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Abstract

Cooperative Strategies for Near-Optimal Computation in Wireless Networks

by

Matthew Nokleby

Computation problems, such as network coding and averaging consen-

sus, have become increasingly central to the study of wireless networks.

Network coding, in which intermediate terminals compute and forward

functions of others’ messages, is instrumental in establishing the capacity

of multicast networks. Averaging consensus, in which terminals compute

the mean of others’ measurements, is a canonical building block of dis-

tributed estimation over sensor networks. Both problems, however, are

typically studied over graphical networks, which abstract away the broad-

cast and superposition properties fundamental to wireless propagation.

The performance of computation in realistic wireless environments, there-

fore, remains unclear.

In this thesis, I seek after near-optimal computation strategies under

realistic wireless models. For both network coding and averaging con-

sensus, cooperative communications plays a key role. For network cod-

ing, I consider two topologies: a single-layer network in which users may

signal cooperatively, and a two-transmitter, two-receiver network aided

by a dedicated relay. In the former topology, I develop a decode-and-

forward scheme based on a linear decomposition of nested lattice codes.

For a network having two transmitters and a single receiver, the proposed



scheme is optimal in the diversity-multiplexing tradeo↵; otherwise it pro-

vides significant rate gains over existing non-cooperative approaches. In

the latter topology, I show that an amplify-and-forward relay strategy is

optimal almost everywhere in the degrees-of-freedom. Furthermore, for

symmetric channels, amplify-and-forward achieves rates near capacity for

a non-trivial set of channel gains.

For averaging consensus, I consider large networks of randomly-placed

nodes. Under a path-loss wireless model, I characterize the resource de-

mands of consensus with respect to three metrics: energy expended, time

elapsed, and time-bandwidth product consumed. I show that existing con-

sensus strategies, such as gossip algorithms, are nearly order optimal in the

energy expended but strictly suboptimal in the other metrics. I propose a

new consensus strategy, tailored to the wireless medium and cooperative

in nature, termed hierarchical averaging. Hierarchical averaging is nearly

order optimal in all three metrics for a wide range of path-loss exponents.

Finally, I examine consensus under a simple quantization model, show-

ing that hierarchical averaging achieves a nearly order-optimal tradeo↵

between resource consumption and estimation accuracy.
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Chapter 1

Introduction

1.1 Motivation

Communications tasks fall into one of two broad categories: the exchange of digital

messages, and the (perhaps) lossy conveyance of digital or analog sources. In infor-

mation theory, these tasks correspond to the channel coding problem and the source

coding problem, respectively.

For wireless point-to-point networks, both problems are well understood. In his

seminal paper, Shannon [1] solved the channel coding problem by showing that chan-

nel capacity is equal to the maximum mutual information between channel input and

output and that random codebooks are asymptotically optimal. He further derived

the capacity for the additive white Gaussian noise (AWGN) channel, the simplest

model for wireless communications. In the ensuing decades, more sophisticated wire-

less models have been studied. Frequency-selective channels, in which multipath and

other propagation e↵ects result in a non-uniform frequency response, was studied

in [2] and solved with the now-ubiquitous “water-filling” solution. Fading channels,

in which user mobility causes the channel to vary temporally, has been studied ex-

tensively [3–5], and researchers have devised appropriate approaches such as ergodic
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capacity and outage capacity. Finally, the spatial dimension of wireless channels has

been exploited via multiple-antenna channels [6], and it has been shown that signifi-

cant capacity improvements are achieved simply by adding antennas.

Similarly, for source coding in [7] Shannon proved the rate-distortion theorem,

showing the optimal tradeo↵ between the amount of information used to describe

a memoryless source and the distortion induced by such a description. Further, he

proved the source-channel separation theorem, which states that an optimal source

code and an optimal channel code can be joined to form an optimal code for the lossy

transmission of a source over a noisy channel. It is su�cient to encode the source at

a rate just below the channel capacity and to transmit the result as a digital message

over the channel.

