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ABSTRACT 

Enhanced sampling and applications in protein folding 

by 

Cheng Zhang We show that a single-copy tempering method was useful in protein-folding simulations of large scale and high accuracy (explicit solvent, atomic representation, and physics-based potential).  The method used a runtime estimate of the average potential energy from an integral identity to guide a random walk in the continuous temperature space.  It was used for folding three mini-proteins, trpzip2 (PDB ID: 1LE1), trp-cage (1L2Y), and villin headpiece (1VII) within atomic accuracy.  
Further, with a dihedral bias potential added on the roof temperature, the method was able to fold four larger helical proteins: α3D (2A3D), α3W (1LQ7), Fap1-NRα (2KUB) and S-836 (2JUA). 
We also discuss how to optimally use simulation data through an integral identity.  With the help of a general mean force formula, the identity makes better use of data collected in a molecular dynamics simulation and is more precise than the common histogram approach.
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1  

Chapter 1 

Background 

We briefly review some key concepts in statistical mechanics [6-9], how they are used in molecular simulations [10, 11], and how to work with proteins. 
1.1. Statistical mechanics 

In thermodynamics, we assume that a macroscopic system can reach a unique equilibrium under any external condition specified by the temperature, pressure, etc.  Therefore any change of a system can be traced back to the change of the external condition.  The only remaining question is, 
What does a system look like under a certain condition? 
Statistical mechanics is a set of computational tools to answer the question.  We review the key concepts below.  We shall use an O2 molecule in a box as a simple example (although it is not macroscopic) along the way to avoid abstraction. 



 2 
1.1.1. Configuration, weight, and ensemble 

We define a configuration as coordinates and velocities of all atoms in the system.  For the oxygen molecule, we specify a configuration by },,,{ 2121 vvrrx = , where 1r  and 2r  are the coordinates of the two oxygen atoms, 1v  and 2v  velocities.  The question now is what are the probable configurations? 
An ensemble is a collection of all possible configurations.  If we further know the occurring frequency, or weight, of each configuration, then we can compute any static property from averaging over configurations in the ensemble.  In the O2 case, the distance between the two oxygen atoms, for example, can be computed as 

 = x
xx )()( dwd . (1) 

where )(xw  is its weight, )(xd  the distance computed from the configuration x , and 
d  is its ensemble average.   Obviously, all weights sum to unity, 

 1)( =x
xw . (2) 

So all we need to know is the weight )(xw .  All complex phenomena, such as water boiling, protein folding/unfolding, are results of the weight change. 
Note that we have assumed a discrete or quantum system in Eq. (2).  For a classical system, we replace the sum by a phase-space integral over coordinates and momenta. 



 3 
1.1.2. Microcanonical ensemble 

It is therefore surprising that the weight )(xw , at least the one needed to explain everything we know, is very simple.  If the system is isolated, then the total energy E  is conserved, and statistical mechanics posits 
The weight of a configuration depends only on its total energy. 
In other words, configurations sharing the same total energy also share the same weight.  Thus )(1)( Ew Ω=x , where )(EΩ is the number of configurations with the energy being E , or the density of states.   This is the microcanonical ensemble. 
Once the energy function )(xH  is known, we can collect configurations with the same energy )(xHE =  and then all statistical properties are determined.  Since 

)(xH  is determined by physical laws, our problem is formally solved. 
The microcanonical ensemble is mathematically inconvenient.  First, to collect configurations with the same energy E , we need a δ-function ])([ EH −xδ , which is infinity if EH =)(x  but zero otherwise.  Handling the singular function is often tricky.  Secondly, the parameter E  that characterized the ensemble is less intuitive and harder to measure than the temperature. 

1.1.3. Canonical ensemble 

A more commonly used ensemble is the canonical ensemble, in which 
 

)(

])()(exp[
)(

TZ

TkH
w B

T

x
x

−
= , (3) 



 4 where Bk  is the universal Boltzmann constant, T  is the temperature and )(TZ  is a factor (called the partition function) that normalizes the weight, cf. Eq. (3), i.e.,  
 −=

x
x ])()(exp[)( TkHTZ B .  For later convenience, we also define a reciprocal 

temperature )(1 TkB=β , so Eq. (3) is )()](exp[)( βββ ZHw xx −= . 
Eq. (3) means that a configuration with a higher energy, or larger )(xH , is less likely to occur in the ensemble, hence smaller )(xw .  This is especially so at a low temperature T .  In the O2 case, the potential energy is low when the two oxygen atoms are bonded.  But if the temperature is very high, the energetic benefit from the weight diminishes, so the bond breaks. 
Since the total energy is the sum of the potential energy )(rU and kinetic energy )(vK , we can factorize the weight as 

 )](exp[)](exp[)( vrx KUw ββ −−∝ . (4) 
This means that the distributions for r  and v  are independent.  So we can ignore the velocities and focus on the coordinates alone. 

1.1.4. Discussions 

A key difference between the two ensembles is that the canonical ensemble is parameterized by the temperature T , while the microcanonical one by the total energy E .  Since we know the temperature better, the former is more convenient. 



 5 Note that the temperature T  or β  is just a leverage to control the total energy.   Similarly, if we wish to control some other quantity )(xX , which is a function of configuration x , we change the weight to )]()(exp[)( xxx XHw Xββ −−∝ . 
An interesting inverse problem is to measure the controlling parameters in cases where they are not specified explicitly by the ensemble, e.g., the temperature in the microcanonical ensemble [12, 13], see 4.2.2. 

1.1.5. Two-dimensional Ising model 

The two-dimensional (2D) Ising model is one of the simplest but nontrivial models in statistical mechanics.  It is composed of LL×  sites on a 2D rectangular lattice.  Each site has a spin, which is either up or down.  The potential energy is the sum of horizontal and vertical interactions of adjacent spins.   Two aligned (same) or anti-aligned (different) spins contribute J−  or J  respectively to energy. 
Different from molecular configurations, spin configurations are discrete and countable: there are exactly LL×2  of them.  Despite its simplicity, the 2D Ising model has a second-order phase-transition, in which the heat capacity dTUdC

T
=  

(where 
T

U  is average potential energy at T ) undergoes a sudden change at 
JJTc 269.2)21log(2 ≈+= .  This is remarkable since the singularity is created by a simple and rather innocent-looking energy function. 

In the canonical ensemble, the model can be solved exactly [14]; so we know the partition function, average energy, etc., at any temperature.  For this reason, it is often used to validate a simulation method. 



 6 
1.2. Molecular dynamics 

Molecular dynamics (MD) is a way of populating an ensemble by following Newton’s second law (also known as the equation of motion),  
 aF m= , (5) 
where F , m , and a  are the force, mass and acceleration, respectively.   The force is just the negative derivative of potential energy )(rF U−∇= , and the acceleration the rate of change of the velocity dtdva = .  Newton’s equation keeps the total energy constant, for 2

2
1)( vv mK =  and 

 0)()]()([ =+−⋅=⋅+⋅∇=+ aFvvvrvr mdtdmdtdUdtKUd .   
It is thus tempting to assume that 

Following Newton’s equation, the trajectory covers all configurations of the same energy with equal frequency, and thus fulfills a microcanonical ensemble. 
But we have to apply some restrictions to make the statement true.  For example, the Newton’s equation also conserves the total linear and angular momenta.  The assumption is also false, if there was a barrier that divides the configuration space, a problem called broken ergodicity, see Fig. 1.1. 
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Figure 1.1. Broken ergodicity.  In classical mechanics, it is impossible to cross a potential-
energy barrier higher than the total energy, for the kinetic energy would be negative. 

Despite the limitations, the statement is commonly assumed, because if the system is regularly disturbed, the trajectory will be properly randomized. 
Note that MD also contains time information, e.g., how fast a protein folds, but this information is unused in the ensemble theory. 

1.2.1. Integrator 

There are several ways [10] to integrate Eq. (5) numerically.   A good integrator ensures the energy not to blow up after a large number of steps because of the accumulated numeric errors.  It will also ensure the conservation of the volume element of the phase space, i.e., the space spanned by all coordinates ir  and momenta iim v .  We show two commonly-used examples below. 
1.2.1.1. Leapfrog 

The leapfrog integrator reads 
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,

,)(
)1()()1(

)()()1(

t

tm
nnn

nnn

Δ+=
Δ+=

++

+

vrr

Fvv  
where the number of iterations is shown on the superscripts, and )(nF  is the force evaluated at )(nr .  Note that when we are changing v , r  is fixed; but when we are changing r , v  is fixed.  In this way, the phase-space volume element vrdd  (assuming a uniform mass) is conserved even though the integrator is approximate (sliding a rectangle to a parallelogram along an edge keeps the area a constant).  Although it is simple, the time frames of )(nx  and )(nv  differ by 2tΔ .  This is fixed in following velocity-Verlet integrator. 

1.2.1.2. Velocity-Verlet 

The velocity-Verlet integrator reads 
 

,)(

,

,)(

)1()21()1(

)21()()1(

)()()21(

tm

t

tm

nnn

nnn

nnn

Δ+=
Δ+=
Δ+=

+++

++

+

Fvv

vrr

Fvv  
where )21( +nv  is the intermediate velocity.  So it splits the first step of the leapfrog integrator into two halves (the first and last here), such that )(nx  and )(nv  represent the two quantities at the same time frame: )21( +nv  here is )1( +nv  in the leapfrog case. 

1.2.2. Molecular force field 

A molecular force field means a potential energy function )(rU .  Although 
)(rU  should be determined from first principle, we always use an approximate one in practice.  The classical mechanics version of the statistical mechanics is accurate 



 9 only up to atomic level, and fails if the motion of electrons plays a critical role.  Fortunately, electrons often move so fast that their contribution can be somehow absorbed in an effective )(rU , which only describes the motion of nuclei.  We shall assume this case.  Such a force field usually has the following terms 
 chargevdwdihedralanglebond)( UUUUUU ++++=r . 
We explain the terms below. 
Bond: for the length of two atoms involved in a chemical bond.  The potential is 

2
0 ))(2/()( rrkru −= , where r  is the distance between the two atoms, 0r  the reference value, k  spring constant. 

Angle: for the angle of three atoms in an sp2 or sp3 bond.  The potential is 
2

0 ))(2/()( θθθ θ −= ku , where θ  is the angle, 0θ  the reference value, e.g., 120° for H-C-C atoms in ethylene, and θk  some constant. 
Dihedral: for the dihedral φ  of four steric atoms.  The potential can be harmonic 

2
0 ))(2/()( φφφ φ −= ku , where 0φ  is a single reference value, φk  some constant 

(improper dihedral), or a Fourier series  =
=

0
)cos()(

k k kau φφ , where ka  are constants (proper dihedral).  More sophisticated forms are also used. 
Van der Waals: ubiquitous long range interaction.  The simple Lennard-Jones potential ])()[(4)( 612 rrru σσε −=  is often used, where ε  and σ  are the units for energy and length, respectively.   The 6−r  term models the long-range attraction due to the induced dipole-dipole interaction, i.e., the weak attraction produced by the 



 10 mutually-polarized electrons in the two atoms.  Since the electric field E  from a dipole (polarized electrons + nucleus) is proportional to 3−r , and the perturbation is of second-order, the energetic addition is proportional to 62 −∝ rE .  The 12−r  terms models the short-range repulsion, and is mainly for practical convenience, as 12−r  is the square of 6−r .  The minimal of the potential is reached at σ6 2=r , where 
ε−=)(ru . 

Charge: Coulomb interactions of charged atoms or rqKqru 21)( = , where 1q  and  
2q  are the charges of the two atoms, r  is their distance, and )4(1 0πε=K  the Coulomb constant.  Since chemical bonds tend to distort the electron distribution, the effective charge on an atom can be a fraction of the elementary charge. 

Further, for implicit solvent simulations, we have terms to compensate the missing solvent, i.e., surrounding water molecules. 
Parameters of a force field are usually semi-empirical.  Its construction often involves comparison with experimental data and quantum mechanical calculations. 

1.2.3. Periodic boundary condition 

Although we usually simulate a finite system, we try to mimic an infinitely large one by assuming the periodic boundary condition. 
Here is what we do.  We assume the system is in a (e.g. cubic) box.  We now reproduce the box in three dimensions, and stack them to an infinite lattice.  In this way, even an atom at the corner is surrounded by atoms from other periodic images of the box, and thus has the same environment as an atom in the middle of the box. 
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1.2.4. Potential cutoff 

The van der Waals interaction, see 1.2.2, delays quickly with the pair distance 
r .  It is therefore common to cut off the potential at some short distance cr , i.e., 

0)()( =′= ruru  for crr > , to accelerate the computation of potential energy )(ru  and force.  The potential for crr ≤  is also shifted such that it is continuous at cr , i.e., 
0)( =−

cru  to avoid an infinite force, although the force will still be discontinuous at  
cr .  In practice, the discontinuous force might not make MD unstable if cr  is large, but a more careful way is to turn the potential gradually to zero, see e.g. 4.5.3. 

When used with the periodic boundary condition, the cutoff distance cr  is usually shorter than the half of the shortest box length.  In this way, no pair of atoms is counted more than once. 
1.2.5. Ewald sum 

The charge interaction decays very slowly ( r1~  with r being the distance between two charged particles).  Thus a simple cutoff of the potential is erroneous and dangerous.  An elegant solution is the Ewald sum [10].  The idea is that since the system is periodic (see 1.2.3), so are the charge distribution )(rρ  and electric potential )(rφ , which can be expanded by a Fourier series.  Recall the electric energy can be computed from 
  ==

i iiqdU )()()( 2
1

2
1

charge rrrr φφρ . (6) 



 12 But a long-range )(rφ  corresponds to a  ⋅−= rrkrk di )exp()()(
~ φφ  (i.e., 

Fourier transform) that decays quickly with k .  So it is easy to compute )(
~

kφ  first.  We also recall )(rφ  can be computed from either a Coulomb sum 
= j ijji rq )4()( 0πεφ r  or solving the Poisson equation 0

2 )()( ερφ rr −=∇ , and both 
strategies will be used below. 

The original )(rρ  is a set of discrete point charges, or  −=
i iiq )()( rrr δρ .  

We first replace each point distribution )( irr −δ  by a smoothly-varying cloud distribution ])(exp[)( 22
iig rrrr −−∝− α , and define the result as )(rlρ , and the difference as )()()( rrr ls ρρρ −= .  The electric potential )(rlφ  for )(rlρ  can be readily solved in the reciprocal k  space, where the Poisson equation is simply 

)()(~)(
~ 2

0kll ερφ kk = .  An inverse transform of )(
~

klφ  then gives )(rlφ .   
On the other hand, each point charge in )(rsρ is wrapped around by a cloud of opposite charge, so its corresponding electric potential )(rsφ  decays quickly.  We 

can thus compute it as a modified Coulomb sum as =
j j

ij

ij
is q

r

r )erfc(

4

1
)(

0

α
πε

φ r .  
For each point charge, the contribution from its own cloud charge is not included in 
the Coulomb sum.  The correction 

π
α

πε
φ 2

4
)(

0

i
ic

q−=r  should be applied. 
Finally, the electric potential )()()()( rrrr csl φφφφ ++= , and we obtain the potential energy from Eq. (6); the force is similarly computed. 



 13 Practically, we must ensure the entire system is charge neutral to use the Ewald sum.  Ions are often added to neutralize a charged system, e.g. a protein. 
1.2.6. Thermostat 

Newton’s equation works natively for a microcanonical ensemble.  We can, however, use an artificial thermostat to design an MD for the canonical ensemble [10].  The idea is to regularly adjust the velocities of atoms to satisfy the distribution 
)](exp[ vKβ− ; the potential energy will then be forced to adopt )](exp[ rUβ− . 

A simple and efficient thermostat is the velocity rescaling thermostat [15], in which we regular rescale the velocity according to a Langevin equation as 
 ξTkKKTNk

dt

dK
BB 22

1 +−= , (7) 
where K  is the kinetic energy, N  is the number of degrees of freedom, ξ  is the Gaussian white noise satisfying )()()( tttt ′−=′⋅ δξξ . 

In implementation, we obtain a new K ′  by integrating Eq. (7) with a time step tΔ  as GBB tTkKtKTNkKK ξΔ+Δ−+=′ 2)( 2
1  (where Gξ  is Gaussian random 

number of zero mean and unit variance), then scale the velocity by KK ′ . 
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1.3. Monte-Carlo simulation 

A Monte-Carlo (MC) simulation is another way of populating configurations.  The basic idea is to build a Markov chain, following which the system will eventually travel through most probable configurations no matter where it starts from. 
Note that the dynamics in a MC simulation, however, is usually artificial and is of no physical consequence.  The strength of MC lies in its flexibility that allows us to devise configuration changes in any fashion as long as the distribution is correctly populated.  Enhanced sampling methods, and some thermostat methods are in fact MC algorithms, although many of them are designed for MD. 
In MC, the velocity components are usually not needed, so a configuration simply means coordinates, and the energy means the potential energy. 
An MC algorithm is often designed to satisfy two conditions: ergodicity and detailed balance (or more generally balance).  But let us first see an example. 

