ Raumabgrenzungen/ SiedlungsstrukturelleGebietstypen/ Regionstypen/ regi-
onstypen.html
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The anaylsis from Mehnert (1997) tries to answer a similar question with

the emphasis on a comparison of the economic and the statistical concepts

of price indices. The results show that we do not need to use some kind of

economic price index, which is very difficult to measure empirically, be-

cause results do not differ that much.(Mehnert, 1997)

The most recent study is the research report of Haupt and Heinze (2012).

They also use the Ströhl-data to predict values of all 439 counties in Germa-

ny and extrapolate for the following twelve years using information about

inflation rates of the Bundesländer and size of region, gross domestic pro-

duct and unemploment rate on the regional level. It is disputable to predict

439 values along 12 years on the basis of the 51 price-level observations of

the Ströhl-data.

To develop an econometric model Haupt and Heinze (2012) start with the

CPI formulae with a fixed basis period, use the logarithm and derive a li-

near model. Due to the fact that the description in the reasearch report is

very short and the authors often refer to a PhD-thesis not published yet, it

is not possible to figure out the modelling.26 More serious problems arise

with the inherent assumption made: all changes are assumed to be statio-

nary, all regions have the same covariance structure in time, changes in the

Bundesländer over time are the same as in the counties, and, most remar-

kable the approximation error which is constructed via the econometric

modelling is assumed to be zero.(Haupt and Heinze, 2012) It means that

Haupt and Heinze (2012) assume that their estimation is always correct,

which is a remarkable assumption.

As there are doubts in the quality of the prediction, we do not interprete

the results. What can be learned from the study is, that we have to keep

26e.g. if there are some ୪୭୥s missing or the authors estimate a random effect without in-
cluding the respective fixed effect.
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the contraints of our predictions and our assumption in mind when using

the lean database.

However in Haupt and Heinze (2012) there is a good hint for the varia-

ble selection. All covariables that we use in the model to explain the prices

need to be invariant to the population size of the region. Only if this is

the case, is the analysis invariant to pooling of two regions. Using the total

numbers, parameters would change, if we pool two regions, as prices (the

explained variable) do not change and region characteristics changes (the

explaining sizes).(Haupt and Heinze, 2012)

Table 3 summarizes the variables used in the studies previously discuss-

sed.
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6.4.2 The Data for the Influencing Factors

We use data from two data sets to get information about possible influ-

encing factors of the regional prices: the Inkar-data provided by the Fe-

deral Institute for Research on Building , Urban Affairs and Spatial De-

velopment (Bundesinstitut für Bau-, Stadt- und Raumforschung, BBSR)

and the spending capacity data as well as some base numbers of the GfK-

Geomarketing.

Inkar is an abbreviation for
”
Indikatoren und Karten zur Stadt- und Raum-

entwicklung“, whichmeans indicators andmaps about the urban and spa-

tial development. It includes about 600 variables on different regional le-

vels of social, geographic, and economic development in Germany. The

data originates from several public data sources.

GfK is one of the largest marketing and market research enterprises in

the world. Its Geomarketing division provides data on the economic deve-

lopment on a regional level, too. Their data results from public as well as

commercial data sources. Especially the data on regional spending capacity

are of interest, as it includes more than just the local wages.

6.4.3 Identifying the Influencing Factors on Regional Prices

If we subsume table 3, we do not need that many factors as it may first

appear.

Income and Spending Capacity:

We need to identify the wage per employee and the income per capita. The

wage per employee is already in the Inkar-data set. Nevertheless it is dif-
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ficult to distinguish the wage variable from the income variable. However

it becomes clear when realizing the the wage reflects the factor costs ma-

king it a part of the supply side, whereas the income per capita measures

the possible demand. The wage per employee is published in the Inkar da-

ta set. The income per capita should measure the ability of inhabitants to

fulfill their needs, which identifies it as spending capacity. The spending

capacity is part of the regional data of the GfK data. The spending capacity

is defined as the prognosis of the regional consumption potential at the

residence of the consumer which is the sum of all net income revenues.

It is the income of all freelance and wage earnings, income from capital,

and public transfer payments. Data from the wage and income statistics,

statistics for public transfers, and a prognosis of economic research insti-

tutes are used.(GfK Geomarketing, 2013) We decided to use the data per

capita and not per household.

Housing:

Housing costs are measured in a twofold manner. Housing rents are part

of the CPI and for that reason cannot be used as explaining factor. We

need to measure the market structure of housing. This can be done by

including prices for building land, which is the same as to take some costs

of investments into account. To measure the supply of housing an index

was computed:

housing index = number of vacant flats
number of all flats

The idea is to measure the competition on the housing market: the higher

the competition the higher the prices of housing, reducing the spending

capacity for buying other products. On the other side, it could be possi-

ble that prices are higher due to the higher cost pressure. The data on the

number of vacant flats and on the total number of flats are surveyed on a

different regional level: some towns are reported independently from their
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counties, others are reported together with their counties. As the data are

notmissing, but only available on a larger scale for 17 counties, we decided

to use the information for both, the county and the city.27

Community Size:

There are two ways to measure the community size: first, there is the geo-

graphical size. The area of the region is computed using the the R-package

UScensus2010. It facilitates computation of the area of regions defined by

a shapefile that bases on vectors. The shapefile can be downloaded from

the Bayrische Vermessungsverwaltung.(Bayerische Vermessungsverwal-

tung, 2015, Almquist, 2014) Secondly, the population size is an interes-

ting measure of the size of the regions. Of course we do not use the total

amount, but the population density, due to the idea of Haupt and Heinze

(2012). There are two highly correlated variables of the population densi-

ty (r=0.9998). We decided to use the population density measured by the

Census in 2011.

Another characteristic depending on the population size is the population

growth rate. We measure the growth rate with the net internal migration,

which is also given per capita.

Tourism:

The touristic attraction of the regions is reflected in the number of hotel

overnight stays, which is a frequent operationalization. We find those in

the Inkar-data set, where we also found information about the regional un-

employment rate.

27There is one date missing: there is no information on the prices of building land of
Bamberg. As it is just one date point, it does not seem necessary to use elaborated methods
to fill in the gap. Instead we follow the idea, that the relationship between the rate of the price
of building in the city of Bamberg and the price of building land of the county of Bamberg is
nearly the same as the rate between a similar city and county. As Würzburg is a similar city,
we use its information to single impute the price of buidling land in Bamberg.
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Centre-Periphery:

The centre-periphery location is measured by the classification type. It

has three classes: rural areas, areas with urbanised structures and urba-

nised areas. Moreover the rurality is measured by the following indica-

tors: a small population density, missing centres, peripherical location,

and a high number of people working in the primary sector.(Grimmer and

Schulz-Borck, 1982) We also include the number of commuters, who also

may have influence the prices according to Tabuchi (2001). Transportation

costs are included by the distance to next regional metropolis.

Amenities:

It is very difficult to reflect the regional amenities that influence the re-

gional price level. The regional human capital can be measured by educa-

tion. To do so we included the percentage of highly-qualified persons in

the equations. Another characteristic that we want to reflect is the occupa-

tional composition. We do that by using the classic grouping in the three

occupational sectors agriculture (primary sector), industry (secondary sec-

tor), and services (third sector) that can be found in the Inkar- data set. We

include the percentages of people working in the sectors. We only inlcude

the secondary and third sector in the analysis, as from this it is possible to

work out the percentage working in the primary sector.

We want to use the age structure as a third characteristic. To reflect the age

composition we computed the mean, variance and skew of the age distri-

bution using the Inkar data.

Store Quality:

In the von der Lippe and Breuer (2009) study the authors propose to esti-

mate a location dummy-variable model to take the different qualities due

to the particular shop into account (e.g. delicatessen store or discount su-

permarket). As we want to estimate the prices of the individual products
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and not of groups of products there are only a few observations for each

product making a location dummy-variable impossible. The same is true

for a random intercept model and in particular for the econometric fixed

effect model. It is also not possible to include a random or a fixed effect for

the individual stores, which is proposed by Asplund and Friberg (2002),

due to the small sample size per product. To control for the qualities of the

shops, we used the information about the shops provided by the Bavarian

State Office for statistics. There is a variable measuring the shop quality.

Of course this information is only available for the observed data, and the-

refore cannot be used directly for making predictions. For prediction of

regional prices, we use the store quality that is the mode of the observed

data. There is no data available on shop size and affiliation as Asplund and

Friberg (2002) include it in the regression model.

It is not necessary to estimate amultilevel model as we only have data from

Bavaria. If data for Germany are of interest, a random effect is necessary

to account for the Bundesländer.

Kawka (2009) notes that the influencing factors interfere with each other.

For that reason we need to include interaction terms. The following inter-

action terms may have an influence: centrality may interact with housing

costs (the idea to do so comes from Suedekum (2004)), wage, prices for

building land. The wage variable and the income variable are also inclu-

ded with an interaction effect. Prices for building land and housing costs

are included in the same way. The number of hotel overnight stays may

interact with the indicator of being a county or a city.

Suedekum (2004) notes that there is an endogeneity problem for all varia-

bles measureing income and wage. For the latter problem he proposes an

instrumental variable apporach, which Kosfeld et al. (2007b) solves with a

2SLS. It is not possible to solve the endogeinity problem in our analysis
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as a solution that works with multiple imputation needs to be developed,

which goes far beyond of our work.

There are no data available to measure the competition structure of the

markets as it was done by Asplund and Friberg (2002). However, their

results show that using broader products categories makes the effect of

competition structure vanish. To balance comparability and representati-

vity, we defined broader product categories. Moreover, it is not assured that

the effect really exists.(Roos, 2006) We measure the competition structure

indirectly by representing the demand side.

The table on the next page subsumes the used variables and the influen-

cing factor that is measured by them:
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variable variable name
county size area

popdens
mig

number of employees emp
supply/factor costs wage
demand kk_ew (spending capacity)
real estate market building

housing_index
number of hotel overnight stays hoteln
unemployment rate unemp
regional amenities hi_quali

sec_sector
tert_sector
age_mean
age_var
age_scew

number of businessmen commut
distance to regional metropolis centre
shop quality GKat (1=department store,

2=convenience store,
3=super market,
4=specialist discounter,
5=specialist store,
6=remaining retail (fuel stations,
kiosk...),
7=service companies,
8=internet,mail order selling)

regional classification Aggregat (urban municipality, county)
typ (1=urban region,
2=regions tending to urbanization,
3=rural region)

interaction terms building*typ
wage*typ
wage*kk_ew
Aggregat*hoteln

Tabelle 4: Influencing Factors Taken into Account

Source: Own research
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7 Prediction of Regional Prices

In a first step, we predict the prices of all products in the shopping basket

in all regions to get a full data set. We predict with several methods: first,

we use single conditional mean imputation to get a baseline. Afterwards

we do the same with multiple imputation. To include spatial dependen-

cies, we predict missing price data with universal kriging. Last we want to

preserve spatial dependencies as well as variance estimations. Therefore

we predict with a multiple imputation scheme with implemented kriging

(KriMI).

In a second step we compute the regional price index for the imputed da-

ta sets. As we only have the weighting scheme of the official CPI and no

information of regional consumption patterns, it is only possible to com-

pute the inter-regional Lowe index with an artificial reference region. This

is the same as the modified Laspeyres index of Ströhl (1994). We identi-

fied some products that are not relevant for the regional price comparison

as discussed above. The weights have been adjusted for this change of the

shopping basket in such a way, that they again sumup to one by preserving

the portions.

7.1 Single Imputation

The single imputation is done by conditional mean imputation. The con-

ditional means are computed by using regressions that we derive in this

chapter.

7.1.1 Regression Models on Regional Prices

As it is reported that effects on different prices may differ, we split analysis

among groups of products. Due to the fact that we still have about 400

164



7 Prediction of Regional Prices

different products after selection of relevant products, it is not possible to

find a model for each product. Instead we use the COICOP-classification

with two digits, defining 12 broad categories, which have the following

sample sizes after cleaning the price data:

• Food and non-alcoholic beverages, 𝑛 = 6143

• Alcoholic beverages, tobacco and narcotics, 𝑛 = 310

• Clothing and footware, 𝑛 = 1103

• Housing, water, electricity, gas and other fuels, 𝑛 = 2513

• Furnishings, household equipment and routine householdmainten-

ance, 𝑛 = 1997

• Health, 𝑛 = 434

• Transport, 𝑛 = 1991

• Communication, 𝑛 = 41

• Recreation and culture, 𝑛 = 2019

• Education, 𝑛 = 24

• Restaurants and hotels, 𝑛 = 746

• Miscellaneous goods and services, 𝑛 = 1601

To find the underlying functional form, we decide to take a look at the data:

a generalised additive model on the the standardised prices was computed

for every defined subgroup.28 It was necessary to use the standardized pri-

ces, as within the groups the prices of different products have very different

levels and ranges. Themodels identified in this manner will be used in the

28An exact description of that method can be found in Hastie and Tibshirani (1990) and
Wood (2004)
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prediction model for every single product. We regress on the prices not on

the standardized prices when predicting.

As there were still too many parameters for an estimation and prediction

of the single products compared to the sample size, we needed to iden-

tify the most relevent effects, even though multiple imputation needs to

take as many effects into account as possible. To find the most relevant ef-

fects for every COICOP-class, we started with the full model including all

polynoms and all possible interaction effects filtered in the literature ana-

lysis given above. Then we tried to find the best predictors by backward

deletion. In the end we decided on the models which had only significant

parameters.

We do not report the exact parameters as they are not used for predictions.

We predict only on the basis of the estimations based on single products.

Doing so we identified following model for food and non-alcoholic bever-

ages:

price =𝛽଴ + 𝛽ଵage_skew+ 𝛽ଶarea+ 𝛽ଷwage
+ 𝛽ସpopdens+ 𝛽ହmig
+ 𝛽଺commut+ 𝛽଻commutଶ + 𝛽଺GKat+ 𝛽଻typ

The table 11 reported in the appendix shows the results of the backward-

deletion strategy for decreasing the numbers of parameters in the food

category. The effect of the skew has a negative sign, indicating when more

older people live in the region, the lower the prices are. Both measures of

size, area and population density have a positive effect on price. The for-

mer effect does not confirm the analysis of Grimmer and Schulz-Borck

(1982), whereas the latter does. The first can be explained by less competi-

tion in larger regions leading to smaller competition between shops which

has the effect of higher prices. The second can be explained by higher de-

mand raising prices too, because people cannot substitute buying food.
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As wage is a factor cost, we expected a positive sign which was affirmed.

The store quality is always cheaper than the reference category (warehou-

sing) except for class number six (filling stations, kiosk) etc, which needs

not to be discussed. Both regional types are more expensive than the city.

This result is also found by Asplund and Friberg (2002). Perhaps this fact

can be explained by higher transportation costs or smaller competition in

less agglomerated regions. The only astonishing effect is the net internal

migration. It is possible that when more people migrate to a region, the

lower wages are and the lower the prices are as wages are a production fac-

tor. Contrary to our results, Asplund and Friberg (2002) report significant

effects of population density, distance to central areas, and income. The

data that these authors use are quite different and more important, their

sampling size exceeds our sampling size enormously.

The equation for alcoholic beverages, tobacco and narcotics is:

price =𝛽଴ + 𝛽ଵemp+ 𝛽ଶwage+ 𝛽ଷbuilding+ 𝛽ସbuilding
ଶ

+ 𝛽ହ log popdens+ 𝛽଺hoteln+ 𝛽଻commut+ 𝛽଺GKat

As for all the other outputs, the output of this class of products can be

found in the appendix. There are not a lot things to interprete in the model

for alcoholic beverages, tobacco and narcotics. The demand represented by

the population density and the number of hotel overnight stays raises the

prices. The negative effect of wage and the number of employees cannot

be explained that easily. Looking at the graphs does not help in the case of

number of employees as it seems to have a positive effect. The size of the

effect is significant, but not very relevant as it is almost zero. The same can

be said for the small effect of wage and the quadratic term of the prices of

building land, too. The effects of the shop qualities are as expected.
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The model of clothing and footware is:

price =𝛽଴ + 𝛽ଵhoteln+ 𝛽ଶage_mean+ 𝛽ଷage_meanଶ

+ 𝛽ସcommut+ 𝛽ହ log centre
+ 𝛽଺GKat

According to our estimation, tourism leads to price increases for clothing

and footware. This can be explained by the higher demand. Grimmer and

Schulz-Borck (1982) shows the same, but with different indicators of de-

mand (population density and growth). The age has a twofold effect: firstly,

youth leads to higher prices which can be explained by the enthusiasm for

fashion among young people. Secondly, the latter increase can be reasoned

by the better financial resources of the older age groups. The commuters

seem to buy their clothes at home, diminishing the demand. Neither trans-

portation costs, nor demand and supply can explain the negative effect of

distance to the next regional metropolis.

We decided for this rather large model equation of housing, water, electri-

city, gas and other fuels:

price =𝛽଴ + 𝛽ଵarea+ 𝛽ଶareaଶ + 𝛽ଷemp
+ 𝛽ସwage+ 𝛽ହwageଶ

+ 𝛽଺building+ 𝛽଻popdens
ଶ + 𝛽଼hoteln

+ 𝛽ଽsec_sector+ 𝛽ଵ଴tert_sector
+ 𝛽ଵଵage_var+ 𝛽ଵଶage_skew+ 𝛽ଵଷcommut
+ 𝛽ଵସAggreagt+ 𝛽ଵହtyp
+ 𝛽ଵ଺building ∗ typ+ 𝛽ଵ଻wage ∗ typ ∗
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As there are a lot of different types of products and services included in

this COICOP-group, it is not possible to find explanations for most of the

estimated parameters. As we just need the model for prediction and not

for an interpretation, this does not create huge problems. Further infor-

mation can be found in the appendix.

Furnishings, household equipment and routine household maintenance

can be described with the following equation:

price =𝛽଴ + 𝛽ଵarea+ 𝛽ଶemp+ 𝛽ଷwage
+ 𝛽ସwageଶ + 𝛽ହhi_quali+ 𝛽଺GKat

The positive sign of the area parameter can be explained by the higher

transportation costs. The U-shape of the variable wage cannot be reaso-

ned that easily. Again the number of employees has a negative sign, near

zeromaking its effect questionable. The positive sign of high qualified em-

ployees indicates that these kind of consumer are willing to pay more. The

significant signs of the parameters for shop quality are those we expected.

The relevant model for products and services of health is

price = 𝛽଴ + 𝛽ଵhousing_index+ 𝛽ଶhousing_index
ଶ + 𝛽ଷtyp

There are only a few factors which influence health. The parabola descri-

bing the effect of the housing index opens downward. We cannot reason

why only the scarcity of flats has an influence on the prices of health pro-

ducts. The variable typ indicates that the prices are significantly higher in

rural than in urban areas, which can be justified by higher transportation

costs in rural areas.
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For transport we define the following model:

price =𝛽଴ + 𝛽ଵarea+ 𝛽ଶemp+ 𝛽ଷwage
+ 𝛽ସhousing_index+ 𝛽ହhoteln
+ 𝛽଺hi_quali+ 𝛽଻hi_quali

ଶ

+ 𝛽଼age_mean+ 𝛽ଽage_meanଶ + 𝛽ଵ଴age_skew
+ 𝛽ଵଵcommut+ 𝛽ଵଶcommutଶ + 𝛽ଵଷGKat+ 𝛽ଵସtyp

It is important to note that the transportationCOICOP class includes bikes,

car spare ports, bus tickets car repairs and so on. It becomes evident that

the population structure is a deciding factor for the transportation costs.

Notably the age variables indicate that when a higher portion of younger

people live in a region, the mobility is greater and transportation costs are

higher. Also regions with a high amount of highly qualified people also

have higher transportation prices. In the rural areas, prices of transporta-

tion services are higher due to less competition and higher transportation

costs to other regions. The closer a regional metropolis is, the higher the

transportation costs are. This can be reasoned with the pricing pressure in

agglomerated areas.

The equation for communication is:

price =𝛽଴ + 𝛽ଵarea+ 𝛽ଶemp+ 𝛽ଷwage
+ 𝛽ସkk_ew+ 𝛽ହkk_ew

ଶ

+ 𝛽଺popdens+ 𝛽଻mig
ଶ

+ 𝛽଼sec_sector+ 𝛽ଽage_meanଶ + 𝛽ଵ଴centre
+ 𝛽ଵଵtyp+ 𝛽ଵଶwage ∗ kk_ew
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Only the price of a landline telephone is left in this COICOP-class. There

are only a few things to be noted: the rural areas are more expensive. Per-

haps this can be reasoned by more frequent and long distance calls. The

higher the density and the net migration are (indicating a higher demand),

the higher the prices are. The higher the regional mean of age is, the hig-

her the prices are. It is plausible, because older people are less likely to

use new media such as mobile phones or internet compared to younger

people. This lessens the demand in regions with an older population.

We identified following model for recreation and culture:

price =𝛽଴ + 𝛽ଵemp+ 𝛽ଶwage+ 𝛽ଷpopdens
+ 𝛽ସpopdens

ଶ + 𝛽ହunemp+ 𝛽଺unempଶ

+ 𝛽଻hi_quali+ 𝛽଼GKat

Whereas the U-shaped curve makes sense for describing the effect of the

population density, there is no explanation for the parabola of the unem-

ployment rate. The prices are high in very sparsely populated areas as there

is little competition or no supply of recreation and culture opportunities.

