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ABSTRACT 

Evolutionary responses to global change: an experimental test 
of the effect of altered precipitation on hybridization rates in 

sunflower (Helianthus) 

 by 

Michelle Sneck 

Climate change is rapidly altering natural ecosystems. Plastic and adaptive 

responses to climate change (i.e., range shifts and phenology) have been widely noted 

across taxa. However, the effects of climate change on evolutionary processes such as 

interspecific gene flow (hybridization) are less well known. In this study, we quantified 

hybridization rates in response to experimental manipulations of rainfall, an important 

dimension of global change. We used rain-out shelters in the field and quantified rates of 

hybridization between two congeners, Helianthus annuus (common sunflower) and H. 

petiolaris (prairie sunflower). We found that H. annuus maternal plants produced more 

hybrid progeny than H. petiolaris maternal plants, with a trend for decreased rates of 

hybridization with increased soil moisture (when rain-out shelters were absent). 

Furthermore, the relative number of open inflorescences of each species predicted 

hybridization rates. Thus, this study demonstrates how changing environmental 

conditions, specifically precipitation, could influence hybridization rates.  
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                                         INTRODUCTION 

Increased concentrations of atmospheric CO2 have resulted in a 0.2oC mean 

increase in global surface temperatures each decade over the past 30 years (Hansen 

2006). Along with future temperature shifts, current climate models also predict an 

increase in the frequency of extreme precipitation fluctuations, including flooding and 

drought throughout the globe (Allan and Soden 2008, Min et al. 2011). Understanding 

and predicting the consequences of climate change for natural populations is of critical 

importance.   

Over the past few decades, many natural populations across taxonomic groups 

have responded to climate change (reviewed in Parmesan 2006). A widely observed 

response is the movement of species ranges as organisms attempt to track optimal 

environmental conditions. For example, populations of butterflies (Boggs and Murphy 

1997, Parmesan 2006), plants (Kelly and Goulden 2008), and mammals (Garroway et al. 

2010) have shifted northward, a pattern often attributed to an increase in mean 

temperatures towards the lower latitudinal extent of their ranges. The most frequently 

recorded responses are changes in the expression of life history traits, such as the timing 

of emergence or reproduction (phenology), which are often cued by abiotic factors 

(Parmesan 2006). Phenological changes have been pervasive in flowering plants, with 

many species flowering earlier in the season, which is presumed to be initiated in part by 

earlier snow melt due to warmer average winter temperatures (Saino et al. 2009, Franks 

and Weis 2009, Rousi et al. 2011, Galloway and Burgess 2012).  
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Ecological responses to climate change that are plastic or entail the movement of 

populations across the landscape have been consistently recorded over time, are easily 

observed, and act as important components to predictions of future population 

distributions and abundances. However, it has recently become clear that climate change 

may have equally important effects on evolutionary processes including natural selection, 

genetic drift, and gene flow – all of which can influence the demographic and 

evolutionary trajectories of populations and species (Merilä 2012, Anderson et al. 2012a). 

Unfortunately, detecting the signal of natural selection in response to a changing climate 

has been challenging and as a result, such studies largely lag behind investigations of 

ecological responses (Gienapp et al. 2008, Merilä 2012). This is partly explained by the 

dearth of genetic information associated with many putatively adaptive traits. However, 

select studies have revealed changes in allele frequencies due to selective forces 

associated with climate change, especially in genes controlling expressions of thermal 

tolerance (Bradshaw 1991, James et al. 2002, Anderson et al. 2012b). An additional 

reason for the lack of evidence for evolution by natural selection in response to climate 

change could be low amounts of heritable genetic variation for adaptive traits 

(Kirkpatrick and Barton 1997, Merilä 2012). In addition to altering patterns of natural 

selection, climate change may impact genetic drift.  Available genetic variation may be 

reduced by the predicted decline in the area of ideal habitats in the future, resulting in 

overall smaller population sizes (Travis 2003, Keith et al. 2008). These population 

contractions may have severe consequences for species long-term persistence, because 

diminished, genetically poor populations are more prone to genetic drift and inbreeding 

depression (increased homozygosity) (Willi et al. 2007). In fact, genetic drift resulting in 
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a loss of genetic variation has already been observed as a consequence of climate change 

and in some cases has caused population extirpations (Stockwell et al. 2003, Morrison 

and Hik 2007, Angeloni et al. 2011, Bijlsma and Loeschcke 2011).  