1.3.1. Metropolis algorithm 

A typical MC simulation proceeds as follows.  In each step, we change the current configuration x  to a different one x′ .  For example, in a molecular system, we can randomly pick an atom, then displace it by a random amount (mean-zero).  In the Ising model, we can flip the spin at a random site.  The modification should be unbiased such that the probability of generating x′  from x  is equal to that from x′  to x .  We then decide whether to accept x′  by the probability 
 { })()(,1min)( xxxx wwA ′=′→ , (8) 



 15 where )(xw  the ensemble weight or the distribution density.  Particularly, for the canonical ensemble, we have )](exp[)( xx Uw β−∝ , so 
 { }]exp[,1min)( UA Δ−=′→ βxx , (8′) 
where )()( xx UUU −′=Δ .  This is the Metropolis algorithm [16]. 

1.3.2. Ergodicity 

Ergodicity means there is a nonzero probability (or probability density) to go from an arbitrary configuration x  to another one x′  by a finite number of steps.  In practice, this condition is often easily satisfied. 
For example, in a molecular system, we can connect any two configurations by displacing particles of different coordinates in finite number of steps..  In the Ising model, there is a probability that all different spins in the two configurations are flipped after a finite number of steps. 

1.3.3. Detailed balance 

It is readily shown that Eq. (8) satisfies detailed balance: 
 )()()()( xxxxxx →′′=′→ AwAw . (9) 

For a set of the configurations satisfying )(xw , then the new distribution after a MC step would be )()()()()( xxxxxxx
xx

′=→′′=′→  wAwAw , i.e., a MC step keeps the distribution unchanged, if it is already )(xw .  Further, if we start with a distribution that deviations from )(xw , the deviation diminishes after a MC step. 



 16 Detailed balance often serves as the golden rule for designing MC algorithms.  But an MC algorithm does not have to look like the Metropolis one: there are cluster algorithms [17, 18] that are much more sophisticated and efficient.  
1.3.4. Balance 

Detailed balance can be relaxed to a more general balance condition [19]: 
 )()()( xxxx

x
′=′→ wAw , 

i.e., the desired distribution is preserved.  Balance plus ergodicity are also sufficient to guarantee a correct MC algorithm. 
Practically, it often means that as long as there is some random component in all moves, we can change some moves from random ones to sequential ones.  For example, in the molecular system, instead of randomly choosing a particle to move, we can also sequentially move particles [19]. 

1.4. Tempering 

Tempering is a Monte Carlo technique to accelerate sampling by exploiting a fast dynamics at a high temperature.  Tempering is often formulated in the canonical ensemble, and we assume so below. 
1.4.1. Parallel tempering 

In a parallel tempering, or replica exchange [20-23], we run several copies of the system in parallel, with each assuming a different temperature.  In simulation, 



 17 we randomly attempt to swap the temperatures of two copies according to the following acceptance probability 
 )]})((exp[,1min{),( UUA ′−′−−=′ ββββ , 
where U and β are the potential energy and the reciprocal temperature (before the swap) of one copy, and U ′ and β ′  those of the other. 

1.4.2. Simulated tempering 

In simulated tempering [24, 25], the system changes the temperature according to the potential energy fluctuation: if the current potential energy is above a certain value, the temperature tends to increase; otherwise, it tends to decrease.  A temperature transition ββ ′→  is accepted according to the probability 
 })()(])exp[(,1min{)( ββββββ ′′−=′→ ZZUA , 
where U is the potential energy, β  and β ′ are the old and new temperatures, and 

 −=
x

x)](exp[)( UTZ β  is the partition function.  It can be shown that in an equivalent setting, a single-copy tempering is always more efficient than the parallel tempering counterpart [26, 27]. 
The difficulty, however, is to estimate the value of the partition function at every temperature.  This is nontrivial for the partition function can easily change by several orders of magnitude.  Fortunately, there is an iterative scheme [28] that can automate the process, as illustrated in reference [29]. 
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1.4.3. Realizing temperature change 

In MC, the temperature is part of the acceptance probability, see Eq. (8′), so the change is trivial.  In MD, the temperature is controlled by the thermostat (see 1.2.6).  Frequently changing the temperature of a thermostat might destabilize it.  Thus a common practice is to simultaneously scale the velocities ββ ′  and change the temperature of the thermostat from β  to β ′ . 
An alternative approach is to scale the force.   If the current temperature is β  and the thermostat temperature 0β , then the effective force should be F)( 0ββ .  The practice is based on the following ensemble weight  

 )].(exp[)(exp),( 0
0

0 vrvr KUw β
β
ββ −








−∝  

Thus the velocities, and hence the thermostat, see no change of the temperature, but the equation of motion will experience a change in the potential, and hence force. 
1.5. Protein 

A protein (polypeptide) is a linear chain of amino acids linked by peptide bonds.  A natural protein can often automatically find a unique three dimensional structure from an open chain [30-35].  A challenge is to understand this by physical laws and to mimic the process on a computer by simulation [36-49]. 
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1.5.1. Amino acid 

The basic structure of an amino acid is +H3N-CHR-COO–, see Fig. 1.2, where  R denotes the side chain group.  The middle carbon is called the alpha carbon (Cα), and those on R are Cβ, Cγ, …, according to the number of chemical bonds away from Cα.  There are 20 common amino acids with different R groups, as shown in Table 1.1. 

 
Figure 1.2. Amino acid. R: side chain. 

1.5.2. Charge 

The total charge of a protein is the sum of all amino acids.  Typical values at pH ≈7 are listed in Table 1.1.  Generally it can be computed from pKa, which measures the ability of gaining a variable proton (H+).  A residue is likely to have the proton (protonated) if the pKa is greater than the pH, or to lose it otherwise. 
In preparing an explicit-solvent simulation, the total charge of the protein should be computed in advance, so that the solution can be neutralized by adding ions of the equal but opposite charges in order to use Ewald sum, see 1.2.4. 
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1.5.3. Chirality 

In preparing the initial configuration of a protein, one should pay attention to its chemical chirality, for it does not change during simulation.  The Cα atom is a chirality center and is always left-handed (L-).  Further the Cβ atoms of isoleucine and threonine are also chiral, usually left- (L-) and right-handed (D-), respectively. 
Table 1.1. List of amino acids. 

Amino acid  3-letter 1-letter Charge† pKa‡ Polar Hydrophathy§ 

Glycine Gly G 0   –0.4 

Alanine Ala A 0   1.8 

Valine Val V 0   4.2 

Leucine Leu L 0   3.8 

Isoleucine Ile I 0   4.5 

Proline Pro P 0   –1.6 

Serine Ser S 0  P –0.8 

Threonine Thr T 0  P –0.7 

Methionine Met M 0   1.9 

Cysteine Cys C 0 8.2 (-SH) P 2.5 

Phenylalanine Phe F 0   2.8 

Tyrosine Tyr Y 0 10.1 (-OH) P –1.3 

Tryptophan Trp W 0   –0.9 

Histidine His H 0 (+1) 6.1 (-NδH
+-) P –3.2 

Lysine Lys K +1 10.5 (-NH3
+) P –3.9 

Arginine Arg R +1 12.8 (-NH2
+) P –4.5 

Aspartic acid Asp D –1  3.9 (-OH) P –3.5 

Glutamic acid Glu E –1 4.1 (-OH) P –3.5 

Asparagine Asn N 0  P –3.5 

Glutamine Gln G 0  P –3.5 
† For pH = 7. 
‡ Values for side chains; larger pKa means easier to gain the highlighted proton (H+). 
§ Values from [50], being larger means less likely to interact with water. 
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Chapter 2 

A continuous tempering 

2.1. Introduction 

The objective of this chapter is to present a tempering method in which the temperature is a continuous variable, as well as its application in folding proteins in explicit solvent.  The contents are largely identical to those in reference [42]. 
Molecular dynamics (MD) simulations at room temperature can be slow for large complex systems, such as proteins in explicit solvent.  A promising solution is tempering, which exploits a fast dynamics at higher temperatures by a generalized ensemble with a variable temperature.  Tempering can be based on a single copy (simulated tempering) [24, 25, 29, 51, 52], or multiple copies (parallel tempering) [20-23].  



 22 In traditional tempering methods, the temperature is a discrete with a few predefined values.  In the canonical ensemble, as system size grows, the success rate of a transition between two neighboring temperatures depends on the overlap of energy distributions of the two temperatures and decays as the system size grows [27].  Thus, to maintain sampling efficiency, we need more temperatures to narrow down the spacing.  In parallel tempering, more temperatures mean more copies and hence more computational resources.  In simulated tempering, the number of parameters, the values of the partition function [29], to be estimated also increases with the number of temperatures.  Therefore, it is desirable to have a method that abandons the discrete setting. 
We present a continuous tempering method that is intended to overcome the above drawbacks.  In 2.2, we describe the method.  In 2.3, we verify it on a 2D Ising model.  In 2.4 we apply it to fold three mini proteins, trpzip2 (12 residues), trp-cage (20 residues), and villin headpiece (36 residues), in explicit solvent.  In a more recent study, Liu et al. folded a λ-repressor (80 residues) by the method [48]. 

2.2. Method 

We describe how to use the method in 2.2.1.  The rest of the section gives details on its derivation and improvements. 
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2.2.1.  The procedure 

The method works this way.  We wish to simulate a system for a temperature range ),( maxmin ββ  according to a predefined distribution )(βw , which is roughly proportional to β1  for a molecular system, see 2.6.3. 
In each simulation step, we first change the system configuration according to either a constant temperature molecular dynamics (MD) or some Monte Carlo (MC) method.  Next, we update the temperature according to 

 ξ
ββ

βββ 2)(log
)(

~)()1( +
∂

∂−−== w
EE

dt

Tkd

dt

d B , (10) 
where E  is the current potential energy, )(

~ βE  the estimated potential energy at 
β (discussed later), and ξ  a Gaussian white noise satisfying )()()( tttt ′−=′⋅ δξξ .  Note that t here needs not to be the same as the real time in MD.  In implementation, we first compute β1 , update it according to Eq. (10), then invert it back to β .  The effect of the temperature change can be realized as a scaling of velocity or force in MD (see 1.4.3).  We repeat the process until the simulation ends. 

The remaining task is to compute )(
~ βE .  We will compute the average energies from two windows ),( ββ−  and ),( +ββ  surrounding β , and then linearly combine them to form an unbiased estimate. 

First, we divide the entire range to many bins ),( 1+ii ββ .  The bin size should be much smaller than the temperature spacing in the traditional tempering.  Each 



 24 bin i collects independent statistical moments of the potential energy whenever the current β  falls in ),( 1+ii ββ .  We then compute two parameters +a  and −a  by solving 
 1=+ −+ aa , (11) 
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respectively, see Fig. 2.1(a).  Note that β ′  is the configuration average at a fixed 
β ′ .  Since the bin is small, we replace it by the corresponding value computed from the bin containing β′ , while  

)( , +− ββ  is the average over the window ),( +− ββ  or 
bins within it.  After the averaging, Eq. (12) is a linear equation of +a  and −a .  By solving Eqs. (11) and (12), we determine +a  and −a .  Neither +a  or −a  should be negative, and zero is used in case a negative value occurs.  Basically, +a  or −a  are the relative weights for combining the average energies from ),( ββ−  and ),( +ββ ,  respectively.  )(

~ βE  is then calculated as 
  ′=

j
jjjs EE δββφβ )()(

~ , (15) 



 25 where jjj ββδβ −= +1 , 
j

E  is the average energy from the bin ),( 1+jj ββ .  )( js βφ′  is 
shown in Fig. 2.1(b). 

 
Figure 2.1.  (a) )(βφ , )(βφs  and )(βφt  for estimating )(

~ βE . )(βφ  is the sum of the smooth 

)(βφs  and steep )(βφt .  (b) )(βφs′  and )(βφt′− . 

2.2.2.  A continuous temperature ensemble 

We now explain the algorithm.  The underlying apparatus is a generalized ensemble, in which the temperature β  is a continuous variable in a given range 
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),( maxmin ββ .  The configuration distribution at a fixed β  is identical to the canonical one.  The aim is to correctly sample the distribution. 

First, once the overall temperature distribution )(βp  is given, the joint distribution ),( xβp  of configuration x and β  is determined: 
 ),(

)(

)](exp[
),( β

β
ββ p

Z

E
p

x
x

−=  (16) 
where )(xE  is the potential energy, and  −= xx dEZ )](exp[)( ββ  is the canonical partition function.  At a fixed β , Eq. (16) can be sampled by a constant temperature MD/MC.  Similar, at a fixed configuration x , Eq. (16) gives the distribution of β , which is sampled by Eq. (10), see more below. 

If )(βZ  is known, we replace )(βp  by the desired weight )(βw , and the job is done.  But since )(βZ  is usually unknown, we construct it on the fly.  We use an approximate )(
~ βZ  in Eq. (16): 
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x−= ,  (17) 
to conduct sampling.  The new )(βp  is 
 )(

)(Z
~

)(
),()( β

β
βββ w

Z
dpp ==  xx .  (18) 

In simulation, as we adaptively adjust )(
~ βZ , )(βp  changes too.  Upon convergence, 

)()(
~ ββ ZZ → , so )()( ββ wp → . 



 27 Given a configuration x , the sampling along β  can be performed by Eq. (10).   Note that )(
~ βZ  enters Eq. (10) through βββ ∂)−∂≡ /(

~
log)(

~
ZE , see 2.6.1 for a proof.  The remaining task is to converge )(

~ βZ , or )(
~ βE . 

2.2.3. Unbiased estimate of a partition function 

We want to obtain an )(
~ βZ  that converges to )(βZ .  In implementation, we divide the range ),( maxmin ββ  to small bins ),( 1+ii ββ , and demand that at any bin 

boundary ,iβ  )()(
~

ii ZZ ββ → : 
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~
/)(

~
11 ++ = iiii ZZZZ ββββ . (19) 

This ratio form avoids the arbitrary constant.  With a small bin size, the difference between )(
~ βZ  and )(βZ  is negligible for practical purposes. 

We arrange Eq. (19) as [53], 
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where βE  denotes the canonical average energy at β ; and we have used Eq. (18), 
and rewritten the integral to a bin average: 

+≡ 1
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ββ . 

During simulation, if we adaptively force the right hand side to zero: 
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the left hand side vanishes too, so )(/)(
~

)(/)(
~

11 iiii ZZZZ ββββ =++ , and Eq. (19) is satisfied [53]. 
We proceed by assuming a sufficiently small bin size and (i) )(

~ βE  being a constant iE
~

 within a bin i, and correspondingly, )(
~

log βZ  varies linearly with β , and (ii) )()( ββ wp can be treated as a constant.  Eq. (20) is then simplified as 
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and the ratio of the partition function is estimated as 
 [ ] ,

~
)(/)(ln 1 iiii EZZ βββ Δ=+  

where iii βββ −=Δ +1 . 
Eq. (21) means that one can estimate iE

~  from the data saved in bin i.  The approach is correct, but slightly inefficient because the amount of data within a bin shrinks with the width.  On the other hand, a large bin leads to a significant distribution error within a bin, for )(
~ βE  is a constant.  We solve the problem by an integral identity. 
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2.2.4. Estimators based on integral identities 

We now present a method for drawing an unbiased estimate iE
~  from a large temperature window instead of a single bin.  A similar technique for improving distributions is presented in Error! Reference source not found.. 

We now transform the right hand side of Eq. (21) from an average over a single bin ),( 1+ii ββ  to that over a larger window ),( +− ββ  that encloses the bin: 
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ββ βφββφββφ EdEdE  (22) 
where )(βφ  is a function that satisfies 0)()( == +− βφβφ .  We have also converted the difference to an integral, and used 

ββ β 2EE Δ−=∂∂ . 
We choose )(βφ  as a superposition of a smooth )(βφs  that spans over the entire window ),( +− ββ   and a local )(βφt  limited in the bin ).( 1+ii ββ , see Fig. 2.1 and Eqs. (13) and (14), in which +a  and −a  are nonnegative, and satisfy 1=+ −+ aa .  At 1+= iββ  , the sudden jump in )(βφs  is cancelled by that in )(βφt ; we therefore ignore the δ -functions in )(βφs′  and )(βφt′  in actual computation. 
The purpose of the decomposition of )(βφ  into )(βφs  and )(βφt  is to replace the average over a bin ).( 1+ii ββ  in Eq. (21) by that over a larger window ),( +− ββ  
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 30 The energy fluctuation 
β

2EΔ  is somewhat unreliable.  To avoid this, we 
choose the +a  and −a  such that 
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Solving Eq. (24) and 1=+ −+ aa  yields +a  and −a , and thus )(βφs′ .  So, 
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Since )(βφs′  is a constant within a bin, it can be moved out of the integral, and 
   Δ′=′= +

j j
jjs

j
jsi EEdE

j

j
β

β

β β ββφββφ )()(
~ 1 . (26) 

A comparison with Eq. (21) shows that Eq. (26) is just a linear combination of iE
~ ’s obtained from different bins.  The auxiliary function )(βφs′  serves as the coefficients of combination, whereas Eq. (24) ensures the convergence. 