However, this effect overturns, if we look at agglomerated areas. Here the

recreation and culture opportunities become more exlusive, and therefore

more expensive. For example the swimming bath becomes a spa or adven-

ture swimming bath with slides. As the wage is a factor cost and products

of recreation and culture are produced and consumed on-site, the prices

rise if factor costs rises.
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The model for education is:

price =𝛽଴ + 𝛽ଵarea+ 𝛽ଶareaଶ + 𝛽ଷareaଷ

+ 𝛽ସkk_ew+ 𝛽ହbuilding+ 𝛽଺building
ଶ

+ 𝛽଻popdens+ 𝛽଼hoteln+ 𝛽ଽhoteln
ଶ

+ 𝛽ଵ଴unemp+ 𝛽ଵଵunempଶ + 𝛽ଵଶage_skew
+ 𝛽ଵଷage_skew

ଶ

As there are only 24 cases left, it is not necessary to interprete the model.

Due to the fact that it was difficult to find comparable products, a lot of

products where excluded from the analysis. Only classes in adult educati-

on centres are left.

The equation for restaurants and hotels is:

price =𝛽଴ + 𝛽ଵarea+ 𝛽ଶareaଶ + 𝛽ଷareaଷ

+ 𝛽ସwage+ 𝛽ହwageଶ + 𝛽଺wageଷ

+ 𝛽଻kk_ew+ 𝛽଼housing_index+ 𝛽ଽsec_sector
+ 𝛽ଵ଴tert_sector+ 𝛽ଵଵage_mean+ 𝛽ଵଶage_meanଶ

+ 𝛽ଵଷtyp+ 𝛽ଵସwage ∗ kk_ew

As products in this category are produced and consumed on-site, the factor

costs are most relevant for regional prices. This is reflected in the signifi-

cant parameters of wage. The spending capacity has a postive effect on pri-

ces. Apart from these variables, the population structure is most relevant

for prices of restaurants and hotels. Again, the age is a downside-opened

parabola, indicating the the very young and very old regions have lower

prices than the middle-age regions, which can be explained by asking the

question: Who consumes the most in restaurants and hotels? The para-
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meters of the number of emoployees in the sectors point to the same fact

as the parameters of regional type: in rural areas the prices of restaurants

and hotels are lower than in urban areas.

The last model identified is for miscellaneous goods and service:

price =𝛽଴ + 𝛽ଵarea+ 𝛽ଶbuilding+ 𝛽ଷsec_sector
+ 𝛽ସtert_sector+ 𝛽ହGKat

For this class, we cannot find a useful argument to explain the model.

Our results do not support the results ofGrimmer and Schulz-Borck (1982).

They identify the spending capacity and other similar variables as themost

important factors. Here these effects can only be found in a few classes of

products. We also show, that the positive effect of the community size on

the regional price level is an effect of agglomeration and not of the com-

munity size itself, which is found by Mehnert (1997). If we control for the

type of region and the agglomeration level as is done here, the effect of

community size is not a significant factor in our models.

7.1.2 Single Imputation by Conditional Means

As in forgoing studies, e.g. Roos (2006), we simply impute by a single im-

putation approach. The best predictions for the unobserved prices are the

conditional means computed by the regressions described above. As in the

previous studies we have a promising result, that can be summarised and

demonstrated by showing the Lowe price index for the 96 Bavarian regi-

ons. We have chosen the Lowe index for the reasons given above.
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7 Prediction of Regional Prices

Themap in figure 3 is coloured according to the regional price level in that

region. The exact values are shown in a table in the appendix. The higher

the price, the less intensive is the heat colour. There are two cities with very

Lowe: Single Imputation

0.7

1.5

Abbildung 3: Regional Lowe Price Index by Single Regression Imputation

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

high prices: Munich, which is not surprising, and Coburg, which is quite

astonishing. This supports the findings of Kawka (2009) that Munich is

expensive and that the regions near the alps are high level regions as the-

re are several southern regions under the high level regions. Moreover it

seems that the counties around larger cities have relatively high price le-

vels. This effect can be explained by the fact, that people earn more in city

centres, where they work, and spend more in the regions around the cen-

ters, where they live. But this results contradict Kawka (2009) who finds

that the prices are high in the center regions. The city centres itself have
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an surprisingly low price level. Apart from these interpretations, we cannot

find any other trends from the map. It just reports the predicted regional

price level for Bavarian regions as the described influencing factors make

us suggest.

Here is the list of top six most expensive and top six cheapest regions in

Bavaria. The full ranked list can be found in the appendix. Periphery regi-

Low level regions
Hof, Stadt 0.8201013
Regen 0.8359081
Rottal-Inn 0.8398376
Schweinfurt, Stadt 0.8603824
Neuburg-Schrobenhausen 0.8641514
Wunsiedel i.Fichtelgebirge 0.8682586

High level regions
Bamberg 1.1372344
Main-Spessart 1.1376343
Donau-Ries 1.1488031
Kempten (Allgäu), Stadt 1.1513531
München, Stadt 1.2222956
Coburg 1.2497697

Tabelle 5:Highprice and Lowprice Regions by Single Regression Imputation

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

ons have a low price level, too, as shown by Kawka (2009).

The list shows that there are no spatial dependencies and no other trends

to describe, if the regional price level is estimated with a single conditional

mean imputation. The covariables used do not determine credible spatial

dependencies. The same result is shown in the estimated variogram: The

grey lines link the exact variogram values that are estimated. The red li-

ne is a loess smoother of the exact variogram values to make the function

indicating spatial dependencies observable. As the grey lines do vary a lot
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Variogram: Single Imputation by Simple Linear Model
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Abbildung 4: Variogram of the Regional Lowe Price Index by Single Regression
Imputation

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

around the loess smoother, the smooth function of the variogram is not a

good representation of the spatial dependecies.

Regional dependencies are a very feasible assumption in the case of regio-

nal prices. The price level in a regions is influenced by the neighbouring

regions as people do not only shop in the region they live in, therefore

neighbouring areas influence each other by the consumption behaviour

and their structure. There are shopping trips in other cities and commu-

ters, mixing the consumers of nearby regions. The variogram shows that

there is no covariance explained by the spatial structure of the data. There

is a relatively high nugget effect indicating a high variance, but, there is

no hint for spatial dependencies as the variogram decreases very fast after

the origin and then oscillating in an unordered way. The confusing spatial

structure here is not credible at all for a regional price structure.
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7.2 Universal Kriging

The price level of a region is influenced by the price level of neighbouring

regions. The interdependence of the regional price level is caused by inter-

regional shopping trips, commuters, similar transportation costs, mutual

adaptation of the price level on the supply side and so on. Our aim has to

be to preserve the regional correlation structure.

If the correlation structure is not considered in the model underlying the

imputation of unsurveyed price data points, the spatial dependence struc-

ture is lost. A method for modelling spatial correlation is universal kriging

aswe decribed it at the beginning of this text. Kriging aims to predict values

of unobserved locations, which meets our aim to impute prices of regions

that are not in the sample of the official statistics.

7.2.1 The Universal Kriging Model

The universal kriging model consists of two parts: the first part 𝑋𝛽models
the spatial trend which can be explained by regional sizes and 𝑍𝛾 models
the dependence of the neighbouring regions. The two parts define the fol-

lowing regression model:

𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖

where 𝜖 ∼ 𝑁(0, 𝜎ଶ). We use the same models for kriging as we used in
the single imputation scheme. Thus the design matrix 𝑋 includes the va-
riables that were selected for the product group defined by the COICOP-

classification. The vector 𝛽 includes the respective parameters and needs
to be estimated. The incidence matrix 𝑍 is a 𝑛 matrix, where 𝑛 indicates
the number of surveyed products and 𝑟 is the number of regions with ob-
served prices. The vector of random effects is 𝛾 ∼ 𝑁(0, 𝐺). The spatial
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correlations are modelled in 𝐺 = 𝜏ଶ𝑅, where 𝑅 is the correlation matrix
and the correlation function 𝜌(ℎ; ⋅) defines the entries in 𝑅.

7.2.2 Estimating the Variance Parameters

In a first step, we need to determine the variance parameters of the model

by the given data. As we grouped data according to the product, the sample

sizes per product class are quite small, making the bad small sample pro-

perties of ML estimations of variance parameters relevant. For that reason,

we have chosen to estimate the variance parameters by REML.

First, we assume a Gaussian correlation function, which is an exponential

correlation function with the parameter 𝜅 = 1. The entries in 𝑅 are then
(Fahrmeir et al., 2007)

𝜌(ℎ; 𝜙) = exp ቊ−ቆ ℎ𝜙ቇቋ ,

where ℎ is the distance of the centroids of the two regions of interest. 𝜙
is a scaling parameter and is the third variance parameter beneath 𝜏 and 𝜎.
According to Schabenberger andGotway (2005)minus twice the loglikelihood

in the REML case is:

𝑙𝑛 (|𝑉𝑎𝑟(𝑦; 𝜃)|) + 𝑙𝑛 ൫|𝑋(𝑠)ᇱ𝑉𝑎𝑟(𝑦; 𝜃)𝑋(𝑠)|൯ − 𝑙𝑛 ൫𝑋(𝑠)ᇱ𝑋(𝑠)൯
+𝑟𝑉𝑎𝑟(𝑦; 𝜃)ିଵ𝑟 + (𝑛 − 𝑘)𝑙𝑛 (2𝜋)

with the OLS-residuals 𝑟.
Optimising the formula above leads to the strange result of negative vari-

ances, which is a well-known problem of REML-estimators. To solve this

problem, a constrained optimisation or an optimisation with transformed

parameters is proposed.(Kneib, Greven, 2011)
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We have chosen to optimise the given REML-function in a constrained

parameter-space, allowing only positive variances. The OLS residuals of

the single imputation models have been used. There were some problems

when optimising the likelihood. Not only do the results depend on the

starting values, but also the existence of an optimum depends on the star-

ting value. We tried several values and decided for the most stable ones

across the groups. For three cases, different starting values were required

for computational reasons. As several negative variances were defined as

the result, we needed to restrict the parameter space to non-negative va-

lues. There where three cases were we needed to restrict the parameter

space to positive values.

Later the reason for these three exceptions becomes clear. The products

concerned are electricity prices. Due to the special market structure of

electricity prices (de facto monoploy position of local suppliers, but re-

gulation by the state), there is a high intraregional correlation creating a

huge nugget effect which is the reason for the described computational

problems.

7.2.3 Estimating the Parameters

The underlying assumptions of the kriging model are the same necessary

for the mixed effect model, as Pollice and Bilancia (2002) state. Moreover,

the kriging model can be interpreted as a mixed effect model, where the

Gaussian random field is interpreted as a mixed effect defining a special

covariance function. For this reason methods to estimate mixed effects

models can be used.

The easiest way to account for the estimated covariances when estima-

ting the parameters of the regressionmodel is a Aitken-estimator.(Greene,

2012)
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Under normality, the best way of estimation the kriging model is the GLS-

estimator:(Schabenberger and Gotway, 2005)

ෝ𝛽 = ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦; 𝜃)ିଵ𝑋ቁ
ିଵ
𝑋ᇱ𝑉𝑎𝑟(𝑦; 𝜃)ିଵ𝑦

If the variance-covariance matrix 𝑉𝑎𝑟(𝑦; 𝜃) is estimated itself, it becomes
the EGLS-estimator by just inserting the estimators described in the chap-

ter above. (Greene, 2012)

The Aitken-estimator is a simple way to program an EGLS-estimator. A

decomposition of the 𝑉𝑎𝑟(𝑦; 𝜃)ିଵ = 𝑃ᇱ𝑃 is needed and is inserted:

ෝ𝛽 = ൫𝑋ᇱ𝑃ᇱ𝑃𝑋൯ିଵ 𝑋𝑃ᇱ𝑃𝑦

Obviously, the OLS estimation of the transformed model with 𝑃𝑦 and 𝑃𝑋
leads to the same result as the GLS-estimation that we need.(Greene, 2012)

7.2.4 Single Imputation by Kriging

We used the formula 30 to get imputation for prices in the unobserved re-

gions. Of course, there have been a few negative imputations as we assume

normal distributed prices. As the properties of the regions with negative

Kriging predictions are seen to be low-price regions, we replace negative

imputations by the minimum of the observed prices. It makes no sense to

assume a price of 0.

The map of the kriging model can be seen in figure 5. Clearly the map is

more varicoloured than themap of the single regression imputation repre-

senting the bigger range of the estimated Lowe price index. Munich is not

in the top six of the most expensive regions anymore. There are regions at

the edge of the study area with a higher price index. This can result from

the used technique, which is in fact an interpolation technique, so there

are often extreme values at the edges due to extrapolation.

180



7 Prediction of Regional Prices

Lowe: Kriging

0.7

1.5

Abbildung 5: Regional Lowe Price Index by Kriging

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

The preservation of the spatial dependencies is evident, because neighbou-

ring regions do not lead to extreme change in colour. Themap has become

a structure. It has a continous formation of regional price levels.

The table of the most expensive and cheapest six regions also shows, that

the range is bigger in the kriging case than for the simple regression im-

putation. Moreover, most regions with extreme values are regions near to

the border of Bavaria. The high prices in the Allgäu can be explained by

tourism.

The variogram of the kriging model shows that the information we are ad-

ding to the model is preserved in the data when imputing missing values.

Herewe assume spatial dependencies between the regions.We implement
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7 Prediction of Regional Prices

Low level regions
Hof, Stadt 0.7400224
Kulmbach 0.7470393
Lichtenfels 0.7810324
Altötting 0.7810395
Wunsiedel i.Fichtelgebirge 0.8068562
Weiden i.d.OPf., Stadt 0.8163738

High level regions
Regensburg 1.2116196
Unterallgäu 1.23106313
Ostallgäu 1.2982049
Donau-Ries 1.3520368
Ansbach 1.4156334
Oberallgäu 1.4646028

Tabelle 6:Highprice and Lowprice Regions by Kriging

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

this in the single imputationmodel by predicting prices of regions without

data with kriging. The variogram is just as we assumed it would be: there is

a nugget effect and the slow increasing interregional variance shows that

the spatial dependence decreases with increasing distance between the re-

gions.

The unsmoothed, real covariances represented by the grey lines are less

wiggly represented by the grey lines, indicating that the course of the va-

riogramm line is not an artifact of the loess smoothing represented by the

red line. For the single regression imputation approach the real values of

the variogramm vary more as there is no real spatial dependence resul-

ting in an ordering of the values. The kriging imputation preserves spatial

dependencies of the regional price level.

A possible criticism of using kriging and then showing the spatial depen-

dence of the predictions is that the spatial correlations are just introduced
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Abbildung 6: Variogram of the Regional Lowe Price Index by Kriging

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

through the kriging model. This is a true fact, but the assumption of spa-

tial dependent regional price level is credible, and the data are very sparse

resulting in a small degree of information. Due to the last fact, we need

to find another source of information than the data, which is to impose

assumptions.

7.3 Multiple Imputation

To get a reference from the multiple imputation side as well, we also esti-

mated and predicted a simple multiple imputation model. We used the

regression modelling of the simple imputation model to include all rele-

vant variables in the shape to best explain regional prices.

183



7 Prediction of Regional Prices

7.3.1 Prior, Posterior, and Full Conditionals

Although in the normal linear regression case the posterior predictive is

available in closed form, we sampled using a Gibbs-sampling scheme to

be able to compare of the different methods discussed in this work. As the

spatial model needs to be sampled using a Gibbs-sampler we also chose

one for the simple regression multiple imputation under normality.

As we have some information about the distribution from the full data set

using all products at once, noninformative priors are not a sensible choice.

Instead we have chosen the conjugate model, where variance parameters

follow an inverse Gamma distribution and the mean parameters are nor-

mal distributed. The hyperparameters of the normal distributions are the

estimators of the whole data set. This course of action is not driven by wan-

ting an empirical Bayes estimator, but by the idea that the whole data set

has additional information on the regression parameters. We want to use

this prior knowledge.

To establish a Gibbs-sampler we need to write down the posterior distribu-

tion first. Next we can define the full conditionals from which we sample.

As already defined, the prior of the 𝛽 of the underlying regression model
and the variance parameters. Due to the chosen normal-inverse-Gamma-

model (NIG), the priors are:(Fahrmeir et al., 2007)

• joint prior: 𝑃(𝛽, 𝜎ଶ) = 𝑃(𝛽|𝜎ଶ)𝑃(𝜎ଶ),

• conditional prior of 𝛽: 𝛽|𝜎ଶ ∼ 𝑁(𝑚, 𝜎ଶ𝑀), with hyperparameters𝑚
and𝑀,

• and the marginal prior of 𝜎ଶ: 𝜎ଶ ∼ 𝐼𝐺(𝑎, 𝑏), with the hyperparame-
ters 𝑎 and 𝑏.
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7 Prediction of Regional Prices

We decided against a noninformative prior as this requires a lot of data

points and only a few parameters.(Gelman et al., 2004) In our case, the

data points are few and quite spread out, but for multiple imputation of

unobserved values it is necessary to include as many variables in the re-

gression model as possible. Therefore, we use an informative prior. The

data model is a normal with 𝑋𝛽 and 𝜎ଶ𝐼. Therefore the posterior is:(Fahr-
meir et al., 2007)

𝑃(𝛽, 𝜎ଶ|𝑦, 𝑋) ∝ 1
(𝜎ଶ)

೙
మ
exp ቊ− 1

2𝜎ଶ (𝑦 − 𝑋𝛽)ᇱ (𝑦 − 𝑋𝛽)ቋ

1
(𝜎ଶ)

೛
మ
exp ቊ 1

2𝜎ଶ (𝛽 − 𝑚)ᇱ𝑀ିଵ (𝛽 − 𝑚)ቋ

1
(𝜎ଶ)௔ାଵ

exp ቊ− 𝑏
𝜎ଶ ቋ

All relevant computations to derive the posterior and the following full

conditionals can be found in the appendix. The full conditionals are:(Fahr-

meir et al., 2007)

• 𝛽|⋅ ∼ 𝑁 ቀ𝜇ఉ , Σఉቁ, where 𝜇ఉ = Σఉ ቀ
ଵ
ఙమ𝑋

ᇱ𝑦 + ଵ
ఙమெషభ௠ቁ and

Σఉ = ቀ ଵ
ఙమ𝑋

ᇱ𝑋 + ଵ
ఙమ𝑀

ିଵቁ
ିଵ
, and

• 𝜎ଶ|⋅ ∼ 𝐼𝐺 ൫𝑎ᇱ, 𝑏ᇱ൯, where 𝑎ᇱ = 𝑎 + ௡
ଶ +

௣
ଶ and 𝑏

ᇱ = 𝑏 + ଵ
ଶ (𝑦 − 𝑋𝛽)ᇱ

(𝑦 − 𝑋𝛽) + ଵ
ଶ (𝛽 − 𝑚)ᇱ𝑀ିଵ (𝛽 − 𝑚)

To get estimations of the parameters we conduct a Gibbs-Sampler.

7.3.2 Gibbs-Sampler

To get multiple imputations under the assumption of the simple regres-

sion models defined by the single imputations, a Gibbs-sampler based on

the full conditionals that we defined in the chapter above was used. We
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7 Prediction of Regional Prices

sequentially draw from the full conditionals as described in Gelman et al.

(2004), but in contrast we start with the regression parameters and draw

the variance parameters afterwards. The explaining variables included in

the data matrix 𝑋 are the same that we have chosen for the single imputa-
tion models. The same is the case for the functional form assumed.

However, parameter estimations are conducted in a Bayesian way. To get

the estimations a Gibbs-sampler with 10.000 iterations is done. To redu-

ce the computational burden, single iterations with enough distance were

used to get 𝑚 = 5 different parameter estimations for the multiple im-
putations. The different imputation parameters have a distance of 1.000

iteration steps, which guarantees their independence.

The sampler itself is based on the full conditionals defined in the previous

chapter, which establishes a Gibbs-sampler by iterating between draws

from the two full conditionals defined above to simulate draws from the

joint posterior.

7.3.3 Multiple Imputation by Linear Regression

In the end, we are interested in draws from the posterior predictive to

get imputation of prices in unobserved regions. We follow Gelman et al.

(2004), to get draws of the 𝑦௠௜௦. We first conduct the described Gibbs-

sampler to determine the posterior predictive and then draw unobserved

values by drawing out of the estimated posterior predictive.

The result of the prediction of multiple imputation is shown in map 7.

Nearly all regions have the same colour (orange), indicating that there is

much mass in the center of the distribution. As the multiple imputation

price index is a mean over the five independent imputations of the Lowe

index, the egalitarian result is expectable. On the other hand, there are so-

me lighter coloured regions on the map, mostly around Munich. Munich

and the surrounding regions are well known for its high prices, but the
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7 Prediction of Regional Prices

differences is huge as Munich has a price level about 146% of the the Ba-

varian average. Even though a lot of the data points are in the middle of

the distribution of price levels, the outlier values are extreme when using

multiple imputation.

Another astonishing result is the high price level of Wunsiedel, for which

we expected a very low price level as predicted with the foregoingmethods.

For the region of Ansbach it is the other way around. Kriging ranked it in

the top six most expensive regions, however it is under the top six of the

cheapest regions after multiple imputation.

Lowe: Multiple Imputation

0.7

1.5

Abbildung 7: Regional Lowe Price Index by Multiple Imputation

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar
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The table of the top six most expensive and six cheapest regions confirms

the north-south price differential that we also found using the single im-

putation approach: four of the expensive regions are in the south around

Munich and all six low price regions are in the very north of Bavaria. Howe-

ver, the result of Wundsiedel and Ansbach are not the expected ones.