As organisms move throughout the landscape in response to climate change, 

populations or taxa undergoing range shifts may collide, reducing prezygotic 

reproductive barriers between them. This could not only increase gene flow between 

locally adapted populations, but also between genetically and ecologically differentiated 

species (hybridization) (Berteaux et al. 2004, Franks and Weis 2009, Crispo et al. 2011, 

Paul et al. 2011, Arenas et al. 2012). In addition to species range shifts, other commonly 

observed organismal responses to climate change could influence patterns of interspecific 

hybridization (Beatty et al. 2010, Hoffmann and Sgrò 2011, Garroway et al. 2010). For 

instance, phenological responses to climate change may also alter gene flow between 

species (Heard et al. 2011) because they present the opportunity for either increased or 

decreased reproductive synchrony over time (Munguía-Rosas et al. 2011). Specifically in 

flowering plants, recent studies have reported changes in relative flowering overlap 

between species and predict that historic patterns of gene flow may be altered under 

future climate regimes (Miller-Rushing et al. 2007, Forrest and Thomson 2011, Dunnell 

and Travers 2011). Additionally, observed climate-induced changes in pollinator 

abundance and behavior may influence interspecific pollen transfer (Hegland et al. 2009, 

Forrest and Thomson 2011) as the rate of pollinator movements between species has been 

experimentally correlated with rates of hybridization (Campbell et al. 2002).  
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Investigations of the effect of climate change on interspecific hybridization have 

so far been limited to one animal and one plant system.  First, in an observational study, 

Garroway et al. (2010) found evidence of a recently created hybrid zone between two 

flying squirrel species, Glaucomys sabrinus and G. volans, whose ranges have converged 

over the past decade. While this study is the first to document hybridization in the context 

of putatively climate-induced range shifts, it is observational and therefore cannot 

causally connect climate change to rates of interspecific gene flow. Second, in an 

experimental study, Campbell and Wendlandt (in review) revealed that natural hybrids of 

the alpine herbs Ipomopsis tenuituba and I. aggregata have higher fitness relative to both 

parental species when soil moisture is reduced, while retaining similar fitness at high 

levels of soil moisture. These results suggest that hybrids may have a selective advantage 

over their parents if future climate regimes result in a drier climate in the alpine habitats 

where these plants grow. This study focused on the performance of existing hybrids but 

did not examine rates of hybrid formation.  An understanding of both processes is needed 

to predict the effects of climate change on interspecific gene flow. Clearly, experimental 

studies are needed that examine rates of both hybrid formation and persistence.  

In this study, we experimentally manipulated rainfall with the use of rain-out 

shelters and quantified hybridization rates between two congeners known to hybridize in 

nature, Helianthus annuus (common sunflower) and H. petiolaris (prairie sunflower). 

The experiment was designed to mimic projections of future rainfall patterns in which 

droughts and flooding are predicted (Min et al. 2011) by creating both dry (no rainfall 

from July 17th – Sept 29th) and wet (twice the amount of ambient rainfall) conditions in 

the field; these treatments were compared to a treatment representing ambient conditions 
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(natural rainfall). Specifically, we asked two questions: 1) Does precipitation affect 

hybridization rate (the proportion of progeny that are hybrid)? And, 2) Can hybridization 

rate be explained by the relative flowering intensity of the two parental species (i.e., does 

phenological overlap predict hybridization)? To our knowledge, this is the first study to 

experimentally examine the effects of simulated climatic shifts on rates of interspecific 

hybrid formation. 

    METHODS 

Study Species --- Helianthus annuus (common sunflower) and H. petiolaris 

(prairie sunflower) (Family: Asteracae) are both annual plants native to the central and 

western United States. The species are ecologically and morphologically distinct (Heiser 

1961) and can be commonly found occupying disturbed grasslands throughout their 

widespread and largely overlapping ranges (Rogers et al. 1982). As self-incompatible 

plants, H. annuus and H. petiolaris rely on insect pollinators for reproduction and have 

been documented to readily hybridize in nature despite some prezygotic (Rieseberg et al. 

1995, 1998) and post-zygotic (Lai 2005) reproductive barriers. Past hybridization events 

between H. annuus and H. petiolaris have resulted in three novel homoploid hybrid 

species: H. anomalus, H deserticola, and H. paradoxus (Rieseberg et al. 2003).  

Study Location --- Our experiment was performed on the Waterman Farm and 

Turf Grass Experimental Station of the Ohio State University in Columbus, OH, USA 

(40°80’ N latitude and 83°01’ W longitude) from July 6-October 11, 2010. This location 

is within the range of both H. annuus and H. petiolaris (Rogers et al. 1982).  Average 

annual temperature is 11°C and precipitation is ≈932 mm per year (USDA-SCS, 1980).  
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Soil type varied across the farm with areas characterized as both Crosby silt loam or 

Aeric Ochraqualf (USDA classification) and Stagnic Luvisol (Food and Agriculture 

Organization classification).  

Experimental Design --- To examine the influence of precipitation on 

hybridization rates between H. annuus and H. petiolaris, thirty-six plots containing both 

parental species were established and subject to experimental rainfall manipulations.  At 

the beginning of the season, each plot (n=36) was sprayed with Roundup (Monsanto, St. 