The integral identity can be used for other quantities, such as the average energy, heat capacity, and energy histogram.  Thus, we can calculate quantities at a single temperature, although the simulation is performed on the continuous range. 
The formula for the average energy 

i
E β  is obtained by the limit ii ββ →+1  in 

Eq. (23).  For the heat capacity 
β

ββ 22)( EkC B Δ= , we write 
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where we have substituted 
β

3EΔ−  for β
β
∂Δ∂ 2E . 



 31 For the energy histogram, we show in the appendix that the optimal )(βφ  yields the continuous version of the multiple histogram method [54-56]. 
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where ),( EEEh Δ+β  is the energy histogram at β , which is equal to the integral of the joint temperature-energy distribution ),( Ep β  over a small bin ),( EEE Δ+ . 
For other quantities, we use 
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where )(
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])(exp[ ββββ ZZE ′′−−  serves as the effective weight.  Eq. (29) is unbiased even if )(

~ βZ  has error. 
2.2.5.  Adaptive averaging 

We use an adaptive averaging scheme to improve the convergence of )(
~ βE  during equilibration.  The idea is to assign large weights to new data points to refresh the average. 

For a sample of size n, the normal average formula is )(
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With a constant γ , the sample size 1S  would saturate to a fixed value )1/(1 γ− .  To prevent this, we use 
 nC /1 γγ −= , (31) 
to gradually increase γ  to 1.0 ( γC  is a constant).  In the end, the averaging scheme becomes the conventional one. 

The adaptive averaging also accelerates the temperature space random walk.  This is because it reduces the difference )(
~ βEE − , which is the deterministic part of Eq. (10), by biasing towards recent data. 

2.3. Verification 

We first tested the method on a 32×32 Ising model [14].  Results from the alternative method of estimating )(
~ βE , described in 2.6.2, were also included.  Parameters common to the two methods were set to be the same. 

The temperature range was )55.0,35.0(∈β  or )857.2,818.1(=T , which covered the critical temperature 27.2≈T  of the phase transition.  Here we used a 



 33 constant )(βw , or a flat-β  histogram.  The bin size was 0002.0=δβ .  For each 
), 1+( ii ββ , the window for Eq. (26) was ),( +− ββ = ),( 1 ββββ Δ+Δ− +ii  with 02.0=Δβ ; but near the boundaries, we used the largest possible βΔ .  The Langevin equation was integrated after every 100 Monte Carlo moves, with 5100.2 −×=Δt .  The simulation was performed for 106 Monte Carlo steps per site.  

 
Figure 2.2. 3232×  Ising model.  The method in 2.2 is labeled as Method 1, and that in 2.6.2 is 

labeled as Method 2.  (a) Partition function, (b) heat capacity, (c) average energy, (d) )(
~ βE . 

The calculated partition function, average energy and heat capacity are shown in Fig. 2.2. The thin solid lines and dashed lines are for the method introduced in section II.D (method 1), and that described in 2.6.2(method 2), respectively.  In most cases, both results for the partition function and the average 



 34 energy coincide with exact results [14], see Figs. 2.2(a), 2.2(c), and 2.2(d).  Even for the heat capacity, which is the second order derivative of the partition function and is harder to compute, the deviations in both cases are small.  This indicates that the method is unbiased and it delivers exact thermodynamics quantities asymptotically. 

 
Figure 2.3. Reconstructed energy distribution at a few temperatures using Eq. (28) (solid), 
and results from averaging two neighboring bins (dashed).  0002.0=δβ .  

We can also show that the correct energy distribution can be reconstructed from Eq. (28).  During simulation, the current potential energy was registered into the histogram every 100 Monte Carlo moves, thus there were roughly 105 samples in the entire histogram.  The reconstructed energy distributions at representative temperatures are shown in Fig. 2.3.  The temperature window for estimating the energy distribution at β  was  ),( ββββ Δ+Δ−  with 02.0=Δβ .  One can see a good 



 35 agreement between the integral identity Eq. (28), and the exact distribution,  which was computed from the exact density of states [57].  For comparison, distributions constructed by averaging energy distributions of two neighboring bins yielded more noisy results. 
2.4. Applications 

We applied the method to the folding of several small proteins.  The method was implemented in a modified GROMACS 4.0.6 [1-4], using AMBER force field ports [58] with TIP3P water model [59].  In all cases, the particle-meshed Ewald method [60] was used for handling long range electrostatic interaction, and the velocity-rescaling method was used as the thermostat [15].  For constraints, we used the SETTLE algorithm for water molecules [61], and the parallel LINCS algorithm [62] for proteins.  As proteins drastically changed their configuration during simulation, dynamic load balancing was turned on when using domain decomposition. 
All simulations were performed in a constant (N, V, T) ensemble.  A 10 Å cutoff was used for Lennard-Jones interactions, electrostatic interactions and neighboring list.  Since the temperature in our method is a variable, the temperature change was realized by scaling the force according to ( ) ( )FFF TT00 ==′ ββ , with 

F′  and F being the scaled and the original force, respectively (see 1.4.3).  On the other hand, the thermostat temperature T0, which controls the kinetic energy, is unaffected and can be maintained at a fixed value 0T =480 K.  Three separate 



 36 thermostats were applied to protein, solvent and ion groups, and the coupling time 
Tτ  for the thermostats was 0.1 ps.   

The MD time step was 0.002 ps.  The center of mass motion was removed every step.  Trajectory was saved every 2 ps.  Since the force and energy calculation was much more time-consuming than estimating )(
~ βE , we applied the Langevin equation in every MD step using an integrating step of 410−=Δt .  The parameter γC  in adaptive averaging Eq. (31) was 0.1 in all cases. 

2.4.1.  Trpzip-2 

The first system was a 12 amino acid β-hairpin tryptophan zipper, whose Protein Data Bank (PDB) ID code is 1LE1, and its sequence is SWTWENGKWTWK [63].  A unique feature of this short hairpin is that its four tryptophan side chains form a pattern that stabilizes the structure.  
Previously, the system was intensively studied both in explicit [64, 65] and implicit solvent [66-71].  But de novo folding in explicit solvent from an extended chain, see Fig. 2.4(a), is more challenging.  We used AMBER99SB as the force field, which updated the φ and ψ dihedrals [72] of the AMBER99 force field [73]. 
We report four simulation trajectories.  All of them reached atomic accuracy within in a time scale of 1µs.  We used a cubic 45×45×45 Å3 box, filled with 2968 water molecules as well as two Cl –  ions.  The β  range was )41.0,20.0( , which corresponded to T = 293.6K~601.9K.  The grid spacing for Fourier transform was 1.15Å, and the alpha parameter was 0.3123 Å–1 for the Ewald method.  For the 



 37 integral identities Eqs. (26), (27) and (28), the window was ),( ββββ Δ+Δ− , with 
βΔ2  was 8% of β , e.g., at 241.0)K500(0.1 ≈= Bkβ , 010.0%4 ≈×=Δ ββ , so 

)8.520,8.480(=T K.  At boundaries, we used the largest possible βΔ  that permits a symmetrical window. 

 
Figure 2.4. Trpzip2. (a) Initial extended conformation; (b) a typical folded structure.  The Cα- 
and the all heavy atom RMSDs are 0.25Å and 1.08Å respectively.  Gray: native. 

Table 2.1. Lowest RMSDs in folding trajectories of trpzip2. 

Traj. ID Cα-RMSD (Å) Heavy atom RMSD (Å) t1 (ns) * 

1 0.20 1.00 20 

2 0.25 0.84 520 

3 0.20 0.88 530 

4 0.25 1.31 1080 

* First time of stably reaching atomic accuracy of the native state (Cα-RMSD < 0.5 Å). 

The snapshot of reaching the lowest Cα-RMSD can differ slightly from that of reaching the lowest 
heavy atom RMSD. 



 38 A typical folded structure is shown in Fig. 2.4(b), with its root mean square deviations (RMSD) for alpha-carbon (Cα) and heavy atoms being 0.25 Å and 1.08 Å, respectively.  The lowest Cα and heavy atom RMSD found in the four trajectories are listed in Table 2.1.  Even among structures with lowest RMSDs, tryptophan side-chains can still adopt different conformations.  For example, in trajectories 1 and 3, there were native-like structures with one of the tryptophan side-chain (TRP9 or TRP4) flipped 180° with respect to the native conformation.  We also show the time series of trajectories 1 and 3 in Fig. 2.5. 

 
Figure 2.5. Trpzip2. Left: the first 200 ns of trajectory 1.  Right: trajectory 3.  (a) Cα-RMSD from 
the native structure, (b) Cα radius of gyration, (c) temperature, (d) potential energy. 
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Figure 2.6. Trpzip2. (a) RMSD distribution; (b) fraction P of the folded state.  Inset: linear 
fitting of log(P0/P – 1) versus β to the two-state model. 

Fig. 2.6(a) shows the distribution along the Cα-RMSD at three different temperatures calculated from trajectory 3.  The distribution shows a two-peak structure, corresponding to the folded and the unfolded states, respectively. 



 40 The folding temperature can be computed by assuming a two-state model.  The folding fraction )(βP  was first calculated as the fraction of states with Cα-RMSD less than 2.0 Å at different β .  )(βP  was then fitted against a two-state model in the range )4.0,24.0(∈β , or ∈T (300.9 K, 501.5 K), as 
 

)](exp[1 m

0

ββ −Δ+
=

E

P
P , (32) 

where the parameters were 61.00 =P , 96.38=ΔE kJ∙mol–1, and mβ =0.350 kJ–1∙mol, see Fig. 2.6(b).  Here, EΔ  is the energy difference between the folded state and the unfolded state; mβ  is the melting temperature.  In the simplest two-state model, the folding fraction should reach unity as the temperature approaches zero.  But, here, the maximal fraction was changed from 1.0 to an adjustable parameter P0. 
The enthalpy change HΔ  was  39.0 kJ∙mol–1 (ignoring the volume effect); and   the entropy change 113=Δ=Δ ES mβ J∙mol–1.  The figures were too small compared with the experimental values expHΔ = 70.2 kJ∙mol–1, 3.203exp =ΔS J∙mol–1 [63].  The computed folding temperature 344 K was, however, close to the experimental result 345 K [63].  Even from trajectory 3, which yielded the highest folding fraction, the fraction of folded states at 300 K was roughly 55%, which still differed significantly from the experimental value 91% [63].  For the other trajectories, the fractions were even smaller.  The difference was likely because of insufficient sampling and/or force field inaccuracy. 
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Figure 2.7. Trpzip2: the heat capacity, computed from four independent trajectories.  Bold 

solid line: empirical formula TCV
3102.4 ×≈ . 

Fig. 2.7 shows the heat capacity VC  versus temperature from Eq. (27).  The difference among trajectories was small, suggesting convergence.  We also observe that TCV
3102.4 ×≈ kJ∙mol–1∙K–1.  This highlights the strong electrostatic interaction that makes the system resemble an electrolyte [74]. 

2.4.2. Trp-cage 

The second application was a 20 amino acid alpha helical protein, tryptophan cage (trp-cage) [75].  The PDB code is 1L2Y, and the amino acid sequence is NLYIQWLKDGGPSSGRPPPS.  It was extensively studied by experiments [75, 76] and simulations, either in explicit [77-79] or implicit solvent [68, 80-84]. We again used AMBER99SB as the force field [72].  



 42 We simulated the system in a cubic 46×46×46 Å3 box, filled with 3161 water molecules and a Cl –  ion.  The grid spacing for Fourier transform was 1.19 Å, and the alpha parameter was 0.3123 Å–1.  The initial structure was an open chain, as shown in Fig. 2.8(a). 
We report three independent 1 μs simulation trajectories.  The temperature range for trajectory 1 was )41.0,24.0(∈β , or ∈T (293.6 K, 501.5 K).  In trajectories 2 and 3, we used )41.0,20.0(∈β , or ∈T (293.6 K, 601.9).  The bin size δβ  was 0.0005, 0.0005 and 0.0002, respectively.  For the integral identity, the temperature windows were 10%, 10% and 8% of β  for trajectories 1, 2, and 3, respectively.  In all cases, we used the alternative estimator introduced in 2.6.2. 

 
Figure 2.8. Trp-cage.  (a) Initial structure; (b) typical folded structure.  The Cα and all heavy 
atom RMSDs were 0.44 Å and 1.54 Å respectively.   Gray: native. 

All simulations independently reached the native state.  A typical folded structure in trajectory 1 is shown in Fig. 2.8(b).  The minimal alpha-carbon root 



 43 mean square deviations (Cα-RMSDs) from the three trajectories were 0.43Å, 0.48 Å, and 0.44 Å respectively.  The average Cα-RMSD for the native state was around 0.8 Å.  The lowest RMSDs for all heavy atoms were 1.34 Å, 1.47 Å and 1.46 Å, respectively. 

 
Figure 2.9. Trp-cage. (a) Cα-RMSD; (b) Cα radius of gyration; (c) temperature; (d) potential 
energy. 

The Cα-RMSD, radius of gyration, instantaneous temperature and potential energy along trajectory are shown in panels (a), (b), (c) and (d), respectively, of Fig. 
2.9, for the three independent simulations.  In each trajectory, there were two folding events reaching an atomic accuracy.  For the folding speed, it appears that simulations 2 and 3, with a higher Tmax = 600K, found the native structures sooner than simulation 1, whose Tmax = 500K.  But in simulation 1, the system was able to stay in the native states longer. 

Trajectory 1 yielded the largest fraction of the folded state at 300 K, 19%, which was much lower than experiment value 70% [75, 85].  By fitting the folding fraction, computed from the fraction of states with Cα-RMSD less than 2.2 Å, to the 



 44 two-state formula Eq. (32), the parameters were 50.00 =P , 1.21=ΔE kJ∙mol–1, and 
mβ = 0.367 kJ–1∙mol.  The enthalpy change is thus HΔ ≈ 21 kJ∙mol–1, which was relatively small compared with the experimental values expHΔ = 56.2 kJ∙mol–1 [85].  The computed folding temperature Tm = 328 K, was higher than the experimental result 315 K [85]. 

2.4.3.  Villin headpiece 

The last application was the villin headpiece, a 36 residue helical protein HP36.  The PDB ID is 1VII, and the amino acid sequence is 
MLSDEDFKAVFGMTRSAFANLPLWKQQNLKKEKGLF.  This system was the first protein partially folded in explicit solvent [36].  Recently, a high resolution crystal structure of slightly modified protein HP35, PDB ID 1YRF, was available [86], and its sequence is LSDEDFKAVFGMTRSAFANLPLWKQQHLKKEKGLF, in which the N-terminal Met is removed and the 28th residue Asn was replaced by His.  Both sequences were studied, by either simulations [41, 87-91] or experiments [92, 93].  However, the NMR structure of HP36 differed from the x-ray structure of HP35 by 1.62 Å in Cα-RMSD. 

We chose AMBER03 [94] as the force field, which was previously used to fold HP35 in implicit solvent [88].  We used a dodecahedron simulation box with edge length being 24.1 Å to accommodate the protein as well as 3343 water molecules, and two Cl –  ions.  The volume of the box was 53.3×53.3×37.6Å =1.069×105Å3.  The initial conformation was a fully-extended chain, see Fig. 2.10(a).  The grid spacing for Fourier transform was 1.19 Å, and the alpha parameter was 0.3123 Å–1. 
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Figure 2.10. Villin headpiece.  (a) Initial structure; (b) and (c) structures closest to the NMR 
(1VII ) and x-ray (1YRF) structures (gray), respectively. 



 46 We report two 1 μs simulation trajectories.  In trajectory 1, )41.0,18.0(∈β .  In trajectory 2, )41.0,20.0(∈β .  The bin size =δβ 0.0002.  The windows size βΔ2  for the integral identity was 8% of β . 
The alpha-carbon root mean square deviation (Cα-RMSD) was computed from the NMR and x-ray structures.  In both cases, the N-terminal Met and Leu as well as the C-terminal Phe were not included in the calculation [95].  We further exclude terminal flexibility, by computing Cα-RMSD for residues 9 to 32 of HP36 [36, 87], denoted as RMSDcore.  Note: even for Cα-RMSDcore, there was an 0.87 Å difference between the NMR and x-ray experimental structures. 

