


ABSTRACT 

Objective Approaches to Single-Molecule Time Series Analysis 

by 

James Nicholas Taylor 

Single-molecule spectroscopy has provided a means to uncover pathways and 

heterogeneities that were previously hidden beneath the ensemble average.  Such 

heterogeneity, however, is often obscured by the artifacts of experimental noise and 

the occurrence of undesired processes within the experimental medium.  This has 

subsequently caused in the need for new analytical methodologies.  It is particularly 

important that objectivity be maintained in the development of new analytical 

methodology so that bias is not introduced and the results improperly characterized.  

The research presented herein identifies two such sources of experimental uncertainty, 

and constructs objective approaches to reduce their effects in the experimental results.  

The first, photoblinking, arises from the occupation of dark electronic states within the 

probe molecule, resulting in experimental data that is distorted by its contribution.  A 

method based in Bayesian inference is developed, and is found to nearly eliminate 

photoblinks from the experimental data while minimally affecting the remaining data 

and maintaining objectivity.  The second source of uncertainty is electronic shot-noise, 

which arises as a result of Poissonian photon collection.  A method based in wavelet 

decomposition is constructed and applied to simulated and experimental data.  It is 
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found that, while making only one assumption, that photon collection is indeed a 

Poisson process, up to 75% of the shot-noise contribution may be removed from the 

experimental signal by the wavelet-based procedure.  Lastly, in an effort to connect 

model-based approaches such as molecular dynamics simulation to model-free 

approaches that rely solely on the experimental data, a coarse-grained molecular model 

of a molecular ionic fluorophore diffusing within an electrostatically charged polymer 

brush is constructed and characterized.  It is found that, while the characteristics of the 

coarse-grained simulation compare well with atomistic simulations, the model is lacking 

in its representation of the electrostatically-driven behavior of the experimental system.         
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Chapter 1  

 

 

Introduction and Overview 

 

 

1.1  Introduction 

Observing one molecule at a time, as in the experiments of single-molecule 

spectroscopy, removes the averaging of ensemble techniques and leads to the discovery 

of pathways and heterogeneities that were previously hidden beneath the ensemble 

average.  For example, our single-molecule fluorescence resonance energy transfer 

(smFRET) studies of the agonist binding domain of the α-amino-3-hydroxy-5-methyl-4-

isoxazole propionate (AMPA) receptor [1], described in chapter 7, reveal that the 

protein explores a heterogeneous conformational landscape while bound to the agonist 

glutamate.  This indicates that the neurological membrane protein governing the 

passage of ions through a cellular membrane is not simply a digital gate, but rather that 

the exploration of this conformational landscape leads to differing extents of activation 

within the ion channel.  These findings, however, were not immediately apparent in the 

results due to the effects of experimental noise. These initial results indicate a broadly 
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funneled landscape with no resolvable features, in disagreement with theoretical 

prediction [2, 3]. However, with the application of the wavelet denoising procedure [4, 

5] described in chapters 5 and 6, the effects of the experimental noise were reduced, 

and persistent states were identified within the noisy data.   

Single-molecule spectroscopy continues to advance at an astonishing rate on all 

scientific fronts.  Such advancement is occurring within the distinct realms of system, 

technique, and method of analysis.  Superresolution microscopy is one such technique 

that is of much current interest because of its promise of imaging cellular activity in vivo 

[6].  Molecular transport phenomena within many different systems, including purely 

polymeric constructs [7, 8] as well as electrochemical storage constructs [9-11], have 

been characterized as well, primarily via fluorescence correlation spectroscopy (FCS). 

Furthermore, the smFRET technique has been particularly useful [1, 12-14].  smFRET is a 

technique that gives a measure of distance on the scale of 1-10 nm.  These are the 

distance scales that are typically relevant for inter- and intramolecular, biological 

interactions.  Owing to this distance scale, smFRET has been used extensively for 

conformational dynamical studies, such as ours involving the aV aptamer [14]. 

The development of new experimental methodologies, as illustrated in the 

opening example, has subsequently caused the need for the development of new 

analytical methodologies.  Much work has already been done in this area, such as the 

works of Gopich and Szabo on photon statistics in smFRET data [15, 16].  Other 

statistical and information theoretical methods have been applied as well, such as the 

implementations of Fisher information matrices to achieve optimal time resolution [17] 
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and positional accuracy [18], statistical correlation functions to reveal single-molecule 

kinetic heterogeneities [19], and hidden-Markov models to extract the most likely 

sequence of events from smFRET time trajectories [20, 21].  More recently, statistical 

correlation is combined with wavelet decomposition in attempt to describe kinetic 

heterogeneities in single-molecule systems [22].  Still other methods involve energy 

landscape theory [23], which involves the symbolization of the single-molecule time 

series and the subsequent extraction of the free energy landscape describing it.  Lastly, 

we discuss another method utilizing information theory by using past events to 

determine the probability of future events and extract a conformational-space network 

that is free of a priori assumptions [24, 25].  Despite the relative success of these 

implementations, much is still left to be desired from the resolution of single-molecule 

experiments.  Physical events in these experiments still remain hidden under guesses, 

optimization parameters, and the artifacts of experimental noise. 

This realm of analytical methodology has been the main focus of my research.  In 

the characterization of single-molecule results, it is particularly important to maintain an 

objective approach.  In this work, I will describe two such approaches that were 

developed in my efforts to increase the information content, i.e. reduce the effects of 

noise, within the experimental results.  To this end, we identify two types of 

experimental noise. The first, photoblinking, is of photophysical origin, and the other, 

shot noise, is an electronic error associated with the detection of photons. To identify 

photoblinks, an objective approach based in Bayesian inference is developed (see 

Chapter 4).  Next, we modify the wavelet denoising method of Donoho [26] to reduce 
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the effects of shot-noise in the experimental photon trajectories (see chapters 5 and 6).  

It is found, as illustrated in the opening example, that the implementation of these 

objective methodologies greatly increases the amount of information available in the 

experimental results, thereby greatly increasing the amount of detail than can be 

extracted about the experimental system. 

Often, such theoretical methodology falls into one of two schools of thought.  

Many theoretical methods, such as molecular dynamics, build the system from the 

ground up using microscopic first principles.  Other methods, such as the information 

theoretical conformational space networks described in [24], characterize the system 

based solely on the experimental data, relying on sequences and probabilities to 

reconstruct the system from the top down.  Another focus of my research has been to 

find convergence between these two, differing schools of thought.  In particular, I seek 

to merge the two approaches by first using molecular dynamics to generate spatial 

information about a particular system, then using stochastic modeling to generate 

photophysical information, i.e., synthetic photon trajectories.  Once such trajectories 

have been obtained, it is then possible to apply the top-down approaches mentioned 

above to reconstruct the model system. This convergence approach facilitates the 

incorporation of molecular interactions and photophysical phenomena that often 

plague the experiments [27-29], and results in a theoretical method capable of 

reproducing these effects and their manifestations at the analytical level.  The approach 

then offers the advantages of providing a microscopically detailed model of 
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troublesome phenomena as well as providing a means to characterize their 

manifestations at the macroscopic level.    

1.2 Overview of Research Aims 

In this section we discuss the specific aims of my research.  We begin with an 

experimental system involving the interaction of a small oligonucleotide with vascular 

endothelial growth factor.  Next, we discuss the Bayesian photoblink detection method 

and its ramifications within simulated and experimental data.  We continue with a 

discussion of the wavelet denoising method, and then extend the discussion to include 

further modifications that are specific to smFRET.  We then apply these analytical 

methodologies to another experimental system, the AMPA receptor, and find improved 

experimental resolution.  Lastly, we discuss a theoretical modeling approach whose goal 

is to find convergence between methods based on microscopic first principles and 

model-free reconstruction. 

Research Aim 1: Identify conformational dynamics within the aV/VEGF system. 

Vascular endothelial growth factor (VEGF) is a signaling protein that is known to 

regulate angiogenetic behavior in blood endothelial cells [30].  Hindrance of the VEGF-

receptor interaction has been shown to reduce the rate of tumor growth in vivo [31], 

indicating that VEGF inhibition may be effective for disorders that are aided by 

neovascularization [32].  As a result, several anti-VEGF agents of diverse molecular 

composition, such as soluble VEGF receptors [33] VEGF-binding antibodies [31], and 

aptamers have been developed to inhibit angiogenesis.  This research focuses on a small 
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DNA aptamer with high VEGF binding affinity.  Aptamers are most commonly small 

oligonucleotides whose sequences have been iteratively optimized to recognize specific 

biological targets [34, 35].   Recognition of these targets can result in the disruption or 

enhancement of a specific biological process, thus causing aptamers to be potential 

therapeutics in many applications.  To observe the aV/VEGF interaction, we performed 

smFRET experiments, as described in chapter 3, and successfully observed the 

interaction of the aptamer with its target protein.  However, because of the large 

amount of experimental noise inherent to these types of experiments, we were unable 

to draw more specific conclusions.  It became clear that more advanced methods would 

be required to characterize the results of this experimental system.   

Research Aim 2: Objectively identify photoblinks within single-molecule trajectories. 

Photoblinking arises primarily due to the triplet excited state of the fluorophores 

that are used in single-molecule experiments [28].  It is characterized in the data by a 

drop in the emission intensity of the fluorophore to zero for some amount of time, and 

then the return of the emission intensity to normal values.  Photoblinking is particularly 

troublesome to smFRET measurements, where the occurrence of a photoblink causes 

many undesired photophysical phenomena [28].  This research aim focuses on 

developing a method based in Bayesian inference to identify these photoblinks.  

Bayesian inference is a probabilistic method that frees us from the use of subjective 

techniques to identify the events.  The method is described in chapter 4, and is shown 

to identify photoblinks effectively in a broad range of simulated experimental 

circumstances.    
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Research Aim 3: Objectively reduce the effects of experimental shot-noise. 

Our next research aim seeks to reduce the shot noise contribution in the 

experimental trajectories.  Shot noise is a phenomenon of electronic origin, in that, to 

measure the intensity of the incident light, detectors measure an electrical current.  This 

current fluctuates due to the discreteness of the electron, and the result is a photon 

trajectory containing a randomly distributed Poisson noise.  The properties of the 

Poisson distribution are used along with a procedure involving the wavelet 

transformation to devise a method to reduce the shot noise contribution in the photon 

trajectories obtained from smFRET experiments. The wavelet transformation is a 

mathematical operation that transforms a function from its native domain to the 

wavelet domain.  While in the wavelet domain, a thresholding operation is performed 

on the input function to reduce the noise contribution, and then the wavelet 

transformation is inverted to obtain a denoised version of the input function.  I describe 

and implement the basic method on both simulated and experimental trajectories in 

chapter 5, and I extend the method with smFRET-specific modifications in chapter 6.  It 

is shown that up to 75% of the shot noise contribution can be removed from the photon 

trajectories, thereby increasing the information content within the experimental results. 

Research Aim 4: Identify conformational dynamics of the agonist binding domain of the 

AMPA receptor. 

The wavelet denoising and photoblink filtering procedures were applied to 

experimental trajectories obtained from the agonist binding domain of the AMPA 

receptor, a neurological membrane protein that functions as an ion channel. This 
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receptor is a mediator of neurotransmission, and is a molecule of intense interest in the 

fields of learning and memory.  When the extracellular agonist binding domain of the 

AMPA receptor binds the agonist glutamate, the membrane protein undergoes a series 

of conformational shifts leading to a permeable cation channel, and the channel closes 

upon subsequent unbinding of the agonist.  Furthermore, the degree of binding cleft 

closure within the agonist binding domain is postulated [36] to control the extent of 

activation of this ion channel.  The conformational dynamics of this agonist binding 

domain are therefore important to understand. We performed smFRET experiments to 

observe these conformational dynamics.  Prior to denoising the smFRET trajectories, we 

find a smooth and featureless conformational distribution yielding little information as 

in the case of aV/VEGF.  However, after we denoise the trajectories with the wavelet-

based algorithm, we find persistent states within the conformational distributions.  

Specifically, the agonist bound protein was predicted to have four conformational states 

via molecular dynamics simulation [2, 3], which corresponds exactly to the number of 

states found in our single-molecule analyses, thereby providing experimental evidence 

for the theoretical prediction.  These results are described in chapter 7. 

Research Aim 5: Develop a combination model involving coarse-grained molecular 

dynamics and stochastic photon kinetics for simulation of single-

molecule experiments.  

The discrete nature of the results of single-molecule experiments causes them to 

often veer from the ensemble average.  The source of such disagreement may lie within 

the realm of dynamic disorder, as in the AMPA receptor system, or may lie within the 
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realm of photophysics as in the pi-pi stacking interactions observed between cyanine 

fluorophores and unpaired nucleobases within single-stranded DNA [29].  To 

differentiate between such occurrences, one must know the statistical manifestation of 

such photophysical behavior within the experimental data so that it may be objectively 

and appropriately identified.  To provide such insight, I develop a combination model 

that is comprised of both molecular and photophysical components.  Specifically, a 

coarse-grained model of a system, described in Reznik, et al [9], consisting of a charged 

organic fluorophore, rhodamine 6G (R6G), diffusing within a charged polystyrene 

sulfonate (PSS) polymer brush is constructed, and stochastic Monte Carlo methods are 

used to generate synthetic photon trajectories as one would obtain from FCS 

experiments.  A coarse-grained description of the excited state fluorophore is 

constructed and placed within a simulation volume containing a coarse-grained 

description of the polymer brush. Molecular dynamics trajectories are obtained, and 

these trajectories are then used along with a Gaussian irradiance profile to generate the 

synthetic trajectories. The end result is a simple, effective simulation that contains both 

molecular and photophysical information for the characterization and differentiation of 

such phenomena.  The details of this research aim are discussed in chapter 8.      
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Chapter 2  

 

 

Experimental and Analytical Methods 

This chapter contains descriptions of the relevant optical and experimental 

techniques, as well as descriptions of the methods by which the data are analyzed and 

the basic concepts behind these methods.  We begin by describing the optical system 

and the concepts of the two experimental methods that will be featured in the later 

chapters.  We continue to describe in detail how the data are processed and 

categorized, and describe statistical tests used in determining whether or not a 

trajectory contains contamination.  In the last section, we discuss the details of several 

analytical methods that will be prevalent in the following chapters.  These methods 

include curve fitting methods as well as other kinetic analyses and simulations such as 

waiting time distributions, hidden-Markov models (HMMs) kinetic Monte Carlo 

simulations.  

2.1 Optical Aspects of Scanning, Confocal, Single-Molecule Microscopy 

2.1.1 The Optical System 

The inverted microscope is the centerpiece of the optical system.  It is equipped 

with an objective lens, which, for the purposes of the experiments described here, is 
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typically a 100x magnification objective lens with a numerical aperture of 1.3. The 

microscope is also equipped with a piezoelectric stage capable of 3-dimensional 

movement with nanometer precision.  The translational scale along the two horizontal 

axes of the stage is 100 µm, and is 200 nm in the vertical dimension.  We position a 

sample atop this piezoelectric stage to provide the ability to translate our sample with 

such 3-dimensional precision. Excitation comes from a continuous wave, 532 nm laser 

source that is often diverted through various optics, such as neutral density filters, beam 

profilers, and polarizing optics prior to reaching the microscope objective.  After passing 

through the objective, the incident beam is focused within the sample volume, exciting 

a small volume of the sample. 

 Fluorescence from the system under observation within the excitation volume is 

collected by the same objective lens (epifluorescence), and sent along the detection 

path.  The fluorescence first transmits through an optical filter designed to reflect 

wavelengths shorter than the excitation wavelength, then transmits through a notch, or 

band-stop, filter with wavelength range of +/- 10 nm around the central wavelength, 

532 nm.  After this filter, the fluorescence is imaged onto one of two detectors.  The 

nature of this separation of the incident light onto the detectors depends on the 

experiment. 

In the case of smFRET, the light incident on the detectors is separated by 

wavelength such that light at shorter wavelengths reflects from an optical filter that is 

designed to pass longer wavelengths.  This is known as a long-pass optical filter, or 

equivalently, a dichroic mirror.  As such, the longer wavelengths are transmitted by the  
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filter.  We position one detector 

to collect the shorter 

wavelengths, and the other 

detector to collect longer 

wavelengths, and this enables the 

experiment to separately record 

numbers of photons emitted by 

the donor and acceptor fluorophores in a smFRET experiment. The first difference in FCS 

experiments involves the use of an optical aperture, or pinhole, in the detection path.  

The pinhole serves to maintain the confocal condition required by FCS by rejecting 

emission that is out of focus.  The next difference lies in the separation of the 

fluorescence onto the two detectors.  Instead of separating the fluorescence by 

wavelength, a polarizing beam splitter is used to separate the incident light into its 

parallel and perpendicular components.  Such detection of the components of 

polarization allows are orientational as well as translational information to be extracted 

from the FCS experiments.  Lastly, photons pass through bandpass filters that are 

designed are to reject any wavelengths that are out of range for the fluorophore(s) used 

in the experiment.  These filters are positioned in front of one of two avalanche 

photodiode detectors in single-photon counting mode.    

2.1.2 Concepts of FRET 

In this section we discuss the concepts of fluorescence, or Förster, resonance 

energy transfer.  The theory was originally published in 1948 by Theodor Förster.  In this 

 

Figure 2.1.  The scanning, confocal FRET/FCS setup. 
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theory, the excitation energy of an electronically excited fluorophore, the donor, is 

transferred via a nonradiative mechanism to another fluorophore with similar electronic 

characteristics, the acceptor.  This efficiency of this energy transfer is proportional to 

the square of its rate constant.  This rate constant is dependent on the inverse third 

power of the radial distance r between the donor and acceptor fluorophores, so the 

efficiency of energy transfer is dependent on the inverse sixth power of this distance.  

Specifically, we have 

  
 

  (   ⁄ ) 
                                (   ) 

Here, R0 is a quantity known as the Forster radius.  This is the distance, which is specific 

to a particular pair of fluorophores, at which the efficiency of energy transfer is at 50%.  

It is given by the equation 

   
   (    ) 

  ( )

         
                    (   ) 

The parameters involved in this equation are the quantum yield of the donor, QD, the 

dipole orientation factor, κ2, the spectral overlap integral between donor emission and 

acceptor absorption, J(λ), the refractive index of the medium, η, and Avogadro’s 

number, NA.   

Furthermore, we may relate the efficiency of energy transfer to the intensities 

observed to be emitted from the acceptor, IA, and the donor, ID in the following manner, 

  
  

     
                                           (   ) 
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This equation allows for the determination of energy transfer efficiency in an 

experimental setting.  Single-molecule FRET experiments are typically carried out by 

tagging the molecule(s) of interest with donor and acceptor fluorophores, and using an 

optical setup similar to the one described above.  There are many complications, 

however.  These complications include issues such as photoblinking and detector shot-

noise, which will be discussed at length in the upcoming chapters.    

2.1.3 Concepts of Fluorescence Correlation Spectroscopy 

In this section we discuss the concepts of fluorescence correlation spectroscopy 

(FCS).  FCS uses the fluorescence characteristics of some probe molecule to determine 

its diffusion behavior.  This involves placing a sample containing the system to be 

studied, that contains the probe molecule, on a setup similar to the one described 

above and measuring fluorescent intensities as the molecule diffuses through the focal 

volume created by passing excitation light through the microscope objective.  

Construction of autocorrelation function of this intensity allows for the determination of 

diffusive properties within the system. 

We construct this autocorrelation function G(τ) with the deviation of the local 

intensity from the mean intensity, δI(t), with the equation 

 ( )  
〈  ( )〉〈  (   )〉

〈 ( )〉 
                (   ) 

Using the Gaussian irradiance profile of the 1/e2 irradiance volume, we may relate the 

intensity autocorrelation to the radius r0 and long axis z0 of the Gaussian ellipsoid 
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describing the focal volume, and to the characteristic diffusion time of the probe 

molecule, τD  

 ( )   ( ) (  
 

  
)
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(
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       (   ) 

This characteristic diffusion time may be related to the Stokes-Einstein diffusion 

constant D, by the relation 

  
  
 

   
                                 (   )  

FCS is often used to study transport properties within various experimental 

systems that range from biological systems to inorganic nanoparticles to charged 

environments.  There are useful variations to the basic method, such as those that 

translate the focal volume in one dimension as time evolves to measure directed 

transport, and others that use polarization-dependent detection to measure the 3-

dimensional orientation of the probe molecule as it evolves with time. 

2.2 Methods of Data Processing 

The methods by which the data are processed, that is, the methods by which the 

data are categorized and stored, play a central role in in the accessibility of the data for 

analysis at a later time.  Careful attention to detail in the initial stages saves 

considerable time in future analyses.  This section describes these initial processing 

steps and finishes with basic calculations and statistical tests that are used to determine 

the validity of each trajectory in the data set.  

2.2.1 Processing smFRET Trajectories 
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Typically, raw smFRET data, i.e., the experimental measurements obtained 

directly from the detectors, consists of two discretely binned vectors, one containing 

acceptor photon counts and the other containing donor photon counts.  More 

specifically, each discrete bin contains the number of photon counts recorded on some 

uniform time interval.  We describe these bins as acquisition bins.  The time interval 

spanned by an acquisition bin is typically on the order of 1 ms, and will be taken to be 

such in this discussion.  This type of discrete interval in time is sometimes called the 

sampling interval, or inversely equivalently, sampling frequency. 

Due to the Poisson noise inherent to the detection method, these 

measurements must typically be sampled at a longer interval for analysis.  In this 

process, which is sometimes referred to as ‘binning up’, acquisition bins that fall within 

a certain, longer time interval, say 10 ms, are added together to produce a single value 

for that particular sampling interval.  These 10 ms sampling intervals are referred to as 

analysis bins.  This action is performed to over the entire signal to produce a new signal 

with 10 ms sampling intervals.  

Increasing the sampling interval increases the number of photons within each 

analysis bin. Because the noise within the acquired signal is a Poisson noise whose 

variance scales as the square root of the number of occurrences, an increase in the  

number of photons results in a relative decrease in the noise contribution to the overall 

signal.  A smaller noise contribution leads to more accurate calculations.        

After increasing the signal’s sampling interval, we can now distinguish three 

distinct regions within the trajectories.  Fig. 2.2 shows an idealized acceptor trajectory in  
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Figure 2.2.  Regions in an smFRET time trajectory.  The region to the far left 

shows the FRET region, the center region shows the crosstalk region, and 

to the right is the background region. 

red along with its counterpart donor trajectory in blue.  The shaded areas indicate the 

areas of the trajectory that we refer to as the background region, the crosstalk region, 

and the FRET region.  These regions consist of three differing photophysical situations.  

Namely, the background region occurs after both fluorophores have photobleached, the 

crosstalk region after the acceptor has photobleached but while the donor is still active, 

and the FRET region while both fluorophores are still active.    

These regions are selected manually within a custom graphical user interface 

(known as fretchop), and the trajectories are processed, or ‘chopped’ into their 

component regions.  Average background and crosstalk, defined as leakage of donor  

photons onto the acceptor detector, values are obtained, statistical exclusion tests are 

performed, and FRET efficiency values are calculated at each analysis bin.  Ensemble 

distributions of photons, efficiencies and background, are compiled as well.  Output 

plots containing time trajectories (photons and efficiencies), histograms, and all relevant  
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statistics are then rendered to 

portable document format.  Each 

raw trajectory, its counterpart at 

increased sampling interval, each 

FRET, background, and crosstalk 

region, as well as all the relevant 

statistics, filenames, and 

exclusion criterion are redundantly saved in a MATLAB file format.  One copy contains 

information about that particular trajectory, and the other copy exists within a larger file 

containing all information about all trajectories within a particular set.   

Background, crosstalk, and efficiency calculations are described in detail in 

Section 4.2.  The statistical exclusion tests are described in the next Subsection 2.2.2. 

The methods discussed in the entirety of Section 2.2.1 form the framework for a FRET 

analysis package, that was developed and coded in MATLAB, and implemented in the 

graphical user interface known as fretchop. A screenshot of the interface is shown in Fig. 

2.3. 

2.2.2 Statistical Tests for Trajectory Exclusion 

Often, a FRET trajectory will be contaminated by additional photons from an 

external source.  This external source may be an additional fluorophore attached to a 

biomolecule, possibly a malfunction in the microfluidic flow system, or it could be 

another contaminant altogether.  It is therefore prudent that we develop means to 

identify trajectories that contain contamination from external sources. We must, 

 

Figure 2.3.  Screenshot of the FRET analysis package. 
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however, avoid the introduction of bias by simply excluding those trajectories that we 

deem to be visibly contaminated.  We must instead develop methods to identify this 

behavior statistically, and apply this statistical test to all trajectories within a particular 

set.   

We identify such sets by their time and condition of acquisition.  All trajectories 

within a set are acquired sequentially in time under the same experimental conditions 

within the same experimental sample. Statistical exclusion tests are not performed 

across differing sets of trajectories.  

The first and simplest statistical test is a test of the local background 

measurement.  If the conditions between each acquisition are taken to be equivalent, 

then the distribution of background measurements across a set of trajectories would be 

normally distributed within some standard error.  Therefore, if a trajectory’s background 

measurement is an outlier to this distribution, there is a local contamination within this 

trajectory, and we are provided a statistical means to exclude it from our analysis.  In 

the case of smFRET trajectories, we determined outliers to deviate from the mean 

measurement by more than 2 standard deviations. 

The second statistical test is based on the sum (acceptor plus donor) photon 

counts within the FRET region of a particular data set.  The method is analogous to the 

statistical test for background, but the mean of the sum of acceptor and donor counts 

within each trajectory is used in place of the background measurement.  This test is 

necessary for the exclusion of trajectories whose photon counts are not large enough to 

yield accurate calculations relative to the rest of the trajectories in the set. The 
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disproportionate error resulting from these trajectories skews the results of wavelet and 

state-finding algorithms, so it is important that these trajectories be excluded from 

analyses.         

The third statistical test concerns the temporal length of the FRET region of the 

trajectories.  Trajectories that are very long relative to the rest of the set have negative 

effects of the analyses.  To avoid the over- or underrepresentation of any one 

molecule’s behavior in the overall picture, we develop a method to exclude the very 

long and very short, relative to the mean of the data set, trajectories.  This method is 

comprised of developing a cumulative exponential probability distribution based on the 

mean length of the FRET region of each trajectory, and then excluding very short 

trajectories with probability less than 5% and those with probability greater than the 

top 5% of this distribution.  This test therefore provides a very efficient means to avoid 

overrepresentation of behavior within a very long trajectory that may, in fact, be rare 

behavior local to only the one trajectory.   

2.3 Methods of Data Analysis 

2.3.1 Curve Fitting 

All fits of all data sets are nonlinear least squares regressions whose parameters 

have been further optimized by a Nelder-Mead unconstrained simplex optimization.  In 

general, the method of least squares seeks to optimize a parametric model function 

with respect to some set of observable data.  The model function represents some 

hypothesis about some observable data set, and the least squares regression is a test of 
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said hypothesis.  The parameters of the model function are independent variables that 

are adjusted to conform, if possible, to the characteristics of the particular observable. 

Most often we use a nonlinear least squares regression to avoid errors 

associated with linearization.  An example of a nonlinear model function is an 

exponential function 

 (   )      
                          (   )  

Here, β0 and β1 are the parameters to be optimized, and x is the independent variable.  

The regression’s objective is to find the values of the parameters of the model function 

that minimize the sum of squared residuals.  The sum of squared residuals, where di are 

the observable data, is expressed as 

  ∑(    (    )

 

)              (   )  

This quantity represents what is often called the unexplained variance.  This quantity is 

“unexplained” because it represents variation in the data that isn’t described by the 

model.  In conjunction with the sum of total squared error Stot  

     ∑(  
 

 〈 〉)                    (   )  

we obtain the coefficient of determination reported in all fits 

      
 

    
                               (    )  

 

2.3.2 Kinetic Analysis via Waiting Time Distributions 
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Suppose we have a time trajectory describing the occupation of two states, A 

and B, such as that obtained from a 2-state hidden-Markov model of a smFRET  

trajectory.  We wish to extract the 

kinetic rate constants for transitions 

between these two states from this 

trajectory.  One method to accomplish 

this is via the distributions of waiting 

times before transition from one state 

to the other.  For the two state system 

under consideration with states A and 

B, we compile a histogram of the 

waiting times prior to transition out of 

state A, and similarly compile a 

histogram for state B.  Considering that 

the transition lifetimes of each distribution contain only the transitions out of the 

particular state, any transitions leading back into the same state need not be considered 

in this analysis.  This means that the distribution of state lifetimes will then be 

exponentially distributed.   

In the case of our two state system, this distribution is described by a 

monoexponential distribution with escape rate k = kA or kB, depending on whether we 

are analyzing the transition rate from A to B or from B to A, respectively.  We may 

describe this distribution with the equation 

 

Figure 2.4.  Dwell time analysis.  A) shows 

the dwell time distribution of state A with 

≈2s lifetime, and B) shows that of state B 

with slightly longer lifetime.   
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Here, the subscript i refers to either state A or state B.  This equation allows us to fit the 

waiting time distributions to exponential decays, and this leads to the rate constants for 

transitions between states.  This process is illustrated in Fig. 2.4.     