Louis, MO) to kill the existing vegetation and was tilled prior to transplanting; 

subsequent weeds were removed manually throughout the season. To each plot we 

randomly assigned nine plants per species and transplanted them between June 6th -10th, 

2010 for a total of 18 Helianthus plants per plot. To account for variation in abiotic 

conditions within the site, the 36 experimental plots were grouped into nine blocks, each 

consisting of four plots each assigned to a different rainfall manipulation treatment 

(described below). These blocks were located haphazardly throughout the 500-acre 

station. Each species occupied approximately one quarter of a 3.05 m x 2.44 m plot with 

the nine plants arranged in a three by three planting grid; individual plants were planted 

approximately 30 cm apart (Fig. 1). Species were planted in this pattern to reflect the 

spatial orientation of population boundaries and hybrid zones that naturally occur 

throughout their overlapping ranges. In the remaining area of each plot we planted nine 

individuals of each of two hybridizing radish species (Raphanus sativus and R. 

raphanistrum); results for these species will be presented elsewhere.  Each plant received 

0.5 L of water upon transplanting.   
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Plots within a block were randomly assigned to one of four levels of rainfall 

manipulation: control open, control sheltered, rainfall addition, and rainfall exclusion. To 

control and manipulate rainfall, rain-out shelters were placed above the control-sheltered, 

wet, and dry plots but not the control-open plots (Fig. 2). By including a control plot 

without a shelter, we can account for possible unintended effects of shelter presence upon 

hybridization rates. A shelter consisted of a wooden frame with a solid, transparent 

polycarbonate roof (Waldo and Associates, Toledo, OH), which was built at a slight 

angle to divert water from the plot into a 227-liter rain barrel. Impermeable sheets of 

greenhouse plastic  (Waldo and Associates, Toledo, OH) 76 cm wide were placed on the 

ground surrounding each plot with a rain-out shelter to prevent nearby rainfall from 

diffusing into the plot, however they did not extend below the surface of the soil so 

rainfall seepage beneath the ground plastic was not prevented. The peripheral greenhouse 

plastic of the rain-out shelters in the control shelter and wet treatment plots were 

punctured to allow for immediate water absorption. Similar rain-out treatment designs 

have been used to simulate effects of climate change on natural systems (e.g., (Yahdjian 

and Sala 2002, Levine et al. 2010, Salamin et al. 2010)). Control-sheltered plots received 

all water captured in the plot’s rain barrel.  Plants in the dry treatment did not receive any 

captured rain-water after transplanting (although some rainfall may have blown in from 

the sides of the shelter).  Wet plots received the rainwater captured in the rain barrels of 

both wet and dry plots, effectively doubling the amount of water received relative to the 

ambient levels experienced by both types of control plots. Water was relocated from 

barrels to plots within 48hrs of each rainfall event throughout the season.  
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Seed Sources and Plant Propagation --- The parental generation of Helianthus 

annuus achenes was initially collected on September 30, 2007 from a wild population 

from the Desoto Wildlife Refuge in western Iowa (41° 32.8' N 96° 2.1' W). From 

descendants of this initial population, 30 achenes were collected and germinated from 

each of 30 dams. Of these 900 achenes, 324 germinated and survived to the seedling 

stage. The parental generation of Helianthus petiolaris was propagated by the USDA and 

grown from achenes originally sourced from Illinois (PI 478307; Lot: 03ncai01; GRIN, 

USDA). A total of 1,000 H. petiolaris achenes were germinated but only 324 individuals 

were used in order to match the H. annuus count. In early May, 2010, all achenes were 

released from dormancy via nicking, and germinated on filter paper; after growing an 

extended radicle they were transplanted into peat pots (6 × 10 cm, Jiffy Products of 

America, Inc., Lorain, OH) containing soil-less peat mixture (ProMix BX, Premier 

Horticulture Ltd., Rivière-du-Loup, Canada). Seedlings were grown in a greenhouse for 

approximately 4 weeks before transplanting to the field.  

Data Collection --- The numbers of open and senesced inflorescences of H. 

annuus and H. petiolaris individuals were counted twelve times (once per week) during 

the 2010 growing season between July 1 and October 11 to quantify flowering overlap. 

To retain achenes for use in the quantification of hybridization rates (below), between 2 

and 6 mature (post-pollination), haphazardly chosen inflorescences with senesced disk 

flowers per plant were bagged and labeled throughout the season on four dates: early 

(August 19th), early-middle (August 26th), late-middle (September 1st), and late 

(October 1st).  Bags were 11.5 cm x 10 cm and were made from DelStar plastic mesh 
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(DelStar Technologies, Delaware). Achenes were allowed to ripen and were collected at 

the end of the season.   