Furthermore, the performance promised by these information-theoretic results has

largely been borne out in practice. The development of turbo codes [8], the redis-

covery and rehabilitation of low-density parity check (LDPC) codes [9, 10], and the

recent advent of polar codes [11] have ushered in an era of near-capacity performance

in practical systems. Source coding has fared even better. Near-optimum lossless ap-

proaches, such as Lempel-Ziv encoding [12] have been in use for decades. Combining

these results with the source-channel separation theorem, it is possible to construct

practical, near-optimal source-channel codes over point-to-point wireless channels.

Once one ventures away from a single source transmitted over a point-to-point

channel, however, the situation quickly becomes complicated. Barring a few exceptions—

such as Gaussian broadcast and multiple-access channels [13]—the capacity of multi-

terminal channels remains unsolved. As evidenced by the three-terminal relay chan-

nel [14, 15], even the addition of even a single terminal can be enough to prevent a

single-letter capacity expression. In recent years, researchers have succeeded in char-

acterizing the approximate capacity of a few classes of multi-terminal channels. The
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capacity of two-transmitter, two-receiver interference channels has been characterized

to within one bit [16], and reasonably tight upper and lower bounds on the capacity

of larger symmetric interference channels have been obtained [17]. The development

of deterministic channel models [18] has inspired a recent flurry of approximate ca-

pacity results, and in particular the capacity of large wireless multicast networks –

that is, networks in which receiver nodes demand the messages of every source node –

has been characterized to within a constant gap [18,19]. Even these approximate re-

sults, however, give little insight into the capacity of more general multi-flow wireless

networks.

Similar di�culties arise with source coding. The Slepian-Wolf theorem [20] es-

tablished the limits of lossless encoding of correlated sources, while Berger and Tung

[21, 22] derived inner and outer bounds on the rate-distortion region of lossy encod-

ing. Later Wagner et al. showed that the Berger-Tung bounds coincide for the special

case of Gaussian sources and quadratic distortion [23], and very recently Courtade

and Weissman proved a similar result for arbitrary sources under logarithmic distor-

tion [24]. However, beyond these and a few other cases, distributed source coding

problems remain unsolved. Furthermore, source-channel separation in general fails in

multi-terminal settings. Even in scenarios in which capacity is known and optimal

source codes exist, therefore, the optimal joint source-channel code is in general un-

known. Despite decades of intense study, there yet lacks a comprehensive information

theory for wireless networks.

The primary di�culty in network information theory is that signals interact in

complicated ways. In wireless networks, this phenomenon is manifest as the broadcast

and superposition natures of the wireless medium. A transmitter’s signal does not

merely arrive at its intended destination; it is broadcast to every terminal in the

vicinity. Similarly, a receiver hears more than the signal from its intended source; it
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receives the superposition of transmissions from any terminal in the vicinity. These

signal interactions are usually taken to be disadvantageous, and, as discussed in the

previous paragraphs, the optimal means to counteract such disadvantages is largely

a mystery.

Consequently, most practical wireless networks operate by eliminating signal in-

teractions. Cellular networks operate via time-division multiple access (TMDA) or

code-division multiple access (CDMA). Local-area Wi-Fi (802.11) networks operate

via carrier sense medium access (CSMA) to avoid any two nearby transmitters from

broadcasting simultaneously. Large-area WiMax (802.16) networks operate via or-

thogonal frequency-division multiple access (OFDMA). In each case, transmissions

are orthogonalized in an appropriate signal space so that, in e↵ect, signals do not

interfere. The result is a network composed of parallel point-to-point channels, each

of which is well-understood both in theory and in practice.