2.3.3 Hidden Markov Models 

 Hidden Markov modeling (HMM) is a mathematical method for determining the 

most likely sequence of states in a trajectory.  The hidden aspect of the model is derived 

from the assumption that the trajectory is contaminated by noise, and that the states 

are hidden from the observer by this noise.  The model also assumes that the kinetic 

transitions in the trajectory are Markovian, i.e., they are stochastic processes in which 

the current state of the system depends only on the state immediately prior, and not on 

any other past or future states.  The HMM relies on a pair of probabilities that are 

sometimes called the transition and emission probabilities.  

The transition probabilities are the probabilities that the state of the system will 

change from its current state to one of possibly many other states after some particular 

amount of time has elapsed since the last change occurred.  These probabilities are 

related to the kinetic rates of transition among the states in the system.  The other 

probability measure used in the HMM is the emission probability.  This probability 

examines the likelihood that a state located at some central value in the observable 

measurement “emits” a particular observable data point.  For example, the HMMs most 

commonly used in smFRET target a the probability that the occupation of a certain 

state, characteristically located near some central efficiency with normal probability  
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about that efficiency, results in the 

observation of a particular efficiency.  

These transition and emission 

probabilities are multiplied to give the 

total probability that the system 

transitions between two states at a 

particular time.  HMMs were developed 

in the context of single-molecule time 

series by Andrec, et al [21].  

In the implementation of the HMM, the most likely sequence of events is 

typically extracted with an algorithm such as the Viterbi algorithm [37].  Then the 

transition probabilities and the locations and widths of the states are used as 

parameters in an optimization algorithm that iterates until it converges on parameters 

that yield a maximum in total probability.  This procedure requires that guesses as to 

the number of states, and to the states’ locations and widths be input to the 

optimization algorithm.  The HMM acting on a smFRET trajectory is shown as an 

example in Fig. 2.5.  

2.3.4 Stochastic Modeling and Kinetic Monte Carlo Simulations 

 Kinetic Monte Carlo simulations are a simple and effective method to simulate 

the temporal behavior of a system with discrete states whose transitions obey 

exponential kinetics.  The stochastic behavior of the waiting times between transitions is 

 

Figure 2.5.  The HMM (green) acting on 

a noisy, stationary efficiency trajectory 

(blue). 



25 
 

simulated in a Metropolis Monte Carlo [38] style by selecting a uniformly distributed 

random number to define a particular waiting time. 

 Specifically, the waiting time distributions produced by the kinetic rate of 

transition between a particular pair of states are randomly sampled to produce a time 

trajectory that is comprised of a series of waiting times.  In the context of smFRET 

trajectories for systems with discrete states, we may simulate trajectories for a system 

with known efficiency states and transition rate constants.  We first define these 

efficiencies and rates then generate state-to-state trajectories via kinetic Monte Carlo 

methods until we meet a predetermined time cutoff.  We use the efficiencies of these 

states to generate acceptor and donor photon trajectories.  Shot-noise and background 

contamination are sampled into the photon trajectories according to Poisson statistics. 

2.3.5 Molecular Dynamics Simulations 

 All molecular dynamics simulations were performed in GROMACS version 4.5.5 

[39-42].  The Groningen machine for molecular simulation is open-source molecular 

modeling software that is capable of performing simulations of many different systems 

under many different conditions.  Simulations in this work were constructed specifically 

for GROMACS by the production of 3 input files.  The first file is a structure file 

containing the dimensions of the simulation volume and the coordinates for each atom 

included in the simulation.  The second file is a topology file that defines the parameters 

for all bonded and nonbonded, i.e., Coulombic and Lennard-Jones forces, interactions to 

be used in the simulation.  Lastly, the molecular dynamics parameter file contains the 

simulation parameters.  These include the type of integration to be performed, the 
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number and length of time steps, physical constants such as friction coefficients, and 

cutoff radii.  
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Chapter 3 

 

 

 

Dynamics of an anti-VEGF DNA Aptamer: A Single-Molecule Study 

 

 

The contents of this chapter were adapted from an article originally published in 

Biochemical and Biophysical Research Communications on August 22, 2008. 

Taylor, J.N.; Darugar, Q.D.; Kourentzi, K.; Willson, R.C.; Landes, C.F.  “Dynamics of an anti-VEGF 

DNA Aptamer: A Single-Molecule Study.” Biochem. Biophys. Res. Comm.  2008.  373(2): 213-

218.  

 

ABSTRACT 

Single-molecule fluorescence resonance energy transfer (SMFRET) was used to study 

the interaction of a 25-nucleotide (nt) DNA aptamer with its binding target, vascular 

endothelial growth factor (VEGF).  Conformational dynamics of the aptamer were 

studied in the absence of VEGF in order to characterize fluctuations in the unbound 

nucleic acid.  SMFRET efficiency distributions showed that, while the aptamer favors a 

base-paired conformation, there are frequent conversions to higher energy 

conformations.  Conversions to higher energy structures were also demonstrated to be 
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dependent on the concentration of Mg2+-counterion by an overall broadening of the 

SMFRET efficiency distribution at lower Mg2+ concentration.  Introduction of VEGF 

caused a distinct increase in the frequency of lower SMFRET efficiencies, indicating that 

favorable interaction of the DNA aptamer with its VEGF target directs aptamer structure 

towards a more open conformation. 

3.1 Introduction 

 The emergence of aptamers as a new class of therapeutic molecules [43] has 

necessitated an understanding of the relationships among structure, dynamics, and 

function of these molecules.  Aptamers are small molecules, typically oligonucleotides 

that have been optimized to bind specific biological targets [34, 35].  This binding can 

affect the biological process involving the target, thus causing aptamers to be potential 

therapeutics in many applications.  The work of Ruckman [44] lead to the development 

of pegaptanib for the treatment of age-related macular degeneration [45].  Pegaptanib 

became known as Macugen (Eyetech, Pfizer) upon approval by the FDA in 2004, 

becoming the first aptamer to be approved by the FDA for therapeutic use. 

VEGF is a signaling protein that is known to regulate angiogenic behavior of 

blood endothelial cells [30].  Hindrance of the VEGF-receptor interaction has been 

shown to reduce the rate of tumor growth in vivo [31], indicating that VEGF inhibition 

may be effective for disorders that are aided by neovascularization [32].  As a result, 

several anti-VEGF agents of diverse molecular composition, such as soluble VEGF 

receptors [33] and VEGF-binding antibodies [31], have been developed to inhibit 

angiogenesis. However, in the case of pegaptanib, it was necessary to make 2′-fluoro or 
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2′-methoxy substitutions to increase in vivo stability of the RNA aptamer [44].  DNA 

molecules lack this highly reactive hydroxyl group and are more resistant to nuclease 

degradation inside the cell.  In combination with their structural similarity to RNA 

aptamers as well as their high specificity for binding targets [46], DNA aptamers are 

promising therapeutic agents. 

A 25-nt DNA aptamer, with sequence 5′-CCGTCTTCCAGACAAGAGTGCAGGG-3′ 

and designation aV (anti-VEGF), has shown to have nanomolar binding affinity for VEGF 

[47].  Through a series of single-base substitutions, its binding affinity has also shown to 

be dependent on higher order structure in the aptamer [47].  Specifically, increased 

stability of the stem region results in considerable loss of VEGF-affinity [47], suggesting a 

relationship between structural flexibility and anti-VEGF activity of the aptamer.  

Because higher order structure in nucleic acids has been noted to be highly dependent 

on counterion concentrations [48-50], and multivalent cations in particular [51-54], it is 

therefore of interest to observe an experimental Mg2+-dependence in the structural 

dynamics of the aV aptamer. 

smFRET has often been used in combination with biomolecular systems [55-58].  

Specifically, it has been used successfully to measure nucleic acid structural dynamics as 

a function of counterion-dependence [59, 60], protein interactions [61], and 

complementary oligonucleotides [62, 63].  Advances in sample preparation and 

processing algorithms can make SMFRET even more useful by reducing or eliminating 

complications such as shot noise [64], fluorophore photoblinking [65], and state 
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assignments [20, 21], thereby enhancing the ability detect the presence of specific 

conformations. 

The immobilized aV aptamer’s structural fluctuations are characterized using 

SMFRET.  Global analyses reveal that a closed conformation is favored by the aptamer at 

2 mM Mg2+, but transformations to less-favored conformations are observed.  As 

predicted, the prevalence of higher energy states increases at decreased Mg2+ 

concentration.  We also observe that the aV-VEGF interaction is accompanied by a shift 

in the equilibrium structure towards a less-favored conformation, suggesting that 

association with VEGF results in a loss of base-pairing in the aV hairpin.  Lifetime 

analyses show that the aV-VEGF complex is not associated with a specific conformation 

under these conditions.  However, despite this observation, dissociation of the complex 

may be observed by a specific transition of the aptamer from an open conformation to 

one that is fully closed. 

3.2 Materials and Methods 

3.2.1 Sample Preparation  

Standard 22x22 mm glass microscope slides were cleaned with low pressure 

oxygen plasma (Plasmod, March Plasma Systems), and functionalized with Vectabond 

(Vector Laboratories, 20μL/mL in >99.9% acetone) by immersion in solution for 5 

minutes.  Functionalization was quenched by immersion in molecular biology (MB) 

grade water (HyClone, Thermo) for 30 seconds.  A 100:1 mixture of 5 kDa, methoxy-

terminated, N-succinimidyl polyethylene glycol (Fluka, 33% w/w PEG in MB water) and 5 
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kDa biotin-terminated PEG (NOF Corporation, 2.5% w/w in MB water), buffered with 

NaHCO3 (1% v/v, pH 8.0), was applied to each slide, atmospherically dried, and excess 

was rinsed with MB water. 

Custom hybriwell chambers, secure seal spacers (Grace Bio-Labs), coned ports, 

tips, and teflon tubing (Western Analytical Products) were used to construct a flow 

chamber that was secured to each slide.  Each slide was treated with 40 μL of 20% w/w 

streptavidin (Invitrogen) in 25 mM HEPES buffer (Sigma) for several minutes.  A 256 pM 

aptamer solution (10 μL, 5 nM aV in 188 μL, 25 mM HEPES) was denatured at 80˚C, 

annealed at 60˚C, and cooled at 0˚C after addition of 2 μl MgCl2 (1M, Sigma).  The 

aptamer solution was then added in ten 20 μL increments, and incubated in a closed 

atmosphere.  Typical coverslip coverage was 2-3 aptamers per 5 µm2.  Genie Plus 

syringe pumps (Kent Scientific) maintained flow of 2.5 mM HEPES buffer, 145 mM Na+, 2 

mM or 0.2 mM Mg2+, and an O2 scavenger – 4.3% w/w glucose, 1% w/w glucose oxidase, 

and 0.1% v/v catalase in MB water saturated with Trolox (6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid, Sigma) [66] – through the sample chamber 

during experimentation.  Effective VEGF concentration was 2.2 μM in all experiments. 

Modifications to the aV aptamer (Trilink Biotechnologies) are illustrated in Figure 

3.1A.  An 8-nt thymidine spacer equipped with a terminal biotin was attached to the 3′-

G25 to reduce surfacial interactions during experimentation.  The donor fluorophore, 

Cy3, was placed at 5′-C1, and the acceptor fluorophore, Cy5, was placed at A15.  VEGF 

was expressed as inclusion bodies in E. coli. The inclusion bodies were purified using 
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cation exchange chromatography, then refolded, and the protein was further purified 

using heparin affinity chromatography [67]. 

3.2.2 Data Acquisition and Analysis 

 Single-molecule trajectories were obtained using a Verdi V-6 diode-pumped  

laser (Coherent) operating at 532 

nm and ~1.1 W/cm2 excitation 

irradiance.  Emission from the 

donor/acceptor pair was 

detected on two channels using 

avalanche photodiode detectors 

(APDs, Perkin Elmer, Inc.), and a 

confocal microscope (Carl Zeiss 

MicroImaging, Inc.) equipped 

with a piezo stage (Physik 

Instrumente).  Images were 

rendered by XPMPro (RHK 

Technology), and photons were 

counted by PMS (Becker & Hickl 

GmbH).  The experimental apparatus is illustrated in Figure 3.1B.  Raw trajectories were 

obtained at acquisition times of 100 μs or 1 ms by focusing the laser spot on a single 

molecule until both fluorophores photobleached.  To ensure that each trajectory 

 

Figure 3.1.  Modifications to the aV aptamer are 

shown in A).  Cy3 is attached at 5′-C1, and Cy5 at 

A15.  An biotinylated 8-T spacer is attached at the 

3′-G25.  The scanning confocal microscope is 

shown in B).  Optical filters are high-pass (HP), 

notch (N), or bandpass (BP) filters. 
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represented a single FRET pair, those that showed multi-step photobleaches were 

excluded from analyses. 

All analysis software was coded in-house using MATLAB (version 7.2.0.232, The 

Mathworks) with the exception of HMMs, which were compiled using the HaMMy GUI 

[20] (available at http://bio.physics.uiuc.edu/).  A processing algorithm binned each 

trajectory to 10ms time steps, subtracted background and crosstalk, and identified 

photoblinks.  Efficiency was calculated at each 10ms bin via EA = IA/(IA + ID), where IA and 

ID represent photon counts detected on each respective APD.  HaMMy searched for the 

presence of five states in each time trajectory.  Global analyses filtered trajectories that 

have low total signal, then compiled efficiency histograms of observed and modeled 

values.  Modeled efficiencies were used in lifetime analyses under the assumption of a 

three-state model.  All displayed fits are nonlinear least squares regressions that were 

optimized using a simplex-based algorithm. 

3.3 Results and Discussion 

3.3.1 The aV Aptamer without VEGF 

SMFRET analysis of the aV hairpin demonstrates that the aV aptamer favors the 

closed form as predicted by Mfold, but is also quite dynamic.  Figures 3.2A and 3.2B 

contain global histograms of aV SMFRET efficiencies.  Na+ concentration remains 

constant at 145 mM in both histograms, but the concentration of Mg2+ differs by an 

order of magnitude.  Figure 3.2A is compiled from 59 molecules at 2 mM Mg2+, and 

Figure 3.2B from 46 molecules at 0.2 mM Mg2+.   

http://bio.physics.uiuc.edu/
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The higher concentration of Mg2+ serves to stabilize the folded conformation of 

aV relative to the lower concentration.  This is shown in the histogram of modeled 

efficiencies Figure 3.2A (inset), where a striking 70% of the idealized efficiencies fall 

above the mean value.  We therefore conclude that the prevailing conformation of aV 

under these conditions corresponds to either three or four base pairs (See 

Supplementary Material).  However, it is important to note that the efficiency 

distribution broadened more than can be attributed to experimental shot noise.  Thus, it 

may also be concluded that there are considerable conformational fluctuations away 

from the base-paired aV structure. 

Significant broadening of the distribution shown in Figure 3.2B illustrates that 

these fluctuations are intensified at lower Mg2+ concentration.  The mean efficiency has 

shifted from 0.92 to 0.86, and the standard deviation has increased from 0.11 to 0.15.  

The histogram of modeled efficiencies shown in the inset of Figure 3.2B mirrors the 

observed efficiency distribution, and further emphasizes that fluctuations are more 

prevalent at lowered Mg2+ concentration.  The distribution stresses the importance of 

Mg2+ counterions to the stability of the folded state of aV, as the Na+ concentration was 

kept constant at 145mM. We can conclude that the free energy of the closed state is 

Mg2+-dependent, and that the conformational equilibrium shifts away from the closed 

conformation at lower Mg2+ concentration.   

To confirm that efficiency broadening in the aV system is due to structural 

fluctuations in its relatively weak 2 structure, aV FRET trajectories were compared to 

those of the HIV-1 transactivation response (TAR) DNA hairpin.  This hairpin has been  
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Figure 3.2.  Global ensemble histograms and SM time trajectories.  The histogram in 

A) was compiled 145 mM Na+ and 2 mM Mg2+, while B) displays Mg2+ dependence 

as the histogram was compiled at 145 mM Na+ and 0.2 mM Mg2+.  Corresponding 

HMM values are displayed in each Inset.  A representative aV time trajectory is 

shown in C), and that of TAR is shown in D). The trajectories illustrate the 

instability of aV 2° structure relative toTAR.  A schematic of TAR is shown in E). 

extensively studied [62, 63] by SMFRET techniques, and is calculated [68] to have 2° 

structure that is more stable than that of aV by an order of magnitude.  Figure 2C shows 

a representative trajectory of aV, and Figure 3.2D shows a trajectory of TAR.  A 

schematic of TAR is shown in Figure 3.2E.  Indeed, the aV trajectory shows discrete 

transitions between closed and open states, and the efficiency distribution is not 

Gaussian.  In contrast, the TAR trajectory and its corresponding distribution, reflect that 
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its hairpin structure retains maximum base pairing without significant fluctuation.  This 

comparison confirms the instability of the base-paired conformation of the aV aptamer 

in relative to that of a more stable hairpin. 

3.3.2 The aV Aptamer with VEGF 

The addition of VEGF results in the distribution presented in Figure 3.3A.  The 

ionic conditions in these experiments were identical to those used in Figure 3.2A, and 

the histogram is compiled from 60 molecules.  It is clear from the histogram that 

introduction of VEGF induces a shift in the efficiency distribution, indicating that aV 

interacts with the VEGF protein.  The mean efficiency of this histogram is both lower 

and broader than its VEGF-free counterpart (0.85 ± 0.16), and a discrete structure 

appears at an efficiency of ~ 0.5.  This feature may appear as a result of the aptamer 

breaking its base pairs to form a complex with its VEGF target.  It is important to note 

that, although the global efficiency distribution indicates clearly that aV is interacting 

with VEGF, an irreversible product for the protein-aptamer complex cannot be 

distinguished.  It can be concluded from this information that the aV-VEGF interaction is 

dynamic and requires further analysis. 

 Therefore, the trajectories that compose the distribution in Figure 3.3A were 

examined.  It was found that trajectories generally fall into one of three subpopulations.  

The largest subpopulation is represented by the upper time trajectory in Figure 3.3B.  

These molecules show high and reasonably stable efficiencies, implying that they are 

mostly in a closed conformation.  A second subpopulation of molecules, represented by 

the middle trajectory in Figure 3.3B, frequently fluctuates between low and  
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Figure 3.3.  The aV aptamer in the presence of excess VEGF.  A) A global ensemble of 

observed FRET efficiencies.  This histogram was compiled at 145 mM Na+, 2 mM 

Mg2+, and 2.2 μM VEGF. HMM values are displayed in the Inset.  Selected single 

molecule EA trajectories (red) in the presence of excess VEGF along with their 

Markov-fitted trajectories (blue) are shown in B).  The histogram in C) is compiled 

from the trajectories in B). 

intermediate efficiencies.  The third family is represented by the lower trajectory in 

Figure 3.3B.  These molecules show low and reasonably constant efficiencies.  The 

trajectories in Figure 3.3B were compiled with no modification to produce the histogram 

presented in Figure 3.3C.  Visual inspection of this distribution shows qualitative 

agreement with the global distribution in Figure 3.3A, suggesting that the selected 
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subpopulations are accurate representations of aptamer dynamics that occur in the 

presence of VEGF. 

3.3.3 Transition Lifetime Analyses without the Presence of VEGF 

Kinetics of fluctuation in the aV aptamer were determined using lifetime 

analyses both in and out of the presence of VEGF.  State-to-state transitions and  

reactant state lifetimes were 

identified from hidden-Markov 

modeled trajectories.  A three-

state model was assumed for 

these analyses.  Details of this 

assumption are based on the 

three subpopulations of 

molecules discussed above and 

on further analysis described in 

supplementary material.  

Approximations of the efficiency 

ranges of each state were taken 

to be greater than 0.90 for a 

closed state (A), representing the 

base-paired forms of aV, 0.78 – 0.90 for a state (B) that represents intermediately base-

paired forms of the aptamer, and less than 0.78 for a state (C) that has no base pairs in 

the structure. 

Transition 
k without 

VEGF (s
-1

) 

k with 

VEGF (s
-1

) 

A → B 3.2 4.5 

A → C 1.7 2.2 

B → A 9.3 13.1 

B → C 8.0 5.7 

C → A 26.9 23.7, 1.5 

C → B 25.1 15.1 

 

Table 3.1.  Rate constants obtained by fitting each 

lifetime histogram to a single or double 

exponential decay with a bin time of 10ms.  

State A corresponds to the closed conformation 

of aV, state B to an intermediately base-paired 

conformation, and state C to a conformation 

having no base pairs. 
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 The pseudo-first order rate constants obtained from these analyses are 

presented in Table 3.1.  There are 404 total transitions in the hidden-Markov modeled 

trajectories at 2 mM Mg2+ without the presence of VEGF.  The lifetime distributions and 

the acquired rate constants confirm that, without the presence of VEGF at 2 mM Mg2+, 

the preferred conformation of the aV aptamer is a base-paired conformation, although 

there are frequent transitions out of this state.  Looking more closely at transitions from 

state A reveals that transition to state B is favored over transition to state C.  Transitions 

from state B reveal that transition to state A is slightly favored over transition to state C.  

Lifetime distributions of state C show that this state is quite unstable with much shorter 

lifetimes than the aforementioned states.  These data signify that intermediately base-

paired forms of the aptamer exist largely as intermediates in transitions between states 

A and C, but that transition to an intermediate conformation during a folding or 

unfolding process is not a requirement. 

3.3.4 Analysis in the Presence of VEGF 

The same analyses were performed on the aV trajectories obtained in the 

presence of VEGF, the rate constants are also reported in Table 3.1. These data show 

439 total transitions in the modeled trajectories.  It is suggested by an increase in the 

rates of transition out of state A that the aptamer’s initial interaction with VEGF is from 

a base-paired conformation.   Most strikingly, it is also found that the C → A transition 

lifetime is appreciably longer in the presence of VEGF.  This suggests that interaction 

with VEGF results in a stabilization of the aV aptamer’s fully open conformation. 
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 Lifetime distributions and 

exponential fits for the C → A 

transition are shown in Figures 

3.4A and 3.4B.  It can be seen 

from the lifetime distribution in 

Figure 3.4A that state C is short-

lived when VEGF is not present, 

and that the transition is well 

represented by an exponential 

decay.  In contrast, the 

distribution in the presence of 

VEGF shows a much longer 

transition lifetime.  IN addition, 

the distribution does not fit to a 

single exponential decay, but to a 

sum of two exponentials.  This 

suggests that we observe two 

separate processes.  Furthermore, by fitting to a sum of two exponential decays, we 

reveal a fast process with k1 = 23.7 s-1, and a slower process with k2 = 1.5 s-1.  The former 

is comparable to k = 26.9 s-1 from the VEGF-free case, therefore it is reasonable to 

conclude that the latter process may represent the dissociation of the protein-aptamer 

complex and the aptamer’s subsequent return to the closed conformation. 

 

Figure 3.4.  Lifetime analyses. Comparison of the C 

→ A transition in the absence of VEGF is shown in 

A).  The same transition in the presence of VEGF 

in B).  Transitions shown in A) are fit to a single 

exponential decay.  Transitions shown in B) are fit 

with a sum of two exponential decays. 
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3.4 Conclusions 

 We have used a series of SMFRET experiments to show that, without the 

presence of binding target VEGF, the aV aptamer favors a closed conformation.  Despite 

this preference, conformational fluctuations occur quite often.  Global analyses also 

showed an appreciable increase in the occurrence of less-favored conformations when 

Mg2+ concentration was lowered by an order of magnitude.  The addition of VEGF 

causes distinctive changes to the aptamer’s conformational equilibrium, and interaction 

of the aptamer with the VEGF protein is observed by the appearance of a stable, but 

reversible, conformation at low SMFRET efficiency.  Furthermore, by examining the 

hidden-Markov modeled trajectories in detail, we determined that interaction of the aV 

aptamer with the VEGF protein results in an additional pathway for the return of the 

aptamer from a fully open state to its most stable, closed conformation.  This is likely 

due to the release of VEGF by the complexed aptamer molecule. 

3.5 Appendix 

3.5.1 Lowest Energy Conformations 

The lowest free energy structure at experimentally relevant Mg2+ conditions is 

predicted by the Mfold DNA folding server [68] to have three base pairs as in Figure 

3.5A while the lowest energy structure at Mg2+ concentrations higher than experimental 

conditions is predicted to have four base pairs as shown in Figure 3.5B.  The Mg2+-

dependence of the free energy both structures is shown in Figure 3.5C for 

experimentally relevant conditions. 
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 3.5.2 The Three-State Model 

The assumption of a state model is necessary for lifetime analyses, so the 

distribution of modeled efficiencies at 2 mM Mg2+ (displayed in the inset of Figure 3.6A) 

was fit to Gaussian distributions of various orders. The accuracy of each fit was 

considered along with the relative legitimacy the number of states in each Gaussian 

distribution, and it was determined that a three state model, with Gaussian efficiency 

means of 0.58, 0.83, and 0.96, describes the system with enough precision to carry out 

these analyses.  The results of this nonlinear fit are displayed in figure S2A.  The 

nonlinear fit of observed SMFRET efficiencies (shown in Figure S2B) was obtained by 

fixing the mean efficiency of each Gaussian distribution to its corresponding value in the 

modeled efficiency distribution.  In order to determine if the assigned efficiency ranges 

were valid assumptions, the range of state B was systematically adjusted.  It was found 

that variations of the lower efficiency threshold on the interval 0.72 – 0.78, and of the  

 

Figure 3.5.  The free energy dependences of the two conformations shown in A) 

and B) are depicted in C), as calculated by the Mfold DNA folding server. 
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 upper threshold on the 

interval 0.88 – 0.92, had no 

effects on the outcome of the 

analyses.  This indicates that 

intermediately base-paired states 

of the aptamer have a discrete 

and well-defined SMFRET 

efficiency range, and that the 

assigned efficiency ranges are 

accurate descriptions of each 

state. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.  Nonlinear fits to triple Gaussian 

distributions.  The HMM-generated histogram at 

2mM Mg2+ is displayed in A).  The mean SMFRET 

efficiencies of each Gaussian function in this 

distribution (0.58, 0.83, and 0.96) were used to 

generate the triple Gaussian fit of the observed 

SMFRET efficiency histogram at 2mM Mg2+ in B). 
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Chapter 4 

 

 

Objective Identification of Photoblinks in smFRET Trajectories with Bayesian 

Inference 

 

The contents of this chapter are adapted from an article originally published in 

Biophysical Journal on January 6, 2010. 

Taylor, J. N., Makarov, D. E.,  Landes, C. F.  “Denoising Single-Molecule FRET Trajectories with 

Wavelets and Bayesian Inference.”  Biophys. J. 2010. 98(1):164-173. 

 

ABSTRACT 

Photoblinks are a considerable source of uncertainty in smFRET experiments.  Here, we 

present a method to objectively identify photoblinks are identified in single-molecule 

fluorescence resonance energy (smFRET) trajectories using Bayesian inference.  

Bayesian methods are developed to identify fluorophore photoblinks in the time 

trajectories.  Simulated data are used to quantify the improvement in static and 

dynamic data analysis. Application of the method to experimental smFRET data shows 

that it distinguishes photoblinks from large shifts in smFRET efficiency while maintaining 

the important advantage of an unbiased approach. 
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4.1 Introduction 

Reversible photoblinks that result in the fluorophore’s occupation of a non-

absorbing and non-emitting, or dark, electronic state [69-71] are a problematic source 

of noise in single-molecule experiments. Photoblinking arises primarily due to the triplet 

excited state of the fluorophores that are used in single-molecule experiments [28].  It is 

characterized in the data by a drop in the emission intensity of the fluorophore to zero 

for some amount of time, and then the return of the emission intensity to normal 

values. Photoblinking is particularly troublesome to smFRET measurements, where the 

occurrence of a photoblink causes many undesired photophysical phenomena [28]. 

 Many of the statistical analysis implementations require preprocessed data that 

is free of photoblinks, but their identification becomes an issue when considering that 

smFRET experiments are most often designed so that conformational shifts lead to 

changes in smFRET efficiency [57, 72, 73].  Furthermore, these events are most often 

removed manually, leading to bias in the smFRET time trajectories.  Therefore, an 

unbiased method of photoblink identification that recognizes photoblinks on all time 

scales is desirable.  Bayesian methods make use of observations in such a way as to 

provide insight into unknown events based on known properties of a system [74].  Such 

methods are often used in model [75] and hypothesis testing, and in the case of 

photoblinking events in smFRET time trajectories, we utilize the power of Bayesian 

inference to identify these events.   

In this chapter, we first define and describe the characteristics of smFRET photon 

trajectories; then we describe the Bayesian method in terms of these characteristics.  
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Next, we apply the method to a single photon trajectory; then extend the analysis to a 

collection of photon trajectories.  We then test the method against a simple and 

commonly used method, and find that the Bayesian method significantly outperforms 

the simple, subjective method.  Lastly, we test the Bayesian method in relation to the 

equilibrium constant of a binary equilibrium, and find that the Bayesian method 

performs well throughout a large range of equilibrium constants.    