Table 2.2. Lowest RMSDs in folding trajectories of villin headpiece. 

Traj. 

ID 

RMSDcore  
(NMR) 

RMSD 

(NMR) 

RMSDcore  

(x-ray) 

RMSD  

(x-ray) 

t1 (ns) * 

1 0.72 1.32 0.30 0.42 310 

2 0.78 1.16 0.36 0.66 26 

* First time of reaching atomic accuracy of the native state 

The frame reaching the lowest Cα-RMSD differed slightly from that reaching the lowest heavy atom 
RMSD. We list the lowest Cα-RMSDs in the two simulations in Table 2.2.  The lowest Cα-RMSDcore from the NMR structure were 0.72 Å and 0.78 Å.  The figures were smaller than those from a previous study on HP36, in which the lowest RMSDcore  was around 1.5 Å [87].    In both cases, the best folded structures were more similar to the x-ray structure than to the NMR one, even though we simulated the latter. 

Table 2.2 also lists the first time of reaching the native structure.  In both cases, the time (310 ns for trajectory 1 and 26 ns for trajectory 2) was significantly shorter than those in a very recent study (where the folding occurs in 5 to 6 μs) [41]. 
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Figure 2.11. Villin headpiece.  Joint distributions of Cα-RMSD and Cα-RMSDcore (from residues 
9~32).  References: (a) NMR ; (b) x-ray. 

In Figs. 2.10(b) and 2.10(c), we show the superposition of typical folded structures to the NMR and x-ray structures, respectively, from simulation 1.  The 



 48 position of the N-terminal helix differed appreciably from the NMR native structure, whereas the difference was much smaller compared with the x-ray structure. 
Fig. 2.11(a) and (b) show the Cα-RMSDcore versus the Cα-RMSD for the NMR and x-ray reference structures, respectively.  The native state had larger RMSD from the NMR structure than from the x-ray one. 
The folding fraction, computed from the Cα-RMSD from the x-ray structure with a 3.0 Å cutoff, was fitted against Eq. (32).  The parameters were 21.00 =P , 

9.20=ΔE kJ∙mol–1, and mβ = 0.349 kJ–1∙mol. The enthalpy change HΔ = 20.9 kJ∙mol–1, and the folding temperature Tm = 345 K.  Although the latter agreed well with the experimental value 342 K, the former was too small: expHΔ = 113 kJ∙mol–1 [92]. 
2.5. Conclusions and Discussions 

A single-copy enhanced sampling method was successfully applied to folding three small proteins, trpzip2, trp-cage and villin headpiece, in explicit solvent.  We reversibly reached accurate native structures in an order of a microsecond. 
The computed folding enthalpy and folding temperature still showed discrepancies from experimental results.  This was likely due to insufficient sampling in limited simulation time or errors in the force field [96]. 
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2.6. Appendix 

2.6.1. Fokker-Planck equation 

We derive the Langevin equation Eq. (10) below.  First, if τ  satisfies 
 ξτττ

)(2)( BA
dt

d += , 
where ξ  is a white noise satisfying )()()( tttt ′−=′ δξξ , then the distribution of τ  satisfy the following Fokker-Planck equation [97] 
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Finally, since ττρββρ dd )()( = , and βττ dd 2= , ),)()( 2 xβτρτβρ (=∝ p , which proves that Eq. (17) is the stationary solution. 
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2.6.2. Alternative fitting-based estimator 

We used an alternative estimator for )(
~ βE  based on linear extrapolation.  Let us first generalize Eq. (23).  For 

 )()( βββ β −+= ikEf , (33) 
where 2/)( 1++= iii βββ  and k is a constant, we have 
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where the linear term in Eq. (33) vanishes after the integral in the second step.  Eq. (23) can be considered as a special case for 0=k . 
Eqs. (33) and (34) allow a properly extrapolation for the average energy 

βE  from β  to iβ  before applying the integral identity, or the temperature 
averaging.  If we assume that βE  is roughly linear function of β  in the window 

),( +− ββ ,  the slope k of βE vs. β  can be obtained by linear regression as  
 

++
ΔΔΔ= 2ββ Ek ,  (35) 

where the angular bracket 
+

  denotes an average over ),( +− ββ . 
Eq.  (34) reduces the magnitude of the second integral and thus makes the estimator somewhat more robust.  If the relation of βE  and β  is perfectly linear, 

kEf −∂∂=′ ββ β)(  vanishes everywhere; so the second integral is zero. 



 51 In practice, we used a )(βφ  parameterized with 21== −+ aa , and restrain 
the magnitude of the second integral within 

+
Δ 2E  to ensure stability. 

2.6.3. Overall temperature distribution 

We used βββ 1~)()( pw ≈  for the overall temperature distributions.  We justify the choice below.  Consider the canonical energy distributions from two close temperatures.  The peaks separation βΔΔ≈Δ 2EE  should be proportional to the 
distribution width 2EΔ .  So 2/12 −

Δ∝Δ Eβ .  But in the continuous ensemble, we 
have ββ Δ∝1)(p , so 
 ββ CEp ∝Δ∝ 2)( . 
where we have used CE =Δ

β
β 22 , with C being the heat capacity. 

For a Lennard-Jones like system, the heat capacity C is roughly a constant, accordingly the optimal )(βw  is proportional to β1 .  On the other hand, protein simulations involve strong electrostatic interaction; and β∝C , see Fig. 2.7.  Thus, the optimal )(βw  should be proportional to β1 .   Although we still used β1  for 
)(βw , which favored the high temperature end, the slightly suboptimal choice might be beneficial as it helped overcome broken ergodicity.
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Chapter 3 

Folding helical proteins 

3.1. Introduction 

The objective of this chapter is to present a modification of the tempering method introduced in the previous chapter for helical proteins.  The contents are largely identical to those in reference [98]. 
The modification basically adds a temperature-dependent dihedral bias [40, 99, 100] to the generalized ensemble in a way that preserves the room temperature properties [42].  We folded four helical proteins of 67 to 102 amino acid residues, along with their mutants, by the method. 
The four proteins in Protein Data Bank (PDB) are α3D (PDB ID: 2A3D, 73 residues) [101, 102], α3W (1LQ7, 67 residues) [103, 104], Fap1-NRα (2KUB, 81 residues) [105] and S-836 (2JUA, 102 residues) [106].  The first three are parallel 



 53 three-helix bundles, and the last is a parallel four-helix bundle.  Among the four, only Fap1-NRα  is a natural domain, the rest are artificially designed. 
3.2. Dihedral-biased tempering 

We sketch the methods below, see Appendix for details.  We start with the continuous tempering method described in the previous chapter.  The temperature 
T is a continuous variable in ),( HL TT  covering the room temperature 0T .  Here, LT  is slightly below 0T , while HT  is around 600K. 

We now introduce a bias potential V  through a temperature-dependent Hamiltonian, i.e., energy function, VTTHTH )1()( 00 −+= , where 0H  is the unbiased Hamiltonian.  Since 00 )( HTH = , unbiased room temperature 0T  properties can be recovered through a modification of the multiple histogram method [54-56]. 
The bias potential V specifically targets the two backbone dihedral angles, i.e., ϕ  (C-N-Cα-C) and ψ (N-Cα-C-N), as they critically influence protein dynamics [40, 99, 100].  It is parameterized in terms of three intrinsic dihedral modes, one of which corresponds to the helical conformation.  The magnitudes of the modes are adjustable in each trajectory.  The bias potential V applies uniformly to all except glycine and proline residues. 
The method was coded to GROMACS 4.0.7 [4].  We used a modified version [107] of AMBER03 [58, 94] as the force field (the modification slightly reduced helical content), TIP3P [59] as the water model, the particle-meshed Ewald (PME) 



 54 method [60] for long range electrostatic interaction, the velocity-rescaling method for thermostat [15];  SETTLE [61] and the parallel LINCS [62] as constraint algorithms for waters and proteins, respectively. 
3.3. Results 

3.3.1. Overview of folding of helical proteins 

Protein sequences, simulation conditions and parameters for the dihedral bias are listed in Tables 3.1, 3.2 and 3.5, respectively.  In Fig. 3.1, we show the structures with the lowest backbone root-mean-square deviations (RMSDs) 1.9 (α3D), 1.4 (α3W), 1.0 (Fap1-NRα), and 2.1 Å (S-836) from the respective experimentally-determined structures, which will be referred to as the “native” structures here.  By comparison, the control simulations using regular MD starting from the native conformations yielded higher average RMSDs, 3.2, 2.2, 1.5, and 3.2 Å, respectively, at 300K, suggesting that the native state were stably reached. 
Without using the experimental structures, cluster analyses (see 3.5.4) showed that the native conformations occupied the largest clusters in most trajectories for α3D, α3W, and S-836, see Table 3.5.  For Fap1-NRα, the native conformation was, however, found in the second largest cluster, possibly due to limited sampling and/or force field inaccuracy. 
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Table 3.1.  The amino acid sequences of α3D, α3W, Fap1-NRα, S-836 and the mutants. 

Protein Sequence 

α3D MGSWAEFKQRLAAIKTRLQALGGSEAELAAFEKEIAAFESELQAYKGKGNPEVEALRKEAAAIRDELQAYRHN 

α3DL
† MGSWEAFKQRLAAIKTRLQALGGSEAELAAFEKEIAAFESELQAYKGKGNPEVAELEKRAAAIEDRLQAYNHR 

 
† Residues different from α3D are underlined. 

α3W GSRVKALEEKVKALEEKVKALGGGGRIEELKKKWEELKKKIEELGGGGEVKKVEEEVKKLEEEIKKL 

LQLQ GSGLQQLQQQLQQLQQQLQQLGGGGGLQQLQQQLQQLQQQLQQLGGGGGLQQLQQQLQQLQQQLQQL 

Fap1-NRα ENLDKMISEAEVLNDMAARKLITLDAEQQLELMKSLVATQSQLEATKNLIGDPNATVADLQIAYTTLGNNTQALGN
ELIKL 

S-836 MYGKLNDLLEDLQEVLKHVNQHWQGGQKNMNKVDHHLQNVIEDIHDFMQGGGSGGKLQEMMKEFQQVLDEIKQQLQ
GGDNSLHNVHENIKEIFHHLEELVHR For each protein, we show the time series of RMSD for a typical trajectory in Fig. 3.2.  All simulations started from fully-extended conformations with large RMSDs.  Folding and unfolding events, as indicated by the rises and falls of RMSD, typically occurred on a time scale of 0.5 to 2 μs.  We have accumulated around 10 folding events in each of α3D, α3W, and S-836, although longer and/or more simulations may be needed to further improve statistics. 

Table 3.2.  Simulation conditions for α3D, α3W, Fap1-NRα and S-836 and the mutants. 

Protein PDB ID Nres. charge§ box* Nwater min
bbRMSD † K300

bbRMSD ‡  K300t # 

α3D 2A3D 73 –1 68 6989 1.9  3.2 ± 0.2 410 

α3DL  73 –1 68 6971 n/a n/a 423 

α3W 1LQ7 67 +2 65 6055 1.4 2.2 ± 0.3 436 

LQLQ  67 0 65 6096 n/a n/a n/a 

Fap1-NRα 2KUB 81 –6 70 7515 1.0 1.5 ± 0.2 500 

S-836 2JUA 102 +2 80 11440 2.1 3.1 ± 0.4 400 
§ The total charge of the protein; sodium (Na+) and chloride (Cl–) ions were added to neutralize the respective system, 
e.g., two chloride ions were added to α3W. 
* The box size represented by the side length of the bottom square of the dodecahedron in Å. 
† The minimal backbone root mean square deviation (RMSD) in Å from the native structure.  Since the experimental 
structures of the designed proteins α3DL and LQLQ are unknown, we put “n/a” there. 
‡ The average backbone RMSD in the native simulation performed at 300K using regular MD. 
# The simulation time in nanoseconds using regular MD from the native conformation.  No unfolding was observed in 
any of the studied proteins. 



 56 Since the simulation method used a variable temperature, only a fraction of trajectory frames were pertinent to the room temperature.  We only report results after reweighted to 300K using the multiple histogram method [54-56], see 3.5.1.1. 

 
Figure 3.1. Best folded structures (blue) of four proteins. (a) α3D, (b) α3W, (c) Fap1-NRα, (d) S-
836 compared with the respective NMR structures (red). 

 
Figure 3.2. The backbone root-mean-square deviation (RMSD) versus time.  (a) α3D, (b) α3W, 
(c) Fap1-NRα, (d) S-836. 
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3.3.2. Geometry of parallel helix bundles 

Helical proteins present different ways of packing helices.  We study two features in packing helices by using the three proteins α3D, α3W, S-836 as examples (we omit Fap1-NRα as it is geometrically similar to α3W, but was less well folded). 
The first feature is the packing “chirality.”  If a parallel three-helix bundle protein is viewed as three connected rods, after the first two helices are aligned, the third one can be packed against either side of the plane extended by the former two.  We call the bundle right-handed, if the first helix, when viewed along the middle helix from N- to C-terminus, can be rotated clockwise to overlap with the third one by an angle less than 180°; or left-handed otherwise.  A three-helix bundle of either chirality exists, e.g., α3D is right-handed, while α3W, Fap1-NRα are left-handed. 
Another feature is the helix orientation: although two successive helices are often aligned anti-parallel, a parallel alignment by a long loop is also possible. 
From the folding trajectories, we found several compact but less stable nonnative conformations, which differed from the native one by the packing chirality or helix orientation.  We wish to see what determines the natural geometry. 

3.3.3. α3D 

We start with the first three-helix bundle α3D [101, 102].  The three helices are labeled as A, B and C from N- to C-terminus.  In Fig. 3.3(a), we show the distributions of the chiral distance D (see 3.5.3.2, positive for a right-handed bundle, negative a left-handed one) from three independent folding trajectories, as well as a 



 58 300K regular MD trajectory starting from the native structure.  The distributions were dominated by a right-handed (native) peak around D = 9~10 Å, coinciding with that at D = 9.7 Å from the native simulation. 
The dominance of the right-handed conformation can be explained by the inter-helical charge interaction [101].  In the protein, residues in all three helices follow the heptad repeat a-b-c-d-e-f-g¸ see the left inset of Fig. 3.3(a), in which the a and d residues are hydrophobic, while the e and g ones charged or polar.  The inter-helix interactions among the e and g residues help secure the skeleton. 
For α3D, the e and g residues on helix A are all positively charged, while those on helix B are negatively charged; on helix C, the e residues are positively charged but the g ones are negatively charged.  In the center diagram of Fig. 3.3(a), we show schematically this charge interaction favors the right-handed conformation, but not the left-handed one. 
We further show that the packing chirality can be reversed by a mutation, in which, we flipped the charges on the e, g residues of helix C through two local swaps: R57E-E59R, R64E-E66R (R57E means mutating Arg57 to Glu57).  We also made three local swaps A5E-E6A, E54A-A55E, R71N-N73R to help stabilizing the left-handed conformation.  The mutant is referred to as α3DL.  A sequence comparison with α3D is shown in the middle of Fig. 3.3. 
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Figure 3.3. Packing-chirality D distributions for (a) α3D and (b) a mutant α3DL.   For α3D, only 
the right-handed conformation exists, the left-handed one is hypothetical.  The opposite is 
true for α3DL.  Inset of panel (a): helix heptad.  Crosses and dots in circles mean pointing into 
and out of the paper, respectively. 



 60 We simulated the mutant α3DL in three trajectories.  As shown in Fig. 3.3(b), the left-handed conformation became dominant with a signature peak at D = − 9.7Å, while the right-handed one almost vanished.  Cluster analyses confirmed that the left-handed conformation occupied the largest cluster in 300K. 
Table 3.3. Geometry measures of various conformations of three-helical bundles.   

 t (ns) NC§ DABC
* dAB

† dAC
† dBC

† θAB
‡ θAC

‡
  θBC

‡
  

α3D, native 410 49±2 9.6±0.4 9.8±0.3 9.7±0.4 9.8 ±0.6 168±5 11±4 167±4 

α3DL, native 423 50±2 −9.6±0.5 9.6±0.4 9.8±0.3 9.6±0.5 174±3 8±4 168±4 

α3W, native 436 49±2 −9.0±0.4 9.9±0.3 9.6±0.3 9.6±0.4 163±4 20±5 165±5 

α3W, conf. 2 240 40±3 9.6±0.6 9.6±0.5 9.3±0.5 10.0±0.4 152±10 20±8 168±5 

α3W, conf. 3 236 32±2 9.7±1.1 12.0±0.4 8.5±0.3 15.0±0.4 72±7 168±6 108±9 

LQLQ, conf. 1 205 51±2 −9.4±0.3 9.6±0.2 9.8±0.3 9.4±0.3 165±4 14±3 172±4 

LQLQ, conf. 2 216 51±2 9.8±0.4 9.2±0.3 10.2±0.9 9.6±0.8 171±4 13±5 165±5 

LQLQ, conf. 3 197 47±2 9.1±0.5 10.6±0.6 9.2±0.4 10.2±0.5 29±8 160±4 165±6 

§ The total number of contacting hydrophobic residues between different helices with a 12Å cutoff distance. 
* The chiral distance in Å. 
† The inter-helical distances in Å between helices A-B, A-C, and B-C.  
‡ The inter-helical angles in degrees between helices A-B, A-C, and B-C. 