Indeed, once one orthogonalizes away interference, analysis of even large networks

simplifies considerably. Graphical networks, in which links between terminals are

represented as lossless links of fixed capacity, su�ce to model wireless networks com-

posed of orthogonal point-to-point channels [25]. And there is much one can say about

graphical networks. On the channel coding side, the capacity of graphical multicast

networks is characterized precisely by the cut-set bound. Ahlswede et al. proved

that network coding—in which intermediate nodes compute and forward functions

of incoming data—is su�cient to achieve the cut-set bound in arbitrary graphical

multicast networks [26]. On the source coding side, the picture is somewhat less

clear, simply because there exists a large variety of problems to tconsider. In this

thesis I will focus on estimation problems targeted at sensor networks: how well can

a network infer some function of sources collected at each terminal? In particular, I

will address the problem of averaging consensus, in which each terminal intends to
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compute the arithmetic mean of the sources. For graphical networks, consensus is

well understood. There exist e�cient averaging algorithms, such as path averaging

and multi-scale gossip, that are approximately optimal with respect to the number

of transmissions required to achieve consensus [27, 28].

A common thread unifying these two seemingly disparate problems is function

computation. In network coding intermediate terminals compute functions of incom-

ing messages, and in consensus terminals compute averages of other’s data. In either

case, the task of computing functions is substantially simplified in graphical networks,

since signal interactions are eliminated. However, eliminating signal interactions is

accomplished only by abstracting away broadcast and superposition, which are cru-

cial features of the wireless medium. A natural question, then, is the extent to which

such a abstraction impacts performance. Or, put slightly di↵erently: Is it possible to

leverage the insights gained over graphical networks to attain optimal performance

in wireless computation?

My aim in this thesis is to provide at least partial answers to the preceding ques-

tion. In the following chapters, I examine both network coding and averaging consen-

sus under relatively realistic wireless models. In the case of network coding, I focus on

smaller networks and study performance with respect to information-theoretic achiev-

able rates. In the case of averaging consensus, I focus on large networks and study

performance with respect to the scaling of resource expenditure in the size of the

network. In both cases, a key to near-optimal performance is cooperative communi-

cations, in which terminals overhear each other’s transmissions and make subsequent

transmissions to assist in carrying out communications tasks. I propose coopera-

tive strategies that, for certain topologies and under certain assumptions, are nearly

optimal in the relevant metrics.
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1.2 State of the Art

1.2.1 Network Coding

Network coding was introduced in [26], where it was shown to achieve the multicast

capacity of wireline networks. It was later shown that (random) linear network codes

are su�cient for multicast [29–31], and although linear codes are provably insu�cient

for general wireline networks [32] they remain popular due to their simplicity and ef-

fectiveness. Network coding has been applied to wireless networks by several means.

Two information-theoretic techniques are the quantize-map-and-forward of [18] and

the “noisy” network coding of [19], in which relays compress and re-encode the in-

coming superposition of signals. These approaches generalize the discrete-valued,

noiseless combinations of wireline network coding to continuous-valued, noisy combi-

nations over wireless links. For multicast networks, they come to within a constant

gap of capacity. More practical approaches are COPE [33], in which a network cod-

ing “shim” is added to an otherwise-ordinary 802.11 system, and analog network

coding [34], in which intermediate nodes amplify and forward the noisy superposition

of received signals. Both techniques o↵er throughput gains over existing networking

strategies.

A more direct approach to wireless network coding is to match the superposition

of the wireless medium to linear codes. In physical-layer network coding [35], mul-

tiple terminals transmit uncoded constellation points. Each receiver obtains a noisy

sum of constellation points, which is detected and mapped to the modulo sum of

the underlying bits. In compute-and-forward [36, 37], this idea is given a thorough

information-theoretic treatment. Each transmitter maps finite-field messages to lat-

tice codewords, noisy linear combinations of which arrive at receivers. Each receiver

decodes the incoming signal to an integer combination of lattice codewords, which
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then is mapped to a finite-field linear combination of messages. Due to the linear

structure of lattices, integer combinations of lattice points can be decoded almost as

easily as a single lattice codewords; therefore, linear combinations of messages are

often easier to decode than the several messages individually. In a network context, if

enough linearly independent combinations are recovered by receivers, the individual

messages can be disentangled from the combinations somewhere “downstream” in the

network. Similar techniques have been applied to the two-way and multi-way relay

channels, in some cases achieving rates within a constant gap of capacity [38–41].