4.2 Parameters in smFRET Trajectories 

The acquisition of a two-channel smFRET time trajectory results in two data 

vectors that contain acceptor and donor photon counts in discrete time steps.  We term 

these numbers of detected photons as NA for acceptor and ND for donor.  The standard 

collection window contains both acceptor and donor fluorophore photobleaching 

events, and results in three distinct regions within each of these vectors: background, 

crosstalk, and FRET regions, as illustrated in Fig. 2.1.   The utilization of photobleaching 

events on both fluorophores involved in these measurements allows for the collection 

of local background signals for each single molecule.  Poissonian shot-noise in each of 

the background signals arises, producing a Poisson distribution around each channel’s 

mean number of photons.  We define the mean and variance of these distributions of 

on detection channel α as bα (α = A, D). 

Imperfect separation of donor and acceptor photons by a dichroic mirror leads 

to the observation of donor-emitted photons on the acceptor detector.  This is referred 

to as crosstalk, and we produce the crosstalk region by observing a molecule after 

photobleaching of the acceptor but before that of the donor.  Due to the absence of 
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acceptor fluorophore emission in this region, photons detected above background levels 

on the acceptor channel are assumed to be emitted by the donor fluorophore.   The 

number of crosstalk photons is thus estimated as          .  Because the crosstalk 

photons are emitted by the donor but counted as acceptor photons, the actual number 

pD of donor-emitted photons in the crosstalk region is different from the number of 

observed photons ND, and is estimated as 

pD  ND  bD    px                                                                         (   )  

The ratio of the number of crosstalk photons px to the number of photons emitted by 

the donor fluorophore pD is calculated at every time step in the region, and the mean of 

these values is taken to be the crosstalk parameter 

x  〈px pD⁄ 〉                                                                                   (   )  

To estimate the efficiency of energy transfer in the FRET region of an smFRET trajectory, 

again we must correct for the difference between the numbers ND and NA of detected 

photons, respectively, on the donor and the acceptor channels, and the numbers nD and 

nA of photons actually emitted by the respective fluorophores. The latter can be 

estimated as 

nD  ND  bD    nx                                                                          (    ) 

nA  NA  bA  nx                                                                          (    ) 

Here Nα and bα (α = A or D) are defined previously, and nx is the number of crosstalk 

photons calculated at each time step using the relation 

       
 

   
(     )                                                       (   )  
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The energy transfer efficiency, E, is calculated at each time step in the FRET region using 

the standard relationship 

    
  

      
                                                                                  (   )  

In the context of the present discussion, we refer to the efficiency E as “observed 

efficiency”.  We determined the correction factor commonly known as γ [64, 76] to be 

within error of unity for our apparatus using the fluorophores Cy3 and Cy5. 

4.3 Bayesian Inference to Detect Photoblinks 

Photoblinks involving either fluorophore are characterized by observation of a 

sharp drop in the detected number of acceptor photons.  In the instance of a donor 

photoblink, photon counts on both channels fall to background levels due to the donor’s 

occupation of a dark electronic state, thereby rendering it unable to transfer energy to 

the acceptor fluorophore.  Similarly, during an acceptor photoblink, donor emission is 

observed in the absence of energy transfer, and the numbers of detected acceptor 

photons during fall to levels similar to those observed in the crosstalk region. 

As a means to detect photoblinks, Bayes’ Law [74] is used to estimate the 

probability that the detected number of acceptor photons NA arises due to a photoblink.  

In order to accomplish this, we need the conditional probability distributions of NA given 

two alternatives, the “no blink” hypothesis (NB) and the “blink” hypothesis (B).  After we 

obtain these distributions, we use Bayes’ Law to reverse this logic and calculate the 

probabilities of each hypothesis given the observation of acceptor intensity NA.  This 

allows us to select those time steps that arise due to a photoblink, and remove them 

from the time trajectory in an unbiased manner.   
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Here we describe the Bayesian photoblink detection algorithm in detail.  We 

need the conditional probability distributions of the acceptor photon count NA given our 

two alternatives, the “blink” hypothesis, and the “no blink” hypothesis.  A Poisson 

process describes photon emission in each case, but their properties differ. Specifically, 

in the absence of a blink the distribution of NA can be approximated as 

 (     )  
 

(     )
 
 

   [ 
(      )

 

    
]                        (   )  

where     〈  〉  is the calculated mean of detected acceptor photons for the 

trajectory under consideration.  In writing Eq. 4.6, we have replaced the Poisson 

distribution by a Gaussian one whose mean and variance are both equal to μNB.  This 

approximation is valid assuming μNB >> 1, which is always the case for typical time steps 

used (~10 ms). 

Similarly, the conditional probability distribution for NA given the “blink” 

hypothesis can be written as a normal distribution. To calculate its width and its mean 

we note that the mean number of detected acceptor counts arising from such a 

situation will be the same that arises in the crosstalk region.  We express this mean as 

    〈  〉   〈  〉                                                                        (   )  

where 〈  〉 is the mean of the acceptor background signal, x is the crosstalk value as 

calculated from Eq. 4.7, and 〈  〉 is the mean of donor fluorophore-emitted photons 

over the FRET region as calculated from Eq. 4.3a.  Again, we note that the width of this 

distribution is induced by shot-noise, and thus assume the distribution’s variance to be 
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equal to its mean, μB.  These assignments result in the following expression for the prior 

probability distribution of NA given the “blink” hypothesis: 

 (    )  
 

(    )
 
 

   [ 
(      )

 

   
]                               (   )  

The posterior probability of the blink hypothesis B given the observation NA is now given 

by Bayes’ theorem [74]: 

 (    )  
 (    ) ( )

 (    ) ( )   (     ) (  )
                       (   )  

where P(B) is the prior probability of hypothesis B and P(NB) is the prior probability of 

the no blink hypothesis NB. 

To evaluate Eq. 4.9 we need the probabilities P(B) and P(NB).  These probabilities 

represent the probability of the hypothesis H (= B or NB) being true prior to taking the 

observation NA into consideration.  We do not assume to know these values in advance, 

but instead obtain self-consistency through an iterative process.  Initial guesses of P(B) = 

0.001 and P(NB) = 0.999 are input, each posterior probability is calculated at each time 

step, and those having Bayes factors – i.e., the ratio of P(B|NA) to P(NB|NA) – greater 

than 2 are labeled as blinks.  The fraction of time steps labeled as photoblinks is defined 

as the blink fraction, fB.  This value is compared with the value of P(B) at each iteration.  

Unless a deviation between these values of less than 5% is obtained, the substitutions 

 ( )      , and  (  )        are made, and the process repeats until this condition 

is met. 

Fig. 4.1 illustrates the process of the identification and removal of photoblinks 

from an acceptor fluorophore-emitted time trajectory.  Fig. 4.1a depicts a trajectory that  
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Figure 4.1.  Photoblinks in an smFRET time trajectory.  a) An acceptor photon count 

trajectory that contains photoblinks on long and short time-scales.  b) The calculated 

posterior probability of the occurrence of a photoblink [77] and the absence of a 

photoblink (black) at each time step.  c) The prior probability distributions of a 

photoblink (black, left) and the absence of a photoblink (red, right).  d) The same 

acceptor photon trajectory with photoblinks removed. 

contains both long and short time-scale photoblinks.  Fig. 4.1b shows the posterior 

probabilities evaluated at each time step from the probability distribution of the blink 

hypothesis B.  The conditional probability distributions P(NA|B) and P(NA|NB) are shown 

in Fig. 4.1c.  Lastly, the acceptor fluorophore-emitted photon counts after removal of 
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time steps that contain photoblinks are shown in Fig. 4.1d.  The time steps that are 

removed Bayes factors greater than 2, which is chosen because the number of data 

points removed becomes, to a large extent, constant for Bayes factors larger than 2.  

Typical Bayes factors obtained for time steps containing photoblinks are on the order of 

1010. 

A caveat arises in the preceding logic in that, if one is searching for smFRET 

efficiencies approaching zero, then one cannot distinguish low efficiencies from 

acceptor photoblinks.  However, if experiments are designed such that low efficiencies 

cannot be ‘real’ observations, as will be addressed in more detail below, or if 

photoblinks are typically on a much faster time scale than experimental observations, 

this caveat can be avoided entirely. 

4.4 Photoblink Detection in Simulated Data 

In order to assess the strengths and weaknesses of the photoblink detection 

method, we generate simulated smFRET trajectories using the kinetic Monte Carlo 

method [78-81], and apply the photoblink detection algorithm to the simulated data.  

We simulate a three-state system that represents the equilibrium of two efficiency 

states having central efficiencies of 0.8 and 0.2, respectively, as well as a photoblink 

state that represents both acceptor and donor photoblinks.  An equilibrium constant, 

Keq, of 0.4 is chosen for the 0.8 ↔ 0.2 equilibrium.  The average photoblink lifetime is 

described by exponential kinetics, and is chosen such that realistic photoblinking 

statistics are obtained [82].  The lifetimes of states 0.2 and 0.8 are also described by 

exponential kinetics, and are chosen to mimic realistic physical conditions [83].  After  
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the simulation generates the 

states that are present at each 

time step, shot-noise laden 

acceptor and donor photon 

trajectories are constructed 

from the simulated state 

trajectories.  The photoblink 

detection algorithm is applied 

to the constructed photon 

trajectories, and time steps 

identified as photoblinks by the 

algorithm are removed.  State lifetimes are extracted from the simulated data both 

before and after photoblink detection as a means to obtain the forward and backward 

rate constants for transition between the two real states.  The equilibrium constant is 

estimated from the ratio of these rate constants as well as the ratio of the occurrences 

of each state in the efficiency distribution. 

As shown in Table 4.1, the photoblink detection algorithm removes 99.8 % of the 

total number of generated photoblinks.  Additionally, the algorithm’s selectivity is 

demonstrated by the removal of only 1.8 % of the actual data points.  Even in the 

presence of shot-noise, state 0.2 is only marginally affected by the removal of 

photoblinks, as a meager 5.8 % of the data points originally assigned to this state are 

removed during photoblink detection. 

 
Before     

Blink Filter 

After    

Blink Filter 

Total Data Points 100,078 74,594 

No. of State 0.8 52,665 52,651 

No. of State 0.2 23,218 21,882 

No. of Blinks 24,195 52 

% Blinks Removed - 99.8 % 

No. Identified as Blinks - 25,484 

% State 0.8 Removed - < 0.1 % 

% State 0.2 Removed  - 5.8 % 

Table 4.1.  Statistics of simulated data before and after 

photoblink detection. 



54 
 

Fig. 4.2 illustrates the data simulation and the application of the photoblink 

detection algorithm in more detail.  A sample acceptor and donor photon trajectory is 

shown in Fig. 4.2a, demonstrating the following chemical and photophysical transitions: 

transitions between the two designated FRET states, donor photoblinks, and acceptor 

photoblinks.  Fig. 4.2b contains the efficiency distribution of the simulated data prior to 

photoblink detection, and Fig. 4.2c shows the efficiency distribution of the simulated 

data after photoblink detection.  This comparison demonstrates that the denoising 

algorithm effectively removes photoblinks, resulting in an efficiency distribution that 

accurately reflects the two states of the system, even though the shot-noise broadened 

signal from state 0.2 overlaps with blink values.   

Effective blink removal also improves dynamic analyses. Figs. 4.2d and 4.2e show 

the lifetime distributions prior to photoblink detection for state 0.8 and state 0.2, 

respectively, overlaid with their respective fits to single exponential decays.  Figs. 4.2f 

and 4.2g show the same data, after photoblink detection and removal.  The simulated 

data shown in Fig. 4.2 demonstrate that the removal of photoblinks from the simulated 

data results in more accuracy in the extracted kinetic rates.  The ratio of forward to 

backward rate constants prior to photoblink detection and removal extracted from Fig. 

4.2d and 4.2e, is 0.68, showing poor agreement with the equilibrium constant of 0.4.  

However, the corresponding ratio obtained after the removal of photoblinks extracted 

from Fig. 4.2f and 4.2e, is 0.41, thus showing excellent agreement with the equilibrium 

constant of 0.4.  It is therefore shown that performing Bayesian photoblink removal on 

the simulated data results in a fitted equilibrium constant that differs by only 2.5% from  
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Figure 4.2. Applying photoblink detection to simulated smFRET trajectories.  a) Sample 

acceptor (red) and donor (blue) photon trajectories.  The mean of the sum of 

acceptor and donor photon counts at each time step was held constant at 220.  b)  

Efficiency distribution of the model system prior to photoblink removal.  c)  

Efficiency distribution of the model system after photoblink removal showing Keq to 

be 0.4.  d) The lifetime distribution of State 0.8 prior to photoblink detection 

overlaid by a fit to a single exponential decay.  e) The lifetime distribution of State 

0.2 prior to photoblink detection overlaid with its fit to an exponential decay.  f) The 

lifetime distribution of state 0.8 after photoblink detection overlaid with a fit to an 
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exponential decay.  g)  The lifetime distribution of state 0.2 after photoblink 

detection overlaid with its fit to an exponential decay.  h) The fraction of total data 

points removed from a state’s efficiency distribution versus the mean efficiency of 

the state. 

the actual value.  In comparison, the error prior to photoblink removal is 70%.  These 

results confirm that more accurate dynamic information can be extracted from smFRET 

trajectories after the removal of photoblinks. 

In order to address the resolution of photoblinks from states having low central 

efficiencies, we perform a series of simulations as a function of mean state efficiency as 

a means to determine a lower limit for this method.  The results of these simulations are 

shown in Fig. 4.2h.  We find that, in order to distinguish photoblinks from actual data, a 

state’s mean efficiency needs to be higher than a lower bound of approximately 0.2.  It 

is of note that this lower bound is a function of total acquired photons per time step, 

and will move toward zero as the total number of acquired photons increases. In the 

context of the current discussion, the mean number of total photons per time step is 

220, and at this value the simulations confirm that the algorithm, while removing all but 

a negligible amount of photoblinks, leaves occurrences of states with mean efficiencies 

higher than approximately 0.2 essentially unaltered. 

It is also important to note that the effects of intermediate time scale 

photoblinks that are less than one time step in duration.  These photoblinks limit the 

Bayesian method presented here in that, relative to the length of the event, intensity 
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falls, but does not fall low enough to be designated a photoblink.  As such, the time step 

remains.  Such events fall into the unquantifiable noise contribution discussed above. 

4.5 Comparison to Simple Thresholding 

 To compare the effects of the Bayesian photoblink detection algorithm to a more 

traditional method of photoblink removal, simulated trajectories were constructed 

using kinetic Monte Carlo simulation.  Three states were included in this simulation, the 

observable state with central efficiency of 0.15 and average lifetime of ≈1 s, an acceptor 

photoblinking state, and a donor photoblinking state.  The lifetimes used for the 

photoblinking states were allowed to vary, producing photoblinks with lifetimes ranging 

from 10 ms (1 time step) to 5 seconds.  By inspection of the sample trajectory shown in 

Fig. 4.3a, one can clearly see that, in the case of these trajectories, manual photoblink 

removal would most likely have a negative effect on the data.  Human bias would arise 

due to the slight difference between what is actual data and what is a photoblink.   

Photoblinks were filtered from the simulated trajectories by 2 different methods: 

(1) the Bayesian method presented here, and (2) a simpler method that removed time 

steps with acceptor intensities below a predefined threshold τB, given by 

       (  )
 
                                                                    (    ) 

 where, μB is as defined in Eq. 4.7.   

Fig. 4.3 shows the results of this comparison.  A sample trajectory containing 

unfiltered acceptor [77] and donor (blue) counts is shown (Fig. 4.3a) to have photoblinks 

of both the acceptor and donor varieties on both long and short time scales, as well as 

the presence of the observable state with a central efficiency of 0.15.  Figs. 4.3b and  
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Figure 4.3.  Comparison of photoblink removal methods.  a)  A sample trajectory from 

the simulated data.  b) The sample trajectory after removal of photoblinks by the 

thresholding method.  c)  The sample trajectory after removal of photoblinks by the 

Bayesian method.  d)  The distribution of efficiencies produced by the unfiltered, 

simulated data.  e) The efficiency distribution after photoblink removal using the 

thresholding method.  f) The efficiency distribution after photoblink removal using the 

Bayesian method. 

4.3c show the same trajectory after photoblink filtering by the thresholding method and 

by the Bayesian method, respectively.  It is clear in these trajectories that a larger 

fraction (~ 15% larger) of the original data is retained by the Bayesian operation, but it 
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remains unclear if the remaining data is of the observable variety or of the photoblink 

variety. 

 Fig. 4.3d shows a distribution of the unfiltered data’s calculated efficiencies.  

While we can see the presence of the observable state at a its central efficiency of 0.15, 

we also see that the distribution is marred by the noise arising from the presence of 

photoblinks. Fig. 4.3e shows the corresponding distribution after photoblink removal 

using the thresholding method, and Fig. 4.3f shows the distribution after photoblink 

removal using the Bayesian method.   

It is clear from the statistics shown in Fig. 4.3e that the thresholding method 

successfully removes photoblinks from the trajectories (with > 99% success), but it is 

also clear that it removes a large portion of the actual data as well (~ 18%).  This is a less 

than desirable quality, in that, if nearly 20% of the observable data is removed, then 

nearly 20% of the information acquired about this system is lost.  In comparison, the 

Bayesian method also successfully removes photoblinks (with ~ 93% success), and 

removes a much smaller fraction of the observable data (~ 2.3%).  While a portion of the 

original photoblinks remain, their contribution to the overall outcome is small, as is 

shown by the distribution in Fig. 4.3f.  Perhaps more importantly, the human element of 

photoblink detection, whether it is in the manual selection of photoblink regions, or in 

the selection of an intensity threshold, has been completely eliminated.       

4.6 The Performance of Bayesian Photoblink Detection in Relation to Keq 

 Given the substantial variation of equilibrium constants in various biological 

interactions, the performance of the Bayesian photoblink filter was tested on simulated,  
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 two-state equilibria with equilibrium 

constants ranging over 4 orders of 

magnitude.  The smFRET trajectories 

for each equilibrium were simulated 

using kinetic Monte Carlo simulations 

with the mean number of total 

photons at each time step being 220.  

Each simulated equilibrium 

contained over 100,000 data points 

prior to photoblink removal, and 

consisted of two efficiency states, 

one with a central efficiency of 0.2 

(state 0.2), and the other with central 

efficiency of 0.8 (state 0.8).  The 

forward transition is taken to be the 

transition from state 0.8 to state 0.2, 

such that a Keq < 1 corresponds to 

state 0.8 being favored in the equilibrium.  The average photoblinking lifetime was ~ 0.4 

s in all cases, and photoblinks were removed as described above. 

 Fig. 4.4 shows the results of these simulations.  In Fig. 4.4a, the percentage of 

state 0.2 data points that were removed in each simulation are plotted logarithmically 

versus Keq.  It is shown by Fig. 4.4a that the percentage of state 0.2 removed never 

 

Figure 4.4.  The performance of the Bayesian 

photoblink filter vs. Keq.  a)  The percentage 

of state 0.2 data points removed vs. Keq.  b)  

The percentage of photoblinks removed vs. 

Keq. 
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exceeds 6.8%, and that, as the equilibrium shifts toward this state, the percentage of 

this state’s data points that are removed trends toward zero.  Fig. 4.4b shows the 

percentage of photoblinks removed versus Keq, again plotted logarithmically.  As shown 

in Fig. 4.4b, the percentage of photoblinks removed by the Bayesian photoblink filter 

only begins to fall after state 0.2 becomes favored in the equilibrium.  This is simply a 

result of the mean acceptor intensity falling as the mean efficiency of the trajectory 

falls, and of the prior probability of a photoblink being less than that of the absence of a 

photoblink.  We therefore conclude that, regardless of which state is favored in the 

equilibrium, as well as the extent to which a that state is favored, the Bayesian 

photoblink filter performs capably under all tested circumstances. 

4.7 Conclusions 

In conclusion, we have developed methods to identify, quantify, and remove a 

considerable source of uncertainty in smFRET time trajectories – photoblinks. The 

development of an unbiased method of photoblink detection eliminates the need to 

manually preprocess the trajectories, and perhaps more importantly, removes bias 

introduced into the measurement by manual selection of photoblink regions. 

The algorithm’s efficacy has been tested using simulated data.  Acceptor and 

donor photon trajectories containing photoblinks were generated, and photoblink 

detection in these trajectories resulted in nearly complete elimination of photoblinks 

with little effect on the actual data.  We have also shown that application of the 

Bayesian photoblink detection method in combination with the application of the 

wavelet denoising algorithm significantly improves the quality of experimental smFRET 
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data.  This improvement is observed both in the ensemble analysis of structural 

distributions, and in kinetic analysis of dwell times.  Although there are caveats involved 

with the method of photoblink detection, we have also shown that the caveats can be 

avoided through establishment of a lower efficiency bound. 
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Chapter 5 

 

 

 

Wavelets and Shot Noise in smFRET Trajectories 

 

 

The contents of this chapter are adapted from an article originally published in 

Biophysical Journal on January 6, 2010. 

Taylor, J. N., Makarov, D. E.,  Landes, C. F.  “Denoising Single-Molecule FRET Trajectories with 

Wavelets and Bayesian Inference.”  Biophys. J. 2010. 98(1):164-173. 

 

ABSTRACT 

A method to denoise single-molecule fluorescence resonance energy (smFRET) 

trajectories using wavelet detail thresholding is presented. Known sources of 

experimental noise are examined and quantified as a means to remove their 

contributions via soft thresholding of wavelet coefficients.  A wavelet decomposition 

algorithm is described, and thresholds are produced through the knowledge of noise 

parameters in the discrete-time photon signals.   Reconstruction of the signals from 

thresholded coefficients produces signals that contain noise arising only from 

unquantifiable parameters.  The method is applied to simulated and observed smFRET 
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data, and it is found that the denoised data retain their underlying dynamical properties, 

but with increased resolution. 

5.1 Introduction 

The effects of experimental noise in single-molecule studies often limit their 

scope.  Low signal-to-noise ratios are inherent to these experiments [84], and various 

statistical implementations have been applied in attempt to reduce the effects of 

experimental noise [64, 76, 85-93].  These implementations include the information 

theoretical methods [17] [18], statistical correlation functions to reveal single-molecule 

kinetic heterogeneities [19], and hidden-Markov models to extract the most likely 

sequence of events from smFRET time trajectories [20].  Most recently, statistical 

correlation is combined with wavelet decomposition in attempt to describe kinetic 

heterogeneities in single-molecule systems [22].  Despite the relative success of these 

implementations, much is still left to be desired from the resolution of single-molecule 

experiments.  

Many analyses also rely on the assumption that the system’s states are well-

defined, and that transitions among these states are purely Markovian in nature [20, 21, 

62].  However, the observation of memory effects in single-molecule enzymatic 

turnover [94], large variations in the folding kinetics of a ribozyme [95], and the 

occurrence of overlapping efficiency states in single DNA aptamer molecules [14] all 

offer recent experimental results that violate these assumptions.  As such, a means of 

processing single-molecule data that provides a more accurate representation of a 

physical setting is still a pressing need. 
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A dual-component interpretation of noise in smFRET photon distributions results 

in  a quantifiable component arising from known sources such as shot-noise and 

photoblinks, and an unquantifiable component arising from molecular phenomena like 

conformational fluctuations.  Methods that discriminate the former component from 

the latter are known in signal processing, and wavelet-based approaches are directly 

applicable to time-series data [96-99].  Similar to Fourier transforms, wavelet transforms 

are mathematical constructs that convert a time-series signal into a representation in 

another domain.  Wavelet transforms, however, offer the advantage of localization in 

both time and frequency [100]. 

The first and simplest of all wavelets was presented by Alfred Haar [77].  Since its 

invention a century ago, this wavelet and more sophisticated varieties have evolved into 

important tools in the fields of data compression and signal processing.  Contributions 

by Mallat [101], Daubechies [102], and others [103-105] have extended the impact of 

such analyses to nearly all subdivisions of these fields.  Wavelet-based analyses now 

enjoy a broad range of applicability, and have supplanted the use of the traditional 

Fourier transform in many areas [100, 106].   

A framework that paved the way for the use of wavelets in signal processing was 

introduced as multiresolution analysis in the late 1980s [101, 102].  The basic scheme 

decomposes the signal into two components: an approximation component containing 

coefficients that multiply a scaling function, and a detail component containing 

coefficients that multiply the wavelet function.  Thresholding the detail components of a 

signal’s wavelet decomposition that are smaller than a certain value, a threshold, 
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effectively removes noise components from a noisy signal [26].  There are many elegant 

thresholding methods [100, 103, 104, 106, 107], but our aim in thresholding smFRET 

detail components is simple: we wish to discard the noise components we can quantify 

while keeping those we cannot. 

Herein we present an algorithm for quantifiable noise suppression in smFRET 

time trajectories.  We then use the Haar wavelet to decompose each of the two photon 

signals acquired in dual-channel smFRET experiments.  Noise parameters in each signal 

are quantified as a means of generating a universal threshold, and quantifiable noise is 

removed from each photon signal via soft thresholding of the detail components.  

Signals are then reconstructed from the highest level approximations and thresholded 

details, producing denoised signals that contain noise artifacts arising only from 

unquantifiable sources. 

Section 5.2:  Denoising with Haar Wavelet 

Denoising methods are generally designed to separate the essential component 

of the signal from the random noise generated by experimental error. The simplest 

example of denoising is the removal of high frequency noise via the application of a low 

pass filter to the original signal.  Mathematically, this is accomplished by suppressing the 

high frequency Fourier components of the signal, which is comprised of (1) applying the 

Fourier transform to the signal, (2) modifying the high frequency components according 

to a certain rule, and (3) applying the inverse Fourier transform to obtain the denoised 

signal.  
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From this example it is clear that there are two ingredients in a denoising 

method: (i) the choice of the basis set used to represent the signal (e.g., the sine and 

cosine functions are chosen as the basis for the Fourier transform), and (ii) the rule 

according to which certain components of the signal – which are presumably associated 

with noise – are suppressed.  For example, the above smoothing method implicitly 

assumes that the signal is contained in the low frequency part of the Fourier spectrum 

while the noise is associated with high frequency components of the signal.  A successful 

method takes advantage of existing knowledge about the noise.  Furthermore, if the 

basis functions that are chosen to represent the signal do so poorly (under the 

inevitable constraint of using a finite basis set), the method will not be successful.   The 

keys then, to a successful denoising method, lie in making the proper choices regarding 

basis sets and noise suppression rules.   

 The orthonormal basis set used in the denoising method presented here is 

comprised of the Haar [77] wavelet and scaling functions.  In general, wavelets offer the 

advantage over more conventional basis sets that they are localized in both the 

frequency and time domains.  In contrast, the sines and cosines of Fourier transforms 

are localized only in the frequency domain.  This time locality is particularly suitable for 

non-stationary time series, as in the famous example of the wavelet-denoised recording 

of Brahms at the piano [108].   

Returning to the context of smFRET time trajectories, we recall that the 

trajectory consists of two data vectors containing detected numbers of photons in 
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discrete time steps.  In the present discussion we consider only the acceptor photon 

trajectory NA ( = NA(0), NA(∆t),…), in discrete time steps ∆t, which is written in the form 

                                                                                            (   )  

Here, at each time step ∆t, Z is a Gaussian white noise component, and each element of 

Z is independently and identically distributed on a normal distribution with mean 0 and 

variance 1, σ is a known noise level, and SA is the “true” signal that we wish to recover.  

Similarly to the smoothing method described above, we accomplish the recovery of the 

true signal SA in three steps:  (1) transform the observed data NA into the wavelet 

domain, (2) suppress the presumed noise component of the signal, and (3) invert the 

wavelet transform to obtain the denoised signal.  A key assumption of most denoising 

schemes is that the noise is additive – that the strength of the noise is independent of 

the signal.  In the case of smFRET experiments, the shot-noise strength is dependent on 

the brightness of the fluorophores.  Here however, we approximate the noise strength 

with its average value.   

 The first step in this procedure is accomplished by the multiresolution 

approximation of Mallat [101].  It is a pyramidal algorithm that consists of multiple 

decomposition levels, each of which reduces the resolution of the signal by a factor of 2.  

Transformation of the signal to the first decomposition level produces two components, 

one containing information about the low frequency part of the Fourier spectrum, and 

the other containing information about the high frequency part of the Fourier spectrum. 

 The bases of each orthogonal complement are built by dilating and translating a 

unique function.  In the case of the low frequency complement, this function is known 
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as the scaling function, and in the case of the high frequency complement, it is known as 

the wavelet function.  The digital filter transforming the signal to the low frequency 

basis is a low pass filter, Wlo, and the counterpart filter transforming the signal to the 

high frequency complement is a high pass filter, Whi.  The filters used in the Haar 

wavelet transform [109] are described by the vectors 

    .
 

√ 
  
 

√ 
      /                                                                 (    ) 

    . 
 

√ 
  
 

√ 
      /                                                              (    )  

By applying the low pass filter, Wlo to the time series NA, one obtains the 

approximation A1 containing the signal at a reduced resolution 

   (      )                                                                           (    )  

Here, the symbol “ ” denotes a convolution, and ↓2 represents the downsampling 

operation, where alternating elements of the convolution’s output are removed.  The 

high frequency, or detail component D1 is similarly produced by the convolution of the 

signal with the high pass filter 

   (      )                                                                          (    )  

The approximation and detail signals at subsequent decomposition levels are obtained 

by substituting the approximation from the previous level for the signal NA in Eqs. 5.3. 