Residues that define helices A, B and C: for α3D and α3L, A: 4-21, B: 28-45, C: 53-70; α3W, LQLQ , A: 4-21, B: 27-44, C: 50-67.  
Numbers followed ± are standard deviations. We investigated the local stability of the mutant α3DL in comparison with that of the original α3D.  The cluster center from trajectory 1 was extracted and energy minimized as the putative native structure of α3DL.  We then ran a separate 300K regular MD simulation starting from here for local properties, the local chiral distribution was shown as the shaded peak in Fig. 3.3(b).  The average RMSD was 2.0 Å, which was comparable to that of α3D, 2.1 Å, suggesting similar structural stability.  Further, as shown in Table 3.3, the hydrophobic contact number, inter-helical distances and angles were similar to the native conformation of α3D.  Thus, the mutations might not affect the stability of the hydrophobic core significantly, and the charge interaction should be responsible for the chirality.  



 61 The comparison of α3D and α3DL also suggested that the stability of the native right-handed conformation of α3D was limited by the energy of a few favorable pairs of charged residues.  Other energy contributions, such as hydrophobic interactions, were unlikely to inhibit the chirality flip. 
3.3.4. α3W 

We now turn to the second protein α3W (PDB ID: 1LQ7) [103, 104], which was previously simulated in implicit solvent [108-110].  Our trajectories, however, revealed in addition to the native conformation, two compact, geometrically different, albeit less populated, conformations. 
Like α3D, α3W is also a parallel bundle of three helices, again labeled as A, B and C from N- to C-terminus.  Its strategy to secure the chirality is similar to that of 

α3D [103]: the heptad pattern is also followed in all three helices; the e and g residues on helix B are positively charged; those on helix C are negatively charged; the e and g residues on helix A are negatively and positively charged, respectively.  As shown in the top inset of Fig. 3.4(a), the arrangement now favors the left-handed conformation. 
The chiral distribution computed from the folding trajectories indeed had a prominent left-handed (D < 0) peak as well as a suppressed right-handed (D > 0) one, as seen in Fig. 3.4(a).  The right-handed peak in fact covered two different conformations, both of which had corresponding clusters under cluster analyses, cluster centers are shown in Fig. 3.4(a).  We ran respective 300K MD simulations 



 62 starting from the two nonnative conformations as well as the native one.  The chiral distributions of the three conformations are shown as shaded peaks in Fig. 3.4(a). 

 
Figure 3.4.  Packing-chirality D distributions for (a) α3W and (b) LQLQ.  The three helices are 
colored by blue, yellow and red, from N- to C-terminus.  The shaded peaks (right scales) were 
obtained from regular MD started from the representative structures. 

The first nonnative conformation (conf. 2), had the opposite chirality to the native one.  The conformation had similar inter-helical distances and angles as the 



 63 native one, but a lowered contact number, from 49 (native) to 40, among hydrophobic residues, as shown in Table 3.3.  The second nonnative conformation (conf. 3) differed from both the native one and conf. 2 by a reversely-oriented helix C, see Fig. 3.4(a). 
We further demonstrate that if all charged residues on the helices were turned to polar or neutral ones, the protein can indeed switch among conformations of different geometries.  We simulated a highly symmetric three-helix bundle, named LQLQ, in which all a, d residues were Leu’s, and all b, c, e, f, g ones Gln’s, in two independent trajectories.  Cluster analyses revealed three clusters, referred to as conf. 1, 2, 3 below, as shown in Fig. 3.4(b). 
Due to the symmetric sequence, conf. 1 and 2 (left- and right-handed, respectively) of LQLQ were geometrically similar, except the opposite chirality, as shown in Table 3.3.  They represented the two most populated clusters with similar populations.  Conf. 3 (a smaller cluster) was similar to, but more compact than the conf. 3 in α3W, with the middle helix B being almost parallel, instead of orthogonal, to the other two helices. 

3.3.5. S-836 

The last protein is the four-helix bundle S-836 (PDB ID: 2JUA) [106].  The four helices are labeled as A, B, C and D from N- to C-terminus.  In five trajectories, the total simulation time was 17 μs, the first four reached the native conformation, while the last sampled two different nonnative ones. 



 64 To describe the geometry of the protein, we first extend the packing chirality for a three-helix bundle to a four-helix one.  We view the four helices as two successive three-helix groups, A-B-C and B-C-D, each of which is thus equivalent to a three-helix bundle and has its own chirality.  We partition the conformation space to four quadrants according to the signs of the two chiral distances ABCD  and BCDD , denoted as LR ( 0<ABCD , 0>BCDD ), RR ( 0>ABCD , 0>BCDD ), RL ( 0>ABCD , 
0<BCDD ) and LL ( 0<ABCD , 0<BCDD ).  A quadrant is attached to either the native (LR) conformation, or some hypothetic one that differs from the native one only by chirality, e.g., the RR conformation differs from the native one by the chirality of the A-B-C helix group. 
We computed the joint distribution of ABCD  and BCDD  after combining data from all trajectories.  As shown in Fig. 3.5, the distribution revealed four major clusters.  The four corresponding conformations were the native one (LR), conf. 2 (RR) and 3 (RL) and conf. 4 which differed from conf. 3 by a reversely-oriented helix A.   Although the competing conformations existed, the native one still occupied the most populated cluster in the first four folding trajectories, and the population ratios to the first runner-up clusters were 2.1, 3.8, 1.1 and 1.9, respectively. 
Except conf. 4 (which is not a chiral image of the native), the other three follow the order LR (native) > RR and RL (conf. 2 and 3) > LL (missing) by their populations.  We attempt to explain the order by Fig. 3.6.  LL was missing, possibly because of the inescapable repulsion between His83, His86, Lys90, His94 on helix D and Lys32, His36 on helix B (all His’s were positively charged).  Helices A and D in 



 65 the RL conformation encountered a similar but less severe problem, causing a kink in helix D to avoid direct repulsion between His86 and Lys17.  Unfavorable interactions between helices B and D in RR could bend or dislocate helix D.  LR (native) appeared to have the best pairing pattern, although unfavorable contacts existed, e.g., Glu91 and Asp11. 

  
Figure 3.5. The logarithm of the packing-chirality distribution ),(log BCDABC DDρ  of S-386. The 

colors of the four helices are blue, green, orange, and red, sequentially, from N- to C-terminus 
in representative structures. 
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Figure 3.6. Packing patterns of the chiral images of S-836.  LR, RR, RL and LL are classified by 
the signs of DABC and DBCD.  Only the first three were observed.  Interactions of charged/polar 
residues between two helices are shown as two aligned arms with residues on the interface.  
Magenta bars: unfavorable interactions.  Helix sliding are indicated by blue arrows. 

In Nature, four-helix bundles adopting the RR, RL, and LL conformations do exist.  In fact, the majority, e.g., cytochrome c´ (PDB ID: 3ZTM) [111] and cytochrome b562 (PDB ID: 1QPU) [112], adopt the RL conformation, the opposite of the native LR conformation of S-836.  Two examples of the RR and LL conformations are the C-



 67 terminal domain of KaiA (PDB ID: 1Q6A) [113] and domain I of the transcription factor TFIIS (PDB ID: 1EO0) [114], respectively. 
3.4. Conclusions 

We have shown that the single-trajectory-based tempering with a dihedral bias was useful in studying helical proteins in explicit solvent.  We folded, within a few microseconds, four helical proteins, with the native conformation usually found in the largest cluster in simulation trajectories, as well as their mutants. 
Our trajectories showed that a parallel helix bundle, especially one with a symmetric sequence, often has competing conformations that differ from the native one only by packing chirality and/or helix orientation.  Similarly, the existence of competing conformations was previously reported for the Rop-dimer and its mutants [115-117].  While the ability to identify the native geometry is essential in studying helical proteins, the competing conformations can help to design new proteins, either as targets or as pitfalls to avoid [118]. 
Despite continuous improvement, the current force field might have yet reached perfection.  As suggested by Best and Hummer [107], the current AMBER force field still underestimates both the enthalpy of hydrogen bonds (rendering helical conformations less energetically favorable) and the entropy of unfolded states.  Our sampling strategy, which used a helical bias and a high temperature motion, could hopefully alleviate both problems. 
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3.5. Appendix 

3.5.1. Dihedral-biased tempering 

In this section, we describe a dihedral-biased tempering technique that combines the virtues of a tempering method introduced in Chapter 2 and a dihedral bias [40, 99, 100, 119].  The dihedral bias improves sampling helical conformations and accelerates the dynamics in the dihedral space.  To preserve room temperature properties, the dihedral bias is added only on higher temperatures. 
3.5.1.1. Tempering with a bias potential 

On top of the tempering method, a bias potential )(xV , as a function of configuration x , can be added to the generalized ensemble without disturbing room temperature properties.  This is achieved via a temperature-dependent Hamiltonian 
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where  −= xx dHZ )],(exp[)( βββ  is the configuration space partition function.  A regular tempering is recovered if 0)( =xV . 



 69 No matter what the bias potential is, we have )(),( 00 xx HH =β .  The biased Hamiltonian also preserves a linear relation between ),( xββH  and β , i.e., 
 ββββ )]()([)(),( 00 xxxx VHVH −+= . 

Thus room temperature properties can be readily recovered via the multiple histogram method [54-56].  The only modification is to substitute )()(0 xx VH −  for 
)(0 xH  in the method [also for E in Eq. (10)], for 

 ββρβ ∂∂−=− ),(log)()(0 xxx VH . 
3.5.1.2. Dihedral bias 

In our case, the bias potential )(xV  applies only to the two backbone dihedrals of amino acid residues in a protein. 
For each residue i, the potential handles the two dihedrals iϕ  (C-N-Cα-C) and 

iψ (N-Cα-C-N) separately by two functions )( iV ϕϕ  and )( iV ψψ .  Thus 
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where ia  denotes the one-letter amino acid name of residue i, )(xiϕ  and )(xiψ  are the two backbone dihedrals as functions of molecular coordinates x .  After excluding all glycine (G) and proline (P) residues, the two functions ϕV  and ψV  apply to all residues without the distinction of residue type or index. 



 70 The problem now is to find )(ϕϕV  and )(ψψV  that properly bias towards the helical conformation.  Since the “helical conformation” is hard to define precisely (especially at a high temperature), we directly learn it from the force field. 
First, we obtain the dihedral modes from decomposing the potentials of mean force (PMFs) along the two dihedrals.  In this way, the modes are intrinsic to the force field and are usually smooth functions suitable for MD. 
Second, we allow both )(ϕϕV  and )(ψψV  to be linear combinations of a few dihedral modes, each of which roughly corresponds to a basin in the dihedral space towards a typical secondary structure.  The coefficients of combination are adjustable, e.g., a larger coefficient of the helical mode increases the bias towards the helical conformation. 
The PMFs were obtained by a special simulation on a helical protein α3D,PDB ID: 2A3D, also the first folding system [102], at 2.0=Hβ  mol·kJ–1 ( 600≈HT  K) for 50ns.  The special simulation started from a fully-extended chain (hence it did not use the native structure), and was independent of folding simulations.  We achieved flat distributions along both dihedrals by adaptively offsetting the projection of the force along each dihedral by its runtime-averaged value, or the mean force.  After the simulation, the PMFs for ϕ  and ψ  were obtained by integrating the respective mean forces.  In our implementation, the histogram along a dihedral was not completely flat due to a small missing force component from constraints; the corresponding correction was thus applied based on the histogram.  The above approach allowed a comprehensive sampling of the entire dihedral space, covering 



 71 otherwise rarely-visited barrier regions.  But since we only sampled extended conformations, the PMFs obtained were expected to deviate from the actual ones, which were dominated by the highly helical folded state.  The deviations are, however, unimportant, as the PMFs served only as a rough guide. 
We then decompose the PMF, using ϕ  as example, to three modes as 
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where )(0 ϕϕV  is the intrinsic PMF along ϕ ; )(ϕϕV  is its best approximation by  a superposition of modes; kM  is the amplitude of mode k ; )(ϕku  specifies mode k as a function of ϕ .  Note that before the decomposition, we shift the PMF such that 

)(0 ϕϕV  is always negative, and all )(xuk ’s are positive definite. 
Each )(ϕku  is a bell-shaped function, asymmetric for cϕϕ >  and cϕϕ < ( cϕ  being the center), and with up to 6th order moments on the exponent: 
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 72 The resulting parameters are listed in Table 3.4.  As shown in Fig. 3.7, the decompositions authentically recovered the original PMFs: the average differences 
ϕδV  and ψδV  were 0.048 kJ mol–1 and 0.030 kJ mol–1 respectively, representing about 0.2% relative error compared with the magnitudes of intrinsic PMFs. 

 
Figure 3.7. The potential of mean force and decomposed modes for (a) ϕ  and (b)ψ .  The 
maxima are shift to zero. 

For the dihedral ϕ , the three decomposed modes roughly corresponded to α-helix, β-strand, and left-handed helix conformations.  The first two modes, however, shared a large overlap in the dihedral space due to the broadening at the high 



 73 temperature 600≈HT K.  For the dihedral ψ , the first two modes corresponded to 
α-helix, β-strand conformations, with the last one lying in the transition region. 

For convenience, we used the above PMFs and decomposed dihedral modes in simulations of all proteins, although ideally one could repeat the above procedure for every target protein. 
Table 3.4.  Parameters of the dihedral modes (A, B, and C) for ϕ  and ψ . 

 M (kJ mol–1) 
cϕ  or cψ  

(rad) 

−
2a  

−
4a  

−
6a  

+
2a  

+
4a  

+
6a  

ϕ , A 53.1498 –1.35644 1.13993 0 0.35771 0.82287 0 0 

ϕ , B 35.6254 –2.88178 1.62469 0 0.43748 1.90438 0.28168 0.23115 

ϕ , C 31.1770 1.14492 2.38089 0.38803 0 2.07291 0 1.78939 

ψ , A 28.0089 –0.60321 1.29464 0 0.02106 1.3024 0 0.08051 

ψ , B 30.3457 2.65584 1.55338 0.13681 0.37975 1.47698 0 0.20224 

ψ , C 14.6367 0.93443 0 0.25603 0.01605 0.45829 0.22928 0.06936 

3.5.1.3. Adjusting dihedral modes 

With the dihedral modes in hand, the bias potential, using )(ϕϕV  as an example, is constructed as a superposition of modes.  In the first step, we construct a rough )(
~ ϕϕV  via three parameters Ap , Bp  and Cp , provided by the user, as 
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Eq. (S3) means that if the expected number of visits to mode k (k = A, B, C) is to be multiplied by kp  times, its magnitude in the bias potential is },logmin{ kkB MpTk− .  



 74 The min function annihilates the mode in case kp  is so small that kB pTk log−  exceeds the intrinsic magnitude kM . 
To promote mode k, we can either increase kp  or reduce kp ′ ’s of other kk ≠′  

modes.  The latter produces a softer potential surface.  )(
~ ϕϕV  vanishes if all kp ’s are 1.0, and the method is reduced to a regular tempering.  On the other hand, if all kp ’s 

are 0.0, )(
~ ϕϕV  annihilates the intrinsic PMF )(ϕϕV  and recovers a flat distribution along either dihedral.  A set of small kp ’s reduces magnitude of all modes and thus encourages transitions among them.  The populations of modes in a production simulation would disagree with the kp ’s  given by the user (even if the simulation were ran only at HT ) because the intrinsic PMFs were obtained from an extended state simulation, and that we ignored the correlations among residues. 

The second (optional) step is to polish )(
~ ϕϕV  to reduce the free energy barriers via the last parameter minp  ( 0.1min ≥p ).  We first construct an expected distribution )](

~
)(exp[)( 0 ϕβϕβϕρ ϕϕϕ VV −−= , then trim it such that the expected 

distribution )]}(min[),(max{)( min
* ϕρϕρϕρ ϕϕϕ p= .  In this way, the highest free 

energy barrier is lowered by βminlog p .  The step does nothing if 0.1min =p . 
Parameters Ap , Bp , Cp  and minp  of all trajectories are listed in Table 3.5. 
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Table 3.5.  Trajectory parameters of α3D, α3W, Fap1-NRα and S-836 and the mutants. 