Low level regions
Ansbach 0.8157848
Amberg-Sulzbach 0.8313815
Hof, Stadt 0.8512344
Coburg, Stadt 0.8590893
Coburg 0.8698144
Weiden i.d.OPf., Stadt 0.8744579

High level regions
Starnberg 1.1605933
München, Stadt 1.23106313
Wunsiedel i.Fichtelgebirge 1.2681776
Erlangen, Stadt 1.3701361
Freising 1.3811412
München 1.4467345

Tabelle 7:Highprice and Lowprice Regions by Multiple Imputation

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

The variogram of the multiple imputation starts at a very low level compa-

red to the foregoing one. There is nearly no nugget effect indicating only a

small amount of variability of the regions itself. The variogram increases

very fast. After reaching the maximum very early, it decreases fast, too. It

seems that MI can only reproduce spatial dependencies over short distan-

ces.

Another important point is, that the real, unsmoothed values of the vario-

gram fluctuate a lot around the smoothed variogram function. In reality,

188



7 Prediction of Regional Prices

MI does not represent the spatial dependencies very well, as the smoothed

variogram function just is an artifact of the smoothing.
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Abbildung 8: Variogram of Regional Lowe Price Index by Multiple Imputation

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

Multiple imputation promises to allow a feasible inference of statistics ba-

sed on the completed data set. As the predicted regional prices shall be

given to other researchers to conduct a statistical analysis, we want to pre-

serve this feature. On the other hand, we want to implement the credible

assumption of spatial dependencies that MI can only preserve in the short

term.

7.4 KriMI: Multiple Imputation by Kriging

As alreadymentioned, kriging can be implemented using themultiple im-

putation scheme in two ways. Firstly, kriging can be interpreted as a mi-

xed model approach, where the spatial dependencies are represented in a
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spatially correlated random effect. The mixed model approach can be esti-

mated in a Bayesian way leading to a Gibbs-sampler described in the next

paragraph. Secondly, the kriging approach can be interpreted as a Bayesi-

an P-Spline leading to the second approach, which fits better to the idea of

predicting values in unobserved regions.

7.4.1 KriMI by the Mixed Model Approach: Gibbs-sampler

All distributions needed are described in the chapter 4.1.2. For this reason

we only describe the Gibbs-sampler that leads to parameters to compute

multiple imputations of the prices in regions with no data. We just need to

find a sensible order of the full conditionals already derived. We decided to

draw the variance parameters from their full conditionals first. Afterwards

we draw the random effects. In a last step draws are made from the full

conditional of the fixed effects. In a nutshell the drawing scheme is:

1. Draw 𝜏ଶ from 𝐼𝐺(𝑎ఛ +
௡
ଶ , 𝑏ఛ +

ଵ
ଶ𝛾

ᇱ𝑅ିଵ𝛾)

2. Draw 𝜎ଶ from 𝐼𝐺(𝑎ఙమ + 𝑛, 𝑏ఙమ +
ଵ
ଶ(𝑦 − 𝑋𝛽 − 𝑍𝛾)ᇱ(𝑦 − 𝑋𝛽 − 𝑍𝛾) +

ଵ
ଶ(𝛽 − 𝑚)ᇱ𝑀ିଵ(𝛽 − 𝑚))

3. Draw 𝛾 from 𝑁(𝜇ఊ , Σఊ) where 𝜇ఊ = Σఊ𝑍ᇱ(𝜎ଶ𝐼)ିଵ(𝑦 −𝑋𝛽) and Σఊ =

ቀ𝑍ᇱ(𝜎ଶ𝐼)ିଵ𝑍 + (𝜏ଶ𝑅)ିଵቁ
ିଵ

4. Draw 𝛽 from 𝑁 ቀ𝜇ఊ , Σఊቁ where 𝜇ఉ = Σ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ (𝑦 − 𝑍𝛾) + ൫𝜎ଶ

𝑀)ିଵ𝑚 and Σఉ = ቂቀ𝑋ᇱ(𝜎ଶ𝐼)ିଵ𝑋 + (𝜎ଶ𝑀)ቁ𝛽ቃ
ିଵ

The scaling parameter 𝜙 which determines the spatial correlation is expli-
citly not included in the sampling scheme. There are several reasons for

not sampling 𝜙: firstly, the data at hand are so spatially rare that they do
not allow an estimation of a parameter determining spatial dependencies.

This fact underlines the advantage of the Bayesian approach chosen as the
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missing information in the data can be complemented by assumptions

about the reality represented in prior knowledge. Determing 𝜙 means to
make a guess about the spatial dependencies in the data. Secondly, 𝜙 is a
hyperparameter. The assumption of a fixed𝜙 does solve the problem of de-
terming hyperparameters and the prior distributions needed for a spatial

prediction. There is no knowledge about the distribution of the hyperpa-

rameter 𝜙.

7.4.2 KriMI by the Mixed Model Approach: Results

As there are no outliers as in the MI-approach, the map of regions colou-

red according to their regional price level is even more egalitarian than

the foregoing map 8. This results from the kriging method in combinati-

on with the chosen mixed model technique leading to smooth predictions

of unobserved regional prices. Kriging involves using price information

from neighboring regions in a weighted average. Mixed modelling means

to model the expectation which shifts the random component to the vari-

ance, leading to smoothmean predictions in the case of kriging as a mixed

model. We already mentioned that the idea of mixed modelling does not

fit well the idea of predicting missing values as it involves imputing some

kind of mean with a specially modelled variance-covariance matrix.

However we will see that the mixed model approach has the great advan-

tage of being very efficient due to the small computational burden. More

importantly, it is less sensitive to inappropriate data cases. Moreover the

alternative P-spline modelling discussed later has the disadvantage of a

very high volatility of the predictions and of a small steadiness of estima-

tion. The P-spline approach is fragile, whereas the mixed model approach

is stable.

The result of the map is also reflected in the table of the top six high price

and top six low price regions. It is well known that Munich and its exurbs

are high price regions, whereas the regions near to the Bavarian border,
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Lowe: Multiple Imputation by Kriging

0.7

1.5

Abbildung 9: Regional Lowe Price Index by KriMI with Mixed Modelling

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

especially in the east, are low price regions. There are no outliers on both

extremes as they are smoothed away in the twofold manner: the kriging

and the mixed model technique.

The variogram is very similar to the variogram of the multiple imputation

result. The semivariance increases up to a distance of 100 km and then

decreases slowly. This trend is what we expect when assuming spatial de-

pendencies of regional prices. Shopping trips beyond a threshold distance

become too expensive, which explians the decreasing trend above the 100

km threshold.

The variogram of the KriMI approach using mixed modelling differs to

the variogram of the MI approach by showing that there is a nugget effect.
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Low level regions
Neuburg-Schrobenhausen 0.7889400
Weiden i.d.OPf., Stadt 0.8117964
Deggendorf 0.8121880
Passau, Stadt 0.8140455
Ansbach, Stadt 0.8196061
Landshut, Stadt 0.8209351

High level regions
Amberg-Sulzbach 1.0854961
München 1.0962311
Erding 1.1054661
Dachau 1.1282148
Erlangen, Stadt 1.1355460
München, Stadt 1.2205000

Tabelle 8:Highprice and Lowprice Regions by KriMI with Mixed Modelling

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

There is a variance of the spatial random process, making the KriMI pre-

diction more plausible. That the prices in one region still differ is more

plausible than to assume that they are the same.

7.4.3 KriMI by Baysian P-Splines: Priors, Posterior, Full Conditionals,

and Gibbs-sampler

It is not easy to get random draws of the P-spline parameterization descri-

bed above. Lukily the drawing scheme is described in Lang and Brezger

(2001, 2004). In addition the sampling can be done by using BayesX and its

implementation R2BayesX, which exactely does what we need here. (Um-

lauf et al., 2015, Belitz et al., 2015)

193



7 Prediction of Regional Prices

0 50000 100000 150000 200000 250000 300000 350000

0.
00
35

0.
00
40

0.
00
45

0.
00
50

0.
00
55

0.
00
60

0.
00
65

Variogram: Multiple Imputation by Kriging

distance

se
m
iv
ar
ia
nc
e

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

Abbildung 10: Variogram of the Regional Lowe Price Index by KriMI with Mixed
Modelling

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

To get random draws, Lang and Brezger (2004) proposed the following

drawing scheme defining a Gibbs-sampler, which is implemented in the

software used. In step 𝑡

1. draw෦𝛾(௧) from the normal distribution with the precision matrix

𝑃𝑟𝑒(௧)෥ఊ and mean vector𝑚෥ఊ1(𝑡),

2. draw 𝛽௧ from the normal distribution 𝑁(𝑚(௧)
ఉ , 𝑃ିଵ(௧)ఉ ),

3. draw 𝜏ଶ by a draw from the inverse gammadistribution 𝐼𝐺(𝑎(௧)ఛమ , 𝑏
௧
ఛమ),

4. draw𝜎ଶ by a draw from the inverse gammadistribution 𝐼𝐺(𝑎(௧)ఙమ , 𝑏
(௧)
ఙమ),

5. update the distributions with the drawn parameters and start again.

(Lang and Brezger, 2001)
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To get the random draws of the coefficients we conduct random draws as

proposed by Lang and Brezger (2001, 2004), Rue (2001):

1. Starting with the Cholesky decomposition: 𝑃𝑟𝑒 = 𝐿𝐿ᇱ,

2. Draw random numbers 𝑍 ∼ 𝑁(0, 1) and solve 𝐿ᇱ𝛽 = 𝑍 or 𝐿ᇱ ෤𝛾 = 𝑍
depending on which parameters we are working, 𝑍 are drawn for
every parameter vector of their own and at every step.29

3. Solve 𝑃𝑟𝑒ఉ𝑚ఉ = ଵ
ఙమ𝑋

ᇱ(𝑦 − 𝜂) or 𝑃𝑟𝑒෥ఊ𝑚෥ఊ = ଵ
ఛమ𝑉

ᇱ(𝑦 − 𝜂). To do
so Lang and Brezger (2004), Rue (2001) propose to solve first 𝐿𝜈 =
ଵ
ఛమ𝑉

ᇱ(𝑦 − 𝜂) by forward substituion to get 𝜈 and in a second step
solve 𝐿ᇱ𝑚෥ఊ = 𝜈 by backward substitution to get the mean vector of
interest. For 𝛽 use the equivalent formulae.(Rue, 2001)

4. Add the mean vectors to the values of second step.

5. As the precision matrix of ෤𝛾 is a sparse matrix, it needs to be con-
verted into a band matrix by the reverse Cuthill-McKee algorithm.

(Lang and Brezger, 2004)

If we set in the matrices and vectors of the P-spline approach described

above, we get an estimation and prediction tool of our problem. 𝜂 means
the predictor that we get using the rest of the linear model (not mentioned

here for simplification). 𝑉 is the variance-covariance matrix of the univer-
sal kriging model.

7.4.4 KriMI by Bayesian P-Splines: Results

The geographic map information we used are free available at Bayerische

Vermessungsverwaltung (2015)Unfortunatly the BayesX-softwarewe need

for P-spline approach has some problems with the shapefiles determining

29We just write ௓ without an index for simplification.
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the Bavarian regions. Shapefiles are vector-data defining edges of the po-

lygon which represents a region in a map. Fortunately, these problems

only affect a few regions. After cleaning the data for the problematic cases,

it was no problem to use the geographic information of the Bayerische -

Vermessungsverwaltung (2015).30

BayesX had some numerical problems to estimate and predict the prices

of 15 products in our shopping basket. It was not possible to fix these pro-

blems. The products have an share of 2.6 percent on our reduced shopping

basket. As this is a small share, we justify removing these products. The

weightings were again adjusted such that they sum up to 100 percent. If

BayesX had problems to estimate the variance parameters, we used the

identity matrix for simplification. All choices of a variance parameter are

arbitrary, so this choice is as good as any other possibility. Not many pro-

ducts were affected by this problem (about five), so it has not a huge influ-

ence on the result.

Themap is gettingmore colourful again, indicating that the P-spline-meth-

od allows predictions close to the data which is amorewiggly function than

is estimated by the mixed model method. The predicted price differences

are bigger. The higher volatility does not disturb the spatial dependencies.

There are clusters and chains of high price and low price regions. For ex-

ample, there is a nest of low price level regions in the north midlands (in

the south of Nuremberg) and a low price chain starting in the west and

moving to the middle.

Again the price level of the cities is lower than the price level of the sur-

rounding regions. The low price levels results probably from the higher

competition and the lower transportation costs in urban areas.

Another consequence of the P-spline technique is that extreme values ap-

pear at the edge of the observational area. To predict at the edge of the defi-

30Thanks to Nikolaus Umlauf who helped me fixing this problem and making BayesX
work for the data available.
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Lowe: Multiple Imputation by Kriging with P−Splines

0.7

1.5

Abbildung 11: Regional Lowe Price Index by KriMI with P-Splines

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

nition area is a well known problem of smoothing techniques which arises

from the missing information beyond that border. Predictions at the edge

result mostly from an extrapolation of foregoing observations, making it

more likely to become an outlier.

The same is represented in the table of the top six high level and low le-

vel regions. There are mostly peripherical regions at the Bavarian borders.

There is a massive outlier: the region Ansbach has a price level about 190

percent of the Bavarian mean. This result is not credible at all, therefore it

should not be interpreted and should be removed from analyis. The rest of

the table shows the high variability of the P-spline approach as the range is

a little higher than the range of the other kriging approaches implemented.
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7 Prediction of Regional Prices

Low level regions
Regensburg, Stadt 0.6843597
Schweinfurt, Stadt 0.7015048
Landshut, Stadt 0.7118566
Ingolstadt, Stadt 0.7533899
Weiden i.d.OPf., Stadt 0.7558110
Bamberg, Stadt 0.7638445

High level regions
Regensburg 1.3051862
Forchheim 1.3093336
Donau-Ries 1.3247229
Berchtesgadener Land 1.3350977
Schweinfurt 1.5010405
Ansbach 1.9000075

Tabelle 9:Highprice and Lowprice Regions by KriMI with P-Splines

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar

The variogram confirms the higher variability by showing a more promi-

nent nugget effect than the one of the other price index predictions. Again

it rises up to a 100 km distance and decreases afterwards. The spatial de-

pendencies are evident up to this threshold, after reaching the sill, there

is no spatial dependency anymore. The spatial dependency decreases with

higher distances represented in the increasing variogram up to 100 km.
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Abbildung 12: Variogram of the Regional Lowe Price Index by KriMI with P-
Splines

Source: Own computation using Bayerische Vermessungsverwaltung (2015),
Bayerisches Landesamt für Statistik und Datenverarbeitung, GfK, Inkar
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8 Outlook

Firstly, let us recap the results of the analysis of the regional price levels

in Bavaria. Secondly, we need to confess that the work is not finished yet.

There are still many things to do and questions to be answered.

The single imputation by conditional means was the starting point for our

evaluation of regional price levels as it is the method usually chosen. It

works very well: it is easy to estimate and predict, the result shows sensi-

ble regional price levels. However there are two huge disadvantages alrea-

dy mentioned: it is not possible to use the results of single imputation to

conduct any inferential statistical analysis afterwards, because the varian-

ces are seriously underestimated. Furthermore we wanted to preserve the

assumed spatial dependencies, which is not possible with simple linear

regression techniques.

For this reason we implemented the spatial dependencies by estabilishing

a regression model that considers the influence of neighbouring regions.

This is done using the kriging model prediction. The resulting regional

price indices are still sensible. They vary a litte more. More important is

that the spatial dependencies become apparent.

As the Kriging approach still does not account for the uncertainty brought

about by the missing data, we wanted to establish a model that allows for

both subsequent statistical inference and preservation of spatial dependen-

cies. To do so, we started with multiple imputation by simple regression to

get a baseline for the multiple impution part of our analysis. This first re-

sult makes it evident that the variability of the regional price level increases

as we want it for the the reason of accounting for the addtional uncertain-

ty. Even though the range of regional prices are huge in the MI case, the

map shows, that the majority of the price indices lies in the middle of the

distributions. Regional differentiation is impossible when using the mul-

tiple imputation approach.
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In the end, we decided to implement kriging in the multiple imputati-

on scheme, allowing for a regional differentiation, regional dependencies,

and a reliable statistical inference of researchers using the price index. We

established two ways to implement kriging in the MI-scheme. We call it

KriMI. The mixed model approach, as well as the P-spline method create

results with a higher variability as the MI result. Both account for the ad-

ditional uncertainty allowing subsequent inferences. Their variograms are

similar to the MI variogram, but their maps show, that results are more

differentiated across regions. Both KriMI approaches differentiate better

between regions than MI did.

If we compare the two KriMI approaches, there is a clear winner. The P-

spline approach has two major disadvantages: firstly, it is very computatio-

nally demanding. One model needs about 30 minutes in our setting. This

fact does not fit well for theMI analysis, as we need to estimate and predict

every product several times, whichmultiplies computation time. Secondly,

it is very accident sensitive.Models needed to be adjusted several times, be-

fore it was even impossible to make estimations and predictions for some

products and for some regions. The mixed model approach is less sensi-

tive and is much faster. Its stability outrivals the P-spline method, even

though the latter seemed to fit the idea of predicting real values better.

Let us recap the threoretical part of the thesis, too. In the first part a short

introduction into theMI-approachwas given.Here the focus was on the ju-

stification of the multiple imputation idea. Afterwards, a short insight into

the various krigingmethods developed in geostatistics is given.Wehad two

topics of focus in this chapter: firstly, we compared the quality of predic-

tions by their MSPEs. Secondly, we described in detail the structures and

parameters of the correlation- and covariance-matrices in the kriging case.

The latter were needed in its following chapter, as the covariance-matrix is

central for the Bayesian mixed model approach developed for the imple-
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mentation of kriging into the multiple imputation scheme. However we

go beyond the mixed model method in this last theoretical chapter, when

modelling kriging as a Bayesian P-spline, which fits better to the multiple

imputation idea than the expectation modelling idea of the mixed model

method. Though matching theoretically better, the P-spline-approach is

outruled by the mixed model method through its higher stability.

There are still a lot of unanswered questions and some unsolved problems.

The integration of the regional price index computed as an interregional

price index is not completed yet. The thesis at hand is embedded in a pro-

ject on regional and interregional prices. As it is the first result of the pro-

ject, there are some problems just named and described, but not solved

at all. For this reason the price indices computed here stopped at the re-

gional Lowe-index and are not advanced to interregionally transitive and

characteristic price indices. This is the task of another part in the project

and cannot be performed at once with the imputation of the regional pri-

ces. The same applies to the problem of housing costs. The rents, prices

for building lands and so on have some very special features, that need to

be considered and discussed. Again it is a thesis of its own and not solved

here, but by some other researchers in the project team.

During analysis the theoretical framework of this thesis some other me-

thodical problems arised, that are still unsolved. First of all, prices are not

normally distributed at all. All methods used here rely on the assumpti-

on of normality. There are some approaches to solve the problem that the

assumption of normality is not plausible in all data cases. The idea is to

estimate the kriging model under the assumption of another distributi-

on being part of the exponential family establishing a GLMM.(Cafarelli,

2002)

From econometric modelling, there arise two other problems to be ana-

lysed in the future. A correct econometric modelling of regional prices
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requires a solution to the endogeneity problem of having variables mea-

suring factor costs and income that depend on the price level itself. There

are several approaches to solve this problem (e.g. the instrumental varia-

ble approach), but their impact onmultiply imputed data are not examined

yet. The same holds for the solution of the interdepence problems between

prices. The prices of the products in the shopping basket are not indepen-

dent from each other. They need to be estimated in a system of equations

resulting in a seemingly unrelated regressions estimation (SUR). There is

no technique developed to harmonise the SUR estimation when using the

multiple imputation method.