The second step in the denoising procedure is the suppression of the noise 

component.  As in the example above, the noise in a discrete-time photon signal is in 

the high frequency part of the Fourier spectrum, and as such, is contained within the 

high frequency component of the wavelet decomposition, the detail signal.  The 
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simplest way to reduce the noise is to set any detail component that exceeds a certain 

tolerance value to zero.  An improved procedure utilizes “soft thresholding” [110], 

where noise suppression is achieved by shrinking any detail component Y of a 

decomposition according to: 

        ( )   (       )    (   )                                     (   )  

Here, τ is the universal threshold value given by Donoho [26] 

   ,     -
 
                                                                                  (   )  

where, n is the number of data points in the original time series (i.e., the dimensionality 

of NA).  Given that this method is designed to remove shot-noise, we approximate the 

noise parameter σ as the fluctuation about the mean intensity induced by shot-noise.  

For the acceptor photon trajectory NA with mean intensity μA, we have σ = *μA]1/2.  

Likewise, for a donor photon trajectory with mean intensity μD, we have σ = *μD]1/2.  

Inserting these values in Eq. 5.5, we generate thresholds τA and τD, respectively, for each 

of the acceptor and donor photon trajectories 

   ,       -
 
                                                                            (    ) 

   ,       -
 
                                                                            (    )  

Returning to the detail signal obtained in Eq. 5.3b, we now apply, element-wise 

with threshold calculated from Eq. 16a, the thresholding operation of Eq. 5.4, and 

obtain thresholded detail signal D1
T 

  
   (     )                                                                                (   )  

Thresholded details at subsequent decomposition levels are obtained by applying the 

thresholding operator with the same threshold as in Eq. 5.6a. 
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 The denoised signal SA is obtained by inverting the decomposition procedure 

described above.  Firstly, we define the low pass and high pass reconstruction filters, 

Wlo
-1 and Whi

-1 respectively, as the reverse of their decomposition counterparts [109] 
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       /                                                       (    )  

Next, we dyadically upsample the highest level approximation and thresholded detail 

components by inserting zeros between each element of each vector.  After upsampling, 

the approximation vector is convolved with Wlo
-1, and the detail vector with Whi

-1.  The 

sum of the output of each convolution is then the reconstructed approximation of the 

next resolution level.  This reconstructed approximation is then upsampled, convolved, 

and combined with the next level’s thresholded details.  This procedure is summarized 

by Eq. 5.9 for the reconstruction of the denoised signal SA from a level 1 approximation 

and thresholded details, where the superscript ↑2 represents the upsampling operation 

   (   
   (  )

  )  (   
   (  

 )  )                            (   )  

Evaluation of the mean-squared error of simulated signals decomposed to various 

resolution levels revealed that this quantity is largely minimized for signals 

reconstructed from the third resolution level.  As such, all decompositions were 

processed to the third level.  Due to the nature of the decomposition, the number of 

elements in the time series must be a power of 2.  Each signal was extended with a 

vector containing m elements, where the value of each element is the mean intensity of 

the signal, and where m is chosen such that       , with j being an integer.  The 

dimensionality of the signal, n, remained unchanged in Eqs. 5.6. This extension was 
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discarded after reconstruction of the denoised signal.  Each of the acceptor and donor 

photon signals in a particular smFRET trajectory were decomposed separately using the 

digital filters in Eqs. 5.2. Thresholds for each signal were generated using Eqs. 5.6, and 

the detail signals of each decomposition were thresholded via the soft thresholding 

operator in Eq. 5.4.  Each of the acceptor and donor signals were then reconstructed as 

in Eq. 5.9. 

Fig. 5.1 illustrates the denoising of an acceptor photon trajectory.  The 

fluorophore-emitted acceptor photon signal is shown in Fig. 5.1a.  Convolution of the 

signal vector with the low pass filter results in the first level approximation shown in Fig. 

5.1b after downsampling.  The second and third level approximations are generated by 

convolution of the previous level’s approximation with the low pass filter.  The detail 

coefficient vectors shown in Fig. 5.1c are similarly produced by convolution of the signal 

and approximation vectors with the high pass filter. The universal threshold as 

calculated from Eq. 5.6a is shown as dashed lines in Fig. 5.1c.  Detail coefficients whose 

magnitudes are smaller than the threshold are set to zero, and the threshold is 

subtracted from detail coefficients having magnitudes larger than the threshold with 

retention of these coefficients’ signs.   

Fig. 5.1d shows the original acceptor signal in red overlaid with its denoised 

representation in black.  The denoised signal was reconstructed by upsampling the third 

level approximation and thresholded details, convolution of the upsampled coefficients 

with their respective low or high pass reconstruction filters, and addition of the two 

upsampled vectors, producing the second level reconstruction.  This reconstruction  
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Figure 5.1.  Denoising an acceptor photon trajectory.  a) The original trajectory.  b) The 

first, second, and third level approximation coefficients shown left to right.  c)  The 

first, second, and third level detail coefficients shown left to right, along with the 

detail threshold is shown as dotted lines.  d) The original signal [77] overlaid with the 

denoised signal (black).  The standard deviation of the original signal is reduced by a 

factor of 3, illustrating that the denoising process has been a success. 

vector was then combined with thresholded second level details in the same manner, 

and the resulting vector combined with the thresholded first level details to produce the 

reconstructed signal shown in black in Fig. 5.1d.  It is seen that, while the mean of the 

denoised signal remains the same as its noisy counterpart, comparison of the standard 
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deviations of each trajectory shows the noise level to be reduced by approximately 

300% for this particular photon trajectory. 

Section 5.3:  Denoising an Oscillatory System 

 As a means to quantify the effects of the wavelet denoising algorithm to smFRET 

trajectories, simulated trajectories were generated for two types of systems.  The first, a 

two state equilibrium, was simulated using kinetic Monte Carlo methods.  Each of the 

simulated trajectories was denoised by the wavelet denoising algorithm as well as the 

hidden-Markov model (HaMMy) described by McKinney, et al [20].  Both methods are 

effective at denoising trajectories comprised of well-defined FRET states.  A figure 

showing this comparison of the two methods as discussed below.  

The next simulation was performed for a system without defined FRET states.  

The wavelet denoising algorithm does not make use of Markovian and/or distinct-state 

assumptions.  Given that these assumptions are not valid in all cases, wavelet denoising 

offers a significant advantage.  Examples include the wormlike multi-dT chains discussed 

by Murphy, et al [111], the aV aptamer [14], or any system that undergoes breathing 

dynamics with a continuously changing conformation.  An example of such behavior is 

shown by green fluorescent protein (GFP), which  recently been observed to exhibit 

periodic oscillation between two conformational extremes during the unfolding process 

[112].   

As an extreme example of a system without well-defined states, we simulate a 

system showing conformational oscillation. Assuming the efficiency E of such a system 
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oscillates around a central value Ec with amplitude E0 according to the equation 

 ( )       (  )    , the probability distribution p(E) of the efficiency is given by:  

 ( )   
 

 ,  
  (    ) -

 
 ⁄
                                                              (    )  

Although p(E) is weakly singular at        , the singularities are readily removed 

when a discrete probability distribution is used.  The constructed trajectories are 

analyzed by the wavelet-denoising algorithm, and again compared with analyses 

produced by HaMMy. 

 Fig. 5.2a shows a typical trajectory generated for these analyses.  The original, 

noisy efficiency trajectory (cyan) is overlaid with the results produced by the wavelet 

denoising algorithm (red) and HaMMy (black). Fig. 5.2b depicts the efficiency 

distribution of the noisy trajectory, and Fig. 5.2c shows that of the wavelet-denoised 

trajectory. Lastly, Fig. 5.2d shows the efficiency distribution as predicted by HaMMy.  

Each of the efficiency distributions in Figs. 5.2b, 5.2c, and 5.2d are overlaid with the 

probability distribution p(E) in blue, depicted in discrete steps.  

 While the period of oscillation is identified nicely by HaMMy, it is obvious in Fig. 

5.2a that the assumption of distinct states in the trajectory poses a major hindrance to 

the hidden-Markov analysis.  In fact, this is a system that does not possess “states” and 

lifetimes, but a system that merely oscillates between two efficiency extremes.  This is 

illustrated in the efficiency distributions shown in Fig. 2b and 2d as well.  While the 

efficiency distribution in Fig. 5.2b shows the occupation of a broad range of efficiencies,  
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Figure 5.2.  Denoising an oscillatory system.  a)  The original, shot-noise laden efficiency 

trajectory (cyan) is overlaid with the denoised efficiency trajectory (red) and the 

efficiency trajectory generated by HaMMy (black).  b)  The efficiency distribution of 

the original data.  c)  That of the denoised data.  d)  The distribution of efficiencies 

generated by HaMMy.  The efficiency probability distribution p(E) is overlaid in blue 

on each efficiency distribution. 

 that which is produced by HaMMy in Fig. 5.2d shows the molecule to occupy two major 

conformations.   

In contrast, both the denoised trajectory and the denoised efficiency distribution 

show improved agreement with the noisy data.  It is seen in the trajectories shown in 

Fig. 5.2a that the denoised data constitutes a better representation of this system’s 

dynamics than does that produced by the hidden-Markov analysis.  In comparing the 

efficiency distributions, one can also see that, although there is a slight discrepancy that 
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arises at the efficiency extremes of       due to a small amount of remaining noise in 

the trajectories, there is good agreement between the efficiency probability distribution 

p(E) and the denoised distribution.  The distribution produced by the wavelet denoising 

algorithm in Fig. 5.2c is, therefore, a more accurate representation of the system’s 

actual properties.  Thus, the comparison shown in Fig. 2 demonstrates the value of the 

wavelet denoising algorithm when applied to data derived from systems that exhibit 

non-Markovian kinetics, and/or do not possess distinct conformational states. 

Section 5.4:  Denoising a System with Indistinguishable States 

 Fig. 5.3a depicts the efficiency distribution of a two-state equilibrium that was 

simulated using kinetic Monte Carlo methods.  As shown by this efficiency distribution, 

the two states, having mean efficiencies of 0.89 and 0.81, are indistinguishable in the 

presence of shot-noise.  However, it is clearly shown by Fig. 5.3b that the states in the 

underlying equilibrium are distinguishable after the trajectories are denoised by the 

wavelet denoising algorithm. 

To demonstrate the wavelet denoising algorithm’s value as a companion to 

other methods, the hidden-Markov model of HaMMy [20] was used to further identify 

the central efficiency the states as well their relative populations, and the statistical 

correlation method described by Schenter, et al [19] was used to extract the kinetics 

that underlie the equilibrium.  This method requires that a state be assigned to each 

time step in the trajectories, and HaMMy was also used to accomplish this task.   
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Acting on the shot-noise laden trajectories of the distribution shown in Fig. 5.3a 

produces the idealized efficiency distribution in Fig. 5.3c.  Performing the same 

operation on the denoised trajectories produces the distribution shown in Fig. 5.3d.  It is 

seen that, while HaMMy ably identifies the central efficiency of each state, the 

equilibrium constant, Keq(obs), that is produced by this operation differs from the actual 

equilibrium constant, Keq, by 58%.  In contrast, the equilibrium constant produced by 

acting on the denoised trajectories with the hidden-Markov model, Keq(den), differs 

from the actual value of Keq by only 4.4%.  In addition, the central efficiencies that are 

produced by acting on the denoised trajectories with the hidden-Markov model differ 

only trivially from the actual efficiencies.  It is quite obvious from this comparison that 

the denoised data produces an accurate representation of the thermodynamics that 

underlie the states this equilibrium. 

The autocorrelation curves shown in Fig. 5.3e were produced from idealized 

trajectories produced by HaMMy.  Fitting these curves to exponential decays allows for 

the extraction of rate constants, and thus for the extraction of mean lifetimes of each 

state in the equilibrium.  These lifetimes are also reported in Fig. 5.3e.  Inspection of 

each of the autocorrelation curves in Fig. 5.3e reveals good agreement between the 

denoised and simulated curves, but poor agreement between the observed and 

simulated curves.  Also, as seen in Fig. 5.3e, the lifetimes of each state, as calculated 

from the autocorrelation of the noisy trajectories, are 0.632 s and 0.547 s.  These values 

differ from the simulated lifetimes by 34.6% and 3.4%, respectively.  The lifetimes 

produced by the autocorrelation of the denoised data are 0.91 s and 0.519 s,  
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Figure 5.3.  Denoising a system with indistinguishable states.  a)  The efficiency 

distribution of the simulated equilibrium showing the central efficiency of each state, 

μ1 and μ2, as well as the simulated equilibrium constant, Keq.  b)  The efficiency 

distribution produced after denoising the trajectories with the wavelet denoising 

algorithm.  c)  The distribution of efficiencies produced by acting on the noisy 

trajectories with HaMMy, showing the central efficiencies of each state, μ1(obs) and 

μ2(obs), as well as the equilibrium constant, Keq(obs), produced by this operation.  d)  

The distribution of efficiencies produced by acting on the denoised data with HaMMy, 

showing central efficiencies of each state, μ1(den) and μ2(den), as well as the 

equilibrium constant, Keq(den), produced by this operation.  e)  Autocorrelation curves 
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produced from the trajectories generated by HaMMy acting on the noisy data (solid), 

the denoised data (dotted), and the simulated state trajectories (dot-dash).  The 

average lifetimes of each state, as extracted from the autocorrelation curves, are 

shown in the inset table for each of the simulated, observed, and denoised data. 

respectively, and these values differ from the simulated lifetimes by 5.9% and 1.9%, 

respectively.   

Given the accuracies of each state’s central efficiency and of the extracted 

equilibrium constant, we conclude that denoising the trajectories of this simulated 

system with the wavelet denoising algorithm successfully removes noise while retaining 

the actual data.  Furthermore, acting on the denoised trajectories with the hidden-

Markov model allows for the extraction accurate kinetic data, thereby completely 

characterizing two states in an equilibrium that were, prior to denoising, 

indistinguishable. 

Section 5.5:  Denoising a Simulated System with Well-Defined States and Dynamics 

As a means to quantify the effects of the wavelet denoising algorithm to smFRET 

trajectories, a two state equilibrium having an equilibrium constant of 0.33 was 

simulated using kinetic Monte Carlo methods.  The states were assigned mean 

efficiencies of 0.2 and 0.8, respectively, with the state having mean efficiency of 0.8 

being favored in the equilibrium.  Acceptor and donor photon trajectories that include 

shot-noise were constructed from the simulated trajectories.  Each of the simulated  
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Figure 5.4.  Efficiency distributions of a simulated two state system.  a) The shot-noise 

induced efficiency distribution of a simulated two state system having states with 

mean efficiencies of 0.2 and 0.8.  b) The efficiency distribution of the system after 

denoising.  c) The efficiency distribution as generated by the hidden-Markov model 

HaMMy [20]. 

trajectories was denoised by the wavelet denoising algorithm as well as the hidden-

Markov model (HaMMy) described by McKinney, et al [20].   

Fig. 5.4a shows the efficiency distribution generated by the simulated photon 

trajectories.  Each state’s standard deviation was calculated as measurement error and 

found to be approximately 0.06 efficiency units for both states at a mean of 220 total 

photons per time step.  The standard deviation of each state’s distribution was also 

found by least-squares regression to normal distributions, and these values show good 

agreement as the standard deviations of both states were again found to be 

approximately 0.06 efficiency units. 

Figure 5.4b shows the efficiency distribution produced after wavelet denoising.  

The standard deviation of each state’s efficiency distribution was again estimated by 
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least-squares regression to normal distributions.  These values were again found to be 

approximately equal at 0.02 efficiency units, translating to a reduction in the width of 

each state’s efficiency distribution of 300%.  It is shown in Figure 5.4c that HaMMy 

identifies each state nicely by collapsing the broad efficiency distribution of each of the 

states nearly to a single efficiency.  Although the denoising algorithm does not reduce 

the width of each distribution as radically as HaMMy, the wavelet denoising algorithm is 

not, as is HaMMy, constructed to do so.  The comparison does show, however, that the 

denoising algorithm narrows each state’s efficiency distribution by 300%, thereby 

proving its viability in the case of a system having well-defined states and kinetics while 

offering the advantage of making no a priori assumptions regarding the state’s 

thermodynamic or kinetic properties. 

Section 5.6:  Denoising an Experimental smFRET Trajectory 

Here we examine a single smFRET trajectory obtained in the aV aptamer studies 

described previously [14].  Fig. 5.5a depicts the fluorophore-emitted photon signals in 

10 ms time steps, with the acceptor signal shown in red and the donor signal shown in 

blue.  The trajectory includes photoblink anomalies of both the acceptor and donor 

varieties on both short and long time-scales.  Additionally, intensity variation in of each 

of the signals is observed, and arises both from energy transfer efficiency fluctuations 

and shot-noise.  Fig. 5.5b shows the photoblink-filtered and wavelet-denoised versions 

of the same acceptor and donor trajectories.  Time steps identified as photoblinks were 

removed from the acceptor [77] and donor (cyan) trajectories shown, and each is 

overlaid with its wavelet-denoised complement  (denoised acceptor in black and  
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Figure 5.5.  Denoising an experimental smFRET trajectory.  a) The original fluorophore-

emitted acceptor [77] and donor (blue) photon trajectories.  b) The original acceptor 

photons [77] are overlaid with their denoised counterparts (black), and the original 

donor photons (cyan) are overlaid with their denoised counterparts (blue).  c) The 

smFRET efficiency calculated from the original acceptor and donor photon counts 

[77] is overlaid by that calculated from the denoised acceptor and donor photon 

counts (black).  d) The efficiency histogram generated by the noisy data in b).  e) The 

efficiency histogram generated by the denoised data shown in b). 

denoised donor in blue).  Fig. 5.5c shows the energy transfer efficiency calculated from 

each complementary pair of signals in Fig. 5.5b using Eq. S5.  The observed efficiency 
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trajectory was calculated at each time step using the photoblink-filtered pair of acceptor 

and donor signals shown in Fig. 5.5b, and this trajectory is overlaid in black by the 

denoised efficiency calculated at each time step using the wavelet-denoised acceptor 

and donor signals shown in Fig. 5.5b.  Fig. 5.5d shows a histogram of the observed 

efficiencies in Fig. 5.5c, and Fig. 5.5e shows that of the denoised efficiencies shown in 

Fig. 5.5c. 

Also, as shown by Fig. 5.5b, the wavelet-denoising algorithm proves to be quite 

effective in its application to experimental data.  While fluctuations in the signals’ 

intensities due to experimental considerations such as apparatus limitations and 

fluorophore orientations are unavoidable, it is shown in the denoised signals that small 

fluctuations arising from quantifiable sources are virtually eliminated.   Of equal, or 

perhaps greater, importance, it is also shown that large intensity fluctuations that are 

induced by conformational changes in the system are allowed to remain. 

The significance of these aspects is clear, and is illustrated by the efficiency 

trajectories in Fig. 5.5c.  The observed trajectory of calculated efficiencies fluctuates 

wildly from time step to time step due to small, insignificant changes in the signal 

intensity on one or both of the detection channels.  The denoised complement (black) to 

this trajectory, however, does not exhibit such excessive fluctuation.  We still observe 

major fluctuations in efficiency, and these are virtually unchanged from the major 

fluctuations we see in the observed efficiency trajectory.  Anomalously large and fast 

efficiency fluctuations have been reduced, and we observe a smoother trajectory as well 

as more accurate representation of our physical system. 
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Figs. 5.5d and 5.5e further validate this point by showing that, while the shape of 

each efficiency distribution is approximately the same, and their mean efficiencies are 

virtually unchanged, the denoised standard deviation is reduced by approximately 30%.  

This validates that occurrences of anomalously large or small efficiencies have been 

reduced.  On the whole, the application of the photoblink detection and wavelet-

denoising algorithms is shown by Figure 5.5 to improve the quality of this experimental 

smFRET trajectory. 

Section 5.7:  HIV-1 TAR DNA:  Denoising a Single State Experimental System 

Here we apply the photoblink detection and wavelet-denoising algorithms to a  

collection of smFRET trajectories.  The trajectories are collected from studies, described 

previously [83], on the transactivation response (TAR) region of HIV-1 viral DNA.  The 

collection contains nearly 16,000 data points, and was chosen to represent a 

predominantly single state system.  The secondary structure of the TAR hairpin is shown 

in Fig. 5.6a, and the depicted conformation is expected to yield smFRET efficiencies 

approaching unity. 

Application of the photoblink detection algorithm to this collection of 

trajectories yields, after computation of energy transfer efficiency at each of the 

individual data points, the global efficiency histogram that is shown in Fig. 5.6b.  As 

expected, the system does produce smFRET efficiencies approaching unity, and the 

normal distribution about the mean energy transfer efficiency of 0.96 signifies that we 

do observe a predominantly single state in this collection of trajectories.  The width of  
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this distribution is small, again 

signifying a single state, and we 

observe this value to be 0.09 

efficiency units. 

Calculating and compiling 

each data point’s energy transfer 

efficiency from wavelet-denoised 

complements produces the global 

efficiency histogram shown in Fig. 

5.6c.  While we do not observe a 

shift in the mean smFRET efficiency, 

we do observe a sizeable reduction 

in the magnitude of the distribution’s 

standard deviation.  The width of this 

distribution, while small to begin 

with, is reduced by approximately 

45% by the denoising algorithm.  The significance is clear – in the characterization of a 

single state system, eliminating the artifacts of shot-noise and photoblinks results in a 

more precise representation of the state’s structure and energetics. 

Section 5.8:  Acceptor Photobleaching:  Denoising a 2-State Experimental System 

As a model two state system, irreversible acceptor photobleaching from a high 

efficiency state is chosen.  This collection of trajectories was also chosen from studies on  

 

Figure 5.6.  Single state TAR DNA.  a) The 

secondary structure of TAR.  B) The efficiency 

distribution of observed and blink-filtered 

data acquired from experiments involving TAR 

in 2 mM Mg2+ buffer solution.  c) The 

corresponding denoised data. 
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the TAR region of HIV-1 viral DNA described previously [83].  This system is treated as a 

purely two state system:  energy transfer is either “on”, as shown to the left in Fig. 5.7a, 

or “off”, as shown in the center of Figure 5.7a.  As the crosstalk region of this collection 

of trajectories is being considered as part of the FRET region, the crosstalk value x is 

fixed to a characteristic value of 0.11.  Additionally, given that one of the states in our 

 

Figure 5.7.  Irreversible acceptor photobleaching as a purely two state system.  a) A 

model trajectory where the “on” state is represented by the region before the 

acceptor photobleach, and the “off” state is represented by the region after the 

acceptor photobleach.  b) The efficiency distribution compiled from blink-filtered 

trajectories.  c) The corresponding denoised efficiency distribution. 
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model has an efficiency that is expected to approach zero, the previously discussed 

caveat arises.  We circumvent this caveat by simply marking the time step at which the 

acceptor photobleach occurs.  The photoblink detection method is applied to time steps 

prior to this time step as previously described, and for time steps after the photobleach 

we substitute the donor photon signal for the acceptor and proceed in the same 

manner. 

Fig. 5.7b shows a global efficiency histogram of approximately 18,000 blink-

filtered data points in this collection of smFRET trajectories.  The “on” state is 

represented to the right, and shows a mean efficiency of 0.98 with a standard deviation 

of 0.17. The “off” state is represented to the left, and this distribution shows a mean 

efficiency of 0.01 with equal width of 0.17.  To avoid bias, instead of selecting the limits 

of each state manually, each mean and standard deviation is produced by a least-

squares regression to the sum of two normal distributions. 

 Figure 5.7c shows the wavelet-denoised complements of Figure 5.7b.  Again we 

obtain the characteristics of each state’s efficiency distribution by a least-squares 

regression, and again we find dramatic improvement.  While each state’s mean value 

has remained unchanged, their distributions have narrowed significantly.  In the case of 

the “off” state, we see that the distribution has narrowed by approximately 20%, and in 

that of the “on” state, we see a larger narrowing of just under 25%.  As such, we 

conclude that the wavelet-denoising algorithm is capable of removing quantifiable noise 

components of each state’s efficiency distribution, resulting in more precise description 

of each state. 
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Section 5.9:  The aV Aptamer:  A Multi-State Experimental System 

Trajectories acquired from studies previously reported [14] on the aV aptamer 

and its interaction with its binding target, vascular endothelial growth factor (VEGF), are 

chosen to represent a multiple state system.  These experimental studies revealed a 

highly dynamic secondary structure that ranged from the closed hairpin, illustrated in 

Fig. 5.8a, to an irresolvable continuum of open states with lower smFRET 

efficiencies.  To complicate matters, the aptamer's interaction with VEGF was found to 

be similarly dynamic.  Although the smFRET studies suggested that the VEGF-bound 

aptamer structure was the open state, quantitative analysis was hampered by 

contributions of both shot-noise and structural fluctuations to the measured smFRET 

distributions.  

The global efficiency histogram containing approximately 15,000 data points of 

the aV aptamer in 2 mM Mg2+ buffer solution is shown in Fig. 5.8b.  The distribution 

shows a skewed mean with an anomalously large standard deviation that is a result of 

the trajectories containing photoblinks.  Application of the Bayesian photoblink filter to 

the trajectories results in the distribution shown in Fig. 4c.  This efficiency distribution 

has a mean efficiency of 0.9 with standard deviation of 0.13.  Application of the wavelet-

denoising algorithm to this collection of trajectories results in the efficiency distribution 

shown in Figure 5.8d.  We observe that the mean efficiency is unaffected, and that the 

standard deviation has been reduced by 25%.  As such, we conclude that the algorithm 

has the capability to simultaneously refine the distributions of multiple, efficiency 

states, even if the efficiency state distributions have significant overlap. 
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Figure 5.8. The aV aptamer as a multiple state system.  a) The 2° of the aV aptamer.  b)  

The observed efficiency distribution of the aV aptamer at Mg2+ concentration of 

2mM, prior to blink-filtering.  c) The blink-filtered efficiency distribution of the aV 

aptamer.  d) The denoised distribution corresponding to b).  e)  The observed 

efficiency distribution, prior to blink-filtering, resulting from the addition of 2 μM 

VEGF.  f) The blink-filtered efficiency distribution corresponding to e).  g) The 

denoised distribution corresponding to d). 

Figure 5.8d shows a global efficiency histogram of the aV aptamer while in the presence 

of VEGF that contains approximately 26,000 data points.  Again, due to the presence of 

photoblinks in the trajectories, the distribution shows an anomalously large standard 

deviation.  Despite photoblinks, the VEGF-induced shift in the aptamer’s conformational 

equilibrium shown previously [14] is seen quite clearly in Figure 5.8e.  It is not, however, 
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clear that this shift arises due to a shift in the conformational equilibrium until the 

application of the Bayesian photoblink filter, which results in the distribution shown in 

Fig. 5.8f.  This collection of trajectories shows an overall mean efficiency of 0.87 with a 

large standard deviation of 0.25 efficiency units, and shows that a shift in the aptamer’s 

equilibrium is indeed observed in the presence of VEGF. 

The wavelet-denoised complement to this collection is shown in Figure 5.8g.  

Again, the effects of the denoising algorithm are quite clear.  While the mean efficiency 

once again remains constant, the standard deviation is decreased by 20%.  More 

importantly, the shape of the distribution is visibly refined.  Although the distribution is 

broadened, presumably by effects of the fluorophores’ respective orientations [113-

115], efficiencies representative of a conformation yielding lower efficiencies are 

noticeably increased, in good agreement with the presumed interaction with VEGF [14].  

As a result of Figs. 5.8d and 5.8g we conclude that, while improving the finer aspects of 

the analysis, the application of the wavelet-denoising algorithm does not affect the 

overall outcome of the analysis of a system containing a complex combination of 

multiple and overlapping efficiency states.  Furthermore, we conclude that the wavelet 

denoising algorithm enhances the analysis of this system by confirming the presence of 

a continuum of irresolvable conformations in the aptamer’s conformational equilibrium, 

as in Fig. 5.8c, as well as improving the visibility of the presumed aV-VEGF interaction as 

in Fig. 5.8g.  

5.10 Conclusions 
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In conclusion, this chapter has shown that using a two component interpretation 

of noise observed in smFRET signals allows us to remove the component we can 

quantify, thereby enhancing the accuracy of these measurements.  Wavelet denoising 

was applied to simulated acceptor and donor trajectories, and significantly decreased 

the width of a state’s efficiency distribution.  Additionally, trajectories representing a 

system showing oscillatory behavior were simulated as a means to demonstrate the 

efficacy of denoising in complex systems.  These simulations showed that the denoised 

data formed a most accurate representation of the system at hand. 

We expect that the methods presented here will have immediate impact on the 

smFRET community.  We also expect the method to have a broad scope of applicability 

because the wavelet denoising algorithm is not strictly limited to smFRET 

measurements.  Many wavelet-based applications have already been realized, and this 

particular method requires only slight adjustment for application to other types of time-

series photon measurements, single-molecule or otherwise. 

An executable application containing wavelet denoising algorithm is available at 

http://www.lrg.rice.edu. 

 

 

 

 

 

 

http://www.lrg.rice.edu/
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Chapter 6 

 

 

Improved Resolution of Complex Single-Molecule FRET Systems via  

Wavelet Shrinkage 

 

The contents of this chapter are adapted from an article originally published in Journal of 

Physical Chemistry B on January 9, 2011. 