Prot. ID t * φ: pA, pB, pC, pmin
† ψ: pA, pB, pC, pmin

‡ 
PMF,,, xrrr cvs Δ  # 

RMSDmin / 
RMSDcls. 

§ 

α3D 0 1.7 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 7, 8, 10, 1.31 6.27/na 

1 1.0 1.0, 0.1, 0.3, 3.0 9.0, 0.4, 1.0, 3.0 7, 8, 10, 1.31 1.94/2.51 

2 1.3 1.0, 0.2, 0.3, 3.0 9.0, 0.4, 1.0, 3.0 7, 8, 10, 1.31 1.87/2.61 

3 1.2 1.0, 0.2, 0.5, 3.0 9.0, 0.5, 1.0, 3.0 7, 8, 10, 1.31 1.90/2.51 

4 1.3 0.15, 0.05, 0.1, 3.0 1.5, 0.5, 0.5, 3.0 7, 8, 10, 1.31 2.85/4.62, 99% 

5 2.0 0.25, 0.05, 0.1, 1.0 3.0, 0.2, 0.2, 1.0 8, 9, 11, 1.42 1.97/2.71 

6 1.0 1.0, 0.3, 0.3, 1.0 1.0, 0.3, 0.3, 1.0 8, 9, 11, 1.42 2.12/2.71 

7 2.5 0.1, 0.05,0.1, 1.0 1.0, 0.3, 0.3, 1.0 8, 9, 11, 1.31 2.03/2.61 

α3DL 1 2.5 1.0, 0.3, 0.3, 1.0 1.0, 0.3, 0.3, 1.0 8, 9, 11, 1.31 na 

2 2.5 1.0, 0.5, 1.0, 1.0 1.0, 0.3, 0.5, 1.0 8, 9, 11, 1.31 na 

3 2.5 0.5, 0.1, 0.3, 1.0 2.0, 0.3, 0.5, 1.0 8, 9, 11, 1.31 na 

α3W 0 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 7, 8, 10, 1.33 7.18/na 

1 1.6 0.15, 0.05, 0.1, 1.0 1.5, 0.3, 0.3, 1.0 7, 8, 10, 1.33 1.47/2.21 

2 1.8 0.25, 0.05, 0.1, 1.0 2.0, 0.2, 0.2, 1.0 7, 8, 10, 1.33 1.39/1.71 

3 2.5 0.5, 0.1, 0.3, 1.0 5.0, 0.3, 0.5, 1.0 7, 8, 10, 1.33 1.38/2.21 

4 1.8 0.2, 0.05, 0.1, 1.0 2.0, 0.3, 0.3, 1.0 7, 8, 10, 1.33 1.40/2.41 

5 1.0 1.0, 0.1, 0.3, 3.0 9.0, 0.4, 1.0, 3.0 7, 8, 10, 1.33 1.83/3.62, 93% 

6 1.0 1.0, 0.1, 0.3, 3.0 10, 0.5, 0.3, 3.0 7, 8, 10, 1.33 1.36/3.21 

LQLQ 1 1.7 1.0, 0.3, 0.3, 1.0 1.0, 0.3, 0.3, 1.0 8, 9, 11, 1.33 na 

2 1.5 0.5, 0.1, 0.3, 1.0 5.0, 0.3, 0.5, 1.0 8, 9, 11, 1.33 na 

Fap1-NRα 1 2.4 0.25, 0.05, 0.1, 1.0 3.0, 0.3, 0.3, 0.0 8, 9, 11, 1.46 1.00/1.42,45% 

2 2.5 0.2, 0.05, 0.1, 1.0 2.0, 0.25, 0.5, 1.0 8, 9, 11, 1.46 3.11/na 

S-836 1 3.1 0.2, 0.05, 0.1, 1.0 2.0, 0.3, 0.3, 1.0 8, 10, 12, 1.45 2.09/3.81 

2 3.3 0.2, 0.05, 0.1, 1.0 2.0, 0.4, 0.0, 1.0 8, 10, 12, 1.45 2.21/3.81 

3 4.2 0.25, 0.05, 0.1, 1.0 2.5, 0.3, 0.1, 1.0 7, 8, 10, 1.25 2.30/4.31 

4 3.3 0.5, 0.1, 0.3, 1.0 5.0, 0.3, 0.5, 1.0 8, 9, 11, 1.43 2.13/2.51 

5 3.1 0.25, 0.05, 0.1, 1.0 3.0, 0.15, 0.3, 1.0 8, 9, 11, 1.43 7.31/na 

The β  range was )42.0,2.0( .  The bin size 0001.0=δβ , except for S-836 in which 00005.0=δβ .  The thermostat 

temperature T0 = 480K.  For the integral identity, ),( ββββ Δ+Δ−  with 03.0=Δ ββ , except for S-836 in which 02.0=Δ ββ .  The 

time step kTtΔ  for Eq. (10) was 5102 −×  (except for S-836, in which 510−=Δ kTt ).  For the adaptive averaging, 0.1=γC . 

* The simulation time in μs. 
†, ‡ The parameters of the dihedral modes. 

# 
sr  and vr : the switching and cutoff radii for vdW interactions; cr  and PMFxΔ : the real-space cutoff and Fourier grid spacing for PME. 

§ The minimal and cluster-center backbone root mean square deviations (RMSDs) in Å from the native structure; the latter was measured 
from the cluster containing the native conformation (RMSD < 5 Å, na if no such cluster exists); the subscript was its rank in size, and if not 
1, then followed by the population ratio to the largest cluster, e.g., 2.51 means the native cluster was the largest cluster and its RMSD was 2.5 
Å, 1.42,45% means the native cluster was in the second largest, and its population ratio to the largest cluster was 45%. na: Not available. 
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3.5.2. Performance of the dihedral-biased tempering 

3.5.2.1. Test case 

We shall use the first protein α3D [102] as a test case of the dihedral-biased tempering method.  Starting from a fully-extended chain, we simulated the protein using three different methods: a room-temperature (300K) regular MD, a regular unbiased tempering, and a dihedral-biased tempering (this method).  As a control, we also ran a regular 300K MD starting from the native structure. 
For the dihedral-biased tempering, we ran multiple independent trajectories with different parameters for the bias potential (see Table 3.5). 

3.5.2.2. Convergence of tempering 

We first examine the convergence of the tempering part.  We use trajectory 7 (Table 3.5) as an example.  In Fig. 3.8(a) and 3.8(b), we show the time series for the instantaneous potential energy and temperature, both of which underwent many round-trips in their respective range. 
The convergence can be checked from the histogram )(βH , which should be proportional to the intended temperature density )(βw .  In Fig. 3.8(c), we show that the ratio )()( ββ wH  indeed reached a constant. 
We show in Fig. 3.8(d) 111 reconstructed potential energy histograms (from 

20.0=β  to 42.0  with 002.0=Δβ ).  A parallel tempering simulation would need 



 77 about 50 to 100 copies running in parallel to cover the same range with decent energy overlap, and the computational cost would be much higher. 

 
Figure 3.8.  Folding trajectory 7 of α3D. (a) Instantaneous potential energy,(b) temperature 
versus time, (c) )()( ββ wH , (d) energy histograms. 

3.5.2.3. Folding progress (RMSD) 

We monitored the progress of the backbone root-mean-square deviation (RMSD) from the experimental (NMR) structure. 
As shown in Fig. 3.9(a), a typical RMSD was 3.2 Å in the 300K native simulation.  In the regular MD starting from a fully-extended conformation, a large spiral with RMSD ≈ 19 Å, the RMSD lingered around 25~32 Å. 
In the unbiased tempering, the RMSD had a larger fluctuation from 6 Å to 25 Å, but a complete folding was not achieved in 1.7μs. 



 78 In trajectories using the dihedral biased tempering, the RMSD readily dropped below 3.2 Å, indicating successful folding.  Additionally, large-scale unfolding/refolding events occurred in both trajectories 2 and 7. 
In sum, only the biased tempering method folded the protein quickly. 

 
Figure 3.9.  For α3D: (a) backbone RMSD versus time for a regular constant-temperature 
molecular dynamics (CTMD) starting from a fully-extended chain, CTMD from the native, 
unbiased (TP) and dihedral-biased (this method, trajectories 2, 5 and 7) tempering from the 
extended chain;  (b) the fraction of correct backbone dihedrals versus time;  (c) and (d): 
residue-averaged backbone dihedral distributions of ϕ  (C-N-Cα-C) and ψ  (N-Cα-C-N) 
respectively (reweighted to 300K); (e) and (f): the corresponding distributions at 580K.  We 
only included the folded state with RMSD < 6Å in (c)-(f) so that they represent only local 
dihedral equilibration, but not the true free energy landscape. 



 79 
3.5.2.4. Folding progress (backbone dihedrals) 

Similar to the previous case, we monitor the progress in the dihedral space by computing the fraction of correct backbone dihedrals (FCBD).  We first define four backbone dihedrals conformations: 
I: 0<ϕ  and )80,100[ °°−∈ψ  
II: 0<ϕ  and )180,80[)100,180[ °°∪°−°−∈ψ  
III: 0>ϕ  and )100,80[ °°−∈ψ  
IV: 0>ϕ  and )180,100[)80,180[ °°∪°−°−∈ψ  
For each residue, a dihedral conformation was considered correct if it fell into the category as the counterpart in the native structure.  FCBD was then computed as the fraction of residues with the correct dihedral conformations (excluding the two terminal residues). 
As shown in Fig. 3.9(b), the 300K native simulation yielded a FCBD about 80 to 90%, but not 100% possibly due to the difference at loop regions.  The 300K regular MD from a fully-extended chain yielded a low FCBD about 15 to 35%. The regular (unbiased) tempering allowed a larger fluctuation that spanned from 20% to 60%, but failed to reach the native level. 
In the dihedral biased tempering, a large FCBD was reached after the initial 1~10 ns, long before a complete folding occurred.  Thus the bias helped the protein to quickly build up the helical content, while the folding process was still limited by the formation of correct tertiary structure. 
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3.5.2.5. Convergence in the dihedral space 

We examined the convergence in the dihedral space, i.e., if trajectories with different dihedral bias potentials reached the same distributions at 0T . 
We computed the residue-averaged dihedral distributions at K3000 =T and 580K, using the multiple histogram method [54-56].  Since the Hamiltonian was unbiased only at T0, the dihedral distributions with different biases should agree with each other at 300K, but not at 580K. 
There was, however, a practical difficulty for a direct comparison.  Although different trajectories shared the same native conformation, they sampled different nonnative ones, with each having slightly different dihedral distributions; and the convergence of sampling nonnative conformations was not achieved in our simulations.  But here we only concern the equilibration in the dihedral space.  To avoid this distraction, we only included frames in the folded states by imposing the condition RMSD < 6Å, and filtered out nonnative conformations.  We emphasize that the filtered distributions can only be used for this test, and they do not represent the actual free energy landscape. 
As shown in Fig. 3.9(c)-(f), the dihedral distributions at 300 K agreed, but those at 580 K differed. 

3.5.3. Geometric measures 

We specify mathematical definition of 1) the chiral distance of helix-packing, 2) distance between two helices and 3) angle of two helices. 
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3.5.3.1. Representing rod of a helix  

We needed to model a helix by a representative rod.  We first compute the eigenvalues of the moments of inertia }{ αβI=I  from all alpha-carbon (Cα) atoms on 
the helix, where  −−=

i cici rrrrI ))(( ββαααβ  with zyx ,,, =βα ; },,{ iziyixi rrr=r  
and },,{ czcycxc rrr=r  are the coordinates of the ith Cα atom on the helix and the center of mass, respectively.  Geometrically, the eigenvectors and eigenvalues of the matrix I  correspond to the directions and lengths of the principle axes of the representative ellipsoid.  For the representative rod, we choose the eigenvector 

1v ( 1|| 1 =v ) with the largest eigenvalue 1λ  as the direction, and construct the two ends ±b   by extending from the center of mass cr  oppositely along the direction as 
113 vrb λ±=± c .  It is easy to see that if atoms are densely and uniformly distributed on a thin rod of length l along x, then 122lI xx = , and all other αβI ’s are 

zeros.  Since )32(1 l=λ , 1)2( vr lc ±  recovers the ends of the rod as expected. 
3.5.3.2. Chiral distance for packing helices 

We now define a chiral distance D for three helices A, B and C.  If helices A and B are parallel, D equals the signed distance from helix C to the plane extended by A and B.  The definition is generalized below for nonparallel A and B.  First, the middle helix B is modeled as a rod, with 0b  and 1b  being the two ends (connected to A and C, respectively).  We then compute, for any two points a and c 



 82 
 )(

)()(

)()(
),,,( 1

010

010
10 bc

bbab

bbab
cbba −⋅

−×−
−×−=D . (S4) 

Finally, we let a run through all Cα atoms on helix A and c through those on helix C, and compute the average as, 
 

Chelixon
Ahelixon10 ),,,()C,B,A(

c
acbbaDD = .   

)C,B,A(D  is positive if viewed along helix B from 0b  to 1b , helix A can be rotated clockwise to the position of helix C by an angle less than 180°, negative otherwise. 
3.5.3.3. Helix distance 

We compute the distance between two helices A and B as follows.  First, for a Cα atom a on helix A, we compute the minimal distance ad  to any Cα atom on helix B.  Similarly bd  is computed for a Cα atom b on helix B.  The average of all ad ’s and bd ’s is defined as the distance between helices A and B. 
3.5.3.4. Helix angle 

For two helices A and B, their angle is computed from the angle of the two corresponding representative rods. 
3.5.3.5. Hydrophobic contact number 

We compute the number of contacting hydrophobic residues as the number of pairs of Cα atoms on different helices within 12Å. 
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3.5.4. Clustering method 

3.5.4.1. The target function 

Given a trajectory, the clustering method aims at forming a set of clusters of similar structures, or a cluster configuration.  The cluster configuration should not depend on the order.  We satisfy the condition by setting the cluster configuration to the one that minimizes some target function H.  Secondly, H should allow each frame 
i to carry the weight iw  from the multiple histogram method [54-56] to filter out the high-temperature influence. 

We used this target function 
 ( ) WNdwH cc cc μ2

1
2
1 +=  , 

where the sum is performed over all clusters c’s, ∈
=

ci ic ww  is the total weight of 
all frames in cluster c, 2

,
)( ∈∈

=
ci icji jiijc wwwdd  is the average distance among 

any two frames in cluster c (the distance ijd  was computed as the backbone RMSD of two protein conformations i and j after a mutual structural alignment); cN  is the number of clusters; μ  is the energy cost of forming a new cluster, or the “chemical potential,” and W is the total weight of all frames in the trajectory. 
3.5.4.2. Minimization of the target function 

We used a global minimizer to minimize the target function [29].  It requires a statistical ensemble of clustering configurations, which we define as 
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c c β ,  

where β  is the inverse temperature used only for the clustering, independent of the one for sampling, cn  is the number of frames in cluster c.  The factor !cn  encourages clusters to change sizes as it varies drastically with the cluster size cn . 
The number of resulting clusters depends on μ .  A larger μ  increases the cost of forming a new cluster and thus leads to fewer clusters.  We used 7.0=μ Å, which usually yielded a single cluster for a native simulation but a handful of clusters for a folding one. 
The method is expensive, since it operates on a full RMSD matrix of all frame pairs.  In practice, we skipped frames at a regular interval, and limit the total number of frames within 2000. 

3.5.5. Initial structures 

The initial structures for folding trajectories were all prepared as follows. For each protein, the initial structure was a large extended spiral that fits into the simulation box.  Water molecules are added subsequently.  A mild (usually less than 1000 steps) energy minimization was performed to remove strong frictions between the protein and its surrounding water molecules.  A short 2 to10 picoseconds MD simulation was then performed on the energy-minimized structure at 300K to raise the energy to a normal level.  The resulting structure was then used as the starting point for all folding trajectories of the same protein.  For the four existing proteins, we show in Fig. 3.10 the initial structures after the procedure. 
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Figure 3.10. Initial extended conformations of (a) α3D, (b) α3W, (c) Fap1-NRα, (d) S-836.  Water 
molecules are removed for clarity. 

3.5.6. Representative structures at the room temperature 

We illustrate typical structures found in two folding trajectories: trajectory 7 for α3D and trajectory 2 for α3DL .  In Fig. 3.11, we plotted the RMSD as a function of time with representative structures shown at roughly a 300~500 ns interval.  The 



 86 representative structures must carry a weight 5.0>w  after reweighted to 300K to ensure that they were relevant there.  It can be seen that, even in the nonnative conformations, there were still a fraction of residue helical content, c.f. panel (b) of Fig. 3.9.  This was in agreement with a recent MD simulation on Anton [47].  Nevertheless, non-helical structures such as coils and β-strands were also common. 