Allthough there are still a lot things to do, we solved the problem of im-

plementing regional dependencies in the multple imputation scheme. We

call it KriMI. We showed that KriMI works well for the empirical examp-

le of predicting regional prices. Moreover we estimated quite reasonable

regional price levels.
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A.1 R-packages used

• spgrass6:

– Roger Bivand (2014)

• foreign:

– R Core Team (2015b)

• classInt:

– Bivand (2015)

• maps:

– Original S code by Richard A. Becker and Allan R. Wilks. R
version by Ray Brownrigg. Enhancements by Thomas PMinka
(2014)

• maptools:

– Bivand and Lewin-Koh (2015)

• nlme:

– Pinheiro et al. (2015)

• spdep:

– Bivand and Piras (2015)

– Bivand et al. (2013a)

• shape:

– Soetaert (2014)

• geoR:

– Ribeiro and Diggle (2015)
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• mvtnorm:

– Genz et al. (2014)

– Genz and Bretz (2009)

• MCMCpack:

– Martin et al. (2011)

• MASS:

– Venables and Ripley (2002)

• pracma:

– Borchers (2015)

• sp:

– Pebesma (2005)

– Bivand et al. (2013b)

• akima:

– Fortran code by H. Akima R port by Albrecht Gebhardt aspli-
ne function by Thomas Petzoldt interp2xyz and enhancements
and corrections by Martin Maechler (2013)

• rgdal:

– Bivand et al. (2015)
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A.2 Multiple Imputation

proof of Rubin’s Result 3.2
As shown allready in the text, using the law of iterated expectations and
variances:

𝐸 ൫𝜂|𝑌௢௕௦,௑൯ = 𝐸 (𝐸 (𝜂|𝑋, 𝑌௢௕௦ , 𝑌௠௜௦) |𝑌௢௕௦ , 𝑋)
= 𝐸 (ො𝜂|𝑌௢௕௦ , 𝑋)

and

𝑉𝑎𝑟 (𝜂|𝑌௢௕௦ , 𝑋) = 𝑉𝑎𝑟 (𝐸 (𝜂|𝑌௢௕௦ , 𝑌௠௜௦ , 𝑋) |𝑌௢௕௦ , 𝑋) (49)

+𝐸 (𝑉𝑎𝑟 (𝜂|𝑌௢௕௦ , 𝑌௠௜௦ , 𝑋) |𝑌௢௕௦ , 𝑋)
= 𝑉𝑎𝑟 (ො𝜂|𝑌௢௕௦ , 𝑋) + 𝐸 (𝑈|𝑌௢௕௦ , 𝑋) (50)

where 𝜂 is the parameter of interest, ො𝜂 is its estimator, and𝑈 is its variance.

proof of Rubin’s Result 3.4
Before proving the result, Rubin (1987) shows by employing de Finettis
rule that the joint distribution of 𝑃 (𝑋, 𝑌, 𝑅) can be reformulated in i.i.d.
form such that the distribution of 𝑌 is a product of realizations of a random
variable with a distribution depending on the parameter 𝜃:

𝑃(𝑌, 𝑋, 𝑅) =න
ே

ෑ
௜ୀଵ

𝑓(𝑋௜ , 𝑌௜ , 𝑅௜|𝜃)𝑃(𝜃)𝑑𝜃

=න
ே

ෑ
௜ୀଵ

𝑓௑௒(𝑋௜ , 𝑌௜ , 𝑅௜|𝜃௑௒)

𝑓ோ|௑௒(𝑅௜|𝑋௜ , 𝑌௜ , 𝜃ோ|௑௒)𝑃(𝜃)𝑑𝜃 (51)

whereas 𝜃௑௒ and 𝜃ோ|௑௒ are distributional parameters and functions of the
parameter 𝜃 itself. This result is essential for the following proof of Result
3.4.
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Rubin (1987) just gives the procedure of the proof and does not execute it,
but he lists following assumptions:

”
Suppose that:

1. the sampling mechanism is ignorable, and the joint distribution of
(𝑋, 𝑌, 𝑅) is modeled i.i.d. form (...), where

2. conditional on 𝜃௑௒, the completed-data and complete-data posterior
distributions of 𝑄 (here:𝜂) are equal (...) and

3. the completed-data and complete-data posterior distributions of 𝜃௑௒
are equal (...).“(Rubin, 1987)

(2.) means that 𝑃 (𝜂|𝑋, 𝑌௜௡௖ , 𝑅௜௡௖ , 𝜃௑௒) = 𝑃 (𝜂|𝑋, 𝑌௜௡௖ , 𝜃௑௒) and (3.) me-
ans that 𝑃 (𝜃௑௒|𝑋, 𝑌௜௡௖ , 𝑅௜௡௖) = 𝑃 (𝜃|𝑋, 𝑌௜௡௖). According to Rubin (1987),
these two have to be multiplied and then intergrated over 𝜃௑௒:

න𝑃 (𝜂|𝑋, 𝑌௜௡௖ , 𝑅௜௡௖ , 𝜃௑௒)𝑃 (𝜃௑௒|𝑋, 𝑌௜௡௖ , 𝑅௜௡௖) 𝑑𝜃௑௒ =

= න𝑃 (𝜂|𝑋, 𝑌௜௡௖ , 𝜃௑௒) 𝑃 (𝜃|𝑋, 𝑌௜௡௖) 𝑑𝜃௑௒
𝐸௑௒ [𝑃 (𝜂|𝑋, 𝑌௜௡௖ , 𝑅௜௡௖ , 𝜃௑௒)] =𝐸௑௒ [𝑃 (𝜂|𝑋, 𝑌௜௡௖ , 𝜃௑௒)]

𝑃 (𝜂|𝑋, 𝑌௜௡௖ , 𝑅௜௡௖) =𝑃 (𝜂|𝑋, 𝑌௜௡௖) (52)

q.e.d

The proof given in Rubin (1987) follows directly from the formulae given
in the definition.(Rubin, 1987) A more general proof is given in Rubin
(1996):
proof of result 4.1(Rubin, 1996)
since:

• 𝐸 (ො𝜂|𝑋, 𝑌) → 𝜂
• 𝐸 ൫𝜂ஶ|𝑋, 𝑌, 𝐼൯ → ො𝜂

𝐸 ൫𝜂ஶ|𝑋, 𝑌൯ = 𝐸 ൫𝐸 ൫𝜂ஶ|𝑋, 𝑌, 𝐼൯ |𝑋, 𝑌൯
= 𝐸 (ො𝜂|𝑋, 𝑌) = 𝜂

and, second for the variances, since (Rubin, 1996)
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• 𝐸 (𝑈|𝑋, 𝑌) → Var (ො𝜂|𝑋, 𝑌)
• 𝐸 ቀ𝑈ஶ|𝑋, 𝑌, 𝐼ቁ → 𝑈
• 𝐸 (𝐵ஶ|𝑋, 𝑌, 𝐼) → Var ൫𝜂ஶ|𝑋, 𝑌, 𝐼൯

𝐸 (𝑇ஶ|𝑋, 𝑌) = 𝐸 ቀ𝑈ஶ|𝑋, 𝑌ቁ + 𝐸 (𝐵ஶ|𝑋, 𝑌)

= 𝐸 ቀ𝐸 ቀ𝑈ஶ|𝑋, 𝑌, 𝐼ቁ |𝑋, 𝑌ቁ +
𝐸 (𝐸 (𝐵ஶ|𝑋, 𝑌, 𝐼) |𝑋, 𝑌)

= 𝐸 (𝑈|𝑋, 𝑌) + 𝐸 ൫Var ൫𝜂ஶ|𝑋, 𝑌, 𝐼൯ |𝑋, 𝑌൯
= Var (ො𝜂|𝑋, 𝑌) + 𝐸 ൫Var ൫𝜂ஶ|𝑋, 𝑌, 𝐼൯ |𝑋, 𝑌൯
= var ൫𝐸 ൫𝜂ஶ|𝑋, 𝑌, 𝐼൯൯ + 𝐸 ൫Var ൫𝜂ஶ|𝑋, 𝑌൯ |𝑋, 𝑌, 𝐼൯
= var (𝜂|𝑋, 𝑌)

which equals approximately ൫𝜂 − 𝜂ஶ൯ ∼ 𝑁 (0, 𝑇ஶ).(Rubin, 1996)
q.e.d.

Result 5.1 can be proven in the following way.
proof of Rubin’s Result 5.1

𝑃 (𝑌௠௜௦|𝑋, 𝑌௢௕௦ , 𝜃) = 𝑃 (𝑋, 𝑌௠௜௦ , 𝑌௢௕௦|𝜃)
𝑃 (𝑋, 𝑌௢௕௦|𝜃)

= ∫𝑃 (𝑋, 𝑌|𝜃) 𝑑𝑌௘௫௖
∫𝑃 (𝑋, 𝑌|𝜃) 𝑑𝑌௡௢௕

as in the denominator all not observed cases and in the numerator the
excluded are banned. Then using the i.i.d. assumption and the law of total
probability leads to

=
∫∫ ቂ∏ே

௜ୀଵ 𝑓௑௒ (𝑋௜ , 𝑌௜|𝜃)ቃ 𝑃 (𝜃) 𝑑𝜃𝑑𝑌௘௫௖
∫∫∏ே

௜ୀଵ 𝑓௑௒ (𝑋௜ , 𝑌௜|𝜃) 𝑃 (𝜃) 𝑑𝜃𝑑𝑌௡௢௕
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Afterwards, we exchange integrals and extract 𝑃 (𝜃) from the inner inte-
gral:

=
∫∫ ቂ∏ே

௜ୀଵ 𝑓௑௒ (𝑋௜ , 𝑌௜|𝜃)ቃ 𝑑𝑌௘௫௖𝑃 (𝜃) 𝑑𝜃
∫∫∏ே

௜ୀଵ 𝑓௑௒ (𝑋௜ , 𝑌௜|𝜃) 𝑑𝑌௡௢௕𝑃 (𝜃) 𝑑𝜃

As the inner integrals in numerator and denominator are constant in 𝜃, it
is possible to pull them out of the integral over 𝜃 and reduce afterwards:

=
∫∫ ቂ∏ே

௜ୀଵ 𝑓௑௒ (𝑋௜ , 𝑌௜|𝜃)ቃ 𝑑𝑌௘௫௖
∫∫∏ே

௜ୀଵ 𝑓௑௒ (𝑋௜ , 𝑌௜|𝜃) 𝑑𝑌௡௢௕

According to Rubin (1987) it is convenient to write:

𝑓௑௒ (𝑋௜ , 𝑌௜|𝜃) = 𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ 𝑓௑ (𝑋௜|𝜃௑) .

Using this relation, we get:

=
∫∫ ቂ∏ே

௜ୀଵ 𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ 𝑓௑ (𝑋௜|𝜃௑)ቃ 𝑑𝑌௘௫௖
∫∫∏ே

௜ୀଵ 𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ 𝑓௑ (𝑋௜|𝜃௑) 𝑑𝑌௡௢௕

Again, we pull constants out of the integral and reduce:

=
∫∫ ቂ∏ே

௜ୀଵ 𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ቃ 𝑑𝑌௘௫௖
∫∫∏ே

௜ୀଵ 𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ 𝑑𝑌௡௢௕

According to the rule of Bayes, this is the same as

= 𝑃 ൫𝑌௠௜௦|𝑋, 𝑌௢௕௦ , 𝜃௒|௑൯

q.e.d.(Rubin, 1987)
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A short version of the following proof can be found in Rubin (1987). The
following proof uses Fubinis Rule and Tonellis Rule.
proof of Result 5.2

𝑃 (𝜃|𝑋, 𝑌௢௕௦) =
𝑃 (𝑌௢௕௦ , 𝑋) 𝑃 (𝜃)

𝑃 (𝜃)

=
ቂ∏ே

௜ୀଵ 𝑓௑௒ ൫𝑌௜,௢௕௦ , 𝑋௜|𝜃൯ቃ 𝑃 (𝜃)

∫ ቂ∏ே
௜ୀଵ 𝑓௑௒ ൫𝑋௜ , 𝑌௜,௢௕௦|𝜃൯ቃ 𝑃 (𝜃) 𝑑𝜃

=
ቂ∏ே

௜ୀଵ 𝑓௒|௑ ൫𝑌௜,௢௕௦ , 𝑋௜|𝜃௒|௑൯ 𝑓௑ (𝑋௜|𝜃௑)ቃ

∫ ∫ ቂ∏ே
௜ୀଵ 𝑓௒|௑ ൫𝑌௜,௢௕௦|𝑋௜ , 𝜃௒|௑൯ 𝑓௑ (𝑋௜|𝜃௑)ቃ

𝑃 ൫𝜃௒|௑൯ 𝑃 (𝜃௑)
𝑃 ൫𝜃௒|௑൯ 𝑃 (𝜃௑) 𝑑𝜃௒|௑𝑑𝜃௑

=
ቂ∏ே

௜ୀଵ 𝑓௒|௑ ൫𝑌௜,௢௕௦ , 𝑋௜|𝜃௒|௑൯ቃ 𝑃 ൫𝜃௒|௑൯

∫ ቂ∏ே
௜ୀଵ 𝑓௒|௑ ൫𝑌௜,௢௕௦|𝑋௜ , 𝜃௒|௑൯ቃ 𝑃 ൫𝜃௒|௑൯ 𝑑𝜃௒|௑

ቂ∏ே
௜ୀଵ 𝑓௑ (𝑋௜|𝜃௑)ቃ 𝑃 (𝜃௑)

∫ ቂ∏ே
௜ୀଵ 𝑓௑ (𝑋௜|𝜃௑)ቃ)𝑃 (𝜃௑) 𝑑𝜃௑

=
ቂ∫∏ே

௜ୀଵ 𝑓௒|௑ ൫𝑌௜ , 𝑋௜|𝜃௒|௑൯ቃ 𝑃 ൫𝜃௒|௑൯ 𝑑𝑌௡௢௕
∫∫ ቂ∏ே

௜ୀଵ 𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ቃ 𝑃 ൫𝜃௒|௑൯ 𝑑𝑌௡௢௕𝑑𝜃௒|௑
ቂ∏ே

௜ୀଵ 𝑓௑ (𝑋௜|𝜃௑)ቃ 𝑃 (𝜃௑)

∫ ቂ∏ே
௜ୀଵ 𝑓௑ (𝑋௜|𝜃௑)ቃ)𝑃 (𝜃௑) 𝑑𝜃௑

=
∏ே
௜ୀଵ 𝑓௑ (𝑋௜|𝜃௑) 𝑃 (𝜃௑)

∫∏ே
௜ୀଵ 𝑓௑ (𝑋௜|𝜃௑) 𝑃 (𝜃௑) 𝑑𝜃௑

∫∏ே
௜ୀଵ 𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ 𝑃 ൫𝜃௒|௑൯ 𝑑𝑌௡௢௕

∫∫∏ே
௜ୀଵ 𝑓௒|௑ ൫𝑌௜|𝑋௜ , 𝜃௒|௑൯ 𝑃 ൫𝜃௒|௑൯ 𝑑𝑌௡௢௕𝑑𝜃௒|௑

= … ∫𝑃 ൫𝑌|𝑋, 𝜃௒|௑൯ 𝑃 ൫𝜃௒|௑൯ 𝑑𝑌௡௢௕
∫∫𝑃 ൫𝑌|𝑋, 𝜃௒|௑൯ 𝑃 ൫𝜃௒|௑൯ 𝑑𝑌௡௢௕𝑑𝜃௒|௑
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=
∏ே
௜ୀଵ 𝑓௑ (𝑋௜|𝜃௑) 𝑃 (𝜃௑)

∫∏௜ୀଵ𝑁𝑓௑ (𝑋௜|𝜃௑) 𝑃 (𝜃௑) 𝑑𝜃௑
𝑃 ൫𝑌௢௕௦|𝑋, 𝜃௒|௑൯ 𝑃 ൫𝜃௒|௑൯

∫𝑃 ൫𝑌௢௕௦|𝑋, 𝜃௒|௑൯ 𝑃 ൫𝜃௒|௑൯ 𝑑𝜃௒|௑

= 𝑃 (𝜃, 𝑋)
𝑃 (𝑋)

𝑃 ൫𝑌௢௕௦ , 𝜃௒|௑|𝑋൯
𝑃 (𝑌௢௕௦)

= 𝑃 (𝜃௑|𝑋) 𝑃 ൫𝜃௒|௑|𝑋, 𝑌௢௕௦൯
= 𝑃 (𝜃௑|𝑋, 𝑌௢௕௦) 𝑃 ൫𝜃௒|௑|𝑋, 𝑌௢௕௦൯

𝜃௑ and 𝜃௒|௑ are a posteriori independent.
q.e.d.
The proof of result 5.3 as univariate case follows direct from result 5.2.

Rubin (1987) proves the result 5.4 in the following manner:
proof of result 5.4
According to the rule of Bayes and the rule of total probability we can write:

𝑃 (𝜃|𝑋, 𝑌௢௕௦) =
𝑃 (𝑌௢௕௦|𝑋, 𝜃) 𝑃 (𝜃)

∫𝑃 (𝑌௢௕௦|𝑋, 𝜃) 𝑃 (𝜃) 𝑑𝜃
(53)

In 𝑃 (𝑌௢௕௦|𝑋, 𝜃) 𝑃 (𝜃), the notobserved are integrated out:

𝑃 (𝑌௢௕௦|𝑋, 𝜃) = න𝑃 (𝑌|𝑋, 𝜃) 𝑑𝑌௡௢௕ (54)

As the probability on the right side is a product according to the distinct
structure,

𝑃 (𝑌|𝑋, 𝜃) =
௣

ෑ
௝ୀଵ

ே

ෑ
௜ୀଵ

𝑓௜௝

we can write

𝑑𝑌௡௢௕ =
௣

ෑ
௝ୀଵ

ෑ
௜∈௡௢௕[௝]

𝑑𝑌௜௝
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Then 54 becomes

𝑃 (𝑌௢௕௦|𝑋, 𝜃) = න…න቎
௣

ෑ
௝ୀଵ

ே

ෑ
௜ୀଵ

𝑓௜௝቏ ቎
௣

ෑ
௝ୀଵ

ෑ
௜∈௡௢௕[௝]

𝑑𝑌௜௝቏

= න…න቎
௣

ෑ
௝ୀଵ

ෑ
௜∈௢௕௦[௝]

𝑓௜௝቏ ቎
௣

ෑ
௝ୀଵ

ෑ
௜∈௡௢௕[௝]

𝑓௜௝𝑑𝑌௜௝቏

= ቎
௣

ෑ
௝ୀଵ

ෑ
௜∈௢௕௦[௝]

𝑓௜௝቏ න…න቎
௣

ෑ
௝ୀଵ

ෑ
௜∈௡௢௕[௝]

𝑓௜௝𝑑𝑌௜௝቏
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

ୀଵ

=
௣

ෑ
௝ୀଵ

ෑ
௜∈௢௕௦[௝]

𝑓௜௝ (55)

As the parameters 𝜃 are distinct and inserting 55 into 53 yields

𝑃 (𝜃|𝑋, 𝑌௢௕௦) =
௣

ෑ
௝ୀଵ

∏௜∈௢௕௦[௝] 𝑓௜௝𝑃 ൫𝜃௝൯
∫∏௜∈௢௕௦[௝] 𝑓௜௝𝑃 ൫𝜃௝൯ 𝑑𝜃௝

q.e.d.

The following proof of result 5.5 is given in Rubin (1987).
proof

𝑃 (𝑌௠௜௦|𝑋, 𝑌௢௕௦ , 𝜃) =
𝑃 (𝑌௠௜௦ , 𝑌௢௕௦|𝑋, 𝜃)
𝑃 (𝑌௢௕௦|𝑋, 𝜃)

=
∏௣
௝ୀଵ∏௜∈௜௡௖ 𝑓௜௝

∏௣
௝ୀଵ∏௜∈௢௕௦[௝] 𝑓௜௝

=
௣

ෑ
௝ୀଵ

∏௜∈௜௡௖ 𝑓௜௝
∏௜∈௢௕௦[௝] 𝑓௜௝

=
௣

ෑ
௝ୀଵ

ෑ
௜∈௠௜௦[௝]

𝑓௜௝

q.e.d.
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A.3 Kriging

All derivations and proofs looking at one region base on Cressie (1990),
Schabenberger and Gotway (2005), Stein (1999). The other computations
of this section are conducted by the author and inspired by the given lite-
ratur.

A.3.1 Simple Kriging

If we look at one unobserved region, the MSPE is:

𝑀𝑆𝑃𝐸(𝜆଴, 𝜆) = 𝐸 ൤൫𝑦(𝑠଴) − 𝜆଴ − 𝜆ᇱ𝑦൯ଶ൨

= 𝑉𝑎𝑟 (𝑦(𝑠଴)) + 𝐸 (𝑦(𝑠଴))
ଶ − 2𝜆଴𝐸 (𝑦(𝑠଴))

− 2𝜆ᇱ𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) − 2𝜆ᇱ𝐸 (𝑦)
𝐸 (𝑦(𝑠଴)) + 𝜆ଶ଴ + 2𝜆଴𝜆ᇱ𝐸 (𝑦) + 𝜆ᇱ𝑉𝑎𝑟 (𝑦) 𝜆
+ 𝜆ᇱ𝐸 (𝑦)ଶ 𝜆
= 𝑉𝑎𝑟 (𝑦(𝑠଴)) − 2𝜆ᇱ𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) + 𝜆ᇱ𝑉𝑎𝑟 (𝑦) 𝜆

+ ൫𝜇(𝑠଴) − 𝜆଴ − 𝜆ᇱ𝜇൯ଶ

Partially deviating to the parameter 𝜆଴ and the parameter-vector 𝜆 gives

• డெௌ௉ா(⋅)
డఒ = −2𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) + 2𝑉𝑎𝑟(𝑦)𝜆 − 2𝜆ᇱ(𝜇(𝑠଴) − 𝜆଴ − 𝜆ᇱ𝜇)

• డெௌ௉ா(⋅)
డఒబ

= −2 ൫𝜇(𝑠଴) − 𝜆଴ − 𝜆ᇱ𝜇൯

Setting the latter equal to zero we can compute the optimal 𝜆଴
ෞ𝜆଴ = 𝜇(𝑠଴) − 𝜆ᇱ𝜇

which can be used in the equation for 𝜆, which givesMSPE-optimal predictor-
coefficients 𝜆:

ො𝜆 = 𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
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If we insert these parameters in the equation or the predictor, we get the
MSPE-optimal predictor:

ෝ𝑦(𝑠଴) =ෞ𝜆଴ + ෝ𝜆ᇱ𝑦
= 𝜇(𝑠଴) − ෝ𝜆ᇱ𝜇 + (𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)))ᇱ𝑦
= 𝜇(𝑠଴) − (𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)))ᇱ𝜇 + (𝑉𝑎𝑟(𝑦)ିଵ

𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)))ᇱ𝑦
= 𝜇(𝑠଴) + 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦)ିଵ(𝑦 − 𝜇)

The MSPE of the optimal predictor of one region becomes after inserting
the optimal estimators 𝜆଴ and 𝜆

𝑀𝑆𝑃𝐸௦௞,௦௜௡௚ = 𝑉𝑎𝑟(𝑦(𝑠଴)) − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

If we look at all unobserved regions at once, the MSPE can be derivated
by:

𝐸 ቂ൫𝑦଴ − 𝑖𝜆଴ − 𝑖𝜆ᇱ𝑦൯ ൫𝑦଴ − 𝑖𝜆଴ − 𝑖𝜆ᇱ𝑦൯ᇱቃ =
𝐸 ൫𝑦଴𝑦ᇱ଴ − 𝑦଴𝜆଴𝑖

ᇱ − 𝑖𝜆ᇱ𝑦଴𝑦ᇱ − 𝑖𝜆଴𝑦ᇱ଴
𝑖𝜆଴𝜆ᇱ଴𝑖ᇱ + 𝑖𝜆଴𝑦ᇱ𝜆𝑖ᇱ − 𝑖𝜆ᇱ𝑦𝑦଴ + 𝑖𝜆ᇱ𝑦𝜆ᇱ଴𝑖ᇱ + 𝑖𝜆ᇱ𝑦𝑦ᇱ𝜆𝑖ᇱ൯
= 𝐸 ൫𝑦଴𝑦ᇱ଴൯ − 2𝜆଴𝑖𝐸 ൫𝑦ᇱ଴൯ − 2𝑖𝜆ᇱ𝐸 ൫𝑦଴𝑦ᇱ൯ + 𝑖𝜆ଶ଴𝑖ᇱ + 2𝑖𝜆଴𝐸 (𝑦ᇱ) 𝜆𝑖ᇱ+
𝑖𝜆ᇱ𝐸 (𝑦𝑦ᇱ) 𝜆𝑖ᇱ

= 𝑉𝑎𝑟 ൫𝑦଴൯ + 𝜇଴𝜇ᇱ଴ − 2𝜆଴𝑖𝜇ᇱ଴ − 2𝑖𝜆ᇱ ൣ𝐶𝑜𝑣(𝑦, 𝑦଴) + 𝜇଴𝜇൧ + 𝑖𝜆ଶ଴𝑖ᇱ+
2𝑖𝜆଴𝜇ᇱ𝜆𝑖ᇱ + 𝑖𝜆ᇱ ൣ𝑉𝑎𝑟(𝑦) + 𝐸(𝑦)𝐸(𝑦)ᇱ൧ 𝜆𝑖ᇱ

= 𝑉𝑎𝑟 ൫𝑦଴൯ − 2𝑖𝜆ᇱ𝐶𝑜𝑣(𝑦, 𝑦଴) + 𝑖𝜆ᇱ𝑉𝑎𝑟(𝑦)𝜆𝑖ᇱ+
ቂ𝜇଴ − 𝑖 ൫𝜆଴ + 𝜆ᇱ𝜇൯ ൫𝜆଴ + 𝜆ᇱ𝜇൯ᇱቃ

Again we minimize the MSPE and get the two partial derivatives:

• డெௌ௉ா(⋅)
డఒ = −2𝐶𝑜𝑣 ൫𝑦, 𝑦଴൯ + 2𝑉𝑎𝑟(𝑦)𝜆𝑖ᇱ𝑖 − 2𝜇𝑖ᇱ(𝜇଴ − 𝑖𝜆଴ − 𝑖𝜆ᇱ𝜇)

• డெௌ௉ா(⋅)
డఒబ

= −2𝑖 ൫𝜇଴ − 𝑖𝜆଴ − 𝑖𝜆ᇱ𝜇൯ᇱ
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Setting the latter formula equal to 0, we get

𝑖𝜆଴,௦௞,௠௨௟௧ = 𝜇଴ − 𝑖𝜆ᇱ𝜇

Using this result in the partial derivative of 𝜆 and setting again to zero
delivers:

−𝐶𝑜𝑣(𝑦, 𝑦଴)𝑖
ᇱ + 𝑉𝑎𝑟(𝑦)𝜆𝑖ᇱ𝑖 = 0

From which follows that

𝜆௦௞,௠௨௟௧ = 𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦଴)𝑖(𝑖
ᇱ𝑖)ିଵ

Inserting this result in the formula of the optimal predictor gives:

ෟ𝑦௦௞,௠௨௟௧ = 𝑖𝜆଴ + 𝑖𝜆ᇱ𝑦
= 𝜇଴ − 𝑖𝜆ᇱ(𝑦 − 𝜇)
= 𝜇଴ − 𝐶𝑜𝑣(𝑦, 𝑦଴)

ᇱ𝑉𝑎𝑟(𝑦)ିଵ(𝑦 − 𝜇)

The correspondent MSPE is:

𝑀𝑆𝑃𝐸௦௞,௠௨௟௧ = 𝑉𝑎𝑟(𝑦଴) − 2𝑖 ቀ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦଴)𝑖(𝑖
ᇱ𝑖ିଵ)ቁ

ᇱ

𝐶𝑜𝑣(𝑦, 𝑦଴)

+ 𝑖 ቀ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦଴)𝑖(𝑖
ᇱ𝑖)ିଵቁ

ᇱ
𝑉𝑎𝑟(𝑦)𝑉𝑎𝑟(𝑦)ିଵ

𝐶𝑜𝑣(𝑦, 𝑦଴)𝑖(𝑖
ᇱ𝑖)ିଵ𝑖ᇱ

+ (𝜇଴ − 𝜇଴ + 𝑖𝜆ᇱ𝜇 − 𝑖𝜆ᇱ𝜇)(𝜇଴ − 𝜇଴ + 𝑖𝜆ᇱ𝜇 − 𝑖𝜆ᇱ𝜇)ᇱ

= 𝑉𝑎𝑟(𝑦଴) − 2𝐶𝑜𝑣(𝑦, 𝑦଴)
ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦଴)

+ 𝐶𝑜𝑣(𝑦, 𝑦଴)
ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦଴)

= 𝑉𝑎𝑟(𝑦଴) − 𝐶𝑜𝑣(𝑦, 𝑦଴)
ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦଴)
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A.3.2 Ordinary Kriging

The following computations are based on the formula and ideas given in
Schabenberger and Gotway (2005).
The optimization of the MSPE under the constraint of a linear mixture
gives the Lagrange equation:

𝐸 ቂ൫𝜆ᇱ𝑦 − 𝑦(𝑠଴)൯ ൫𝜆ᇱ𝑦 − 𝑦(𝑠଴)൯
ᇱቃ − 2𝑚 ൫𝜆ᇱ𝑖 − 1൯ =

= 𝐸 ቂ𝜆ᇱ𝑦𝑦ᇱ𝜆 − 2𝜆ᇱ𝑦𝑦(𝑠଴) + 𝑦(𝑠଴)ଶቃ − 2𝑚 ൫𝜆ᇱ𝑖 − 1൯

= 𝜆ᇱ𝐸 (𝑦𝑦ᇱ) 𝜆 − 2𝜆ᇱ𝐸 (𝑦𝑦(𝑠଴)) + 𝐸 ቀ𝑦(𝑠଴)ଶቁ − 2𝑚 ൫𝜆ᇱ𝑖 − 1൯
= 𝜆ᇱ𝑉𝑎𝑟 (𝑦) 𝜆 + 𝜆ᇱ𝐸 (𝑦) 𝐸 (𝑦) 𝜆 − 2𝜆ᇱ𝐶𝑜𝑣 (𝑦𝑦(𝑠଴)) − 2𝜆ᇱ𝐸 (𝑦)
𝐸 (𝑦(𝑠଴)) + 𝑉𝑎𝑟 (𝑦(𝑠଴)) + 𝐸 (𝑦(𝑠଴))

ଶ − 2𝑚 ൫𝜆ᇱ𝑖 − 1൯
= 𝜆ᇱ𝑉𝑎𝑟 (𝑦) 𝜆 + 𝜇ଶ௬ 𝜆ᇱ𝑖𝑖ᇱ𝜆ቋ

ୀଵ
−2𝜆ᇱ𝐶𝑜𝑣 (𝑦𝑦(𝑠଴)) − 2𝜇ଶ௬ 𝜆ᇱ𝑖ቅ

ୀଵ

+ 𝑉𝑎𝑟 (𝑦(𝑠଴)) + 𝜇ଶ௬ − 2𝑚 ൫𝜆ᇱ𝑖 − 1൯
= 𝜆ᇱ𝑉𝑎𝑟 (𝑦) 𝜆 − 2𝜆ᇱ𝐶𝑜𝑣 (𝑦𝑦(𝑠଴)) + 𝑉𝑎𝑟 (𝑦(𝑠଴)) − 2𝑚 ൫𝜆ᇱ𝑖 − 1൯

The partial derivations are:

• డெௌ௉ா(⋅)
డఒ = 2𝑉𝑎𝑟(𝑦)𝜆 − 2𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) − 2𝑚𝑖

• డெௌ௉ா(⋅)
డ௠ = 2 ൫𝜆ᇱ𝑖 − 1൯

Setting the first derivation to zero and solving to 𝜆 gives

𝜆 = 𝑉𝑎𝑟(𝑦)ିଵ (𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) + 𝑖𝑚)

Inserting 𝜆 into the second partial derivation set to zero and solving for𝑚
gives

ෞ𝑚௢௞ = ቀ1 − 𝑖𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ
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After inserting the optimal𝑚 into the foregoing formula we get the result
for the mixture coefficients:

ෞ𝜆௢௞ =𝑉𝑎𝑟(𝑦)ିଵ ቀ𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) + 𝑖 ቀ1 − 𝑖𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ
ቇ

This defines the ordinary kriging predictor:

ෞ𝑦௢௞(𝑠଴) = ቀ𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) + 𝑖 ቀ1 − 𝑖𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ
ቇ
ᇱ
𝑉𝑎𝑟(𝑦)ିଵ𝑦

As the mean has to be estimated implicitely in this formula, Schaben-
berger and Gotway (2005) proposes to use the GLS-estimator of the mean:

ෝ𝜇 = ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ
𝑖ᇱ𝑉𝑎𝑟(𝑦)−1𝑦

and then reformulate the formula above in the following manner:

ෞ𝑦௢௞(𝑠଴) = ( 𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) + 𝑖 ቀ1 − 𝑖𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ

)ᇱ 𝑉𝑎𝑟(𝑦)ିଵ𝑦

= ቆ𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴)) + 𝑖 ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ

−𝑖 ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ
ቀ𝑖𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁቇ

ᇱ

𝑉𝑎𝑟(𝑦)ିଵ𝑦
= 𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴))

ᇱ 𝑉𝑎𝑟(𝑦)ିଵ𝑦

+ ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ
𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑦

− 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))𝑉𝑎𝑟(𝑦)ିଵ𝑖 ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ
𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑦
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= ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ
𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑦⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

ෞఓ೤

+ 𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴))
ᇱ 𝑉𝑎𝑟(𝑦)ିଵ𝑦

− 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))𝑉𝑎𝑟(𝑦)ିଵ𝑖 ቀ𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖ቁ
ିଵ
𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑦⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

ෞఓ೤

=ෞ𝜇௬ + 𝐶𝑜𝑣 (𝑦, 𝑦(𝑠଴))
ᇱ 𝑉𝑎𝑟(𝑦)ିଵ𝑦

− 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))𝑉𝑎𝑟(𝑦)ିଵ𝑖ෞ𝜇௬
The MSPE of the ordinary kriging predictor can be derived by inserting
the predictor into the MSPE formula above:

𝑀𝑆𝑃𝐸௢௞ = 𝑉𝑎𝑟(𝑦(𝑠଴)) + ቀ𝑉𝑎𝑟(𝑦)ିଵ (𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

+𝑖
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
ቍቍ

ᇱ

𝑉𝑎𝑟(𝑦) ቀ𝑉𝑎𝑟(𝑦)ିଵ (𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

+𝑖
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
ቍቍ

− 2 ቀ𝑉𝑎𝑟(𝑦)ିଵ (𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

+𝑖
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
ቍቍ

ᇱ

𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

=𝑉𝑎𝑟(𝑦(𝑠଴)) + 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
+ 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦)ିଵ

ቌ𝑖
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
ቍ+
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+ ቌ𝑖
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
ቍ

ᇱ

𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

+ ቌ𝑖
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
ቍ

ᇱ

𝑉𝑎𝑟(𝑦)ିଵ

ቌ𝑖
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
ቍ

− 2𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

− 2ቌ𝑖
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
ቍ

ᇱ

𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

= 𝑉𝑎𝑟(𝑦(𝑠଴)) − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

+
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖

ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ
𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖

=𝑉𝑎𝑟(𝑦(𝑠଴)) − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

+
ቀ1 − 𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ቁ

ଶ

𝑖ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑖
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A.3.3 Universal Kriging

The starting points and the results of the following computations can be
found in Schabenberger and Gotway (2005). TheMSPE and the constraint
yield the following Langrange function to be minimized:

𝑀𝑆𝑃𝐸 =min
௔

𝑎ᇱ𝑉𝑎𝑟(𝑦)𝑎 + 𝑉𝑎𝑟(𝑦(𝑠଴)) − 2𝑎ᇱ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

+ 2𝑚ᇱ(𝑋ᇱ𝑎 − 𝑥(𝑠଴))

The partial derivations are:

• డெௌ௉ா(⋅)
డ௠ = 2(𝑋ᇱ𝑎 − 𝑥(𝑠଴))

• డெௌ௉ா(⋅)
డ௔ = 2𝑉𝑎𝑟(𝑦)𝑎 − 2𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) + 2𝑋𝑚

Setting to zero and solving the first equation for 𝑎 gives:

𝑎 = 𝑋ᇱିଵ𝑥(𝑠଴)

Inserting this into the second yields:

𝑉𝑎𝑟(𝑦)𝑋ᇱିଵ𝑥(𝑠଴) + 𝑋𝑚 = 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

from which follows that

𝑚 = 𝑋ᇱିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) − 𝑋ିଵ𝑉𝑎𝑟(𝑦)𝑋ᇱିଵ𝑥(𝑠଴)
= 𝑋ିଵ𝑉𝑎𝑟(𝑦)𝑋ᇱିଵ ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) − 𝑥(𝑠଴)ቁ
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Inserting 𝑚 into the second equation solved for 𝑎 gives the optimal mix-
ture coefficients:

𝑎 = 𝑉𝑎𝑟(𝑦)ିଵ (𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) − 𝑋𝑚)
= 𝑉𝑎𝑟(𝑦)ିଵ ቂ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) − 𝑋 ቀ𝑋ିଵ𝑉𝑎𝑟(𝑦)𝑋ᇱିଵ

ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) − 𝑥(𝑠଴)ቁቁቃ

= ቈ𝑉𝑎𝑟(𝑦)ିଵ − 𝑉𝑎𝑟(𝑦)ିଵ𝑋 ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑋ቁ
ିଵ
𝑋ᇱ𝑉𝑎𝑟ିଵ቉

𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴)) + 𝑉𝑎𝑟(𝑦)ିଵ𝑋 ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑋ቁ
ିଵ
𝑥(𝑠଴)

The optimal universal kriging predictor is then:

ෞ𝑦௨௞(𝑠଴) = 𝑎ᇱ𝑦

= 𝑥(𝑠଴)ᇱ ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑋ቁ
ିଵ
𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑦⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

ෟఉಸಽೄ

+ 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))𝑉𝑎𝑟(𝑦)ିଵ

⎛
⎜

⎝

𝑦 − 𝑋 ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑋ቁ
ିଵ
𝑋ᇱ𝑉𝑎𝑟(𝑦)ିଵ𝑦⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

ෟఉಸಽೄ

⎞
⎟

⎠
= 𝑥(𝑠଴)ᇱෟ𝛽ீ௅ௌ + 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))𝑉𝑎𝑟(𝑦)ିଵ ൫𝑦 − 𝑋ෟ𝛽ீ௅ௌ൯

and its MSPE can be computed in the following manner:

𝑀𝑆𝑃𝐸௨௞ = 𝑎ᇱ𝑉𝑎𝑟(𝑦)𝑎 + 𝑉𝑎𝑟(𝑦(𝑠଴)) − 2𝑎ᇱ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
+ 2𝑚ᇱ(𝑋ᇱ𝑎 − 𝑥(𝑠଴)) =
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= 𝑉𝑎𝑟(𝑦(𝑠଴)) + ቂ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ

− 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ

𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ

+𝑥(𝑠଴) ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋ቁ
ିଵ
𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ቉

𝑉𝑎𝑟(𝑦(𝑠଴)) ቂ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
− 𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ

𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
+ 𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴)ିଵ𝑋)ିଵ𝑥(𝑠଴)ቃ

− 2 ቂ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ

− 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ

𝑋𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ

+ 𝑥(𝑠଴) ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋ቁ
ିଵ

𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵቃ 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
= 𝑉𝑎𝑟(𝑦(𝑠଴)) − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
− 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ

𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
+ 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑥(𝑠଴)
− 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ

𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
+ 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ

𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋
(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
− 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ

𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋
(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑥(𝑠଴)
+ 𝑥(𝑠଴)ᇱ(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
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− 𝑥(𝑠଴)ᇱ(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋
(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
+ 𝑥(𝑠଴)ᇱ(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ

𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑥(𝑠଴)
− 2𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
+ 2𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑋ᇱ

𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
− 2𝑥(𝑠଴)ᇱ(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
= 𝑉𝑎𝑟(𝑦(𝑠଴)) − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
+ 𝑥(𝑠଴)ᇱ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑥(𝑠଴)
+ 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ

𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
+ 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑥(𝑠଴)
− 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑥(𝑠଴)
+ 𝑥(𝑠଴)𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
− 𝑥(𝑠଴)𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
− 2𝑥(𝑠଴)ᇱ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
= 𝑉𝑎𝑟(𝑦(𝑠଴)) − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
+ 𝑥(𝑠଴)ᇱ(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑥(𝑠଴)
− 𝑥(𝑠଴)ᇱ(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋
− 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ𝑥(𝑠଴)
+ 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋(𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋)ିଵ

𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))
= 𝑉𝑎𝑟(𝑦(𝑠଴)) − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))

+ ቀ𝑥(𝑠଴)ᇱ − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋ቁ ቀ𝑋ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋ቁ
ିଵ

ቀ𝑥(𝑠଴)ᇱ − 𝐶𝑜𝑣(𝑦, 𝑦(𝑠଴))ᇱ𝑉𝑎𝑟(𝑦(𝑠଴))ିଵ𝑋ቁ
ᇱ
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A.4 Full Conditionals of the NIG Regression Model

The posterior in the NIG-case is:(Fahrmeir et al., 2007)

𝑃(𝛽, 𝜎ଶ|𝑦, 𝑋) ∝ 1
(𝜎ଶ)

೙
మ
exp ቊ− 1

2𝜎ଶ (𝑦 − 𝑋𝛽)ᇱ (𝑦 − 𝑋𝛽)ቋ

1
(𝜎ଶ)

೛
మ
exp ቊ 1

2𝜎ଶ (𝛽 − 𝑚)ᇱ𝑀ିଵ (𝛽 − 𝑚)ቋ

1
(𝜎ଶ)௔ାଵ

exp ቊ− 𝑏
𝜎ଶ ቋ

fromwhichwe can compute the following full conditionals:(Fahrmeir et al.,
2007)

𝑃(𝛽|𝜎ଶ, 𝑦, 𝑋) ∝ exp ቊ− 1
2𝜎ଶ (𝑦 − 𝑋𝛽)ᇱ (𝑦 − 𝑋𝛽)ቋ

exp ቊ 1
2𝜎ଶ (𝛽 − 𝑚)ᇱ𝑀ିଵ (𝛽 − 𝑚)ቋ

=exp ቊ− 1
2𝜎ଶ 𝑦

ᇱ𝑦 + 1
𝜎ଶ𝛽

ᇱ𝑋ᇱ𝑦 − 1
2𝜎ଶ𝛽

ᇱ𝑋ᇱ𝑋𝛽ቋ

exp ቊ− 1
2𝜎ଶ𝛽

ᇱ𝑀ିଵ𝛽 − 1
2𝜎ଶ𝑚

ᇱ𝑀ିଵ𝑚+ 1
𝜎ଶ𝛽

ᇱ𝑀ିଵ𝑚ቋ

∝exp ቊ 1𝜎ଶ𝛽
ᇱ𝑋ᇱ𝑦 − 1

2𝜎ଶ𝛽
ᇱ𝑋ᇱ𝑋𝛽ቋ

exp ቊ− 1
2𝜎ଶ𝛽

ᇱ𝑀ିଵ𝛽 + 1
𝜎ଶ𝛽

ᇱ𝑀ିଵ𝑚ቋ

=exp { 𝛽ᇱ ቆ 1
𝜎ଶ𝑋

ᇱ𝑦 + 1
𝜎ଶ𝑀

ିଵ𝑚ቇ

−12𝛽
ᇱ ቆ 1
𝜎ଶ𝑋

ᇱ𝑋 + 1
𝜎ଶ𝑀

ିଵቇ𝛽ቋ
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which is a multivariate normal with 𝜇ఉ = Σఉ ቀ
ଵ
ఙమ𝑋

ᇱ𝑦 + ଵ
ఙమ𝑀

ିଵ𝑚ቁ and

Σఉ = ቀ ଵ
ఙమ𝑋

ᇱ𝑋 + ଵ
ఙమ𝑀

ିଵቁ
ିଵ
.