Taylor, J. N.;  Landes, C. F.  “Improved Resolution of Complex Single-Molecule FRET Systems via 

Wavelet Shrinkage.”  . J . Phys. Chem. B. 2011. 115(5):1105-1114. 

 

ABSTRACT 

The resolution of complex interactions found in single-molecule fluorescence resonance 

energy transfer (smFRET) experiments is hindered by noise.  Wavelet shrinkage is 

proven to reduce noise, but traditional methods introduce artifacts when acting on 

discontinuous signals, such as those acquired in smFRET experiments.  Modifications to 

the basic method that are specific to smFRET are developed and tested on simulated 

systems.  Use of the Haar wavelet basis produces the most optimally denoised 

estimates.  We also assess various thresholding methods, develop a time-localized noise 

estimator, and implement a translation-invariant wavelet transformation to reduce 
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artifacts associated with discontinuities and inadequate distinction of noise.  The time-

local estimator enhances noise reduction by 5-20 %, and translation-invariant 

transformation nearly eliminates the aforementioned artifacts.  Kinetic parameters 

extracted from denoised estimates are accurate to within 5 % of the simulated values.  

Overall, the improved resolution results in the complete and accurate characterization 

of both simple and complex smFRET systems. 

6.1 Introduction 

Rapid advancement of single-molecule spectroscopic techniques has led to the 

recent discovery of complex energy landscapes and heterogeneous mechanistic 

pathways that drive many biological interactions [116-120].  Among these techniques, 

single-molecule fluorescence resonance energy transfer (smFRET) has proven to be a 

useful tool in the recognition of complexity and mechanistic heterogeneities [14, 121-

123].  Despite its usefulness however, various forms of noise limit the abilities of 

smFRET [5, 22, 124-127].  Specifically, shot-noise is a random error that contributes 

uncertainty to the photon measurements [5, 126], affecting the resolution, i.e., the 

ability to distinguish distinct states in an efficiency distribution, of smFRET experiments. 

Several methods, including hidden-Markov models [21, 125], applications of information 

theory [128, 129], photon statistics in the context of two colors [16], maximum 

likelihood and Bayesian inferential [130] estimation of change points using Poisson 

statistics, wavelet correlation [22], and wavelet shrinkage [5] have been developed and 

applied to single-molecule data as a means of extracting more accurate information 

about the system under observation.  The focus of this work is wavelet shrinkage, which 
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is a signal processing tool whose primary resource is the use of wavelet transformation 

[5, 97, 100, 103, 110, 131-138].  Primary applications of wavelet transformation include 

data compression and signal processing, but analysis applications such as density  

estimation [139] and change-point 

identification [136] are known as 

well.  Wavelet shrinkage is known to 

reduce noise contributions in 

various forms of analytical data 

while minimally affecting its overall 

integrity [5, 97, 138, 140]. 

 Fig. 6.1 illustrates the 

application of wavelet shrinkage, as 

described previously [5], to an 

experimental smFRET trajectory that 

represents a single efficiency state.  

Fig. 6.1A shows the entirety of the 

acceptor (red) and donor (blue) 

photon trajectories.  Fig. 6.1B shows 

the observed efficiency trajectory 

(red) overlaid with the denoised 

efficiency trajectory (black), and Fig. 6.1C shows the observed (red) and denoised (black) 

efficiency distributions.  The ability of wavelet shrinkage to reduce shot-noise-induced 

 

Figure 6.1.  Decreased efficiency broadening 

after wavelet shrinkage.  A) A full smFRET 

trajectory containing acceptor (red) and donor 

(blue) photon trajectories.  B) The observed 

efficiency trajectory (red), calculated from the 

acceptor and donor trajectories in A), is overlaid 

with the denoised efficiency trajectory (black).  

C) The denoised efficiency distribution (black) 

overlays the observed distribution (red), and is 

shown to collapse to a narrow peak 

representing the single efficiency state. 
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broadening in smFRET trajectories is clearly demonstrated in Fig. 6.1 by the collapse of 

the denoised distribution to a nearly singular value.  Our previous work [5] also 

demonstrates the ability of wavelet shrinkage to extract previously inaccessible 

information from complicated systems.  Despite the successful application of wavelet 

shrinkage to smFRET trajectories, it is possible, and therefore a sensible aim, to do 

better still. 

There are two main targets for improvement.  The first is the introduction of 

previously absent artifacts to the denoised estimates produced by wavelet shrinkage.  

These artifacts are introduced near discontinuities in smFRET trajectories, and arise 

primarily as a result of the translation dependence of the wavelet transformation itself 

[141].  The second target is inadequate estimation of the noise level.  Transitions (i.e., 

discontinuities) in the system under observation result in a nonstationary noise level, 

and the use of its average value throughout a trajectory yields underestimation of the 

noise level when the efficiency is above its mean value and overestimation when the 

efficiency is below its mean value.  There are, however, methods available that will 

reduce the impact of these issues [135, 141, 142].  

 Contributions of the artifacts introduced by translation dependence of the 

wavelet transform can be reduced by forcing the transformation to be translation-

invariant.  This can be accomplished by a method known as cycle-spinning [141], in 

which the original photon trajectory is subjected to a range of time-translations, and 

wavelet shrinkage is independently performed on each translation.  The translations are 

then removed, and the results are averaged to produce a denoised estimate without 



97 
 

translation dependence and a reduced presence of translation dependent artifacts.  The 

error introduced by suboptimal estimation of the noise level can be reduced through 

variations in the application of wavelet shrinkage, and through the use of the time-local 

noise estimator introduced below. 

 In this chapter, these limitations are addressed by first tackling the most 

important question: which wavelet basis produces the most optimally denoised 

estimates?  Different bases are defined by the algorithms by which they separate the 

signal into orthogonal components, and thus it is expected that one or more basis 

algorithms might be better suited for smFRET applications.  In this work, we apply 

various combinations of wavelet basis, shrinkage method, noise estimator, and cycle-

spinning to the model systems as a means of selecting the combinations that produce 

the most optimally denoised estimates.  A noise estimator that is specific to smFRET 

photon trajectories is introduced, tested, and compared to the results produced by the 

universal estimator [110].  The variations producing the most optimally denoised 

estimates were further analyzed, and found to show improved agreement with the 

simulated model systems.  Parameters containing information about kinetic aspects and 

state efficiency distributions were also extracted from the denoised estimates and 

compared with those of the simulated values. 

6.2 Methods 

6.2.1 Data Simulation 
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 The model systems were simulated via kinetic Monte Carlo methods.  Each data 

set is comprised of 30 individual trajectories whose minimum length was selected 

randomly from a normal distribution with a mean of 7 seconds and a variance of 4 

seconds.  Initial states for each trajectory were selected uniformly with each available 

state having equal selection probability.  Lifetimes were generated sequentially from the 

input escape rate constants, and final states for each transition were selected with 

probability proportional to the transition rate constant from the current state to the 

final state.  The central efficiencies at each time step were used in combination with 

mean total photons per time step 〈    〉 to generate acceptor and donor photon 

trajectories.  Total photons per time step included fluorophore-emitted photons from 

both fluorophores as well as background photons on both simulated detection channels.  

The signal to background ratio for 〈    〉 was 2.3, and the donor to acceptor background 

ratio was 2.  The sum of fluorophore-emitted photons and background photons on each 

channel was selected randomly at each time step from a normal distribution with equal 

mean and variance, as calculated from the central efficiency at the time step.  Shot-

noise induced efficiencies were calculated from the simulated acceptor and donor 

photon trajectories, after correction for background and crosstalk as described in [5].   

 The characteristics of the two state model system are shown in Fig. 6.2.  Sample 

acceptor and donor photon trajectories are shown in Fig. 6.2A, and the efficiency 

trajectory generated from these photon trajectories is shown in Fig. 6.2B.  Fig. 6.2C 

shows the shot-noise induced efficiency distribution of the two state model system, and 

simulation parameters are described in Fig 6.2D.  The system is comprised of two states,  
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Figure 6.2.  Details of two state simulation.  A) shows representative acceptor [77], and 

donor (blue) photon trajectories.  B) shows the efficiency trajectory generated by 

the photon trajectories in A), along with the mean absolute percent error, M, for the 

entire simulated data set.  C) shows the distribution of efficiencies generated by 

compilation of all 30 trajectories in the model system, and D) reports simulation 

parameters. 

having mean efficiencies of 0.9 and 0.4, and the equilibrium constant Keq resulting from 

the simulation is 0.86, favoring the higher efficiency state.  Input lifetimes of each state 

were 0.5 s, corresponding to input transition rate constants of 2 Hz. 

 Likewise, the characteristics of the four state model system are shown in Fig. 6.3.  

This system was simulated with four states having central efficiencies of 0.9, 0.75, 0.6, 

and 0.5.  The states obey a sequential equilibrium, with each state being allowed to 

transition only to its neighboring state(s).  Total escape rate constants from each state  
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Figure 6.3  Details of four state simulation.  A) representative acceptor and donor 

photon trajectories.  B) the efficiency trajectory generated by the photon 

trajectories in A), along with the mean absolute percent error, M, of the entire 

model system.  C) Efficiency distribution compiled from all trajectories in the system, 

and D) reports simulation parameters. 

 were 1, 2, 2, and 1 Hz, respectively.  States having two allowed transitions had equal 

probability of transition to either the lower or higher efficiency states, with transition 

rate constants of 1 Hz.    

6.2.2 Wavelet Shrinkage 

 Wavelet shrinkage is described in detail in our previous work.[5]  Shrinking 

wavelet coefficients to obtain a denoised estimate combines multiresolution 

analysis[101] and an additive white Gaussian noise approximation.[110]   Wavelet 
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shrinkage consists of three main steps: 1) transform the signal to the wavelet domain, 2) 

shrink the wavelet coefficients to reduce noise, and 3) invert the wavelet transform to 

obtain the denoised estimate.  Photon signals   (  * ( )  (    )  + ) containing 

shot-noise are assumed to have the form  

                                         (   ) 

Here, S is the “true” signal we wish to recover, σ is the shot-noise magnitude, and Z are 

independently and identically distributed (i.i.d.) noise components on the standard 

normal distribution.  Signals are transformed to the wavelet domain via digital filtering, 

in which the signal is convolved with a pair of digital filters to obtain two orthogonal 

components at reduced time resolution.  Once transformed, the shot-noise portion of 

the signal, assumed to lie within the high frequency component of the transformation, is 

reduced by the shrinkage procedure.  With reduced magnitudes, the high frequency 

components are recombined with the low frequency information from the other 

orthogonal component, and the signal is reconstructed via inversion of the wavelet 

transformation. 

 The careful reader may contend that the statistics of photon collection are not 

normal but Poissonian.  This discrepancy can be resolved by considering the properties 

of Poisson processes.  More often than not, smFRET measurements are time series 

photon measurements that may be described as non-homogenous Poisson processes.  

The mean number of detected photons is a time-dependent random variable in the non-

homogeneous case, which leads to a time-dependent variance as well.  However, if the 
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underlying process is stationary, the mean number of photons λ and the variance (λ) 

also become stationary as the number of samples increases to infinity.   

The source of abnormality in the distributions of non-homogeneous Poisson 

processes lies in the higher order moments of the distribution, skewness and kurtosis.  

For low numbers of events, higher order moments skewness and kurtosis add 

asymmetry and irregularity, respectively, to the distribution.  However, these moments 

trend to zero quickly[143] – skewness as λ-1/2 and kurtosis as λ-1  – as the mean number 

of events per unit time increases, causing them to become negligible with respect to the 

mean and variance.   

As a result, Poisson-distributed photon measurements become well-

approximated by normal distributions.  Applying the central limit theorem to the normal 

approximation yields an estimate of the underlying noise distribution, and it is easy to  

show that the normal approximation of 

a stationary Poisson process reduces to 

a standard normal distribution under 

such conditions.  The additive white 

Gaussian noise approximation is 

therefore a sufficient approximation of 

the underlying noise distribution in a 

Poisson-distributed process 

contaminated by a stationary white noise.  For a non-stationary process, the differences 

that arise in the noise distribution may only be related to the magnitude of the noise 

 

Figure 6.4  Bias of the normal approximation 

to a Poisson distribution.   
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fluctuations.  That is, fluctuation in the number of detected events, in the form shot-

noise, remains a zero-mean process, and it is only the width of the distribution that 

changes.  These criteria are satisfied if fluctuation in the system under observation is 

sufficiently slow and the mean number of detected photons remains sufficiently large.  

Fig. 6.4 illustrates this point. 

6.3 Options in Wavelet Shrinkage 

 Wavelet shrinkage requires that several choices be made prior to its application, 

and these choices are the determining factors in its effectiveness.  Among these choices, 

the most important is, as discussed above, undoubtedly that of wavelet basis.  Scores of 

wavelet families, such as the Daubechies [132], Coiflet [100, 138], and biorthogonal 

[100, 138] families, to name a few, are available for the choosing, and once the choice of 

family has been made, there are still more options to consider within each family.  

Furthermore, after a wavelet basis has been chosen, there is a variety of shrinkage 

methods to consider.  The most commonly used methods are hard and soft thresholding 

[103, 110] but other methods, such as SUREShrink [133], based on Stein’s unbiased 

estimator of risk, non-negative garrote [134], and firm thresholding [135], offer differing 

properties that are advantageous in various circumstances.  In addition to these choices, 

there are other options and modifications, such as cycle spinning and noise level 

estimation, which will also be addressed below. 

6.3.1 Wavelet Basis 
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 Firstly, we address the choice of wavelet basis.  This choice depends most heavily 

on the objective of the wavelet transformation, which, in this case, is wavelet shrinkage 

as a means to remove shot-noise from discrete-time photon trajectories.  As such, we 

consider only those wavelet families that are capable of discrete wavelet 

transformation, such as those mentioned above.  Other aspects to consider are the 

properties of the photon trajectories acquired in smFRET experiments, as well as the 

properties of shot-noise. 

Assuming the Poisson process under observation is stationary, the mean and 

variance λ of the Poisson distribution is also stationary.  Transforming to the frequency 

domain, we find that a stationary white noise is uniformly distributed over all 

frequencies.  For a non-stationary process that satisfies the criteria above, the noise 

spectrum does not change in uniformity, but only in magnitude. 

A wavelet basis may be represented in frequency space by its frequency 

response, which, in the case of a wavelet filter, is the Fourier transformation of the 

digital filters representing the wavelet and scaling functions.  Details are provided in the 

appendix to this chapter. 

6.3.2 Shrinkage Methods 

 We now consider the choice of shrinkage, or thresholding, method.  As 

mentioned above, the most common methods are soft and hard thresholding.[103, 110]  

These thresholding operators are nonlinear shrinkage operators that use an established 

noise level, along with a coefficient defined by the risk associated with the magnitude of 
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a Gaussian white noise, to generate a threshold below which a wavelet coefficient is 

considered to be purely noise.  The hard thresholding operator is the simplest of these, 

in which thresholded wavelet coefficient Di
τ is obtained via comparison of the raw 

wavelet coefficient Di with the threshold τ as in Eq. 6.2. 

  
  {

       

        
                                                          (   ) 

Similarly to hard thresholding, soft thresholding sets wavelet coefficients with 

magnitude smaller than the threshold to zero, but instead of keeping the coefficients 

with magnitude larger than the threshold as they are, these coefficients are reduced by 

the magnitude of the threshold as in Eq. 6.3. 
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Other methods include SUREShrink, also introduced by Donoho[133], which is a 

decomposition level-dependent technique that considers the density of nonzero 

wavelet coefficients at a certain decomposition level, and uses Stein’s unbiased 

estimator of risk to calculate the minimax threshold.  Still other methods include the 

non-negative garrote[134] and firm thresholding[135] operators of Gao and Bruce.  

These methods attempt to mediate between hard and soft thresholding.  The non-

negative garrote, or simply garrote, operator is a scaled version of soft thresholding as 

shown by Eq. 6.4.  
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   ⁄       

                                          (   ) 
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Firm thresholding uses two threshold values, a lower threshold, below which the 

magnitude of a wavelet coefficient is considered to be definitely noise, and an upper 

threshold, above which a wavelet coefficient is considered to be definitely non-noise.  

Gao and Bruce generate the two thresholds in [135] by fixing the magnitude of either 

the lower or upper threshold and minimizing the mean-squared risk over the remaining 

threshold.  This results in a thresholding operator, shown in Eq. 5 where τ1 < τ2, that has 

lower risk than both the hard and soft thresholding operators shown above. 
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6.3.3 Estimation of the Noise Level 

We now turn our attention to estimation of the noise level, which involves the 

value of the threshold itself.  The so-called “universal” threshold developed by Donoho 

and Johnstone[103, 110] assumes an additive noise model as in Eq. 6.1, and generates a 

shrinkage coefficient via the risk associated with a set of i.i.d. Gaussian white noise 

components on the standard normal distribution.  In combination with a known noise 

level σ, the universal threshold is given by 

    √                                  (   ) 

where n is the length of the signal to be denoised.  The universal threshold is quite 

general, as shown by its application to smFRET data in our prior publication[5], as well 

as to various other types of data as shown in[97, 136, 140].  In the context of this 

publication, the universal threshold is used in all thresholding operators.  In order to 
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generate the shrinkage coefficient of the upper threshold used in firm thresholding, we 

use the method of Gao and Bruce [135] by fixing the lower threshold to the universal 

value and minimizing the mean-squared risk over the upper threshold.  The shrinkage 

coefficient is multiplied by the noise level estimation to generate the threshold. 

 In the context of smFRET photon trajectories, we use the average noise level for 

the entire trajectory as the noise level σ in Eq. 6.6 to generate the universal threshold.  

For a discretely binned photon trajectory with mean number of photons per time step 

〈 〉, we obtain, via the properties of a stationary Poisson process, noise level    〈 〉.  

While this approach is perfectly appropriate for use in photon signals for which the 

mean number of photons, and thus the strength of the signal’s shot-noise, is relatively 

constant, trajectories that show changes in smFRET efficiency are comprised of 

individual acceptor and donor photon trajectories that show changes as well. 

Consider an efficiency trajectory exhibiting a transition, occurring over a single 

time step, from a high efficiency state to a lower efficiency state.  An acceptor intensity 

change from high to lower intensity and a donor intensity change from low to higher 

intensity accompany the transition.  As a result, at the time step containing the 

transition, the acceptor shot-noise magnitude decreases and the donor shot noise 

magnitude increases.  The universal noise estimator does not account for the intensity 

change in each photon trajectory.  Depending on the magnitude of the transition in 

relation to the shot-noise magnitude, the universal estimator may act on the wavelet 

coefficients containing the transition and introduce error to the denoised estimate.  This 

motivates the use of a time-localized noise level to more appropriately define the noise 
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level in relation to changes in smFRET efficiency.  A time-localized approach to 

thresholding is a natural extension of wavelet shrinkage in the context of smFRET 

trajectories in that, instead of using the average noise level throughout the entire 

trajectory, the time-local noise strength is used instead.  A better estimate of the noise 

level in the context of a nonstationary Poisson process is therefore obtained. 

Wavelet shrinkage is no stranger to data-dependent, or data-adaptive, 

thresholds.  For example, Bayesian statistics[131, 137] and Brownian-bridge 

processes[136] have been used in attempt to define thresholds and remove noise more 

effectively.  To calculate the time-local noise estimate, we consider a discretely binned 

photon signal  , as in Eq. 6.1, collected in discrete time steps of length Δt.  Using the 

Haar wavelet [77], the signal’s wavelet coefficients at decomposition at level J contain 

information from 2J time steps of the signal at its original resolution.  The noise level for 

one wavelet coefficient Di at decomposition level J is given by the average noise level 

spanning that particular time window.  For all time windows i (= {0,1,…}) at 

decomposition level J, we have noise level 

  
     ∑  ( )

  (   )

       

                                  (   ) 

Taking into consideration that the universal threshold was developed using infinite 

statistics, and that smFRET signals are of finite and various length, we assume normal 

statistics in calculation of the time-localized thresholds, and calculate thresholds for 

each time window i at decomposition level J to be 
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Here we have used the heuristic τ = 3σ arising from the assumption of i.i.d. Gaussian 

white noise components, yielding a probability that a single noise component is larger 

than its corresponding threshold of < 1 %. 

6.3.4 Translation-Dependent Artifacts 

Lastly, we consider the effects of discontinuities in smFRET photon trajectories.  

We assume that transitions in the system under observation lead to abrupt changes in 

smFRET efficiency, and that the abrupt transitions lead to discontinuities in the 

individual acceptor and donor photon trajectories.  Such discontinuities result in 

artifacts in the denoised estimates.  These artifacts are analogous to, although local 

instead of global, the Gibbs phenomena of Fourier-based denoising, and consist of a 

rough oscillation around the target values in the neighborhood surrounding a 

discontinuity.  Termed pseudo-Gibbs phenomena[141], these artifacts are mainly a 

consequence of the discrete wavelet transform being translation-dependent.  

Translating a signal containing discontinuities in time, denoising it, then removing the 

translation to obtain a denoised estimate is not always equivalent to the signal that is 

denoised with no translations.  The preceding discussion forms the basis for the 

translation-invariant discrete wavelet transform (TIDWT)[141]. 

 TIDWT, introduced by Coifman and Donoho and also known as cycle-

spinning[141], attempts to reduce the presence of pseudo-Gibbs phenomena in the 

denoised signal by averaging the estimates produced by a range of translations.  The 

basic premise is to produce a range of circular time shifts, decompose each shift 
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independently to the wavelet domain, threshold the wavelet coefficients of each shift, 

reconstruct each shift to the original resolution, remove the time shifts, and average the 

denoised estimates produced by all of the shifts.  The result is a translation-invariant 

denoised estimate in which pseudo-Gibbs artifacts have largely been smoothed by 

averaging the shifted estimates.  Given the nature of smFRET trajectories and their 

inherent discontinuities, cycle spinning offers an advantageous approach to obtaining 

more accurately denoised estimates.   

6.4 Results and Discussion 

6.4.1 Wavelet Basis 

 Fig. 6.5 compares the denoised estimates produced by different wavelet bases 

acting on both the two and four state model systems.  Each of the Haar, second-order 

Daubechies (db2), biorthogonal 1.3 (bior1.3), as well as the first order Coiflet (coif1) 

bases use the universal soft thresholding method described in [110] to produce their 

denoised estimates.  Fig. 6.5A plots the mean absolute percent error (M) produced by 

each wavelet basis acting on the two (solid circles) and four (open circles) state systems, 

respectively, versus the highest decomposition level used to produce the denoised 

estimate.  The mean absolute percent error (M) is calculated as   

  
 

 
∑
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where Ei is the denoised efficiency at time step i, εi is the true, simulated efficiency at 

time step i, the total number of time steps N is taken over all time steps in all  
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 trajectories of the simulated data set, and 

M is expressed as a percentage.  Fig. 6.5B 

shows the percent reduction of M with 

respect to that induced by shot-noise in the 

simulated two and four state systems, 

respectively.  

 It is clear in Fig. 6.5C that the Haar 

basis significantly outperforms the other 

bases in the comparison.  Specifically, the 

Haar basis outperforms the other bases by 

approximately a factor of 2 for the two 

state system, and results in a 10-20 % 

improvement relative to the other bases in 

the case of the four state system.  The 

better performance of the Haar basis can 

be attributed to its frequency response.  

This is shown in more detail in Fig. S4, in 

which the frequency response of the 

Daubechies series[132] of wavelet and 

scaling functions, of which the Haar basis is 

the first and simplest.  Considering the 

uniform distribution of shot-noise in the 

 

Figure 6.5.  Comparison of wavelet bases 

using the universal soft threshold.  A) 

plots mean absolute percent error (M) 

of each wavelet basis acting on the 2 

state (solid) and 4 state (open) systems 

vs. highest decomposition level.  Shot-

noise induced M is shown for the 2 

state system (upper dashed) and the 4 

state system (lower dashed).  B) shows 

the percent reduction of the most 

optimally denoised estimate, with 

respect to M of the noisy data, for the 

2 state (vertically hatched), and 4 state 

(horizontally hatched) systems. 
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frequency domain, we see that the Haar basis outperforms the other bases because of 

its distribution in frequency space.  Notice that the Haar wavelet in Fig. S4A amplifies a 

wider range of frequencies in a more uniform manner than the rest of the Daubechies 

series.  Considering that the wavelet coefficients are subject to shrinkage and that the 

scaling coefficients are not, the main contributor to the Haar wavelet’s success in 

comparison to other wavelet bases, with regards to denoising a stationary or sufficiently 

slow process in the context of smFRET, is its failure to separate frequency components 

of the signal as well as its competitors.  Based on these properties, it can be concluded 

that, for most systems studied by smFRET (i.e. those with dynamics slower than the 

collection frequency), the Haar basis is the best choice of the many wavelet bases for 

denoising purposes.  Given the superior performance of the Haar basis with respect to 

the removal of shot-noise in smFRET trajectories, all forthcoming denoised estimates 

were produced with the Haar wavelet basis.  

6.4.2 Comparison of Variations in Wavelet Shrinkage 

 Fig. 6.6 compares the results of the application of wavelet shrinkage variations, 

or variants, consisting of various combinations of shrinkage method, noise estimator, 

and standard or cycle-spun transformation, to each of the two and four state systems.  

Each variant uses the Haar wavelet basis, and is named with a three-letter acronym, the 

first letter being “U” or “A” for universal or adaptive (time-local) threshold, the second 

letter being “S”, “H”, “G”, or “F” for soft, hard, garrote, or firm thresholding, 

respectively, and the last letter being “S” or “C” for standard or cycle-spun wavelet 

transforms.  Figs. 6.6A-D show the mean absolute percent errors (M), calculated from 
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Eq. 6.9, of denoised efficiency signals plotted against the highest level of decomposition 

for the two state system, and Figs. 6.6E-H show that of the four state system.  The 

dashed lines in Figs. 6.6A-H show the mean absolute percent error induced by simulated 

shot-noise.  Figs. 6.6I and 6.6J show the percent reduction, with respect to the shot-

noise induced values, of the mean absolute percent error resulting from the application 

of each denoising variant to the two and four state systems, respectively. 

 It is important to note that, as shown by both Figs. 6.5 and 6.6, increasing the 

highest decomposition level does not necessarily result in improvement to the denoised 

estimate.  In fact, in the case of the two state system, the soft, hard, and garrote 

thresholding methods cause error to increase with respect to the shot-noise induced 

value at higher levels of decomposition.  This effect is the result of decreasing time 

resolution in the wavelet transformation.  As the decomposition level increases, the 

time resolution of the wavelet components decreases, and transitions between states 

may be downsampled out of the wavelet approximation altogether.  As a result, 

transitions may be poorly reconstructed when the wavelet components are upsampled 

during signal reconstruction.  This effect is also observed in the four state system, but its 

magnitude is smaller due to the proximity of the four states and the construction of a 

sequential equilibrium between each of the neighboring states.   

The reduction of this effect when firm thresholding is used lies in its use of two 

thresholds.  The lower threshold is designed to remove wavelet coefficients that 

definitely arise from shot-noise.  Oppositely, the upper threshold is designed to keep 

wavelet coefficients that definitely do not arise from shot-noise.  Lastly, it is assumed 
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that wavelet coefficients lying in between the two thresholds are part noise and part 

non-noise, and these coefficients are reduced as a means to remove the noise part and 

keep the non-noise part.  The overall result is a shrinkage method that is very selective 

as to what part of each coefficient is noise and what is not, and a denoised estimate that 

is relatively insensitive to the highest decomposition level.  This effect is also reduced in 

hard thresholding by the use of the time-local threshold that was introduced above.  

The cause of this reduction is similar to that of firm thresholding – a more appropriate 

distinction of the barrier between what is noise and what is not noise.  

The advantage of time-local noise estimation is made obvious in Figs. 6.6B and 

6.6F, where the accuracies of the universally denoised estimates deviate from the 

accuracies of the adaptively denoised estimates.  The deviation arises as a result of the 

properties of hard thresholding.  Hard thresholding is the simplest of all shrinkage 

methods; it keeps wavelet coefficients with magnitude larger than the threshold, and 

sets to zero wavelet coefficients lower than the threshold.  It is, therefore, of the utmost 

importance in the use of this method to estimate the noise level with great care.  Over 

or underestimating this value leads to error in the denoised estimate, as shown in Figs. 

6.6B ad 6.6F.  Time windows that span one or more state changes do not have a 

stationary noise level, and these changes are under-represented by the universal 

threshold.  This under-representation results in shrinkage of a suboptimal number of 

wavelet coefficients, and therefore increased error in the denoised estimate.  In 

contrast, the time-local threshold more accurately selects the barrier between noise and 

non-noise by using time-localized noise strength, thereby resulting in improvement to  
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Figure 6.6.  Comparison of denoising variants with the Haar basis.  A) plots the mean 

absolute percent error (M), calculated from Eq. 6.9, of soft variants acting on the 2 

state system vs. the highest decomposition level used to produce the denoised 

estimate.  B) plots M vs. level for hard variants acting on the 2 state system, C) plots 

that of garrote variants, and D) shows that of firm variants.  E)-H) correspond to the 

variants shown in A)-D), respectively, acting on the 4 state system.  The percent 

reduction of each variant acting on the 2 state and 4 state systems are shown in I) 

and J), respectively.  Each denoised estimate is labeled on the x-axis with its acronym 

(see main text), and the percent reductions plotted in descending order. 
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the denoised estimate.  Although the largest improvement is seen with the use of the 

time-local threshold in combination with hard thresholding, Fig. 6.6 shows that, when 

the same shrinkage method is used, denoised estimates produced by the time-local 

threshold are, on average, approximately 5% more accurate than their universally 

thresholded counterparts. 