 
Figure 3.11. Representative structures (reweighted to 300K) along (a) trajectory 7 of α3D and 
(b) trajectory 2 of the mutant α3DL. 
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Chapter 4 

Improving statistical distribution 

4.1. Introduction 

The objective of this chapter is to present a method for estimating a general statistical distribution from data collected in a molecular simulation.  The contents are largely identical to those in reference [120]. 
The method brings improvement upon the common approach of using a normalized histogram, which suffers from either a large noise when the bin size is too small or a systematic bias when the bin size is too large. 
Our identity is akin to a previous one derived by Adib and Jarzynski [121], hence the AJ identity below, whereby the distribution density )(xρ  at a point x is estimated from a weighted number of visits to a window surrounding x, plus a correction from integrating the derivative )(xρ′ .  The AJ identity improves over the 



 88 histogram-based approach not only by eliminating the systematic bias from binning but also by smoothing out the resulting distribution, as the window contains much more data points than a single bin.  But the identity is slightly inconvenient as it neither ensures a nonnegative output, nor determines its optimal parameters. 
Here we present a new identity in which we construct a proper correction factor from integrating the “mean force,” which is the logarithmic derivative of the distribution density, and use it to divide the number of visits to a local window to get an unbiased estimate, as schematically shown in Fig. 4.1.  It ensures a nonnegative distribution, and offers a simple estimate of the optimal window size. 

4.2. Methods 

4.2.1. Integral identity 

We wish to find an expression for the distribution density )(xρ  at *xx = .  We first approximate )( *xρ  by a histogram sum over a local window ),( +− xx  enclosing 
*xx = , and then apply a correction factor.  Formally, we have 
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),( +− xx , and can thus be measured from the histogram sum over the window. 
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Figure 4.1. The fractional identity express the ratio of a histogram sum 
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the distribution density )( *xρ  as an integral of )()(log x′ρ . 

We then take the logarithm of )()( *xx ρρ , and write it as an integral of 
)()(log y′ρ  as 
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We refer to Eq. (36) as the fractional identity.  Unlike in the AJ identity [121], the correction here is applied as a divisor instead of additively.  Nevertheless, it can be derived as a near-optimal modification of the AJ identity, as shown in 4.5.1. 
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4.2.2. Mean force 

The identity Eq. (36) requires a mean force )()(log x′ρ  in addition to a histogram.  We now construct a conjugate force ),( sr N
xx ff = , as a function of molecular coordinates Nr  and auxiliary ensemble variables s , such that the ensemble average is the needed )()(log x′ρ .   The expressions for xf  can be found in Eq. (40) and Eq. (39) or (39´). 

We first express x as a function ),( srNXx =  of molecular coordinates Nr  and, optionally, of variables s  of the simulation ensemble, e.g., s  can be the volume in an isothermal-isobaric ensemble, or the temperature in a tempering simulation [20-25].  Note that  ),( sr NX  denotes a function of Nr and s , while x its value. 
The distribution density )(xρ  is defined as 

  −= srsrsr ddwxXx NNN ),()),(()( δρ , (37) 
where (...)δ  is the δ-function, and ),( sr Nw  is the weight for coordinates Nr  and 
parameters s , e.g., )(),(

NUβN ew rsr −∝  in a canonical ensemble, with )( NU r  being the potential energy and β the inverse temperature.  Eq. (37) is properly normalized, as 
 .1),(),()),(()(   ==





 −= srsrsrsrsr ddwddwdxxXdxx NNNNNδρ  

Similarly, the average 
x

NA ),( sr  at x for any quantity ),( sr NA  can be defined as 
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 91 where we have again used the δ-function to collect configurations with ),( sr NX  being x, and the denominator is equal to )(xρ .  Our objective is to find an quantity 
),( sr N

xf  such that )()()()(log),( xxxf
x

N
x ρρρ ′=′=sr . 

We now evaluate the derivative of )(xρ  as 
 ,),()),(()(  −

∂
∂−=′ srsrsr ddwxX
X

x NNNδρ   
where we have used XxXxxX ∂−∂−=∂−∂ )()( δδ . 

We proceed by introducing a vector field ),( srv N  such that 1=∇⋅ Xv , e.g. 
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Generally, it can be constructed from an arbitrary vector field Y  ( 0≠⋅∇ YX ) as 
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Note that ∇  is defined for both Nr  and s , so ),( sr ∂∂∂∂=∇ N . 
We now insert X∇⋅= v1  into the integrand and recall that )),(( xX N −srδ  depends on Nr  and s only through X.  So ( ) )()( xXXxXX −∇→∂−∂∇ δδ , and 
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 92 where we have integrated by parts to shift the ∇  to the rest of the integrand, and defined a conjugate force wfx log∇⋅+⋅∇≡ vv .  The last step follows from 
 wfwwwww x=∇⋅+⋅∇=∇⋅+⋅∇=⋅∇ )log()( vvvvv . 

Comparing to Eq. (38), we see that the mean force )()()()(log xxx ρρρ ′=′  is equal to the average of ),( srN
xf  under a fixed x, 
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x wfx ),(log),(),(),()()(log srsrvsrvsr ∇⋅+⋅∇==′ρ . (40) 

For a canonical ensemble, the second term wlog∇⋅v  becomes U∇⋅− vβ , i.e., the projection of the molecular force F=∇− U  to the gradient of X, assuming Eq. (39).  So the name mean force of xf  is justified.  This special case was identical to the result derived by Ciccotti, Kapral, and Vanden-Eijnden [122]. 
Another special case of Eq. (40) is the dynamic temperature by Rugh [12]. Consider the canonical ensemble at infinite temperature 0→β .  The distribution of the total energy )( NHE r=  ( Nr  now represents phase-space point) is proportional to the density of states )(EΩ .  The mean force dEEd )(logΩ  should be the intrinsic temperature )(Eβ .  By Eq. (40), it equals 

E
v⋅∇ , with )( HHH ∇⋅∇∇=v , we thus recover Rugh’s dynamic temperature. 

4.2.3. Optimal window size 

We now determine the two window boundaries −x  and +x  in Eq. (36) such that they minimize the statistical error in )( *xρ . 



 93 First, the histogram and mean-force data contribute independently to the numerator and denominator, respectively.  The amount of contribution is however controlled by the window size.  The output )( *xρ  is dominated by the histogram contribution (numerator) with a narrow window, but by the mean-force contribution (denominator) with a wide one.  In the former case, the denominator is reduced to the window width, and thus the identity to a histogram average.  At the other extreme, if the window covers the entire domain of x, the numerator becomes a constant, and the distribution is determined entirely by the mean-force integral on 
the denominator, i.e., 
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As the window size increases, the error of the numerator decreases as more data points reduces uncertainty, but that of the denominator increases as the error in the mean-force integral accumulates.  The sum reaches a minimum at the optimal window size. 
Quantitatively, the relative error of the numerator NN )(ε  is N1 , where 

),( +−= xxNN  is the number of independent data points included in the window. 
The relative error of the denominator D is harder to compute exactly and thus is estimated from an upper bound.  First, since D is an integral of )logexp( ρΔ , the relative error of D is no larger than the absolute error of ρlogΔ .  Next, since 
ρlogΔ  itself is an integral:  ′′=Δ

x

x x xdxfx
*

)()(logρ , the maximum occurs most 
likely at ±= xx .  In the discrete version, the integral becomes a sum over bins as 



 94 
=Δ

i ix xxf δρ )(log  with xδ  being the bin size.  Its error 2)]log([ ρε Δ , assuming 
no correlation among mean force at different bins, is i iif xnxx )()( 22 δδσ , where 

)(2
if xσ  is the variance of the conjugate force at ix , and )( ixnδ  is the number of independent data points in the bin at ix . 

On reaching the optimal window, including one more bin from either edge would keep the combined error ( ) ( )22 )()( DDNN εε +  constant.  So 
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where the first term is the decrease of error due to the increased sample size, while the second is the increase due to the mean-force integration.  Thus 
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For a relatively narrow window, we have xwnN δδ /≈ , with w being the window width.  If we further replacing )( ±xfσ  by a local mean fσ , then 

 fw σγ= , (41) 
where γ  is a heuristic factor around 1.0.  As we overestimate the error of the denominator, Eq. (41) somehow underestimates the optimal window size.  In practice, we found the optimal γ  was between 1.0 and 2.0. 

On using Eq. (41), we emphasize that fσ  is the mean-force fluctuation at a 
fixed x, i.e., 222 )(

xxf ffx −=σ , and thus is evaluated at the bin at x.  However, after 



 95 the intra-bin calculation, we can then average )(xfσ  over a local or global window to improve the precision of fσ . 
If the mean-force fluctuation is very small, Eq. (41) suggests abandoning the histogram data and switching to a mean-force integration.  On the other hand, if the mean-force has a very large variance, one should stick to the histogram.  Thus, the method is effective only if the mean-force fluctuation is small. 

4.2.4. Summary and practical notes 

To summarize the method, we first compute a mean force profile )()(log x′ρ  at any x from Eqs. (39) [or (39´)] and (40), then plug it into Eq. (36).  The combined formula looking like 
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and the window ),( +− xx  size is determined by Eq. (41). 
Practically, we assume both histogram and mean force data are collected by 

bins of size xδ .  To evaluate  
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averaged value, and at every bin boundary x , xxxx
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outer integral is then evaluated by the trapezoidal rule as 
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where )],(exp[)( *xxxf ϕ= . 
The statistical error of )()(log y′ρ  depends on the bin size; but that of the integral ),( *xxϕ , or )( *xρ , does not.  To see this, we consider a small bin xδ  with 

nδ  data points.  If the standard deviation of )()(log y′ρ  is σ , then the error of the bin is nδσ 2 .  Its contribution to the error of ),( *xxϕ  should be multiplied by 2xδ  and is thus nx δδσ 22 .  If we split the bin into two, then each sub-bin has roughly 
2nδ  points, each with an error of nδσ 22 .  But the contribution to the error of 

),( *xxϕ  from the two new bins, nxxn δδσδδσ 2222 2)2)(2( =× , remains the same. 
Eq. (40) can fail if a bin is empty.  In this case, we symmetrically enlarge the bin to a window such that it contains at least one data point, then use Eq. (40). 

4.2.5. Extension to weighted histogram analysis method 

We now extend Eq. (36) to a composite distribution, i.e., a superposition of several distributions under different conditions, which can result from an extended ensemble simulation, such as a tempering simulation [20-25].  For concreteness, we assume that the individual distributions are canonical ones ),( ix βρ  at different temperatures iβ  (with i being its label).   



 97 The aim is to estimate the distribution ),( βρ x  at β , which needs not to be one of the iβ ’s.  We will derive a mean-force-improved version of the weighted histogram analysis method (WHAM) [54-56, 123]. 
We first generalize Eq. (36) to 
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where iN  is the total number of independent data points from the simulation at the temperature iβ , and the sum is carried over different temperatures iβ .  To proceed, we simultaneously multiple and divide ),( *

ix βρ  in the denominator, 
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where the x-independent ),(),( ** βρβρ xx i  has been moved out of the integral.  We then convert ),(),( *
ii xx βρβρ  to the mean force integral at a fixed iβ  as before, 
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For example, in the canonical ensemble, )()exp(),( βββ ZUUw −=  with 
)(βZ  being the partition function.  So the potential energy U  distribution 
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where )( UUU ∇⋅∇∇=v .  The regular WHAM [54-56, 123] is recovered with an infinitesimal window *UUU == +− .  Generally, Eq. (43) improves the histogram method by using the mean force data, e.g., the dynamic temperature 

U ′
⋅∇ v  here.  

Since 
U ′

⋅∇ v  is the same under any temperature iβ , the data from multiple temperatures can be combined. 
4.3. Examples 

4.3.1. Potential energy distribution 

We first compute a potential energy distribution )(Uρ  in the canonical ensemble, in which )()](exp[),( βββ ZUw NN rr −=  with β  being the reciprocal temperature, and )(βZ  being the partition function.  Eqs. (36) and (40) become  
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Since )()(log U′ρ  is the difference between the dynamic temperature [12, 13, 124-127] v⋅∇  and the simulation temperatureβ , the distribution peaks at 

0)()(log =′ Uρ  where the two cancel. 
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Figure 4.2. Potential energy distribution.  (a) Histogram, fractional identity, and Adib-
Jarzynski-like (AJ) identity.  The same test sample were used for all methods.  Symbol spacing 

0.5=ΔU .  (b) and (c) Errors measured from the KS difference and entropic distance, 
respectively, as functions of window size UΔ .  (d) The distributions from the original and 
improved weighted histogram method.  (e) Canonical versus microcanonical ensembles.   

We performed a molecular dynamics (MD) simulation on a 256-particle Lennard-Jones system under a smoothly switched potential (see 4.5.3, 0.2=sr  and 
0.3=cr ).  The temperature 0.1=β , density 8.0=ρ , time step 002.0=Δt .  Velocity rescaling was used as the thermostat [15] with a time step 0.01. 
From a single trajectory of 107 steps, we constructed two samples.  In the test sample, 104 frames (every 1000 steps) were collected; in the reference one, all frames were used.  The setting avoided possible sampling inaccuracy to affect the comparison of different methods, as explained in 4.5.4.  The bin size for histogram-like was always 1.0=Uδ .  Unless specified otherwise, the test sample was used. 



 100 We first demonstrate the use of the fractional identity Eq. (36) with a fixed symmetric window of size 4.12=−=Δ −+ UUU , a value determined from Eq. (41) ( 0.1=γ ).  The mean force )()(log U′ρ  was computed from a single bin at U.  As shown in Fig. 4.2(a), the resulting distribution was smoother than the histogram.  For comparison, we used the AJ identity with the same window size.  Though the results were generally similar, the AJ identity sometimes yielded negative values at the two ends, while the fractional identity appeared to be more robust and closer to the reference. 
To show the gain from the integral identity approach, we define a KS difference as CDFKS )12.011.0( Δ++=Δ NN , which is commonly used in the Kolmogorov-Smirnov (KS) test for detecting the difference between two distributions [128], where N is the sample size, and CDFΔ  is the maximal difference 

between the cumulative distribution function (CDF)  ∞−=
x

dyyxF )()( ρ  of the 
resulting distribution and that from the reference. The smaller the quantity is, the more accurate the test distribution is.  As the measure is independent of the bin size, it mainly detects the systematic bias in the test distribution instead of the smoothness of distribution density.  As the identity is not optimized for the CDF but for the distribution density, the KS difference serves as a stringent test. 

The KS differences, computed for the histogram, the fractional identity Eq. (36) and the AJ identity Eq. (A1) are shown in Fig. 4.2(b).  It is clear that that both identities rendered more accurate distributions than the histogram.  We also show there was an optimal window size that minimized the error.  However, for the 



 101 fractional identity, the optimal window size 0.20≈ΔU  was greater than the value 12.4 given by Eq. (41).  Thus, a factor 5.1≈γ  was used in other examples.  Recall the KS difference scales with N , thus from Fig. 4.2(b) we estimated about 20-fold increase of efficiency from using the optimal window.  We also notice that with a smaller window, the fractional identity gave better estimates than the AJ identity.  This was expected as that the fractional identity is the optimal modification of the AJ identity in this case, as shown in 4.5.1.  With a larger window, the errors from both identities grew rapidly due to the larger involvement of the mean force data.  As the factional identity quickly switched to a pure mean-force-based integral with a large window, its growth was faster.  The comparison shows that choosing the window size is crucial to the success of the integral identity, and an overly large window can be counterproductive. 
We performed a similar comparison in terms of the entropic distance defined 

as 
∞

∞−
= dyyyyD )(])()(log[)||( ref.ref. ρρρρρ  for two distributions )(xρ  and )(ref. xρ .  

For the AJ identity, in case 0)( <xρ , zero was assumed. Unlike the KS difference, this quantity directly compares the distribution densities.  As shown in Fig. 4.2(c), the fractional identity consistently produced a smaller entropic distance than the AJ identity, suggesting an improved smoothness.  Interestingly, the error of the entropic distance also had a minimal, which occurred at a similar location 
0.20≈ΔU  to that from the KS difference. 