Soil moisture was measured at the center of each plot approximately 8 hours after 

each watering treatment was applied (July 27 & 29, August 3, 7 & 11, September 2, 25, 

29). These dates correspond to bouts of natural rainfall. For the first sampling period, a 

single soil moisture reading was taken from the center of each plot. For every subsequent 

sampling period, average soil moisture per plot was calculated from three separate 

readings taken from central locations within each plot. However, there were two days 

when rainfall treatments were applied after a rainfall, but soil moisture was not recorded 

(August 16, 23). 

Progeny Sampling --- The frequency of hybrid progeny was determined in subsets 

of the achenes collected from maternal parents of both species from each plot. Three 

achenes from each of the six individual plants (three H. annuus and three H. petiolaris) 

from each plot at every bagging time period (August 19, August 26, September 1, 

October 1) totaling to 12 achenes per plant were germinated and grown in a greenhouse 

at Rice University in Houston, TX. This makes for an overall total of 72 progeny from 

each of the 36 plots. Maternal plants were selected to equally represent proximity to the 

congeneric species within each plot (i.e., the three H. annuus maternal plants selected 

were 30, 75 and 120 cm from the nearest H. petiolaris individual), to account for 

differences in the likelihood of receiving interspecific pollen.  

Distinguishing Hybrids --- Putative hybrids were first identified via a screening 

procedure based on morphological characters (average abaxial and adaxial leaf glandular 
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trichome density) and then confirmed with the use of molecular techniques.  One parental 

species (H. annuus) is characterized by numerous leaf glandular trichomes (Whitney et 

al. 2006), while the other (H. petiolaris) typically has glabrous or nearly glabrous leaves 

(Heiser 1961). 

We expected hybrid progeny of H. annuus maternal parents would have low 

trichome counts compared to the high trichome counts found in pure H. annuus 

individuals (Heather Rowe, pers. comm.). Therefore, with the use of a diagnostic 

molecular marker discussed below, we genotyped all progeny with <30 abaxial 

trichomes/mm2 (n=289) and a sampling of individuals with >=30 abaxial trichomes/ mm2 

(n=45), finding 82 and 4 hybrids in these two groups, respectively.  As demonstrated by 

Fig. 3, the fraction of hybrid individuals decreases with increasing trichome counts and 

becomes very small (<3%) once the threshold of 30 abaxial trichomes/mm2 is crossed. 

We then used discriminant analysis to classify ungenotyped individuals with >30 abaxial 

trichomes/mm2  (n=860) into "putative hybrid" and "putative non-hybrid" classes using 

both abaxial and adaxial trichome counts (the training dataset was n=321 genotyped 

individuals).  The resulting "putative hybrid" class (n=12) included individuals that were 

placed between 30-100% probability of hybrid status; these were then genotyped, and 

were only counted as hybrids if the genotyping confirmed actual hybrid status (n=3). 

Based on results from H. annuus and from the experience of others (Heather 

Rowe, pers. comm.), we expected that hybrid progeny from H. petiolaris maternal plants 

would bear trichomes. We genotyped all trichome-bearing progeny in our sample (n=86) 

and found a total of nine hybrids. We then genotyped a large sample of trichome-free 
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progeny (n=60) and found no hybrids, leading us to classify all remaining trichome-free 

progeny (n=1,004) as non-hybrid.  

Molecular Techniques for Assessing Hybrid Status --- DNA from putative hybrids 

was isolated from plant leaf tissue using DNeasy Tissue Kit (Qiagen Inc.). One 

diagnostic locus was used to assess hybrid status; the External Transcribed Spacer (ETS) 

region, ETS1f and the reverse primer 18s2L (TGACTACTGGCATCAACCAG), is 

known to be expressed uniquely in both parental taxa as single segments of differing 

lengths, while hybrids express both parental segments (Linder 2000) (Fig. 4). PCR 

occurred in a 25 µL volume with 20 ng of DNA; 1.5 mM of MgCl2; 0.8 mM dNTP; 1.5 

mM BSA; 0.5 units of Taq polymerase; and 0.2 µM each of ETS1f and 18s2l primers 

(Linder 2000). Reactions were run on a thermocycler (Eppendorf Mastercycler Gradient 

Thermocycler) with the following program: 94oC for 180 sec, followed by 30 cylces of 

94oC for 30 sec, 52oC for 30 sec, and 72oC for 90 sec, with a final step of 72oC 5 min. 

Following amplification, 3 µL of reaction mixture for each specimen was run using 

electrophoresis on a 0.8% agarose gel in 1X TBE buffer at ~180 volts for 50 minutes to 

ensure full separation of the bands. Amplifications were visualized using SYBR® Safe 

(Invitrogen, USA) and confirmed with a standard 1-Kb ladder (Promega, USA). Bands 

between 0.8 and 2.5 kb confirmed successful amplification of the ETS region (Fig. 4). 