It is also shown in Fig. 6.6 that denoised estimates produced by cycle-spinning 

the wavelet transformation have approximately 8.1 % improvement over their 

counterparts that were transformed in the standard fashion.  This is again a result of 

transitions in the smFRET trajectories and translation dependence of the wavelet 

transformation.  For example, a wavelet coefficient containing a transition that occurs 

over a single-time step may be downsampled out of the wavelet transformation.  When 

reintroduced during reconstruction, this transition will spread over more than one time 

step, thereby increasing the error in the denoised estimate. Cycle-spinning reduces the 

impact of this pitfall by introducing time shifts to the signal and denoising the multiple 

representations generated by the various time shifts.  These time shifts are 

advantageous in that, if a state-to-state transition is downsampled out of the unshifted 

wavelet transformation, it is not downsampled out of at least one of the time-shifted 

transformations.  This allows the transition to be present in the wavelet transformation, 

and thereby reduces the effect of translation dependence. 

Despite the differences in our two test systems, Figs. 6.6I-J show that the 

variants producing the most optimally denoised estimates (i.e., those having the lowest 

mean absolute percent error as calculated from Eq. 6.9) are consistent across the two 
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systems.  Figs. 6.6I and 6.6J were generated by selecting the decomposition level of the 

application of each denoising variant with the highest percent improvement relative to 

the noisy efficiency signal.  These data show that the percent improvement (i.e., the 

ratio of mean absolute percent error of the denoised estimate to that of the noisy data) 

of the best denoised estimate exceeds 70 % in both the two and four state systems, 

corresponding to approximately 2% mean absolute error.  Moreover, these data show 

that the same three variants, AFC, AHC, and UFC, produce the most optimally denoised 

estimates in both cases.  These variants are further compared via analyses of state 

efficiency distributions in the next subsection 

6.4.3 Evaluation of Optimally Denoised Variants 

The three variants, AFC, AHC, and UFC, producing the most optimally denoised 

estimates were further compared via efficiency distributions and the extraction of the 

escape rates (i.e., the sum of transition rates from one particular state to all other 

states).  Fig. 6.7 compares the shot-noise induced efficiency distributions of both 

systems to the denoised distributions produced by these variants.  The simulated 

efficiency distribution of the two state system along with its shot-noise induced percent 

error M is shown in Fig. 6.7A.  The denoised efficiency distributions produced by the 

AFC, AHC, and UFC variants are shown in Figs 6.7B, 6.7C, and 6.7D, respectively.  

Likewise, the shot-noise induced efficiency distribution for the four state system is 

shown in Fig 6.7E, and the AFC, AHC, and UFC denoised distributions are shown in Figs. 

6.7F-H, respectively. 
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Figure 6.7.  smFRET efficiency distributions generated by denoising variants.  A) shows 

the efficiency distribution of the two state model system.  B) shows the 

corresponding denoised estimate produced by the AFC variant, C) shows that 

produced by the AHC variant, and D) that of the UFC variant.  E) contains the 

efficiency distribution of the four state model system, while F)-H) show the denoised 

estimates produced by the AFC, AHC, and UFC variants, respectively.  Each 

distribution is accompanied by its mean absolute deviation, M, and each denoised 

estimate is also accompanied by a table inset showing the central efficiency and 

standard deviation of the data points that contain each simulated state.   

 There is little difference in the percent error M produced by each of the three 

variants in each of the two model systems.  Subtle differences exist in the central 

efficiencies and standard deviations of each state (table insets), and are results of the 

differing properties of each of the three methods.  Most notably, the AFC and AHC 
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variants produce the highest resolution between states for both systems, and slightly 

broader state efficiency distributions are observed in the case of the UFC variant.  This 

result is expected, as discussed above, and arises from better distinction of noise from 

non-noise by the adaptive threshold.  Despite the broader distributions, in the case of 

the two state system the mean percent error of the UFC variant remains smaller than 

that produced by the AHC variant.  This is simply a result of large shot-noise 

fluctuations.  Regardless of the care that is taken to select the appropriate threshold 

value, for a finite signal length, there always exists a nonzero probability that a 

fluctuation produced by shot-noise exceeds the threshold.  As such, firm thresholding is 

more equipped to handle such a situation than is hard thresholding via its shrinkage 

operation and use of two thresholds.  Fluctuations larger than the lower, but smaller 

than the upper, threshold are reduced in magnitude by the shrinkage operation, 

thereby reducing the magnitude of the fluctuation in the denoised estimate.  This effect 

seems to disappear in the four state distributions, but its presence is simply masked 

behind the proximity of the states in the model. 

6.4.4 Comparison of Noise Estimators 

Fig. 6.8 demonstrates the advantages of time-local noise estimation over 

universal noise estimation.  A simulated acceptor photon trajectory (upper panel) shows 

distinct transitions between photon levels that represent 0.9 and 0.4 efficiency states.   

The first and second level wavelet coefficients of the high frequency component of the 

photon trajectory’s standard wavelet transformation are shown in the middle and lower 

panels, respectively.  The universal (dashed lines) and time-local (solid lines) thresholds  
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Figure 6.8.  A simulated acceptor photon trajectory (upper panel) represents states 

having efficiencies of 0.9 and 0.4.  The trajectory is transformed, resulting in the high 

frequency wavelet coefficients of the first decomposition level (middle panel) and 

the second decomposition level (lower panel).  The universal (dashed lines) and 

time-local (solid lines) noise estimators are also shown in each of the lower two 

panels.  Wavelet coefficients resulting from transitions in the photon trajectory that 

exceed the time-local threshold but do not exceed the universal threshold are 

emphasized by red markers, and coefficients exceeding both thresholds are 

emphasized by blue markers. 

are also shown in each of the lower two panels.  Wavelet coefficients resulting from 

transitions in the photon trajectory that exceed the time-local threshold but do not 

exceed the universal threshold are emphasized by red markers, and those exceeding  
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both thresholds are emphasized 

by blue markers.  Of the 6 

transitions in this particular 

trajectory, only 2 are recognized 

by the universal threshold.  In 

contrast, time-local adjustment 

of the noise level estimation 

results in the recognition of all 6 

transitions in the photon 

trajectory as well as their 

distinction from shot-noise at 

both efficiencies.  This therefore 

demonstrates that the time-local 

noise estimator more ably 

differentiates between shot-

noise and transitions than does 

the universal estimator. 

 

 

 

 

 

Figure 6.9.  Pseudo-Gibbs phenomena and cycle 

spinning.  A) Pseudo-Gibbs phenomena are 

introduced due to the translation dependence of 

the standard wavelet transformation (green).  

Cycle-spinning the wavelet transformation (red) 

reduces the magnitude of these artifacts.  B) The 

efficiency distribution produced by the noisy data 

(white) is narrowed by both the standard (green) 

and cycle-spun (red) transformation, but it is clear 

that pseudo-Gibbs-induced broadening is more 

prevalent in the standard denoised estimate. 
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6.4.5 Translation-Dependent Artifacts 

The deleterious effects of pseudo-Gibbs phenomena and the subsequent 

reduction of these effects via cycle-spinning are illustrated in Fig. 6.9.  In Fig. 6.9A, a 

shot-noise induced efficiency trajectory (grey, dotted) is overlaid with the simulated 

efficiency trajectory (black, and the denoised estimates produced by the standard 

wavelet transformation  (green), and by the translation-invariant[141] wavelet 

transformation (red).  Near the discontinuities in the trajectory, the artifacts are obvious 

in the denoised estimate produced by the standard transform.  In comparison, these 

artifacts are largely eliminated by the cycle-spun transform, leading to a more 

accurately denoised estimate.  The unwanted effects of pseudo-Gibbs phenomena can 

be illustrated more clearly with a simulated ensemble smFRET histogram, in which the 

smFRET distributions of many molecules are combined.  Fig. 6.9B displays the original 

shot-noise affected efficiency distribution of the two-state equilibrium (white) overlaid 

with the denoised distribution produced without cycle-spinning (green) and the 

denoised distribution produced with cycle-spinning (blue).  While the distribution of 

each state is narrowed noticeably by the standard wavelet shrinkage method, unwanted 

macroscale broadening of the distribution by pseudo-Gibbs phenomena are clearly 

reduced by the translation-invariant approach. 

6.4.6 Population and Kinetic Considerations  

 The question remains as to whether wavelet shrinkage improves the ability of 

common state-finding algorithms to resolve equilibrium or kinetic parameters in a noisy 

multi-state distribution.  In addition to our previous work, Fig. 6.10 addresses this  
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 question.  Kinetic Monte Carlo 

methods were used to simulate a 

4 state system with a low 

occurrence of low-FRET states.  

Fig. 6.10A shows the simulated 

experimental distribution of 

smFRET states from an ensemble 

of smFRET trajectories (blue) 

overlain with the denoised 

distribution (green).  Fig. 6.10B 

shows the underlying states and 

distributions used in the 

simulations (light blue).  Also 

included in Fig. 6.10B are the 

HMM-extracted [144] states (and 

distributions) acquired from the 

original data (blue), as well as 

from the denoised data (green).  

It is quite obvious in Fig. 6.10B 

that the state-finding algorithm fails both at identifying states as well as at extracting 

accurate distributions from the original data.  In contrast, not only are all four states 

found by the HMM in the denoised data, but their populations and efficiencies are 

 

Figure 6.10.  State identification in a four state 

system.  A)  The shot-noise contaminated efficiency 

distribution of a simulated 4 state system (blue) is 

overlaid by the corresponding denoised 

distribution (greed).  B) The simulated fractional 

population (light blue) is overlaid with the 

fractional populations extracted by the HMM of 

[144] from the noisy data (blue) and the denoised 

data (green). 
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accurate with respect to the simulated values.  We therefore conclude that this system 

is sufficiently complex to provide for the failure of the HMM without the use of wavelet 

shrinkage, but is accurately resolved with the use of wavelet shrinkage. 

For extractable kinetics, we rely on the two and four state systems that are 

profiled above.  Dwell time histograms of each state in the two standard models were 

constructed and fit to single exponential decays as a means to extract rate constants for 

the escape from each state.  The hidden-Markov model of [144] was used to assign 

states in each trajectory.  The extracted rates, for the four state system, are reported in 

Table 6.1 along with those extracted from the shot-noise laden data and the true values  

as extracted from the simulated data.  

The escape rates for the two state 

system are not shown due to the fact 

that the extracted values showed little 

difference (< 5 %) among the data sets, 

as well as little difference from the 

simulated values. 

Table 6.1 demonstrates that 

kinetics are not uniformly extracted from 

the various representations of the more 

complex model system.  The escape rates 

extracted from the noise-laden data show an average deviation of 132 %, demonstrating 

that the 4 states in the model along with shot-noise result in a sufficiently complex 

〈 〉 Actual 
Shot-

noise 
AFC AHC UFC 

0.9 0.98 1.21 0.97 1.12 0.94 

0.75 1.95 3.16 1.70 1.98 1.66 

0.6 1.91 6.49 1.72 1.87 1.58 

0.5 1.32 4.13 1.21 1.32 1.03 

Table 6.1.  Escape rates (in Hz) for the four 

state system, extracted by dwell time 

analysis. 
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system that cannot be accurately distinguished by HMM.  The rates extracted from the 

denoised estimates show large improvement over this value.  The extracted escape 

rates from the three variants, UFC, AFC, and AHC, show average deviations of 14.5 %, 8 

%, and 4.4 %, respectively.  The improved performance of the AHC variant in 

comparison to the firmly thresholded variants is a result of their differing behavior near 

transitions.  A transition results in a number of nonzero wavelet coefficients in the 

region of the transition at different resolution levels.  Firm thresholding shrinks the 

wavelet coefficients with moderate magnitude while hard thresholding leaves them as 

they are.  Shrinkage of these wavelet coefficients results in a smoother transition with 

the use of firm thresholding, and therefore, slightly less accurate kinetics in the model 

system.  In the overall picture however, the kinetic parameters extracted from each of 

the three denoised estimates are remarkably accurate in comparison to those extracted 

from the shot-noise laden data. 

6.5 Conclusions 

We have presented modifications to the wavelet denoising method presented in 

our previous publication [5] that enhance ability of wavelet shrinkage to remove the 

contribution of shot-noise from smFRET photon trajectories by 200 %.  We have tested 

our methods on two separate simulated data sets, a simple two state equilibrium, and a 

more complex four state sequential equilibrium, and found that the algorithm’s ability 

to remove shot-noise and retain data remains intact.  Furthermore, we have 

demonstrated that, with the inclusion of the presented smFRET-specific modifications, 

wavelet shrinkage is of general use in smFRET systems ranging from simple, two state 
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systems, to more complex, multiple state systems in which the resolution, defined by 

the ability to distinguish distinct states in the efficiency distribution, is marred by shot-

noise.  

 We have also shown, through tests on the simulated data sets, that the use of a 

more advanced wavelet basis does not result in improvements to the denoised 

estimates.  In fact, if a basis other than the simplest of all wavelet bases, the Haar basis, 

is used, the percent error obtained from the denoised estimate is far from optimal.  This 

is mainly a result of the frequency space properties of shot-noise and of the digital 

filters comprising the wavelet basis.  Due to the fact that shot-noise is uniformly 

distributed in frequency space, the Haar wavelet’s failure to separate frequencies as 

well as its competitors becomes an advantage in the removal of shot-noise from a non-

homogeneous Poisson process. 

 We have also introduced a time-localized noise estimator that is custom-

designed for smFRET trajectories.  Problems with the barrier between noise and non-

noise arise with the use of the universal threshold[110] due to its use of the average 

noise strength over the entirety of a photon trajectory.  Given that the observation of 

changes is most often the goal of smFRET measurements, the noise strength present in 

a photon trajectory is not stationary, but is ably described by a non-homogeneous 

Poisson process.  The recognition of this limitation gives rise to a time-localized 

approach to wavelet shrinkage, allowing for more accurate estimation the time-local 

barrier between noise and non-noise, and therefore improvement to the denoised 

estimates. 
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 We have also addressed a variety of available shrinkage methods, and have 

found that the most versatile method in application to smFRET trajectories is the firm 

thresholding method[135].  Firm thresholding uses two thresholds, which allows for 

more accurate distinction between noise and non-noise, and therefore gives rise to 

improved estimates.  We have also found that use of the time-localized threshold 

significantly increases the accuracy of the denoised estimates obtained with the hard 

thresholding method.  This is also due to the more accurate distinction of the barrier 

between noise and non-noise via the time-localized estimation.   

 Also, we have addressed the presence of artifacts known as pseudo-Gibbs 

oscillations that arise in the neighborhood of discontinuities in smFRET trajectories.  

These artifacts are a direct result of the position of the discontinuity in the signal, and 

arise due to translation-dependence in the discrete wavelet transformation.  We apply a 

method known as cycle-spinning[141] to reduce the effect of these artifacts, and find 

that the method results in more accurately denoised estimates. 

 Lastly, properties concerning resolution of states and state-to-state kinetics of 

each system were extracted from the most optimally denoised estimates, and were 

compared to the true, simulated values.  Through these comparisons, we find that the 

combination of the time-local noise estimator, firm shrinkage method, and cycle-spun 

wavelet transform (AFC) consistently produces optimal resolution between states in the 

denoised estimates across the two systems.  We also find that, although the resolution 

between states is identical for the two variants acting on the more complex system, the 

kinetics extracted by this combination are nominally less accurate than the kinetics 
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extracted by the time-local, hard shrinkage, cycle-spun (AHC) variant due to fast 

transitions over small efficiency differences between states.  The firmly thresholded 

estimates are smoother than the estimates produced with hard thresholding, leading to 

slightly decreased accuracy in the extracted kinetics.           

 Overall, through the application of these methods to our two model systems, we 

show that, with respect to the process introduced in our earlier work, the modifications 

to wavelet shrinkage presented here can improve the accuracy of denoised estimates by 

more than 200 %.  We also demonstrate that wavelet shrinkage used with the 

combination of the Haar wavelet basis, a time-local noise estimator, firm or hard 

shrinkage method, and a translation-invariant wavelet transformation decreases the 

shot-noise uncertainty to smFRET efficiency by over 70 %, and allows for accurate 

characterization of both simple and more complex smFRET systems. 

An executable application as well as a MATLAB package for wavelet denoising of 

smFRET time trajectories can be found at www.lrg.rice.edu . 

6.6 Appendix: Frequency Response of a Wavelet Filter ψ(m) 

A wavelet filter is a finite impulse response (FIR) filter because its output in 

response to an impulse input decays to zero in finite time.  FIR filters are a subgroup of a 

larger class of digital filters known as linear, time-invariant (LTI) digital filters.  Frequency 

response, a measure of the filter’s output spectrum in response to an input signal, is 

formally defined as the ratio of the output spectrum to the input spectrum.  For FIR  

http://www.lrg.rice.edu/
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digital filters, the frequency 

response is equivalent to the 

discrete Fourier transform (DFT) 

of the filter itself. 

As a result of linearity and 

time-invariance, the output of 

any LTI digital filter may be 

computed by the convolution of 

the input signal with the filter’s 

impulse response.  The impulse 

response, h(n), is calculated by 

convolution of the filter, ψ(m), 

with an impulse input 

 ( )  ∑  ( )  (   )   ( )

   

     

                            (    )  

Here δ(n - m) is a Kroenecker δ that is 1 if n = m and 0 otherwise.  The transfer function, 

i.e., the mathematical relationship between the filter’s input and output, of any LTI filter 

is the z-transform of its impulse response.  With the Z-transform of output Y(z) and 

input X(z), we have 

 

Figure 6.11    The Daubechies series of A) wavelet 

functions and B) scaling functions in frequency 

space. 
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 ( )  
 ( )

 ( )
 ∑  ( )   

   

     

     (    )  

The frequency response of an LTI digital filter is the transfer function evaluated on the 

unit circle in the complex plane, i.e., z = e iωT .  Upon inspection, we find that H(e iωT) is 

the DFT of the impulse response h(n) in terms of ωT.  Furthermore, because h(n) = ψ(n), 

we find the frequency response of the filter ψ(m) is equivalent to its frequency domain 

representation 

 (     )  ∑  ( )      
   

     

                                       (    )  

Figs. 6.11A and 6.11B shows the Daubechies series of wavelet and scaling filters, 

respectively, in frequency space.  Notice that the Haar wavelet in Fig. 6.11A amplifies a 

wider range of frequencies at a more uniform manner than the rest of the Daubechies 

series.  Considering that the wavelet coefficients are subject to shrinkage and that the 

scaling coefficients are not, the main contributor to the Haar wavelet’s success in 

comparison to other wavelet bases, with regards to denoising a stationary or sufficiently 

slow process, is its failure to separate frequency components of the signal as well as its 

competitors. 
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Chapter 7 

 

 

 

Structural landscape of isolated agonist-binding domains of the AMPA 

receptor studied by single-molecule FRET   

 

The contents of this chapter are adapted from an article originally published in Nature Chemical 

Biology on February 6, 2011. 

Landes,C.F.; Rambhadran, A.; Taylor, J.N.; Salatan, F.; Jayaraman, V.  “Structural landscape of the 

isolated ligand binding domain of the AMPA receptor studied by single molecule FRET” Nat. 

Chem. Biol.  2011. 7:168-173. 

 

ABSTRACT 

Single molecule fluorescence resonance energy transfer (smFRET) was used to examine 

the conformational landscapes explored by the agonist binding domain of the α-amino-

3-hydroxy-5-methyl-4-isoxazole propionate receptor in its apo and agonist bound forms 

for wild type and T686 mutant proteins.  Although the average conformation for each 

receptor form was found to be similar to those reported by ensemble measurements, 

the smFRET data reveal several new points.  First, the glutamate-bound form explores a 
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wide range of conformations.  Also, each form was determined to comprise multi-state, 

sequential equilibria.  Finally, rate constants were extracted for the equilibrium 

conformational interconversions.  These results illustrate that the extent of activation is 

dependent not on a rigid closed cleft, but instead on the probability that a given subunit 

will occupy a closed cleft conformation, which in turn is not only determined by the 

lowest energy state but by the range of states that the protein explores.     

7.1 Introduction 

α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors are 

members of a larger family known as ionotropic glutamate receptors[145].  AMPA 

receptors are membrane proteins that mediate neurotransmission in the central 

nervous system [146, 147], and their chemical biology is important to understand 

considering its role in memory and learning [148]. The structure of these neurological 

receptors is one containing four subunits in a dimer of dimers arrangement [149, 150]. 

Each subunit contains two extracellular domains, one being the agonist binding domain 

(ABD), a transmembrane segment enclosing a central ion channel, and an intracellular 

domain [150]. When the extracellular agonist binding domain binds the agonist 

glutamate, a series of conformational changes occurs, ultimately resulting in the 

formation of a cation permeable transmembrane channel.  The ion channel has shown 

to close (desensitize) even in the continued presence of agonist [151-153].  This 

allosterically controlled mechanism, in which the agonist-bound protein facilitates both 

activation and desensitization, continues to be a primary uncertainty in the research of 

AMPA receptors.   
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Differing mechanisms have been 

suggested for this allosteric process. Initial X-ray 

structures of the GluR2 subunit (Figure 1) show 

a bilobed ABD with differing degrees of binding 

cleft closure when bound to agonists of varying 

efficacy [151-156]. It has therefore been 

suggested that the degree to which the cleft is 

closed is the mechanism by which activation is 

controlled by the agonist[153]. However, 

exceptions to this correlation have been 

recently observed. For example, there is no 

substantial difference among the degrees of cleft closure in solution based NMR 

structures of the partial agonists known as the willardiines [157].  The L650T and  T686S 

mutants also show deviations from this correlation; the degree of closure in the binding 

cleft is larger when the mutants are bound to AMPA and glutamate, respectively, but 

exhibit only partial agonism [155, 158, 159]. While ensemble studies, such as X-ray 

structures and ensemble FRET measurements, offer insights into allosteric processes 

within in the ABD, they are limited by ensemble average and provide information only 

about the structure of the lowest energy state or the average state, respectively, of the 

protein. To gain a complete understanding, we must characterize the collection of states 

that the protein occupies. Here, we observe such collections of states in the GluR2 

agonist binding domain (GluR2-ABD), via smFRET, in the apo and glutamate-bound 

 

Figure 7.1. Crystal structure of 

GluR2-ABD showing the sites 

labeled for the smFRET 

investigations and distances 

between the sites in the apo and 

glutamate bound form. 
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forms, and in the wild-type and T686S mutant.  Using such an approach, we are able to 

connect the ensemble data with single-molecule data and describe causes of 

disagreement in the suggested allosteric mechanism. 

Molecular dynamics simulation of the GluR2-ABD suggest that the T686S 

mutants deviate from the hypothesis that cleft closure controls activation by 

demonstrating that the protein explores conformations that do and do not facilitate the 

ion channel’s activation. These theoretical studies also agree well with 

electrophysiological measurements of channel activation within the mutant protein [2]. 

The single-molecule data we present here offer the first experimental proof of the 

theoretically proposed conformational landscape.  

A common issue in smFRET experiments is that the data often yield broad 

efficiency distributions that are contaminated by experimental noise, thus limiting the 

interpretation of such distributions to a range of possible conformations [73, 160-162]. 

There are several sources of such contamination.  Firstly, we must determine if there 

are contributions from experimental parameters such as immobilization protocol or 

dye-protein interactions that artificially spread the data [163]. Further challenges lie in 

the characterization of the system via the acquired data.  Most often, we must make 

assumptions regarding the system as a means to extract underlying states and rate 

constants [20, 164], which introduces bias unless these states are readily obvious.  Such 

an example would be the physically meaningless task of fitting a featureless distribution 

with multiple normal distributions without knowing whether the observable spreads 

normally or not. There exist, however, tools that reduce or eliminate the need for 
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biased assumptions.  Specifically, our method to denoise smFRET photon trajectories 

using wavelet decomposition has proven to be useful in the reduction of electronic shot-

noise, making it possible to better resolve underlying states in broad smFRET 

distributions [5].   

In this work, we use this wavelet denoising technique to locate and quantify the 

states that underlie the noisy, featureless smFRET distributions obtained for single 

GluR2-ABDs.  We use a hidden-Markov model (HMM) to identify four conformational 

states within the wavelet denoised data of the glutamate-bound ABD, which produces 

the first experimental evidence for the multi-state equilibria that are predicted by 

atomistic molecular dynamics simulations [2]. We perform analysis of the waiting time 

distributions to extract state-to-state transition rate constants, which reveal that these 

are sequential equilibria. Analysis of the apo form of the ABD indicates an additional 

resolvable conformation, and that the equilibrium shifts away from the closed-cleft 

form of the agonist-bound ABD. Lastly, similar analysis of the T686S mutant, in which 

cleft closure is hindered by the absence of hydrogen bonding between the binding cleft 

and the glutamate agonist, suggest that the more flexible protein traverses a broader 

range of states, both with more open and more closed binding clefts. 

7.2 Methods  

The fluorescence signals of the donor and the acceptor were collected until the 

fluorophores were photobleached. The apparent FRET efficiency was calculated using 

the background- and crosstalk-corrected intensities (described in Section 4.2) as in Eq. 

2.3.  Because the cleft closure is floppy in solution, the molecule is in equilibrium 
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between multiple conformations. Therefore, it is important to determine the dwell time 

of the molecule in one conformation. This was done by executing an autocorrelation 

analysis on the FRET efficiency of each molecule, then taking the average of the 

autocorrelation values to produce an ensemble autocorrelation (see Eq. 2.4), which is 

presented and analyzed with logarithmic binning to avoid over-fitting at long lag times.  

The resultant autocorrelation decays were fit with single exponential functions.  Details 

about the wavelet denoising technique, dwell-time analysis, and rate constant 

extraction can be found our earlier work [5] and chapters 5 and 6.  All data analysis was 

performed with programs written in house using MATLAB (R2008b, The Mathworks, 

Natick, MA), with the exception of the hidden Markov state-finding analysis, which was 

performed with a program made available  by the Ha group at the University of Illinois 

at Urbana-Champaign. 

7.2.1 Multiply Labeled Proteins 

There are two inherent cysteine residues (C425 and C436) in the GluR2-ABD that 

may be inadvertently dye-labeled, as illustrated in Figure 7.2.  These residues are largely 

inaccessible to dye labeling [158], but occasional multi-dye labeling was observed in our 

results.  We characterize such labeling flaws via multi-step photobleaching, and 

eliminate these trajectories from the data set.  Table 7.1 displays the observed fractions 

of the occurrence of multiply labeled ABDs.  We quantify such characterization via the 

emission trajectory of a molecule  

 with one donor and one acceptor.  We observe a single-step photobleaching event for 

each of the donor and acceptor fluorophores as shown in Figure 7.3A. The presence of  
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two acceptors on the same ABD results in a similar 

two-step photobleach, as in in Figure 7.3B.  

Furthermore two donors on the same ABD is 

characterized by a two-step photobleach in the donor 

emission trajectory, as shown in Figure 7.3C. Note 

that this trajectory also contains contributions from 

two acceptor fluorophores.  Lastly, we characterize 

donor-only labeling via the observation of donor-only 

emission, as shown in Figure 7.3D. 

 

  

7.2.2 General Data and Wavelet Analysis 

Each remaining trajectory is then photoblink-filtered with the Bayesian method 

described in chapter 4 [5].  The resulting trajectories then undergo the statistical tests 

described in Section 2.2.2, and those not meeting the criteria as defined by the rest of  

 

Figure 7.2. GluR2-ABD 

molecules with multiple 

labels. (A) Molecule with two 

donor dyes and one acceptor 

dye. (B) Molecule with one 

donor dye and two acceptor 

dyes. (C) Molecule with two 

donor dyes and two acceptor 

dyes. (D) Molecule with two 

donor dyes. 

Table 7.1. Percentages of labeled molecules 

Molecule 1D:1A 2D:1A 1D:2A 2D:2A 

Apo GluR2-ABD 74% 21% 3% 2% 

GluR2-ABD 

+ Glu 
78% 17% 4% 1% 

GluR2-ABD 

T686S + Glu 
86% 14% 0% 0% 
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the data set are excluded from 

our analyses.  Additionally, 

donor and acceptor 

autocorrelation and cross 

correlation analysis are 

performed for each trajectory 

to ensure that the dyes are not 

rotationally hindered and that 

the photon count response is 

anti-correlated for each 

trajectory, respectively, as 

should be the case when FRET 

is occurring.  The results of this 

refinement procedure, in the 

case of a molecule emitting a 

stationary number of photons 

from a stationary conformational state, are trajectories that are up to 97% free of 

photoblinks and external contamination and broadened only by shot-noise. 

After the refinement procedure, the donor and acceptor photon trajectories are 

subject to the wavelet denoising procedure as described in Chapters 5 and 6 [5], 

reducing the contribution of shot-noise to the data, thereby increasing both 

occupational and kinetic resolution. To demonstrate the ability to extract accurate 

 

Figure 7.3. Sample emission trajectories of 

multilabeled GluR2-ABD molecules. The donor 

emission is blue while the acceptor emission is 

red. All of these emission trajectories were 

collected from Glu-bound GluR2-ABD molecules. 