The full conditional for the variance is:

𝑃(𝜎ଶ|𝛽, 𝑦, 𝑋) ∝ 1
(𝜎ଶ)

೙
మ
exp ቊ− 1

2𝜎ଶ (𝑦 − 𝑋𝛽)ᇱ (𝑦 − 𝑋𝛽)ቋ

1
(𝜎ଶ)

೛
మ
exp ቊ 1

2𝜎ଶ (𝛽 − 𝑚)ᇱ𝑀ିଵ (𝛽 − 𝑚)ቋ

1
(𝜎ଶ)௔ିଵ

exp ቊ− 𝑏
𝜎ଶ ቋ

= 1
(𝜎ଶ)௔ା

೙
మା

೛
మିଵ

exp ቊ− 1
𝜎ଶ ቈ

1
2 (𝑦 − 𝑋𝛽)ᇱ (𝑦 − 𝑋𝛽)

+12 (𝛽 −𝑚)ᇱ𝑀ିଵ (𝛽 − 𝑚) + 𝑏቉ቋ

which is an Inverse Gamma distribution with 𝑎ᇱ = ௡
ଶ +

௣
ଶ + 𝑎 and

𝑏ᇱ = ଵ
ଶ (𝑦 − 𝑋𝛽)ᇱ (𝑦 − 𝑋𝛽) + ଵ

ଶ (𝛽 − 𝑚)ᇱ𝑀ିଵ (𝛽 − 𝑚) + 𝑏
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A.5 Full Conditionals of the KriMI Model

The posterior of the KriMI-model is:

𝑃 ൫𝛽, 𝛾, 𝜎ଶ, 𝜏ଶ|𝑦, 𝑋൯ = 𝑃 ൫𝑦|𝛽, 𝛾, 𝜎ଶ, 𝜏ଶ, 𝑋൯ 𝑃 ൫𝛽, 𝛾, 𝜎ଶ, 𝜏ଶ൯
= 𝑃 ൫𝑦|𝛽, 𝛾, 𝜎ଶ, 𝜏ଶ, 𝑋൯ 𝑃 ൫𝛽, 𝜎ଶ൯ 𝑃 ൫𝛾, 𝜏ଶ൯
= 𝑃 ൫𝑦|𝛽, 𝛾, 𝜎ଶ, 𝜏ଶ, 𝑋൯ 𝑃 ൫𝛽|𝜎ଶ൯ 𝑃(𝜎ଶ)𝑃 ൫𝛾|𝜏ଶ൯ 𝑃(𝜏ଶ)

∝ 𝑑𝑒𝑡(𝜎ଶ𝐼)ି
భ
మ exp { − 1

2 (𝑦 − 𝑋𝛽 − 𝑍𝛾)ᇱ ൫𝜎ଶ𝐼൯ିଵ

(𝑦 − 𝑋𝛽 − 𝑍𝛾) }

𝑑𝑒𝑡(𝜎ଶ𝑀)ି
భ
మ exp ቊ−12 (𝛽 −𝑚)ᇱ ൫𝜎ଶ𝑀൯ିଵ (𝛽 − 𝑚)ቋ

𝑑𝑒𝑡(𝜏ଶ𝑅)ି
భ
మ exp ቊ−12 (𝛾 − 0)ᇱ ൫𝜏ଶ𝑅൯ିଵ (𝛾 − 0)ቋ

1
𝜎ଶ(௔഑ାଵ) exp ቊ−

𝑏ఙ
𝜎ଶ ቋ

1
𝜏ଶ(௔ഓାଵ) exp ቊ−

𝑏ఛ
𝜏ଶ ቋ

Now, we can derive the full conditionals of the particular parameters by
leaving out all fixed parameters and looking for a well known distribution.
The full conditional of 𝛽 is:

𝑃 ൫𝛽|𝛾, 𝜎ଶ, 𝜏ଶ, 𝑦, 𝑋൯ ∝ exp { − 1
2 (𝑦 − 𝑋𝛽 − 𝑍𝛾)ᇱ ൫𝜎ଶ𝐼൯ିଵ

(𝑦 − 𝑋𝛽 − 𝑍𝛾) − 1
2 (𝛽 −𝑚)ᇱ ൫𝜎ଶ𝑀൯ିଵ (𝛽 − 𝑚) }

= exp ቊ−12 ቂ𝑦
ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑦 − 2𝛽ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑦 + 𝛽ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑋𝛽

+ 2𝛽ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑍𝛾

+ 2𝑦ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑍𝛾 + 𝛾ᇱ𝑍ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑍𝛾
+ 𝛽ᇱ ൫𝜎ଶ𝑀൯ିଵ 𝛽 − 2𝛽ᇱ ൫𝜎ଶ𝑀൯ିଵ𝑚+𝑚ᇱ ൫𝜎ଶ𝑀൯ିଵ𝑚ቃቅ

∝ exp ቊ−12 ቂ−2𝛽
ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑦 + 𝛽ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑋𝛽 + 2𝛽ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ

𝑍𝛾 + 𝛽ᇱ ൫𝜎ଶ𝑀൯ିଵ 𝛽 − 2𝛽ᇱ ൫𝜎ଶ𝑀൯ିଵ𝑚ቃቅ
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=exp
⎧
⎪
⎨
⎪
⎩

−12

⎡
⎢
⎢
⎢
⎢
⎣

𝛽ᇱ ቀ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑋 + ൫𝜎ଶ𝑀൯ିଵቁ⎫⎪⎪⎪⎬⎪⎪⎪⎭

ஊషభഁ

𝛽
⎤
⎥
⎥
⎥
⎥
⎦

+𝛽ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑦 − 𝛽ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑍𝛾 + 𝛽ᇱ ൫𝜎ଶ𝑀൯ିଵ𝑚ቅ

=exp ቊ12𝛽
ᇱΣିଵఉ 𝛽 + 𝛽ᇱ ቂΣିଵఉ Σఉ𝑋ᇱ ൫𝜎ଶ𝐼൯

ିଵ (𝑦 − 𝑍𝛾) + ൫𝜎ଶ𝑀൯ିଵ𝑚ቃቋ

which is a multivariate normal with:

• 𝜇ఉ = Σఉ ቂ𝑋ᇱ ൫𝜎ଶ𝐼൯
ିଵ (𝑦 − 𝑍𝛾) + ൫𝜎ଶ𝑀൯ିଵ𝑚ቃ

• Σఉ = ቀ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑋 + ൫𝜎ଶ𝑀൯ିଵቁ
ିଵ

Next, we derive the form of the full conditional of the spatial effects:

𝑃 ൫𝛾|𝛽, 𝜎ଶ, 𝜏ଶ𝑦, 𝑋൯ ∝ exp ቊ−12 (𝑦 − 𝑋𝛽 − 𝑍𝛾)ᇱ ൫𝜎ଶ𝐼൯ିଵ

(𝑦 − 𝑋𝛽 − 𝑍𝛾) − 1
2𝛾

ᇱ ൫𝜏ଶ𝑅൯ିଵ 𝛾ቋ =

=exp ቊ−12 ቂ𝑦
ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑦 − 2𝑋ᇱ𝛽ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑦

− 2𝛾ᇱ𝑍ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑦 + 𝛽ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑋𝛽 + 2𝛽ᇱ𝑋ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑍𝛾

𝛾ᇱ𝑍ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑍𝛾 + 𝛾ᇱ ൫𝜏ଶ𝑅൯ିଵ 𝛾ቃቅ

∝ exp
⎧⎪
⎨⎪
⎩

−12𝛾
ᇱ ቂ𝑍ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑍 + ൫𝜏ଶ𝑅൯ିଵቃ⎫⎪⎪⎪⎬⎪⎪⎪⎭

ஊషభം

𝛾

+ +𝛾ᇱ𝑍ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑦 − 𝛾ᇱ𝑍ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑋𝛽ቅ

=exp ቊ−12𝛾
ᇱΣିଵఊ 𝛾 + 𝛾ᇱΣିଵఊ Σఊ ቂ𝑍ᇱ ൫𝜎ଶ𝐼൯

ିଵ (𝑦 − 𝑋𝛽)ቃቋ
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defining a multivariate normal with:

• 𝜇ఊ = Σఊ𝑍ᇱ ൫𝜎ଶ𝐼൯
ିଵ (𝑦 − 𝑋𝛽)

• Σఊ = ቂ𝑍ᇱ ൫𝜎ଶ𝐼൯ିଵ 𝑍 + ൫𝜏ଶ𝑅൯ିଵቃ
ିଵ

The full conditionals of the variance parameters are inverse gamma distri-
butions, which can be shown by:

𝑃(𝜎ଶ|𝛽, 𝛾, 𝜏ଶ, 𝑦) ∝ 𝑑𝑒𝑡(𝜎ଶ𝐼)ି
భ
మ

exp ቊ−12 (𝑦 − 𝑋𝛽 − 𝑍𝛾)ᇱ ൫𝜎ଶ𝐼൯ିଵ (𝑦 − 𝑋𝛽 − 𝑍𝛾)ቋ
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and

𝑃(𝜏ଶ|𝛽, 𝛾, 𝜎ଶ, 𝑦) ∝ 𝑑𝑒𝑡(𝜏ଶ𝑅)ି
భ
మ exp ቊ−12𝛾
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The parameters of the inverse gamma distributions are noted in the deri-
vations.
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B Price Data

Tabelle 10: Data Used in the Analysis

COICOP Name of product Obser-
vations

Observed
Regions

111110100 Reis 46 19
111211100 Weissbrot 45 19
111211200 Toastbrot 50 19
111212100 Roggenbrot oder Mischbrot 48 19
111213200 Koernerbrot oder Vollkornbrot 50 19
111215100 Knaeckebrot 50 19
111217100 Frische Broetchen 49 18
111217200 Broetchen zum Fertigbacken 43 19
111229100 Salzstangen oder andere Dauerbackwaren 46 19
111310100 Nudeln 48 19
111321100 Nudelfertiggericht 35 19
111410100 Tortenboden 53 19
111431100 Kuchen oder Torte, tiefgefroren 45 19
111433200 Hefegebaeck 52 18
111433300 Kuchen oder Torte, frisch 50 19
111611100 Weizenmehl 47 19
111615100 Griess, Roggenmehl oder Aehnliches 50 19
111621100 Backmischung fuer Kuchen 47 19
111625100 Cornflakes, Muesli oder Aehnliches 46 19
112110100 Rindfleisch zum Kochen 53 19
112120100 Roulade oder Lende vom Rind 48 19
112150100 Rindfleisch zum Schmoren oder Braten 51 19
112210500 Kotelett oder Schnitzel vom Schwein 52 19
112290100 Kassler oder anderes Schweinefleisch 50 19
112290300 Schweinebraten 54 19
112300100 Lammfleisch 43 15
112410100 Frisches Gefluegelfleisch 52 19
112450100 Tiefgefrorenes Gefluegelfleisch 49 19
112511200 Salami, Cervelatwurst oder andere Dauerwurst 53 19
112512200 Bratwurst 52 19
112513100 Leberwurst oder Blutwurst 50 19
112515100 Gekochter Schinken oder anderes gegartes

Fleisch
51 19

112515200 Roher Schinken, Schinkenspeck oder Bauch-
speck

50 19

112520100 Leber oder andere Innereien 48 19
112610100 Feinkostsalat auf Fleischbasis 36 16
112630100 Tiefgefrorenes Fleischfertiggericht 47 19
112650200 Fleischfertiggericht in Konserven 48 19
112690100 Gyros oder andere fertige Fleischpfanne 47 19
112710100 Kaninchenfleisch oder anderes Wildfleisch 39 17
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COICOP Name of product Obser-
vations

Observed
Regions

112720100 Hackfleisch 52 19
113111300 Forelle 84 17
113131100 Frisches Fischfilet 39 15
113300100 Raeucherfisch 46 18
113411100 Fischkonserve 37 18
113431100 Fischstaebchen oder Aehnliches 39 18
113431200 Tiefgefrorene Fischzubreitung 40 18
113439100 Eingelegte Matjes, Fischsalat oder Aehnliches 31 15
114150100 H-Milch 69 19
114400100 Joghurt 68 19
114510100 Hartkaese 52 17
114530100 Weichkaese 65 19
114550100 Quark 70 19
114630100 Fertigdessert 68 19
114700100 Eier 65 19
115100100 Butter 53 19
115210100 Margarine 54 19
115250100 Pflanzenfett zum Braten und Backen 51 19
115400100 Sonnenblumenoel, Rapsoel oder Aehnliches 51 19
116110100 Orangen 57 19
116150100 Grapefruits 32 13
116300100 Aepfel 56 19
116500100 Kirschen 61 19
116500200 Avocados 53 18
116650100 Weintrauben 53 19
116700200 Kiwis, Ananas oder Mangos 51 18
116700300 Melonen 36 10
116830100 Erdnuesse, Studentenfutter oder Aehnliches 51 19
116890100 Suesse Mandeln, Kokosraspeln oder Aehnliches 51 19
116912100 Sauerkirschen oder andere Steinobstkonserve 43 19
116917100 Ananaskonserve, Erdbeerkonserve oder Aehnli-

ches
45 19

117110100 Kopfsalat oder Eisbergsalat 59 19
117190200 Lauch oder Sellerie 38 13
117190300 Feldsalat oder Rucola 95 15
117230100 Weisskohl 32 11
117290200 Brokkoli 103 17
117310100 Tomaten 58 19
117330100 Paprika 57 19
117350100 Gurken 58 19
117390200 Auberginen 42 18
117390300 Kuerbisse oder Mais 70 19
117410100 Zwiebeln, Knoblauch oder Aehnliches 58 19
117420100 Champignons oder andere Pilze 56 18
117610100 Tiefgefrorener Spinat 48 19
117711100 Gurkenkonserve 46 18
117713100 Sauerkrautkonserve 38 19
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COICOP Name of product Obser-
vations

Observed
Regions

117714100 Pilzkonserve 36 18
117715100 Erbsenkonserve 46 19
117719400 Stangenspargel oder andere Gemuesekonserve 45 18
117800300 Neue Ernte (Speisefruehkartoffeln) 64 16
117911100 Pommes frites 51 19
117912100 Kartoffelklossmehl oder Kartoffelpueree 32 13
117913100 Kartoffelchips oder Kartoffelsticks 52 19
118210100 Marmelade, Konfituere oder Gelee 47 19
118230100 Bienenhonig 45 19
118310100 Schokoladentafel 55 19
118390100 Riegel oder andere Erzeugnisse aus Schokolade 52 19
118410100 Pralinen 47 17
118450100 Bonbons 63 19
118490100 Kaugummi, Gummibaerchen oder Aehnliches 50 19
118500100 Speiseeis in Packungen 42 18
118500200 Eis am Stiel oder anderes portioniertes Speiseeis 27 12
118610100 Kakaohaltiger Brotaufstrich 43 19
119100200 Tomatenketchup oder Gewuerzketchup 34 19
119100300 Sossenpulver, Sossenbinder oder Aehnliches 24 11
119100400 Grillsosse, Sojasosse, Salatdressing oder Aehnli-

ches
27 19

119210100 Salz 34 19
119230100 Gewuerze 35 19
119313100 Dosensuppe 20 11
119340100 Puddingpulver 24 18
119353100 Fertignahrung fuer Saeuglinge oder Kleinkinder 39 18
119410100 Essig 36 19
119420100 Mayonnaise 29 18
119490100 Senf 35 19
119490200 Vitamintabletten oder Aehnliches 41 18
121111100 Bohnenkaffee 59 19
121115100 Instantkaffee oder Aehnliches 44 19
121210200 Schwarzer Tee oder gruener Tee, in Aufgussbeu-

teln
43 19

121300100 Kakaopulver oder Aehnliches 44 19
122100100 Mineralwasser 50 19
122210100 Colagetraenk 59 19
122290100 Koffeinfreie Limonade 53 19
122310100 Apfelsaft oder aehnlicher Fruchtsaft 56 19
122320100 Orangensaft oder aehnlicher Fruchtsaft 56 19
122340100 Multivitaminsaft 56 19
122380100 Diaetfruchtsaft 37 17
122400100 Gemuesesaft 57 19
211030100 Korn oder Doppelkorn 61 19
211050100 Likoer 63 19
212110100 Weisswein 62 19
212130100 Rotwein oder Rosewein 62 19
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COICOP Name of product Obser-
vations

Observed
Regions

212210100 Sekt, Prosecco, Champagner 62 19
312111100 Herrenanzug 21 6
312127100 Herrenlederjacke 28 6
312129300 Herrensakko, F/S 42 6
312132200 Herrenjeans 41 6
312149300 Herrenmantel, F/S 31 6
312151100 Pullover oder Strickjacke fuer Herren 24 6
312191100 Herrenbusinesshemd 26 6
312194100 Herrenschlafanzug 31 6
312211200 Damenkostuem, Kleid oder Hosenanzug, F/S 57 6
312223200 Damenrock, F/S 27 6
312227100 Damenstoffhose 21 6
312231200 Damenbluse, F/S 44 6
312313200 Kinderhose, F/S 29 6
312341200 Sportbekleidung fuer Kinder 36 6
312352200 Kindershirt, F/S 45 6
312359300 Struempfe, Socken oder Strumpfhose fuer Kinder 46 6
312361100 Strampelanzug oder Zweiteiler fuer Saeuglinge 29 6
313011200 Muetze, Kappe oder Hut, F/S 26 6
313019100 Fahrradhelm 36 17
313079100 Reissverschluss 26 7
314110100 Aenderungsschneiderarbeit 37 18
314210100 Chemische Reinigung oder Faerben von Beklei-

dung
45 18

314250200 Waschen und Buegeln von Bekleidung 35 17
321110100 Klassische Herrenschuhe 39 6
321110300 Herrenfreizeitschuhe, F/S 59 6
321140200 Herrenhausschuhe 20 6
321150100 Herrensportschuhe 21 6
321210300 Damenfreizeitschuhe, F/S 51 6
321250200 Damensportschuhe 21 6
321310300 Kinderschuhe, F/S 39 6
321310400 Kleinkinderschuhe, F/S 31 6
322000200 Schuhreparatur 39 18
411021200 Miete Altbauwohnung bis 70 sqm, freifinanziert 158 30
411021300 Miete Altbauwohnung ab 70 sqm, freifinanziert 94 25
411022200 Miete Neubauwohnung bis 70 sqm, oeffentlich

gefoerdert
73 37

411022400 Miete Neubauwohnung ab 70 sqm, freifinanziert 648 50
411022500 Miete Neubauwohnung bis 70 sqm, freifinanziert 834 51
411022600 Miete Einfamilienhaus ab 100 sqm 52 13
431010100 Tapete 46 19
431030100 Dispersionsfarbe 41 19
431030200 Acrylfarbe 40 19
431070100 Spachtelmasse oder Gips 52 19
441000100 Frischwasser, monatliche Abnahme 6 hm 28 27
441000200 Frischwasser, monatliche Abnahme 15 hm 28 27
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COICOP Name of product Obser-
vations

Observed
Regions

442000100 Muellabfuhr, kleine Muellmenge 28 27
442000200 Muellabfuhr, grosse Muellmenge 28 27
444037100 Grundsteuer B 37 19
451015200 Strom, monatliche Abnahme 200 kWh 28 27
451015300 Strom, monatliche Abnahme 325 kWh 28 27
451015400 Strom, monatliche Abnahme 1275 kWh 28 27
452130100 Gas, monatliche Abnahme 1000 kWh 28 27
452130200 Gas, monatliche Abnahme 1600 kWh 28 27
452130300 Gas, monatliche Abnahme 2300 kWh 28 27
452200100 Fluessiggas in Flaschen 27 17
453010100 Leichtes Heizoel 77 18
454030200 Kohlebriketts 31 16
454070100 Brennholz, Holzpellets oder Aehnliches 23 12
511011100 Stuhl oder Eckbank 35 11
511015100 Schrankelement fuer Einbaukueche 39 11
511017100 Kuechenzeile oder Einbaukueche 54 11
511023100 Lattenrost oder Sprungrahmen 35 7
511024100 Matratze mit Federkern 49 7
511025100 Matratze aus Latex oder Schaumstoff 41 7
511032100 Schlafsofa 43 10
511042100 Wohnzimmertisch oder Esszimmertisch 43 10
511043100 Wohnzimmerschrank 69 10
511052100 Badezimmermoebel 44 10
512070200 Laminat, Fertigparkett, Linoleum oder Aehnli-

ches
45 6

512090100 Verlegen und Fixieren von Bodenbelaegen 31 15
513050100 Abschleifen und Versiegeln von Parkettfussboden 52 17
520011200 Wolldecke oder Fleecedecke 40 16
520012100 Bettdecke oder Kopfkissen 47 19
520014100 Bettbezuggarnitur 44 18
520015100 Bettlaken 39 18
520031100 Gardine oder Vorhang 30 14
520033200 Innenjalousie oder Rollo 39 17
520040100 Badezimmerteppich oder Badezimmergarnitur 35 18
520061100 Handtuch 41 17
531210200 Waschmaschine 28 8
531320100 Mikrowellenherd 30 9
531510100 Staubsauger 45 10
532010100 Toaster, Waffeleisen oder Aehnliches 35 6
532020300 Kaffeevollautomat, Padmaschine oder Aehnliches 33 9
532030100 Elektrisches Ruehrgeraet oder Mixgeraet 23 6
540111100 Trinkglaeser 43 18
540121100 Porzellanservice 31 15
540121200 Tafelgeschirr aus Porzellan 41 18
540131100 Auflaufform 36 18
540230100 Essbesteck, Tortenheber oder Aehnliches 42 17
540373100 Babyflasche oder Aehnliches 38 17
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COICOP Name of product Obser-
vations