Pure H. annuus and H. petiolaris individuals acted as negative controls in both 

amplification and visualization of all specimens.  

Statistical Analysis --- We first verified that the rainfall manipulation resulted in 

significantly different levels of average soil moisture in each treatment type (dry, control 
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shelter, control open, wet). A repeated measures mixed model was used to assess if 

average soil moisture differed between soil moisture treatments. We utilized an 

autoregressive covariance matrix that included the interaction between treatment type and 

date of moisture measurement. Block was treated as a random effect. Post-hoc 

comparisons among treatments were done using Tukey’s HSD test. 

We calculated an average hybridization rate for each maternal species in each 

plot.  The number of progeny produced varied across the four sampling periods in any 

given plot, making it inappropriate to simply average our four estimates of hybridization 

rate. Instead, plot-level hybridization rates for each maternal species were calculated as 

 

 We then examined determinants of hybridization rates using generalized linear 

and mixed models with PROC GLM, PROC MIXED, PROC LOGISTIC, and PROC 

REG in SAS version 9.3 (SAS Institute, Cary, NC).  

Does precipitation affect hybridization rate? --- We addressed this question in 

two ways.  First, we examined the effects of the rainfall treatments as a categorical 

variable on hybridization rate, which was arcsine square root transformed to achieve 

normality. The generalized linear mixed model included treatment (four levels) and 

maternal species (two levels) as independent variables along with their interaction term; 

block was included as a random variable. Post-hoc comparisons of hybridization rate 

among treatments were established using Tukey’s HSD test. 
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Second, the average soil moisture associated with each plot across the season was 

used to explore the continuous relationship between soil moisture and hybridization rate. 

For H. annuus progeny, the generalized linear model included average plot soil moisture, 

shelter and their interaction as independent variables; shelter was a binary variable (1= 

shelter, 0= no shelter; shelters were present in all plots except for the control open 

treatment). H. annuus hybridization rate was again arcsine square root transformed to 

improve normality. For H. petiolaris progeny, because overall rates of hybridization were 

quite low (resulting in numerous zeroes), we analyzed plot-level hybridization as a binary 

variable (yes/no) via logistic regression. Independent variables were the same as in the H. 

annuus analysis above. An outlier in the soil moisture data set was identified using PROC 

REG in SAS version 9.3 and removed from all analyses (Cook’s D = 0.4) (SAS institute, 

Cary, NC).  

Can hybridization rate be predicted by the relative flowering intensity of the two 

parental species? --- To determine whether phenological data could be used to predict 

hybridization rates, we calculated the relative flowering intensity (RFI) in each sampling 

period as the ratio of open H. annuus inflorescences to open H. petiolaris inflorescences.  

Note that the hybridization rates examined here were specific to each sampling period 

(four rates per plot) and differed from the average plot-level rates (one rate per plot) 

analyzed in the previous section. A generalized linear model for H. annuus assessed 

whether RFI (square root transformed to normalize very large and small values), 

treatment, and the RFI*treatment interaction predicted hybridization rates; plot (nested 

within treatment) was included as a random term in the generalized linear model. A 

logistic regression was used to assess the relationship between the probability of 
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hybridization and RFI for H. petiolaris. The logistic model included only RFI and 

treatment (AIC=63.889) as predictor variables because the interaction between RFI and 

treatment did not improve model fit (AIC=69.456). A separate generalized linear model 

assessed whether RFI differed among treatments, and a simple regression investigated the 

relationship between RFI and average soil moisture. 

              RESULTS 

Experimental treatments altered soil moisture --- Average soil moisture differed 

significantly among experimental treatments (treatment F3,32 = 63.72, P < 0.0001; date of 

moisture measurement F7,222 = 20.76, P < 0.0001, treatment*time interaction F21,222 = 

4.87, P < 0.0001; Fig. 5). The random term block (Z7 = 1.24, P = 0.1075) and the 

interaction between block and date (Z7 = 0.14, P = 0.444) were not significant within the 

model. Soil moisture did not differ between the control open and control shelter plots 

(Tukey’s HSD test, t1,32 = 1.72, P = 0.3324). In contrast, soil moisture differed 

significantly between the dry and wet plots (t1,32 = -13.56, P < 0.0001) as wet plots on 

average possessed 2.85 times more soil moisture than dry plots. Both dry and wet plots 

differed from the control open and control shelter plots (dry: control open t1,32 = 9.07, P < 

0.0001, control shelter t1,32 = 7.35, P < 0.0001; wet: control open t1,32 = -4.54, P = 

<0.001, control shelter t1,32 = -6.24, P < 0.0001).  

Does precipitation affect hybridization rate? --- There was no main effect of the 

rainfall treatment on hybridization rate (F3,56 = 0.91, P = 0.4433) but we found significant 

effects of maternal species (F1,56 = 43.59, P = < 0.0001) and a significant 

treatment*maternal species interaction (F3,56 = 3.08, P = 0.0348), indicating that the 
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rainfall treatments affected hybridization rates of H. annuus and H. petiolaris differently. 