(A) Molecule with two donor dyes and one 

acceptor dye. (B) Molecule with one donor dye 

and two acceptor dyes. (C) Molecule with two 

donor dyes and two acceptor dyes. (D) Molecule 

with only donor dye. 
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information from a noisy efficiency distribution obtained from a complicated, multi-

state system, we use Kinetic Monte Carlo (KMC) methods to simulate the system shown 

in Fig. 7.4. The KMC-simulated trajectories consist of 4 states having central efficiencies 

0.9, 0.8, 0.7, and 0.6, and each state has an escape rate in the range of 4.5 – 14 Hz, 

corresponding to average lifetimes in the range of 70 – 200 ms.  The relative occupation 

of each state is shown in Fig. 7.4A.  State trajectories are simulated first, with acceptor 

and donor photon trajectories being constructed from the state trajectories.  The sum of 

acceptor and donor photon counts has a mean of 185 photons per time step for all of 

the 14,000 time steps in 35 simulated trajectories.  The signal to background ratio is 2.3, 

and the donor to acceptor background ratio is 2.  The crosstalk ratio was fixed at 10 %.  

Shot-noise was simulated at the ith time step as an additive, zero-mean, Gaussian white 

noise component with magnitude   ( )  √  ( ) for the acceptor signal, and   ( )  

√  ( ) for the donor signal.  Here, each of the σA(i ) and σD(i ) represent standard 

deviation, and each is independently and identically distributed for all time steps.  After 

correction for background and crosstalk, efficiencies are calculated and compiled to 

generate the distribution shown in Fig 7.4B.  Each of the 35 acceptor and donor 

trajectories is then denoised via the procedure described in our published work [5] 

(Chapters 5, 6), and, after similar background and crosstalk correction, denoised 

efficiencies are calculated and compiled to generate the denoised efficiency distribution 

shown in Fig. 7.4C. Hidden-Markov model (HMM) analysis [20] is then used to identify 

states in each of the noisy and denoised efficiency trajectories.  So that the same central 

efficiencies are identified in each trajectory, efficiency trajectories are concatenated,  
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Figure 7.4.  Denoising a simulated 4 state system.  A) shows the relative occupation of 

each of the 4 simulated states.  Adding a zero-mean, Gaussian white noise to each of 

the acceptor and donor trajectories, subsequent background and crosstalk correction, 

and calculation of efficiencies leads to the distribution shown in B).  The denoised 

complement to B) is shown in C).  Applying the HMM to the raw and denoised 

trajectories results in the distributions shown in D), and E), respectively.  Parameters 

extracted from the hidden-Markov modeled trajectories are reported in F).   

and the HMM is instructed to find the most likely states in the trajectories.  The relative 

occupation of the states extracted by the HMM from the noisy data is shown in Fig. 

7.4D, and that extracted from the denoised data is shown in Fig. 7.4E.  Fig. 7.4F 

tabulates the information extracted by the HMM analyses.  The escape rates shown in 

Fig. 7.4F are extracted by dwell time analyses, in which the distribution of each state’s 

dwell times is fit to an exponential decay. 
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 The comparison shown 

in Fig. 7.4 demonstrates 

that, although the 

distribution of shot-

noise-induced 

efficiencies of our model 

system has unremarkable 

features and 

indistinguishable states, 

denoising the trajectories 

with the procedure 

described in [5] allows 

for the accurate 

extraction of information 

about the relative 

occupation of each state, 

of each state’s central 

efficiency, and of the 

kinetic aspects of the 

system.  Inspection of the distribution shown in Fig. 7.4D – the relative occupations of 

each state extracted from the noisy data by the HMM – reveals that the state having 

central efficiency 0.7 is not identified by the HMM.  This is due to the broadening effect 

 

Figure 7.5. Single-molecule trajectory. Upon excitation with 

532 nm laser light (A) the energy transfer from the donor 

dye to the acceptor dye results in high acceptor emission 

(red) photon count until the acceptor dye is 

photobleached. The donor dye is more photostable so 

the donor emission (blue) takes longer to photobleach. 

(B) The resulting single-molecule FRET trajectory from A is 

shown in red while the denoised trace is shown in blue. 

(C) The corresponding denoised FRET histogram shows 

the average FRET efficiency and the standard deviation of 

the denoised signal. 
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of the shot-noise contribution.  Furthermore, because of shot-noise broadening and the 

unidentified state, the kinetics extracted by the HMM from the noisy data are skewed 

and unreliable at best.  In contrast, the central efficiencies extracted from the denoised 

data have negligible deviation from their true values, relative occupations have average 

deviation of < 5 %, and the extracted escape rates have an average deviation of only 8.5 

%.  The precision and accuracy of the system properties extracted after denoising 

therefore demonstrates the remarkable enhancement to our ability to extract accurate 

information from complicated efficiency distributions via the application of the 

denoising procedure. 

7.3 Results and Discussion 

7.3.1 Denoising Single smFRET Trajectories 

To characterize the conformational landscape of the GluR2-ABD, we must first 

increase the resolution in the broad distribution of efficiency values as described in the 

last section.  Figure 7.5A shows a representative smFRET trajectory of a single, 

donor/acceptor labeled ABD, acquired at 1 ms time resolution and binned to 10 ms for 

analysis.  Each acceptor and donor trajectory was corrected for background and 

crosstalk [165, 166], passed through the Bayesian photoblink filter, and then denoised 

via the wavelet procedure described in chapters 5 and 6 [5] to reduce the shot-noise 

contribution in the photon trajectories.  Time-dependent smFRET efficiencies were then 

calculated from the noisy and denoised trajectories.  We show representative results in 

Fig. 7.5B.  These results reveal a sharper smFRET efficiency distribution after denoising 

because up to 70% of the shot-noise contribution has been removed from the signal.   
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7.3.2 Glutamate-Bound GluR2-ABD 

The noisy ensemble distribution compiled from many single-molecule 

measurements and its denoised counterpart are shown in Fig. 7.6.  It is demonstrated in 

this comparison that the average efficiency does not change after denoising, but the 

resolution within the distribution is increased by the reduction of the shot-noise  

contribution.  In particular, the 

average smFRET efficiency of 0.8 

corresponds to an average interdye 

distance (see Eqs. 2.1 and 2.2) of 

40.5 Å.  Considering the dye 

placement (see Fig. 7.1), we 

compare this distance to that 

determined in solution-based 

ensemble FRET measurements, and 

find that the distance we extract 

corresponds nicely with the 

ensemble value of 40.8 Å[158].  We 

expect this result, considering the 

nature of the two ensemble results are based in FRET, but this result demonstrates that 

there are no ill effects arising from the immobilization or labeling schemes. 

It is important to note the differences between ensemble averages compiled 

from smFRET experiments to those measured from ensemble experiments.  In the 

 

Figure 7.6. (A) Distribution of FRET values from 

67 glutamate-bound GluR2-ABD smFRET traces 

before and (B) after wavelet denoising. 
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measure of equilibrium distance above, while both types of experiments measure the 

average over many molecules, only the single-molecule measurement is capable of 

providing information about the width of a particular population.  Furthermore, while X-

ray and NMR measurements lead to hypotheses about the source of the spread in the 

distribution, they are incapable of quantifying the source of the spread.  Single-molecule 

measurements provide information both about the ensemble and about individual 

molecules, allowing for the quantification of the nature of a broad distribution as well as 

about the types of transformations that occur within an individual molecular 

environment.   

The results of these experiments provide such information about the GluR2-ABD 

because additional features are found within the denoised efficiency distribution.  The 

noisy ensemble in Fig. 7.6A has a non-descript standard deviation of 0.14 and no visually 

resolvable features, thus provides no basis for further occupational or kinetic analyses.  

But the viability and capability of the wavelet denoising is made evident in the ensemble 

distribution of denoised efficiencies as shown in Fig. 7.6B.  Specifically, we take 

advantage of the increased accuracy of the denoised efficiencies by performing HMM 

analysis as described above to extract states from the denoised trajectories.  We use the 

automated algorithm detailed in [20] to find the denoised ensemble trajectories to 2, 3, 

4, 5, 6, and 7 conformational states. For each trial, the efficiencies of the extracted 

states were compared to those of the individual molecules using the smFRET histograms 

to evaluate the most consistent fit.  Results indicate  
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that four states, centered at 

efficiencies of 0.59 ± 5.8%, 0.72 ± 4.8% 

, 0.81 ± 4.2%, and 0.90 ± 3.8%  yielded 

the most accurate depiction of the 

observed distribution. Fits to more 

than four states yielded redundant 

values.  This identification of four 

conformations in the glutamate-bound 

GluR2-ABD molecules is the first 

experimental evidence in support of 

the complex free energy landscape 

predicted by all atom molecular 

dynamics simulations [167, 168].  

While the distances between the 

fluorophores are provided by the 

efficiencies of these states, the source 

of the distance changes could arise due to side chain rearrangements, changes in 

backbone orientation due to hydrogen bond changes etc. The precise nature of the 

conformational change associated with these distances changes cannot be determined 

from these measurements. 

After the HMM assigns states to each efficiency in the distribution, we analyze 

the waiting time (or dwell time) distributions to extract the rates of transition as well as  

 

Figure 7.7.  Two-dimensional histogram 

comparing initial and final calculated 

apparent smFRET efficiencies for all single 

glutamate-bound ABD protein 

trajectories.  The dashed white line is 

included to emphasize that, despite the 

spread in smFRET data values, the 

transitions overwhelmingly occur 

between neighboring states. 
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the numbers of transitions 

between each of the identified 

states.  We extract rate 

constants by fitting the dwell 

time distributions of each state-

to-state transition to 

exponential decays.  The 

sequential equilibrium predicted 

by the theoretical studies of Lau 

and Roux [2] was inferred from 

the numbers of transitions 

between non-adjacent states.  

Specifically, of the nearly 300 

transitions counted within the 

experimental data, only 6% 

occurred between non-adjacent 

states.  This is illustrated in the 

two-dimensional histogram 

shown in Fig. 7.7.  The dwell 

time distributions for relevant transitions and their respective exponential fits are 

shown in Fig. 7.8. 

 

Figure 7.8.   Dwell-time histograms for all of the 

possible transitions between the four states 

identified from the glutamate-bound GluR2-ABD 

form.  Each histogram was fit to a single 

exponential decay in order to extract transition 

rates.  94% of observed transitions occurred 

between neighboring conformations. 
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We thus draw the general conclusion from our single molecule results in 

combination with ensemble FRET [158] and NMR [169] analyses on glutamate-bound 

GluR2-ABD that the agonist-bound form of the GluR2-ABD is not rigidly locked into one 

active form.   

 In relation to other studies involving gated ion transport, the smFRET 

experiments discussed here focus on the structural transformations that occur in the 

agonist-bound form of single GluR2-ABD.  Thus, we compare the rates extracted from 

our dwell time analyses to those obtained from NMR experiments that studied similar 

phenomena [170, 171].  These studies found that stabilization of the agonist-bound 

domain occurs on time scales that are ms or longer, indicating the kinetics describing 

the agonist-bound conformational landscape occur on slower time scales than the 

structural changes induced by the agonist binding/dissociation events [172]. Also, 

channel conductance experiments have measured channel opening and closing 

dynamics only for full imbedded membrane proteins [173, 174].  The kinetics extracted 

from the full protein are, naturally, incomparable with our results for isolated ABDs.   

Also, we must discuss the extracted rate constants in terms of the experimental 

time resolution.  smFRET trajectories are collected in 1 ms time bins (or 1 kHz 

frequency) and binned to 10 ms for further data analysis.  This implies that the fastest 

events that can be measured are on the order of 10 ms in lifetime.  Thus, in the 

presence of 10 mM glutamate in the microfluidic chamber, glutamate binding and 

unbinding events occur 1-2 orders of magnitude faster than our time scale, and consider  
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the glutamate/ABD complex to be in its 

equilibrium bound state for the time 

window of our measurements.   

To confirm, kinetic Monte Carlo 

simulations were performed for sequential 

4-state equilibria with rate constants 

matching those fit to our experimental 

data, and with rate constants ten and one 

thousand times faster, as might be 

expected if our measurements were 

monitoring binding/dissociation events.  

The resulting transitions were incorporated 

into simulated smFRET histograms and are 

compared with the actual denoised data in 

Figure 7.9.  This comparison makes is clear 

that it is not possible we are measuring 

time-averaged snapshots of faster events.  

Only the smFRET histogram compiled from 

transitions with similar rate constants accurately simulates the actual data.  It is 

interesting to note that the only state that is less accurately simulated is the most closed 

state, which might be associated with a faster docking transition.  In this case, the 

smFRET dwell times would be expected to occur via a convolution between faster  

 

Figure 7.9.  Histograms of ensemble 

smFRET values from experimental GluR2-

ABD data (dark blue) are compared to 

those compiled from simulated data with 

rate constants on the same order of 

magnitude, ten times, and 100 times 

faster than the extracted values, 

respectively.  Only the simulated data 

with rate constants on the same order of 

magnitude as the fitted data 

approximate our observed histogram.   
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docking events and slower conformational 

transitions, and the data bear this out.  

Additionally, we demonstrate, in Fig. 7.10, 

that two states in an efficiency distribution 

are only resolvable if their rates of transition 

are near to or larger than the sampling 

frequency.  If they are faster than the 

sampling frequency, a bimodal distribution 

collapses to a unimodal one.   

7.3.3 Apo GluR2-ABD 

 We apply the same procedure of 

wavelet denoising, HMM, and dwell time 

analysis to the apo form of the GluR2 and 

find three results to be apparent.  The first, 

as expected from other structural studies 

utilizing crystallography [7,40] and ensemble 

FRET [158], the binding cleft remains more 

open overall than the agonist bound ABD as 

indicated by the decrease in average 

efficiency in the distribution shown in Fig. 

7.11.  Furthermore, the width of the 

distribution is larger than the agonist-bound form, suggesting the apo ABD explores a  

 

Figure 7.10.  Resolution of two states in 

equilibrium is dependent on the rate 

of transition between the two states.  

A) The bimodal efficiency distribution 

of simulated two-state systems 

collapses to a unimodal distribution 

as the transition frequency 

approaches and exceeds the sampling 

frequency.  B) The standard deviation 

of each distribution as a function of 

transition frequency between the two 

states in the simulated equilibrium. 
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 wider range of conformations as 

predicted by MD simulations [2].  

Lastly, the optimal number of 

states in this distribution, as 

identified by the HMM, was 

found to be five states as 

opposed to the four in the 

agonist-bound ABD.  The 

efficiencies of the states that 

were identified are 0.54 ± 7.3%, 

0.65 ± 6.1%, 0.75 ± 5.2%, 0.84 ± 

4.7%, and 0.94± 4.2%, as shown 

with the extracted transition 

rate constants in Figure 7.11.   

We propose two possible 

explanations for this result. In 

the first, we consider the 1-

dimensional free energy plot for 

the apo form presented by Lau 

and Roux [2].  This curve 

contains four inflection points, 

 

Figure 7.11.  A) Denoised apo GluR2-ABD ensemble 

FRET histogram with the five preferred 

conformational states and the rate constants for the 

sequential equilibrium. B) Denoised glutamate 

bound form of GluR2-T686S-ABD ensemble FRET 

histogram. The histogram shows the five preferred 

states and the rate constants of the transitions. 
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indicating the existence of four states, but there are other points along the curve in 

which the curvature flattens, but does not inflect.  These indicate local free energy 

minima that may be stabilized by slight variation of ionic strength or temperature, 

creating new inflection points and thus new states. Furthermore, the theoretical 

simulation uses order parameters that were chosen for, among other qualities, their 

efficacy in extracting equilibrium properties [2].  The use of different order parameters 

may result in additional local minima resulting from stabilized conformational 

intermediates.   Additionally, the HMM does not accommodate broadened distributions, 

as the widths of all states are assumed equivalent [20].  The energy landscape for the 

apo form is broader than that of glutamate bound protein [2].  This is especially true in 

the most open regions explored by the protein, so the HMM may approximate one 

broad state as two states with narrow distributions. 

 We also performed dwell time analysis on this data.  Rates of transition among 

the five states are illustrated in Fig. 7.11. As in the glutamate-bound case, we find that 

95% of the observed transitions occur between adjacent states, again suggesting a 

sequential equilibrium.   

The primary difference, other than the number of states in the distribution, lies 

in the differences in rate constants for the 0.65 ↔ 0.75 equilibrium.  In the apo form, 

the protein prefers the more open state located near an efficiency of 0.65, but in the 

agonist-bound form, all transitions favor the more closed state.  This suggests that the 

most probable state of the apo form has an efficiency that is lower than that of the 
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glutamate-bound form, which is expected.  The distances resulting from these 

efficiencies correspond nicely with those obtained from x-ray structures [151].  

7.3.4 T686S Mutant 

 Our final study involves the T686S mutant form of the glutamate-bound GluR2-

ABD.  The stabilization of the glutamate-bound form induced by hydrogen bonding is 

eliminated in this mutant [159].  As shown in Fig. 7.11 by the average smFRET efficiency 

of 0.79 and the broad distribution, the mutant form indeed occupies a more open and 

flexible average state.  This distribution, as in the case of the apo form, is best fit to a 5 

state model.  These states are located at 0.39 ± 12%, 0.54 ± 8.7%, 0.68 ± 6.9%, 0.82 ± 

5.7%, and 0.96 ± 4.9%.  Dwell time analysis again yields rate constants (shown in Fig. 

7.11) for the transitions among these states, and these transitions again infer a 

sequential equilibrium (as predicted in [2]), with 99% of all transitions occurring 

between adjacent states.  While the smFRET data of the mutant form bears closed cleft 

with much resemblance to that of the agonist-bound wild-type form, consistent with 

crystal structures [159], the mutant form explores a broader range of conformations 

than does the wild-type.  Considering that the T686S mutant has shown to have an 

increased rate of recovery from desensitization [159], this suggests that the range of 

conformations explored by the mutant plays an important role in the 

desensitization/recovery process.  It is then prudent to infer that there is a functional 

advantage to a more flexible binding cleft, resulting in a trade-off between sensitivity 

and recovery.  Additionally, simulations suggest [2] that the agonist-bound mutant, 

which is destabilized by the absence of hydrogen bonding, can occupy states with more 
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closed binding clefts than the agonist-bound wild-type protein.  This results in a more 

flexible structure exploring a wider range of conformations, which is in agreement with 

the current work.  

7.3.5 GluR2-ABD Conformational Dynamics 

 We may quantify this final point concerning overall structural rigidity via 

autocorrelation of the smFRET trajectories acquired in the experiments to extract the  

 characteristic fluctuation time () of 

each of the three protein forms 

studied in this work.  We generate 

an average autocorrelation curve for 

each situation as described above 

and fit these curves to exponential 

decays [175], yielding a fluctuation 

time for each set of trajectories that 

represents the time scale of the 

decay of self- similarity within the 

sample.  These data are shown in Fig 

7.12, where we have compared the 

curves to the stable structure of the 

HIV1 TAR DNA hairpin [63] to illustrate that a longer decay time and a higher amplitude 

correspond to a more flexible system.  Examining these data, we see immediately that 

all the GluR2-ABD results are more flexible than the stable structure of the hairpin.  

 

Figure 7.12. The average smFRET efficiency 

autocorrelation as a function of lag time is 

compared for the three GluR2-ABD proteins 

measured in the current work, and compared to 

a similar analysis of a model rigid biomolecule, 

TAR DNA [63]. 
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Furthermore, we see that the glutamate-bound form is the most rigid and that the apo 

and T686S mutants exhibit similar behavior, considering their larger amplitudes and 

longer decay times that are with error of one another and the calculated values.   

7.4 Conclusions 

 In conclusion, we have shown via smFRET that the glutamate-bound form of the 

GluR2-ABD is not in a locked conformation, but instead explores a range of 

conformations in a sequential equilibrium.  We accomplish this with the use of an 

advanced signal processing method, wavelet denoising.  We also extract rate constants 

for interconversions among the identified states.  We compare these results to similar 

results of the apo form and the T686S mutant, and such comparison allows for the 

observation that these forms are more flexible than their counterpart, thus allowing for 

the hypothesis that the flexibility of the apo and mutant forms plays a role in the activity 

and desensitization of the neurological ion channel.  Generally, our studies suggest that 

ion channel activation depends not just on a closed binding cleft, but on the probability 

that the ABD occupies a closed cleft conformation.  This probability is determined not 

only by the native conformation, but by the range of conformations that are accessible 

to the GluR2-ABD.      
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Chapter 8 

 

 

A Coarse-Grained Model for Molecular Ionic Transport of Rhodamine 6G 

within a Polystyrene Sulfonate Polymer Brush 

 

ABSTRACT 

The experiments of single-molecule spectroscopy eliminate the averaging of ensemble 

techniques and provide results that often reveal dynamic disorder in the pathways by 

which processes occur.  Theoretical simulations are often used to provide detail 

concerning the physical system but are often limited by approximations and/or 

computational facility. Coarse-grained (CG) molecular dynamics simulations are 

emerging as a useful alternative to atomistic molecular dynamics simulations because 

they provide a relatively fine level of molecular detail at a reduced computational cost in 

comparison to atomistic simulations. Among the more common of CG approaches is 

that of the MARTINI force field.  Here we describe a MARTINI-based CG model for 

Rhodamine 6G diffusing within a polystyrene sulfonate polymer brush.  We construct CG 

models of the molecular ionic fluorophore and the polymer brush, and then perform 

temperature-dependent molecular dynamics simulations for temporal lengths of 20 ns.  

We compare our results to empirical data, and find that steric interactions are reliably 
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reproduced but that electrostatic interaction in the physical system is not adequately 

reproduced by our simulations. 

8.1 Introduction 

Single-molecule spectroscopic experiments are providing experimental results 

with more detail than ever before.  These experiments have come in a range of 

applications, both in the nature of the experimental system, e.g., biological [12, 14, 62], 

electrochemical [9-11], photophysical [28], as well as in the nature of the spectroscopic 

method.  Single-molecule measurements involving FRET have been applied to a variety 

of experimental systems [55], performing functions by providing a measure of the 

distance between two fluorophores that are attached to the molecule(s) under 

examination in some advantageous fashion.  Other methods include FCS, which is often 

used to measure transport properties of a probe within a variety of experimental 

systems [7-11].   

Attempts to characterize single-molecule experiments often involve theoretical 

simulations.  Various forms of simulation have been used, including Monte Carlo 

methods [1, 4, 5], Rouse models [176], and atomistic molecular dynamics (MD) 

simulations [177].  Some of these methods, such as Monte Carlo methods and Rouse 

models offer the advantage simple implementation and achieving the experimental time 

resolution, but also offer disadvantages in terms of physical precision and realism.  On 

the other hand, MD simulations offer the advantage of explicit atomistic detail, but 

computational facilities largely do not allow for the experimental time resolution to be 

achieved.  Considering that experiments such as single-molecule FRET tend to capture 
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slower, larger scale behavior of the system, the fast, small-scale details provided by 

atomistic MD simulations are often of little practical value assisting in the interpretation 

of experimental results.  In situations such as these, coarse-grained (CG) molecular 

dynamics offers an interesting alternative to atomistic MD simulation.  

Coarse-grained molecular dynamics simulations have proven useful in describing 

dynamics of biomolecules [178, 179], polymers [180, 181], as well as some organic dye 

molecules [182].  CG approaches vary in their scale, e.g. some map CG beads in a 2-4 

atom-to-bead ratio, such as those describing polymers and aromatic ring structures 

[180], and others take a coarser approach, such as the 3SPN approach (3-sites-per-

nucleotide) [181], where an entire nucleotide is represented by 3 coarse-grained atoms.  

One represents the base, the next represents the sugar, and last represents the 

phosphate backbone.   

Among the more common of CG approaches is that of the MARTINI force field 

[183].  MARTINI was developed initially for use in biomolecular lipid simulations [184], 

but has since expanded to include CG descriptions of other systems such as proteins 

[179], polymers [180, 181], and carbohydrates [185]. MARTINI beads typically represent 

4 heavy atoms, but some structures, such as phenyl rings [180], have been mapped to 2 

heavy atoms per CG bead. Representing multiple atoms as a unified ‘bead’ has the 

obvious advantage of reducing the computational cost of integrating over each atom in 

the molecule and allowing for longer amounts of simulated time. Taking a more fine-

grained CG approach also allows for some of the important physical properties of the 
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molecule, such as mass, size, shape, and charge to be represented with some degree of 

accuracy.  This, of course, comes with the sacrifice of computational cost. 

In this chapter we develop a CG model for the system described in Reznik, et al 

[9].  These experiments describe the 3-dimensional orientation of an electrostatically 

charged organic fluorophore, rhodamine 6G (R6G), as it moves within a polystyrene 

sulfonate (PSS) polymer brush.  We first develop a CG representation molecular ionic 

fluorophore whose objective is to accurately represent the size, shape, and charge of 

R6G.  Next, we construct an atomistic representation of R6G for use in the 

characterization and validation of the CG model.  In particular, we use the rates of 

diffusion for the atomistic model and the CG model to calculate an effective time 

dilation for the CG model, and we use selected atomistic angle distributions to calibrate 

the angles of the CG model. We then use the CG model developed for polystyrene [180] 

as a template in the development of a CG representation for polystyrene sulfonate.  We 

characterize the structural properties of the CG model, and then construct a polymer 

brush representation of the CG model of PSS.  We place the polymer brush 

representation in a simulation volume containing multipolar, CG water [186], Na+ 

counterions, and R6G, and perform temperature dependent molecular dynamics 

simulations for a temporal length of 20 ns.  We then characterize the ionic behavior 

within the system, the structural characteristics of the PSS oligomers, and the dynamical 

behavior of R6G within the simulated polymer brush construct. 

8.2 A Coarse-Grained Model for R6G 
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 In this section we describe two models of R6G. The first is an atomistic model 

constructed in the GROMOS 43a1 force field that is used for the validation and 

calibration of a coarse-grained model.  The second is a coarse-grained model that was 

constructed as a means to accurately reproduce the mass, size, shape, and charge of the 

molecular ionic fluorophore.  All simulations are performed in GROMACS version 4.5.5 

[39-42]. 

 8.2.1 The Atomistic R6G model 

 The structure of the all-atom R6G molecule is 

pictured in Figure 8.1.  The model is a complete 

atomistic description of the molecular R6G ion, 

including explicit hydrogen atoms.  The model was 

constructed in the GROMOS 43a1 force field [187], 

and the charge on each of the nitrogen atoms was 

adjusted by +0.5q to accommodate the positive 

Coulombic charge of the molecular ion.  The atomistic 

model was placed in two simulation volumes, each of 

which is 5x5x5 nm. The first simulation volume 

contained no solvent molecules, and the second 

contained explicit water as a solvent.  Brownian 

dynamics simulations were performed on the solvent-

free simulation volume, with molecular diffusion 

 

Figure 8.1.  The molecular 

structure of Rhodamine 6G 

pictured beneath its 

MARTINI-based coarse-

grained mapping.  Purple CG 

beads have a charge of 

+0.5q, orange beads 

represent polar groups, and 

gray beads are nonpolar.  
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characteristics and selected angle distributions being extracted from the data for 

comparison to the other models.  Molecular dynamics simulations were performed on 

the simulation volume containing explicit water, from which we extract the same 

properties as in the solvent-free case. 

8.2.2 The R6G-CG Model 

 In this section we describe the coarse-grained model of R6G containing 13 CG 

beads, and term this model to be R6G-CG.  The mapping of R6G-CG is shown in Figure 

8.1, where blue represents the charged beads containing the nitrogen atoms of the 

molecule and the orange beads represent the polar groups containing oxygen atoms.  

We use the CG atoms provided in the MARTINI force field to define the beads in the 

R6G-CG model, and adjust their masses to appropriately represent the mass of the 

constituent atoms within each bead.  Bonded parameters and constraint distances were 

defined manually, but nonbonded interactions remain unchanged.  This particular CG 

mapping was constructed to accurately represent the size and shape of the R6G 

molecule, considering that a more spherical representation may not accurately 

represent steric interactions within some ordered environment such as the polystyrene 

sulfonate polymer brush described in [9].  For the CG model, we also perform solvent-

free Brownian dynamics simulations and solvated molecular dynamics simulations.  

Instead of the atomistic water model, we use the multipolar CG water model described 

in [186].  

8.2.3 Results of the R6G simulations 
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 Firstly, to measure the 

time dilation of the CG model 

that arises from lack of the  

effective friction of small 

atomistic motions [180] we 

measure the molecular diffusion 

constants of the atomistic and CG 

simulations.  The mean-squared 

displacements of each simulation 

are plotted versus time in Figure 

8.2 along with their linear fits and 

extracted diffusion constants.  As 

shown by Figure 8.2, the 

diffusion constants extracted 

from the atomistic simulations 

are comparable to one another, as are those extracted from the CG simulations.  

Additionally, we compare the atomistic diffusion constant of approximately 2.6 x10-6 

cm2/s to the experimental one of 2.84 x10-6 cm2/s [10], and find good agreement. 

Furthermore, we see that the CG-based diffusion constants are larger than their 

atomistic counterparts, indicating the time dilation occurs as expected.  Specifically, the 

ratio the CG diffusion constant to the atomistic diffusion constant indicates a time 

dilation on the order of 1.7. 