Observed
Regions

551050100 Schlagbohrer 31 7
551050200 Akkuschrauber oder Akkubohrschrauber 33 7
552010200 Gartenschere, Spaten oder Astschere 31 19
552020100 Hammer, Schraubendreher oder Aehnliches 32 19
552020500 Malerpinsel oder Farbroller 33 19
552031300 Vorhaengeschloss oder Kofferschloss 32 18
552032200 Halogenlampe 45 19
552033100 Energiesparlampe 37 18
552034100 Steckdose, Stecker, Kabel oder Aehnliches 44 17
552035100 Batterien 49 18
561120100 Weichspueler, Staerke oder Aehnliches 43 19
561150100 Sanitaerreinger 43 18
561190100 Metallpflegemittel oder anderes Pflegemittel 32 17
561190300 Allzweckreiniger oder anderes Reinigungsmittel 44 18
561219100 Filterpapier, Pappbecher oder Aehnliches 46 18
561231100 Naegel, Schrauben oder Aehnliches 25 15
561232100 Besen oder Buerste 42 17
561239200 Klebstoff, Zuendhoelzer oder Aehnliches 35 14
611090100 Melissengeist, Gesundheitsbaeder oder Aehnli-

ches
41 18

612030100 Wundpflaster oder andere Verbandsstoffe 29 16
612050100 Fieberthermometer, Waermflasche oder Aehnli-

ches
39 18

612090200 Kondome oder Schwangerschaftstest 39 18
613012200 Blutdruckmessgeraet oder Aehnliches 45 19
613031100 Brillenglas, GKV 38 18
613032200 Brillenglas, PKV 38 18
613032300 Kontaktlinsen 29 17
622012100 Zahnersatz, Krone, PKV 31 18
622012200 Zahnersatz, Bruecke, PKV 31 18
623220100 Physiotherapie, PKV 44 18
623320100 Haeusliche Krankenpflege, PKV 30 17
713000100 Fahrrad 59 18
721011100 Pkw-Reifen 74 19
721031100 Autobatterie 38 17
721031200 Zuendkerzen 38 18
721039200 Zubehoer oder Ersatzteile fuer Kraftfahrzeuge 72 19
721060100 Autowachs, Lackpflegemittel oder Aehnliches 41 17
721071100 Reifen oder Schlauch fuer Fahrraeder 34 18
721079100 Zubehoer oder Ersatzteile fuer Fahrraeder 36 18
722013100 Superbenzin, 95 Oktan 201 19
722013300 Superbenzin, 98 und mehr Oktan 108 19
722015100 Diesel, unter 60 Cetan 110 19
722015300 Diesel, 60 und mehr Cetan 44 18
722017100 Autogas 43 18
722051100 Motorenoel 51 17
723013100 Lackieren eines Kotfluegels 68 19
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COICOP Name of product Obser-
vations

Observed
Regions

723015100 Pkw-Inspektion 70 18
723017100 Wechseln der Bremsfluessigkeit bei Pkw 71 18
723017200 Wechseln der Bremskloetze bei Pkw 70 18
723017300 Wechseln der Auspuffanlage bei Pkw 71 18
723017400 Wechseln von Stossdaempfern bei Pkw 71 18
723017500 Wechseln der Kupplung bei Pkw 69 18
723017600 Wechseln der Reifen bei Pkw 36 18
723018100 Pkw-Waesche 36 18
723039100 Fahrradreparatur 33 18
724010100 Fahrschulunterricht fuer Pkw, Praxis 53 18
724010200 Fahrschulunterricht fuer Pkw, Theorie 37 18
724060100 Miete von Garage, Stellplatz vom Wohnungsver-

mieter
138 26

724060200 Miete von Garage, Stellplatz 46 19
724080100 Parkuhrgebuehr oder Parkscheingebuehr 30 19
724080200 Parkhausgebuehr 37 18
735011100 Verbund-Einfache Fahrt/Erwachsener, Tarif 1 20 18
735013100 Zeitkarte Verbundverkehr, Ausbildungstarif 28 17
735015100 Verbund-Monatskarte/Erwachsener, Tarif 1 22 18
736055100 Moebeltransport 36 18
820010300 Festnetztelefon 41 18
911111100 Tragbarer Radiorecorder 29 8
911121100 Hi-Fi-Anlage 31 9
911123100 Uhrenradio 24 6
911131100 Autoradio oder stationaeres Navigationsgeraet 24 7
911142200 MP3-Player oder Aehnliches 28 7
911192100 Lautsprecherboxen fuer Rundfunk oder Hi-Fi 26 7
911193100 Kopfhoerer 25 7
911210200 Fernsehgeraet 32 9
911220100 DVD-Recorder 30 8
911230100 DVD-Player oder Blu-ray-Player 28 8
911240100 SAT-Anlage 33 9
912113100 Digitale Kamera 47 9
912120100 Digitaler Camcorder 25 8
913015500 Organizer oder mobiles Navigationsgeraet 29 8
913016100 Taschenrechner oder Tischrechner 32 10
914011100 DVD-Rohlinge, unbespielteMini-Disc oder Aehn-

liches
32 16

914013100 USB-Stick oder Speicherkarte 37 17
914013200 CD-Rohlinge 41 18
914021100 Unterhaltungsmusik auf CD 39 15
914021200 Klassische Musik auf CD 33 17
914023100 Film auf DVD 53 18
914024100 PC-Spiel 49 18
914030200 Fotoalbum 39 19
915010100 Reparatur an Unterhaltungselektronik 38 18
931011200 Gesellschaftsspiel 47 18
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COICOP Name of product Obser-
vations

Observed
Regions

931012100 Spielekonsole 41 17
931012200 Spiel fuer Spielekonsole 42 17
931013100 Elektrische Modelleisenbahn oder Zubehoer 24 10
931014100 Kunststoffbaukasten 35 17
931014200 Experimentierkasten oder Modellbausatz 37 16
931016100 Dreirad, Roller oder anderes Kindersportfahrzeug 38 18
931017100 Puppe 43 18
931018100 Teddybaer oder anderes Plueschtier 45 18
932018200 Inline-Skates, Schlittschuhe oder Rollschuhe 27 17
932018300 Fussballschuhe oder andere Spezialsportschuhe 40 17
932019100 Planschbecken, Taucherbrille oder Aehnliches 35 18
932024100 Zelt 34 17
932029300 Luftmatratze oder anderer Campingartikel 32 16
933012100 Topfpflanze 50 19
933040100 Blumentopf oder Blumenkasten 37 17
933051100 Blumenduenger 26 14
941021100 Musikunterricht 25 10
941030100 Gebuehr fuer Fitnessstudio 39 10
942120100 Theaterbesuch 48 18
942120200 Abonnement fuer Theater 39 15
942150100 Kinobesuch 61 18
942210100 Museumsbesuch oder Zoobesuch 53 18
942370100 Leihgebuehr fuer eine DVD 29 16
942430100 Filmentwicklung oder Pauschale fuer Digitalisie-

rung
40 18

942430200 Abzug eines Bildes 40 18
954031200 Briefumschlaege, Briefblock oder Briefpapier 41 18
954035100 Schulheft, Malblock oder Zeichenblock 47 17
954039100 Druckerpapier 37 18
954055200 Fuellhalterpatronen 39 17
954057100 Farbkasten 44 16
1040000100 Lehrgangsgebuehr VHS 24 18
1111011220 Fleischgericht, Hotel 22 13
1111011230 Fleischgericht, Restaurant oder Cafe 24 10
1111012120 Fischgericht, Hotel 28 17
1111012130 Fischgericht, Restaurant oder Cafe 29 15
1111013120 Teig- oder Eierspeise, Hotel 28 16
1111013130 Teig- oder Eierspeise, Restaurant oder Cafe 27 12
1111014120 Suppe oder Eintopf, Hotel 32 18
1111014130 Suppe oder Eintopf, Restaurant oder Cafe 30 15
1111016120 Eisbecher oder Dessert, Hotel 28 18
1111017220 Gericht anderer Art, Hotel 27 17
1111017230 Gericht anderer Art, Restaurant oder Cafe 28 14
1111030310 Pizza zum Mitnehmen, Restaurant oder Cafe 24 11
1111030320 Pizza zum Mitnehmen, Schnellrestaurant oder

Aehnliches
27 13

1111051120 Kaffee, Tee, Kakao oder Aehnliches, Hotel 29 18

247



B Price Data

COICOP Name of product Obser-
vations

Observed
Regions

1111052120 Fruchtsaft oder Gemuesesaft, Hotel 29 18
1111052130 Fruchtsaft oder Gemuesesaft, Restaurant oder Ca-

fe
28 14

1111053120 Mineralwasser, Hotel 29 18
1111053130 Mineralwasser, Restaurant oder Cafe 28 14
1111054120 Erfrischungsgetraenk, Hotel 29 18
1111055120 Spirituose, Hotel 32 18
1111055130 Spirituose, Restaurant oder Cafe 32 15
1111056120 Bier, Hotel 31 18
1111056130 Bier, Restaurant oder Cafe 31 15
1111057130 Wein, Restaurant oder Cafe 29 15
1112010100 Verzehr von Speisen in Kantinen 30 9
1112010200 Mensaessen, gaengigste Kategorie 35 17
1211011100 Friseur fuer Herren 63 18
1211011200 Friseur fuer Kinder 60 18
1211015100 Friseur fuer Damen; Waschen, Schneiden, Foeh-

nen
63 18

1211015200 Friseur fuer Damen; Dauerwelle 62 18
1211015300 Friseur fuer Damen; Faerben oder Toenen 63 18
1211031100 Gebuehr fuer Sonnenstudio 23 14
1211032100 Kosmetikbehandlung oder Aehnliches 55 19
1212010100 Haartrockner oder anderes Haarpflegegeraet 32 6
1212050100 Elektrischer Rasierapparat 32 6
1212070100 Elektrische Zahnbuerste 28 7
1213012100 Haarbuerste, Kamm oder Haarspange 45 16
1213013100 Personenwaage 42 17
1213014100 Zahnbuerste, nicht elektrisch 57 18
1213017100 Nassrasierer, Rasierklingen oder Aehnliches 38 18
1213020100 Eau de Toilette oder Parfuem 46 18
1213032200 Haarfarbe oder Haartoenung 35 16
1213040100 Handcreme 44 18
1213040300 Kindercreme 43 18
1213051100 Zahncreme 57 18
1213070100 Lippenstift oder Lippenpflegestift 41 17
1213070200 Nagellack 43 18
1213083200 Duschgel, Duschbad oder Badezusatz 54 18
1213091100 Toilettenpapier 55 18
1213092100 Papiertaschentuecher 46 18
1213093100 Windeln fuer Saeuglinge oder Kleinkinder 50 18
1213099100 Tampons, Kosmetiktuecher oder andereHygiene-

artikel
42 18

1231053100 Damenarmbanduhr 36 18
1231053200 Herrenarmbanduhr oder Taschenuhr 35 17
1231070100 Wecker, Stoppuhr oder Aehnliches 38 18
1232111100 Damenhandtasche 30 17
1232152100 Aktenkoffer, Aktentasche oder Aktenmappe 26 16
1232153100 Schulranzen oder Rucksack 27 16
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COICOP Name of product Obser-
vations
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Regions

1232154300 Koffer, Reisetasche oder Aehnliches 29 16
1232221100 Kinderwagen 32 17
1232223100 Autokindersitz 39 15
1232261100 Sonnenbrille 57 18
1240030300 Essen auf Raedern 33 19
Source: Own computation using data of the Bayerisches Landesamt für Statistik
und Datenverarbeitung
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C Outputs and Results

C.1 Outputs of the Linear Regression Estimation byCOICOP-
Classification

Tabelle 11: Results for Food and Non-alcoholic Beverages

Estimate Std. Error t value Pr(வ|t|)
(Intercept) 0.1526 0.3073 0.50 0.6194
age_skew -0.6555 0.2762 -2.37 0.0177

area 0.0004 0.0001 2.97 0.0030
wage 0.0002 0.0001 2.96 0.0031

popdens 0.0001 0.0000 5.45 0.0000
mig -0.0176 0.0050 -3.50 0.0005

commut 0.0059 0.0021 2.83 0.0046
I(commut^2) -0.0001 0.0000 -4.24 0.0000

GKat2 -0.8162 0.1847 -4.42 0.0000
GKat3 -0.5337 0.1849 -2.89 0.0039
GKat4 -1.4857 0.1842 -8.07 0.0000
GKat5 -0.1193 0.1866 -0.64 0.5226
GKat6 0.5306 0.1997 2.66 0.0079
GKat7 -0.4406 0.2701 -1.63 0.1029
typ2 0.2243 0.0598 3.75 0.0002
typ3 0.2342 0.0634 3.69 0.0002

Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar
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Tabelle 12: Results for Alcoholic Beverages, Tobacco, and Narcotics

Estimate Std. Error t value Pr(வ|t|)
(Intercept) -0.2640 0.8511 -0.31 0.7567

emp -0.0000 0.0000 -2.06 0.0401
wage -0.0007 0.0003 -2.71 0.0070

building -0.0031 0.0016 -1.96 0.0509
I(building^2) 0.0000 0.0000 2.01 0.0454

I(log(popdens)) 0.5454 0.1954 2.79 0.0056
hoteln 0.0348 0.0162 2.15 0.0324

commut -0.0117 0.0052 -2.25 0.0253
GKat3 -0.0384 0.1288 -0.30 0.7655
GKat4 -0.9185 0.1020 -9.00 0.0000
GKat5 1.6051 0.2599 6.17 0.0000
GKat6 1.5074 0.2284 6.60 0.0000

Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar

Tabelle 13: Results for Clothing and Footware

Estimate Std. Error t value Pr(வ|t|)
(Intercept) 162.2165 45.2186 3.59 0.0003

hoteln 0.0557 0.0154 3.63 0.0003
age_mean -7.5687 2.0740 -3.65 0.0003

I(age_mean^2) 0.0883 0.0238 3.71 0.0002
commut -0.0162 0.0035 -4.67 0.0000
centre -0.0203 0.0080 -2.53 0.0115
GKat2 -0.8858 0.1834 -4.83 0.0000
GKat4 -0.7777 0.0988 -7.87 0.0000
GKat5 0.4144 0.0771 5.37 0.0000
GKat7 0.0925 0.1040 0.89 0.3743

Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar
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Tabelle 14: Results for Housing, Water, Electricity, Gas and other Fuels

Estimate Std. Error t value Pr(வ|t|)
(Intercept) 19.0204 4.5633 4.17 0.0000

area 0.0031 0.0007 4.20 0.0000
I(area^2) -0.0000 0.0000 -4.51 0.0000

emp 0.0000 0.0000 1.66 0.0977
wage -0.0173 0.0029 -6.07 0.0000

I(wage^2) 0.0000 0.0000 5.49 0.0000
building -0.0011 0.0005 -2.09 0.0369
popdens -0.0003 0.0001 -2.34 0.0192
hoteln -0.0102 0.0046 -2.21 0.0274

sec_sector 0.0734 0.0228 3.23 0.0013
tert_sector 0.0568 0.0216 2.63 0.0087
age_var 0.0072 0.0017 4.13 0.0000

age_skew 3.0075 0.6134 4.90 0.0000
commut -0.0035 0.0017 -2.11 0.0348

AggregatLandkreis -1.3732 0.2721 -5.05 0.0000
typ2 -7.9040 1.5299 -5.17 0.0000
typ3 -7.0966 1.6156 -4.39 0.0000

building:typ2 0.0022 0.0007 3.17 0.0015
building:typ3 0.0038 0.0007 5.61 0.0000
wage:typ2 0.0024 0.0005 4.50 0.0000
wage:typ3 0.0020 0.0006 3.59 0.0003

Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar

Tabelle 15: Results for Furnishings, Household Equipment and Routine
Household Maintenance

Estimate Std. Error t value Pr(வ|t|)
(Intercept) 10.8850 2.8301 3.85 0.0001

area 0.0005 0.0001 3.86 0.0001
emp -0.0000 0.0000 -3.17 0.0016
wage -0.0076 0.0019 -4.05 0.0001

I(wage^2) 0.0000 0.0000 4.06 0.0001
hi_quali 0.0366 0.0137 2.66 0.0078
GKat2 -0.0848 0.1141 -0.74 0.4573
GKat3 -0.1154 0.1854 -0.62 0.5335
GKat4 -0.2140 0.0884 -2.42 0.0155
GKat5 0.3694 0.0898 4.11 0.0000
GKat7 0.0336 0.1597 0.21 0.8333

Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar
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Tabelle 16: Results for Products and Services of Health

Estimate Std. Error t value Pr(வ|t|)
(Intercept) 3.3046 0.9175 3.60 0.0004

housing_index -184.0443 53.1206 -3.46 0.0006
I(housing_index^2) 2232.6906 685.8243 3.26 0.0012

typ2 0.0899 0.1696 0.53 0.5964
typ3 0.4330 0.1973 2.19 0.0287

Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar

Tabelle 17: Results for Transport

Estimate Std. Error t value Pr(வ|t|)
(Intercept) -218.3077 74.3370 -2.94 0.0034

area -0.0010 0.0002 -4.90 0.0000
emp 0.0000 0.0000 5.75 0.0000
wage -0.0005 0.0001 -3.51 0.0005

housing_index -19.1716 6.0011 -3.19 0.0014
hoteln 0.0337 0.0092 3.67 0.0002

hi_quali 0.0958 0.0650 1.47 0.1404
I(hi_quali^2) -0.0104 0.0035 -3.00 0.0027
age_mean 10.2015 3.4199 2.98 0.0029

I(age_mean^2) -0.1189 0.0393 -3.03 0.0025
age_skew -3.1917 0.8741 -3.65 0.0003
commut -0.0066 0.0037 -1.76 0.0780

I(commut^2) 0.0001 0.0001 2.63 0.0086
GKat4 0.1662 0.2082 0.80 0.4249
GKat5 0.8007 0.1979 4.05 0.0001
GKat6 0.8261 0.1944 4.25 0.0000
GKat7 0.9445 0.1932 4.89 0.0000
typ2 1.2020 0.1591 7.56 0.0000
typ3 0.9804 0.1424 6.88 0.0000

Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar
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Tabelle 18: Results for Communication

Estimate Std. Error t value Pr(வ|t|)
(Intercept) 677.4657 147.9970 4.58 0.0001

area -0.0069 0.0030 -2.31 0.0286
emp 0.0000 0.0000 1.80 0.0828
wage -0.2047 0.0484 -4.23 0.0002
kk_ew -0.0456 0.0095 -4.78 0.0001

I(kk_ew^2) 0.0000 0.0000 4.07 0.0004
popdens 0.0023 0.0006 3.72 0.0009

mig 0.1746 0.0507 3.44 0.0019
sec_sector -0.1232 0.0321 -3.84 0.0007
age_mean 1.7353 0.4540 3.82 0.0007

centre 0.3145 0.0945 3.33 0.0025
typ2 9.3154 2.5525 3.65 0.0011
typ3 8.1966 2.4665 3.32 0.0026

wage:kk_ew 0.0000 0.0000 4.27 0.0002
Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar

Tabelle 19: Results for Recreation and Culture

Estimate Std. Error t value Pr(வ|t|)
(Intercept) -0.3583 0.5353 -0.67 0.5033

emp -0.0000 0.0000 -3.19 0.0014
wage 0.0003 0.0001 2.36 0.0184

popdens -0.0004 0.0002 -1.92 0.0551
I(popdens^2) 0.0000 0.0000 2.93 0.0034

unemp -0.3407 0.1335 -2.55 0.0108
I(unemp^2) 0.0347 0.0122 2.84 0.0046

hi_quali 0.0526 0.0242 2.18 0.0297
GKat2 -0.3786 0.1204 -3.14 0.0017
GKat3 -0.2892 0.2511 -1.15 0.2496
GKat4 -0.0334 0.0928 -0.36 0.7186
GKat5 0.2163 0.0942 2.30 0.0218
GKat7 0.0593 0.1014 0.59 0.5584

Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar
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Tabelle 20: Results for Education

Estimate Std. Error t value Pr(வ|t|)
(Intercept) 14.8944 6.1065 2.44 0.0349

area -0.0022 0.0052 -0.43 0.6774
I(area^2) 0.0000 0.0000 0.96 0.3614
I(area^3) -0.0000 0.0000 -1.85 0.0939
kk_ew -0.0007 0.0002 -3.75 0.0038

building 0.0462 0.0063 7.29 0.0000
I(building^2) -0.0000 0.0000 -6.26 0.0001

popdens -0.0052 0.0007 -7.20 0.0000
hoteln 1.2157 0.2014 6.03 0.0001

I(hoteln^2) -0.0636 0.0106 -6.03 0.0001
unemp -4.3863 1.4869 -2.95 0.0145

I(unemp^2) 0.4312 0.1246 3.46 0.0061
age_skew 23.2343 12.0826 1.92 0.0834

I(age_skew^2) -56.9101 25.7641 -2.21 0.0517
Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar

Tabelle 21: Results for Restaurants and Hotels

Estimate Std. Error t value Pr(வ|t|)
(Intercept) -5778.2672 1891.0720 -3.06 0.0023

area -0.0775 0.0325 -2.39 0.0173
I(area^2) 0.0002 0.0001 2.55 0.0110
I(area^3) -0.0000 0.0000 -2.61 0.0093

wage 1.0505 0.3679 2.86 0.0044
I(wage^2) -0.0004 0.0001 -2.86 0.0044
I(wage^3) 0.0000 0.0000 2.86 0.0043
kk_ew 0.0098 0.0034 2.93 0.0036

housing_index 350.5532 141.3831 2.48 0.0134
unemp -1.7169 0.6716 -2.56 0.0108

sec_sector 4.6847 1.5676 2.99 0.0029
tert_sec 4.7094 1.5889 2.96 0.0031

age_mean 190.9659 61.7049 3.09 0.0020
I(age_mean^2) -2.1588 0.6964 -3.10 0.0020

typ2 -2.7170 1.5494 -1.75 0.0799
typ3 -11.8705 4.8433 -2.45 0.0145

wage:kk_ew -0.0000 0.0000 -2.90 0.0038
Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar

255



C Outputs and Results

Tabelle 22: Results for Miscellaneous Goods and Service

Estimate Std. Error t value Pr(வ|t|)
(Intercept) 17.0438 4.3774 3.89 0.0001

area -0.0006 0.0002 -3.10 0.0020
building 0.0003 0.0001 2.77 0.0056

sec_sector -0.1751 0.0447 -3.92 0.0001
tert_sec -0.1724 0.0437 -3.95 0.0001
GKat2 0.2038 0.1410 1.45 0.1486
GKat3 0.8835 0.2055 4.30 0.0000
GKat4 -0.0426 0.1145 -0.37 0.7097
GKat5 0.4176 0.1182 3.53 0.0004
GKat6 -0.4718 0.9701 -0.49 0.6268
GKat7 0.1591 0.1171 1.36 0.1744