Hybridization rates throughout the season were on average 18 times higher for H. annuus 

maternal plants than H. petiolaris maternal plants (Fig. 6). For H. annuus, rainfall 

treatments did not influence hybridization rate (F3,24 = 2.27, P = 0.1065); however, there 

was a trend for more hybridization in control shelter plots than in control open plots 

(Tukey’s HSD test, t1,24 = -2.50, P = 0.0695). For H. petiolaris, rainfall treatments did not 

influence the hybridization rate (F3,24 = 2.09, P = 0.1277). 

In additional analyses, the influence of average soil moisture upon hybridization 

rate was explored with a generalized linear model for both H. annuus and H. petiolaris. 

Both main effects of soil moisture and shelter were non-significant (Table 1). Note, 

however, that the marginally significant interaction between average soil moisture and 

shelter (P = 0.0967, R2 = 0.208) suggests a trend for a decrease in hybridization rate with 

increasing moisture when no shelter is present, but no trend when a shelter is present 

(Fig. 7). For H. petiolaris maternal plants, average soil moisture (χ2 = 0.5009, P = 

0.4791) shelter (P = 0.0768), and their interaction (χ2 = 0.2739, P = 0.6007) did not 

significantly influence hybridization rates. In order to investigate the hypothesis that early 

season moisture (as opposed to season-wide average soil moisture, investigated above) 

might better predict hybridization rate, we repeated the analyses using average soil 

moisture measurements from the first five (July 27 – Aug. 24), four  (July 27 – Aug. 7), 

and three (July 27 – Aug. 3) moisture sampling dates as predictor variables, respectively.  

The results did not differ qualitatively from the model using the season-wide average soil 

moisture (data not shown). 
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Can hybridization rate be predicted by the relative flowering intensity of the two 

parental species? --- Hybridization rates of H. annuus and H. petiolaris can be predicted 

by observing their relative flowering intensity (RFI); these relationships are consistent 

across rainfall treatments for both species (RFI*Treatment: H. annuus F3,94 = 0.72, P = 

0.5416; Treatment: H. petiolaris χ2 = 2.8888, P = 0.4091). As RFI increases (more H. 

annuus plants are flowering relative to H. petiolaris plants) the hybridization rate of H. 

petiolaris increases (χ2 = 3.8505 P = 0.0497; Fig 8B). Likewise, as RFI decreases the 

hybridization rate of H. annuus significantly increases due to the same phenological 

mechanism (F1,98 = 5.00, P = 0.0277, R2 = 0.033; Fig. 8A). Thus, for each species, 

hybridization rates increase when its flowers are relatively scarce.  

Consistent with the finding that our rainfall manipulation treatments did not 

influence hybridization rates (above), RFI did not differ among treatments (RFI = 

treatment: F3,130 = 0.11, P = 0.9515) and was not influenced by soil moisture (RFI = soil 

moisture: F1,34 = 0.21, P = 0.8375) . 

    DISCUSSION 

While hybridization rates did not differ significantly between our dry, 

intermediate, and wet rainfall manipulation treatments for either parental species, we did 

find evidence within one treatment of a trend for decreasing H. annuus hybridization rate 

with increasing soil moisture.  This treatment (control open) was the sole treatment 

without a rainout shelter.  Furthermore, we found evidence that shelters may increase the 

hybridization rate even when soil moisture does not differ (control shelter vs. control 

open).  These two lines of evidence suggest that shelters influenced hybridization rates 



	
  
	
  

17	
  

independently of their direct effects on rainfall.  Thus, non-target effects of shelters may 

have altered the dynamics of plants and/or their pollinators to obscure ‘normal’ effects of 

precipitation on hybridization rates (discussed below).  We also found that relative 

flowering intensity (RFI) (the ratio of open H. annuus inflorescences to open H. 

petiolaris inflorescences) predicted hybridization rates between the two species, 

indicating that gene flow was directed from the species with more open inflorescences to 

the species with fewer open inflorescences. Typically, pollen movement from the more 

abundant species to the less abundant species has been seen in Helianthus as well as in 

other angiosperm systems (Kane 2009 Carney et al. 1994, Rieseberg 1995), but has not 

been previously demonstrated in an experimental context where hybridization rates were 

quantified in response to environmental manipulation. This result is exciting because, 

despite a lack of response in hybridization rates between H. annuus and H. petiolaris to 

the rainfall treatments, it is now clear how the environment can influence the 

hybridization rates of flowering plants.  

Effect of rain-out shelters on hybridization --- We detected a trend of increased 

rates of hybridization in control shelter plots compared to control open plots in H. annuus 

maternal plants (Tukey’s HSD test, t1,24 = -2.50, P = 0.070), however average soil 

moisture did not differ between them (Tukey’s HSD test, t1,32 = 1.72, P = 0.3324). 