 

Figure 8.2.  Mean-squared displacement curves 

and fits for the solvated (above) and Brownian 

dynamics (below) simulations. 
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Next, we characterize the structural similarity of the CG model with respect to 

the atomistic model.  To accomplish this, we select 4 structural angles within the  

atomistic model (Figure 8.3) and 

compare their distributions to the 

corresponding angles within the 

atomistic model.  The CG angle 

distributions extracted from the solvated 

simulations (Figure 8.4, upper row) show 

good agreement overall with their 

atomistic counterparts, indicating that 

the R6G-CG model retains good 

structural similarity with respect to the 

structure of the atomistic R6G. The angle 

distributions extracted from the 

Brownian dynamics simulations (Figure 

8.4, lower row) also show good agreement with their atomistic counterparts; however 

these distributions display less similarity than the solvated configuration.  This is 

expected however, and is also a product of the reduced effective friction in the CG 

model as discussed above.  In particular, this friction that is reduced in the CG model is 

effectively increased in the atomistic model, leading to sharper angle distributions.  In 

combination with the temporal results described above, these structural results indicate 

 

Figure 8.3.  Structural angles selected for 

CG calibration.  The angles α (A) and β (B) 

span the upper ring structure.  The angle γ 

(C) spans the lower ring attachment, and 

the angle δ spans the lower ring’s 

attachment to the ester tail. 
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that R6G-CG is indeed a representative coarse-grained model of the atomistic R6G 

model.      

 

Figure 8.4.  The angle distributions of the solvated simulations are shown (above) along 

with those extracted from the Brownian dynamics simulations (below).  Solid lines are 

the atomistic distributions and dashed lines are the CG distributions.   

 8.3 A Coarse-Grained Model for a Polystyrene Sulfonate Polymer Brush 

8.3.1 Description of the PSS CG Model 

 The coarse-grained model for 

PSS was adapted from the MARTINI-

based CG model for polystyrene [180].  

Specifically, the A-mapping of [180] was 

modified with an additional CG bead to 

describe the sulfonate group attached to 

 

Figure 8.5.  Coarse-grained mapping of 

polystyrene sulfonate. 
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the phenyl ring.  This mapping then is characterized by 5 CG beads per monomer, 1 

representing the backbone and 3 representing the phenyl ring, as in [180], and 1 

representing the sulfonate group.  An additional CG counterion, the MARTINI  

representation of Na+, 

accompanies each monomer.  

The LJ parameters of the 

sulfonate bead are defined via 

the bond lengths described for 

the sulfonate group in the 

crystal structures of p-toluene 

sulfonic acid [188].  Considering 

that the phenyl-C bound to the 

sulfonate group is shared 

between two beads in the CG 

representation, bonds were 

constructed between two of the 

phenyl CG beads and the 

sulfonate bead.  Bond lengths 

and angles were also inferred 

from the crystal structures in 

[188].  The mapping of a 2 monomer segment is illustrated in Figure 8.5.   

8.3.2 Simulation of a Single PSS Oligomer 

 

Figure 8.6.  Structural characterization of a single 

PSS20 oligomer.  A) Time trajectory for the average 

radius of gyration for all backbone beads at each 

time step. B) The distribution associated with the 

data in A).  C) Time trajectory for the persistence 

length of PSS20.  D) The distribution associated with 

the data shown in B) 



165 
 

 A single PSS oligomer comprised of 20 monomers and their counterions was 

placed in a 5x5x10 nm simulation volume, and molecular dynamics simulations were 

performed the after the oligomer had been solvated in the multipolar CG water model 

described in [186] for a temporal length of 2 ns.  To simulate the effect of the oligomer 

being bound to a surface as would be the case in a polymer brush construct, we place a 

3-dimensional position restraint on the bottom-most backbone bead so that any 

movement of the restrained bead is counteracted by a restoring force.  From each of 

these simulations, we extract end-to-end distances (persistence lengths, PLs) of the 

oligomer as well as radii of gyration associated with the polymer backbone.  These data 

are illustrated in Figure 8.6.  Considering that the oligomer’s initial configuration was an 

extended chain, we observe a collapsing of the oligomer that appears to occur in 

discrete steps.  This is also indicated by the multimodal nature of the distribution.  

Furthermore, each discrete step in the persistence length trajectory is accompanied by a 

corresponding step in the radius of gyration trajectory, indicating that as the PSS chain 

becomes more and more collapsed, the movement of the polymer backbone becomes 

more and more constrained.  

8.4 Simulation of R6G Diffusing within a PSS Polymer Brush Construct 

8.4.1 Description of the R6G-CG/PSS Simulation Volume 

 In order to simulate the experimental environment of R6G diffusing within a PSS 

polymer brush as described in [9], we construct simulation volumes containing R6G-CG 

and a polymer brush representation of PSS.  Specifically, the oligomer constructed in 

section 8.3 was replicated to a 2-dimensional grid to simulate the polymer brush 
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construct on a small spatial scale.  We align the oligomers in a 5x5 array such that the 

system consists of 25 oligomers each having 20 monomers, and we place a position 

restraint on the bottom-most bead in each oligomer to simulate being bound to a 

surface.  The distance between neighboring oligomers is 2.5 nm. The total simulation 

volume is 12.5x12.5x10 nm, thereby allowing for a volume consisting solely of water 

molecules to surround the polymer brush construct.  We then solvate the polymer 

brush construct with the BMW model [186], add a single R6G-CG to the simulation 

volume, and perform molecular dynamics simulations with a time step of 20 fs for a 

total temporal length of 20 ns.  Considering that the masses of the MARTINI-based CG 

beads were adapted to accurately represent the masses of the groups of atoms from 

which they are comprised, we conduct a temperature dependent study to characterize 

the behavior of the CG model at temperatures of 300 K, 350 K, 400 K, and 450 K.  From 

these simulations we extract radii of gyration for each backbone bead in each oligomer, 

persistence lengths for a selected oligomer, diffusion constants for R6G-CG and Na+ ions, 

a radial distribution function for Na+/SO3
- distances, and a rotational correlation 

function for R6G-CG. 

8.4.2 Ionic Behavior within the R6G-CG/PSS System 

 To ensure that the ionic behavior within our system is appropriate, i.e., that Na+ 

ion mobility plays an appropriate role in the dynamics of the polymer brush construct, 

we extract temperature-dependent diffusion constants for Na+ from the simulated 

trajectories.  These data are shown in Figure 8.7A. Specifically, the diffusion constants 

(in units of cm2/s) are 2.3 x 10-6 (+/- 2.4 x 10-7), 6.8 X 10-6 (+/- 1.37 x 10-7), 1.5 x 10-5 (+/- 
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8.8 X 10-7), and 2.4 X 10-5 (+/- 4.4 X 10-7), at temperatures of 300 K, 350 K, 400 K, and 

450 K, respectively.  From these data we can clearly see that the Na+ diffusion constant 

increases with temperature as expected. Furthermore, when we examine the radial  

 distribution of Na+ ions with 

respect to the locations of the 

SO3
- groups of each monomer 

that are reported in Figure 8.7B, 

we see that the distributions 

indicate the presence of at least 

2 preferred ionic arrangements, 

which is indicative of complicated 

charge-shielding within the 

polymer brush construct.  

Moreover, we observe a 

decrease in the relative 

occupation of these 

arrangements as temperature 

increases that is also indicative of 

increased Na+ ion mobility at higher temperature.  In the comparison of these 

distributions to those of the atomistic PSS simulations reported in [189], we find 

excellent agreement between the atomistic and coarse-grained models.       

8.4.3 Structural Characteristics of the PSS oligomers 

 

Figure 8.7.  A) Collective diffusion constants (cm2/s) 

extracted for Na+ ions.  B) Radial distribution 

functions for Na+/SO3
- distances. 
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In this section we discuss the structural characteristics of the simulated PSS 

oligomers as a function of temperature.  In particular, we extract radii of gyration for the 

backbone beads in each oligomer to measure the effects of temperature on the 

conformational dynamics of the polymer backbone.  Next, we select a single oligomer 

that resides in a central location within the polymer brush matrix and observe its 

persistence length, defined as the radial distance from the position-restrained bottom-

most backbone bead to the top backbone bead in the single PSS oligomer.   

 Time trajectories of the 

average radius of gyration (Rg) for 

all backbone beads at each time 

step in the simulation are shown 

in the left-hand column of Figure 

8.8, and the associated 

distributions of these average 

values are shown in the right-

hand column of Figure 8.8.  The 

most obvious feature in the time 

trajectories is that, as expected, 

the average radius of gyration 

and its associated distribution 

width, does indeed increase with 

 

Figure 8.8.  Time trajectories for radius of gyration 

of polymer backbone beads (left) are shown 

with their corresponding distributions (right).  

Temperature increases from 300 K, to 350 K, to 

400 K, to 450 K (downwards). 
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temperature. Considering the multi-modal nature of the distributions shown in Figure 

8.8 may lead one to conclude that interactions among the oligomers causes the motion 

of the backbone beads to be constrained in some systematic fashion.  However, we 

observe a positive slope in all time trajectories, indicating the process of equilibration is 

not yet complete, even after 1 million time steps and 20 ns of simulation time.  This 

effect is most noticeable at the highest temperature of 450 K but appears at all 

temperatures.  The zero slope in the latter 10 ns of the 400 K trajectory indicates that  

 this system is 

equilibrated, but the positive 

slope remains at lower 

temperatures and  does not 

allow for this conclusion to be 

drawn from these data alone. 

 Similarly, the persistence 

lengths (PLs) associated with a 

selected oligomer are  reported 

in Figure 8.9.  The same oligomer 

was selected for each study 

reported in Figure 8.9.  The left-

hand column contains time 

trajectories observed for this 

particular oligomer and the right-

 

Figure 8.9.  Time trajectories for persistence length 

between the polymer’s bottom-most and topmost 

backbone beads (left) are shown with their 

corresponding distributions (right).  Temperature 

increases from 300 K, to 350 K, to 400 K, to 450 K 

(downwards). 
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hand column contains the distribution associated with the time trajectory.  From these 

data, we immediately observe that the persistence length of the PSS oligomer exhibits 

more rapid fluctuation at higher temperatures in agreement with the data reported for 

the radius of gyration.  Upon examination of the distributions however, we observe that 

this faster fluctuation does not lead to the occupation of a broader range of PLs.  This 

leads us to draw the conclusion that the PSS oligomers do not sample from a broader 

configurational space at higher temperature, but rather sample this configurational 

space more rapidly.  Furthermore, examination of the time trajectories reveals the 

reoccurrence of particular values for the PLs, leading to the conclusion that there are 

indeed preferred conformations of the oligomer, i.e., there are local minima within the 

configurational sampling space.  

 8.4.4 Dynamical Characteristics of R6G-CG within the PSS Polymer Brush Construct   

To quantify the dynamical behavior of R6G-CG within the PSS brush, we extract 

diffusion constants and rotational decay times from the simulated trajectories.  These 

data are shown in Figure 8.10.  Specifically, Figure 8.10A displays the first 5 ns of the 

mean-squared displacement (MSD) of R6G-CG at each temperature, and Figure 8.10B 

shows the associated rotational correlation functions.  Figures 8.10C and 8.10D display 

the extracted values as a function of temperature. 

From the data shown in Figure 8.10A, we see that the MSD of R6G-CG remains 

reasonably linear for the first 5 ns of each simulation, and we extract diffusion constants 

from these data.  We thereby conclude from Figure 8.10C that the diffusion constant 

does indeed increase with temperature as expected.  Specifically, the extracted diffusion  
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Figure 8.10. Dynamical analysis of R6G-CG within the polymer brush construct.  A) 

Mean-squared displacement trajectories of R6G-CG.  B) Rotational correlation 

functions for R6G-CG.  C) Diffusion constants for R6G-CG as a function of 

temperature.  D) Rotational decay times as a function of temperature for R6G-CG. 

constants are (in cm2/s) 3.0 x 10-7 (+/- 2.0 x 10-7), 6.0 x 10-7 (+/- 2.8 x 10-7), 5.4 x 10-6 (+/- 

4.2 x 10-7), and 2.5 x 10-5 (+/- 2.5 x 10-6) at 300 K, 350 K, 400 K, and 450 K, respectively.   

 In comparison to the R6G-CG in BMW simulations performed above (at 298K), 

we observe a decrease in the rate of translational diffusion by an order of magnitude, 

suggesting that interaction of R6G-CG with the polymer brush matrix does indeed occur, 

effectively raising the local viscosity and hindering translational diffusion. We also note 
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here that, although the diffusion constant extracted at 400 K appears at first to be 

anomalous, examination of the spatial trajectory reveals increased residence time 

within the polymer brush matrix as compared to the other temperatures. This increased 

residence time is the result of polymer brush dynamics in the local environment 

surrounding R6G-CG. In short, polymer dynamics lead to the formation of a ‘pocket’ 

surrounding the polymer, thus hindering translational diffusion.  This hindrance appears 

to be largely steric in nature, as will be revealed by the upcoming rotational studies. 

 The rotational correlation functions shown in Figure 8.10B indicate that 

temperature is the main factor influencing the rotational diffusion of the molecular ionic 

fluorophore.  This is indicated by the observation of substantial correlation amplitude at 

the lowest temperature of 300K.  Each rotational correlation function was fit to a single 

exponential decay to extract the rotational decay times that are shown in Figure 8.10D.  

These values are (in ps) 57.5 +/- 11.7, 13.6 +/- 1.6, 6.8 +/- 1.9, and 5.5 +/- 2.1 at 300 K, 

350 K, 400 K, and 450 K, respectively.  Firstly, these data reveal that the rotational decay 

times decrease with temperature as expected. Furthermore, considering that the 

trajectories used to construct the rotational correlation functions are sampled at a time 

resolution of 20 ps, the only temperature at which R6G-CG exhibits significant rotational 

correlation is 300 K.  Upon further examination, one recognizes that the hindered 

translational diffusion that was observed at 400 K does not result in a corresponding 

hindrance to rotational diffusion.  This result suggests, as mentioned above, that 

increased residence of R6G-CG within the polymer brush is not induced by a preferred 

orientation, but rather is largely governed by steric interactions at this temperature.  



173 
 

Lastly, we observe rapid rotational diffusion on the order of picoseconds at all 

temperatures, leading to the conclusion that, despite the electrostatic charge of +1q 

that resides on the molecular ion, there is not a long-lasting electrostatic interaction 

between R6G-CG and the polymer brush.  Considering the combination of these results 

we must conclude that the interaction that is observed via a reduction in the rate of 

translational diffusion is primarily steric in nature.           

8.5 Conclusions   

  In conclusion, we have constructed atomistic and coarse-grained 

representations of the molecular ionic fluorophore, Rhodamine 6G.  The coarse-grained 

representation is based in the MARTINI coarse-grained force field.  Simulations of the 

atomistic representation were performed via water-solvated molecular dynamics as well 

as via solvent-free Brownian dynamics, and the extracted diffusion constants agree well 

with empirical data (Carmen ref). Structural angle distributions were extracted from the 

atomistic data and were used to calibrate the coarse-grained representation. We use 

the multipolar, coarse-grained water model described in [186] to solvate R6G-CG, and 

performed both molecular dynamics and Brownian dynamics simulations as in the 

atomistic case.  We use the extracted diffusion constants for the atomistic and coarse-

grained molecular models to calculate an effective time dilation of 1.7 for the coarse-

grained model. 

We also constructed a coarse-grained model for polystyrene sulfonate, also 

MARTINI-based, that used the similarly MARTINI-based polystyrene construct [180] as a 

basic template.  We tested a single, BMW-solvated polymer, comprised of 20 monomers, 
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against an atomistic representation [189], and found good agreement between the 

structural and dynamic characteristics of the isolated polymer.  We then extended our 

CG representation to a small polymer brush construct to model the system described in 

[9], solvated the system with BMW water, and placed a single R6G-CG within the 

simulation volume.  Molecular dynamics simulations were then performed for a 

temporal length of 20 ns at temperatures of 300 K, 350 K, 400 K, and 450 K.  From these 

simulations we extracted dynamical characteristics of the ions, of polystyrene sulfonate, 

and of R6G-CG, including diffusion constants for Na+ and R6G-CG, persistence lengths 

and radii of gyration for of PSS, radial distribution functions for Na+/SO3
- distances, and 

rotational decay times for R6G-CG.   

These characteristics reveal several properties of the system under examination.  

Firstly, diffusion constants extracted for Na+ ions reveal temperature dependent ion 

mobility, and the radial distribution functions for Na+/SO3
- distances reveal at least 2 

preferred ionic arrangements for charge-shielding within the polyelectrolytic matrix that 

are in good agreement with previous atomistic simulations [189].  As expected, the 

average Rg for the polymer backbone is larger and the distribution width is broader at 

higher temperature, and the positive slope in the time trajectories suggests that the 

systems are not thermally equilibrated after 20 ns of simulated time.  The persistence 

lengths of polymers in the brush construct suggest that configurational space is sampled 

more rapidly at higher temperature but the widths of the PL distributions do not change 

appreciably at higher temperature, suggesting the polymer samples the same 

configurational space at a rate proportional to temperature.  Furthermore, the 
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reoccurrence of particular PLs within time trajectories at lower temperatures indicates 

that the polymer occupies preferred conformations to some degree.  Concerning R6G-

CG, the rates of translational diffusion of R6G-CG within the polymer brush constructs 

show that they are temperature dependent. Furthermore, the interaction of R6G-CG 

with the polymer brush is observed via a reduction in the translational diffusion 

constant by an order of magnitude. We also observe that reduced translational diffusion 

is not associated with a decrease in the rate of rotational diffusion, suggesting that the 

hindrance of translational diffusion is steric in nature.  Moreover, this conclusion is 

further supported by the rotational decay times extracted from the simulations.  While 

the rotational decay time of R6G-CG decreases with increasing temperature as expected, 

rotational diffusion is on the order of 1-100 picoseconds, thereby indicating fast rotation 

within the polymer brush at all temperatures.  We therefore conclude that, despite the 

electrostatic charge on the molecular ion, that hindrance of translational diffusion is 

primarily steric in nature. 

The reduction of the rate of translational diffusion by an order of magnitude is in 

agreement with the empirical data for a neutral fluorophore [10, 11], but is not in 

agreement with the empirical data concerning the ionic R6G probe [9], in which the 

authors observed a reduction in the rate of translational diffusion by approximately four 

orders of magnitude.  Furthermore, our simulations indicate rotational diffusion on the 

order of 1-100 picoseconds while the same empirical study found hindered rotational 

diffusion on the order of milliseconds.  The authors of the empirical study attribute the 

decreased rates of rotational and translational diffusion to electrostatic interaction, 
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which is suggested by their results concerning a neutral fluorophore.  This suggests that, 

while the steric aspects of our simulation show good agreement with empirical data, the 

electrostatic aspects remain questionable.  While this may simply be the result of the 

PSS oligomers constructed in this simulation being too short, or equivalently, too 

sparsely spaced in the polymer brush construct, thereby allowing free rotation and 

faster translational diffusion of R6G within the water-filled gaps between the oligomers, 

other factors may contribute as well. Specifically, the electrostatic cutoff of 1.4 nm that 

is allowed by the force field parameterization is much smaller than the Debye length 

calculated for R6G (approximately 10 nm at 298 K), which may result in the simulated 

molecular ion feeling less electrostatic force than is the case in the empirical system, 

leading to faster rates of translational and rotational diffusion.  Simulations testing the 

first hypothesis regarding chain length and chain spacing are underway, but the results 

presented here suggest that a more complicated electrostatic model may be necessary 

to model these types of dynamical electrostatic phenomena.       
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Chapter 9 

 

 

 

Conclusions and Future Directions 

 

9.1 Conclusions 

In conclusion, we have performed smFRET experiments on a system comprised 

of VEGF and the aV aptamer as a means to quantify structural fluctuations within the 

aptamer and observed the aV/VEGF interaction.  Specifically, we found that the aptamer 

occupies a range of conformations that displays Mg2+ dependence as well as VEGF 

dependence.  In particular, we find that the aptamer favors the predicted lowest energy 

conformation under all conditions, especially at higher Mg2+ concentration, and that the 

conformational equilibrium shifts towards lower FRET efficiency states in the presence 

of VEGF, indicated the aV/VEGF interaction occurs as expected.  However, experimental 

noise limits the amount of available information within the experimental results and 

does not allow for more specific conclusions to be drawn.  
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Next, a method to identify and remove a considerable source of uncertainty in 

smFRET time trajectories – photoblinks – was developed and tested on simulated 

smFRET data.  It is particularly important to maintain an objective approach in the 

removal of such phenomena.  To such an end, a method based in Bayesian probability 

was developed and tested.  The development of an unbiased method of photoblink 

detection eliminates the need to manually preprocess the trajectories, and perhaps 

more importantly, removes bias introduced into the measurement by subjective 

selection of photoblink thresholds.  Tests of the algorithm’s efficacy on simulated 

smFRET data resulted in nearly complete elimination of photoblinks with little effect on 

the actual data.  This improvement is observed both in the ensemble analysis of 

structural distributions, and in kinetic analysis of dwell times.  Although there are 

caveats involved with the method of photoblink detection, we have also shown that the 

caveats can be avoided through establishment of a lower efficiency boundary. 

Another source of uncertainty in smFRET measurements is that of electronic 

shot-noise.  To address these maleficent effects, a two component interpretation of 

noise observed in smFRET signals was taken, allowing for the removal the component 

we can quantify, thereby enhancing the accuracy of these measurements.  In particular, 

a method based in wavelet decomposition was developed and tested on simulated 

smFRET trajectories.  It was found that the widths of the photon distributions acquired 

from smFRET experiments can be significantly reduced by the application of the 

wavelet-based method, leading to a significant increase in the information content of 

the smFRET data.  The method was found to be effective under a range of simulated and 
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experimental circumstances, including an oscillating system, an indistinguishable 

system, a resolvable two state system, and a variety of experimental systems containing 

a one, two, and multiple states.  It is of note that the method is applied with only one 

assumption, that photon collection is a Poisson process that may be approximated 

normally. This assumption is valid under all but the most extreme of experimental 

circumstances, and as such the method constitutes an objective approach, being based 

solely on known properties of the experimental signals, that is capable of removing a 

substantial portion of the shot-noise contribution from a smFRET trajectory. 

This wavelet-based method was then modified to be specific to smFRET 

measurements.  These modifications include the determination that the best wavelet 

basis for shot-noise removal is the simplest of all bases, the Haar basis.  The method 

known as cycle-spinning was applied to remove the translation dependence that is 

inherent to the wavelet transformation, and resulted in the reduction of high frequency 

artifacts that are introduced by the denoising procedure.  A variety of thresholding, or 

noise removal, methods were tested, and it was found that two methods, firm 

thresholding and hard thresholding perform best in the applications to simulated data.  

Lastly, a time-local noise estimation method was developed to accommodate the non-

stationary Poisson processes that are inherent to smFRET measurements, and the 

performance of the denoising procedure with respect to non-stationary processes was 

greatly improved.  Overall, through the application of these methods to two model 

systems, it was shown that, with respect to the procedure described previously, these 

modifications improve the accuracy of denoised estimates by more than 200 %. In 
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general, it was found that the application of the modified wavelet denoising procedure 

resulted in up to 75 % reduction of the shot-noise contribution to smFRET data. 

This objective, wavelet-based procedure was then applied to smFRET trajectories 

obtained for the neurological ion channel protein known as GluR2.  Specifically, the 

agonist binding domain of the GluR2 receptor was studied in various forms that included 

the glutamate-bound, apo, and T686S mutant proteins.  Prior to denoising, broad and 

featureless smFRET efficiency distributions were observed, leaving little information to 

be extracted from the data.  However, after wavelet-based denoising, it was found that, 

in agreement with theoretical prediction, the glutamate-bound form of the GluR2-ABD 

is not in a locked conformation, but instead explores a range of conformations in a 

sequential equilibrium.  Similar analyses were performed on the apo and T686S mutant 

forms, and it was found that these forms of the protein are more flexible than their 

glutamate-bound counterpart, allowing for the hypothesis that protein flexibility plays a 

role in the activity and desensitization of the neurological ion channel.  In a general 

sense, the results of these studies suggested that activation of the neurological ion 

channel is dependent not on binding cleft closure, but on the probability the closed cleft 

conformation is occupied considering the range of conformations explored by the 

protein. 

Lastly, the focus of my research shifted to a system involving the transport of a 

molecular ionic fluorophore within an electrostatically charged polystyrene sulfonate 

polymer brush.  In particular atomistic and coarse-grained models were developed for 

the fluorophore Rhodamine 6G. A time dilation of 1.7 was measured for the CG model 
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and atomistic structural angle distributions were used to calibrate the CG angles.  A CG 

representation of PSS was then constructed, based on a previously constructed CG 

model of polystyrene, and a polymer brush representation was also constructed.  The 

CG model was solvated in multipolar water and molecular dynamics simulations were 

performed for four differing temperatures and a temporal length of 20 ns.  From these 

simulations we extracted dynamical characteristics of the ions, of polystyrene sulfonate, 

and of R6G-CG, including diffusion constants for Na+ and R6G-CG, persistence lengths 

and radii of gyration for of PSS, radial distribution functions for Na+/SO3
- distances, and 

rotational decay times for R6G-CG.  In general, good agreement between previous 

atomistic simulations and the CG simulation was found.  Such agreement, however, was 

not found between the simulations and empirical evidence.  Specifically, the rates of the 

fluorophore’s translational and rotational diffusion were not accurately reproduced, 

leading to two hypotheses about the nature on the disagreement.  The first hypothesis 

is simple in nature, and involves the spacing of the polyelectrolytic polymer brush.  The 

second hypothesis was one involving the computation of the electrostatics of the 

system.  Specifically, considering the Debye length of the fluorophore in this 

environment is calculated to be approximately 6.5 times larger than the electrostatic 

cutoff radius, the distance at which electrostatic interactions are calculated may not be 

large enough to accurately model the physical system.  Simulations are underway in 

which the first hypothesis concerning structural characteristics of the polymer brush will 

be tested to determine the exact nature of the disagreement.  

9.2 Future Directions 



182 
 

9.2.1 Small-Scale Extension of the R6G-CG/PSS CG Model 

 The coarse-grained molecular dynamics simulations described in chapter 8 

reveal several things about both the theoretical simulations as well as the experimental 

system.  Firstly, the simulations reveal that the system has not reached thermal 

equilibrium after 20 ns of simulated time. Secondly, they reveal that the empirical 

aspects of rotational and translational diffusion are not reproduced accurately.  As 

discussed in chapter 8, this may be a limitation of the force field parameterization or it 

may be that the PSS chains are too sparsely spaced to allow for the appropriate polymer 

dynamics to occur.  To remedy the first situation, longer simulations are currently 

underway that will span 100 – 500 ns.  To test the latter hypothesis concerning the 

aspects of rotational and translational diffusion of R6G within a PSS polymer brush, 

simulations are underway in which the lengths of the PSS chains have been extended by 

a factor of three but the chain spacing remains.  This will effectively move the PSS chains 

closer together and allow them to interact in a more ordered fashion.  

9.2.2 Large-Scale Extension of the R6G-CG/PSS CG Model and Synthetic Photon 

Trajectories 

 As computational facilities continue to increase, we may continue to expand our 

simulated systems both in time and space.  Large scale simulations of the R6G-CG/PSS 

system are planned, in which the construct will be expanded to a spatial scale that is 

comparable to the experimental observation volume and to a temporal scale that is 

comparable to the experimental time resolution.  This will allow for the generation of 

synthetic photon trajectories that may be directly compared and analyzed alongside the 
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experimental data, thereby allowing for the quantification and distinction of 

photophysical phenomena that often plague experimental interpretations.  In fact, a 

general infrastructure for generating polarized, FCS-style, 3-component, synthetic 

photon trajectories from molecular dynamics trajectories has already been developed.  

This method takes advantage of the statistics of photon kinetics and uses stochastic 

modeling to generate synthetic trajectories from spatial trajectories in a photon-by-

photon fashion. 

9.2.3 Extension of the Stochastic Photon Model to Other Photophysical Phenomena 

 The aforementioned photophysical phenomena that hinder experimental 

interpretation may also be stochastically modeled if their kinetics are known or can be 

measured directly.  Furthermore, other experimental methods, such as smFRET for 

example, may be modeled using photon statistics and stochastic modeling as well.  In 

fact, such phenomena are trivial extensions to the basics infrastructure that is already in 

place.  Such an approach that uses stochastic modeling of photon kinetics in 

combination with molecular dynamics simulation to generate synthetic data would be of 

considerable practical value in the understanding and quantification of troublesome 

photophysical phenomena.  For example, it is known that the instantaneous orientation 

of the molecular transition dipoles within the two fluorophores in smFRET experiments 

greatly affects the efficiency of energy transfer.  As such, it is a large source of 

uncertainty in smFRET measurements. However, a microscopic description of such 

instantaneous orientation coupled with a synthesized manifestation within macroscopic 

data may aid in its identification on the macroscopic level.  Furthermore, knowledge of 
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such microscopic detail may possibly lead to its use in an advantageous manner, thereby 

transforming what had been an experimental disadvantage into an experimental 

advantage.   
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