Somewhat surprisingly, compute-and-forward has proven useful in interference chan-

nels, helping to establish the approximate capacity of symmetric interference chan-

nels [17].

Compute-and-forward as proposed in [36] requires a correspondence between wire-

less channel gains and the desired integer combinations. If the channels do not pro-

duce suitable linear combinations of transmitters’ signals, the receivers cannot easily

recover suitable integer combinations of the lattice points. Several solutions to this

challenge have been proposed. Integer-forcing receivers [42, 43], in which linear re-

ceivers are chosen to induce integer-valued equivalent channels, were developed for

compute-and-forward over multiple-input multiple-output (MIMO) channels. In [44],

a number-theoretic approach was developed to address this problem in the high-SNR

regime. Matching real interference alignment [45–48] techniques to linear codes, an

encoding strategy was proposed that achieves the full degrees of freedom. However,

there are no performance guarantees at moderate SNR.

1.2.2 Averaging Consensus

Averaging consensus is often described as a simple, canonical example of distributed

signal processing over sensor networks. A common narrative is that each node mea-
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sures the local temperature and wants to compute the average temperature over the

sensor field. Such simplicity, however, is deceptive, as consensus lies at the heart of an

array of sophisticated problems. It has seen use in load-balancing [49], in distributed

optimization [50–52], and in distributed estimation and filtering [53,54].

Consensus has been studied under various guises, including the early work of Tsit-

siklis [50], who examined it in the context of distributed estimation. Recent interest

in consensus was sparked by the introduction of gossip algorithms, and in particular

the randomized gossip of [55]. In gossip, the network is modeled by a graph. Nodes

iteratively pair with neighbors, exchange estimates, and average those estimates to-

gether, eventually converging on the true average. Gossip is simple, requiring mini-

mal processing and network knowledge, and it is robust, retaining performance even

with failing links and changing topology. Randomized gossip, however, has relatively

slow convergence on random graphs, requiring on the order of N2 transmissions in a

network of N nodes. Since then, researchers have searched for faster consensus algo-

rithms. In geographic gossip [56], nodes pair up with geographically distant nodes,

exchanging estimates via multi-hop routing. The extra complexity garners faster con-

vergence; geographic gossip requires on the order of N3/2 transmissions. Geographic

gossip was further refined by the introduction of path averaging [27], in which rout-

ing nodes contribute their own estimates “along the way.” Path averaging closes the

gap to order optimality, requiring roughly N transmissions, which is the minimum

of any consensus algorithm. Recently, multi-scale gossip, in which the network is

hierarchically partitioned into subnetworks, was proposed in [28].

Several works have addressed wireless aspects of consensus, but to my knowledge

no study o↵ers a comprehensive analysis. The broadcast nature of wireless is consid-

ered in [57,58]; in these works a single transmission arrives at multiple receivers simul-

taneously, but otherwise signals do not interact. However, in these works broadcast
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does not significantly improve performance over randomized gossip. The superposi-

tion nature of wireless is addressed—and in fact exploited—in [59], in which lattice

codes are used to compute sums of estimates “over the air.” In [60] it is observed

that network topology can be adjusted via power control, and the optimum power

allocation is derived for a few specific networks. In a somewhat similar work [61],

the optimum graphical structure for consensus is derived. Finally, the impact of

noisy links has been studied. In [62], continuous-valued estimates are corrupted by

zero-mean additive noise, and optimal linear consensus strategies are derived. For a

similar model, the bias-variance dilemma is identified in [63]: running consensus for

longer reduces the bias of the resulting estimates, but it increases the variance. Algo-

rithms that resolve the dilemma are presented, but they su↵er from slow convergence.

In [64,65] quantized consensus algorithms are presented that achieve consensus while

passing finite-alphabet estimates. In [66] traditional gossip algorithms are augmented

with dithered quantization and are shown to achieve consensus on the true average

in expectation. In [67] the increasing correlation among estimates is exploited to

construct a consensus algorithm employing Wyner-Ziv style coding with side infor-

mation.