Additionally, we also detected an influence of shelter on hybridization rates in H. 

petiolaris maternal plants (P = 0.0768). Although we are unaware of the exact 

mechanisms that may have contributed to the influence of shelters on hybridization rates 

independent of the intended effects of the rainfall treatments, here we offer a few possible 

explanations. Shelters could have affected hybridization rates by altering the 
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microclimate experienced by both flowers and pollinators. First, the polycarbonate 

roofing may have reduced overall airflow and increased temperatures directly beneath the 

shelter; higher temperatures are known to alter pollinator visitation and preference 

(Whitney et al. 2008, Norgate et al. 2010). Second, floral humidity has been positively 

correlated with nectar reward (Arx et al. 2012). Therefore, it seems possible that 

pollinators may have also preferred the relatively higher amounts of humidity that could 

be trapped beneath shelters due to evapotranspiration from the plants and the evaporation 

of moisture from the soil. This preference for higher soil moisture may have biased 

pollinators to spend more time foraging in sheltered plots, thereby increasing the 

probability of interspecific pollen exchange between the species. The use of shelters to 

manipulate rainfall are common in studies examining the effects of soil moisture on 

natural systems (Svejcar et al. 1999, Lensing and Wise 2007, Lucas et al. 2008, Miranda 

et al. 2009). However, given the likely strong non-target effects of shelters on 

hybridization rates in our study, we suggest caution in the use of rain-out shelters in 

future studies examining the role of precipitation on plant mating systems. 

Mechanism underlying the trend for decreasing hybridization rates with 

increasing soil moisture --- In this study, we detected a trend for a reduction in H. annuus 

hybridization rates as soil moisture increased in plots without a shelter (n = 9). The 

mechanism is unlikely to reflect an effect of soil moisture upon phenology, per se 

because RFI was not influenced by average soil moisture (t1,34 = 0.21 P = 0.8375). 

Instead, we hypothesize that the mechanism involves a relationship between soil moisture 

and pollinator behavior.  Specifically, flower visitors tended to exhibit more inter-specific 

floral movements in plants grown under dry conditions than plants grown under wet 
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conditions (unpublished data).  

Possible reasons why rainfall treatments did not alter hybridization rates --- We 

did not observe a change in gene flow patterns between H. annuus and H. petiolaris due 

to our soil moisture manipulation treatments. One possible explanation for this finding is 

that the phenologies of H. annuus and H. petiolaris are not sensitive to large changes in 

soil moisture; however, we do not believe this to be the case based upon what we know 

about the ecology of these species (Heiser 1961). A more likely explanation, in addition 

to the possible non-target effects of the shelters, was the use of seedlings in this 

experiment as opposed to planting seeds directly. Seedlings may not be particularly 

sensitive to changes in soil moisture, however small variations in soil content can 

strongly influence seed germination rates, as it is known to determine germination rates 

and success in other closely related species (Van Auken 2001). Species specific 

germination rates could more drastically alter flowering patterns throughout the season, 

and given the relationship between relative flowering intensity and hybridization rate, 

may result in either increases or decreases in genetic exchange.  

Potential consequences of changes in patterns of gene flow between species in 

response to climate change --- In light of the trend that hybridization decreased with 

increasing soil moisture in one of our experimental treatments, climate change may 

influence patterns of gene flow between H. annuus and H. petiolaris in the future. As the 

climate warms, periods of prolonged drought along with increases in spring and winter 

rainfall are predicted to occur, especially in the American Midwest where these species 

are abundant (Mishra et al. 2010). We predict that sequential drought years could cause 
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an increase in interspecific gene flow from H. petiolaris to H. annuus maternal plants. In 

fact, recent studies examining contemporary gene flow between these species have 

revealed similar patterns (i.e., pollen movement from H. petiolaris to H. annuus) in 

contrast to more ancient patterns that were largely either bidirectional or with a slight H. 

annuus to H. petiolaris bias (Strasburg and Rieseberg 2008).  

Alterations in gene flow between H. annuus and H. petiolaris could have multiple 

possible outcomes. Consequences of past hybridization events within the genus 

Helianthus have been both constructive and destructive (Rieseberg 2006). Three separate 

instances of homoploid hybrid speciation have been observed within this group (Abbott 

1992, Donovan et al. 2010). In contrast, there is one putative example of reverse 

speciation (genetic extinction of an evolutionary lineage due to high rates of 

unidirectional hybridization) (Seehausen et al. 2008) between H. annuus and H. 

bolanderi (Carney et al. 2000), whose ranges and ecological requirements largely 

overlapped. However, species boundaries such as those between H. annuus and H. 

petiolaris may be robust to changes in gene flow patterns due to large effective 

population sizes (Strasburg et al. 2011) and the maintenance of species integrity in the 

face of gene flow ( Rieseberg et al. 1995, Strasburg and Rieseberg 2008).  