We now demonstrate the mean-force-improved weighted histogram analysis method (WHAM) introduced in 4.2.5.   In this case, we performed additional 



 102 simulations at two neighboring temperatures 8.0=T  and 2.1=T .  The reweighted distributions to 0.1=T  from both the original WHAM and the improved version are shown in Fig. 4.2(d), and as expected, the latter was smoother. 
We emphasize that the identity approach is ensemble-dependent because the mean force depends on the ensemble weight w.  To show this, we simulated the same system by a regular MD, which targeted a microcanonical ensemble in which the total energy was kept as a constant.  In the ensemble, the configuration weight, 

after averaging out momenta, is 2
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2
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NNN UEKw rr , where fN  is the number of degrees of freedom, and K, U and totE  are the kinetic, potential and 
total energy, respectively.  The mean force is 
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)()(log vρ , where 
63 −= NN f , and the constant reference temperature β  in the canonical ensemble is changed to an energy-dependent term )()1( tot2

1 UEN f −− . 
The microcanonical simulation was similar to the canonical one.  During equilibration, the kinetic energy was scaled regularly to match 0.1≈T , and was kept as a constant afterwards ( 932tot −=E ).  As shown in Fig. 4.2(d), the distributions and mean forces (lower inset) from the two ensembles differed considerably, whereas the dynamic temperature v⋅∇  (upper inset) matched.  This example shows the importance of applying the correct formula for the mean force. 
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4.3.2. Volume distribution 

In the second example, we compute a volume distribution )(Vρ  in an isothermal-isobaric ensemble [10, 129].  Unlike the previous case, the volume V is not a function of system coordinates, but an additional variable in the ensemble weight ),( Vw Nr .  Particularly, the volume V serves as a scaling factor that translates the reduced (0 to 1) coordinates iR  to the actual ones as ii V Rr 3= . In terms of reduced coordinates, the ensemble weight can be written as 
 dVdVVpVUdVdVw NN

i
N

i RRrr ]})({exp[)},({ 3 ββ −−∝ , 
where β  and p are the reciprocal temperature and the pressure, respectively. 

According to Eq. (40), the conjugate force Vf  is reduced to Vw ∂∂ log  in this case (the vector field v  is the unit vector along the direction of the parameter V, so 
0=⋅∇ v , V∂∂=∇⋅v ).  Thus, 
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The latter represents the difference between the internal pressure 
VNp

V

N
c )3()( Frr ⋅+≡ β  and the ensemble parameter p. 

For a open system, there is a subtle distinction between the apparent volume distribution )(Vρ  defined above and the actual physical one )(ˆ Vρ .  The difference 



 104 arises from the fact that the partition function ),( VZ β  in the canonical ensemble counts configurations with the volume no larger than, instead of equal to, the volume V of the simulation box.  In other words, unless there are particle lying precisely at all six boundary faces of the simulation box, it is always possible to shrink the box slightly without leaving out any particles.  Thus, the physical volume of a configuration is usually less than the volume of the box.  Koper and Reiss [129] then introduced a differential partition function Z ′ [129] for all configurations with the volume precisely falling in ),( VdVV −  as dVZpdVVZZ
Vc=∂∂∝′ )( , and accordingly the actual physical volume distribution )(ˆ Vρ  differs from )(Vρ  by a factor, i.e., )()(ˆ VpV

Vc ρρ ∝ . 
The above correction does not apply to a periodic system.  Nonetheless, we still calculated )(ˆ Vρ  below only to show the process by pretending the system were non-periodic.  
We performed an MD simulation on the 256 Lennard-Jones system using the switched potential (with 5.2=sr  and 5.3=cr ) around the critical point: 24.1=T  and 

115.0=p .  Velocity rescaling was used as the thermostat [15] with a time step 0.01.  For the pressure control, Monte Carlo volume moves were tried every two MD steps with a maximal magnitude of ± 2.0% of the side length of the box.  The trajectory contained 107 frames, and the time step 002.0=dt . 
From the trajectory, we constructed two samples.  In the test sample, one out of every 100 frames was used.  In the reference one, all frames were used.  The 



 105 setting avoided possible sampling inaccuracy to affect the comparison of different methods, as explained in 4.5.4.  In both case, histogram-like data were collected using a bin width 0.1=Vδ .  Unless specified otherwise, we used the test sample. 

 
Figure 4.3. Volume distributions. (a) )(Vρ  and (b) )(ˆ Vρ  (adjusted) at 115.0=p  and 

24.1=T .  Inset of (a): the window size.  Symbol spacing 0.50=ΔV . 



 106 Due to the wide volume range and that the mean force fluctuation Vf 1∝σ , we used a variable window size, and applied Eq. (41) with fσ  estimated from a local window, and 5.1=γ  (heuristic value). 
To apply the correction, we further computed 

Vcp  from a second integral identity, Eqs. (A4) and (A5), in 4.5.2.  The window size of the second identity was similarly determined from the local fσ  but with 0.3=γ . 
As shown in Fig. 4.3, the volume distribution )(ˆ Vρ  from the fractional identity was smoother than the histogram but still had some roughness.  From the inset, we observe that the window size grew linearly with the volume V. 
This example also clearly illustrates the danger of using an overly large window.  We show in Fig. 4.3 the distribution from a pure mean-force integration 





 ′′′= 

V
VdVV )()log(exp)( ρρ , which is the limiting case of using an infinite 

window, showed a much larger deviation from the reference.  But the deviation was not systematic and diminished with the sample size: when calculated from the larger reference sample, it was hardly noticeable, see Fig. 4.3(b).  The example again illustrates the importance of proper window size. 
4.3.3. Radial distribution function 

In the third example, we compute a radial distribution function )(rg .  Given a test particle is at the origin, )(rg  gives the relative probability density of finding 



 107 another particle at a distance r away, such that 1)( =rg  in a non-interacting system.  It relates to the radial distribution density )(rρ  as 
 Vrgrr )(4)( 2πρ =  (45) 
with V  being the volume of the simulation box, and Vdrr 24π  gives the probability of finding a different particle in a spherical shell of a radius r and thickness dr around the test particle, if the particles were non-interacting. )(rρ  is normalized as 

1)(
23

0
=

L
drrρ , where 3 VL =  is the box size and 23L  is maximal distance 

between two particle under the periodic boundary condition [10] [of course with 
2Lr > , )(rρ  becomes unphysical].  We modify Eq. (36) to 
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To derive the mean force in the canonical ensemble, in which 

)](exp[)( NUw rr β−∝ , with β  being the inverse temperature, we apply Eq. (40) with a vector field )(ˆ 21122
1

iii δδ −= rv , where i is the particle index.  Since 
122 r=⋅∇ v  with || 1212 r=r , we have 
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rr 12122

1 ˆ2)()(log FrFvv ⋅+=⋅+⋅∇=′ ββρ , where 121212ˆ rrr =  is the unit displacement vector from particles 2 to 1, 2112 FFF −=  is the difference between the forces exerted on particles 1 and 2, and the average is evaluated at rr =12 .  By Eq. (45), 
 

r
rrrg 12122

1 ˆ2)()(log)()(log Fr ⋅=−′=′ βρ . 



 108 We simulated the 256 Lennard-Jones system with the density 7.0=ρ  under 
85.01 =T  and 4.02 =T , using the switched potential ( 5.2=sr  and 5.3=cr ).  Velocity rescaling with time step 0.01 was used as the thermostat [15]. 
After 106 steps of equilibration, we simulated another 107 steps with a time step 002.0=dt .  We then constructed two samples from this trajectory; for the test sample, we picked 5 frames (from every 2×106 steps), and for the reference one, 5000 frames (every 2000 steps).  The setting avoided possible sampling inaccuracy to affect the comparison of different methods, as explained in 4.5.4.  Unless specified otherwise, we used the test sample.  Each frame still contributes 256×255/2 = 32640 pairs of particles; but only half ( 5.06 ≈π ) of them satisfy 2Lr < .  The bin size 002.0=rδ  was used in collecting histogram-like data. 
Since this example was also used in the original paper from Adib and Jarzynski [121], it is instructive to compare the two identities.  We include the AJ identity, Eq. (20) in reference [121], here for convenience 
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where r is the distance from the test particle, )(ru  is the pair potential (see 4.5.3), 
),)(34( 3

1
3
max* RRV −=

Ω
π  1R  is a distance close to the repulsion core (we used 0.11 =R  here), maxR  is half of the simulation box size, )(xθ  is the step function: 1 if 0>x , 0 



 109 otherwise, )()(ˆ)(
||

rurF
rr ′+⋅=
=r

rFr  is the radial mean force of a particle at a 
distance r away from the test particle, excluding the force from the test particle. 

 
Figure 4.4. Radial distribution functions )(rg . (a) 85.01 =T ; (b) 4.02 =T .  Histogram, 

fractional identity, and original Adib-Jarzynski (AJ) identity.  Symbol spacing 1.0=Δr . 



 110 As shown in Fig. 4.4, the fractional identity produced smooth distributions with good agreement with the respective references in both temperatures, despite a relatively small sample size.  On the other hand, although the AJ identity also produced smooth distributions, there was an appreciable deviation at the lower temperature 4.02 =T , especially around the principle peak 1.1≈r .  The deviation was not systematic, as it was negligible when the calculation was performed on the reference sample, see Fig. 4.4(c) and (d).  The large deviations from the AJ identity were similar to those observed in the previous example of the volume distribution when the mean force integration was used to produce the distribution.  Thus, they were likely due to an overly large window, as the entire range of r, from 0 to maxR , was used as the window by the AJ identity Eq. (46a).  The error was larger at a lower temperature because the mean force changed more drastically there, hence larger mean force fluctuation.  By contrast, in the fractional identity case, smaller windows, 
14.0=Δr  for 85.01 =T  and 09.0=Δr  for 4.02 =T  were used according to Eq. (41) ( 5.1=γ ), and thus the output was more robust.  We also note that the optimal window size shrunk at the lower temperature.  The trend is universal, since xf  has a component Fv ⋅β  in the canonical ensemble, as one increases β (or lowers the temperature), the fluctuation grows, and thus the window size shrinks.  The example again illustrates the critical influence from the window size. 
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4.4. Conclusions and discussions 

In conclusion, we presented an identity, Eqs. (36) and (40), for estimating a statistical distribution from data collected in molecular simulations.  The new identity has broad applications (e.g., to any variable x and any ensemble) and at the same time offers a robust and precise output. 
We also showed that the window size should be carefully chosen to maximize the benefit from the identity.  An overly large window risks a large error from the mean-force integration, although it often yields a smoother result. 
Finally, we distinguish the method from an explicit smoothing method [130, 131] in that this method does not assume a smooth distribution.  Although the use of the mean force )(log ′ρ  implies a differentiable )(xρ , the mean force itself can be as oscillatory as an apparent noise.  However, it may be possible to improve the method by introducing elements of the explicit smoothing techniques with certain approximations. 

4.5. Appendix 

4.5.1. Alternative derivation of the fractional identity 

We first rephrase the work of Adib and Jarzynski on the radial distribution function [121] in our context, i.e., with respect to a general distribution. 
First, any )(xρ  at *xx =  can be evaluated as an integral over ),( *xx−  as 
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where )(xφ  is an arbitrary function under two conditions, 0)( =−xφ  and 1)( * =xφ ; we have also converted the difference of )()( xx φρ  to an integral within the range. 
The domain of integration can be enlarged to a window ),( +− xx  that encloses 

x* by applying the above equation to two windows ),( *xx−  and ),( *
+xx  (x – < x* < x+) with different )(xφ ’s, and then linearly combining them, see Fig. 4.5, 
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with )( * −xφ  and )( * +xφ , the values of )(xφ  immediately at the left and right of *x  respectively, serving as coefficients of combining the two windows.  The function 
)(xφ  is equivalent to the vector field )(ru  in the original paper [121]. 

But Eq. (A1) does not always yield a positive output since the correction 
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We now derive the fractional identity Eq. (36) from Eq. (A1).  We start from a simple observation: for any continuous function )(xf  satisfying 1)( * =xf , Eq. (A1) applies not only to )(xρ  itself, but also to the product )()( xfxρ , i.e., 
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Figure 4.5. The auxiliary function )(xφ  and its derivative )(xφ′ . 

An arbitrary )(xf , or equivalently a reference distribution [121, 132], does not guarantee a non-negative output.  But if we choose )(xf  such that )()( xfxρ  is a constant, the second term on the right hand side of the above equation vanishes, and 
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Thus )( *xρ  is nonnegative as long as )(xφ′  is so.  The function )(xf  is obtained by integrating the distribution mean force from the boundary 1)( * =xf  as 
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It is easily verified that )(log)(log xxf dx
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d ρ−=  and hence 0)]()([ =xfxdx
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 114 Finally, we determine )(xφ  based on the observation that )(xφ′ acts as a weight in Eq. (A3).  Thus, to minimize statistical error, )(xφ′  should be inversely proportional to the variance of )()( xfxρ [10].  For a small window, we assume that the error of )()( xfxρ  comes mainly from the number of visits )(xρ  instead of )(xf .  Additionally, we assume the variance of )(xρ  is proportional to )(xρ , i.e., a Poisson distribution [10], so =])()(Var[ xfxρ )()()()()](Var[ 22 xfxfxxfx ∝∝ ρρ .  
)(xφ′ can now be written as )(xfC , where C is determined from Eqs. (A2) as 
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Solving the equation gives  

+

−





 ′=

x

x

x

x
dxdyyC

*
)()(logexp1 ρ , hence Eq. (36). 

4.5.2. Mean force improvement 

We derive an improved formula for )()(log x′ρ .  If )()(log x′′ρ  is available, one can apply an Adib-Jarzynski-like identity (see 4.5.1) as: 
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dyyyyyx )()(log)()()(log)()()(log 0 ρϕρϕρ , (A4) 

where )(xϕ  satisfies 0)()( == +− xx ϕϕ , 1)()( 00 =+−− δϕδϕ xx .  For simplicity, we particularly use a linear function )()()( −+ −−= xxxxx bϕ , with −= xxb  if 0xx <  or  
+= xxb  otherwise.  Note that the window ),( +− xx  can be different from that in Eq. (36).  An averaging expression for computing )()(log x′′ρ  can be found by taking the derivative of Eq. (40)  
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xxxxx ffx ∇⋅+Δ=′′ v2)()()(log ρ , (A5) 

where xv  denotes the vector field given by Eq. (39) or (39´) for the quantity x. 
Eqs. (A4) and (A5) are particularly useful in computing the volume distribution, in which a smooth multiplicative correction term 

Vc Vp )(β  can be 
obtained from the mean force ))(()()(log pVpV

Vc −=′ βρ  using the above method. 
We list the formulas of xx f∇⋅v  for the first three examples in 4.3. 
For the potential energy distribution in the canonical ensemble, 

β−⋅∇= vUf , and  
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where U−∇=F  is the molecular force, FF ⋅∇∇⋅≡ UM 2 , Fh ⋅∇∇= U2 ,  and the “” denotes the triple dot product between two tensors of order three.  For the microcanonical ensemble, we add 2

tot2
1 )()1( UEN f −−−  to the formula. 

For the volume distribution, V∂∂→∇⋅v , VUVNfV ∂∂−= β , and 
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where we have assumed the potential energy U  is a sum over particle pairs ),( nm  for the pair potential )(ru , i.e., =

),(

)(
nm

mnruU , and rrur )()( ′=φ , rrr )()( φψ ′= . 
For the radial distribution function of a pair of particles 1 and 2, 
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where jkr  is the displacement vector from k to j, and || jkjkr r= . 
4.5.3. Switched Lennard-Jones potential 

The Lennard-Jones potential ])()[(4)( 612 rrru σσε −=  is switched at srr =  
to a polynomial 

=

−
7

4
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k

k
ck rra  and extended to zero at crr = .  For simplicity, we 

assume the reduced unit, whereby both the energy unit ε  and diameter σ  are 1.0.  In the example of the energy distribution, we need the potential and the first three derivatives to be continuous, since the derivative of the dynamic temperature requires up to the third-order derivative of the potential.  The continuity at  crr =  is guaranteed by the first four vanishing coefficients.  To ensure the continuity up to third-order derivatives at srr = , we used 
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where, sc rrr −=Δ , 61 srA −= , ,2 6

srB −=  6726 srC −= , 6213 srD −= . 
4.5.4. Reference distributions 

In each of Sections 4.3.1, 4.3.2, and 4.3.3, we prepared both the test and reference samples from the same trajectory but with different sampling rates of 



 117 picking frames.  Since frames in the test sample were just a subset of those in the reference one, any inaccuracy due to insufficient sampling, would be shared by both samples, and thus would not affect the comparison of methods.  
We have used the fractional identity to produce the reference distributions, in Figs. 4.2, 4.3, and 4.4.  But due to the large size of the reference sample, the distributions were insensitive to method we choose.  In Fig. 4.6, we show that the results from the fractional identity agreed well with the properly normalized histograms, as well as those from alternative identities, compare Figs. 4.2 with 4.6(a), 4.3 with 4.6(b), and 4.4 with 4.6(c)-(d).  The latter comparison also shows the alternative identities are unbiased, although less stable in handling smaller samples.  We also used the WHAM version in producing the reference distribution in Fig. 4.2(a), which further improved over the one in Fig. 4.6(a) at the edges. 

 
Figure 4.6. Distributions from the reference samples. (a) Potential-energy distributions; (b) 
volume distributions; (c) and (d) radial distribution functions at 85.01 =T  and 4.02 =T . 
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