Source: Own computation using Bayerische Vermessungs-
verwaltung (2015), Bayerisches Landesamt für Statistik
und Datenverarbeitung, GfK, Inkar
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C.2 Results of the Price Index Imputation

C.2.1 Single Imputation

1. Hof, Stadt 0.8201013

2. Regen 0.8359081

3. Rottal-Inn 0.8398376

4. Schweinfurt, Stadt 0.8603824

5. Neuburg-Schrobenhausen 0.8641514

6. Wunsiedel i.Fichtelgebirge 0.8682586

7. Rhön-Grabfeld 0.8697298

8. Landshut, Stadt 0.8700655

9. Regensburg 0.8717883

10. Passau, Stadt 0.8734108

11. Ansbach, Stadt 0.8752414

12. Günzburg 0.8795940

13. Roth 0.8800637

14. Freising 0.8847081

15. Mühldorf a.Inn 0.8886298

16. Nürnberger Land 0.8897167

17. Kaufbeuren, Stadt 0.8912579

18. Traunstein 0.8938806

19. Fürth 0.8982893

20. Deggendorf 0.9024807

21. Erlangen-Höchstadt 0.9030428

22. Eichstätt 0.9054934

23. Bad Kissingen 0.9065943

24. Garmisch-Partenkirchen 0.9113360

25. Bayreuth, Stadt 0.9159729

26. Regensburg, Stadt 0.9185315

27. Bamberg, Stadt 0.9188365

28. Würzburg 0.9194801

29. Lindau (Bodensee) 0.9196970

30. Dillingen a.d.Donau 0.9229229

31. Weissenburg-Gunzenhausen 0.9258624
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32. Rosenheim 0.9322860

33. Ostallgäu 0.9357981

34. Neustadt a.d.Aisch-Bad Windsheim 0.9381133

35. München 0.9435648

36. Pfaffenhofen a.d.Ilm 0.9440977

37. Berchtesgadener Land 0.9448994

38. Freyung-Grafenau 0.9461147

39. Aschaffenburg, Stadt 0.9490933

40. Weiden i.d.OPf., Stadt 0.9499808

41. Miesbach 0.9542831

42. Hassberge 0.9559813

43. Schweinfurt 0.9564005

44. Landsberg am Lech 0.9568721

45. Passau 0.9577202

46. Hof 0.9594739

47. Amberg, Stadt 0.9642055

48. Weilheim-Schongau 0.9644596

49. Fürstenfeldbruck 0.9662892

50. Kulmbach 0.9686585

51. Neustadt a.d.Waldnaab 0.9699859

52. Dingolfing-Landau 0.9742159

53. Ebersberg 0.9744197

54. Unterallgäu 0.9759437

55. Neu-Ulm 0.9791494

56. Altötting 0.9826024

57. Augsburg 0.9910478

58. Cham 0.9950909

59. Augsburg, Stadt 0.9970627

60. Nürnberg, Stadt 1.0006459

61. Lichtenfels 1.0013193

62. Dachau 1.0030026

63. Würzburg, Stadt 1.0032934

64. Miltenberg 1.0135324

65. Starnberg 1.0148694

66. Forchheim 1.0150967
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67. Ingolstadt, Stadt 1.0165845

68. Kitzingen 1.0210430

69. Straubing-Bogen 1.0249661

70. Fürth, Stadt 1.0289576

71. Schwandorf 1.0339173

72. Kelheim 1.0411541

73. Neumarkt i.d.OPf. 1.0411696

74. Rosenheim, Stadt 1.0456579

75. Memmingen, Stadt 1.0457657

76. Erlangen, Stadt 1.0500228

77. Coburg, Stadt 1.0538633

78. Bayreuth 1.0568918

79. Straubing, Stadt 1.0602405

80. Oberallgäu 1.0674316

81. Kronach 1.0701077

82. Aschaffenburg 1.0727959

83. Bad Tölz-Wolfratshausen 1.0784502

84. Erding 1.0815833

85. Tirschenreuth 1.0856733

86. Schwabach, Stadt 1.0900519

87. Aichach-Friedberg 1.0931598

88. Ansbach 1.1110141

89. Landshut 1.1186288

90. Amberg-Sulzbach 1.1337360

91. Bamberg 1.1372344

92. Main-Spessart 1.1376343

93. Donau-Ries 1.1488031

94. Kempten (Allgäu), Stadt 1.1513531

95. München, Stadt 1.2222956

96. Coburg 1.2497697
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C.2.2 Universal Kriging

1. Hof, Stadt 0.7400224

2. Kulmbach 0.7470393

3. Lichtenfels 0.7810324

4. Altötting 0.7810395

5. Wunsiedel i.Fichtelgebirge 0.8068562

6. Weiden i.d.OPf., Stadt 0.8163738

7. Straubing, Stadt 0.8197419

8. Kitzingen 0.8213983

9. Landshut, Stadt 0.8306510

10. Hassberge 0.8339324

11. Erlangen-Höchstadt 0.8353357

12. Schweinfurt, Stadt 0.8357465

13. Nürnberger Land 0.8399433

14. Kronach 0.8652720

15. Passau, Stadt 0.8686054

16. Neuburg-Schrobenhausen 0.8735058

17. Ansbach, Stadt 0.8750864

18. Bad Kissingen 0.8759788

19. Coburg 0.8823855

20. Bayreuth, Stadt 0.8859142

21. Coburg, Stadt 0.8861515

22. Deggendorf 0.8870476

23. Bamberg, Stadt 0.8876583

24. Freyung-Grafenau 0.8908867

25. Dillingen a.d.Donau 0.8979981

26. Weissenburg-Gunzenhausen 0.8995407

27. Hof 0.9131504

28. Aschaffenburg, Stadt 0.9145170

29. Mühldorf a.Inn 0.9167630

30. Regensburg, Stadt 0.9177454

31. Lindau (Bodensee) 0.9268650

32. Memmingen, Stadt 0.9287908

33. Aschaffenburg 0.9302854
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34. Kaufbeuren, Stadt 0.9303793

35. Tirschenreuth 0.9341325

36. Neu-Ulm 0.9370757

37. Rhön-Grabfeld 0.9394187

38. Roth 0.9444295

39. Rottal-Inn 0.9496702

40. Schwabach, Stadt 0.9503267

41. Berchtesgadener Land 0.9559814

42. Würzburg, Stadt 0.9559832

43. Amberg, Stadt 0.9606257

44. Bad Tölz-Wolfratshausen 0.9607877

45. Miltenberg 0.9621867

46. Dingolfing-Landau 0.9633806

47. Günzburg 0.9638614

48. Nürnberg, Stadt 0.9652820

49. Kempten (Allgäu), Stadt 0.9671195

50. Forchheim 0.9688031

51. Augsburg, Stadt 0.9753414

52. Kelheim 0.9766654

53. Miesbach 0.9781232

54. Fürth, Stadt 0.9788373

55. Regen 0.9899673

56. Rosenheim, Stadt 1.0002519

57. Weilheim-Schongau 1.0035412

58. Neumarkt i.d.OPf. 1.0036293

59. München 1.0046428

60. Landsberg am Lech 1.0080139

61. Main-Spessart 1.0109298

62. Ingolstadt, Stadt 1.0128720

63. Erlangen, Stadt 1.0186250

64. Neustadt a.d.Waldnaab 1.0227139

65. Ebersberg 1.0227225

66. Pfaffenhofen a.d.Ilm 1.0259036

67. Neustadt a.d.Aisch-Bad Windsheim 1.0267400

68. Garmisch-Partenkirchen 1.0273244
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69. Aichach-Friedberg 1.0365034

70. Augsburg 1.0368716

71. Schwandorf 1.0428309

72. Bayreuth 1.0436250

73. Würzburg 1.0471122

74. Passau 1.0693591

75. Rosenheim 1.0698395

76. Amberg-Sulzbach 1.0753136

77. Starnberg 1.0754271

78. Traunstein 1.0800953

79. Fürstenfeldbruck 1.0818399

80. Bamberg 1.0929002

81. Fürth 1.0958611

82. Straubing-Bogen 1.1082838

83. Eichstätt 1.1092413

84. Cham 1.1130193

85. Landshut 1.1197975

86. Freising 1.1268388

87. Schweinfurt 1.1488127

88. Dachau 1.1529093

89. Erding 1.1596339

90. München, Stadt 1.1996054

91. Regensburg 1.2116196

92. Unterallgäu 1.2310631

93. Ostallgäu 1.2982049

94. Donau-Ries 1.3520368

95. Ansbach 1.4156334

96. Oberallgäu 1.4646028

C.2.3 Multiple Imputation

1. Ansbach 0.8157848

2. Amberg-Sulzbach 0.8313815

3. Hof, Stadt 0.8512344

4. Coburg, Stadt 0.8590893
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5. Coburg 0.8698144

6. Weiden i.d.OPf., Stadt 0.8744579

7. Schwandorf 0.8764382

8. Neustadt a.d.Waldnaab 0.8783245

9. Kronach 0.8837102

10. Neustadt a.d.Aisch-Bad Windsheim 0.8842282

11. Landshut, Stadt 0.8884899

12. Rottal-Inn 0.8890747

13. Weissenburg-Gunzenhausen 0.8902455

14. Tirschenreuth 0.8910003

15. Kaufbeuren, Stadt 0.8939619

16. Schweinfurt, Stadt 0.8943557

17. Bad Kissingen 0.8947357

18. Rhön-Grabfeld 0.8952988

19. Neumarkt i.d.OPf. 0.8977737

20. Landshut 0.9029385

21. Straubing, Stadt 0.9046834

22. Fürth, Stadt 0.9060522

23. Kulmbach 0.9079136

24. Regen 0.9093858

25. Traunstein 0.9099704

26. Passau 0.9102050

27. Mühldorf a.Inn 0.9119506

28. Cham 0.9147976

29. Pfaffenhofen a.d.Ilm 0.9176307

30. Passau, Stadt 0.9194583

31. Hassberge 0.9198975

32. Bayreuth 0.9217868

33. Ansbach, Stadt 0.9243879

34. Dillingen a.d.Donau 0.9249514

35. Main-Spessart 0.9267658

36. Roth 0.9279831

37. Lichtenfels 0.9293229

38. Amberg, Stadt 0.9305949

39. Erlangen-Höchstadt 0.9353063
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40. Kelheim 0.9354105

41. Schwabach, Stadt 0.9357450

42. Bamberg 0.9364269

43. Garmisch-Partenkirchen 0.9396885

44. Freyung-Grafenau 0.9400581

45. Bayreuth, Stadt 0.9409262

46. Kitzingen 0.9409813

47. Kempten (Allgäu), Stadt 0.9417210

48. Straubing-Bogen 0.9417645

49. Nürnberger Land 0.9418182

50. Berchtesgadener Land 0.9421836

51. Miltenberg 0.9429403

52. Neuburg-Schrobenhausen 0.9443866

53. Unterallgäu 0.9444988

54. Eichstätt 0.9481401

55. Landsberg am Lech 0.9485602

56. Altötting 0.9528472

57. Ostallgäu 0.9567148

58. Rosenheim 0.9585101

59. Hof 0.9638036

60. Deggendorf 0.9657974

61. Regensburg, Stadt 0.9664604

62. Bamberg, Stadt 0.9667237

63. Memmingen, Stadt 0.9673677

64. Miesbach 0.9677986

65. Günzburg 0.9688502

66. Lindau (Bodensee) 0.9708342

67. Aschaffenburg, Stadt 0.9738562

68. Aschaffenburg 0.9752837

69. Dingolfing-Landau 0.9761280

70. Donau-Ries 0.9811705

71. Würzburg 0.9850011

72. Regensburg 0.9920760

73. Augsburg 0.9936966

74. Ebersberg 0.9943708
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75. Oberallgäu 1.0008725

76. Forchheim 1.0009756

77. Weilheim-Schongau 1.0012959

78. Schweinfurt 1.0106999

79. Bad Tölz-Wolfratshausen 1.0196792

80. Würzburg, Stadt 1.0212690

81. Neu-Ulm 1.0256271

82. Fürstenfeldbruck 1.0293434

83. Aichach-Friedberg 1.0298816

84. Augsburg, Stadt 1.0396664

85. Nürnberg, Stadt 1.0422722

86. Dachau 1.0467329

87. Fürth 1.0539098

88. Rosenheim, Stadt 1.0686367

89. Erding 1.0806009

90. Ingolstadt, Stadt 1.1102873

91. Starnberg 1.1605933

92. München, Stadt 1.2681776

93. Wunsiedel i.Fichtelgebirge 1.2787221

94. Erlangen, Stadt 1.3701361

95. Freising 1.3811412

96. München 1.4467345

C.2.4 KriMI by Mixed Modelling

1. Neuburg-Schrobenhausen 0.7889400

2. Weiden i.d.OPf., Stadt 0.8117964

3. Deggendorf 0.8121880

4. Passau, Stadt 0.8140455

5. Ansbach, Stadt 0.8196061

6. Landshut, Stadt 0.8209351

7. Aschaffenburg, Stadt 0.8491591

8. Schweinfurt, Stadt 0.8568685

9. Lindau (Bodensee) 0.8772655

10. Kitzingen 0.8883496
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11. Bamberg, Stadt 0.8888034

12. Garmisch-Partenkirchen 0.8936197

13. Neu-Ulm 0.8965289

14. Würzburg, Stadt 0.9012724

15. Bayreuth, Stadt 0.9042244

16. Bad Kissingen 0.9092169

17. Bad Tölz-Wolfratshausen 0.9145489

18. Regensburg, Stadt 0.9186289

19. Coburg 0.9329673

20. Kronach 0.9352008

21. Nürnberg, Stadt 0.9491606

22. Freising 0.9510322

23. Weissenburg-Gunzenhausen 0.9544836

24. Pfaffenhofen a.d.Ilm 0.9553494

25. Unterallgäu 0.9615638

26. Würzburg 0.9625840

27. Rottal-Inn 0.9633555

28. Rhön-Grabfeld 0.9667342

29. Miesbach 0.9685322

30. Mühldorf a.Inn 0.9702106

31. Altötting 0.9717845

32. Augsburg 0.9732860

33. Regen 0.9737754

34. Augsburg, Stadt 0.9751769

35. Ostallgäu 0.9779378

36. Hof, Stadt 0.9808575

37. Cham 0.9848543

38. Dingolfing-Landau 0.9853766

39. Donau-Ries 0.9854393

40. Kelheim 0.9855111

41. Tirschenreuth 0.9872493

42. Hof 0.9872831

43. Kulmbach 0.9889437

44. Kempten (Allgäu), Stadt 0.9949644

45. Kaufbeuren, Stadt 0.9993353
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46. Schweinfurt 1.0006330

47. Aschaffenburg 1.0035408

48. Rosenheim, Stadt 1.0045714

49. Bayreuth 1.0046195

50. Berchtesgadener Land 1.0098494

51. Hassberge 1.0129669

52. Oberallgäu 1.0145326

53. Main-Spessart 1.0165864

54. Regensburg 1.0195066

55. Traunstein 1.0212460

56. Freyung-Grafenau 1.0218610

57. Rosenheim 1.0252858

58. Schwandorf 1.0271336

59. Wunsiedel i.Fichtelgebirge 1.0271448

60. Eichstätt 1.0287191

61. Lichtenfels 1.0300595

62. Aichach-Friedberg 1.0317225

63. Forchheim 1.0320385

64. Bamberg 1.0338027

65. Passau 1.0341159

66. Neustadt a.d.Aisch-Bad Windsheim 1.0344998

67. Nürnberger Land 1.0361172

68. Schwabach, Stadt 1.0367119

69. Starnberg 1.0375873

70. Straubing-Bogen 1.0378001

71. Memmingen, Stadt 1.0382724

72. Landshut 1.0384655

73. Dillingen a.d.Donau 1.0394563

74. Roth 1.0394928

75. Erlangen-Höchstadt 1.0396638

76. Straubing, Stadt 1.0403278

77. Neumarkt i.d.OPf. 1.0439256

78. Fürth 1.0442225

79. Coburg, Stadt 1.0458942

80. Fürth, Stadt 1.0524002
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81. Miltenberg 1.0570129

82. Günzburg 1.0576249

83. Neustadt a.d.Waldnaab 1.0585496

84. Amberg, Stadt 1.0605862

85. Landsberg am Lech 1.0608176

86. Fürstenfeldbruck 1.0621905

87. Ansbach 1.0628830

88. Weilheim-Schongau 1.0793769

89. Ebersberg 1.0806050

90. Ingolstadt, Stadt 1.0850374

91. Amberg-Sulzbach 1.0854961

92. München 1.0962311

93. Erding 1.1054661

94. Dachau 1.1282148

95. Erlangen, Stadt 1.1355460

96. München, Stadt 1.2205000

C.2.5 KriMI by P-Splines

1. Regensburg, Stadt 0.6843597

2. Schweinfurt, Stadt 0.7015048

3. Landshut, Stadt 0.7118566

4. Ingolstadt, Stadt 0.7533899

5. Weiden i.d.OPf., Stadt 0.7558110

6. Bamberg, Stadt 0.7638445

7. Passau, Stadt 0.7639893

8. Bad Tölz-Wolfratshausen 0.7792010

9. Schwabach, Stadt 0.7808078

10. Neuburg-Schrobenhausen 0.7889952

11. Erlangen-Höchstadt 0.8141803

12. Rosenheim, Stadt 0.8143169

13. Bayreuth, Stadt 0.8272663

14. Neu-Ulm 0.8493104

15. Ansbach, Stadt 0.8593051

16. Amberg, Stadt 0.8918926
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17. Kelheim 0.8960941

18. Augsburg, Stadt 0.9008758

19. Aschaffenburg, Stadt 0.9140104

20. Würzburg, Stadt 0.9179867

21. Fürth, Stadt 0.9226042

22. Erlangen, Stadt 0.9235155

23. Straubing, Stadt 0.9346584

24. Starnberg 0.9405913

25. Deggendorf 0.9450302

26. Dingolfing-Landau 0.9464613

27. Coburg, Stadt 0.9523998

28. Memmingen, Stadt 0.9536040

29. Roth 0.9566290

30. Landsberg am Lech 0.9668490

31. Tirschenreuth 0.9679247

32. Pfaffenhofen a.d.Ilm 0.9705580

33. München, Stadt 0.9762547

34. Kronach 0.9785627

35. Nürnberg, Stadt 0.9835377

36. Aichach-Friedberg 0.9865170

37. Ebersberg 0.9885502

38. Coburg 1.0007806

39. Hassberge 1.0014120

40. Augsburg 1.0068642

41. Rottal-Inn 1.0079472

42. Dillingen a.d.Donau 1.0143884

43. Altötting 1.0180981

44. Eichstätt 1.0492635

45. Neustadt a.d.Aisch-Bad Windsheim 1.0545480

46. Mühldorf a.Inn 1.0571326

47. Freyung-Grafenau 1.0582837

48. Amberg-Sulzbach 1.0591144

49. Freising 1.0709741

50. Hof, Stadt 1.0718184

51. Erding 1.0738424
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52. Weissenburg-Gunzenhausen 1.0758676
53. München 1.0781244
54. Neumarkt i.d.OPf. 1.0786010
55. Dachau 1.0837267
56. Miltenberg 1.0911579
57. Lichtenfels 1.0916932
58. Hof 1.0947637
59. Kulmbach 1.1007703
60. Landshut 1.1103514
61. Aschaffenburg 1.1122951
62. Neustadt a.d.Waldnaab 1.1131825
63. Ostallgäu 1.1182465
64. Straubing-Bogen 1.1212420
65. Günzburg 1.1272133
66. Bayreuth 1.1315846
67. Kitzingen 1.1354440
68. Rhön-Grabfeld 1.1466130
69. Nürnberger Land 1.1521608
70. Main-Spessart 1.1526720
71. Würzburg 1.1670117
72. Unterallgäu 1.1705233
73. Kaufbeuren, Stadt 1.1714508
74. Regen 1.1739556
75. Schwandorf 1.1789801
76. Fürstenfeldbruck 1.1808380
77. Rosenheim 1.1956889
78. Wunsiedel i.Fichtelgebirge 1.2022298
79. Bamberg 1.2107640
80. Cham 1.2158785
81. Passau 1.2335421
82. Fürth 1.2533359
83. Bad Kissingen 1.2834810
84. Miesbach 1.2907140
85. Traunstein 1.2953992
86. Regensburg 1.3051862
87. Forchheim 1.3093336
88. Donau-Ries 1.3247229
89. Berchtesgadener Land 1.3350977
90. Schweinfurt 1.5010405
91. Ansbach 1.9000075
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Multiple imputation is a method to handle the problem of missing 
values in a dataset. As it accounts for the uncertainty brought in by 
the missing data, it is possible to conduct reliable statistical tests 
after this method has been implemented. Kriging uses neighbour-
hood effects to predict values of unobserved regions. It can be seen 
as an imputation technique. The unobserved regions are missing 
data points, and the kriging predictions are the imputations. Due to 
the fact of being a single imputation technique, no proper statistical 
inferences are possible after filling the dataset. If spatially depen-
dent data face the problem of missing data and a proper statistical 
inference is needed, a modelling of the spatial correlation in the 
multiple imputation model is needed. Here this is prevailed by im-
plementing kriging in the model used for multiple imputation. We 
call the resulting method KriMI. The exact problem can be found 
when looking at regional price levels in Bavaria. The Bavarian State 
Office for Statistics surveys the prices which are needed to compute 
the price index only in a few regions. The prices of the unobserved 
regions are treated as missing data.
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