For species that have restricted ranges and low genetic diversity (Ellstrand et al. 

1989), hybridization could greatly impact their evolutionary trajectories and long-term 

persistence (Stebbins 1959, Arenas et al. 2012). For instance, genetic swamping, when a 

more abundant species overwhelms a less abundant species via large amounts of 

interspecific gene flow, can effectively eliminate genetic lineages because hybrid 



	
  
	
  

21	
  

offspring are often less fit than their parents (Seehausen et al. 2008, Beatty et al. 2010). 

Extinctions via a loss of genetic integrity have occurred across taxa as a consequence of 

increased rates of genetic exchange (Thomas et al. 2004, Buggs and Pannell 2006, Beatty 

et al. 2010), which may become more common as species interactions are further 

augmented by a changing environment (Crispo et al. 2011). As seen in the Helianthus 

complex, speciation and adaptive radiation may also be a potential outcome of 

interspecific gene flow, which can happen if hybrids are fit and able to occupy a different 

ecological niche than the parental taxa (Seehausen 2004, Rieseberg 2006). The speciation 

process may even occur in a single generation, as seen in instances of polyploidy, where 

offspring are immediately reproductively isolated from both parents (Eckenwalder and 

Brown 1986, Wood et al. 2009).  Lastly, hybridization may also rescue populations from 

decline by infusing otherwise genetically depauperate populations with potentially 

adaptive genetic diversity (Hughes et al. 2008, Valdiani et al. 2012). Experimental 

manipulations of gene flow between populations adapted to similar thermal environments 

have shown that increased genetic diversity can improve fitness of outcrossed individuals 

compared to inbred individuals (Sexton et al. 2011). Therefore, adaptation facilitated by 

recombination may be an important way in which natural populations persist despite 

warmer average temperatures (Franks and Weis 2009, Hoffmann and Sgrò 2011).  

Future directions --- Given the myriad demographic and evolutionary 

ramifications of altered patterns of gene flow, it is critical to quantify genetic exchange 

between species as they respond to a quickly changing environment. Future studies 

pairing observations of climate change effects on hybrid formation and on hybrid 

persistence (Campbell & Wendlandt in review) in the same system are needed to 
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accurately predict how climate change will impact rates of interspecific gene flow. 

Further, the use of relative flowering intensity (RFI) in this study was an informative 

metric that predicted rates of hybridization between H. annuus and H. petiolaris. RFI, 

along with other estimators of hybridization such as interspecific pollinator movements 

(Campbell et al. 2002), could be used in the field as cost-effective ways to estimate rates 

of hybridization between flowering plants as their phenologies respond to climate change. 
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Fig. 1.  Diagram of half of the plot layout. P symbolizes H. petiolaris individuals and A 
symbolizes H. annuus individuals. Numerical subscripts indicate individual plants. 
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Fig. 2. Rain-out shelters used to capture rainfall. Rainfall hit the transparent 
roofing, was caught in the rain gutter, and drained into a rain barrel. The rain was then 
redistributed using a 4-hp water pump and tractor. 
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Fig. 3. The fraction of F1 H. annuus individuals confirmed to be of hybrid status 
as a function of leaf abaxial trichome density. No individuals possessing >50 abaxial 
trichomes/mm2 were hybrid.  
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Fig. 4. The external transcribed space region of the 18s rDNA (ETS) visualized 
using gel electrophoresis. Hybrids (H) possess two bands while each parent expresses a 
single unique band (P, H. petiolaris; A, H. annuus).  
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Fig. 5. Average soil moisture across the season for each rainfall manipulation 
treatment. 
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Fig 6. Average hybridization rate (fraction of progeny that were hybrids) for each 
species across four rainfall treatments.  
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Fig. 7. The relationship between soil moisture and average hybridization rate of 
H. annuus plants in plots with (n = 27) and without (n = 9) rainout shelters.   
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Fig 8.  Hybridization rates of H. annuus (A) and H. petiolaris (B) predicted by 
relative flowering intensity (RFI). Each symbol represents a single plot on one of four 
sampling dates.  Plot 16 was removed from the analysis due to complete H. peitolaris 
mortality in this plot. In B, one treatment out of four was plotted to demonstrate the slope 
of the curve, but for simplicity the other three treatments are not shown.  
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 Table 1. Linear model analyzing the effect of average soil moisture and shelter 
presence/absence on H. annuus hybridization rate. 

 

Effect df MS f P(f) 
Average soil moisture 1, 31 0.0359 1.71 0.2006 
Shelter 1, 31 0.0253 1.2 0.2812 
Average soil moist * Shelter 1, 31 0.0617 2.93 0.0967 
!
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