1.2.3 Lattice Codes

Since the original work by Forney [68, 69], who used them for constructing trellis

codes, lattices have been shown to achieve capacity on AWGN channels. De Buda

and others [70] showed that a capacity-achieving codebook could be constructed by

intersecting a lattice with a “thin” spherical shell. Urbanke and Rimoldi [71] showed

that capacity can be achieved by the intersection of a lattice with a spherical region.

These approaches assume maximum-likelihood decoding at the receiver which, while

simpler than typical-sequence decoding, is still rather complex.
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Poltyrev [72] studied lattice coding for the AWGN channel without power con-

straints. He found that lattice decoding, in which the decoder simply bins the received

signal according to the lattice’s Voronoi regions, is asymptotically e�cient. Lattice

decoding, while much simpler than ML decoding, is suboptimal in terms of abso-

lute probability of error for the ordinary power-constrained AWGN channel, and for

some time it was not clear whether lattice decoding was su�cient to achieve capacity.

Loeliger showed the existence of lattice codes that achieve 1

2

log
2

(SNR) under lattice

decoding [73], which he conjectured was the highest rate possible. Finally, Erez and

Zamir [74] showed, by means of the modulo-lattice transform and random dithers,

that lattice codes achieve capacity with lattice decoding at the receiver.

In addition to o↵ering structure, achieving capacity, and reducing complexity,

lattice codes are desirable because they are the Euclidean-space analogue to linear

codes. Inspired by the existence of capacity-achieving lattice codes, low-density lattice

codes were proposed in [75]. Much as LDPC codes approach the capacity of the

binary symmetric channel, these codes approach the capacity of the AWGN channel.

In addition to wireless network coding problems, lattice codes have seen use in a

variety of information-theoretic problems, including source coding [76–78], physical-

layer security [79–81], and relay networks [82–85].

1.3 Contributions

1.3.1 Network Coding

On the topic of network coding, I o↵er two main contributions. In Chapter 3, I

study a single-layer wireless network of L transmitters and M receivers, in which

the L transmitters may overhear each other’s signals and cooperate and in which

the L receivers intend to compute linearly independent functions of the transmitters’
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finite-field messages. This model is based on the observation that, if transmitters

were able to encode their messages jointly, compute-and-forward would reduce to

a multiple-antenna broadcast channel, the capacity of which is known [86]. While

perfect cooperation is infeasible, users can cooperate partially by exploiting another

consequence of the broadcast nature: transmitters can overhear each other’s signals

and jointly encode portions of their messages.

For this scenario, I develop a cooperative strategy for compute-and-forward. I con-

struct a lattice-coding instantiation of decode-and-forward block Markov encoding by

decomposing a codebook of nested lattices into two linearly independent, lower-rate

constituent codes. Transmitters broadcast lattice codewords, after which they decode

the codewords of other transmitters. They then cooperatively transmit “resolution”

information corresponding to the linear combinations desired at the receivers. Re-

ceivers employ a variant of sliding-window decoding tailored to the proposed lattice

decomposition. They decode the resolution information and subtract it from the

original signal; they then need only to decode the remaining low-rate component of

the desired sum. This strategy allows an improvement in computation rate due to

two factors. First, since cooperating transmitters decode others’ messages, they can

jointly encode portions of the linear combinations directly, relaxing the need for re-

ceivers to recover the messages from separately-encoded signals. Second, the jointly

encoded signals combine coherently at receivers, resulting in a beamforming gain.

In addition to proving that cooperation improves the achievable rate, I conduct

a diversity-multiplexing tradeo↵ (DMT) analysis. For the special case of a two-

transmitter, single receiver system, the proposed scheme achieves the optimum DMT,

which is identical to a single-user 2⇥1 multiple-antenna, single-output (MISO) chan-

nel. For the more general L ⇥ 1 system, cooperation a↵ords a DMT gain over non-

cooperation, but it does not achieve the associated MISO outer bound. Unfortunately,
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beyond a single receiver it is di�cult to say much about the DMT performance of the

proposed scheme.

In Chapter 4, I study a two-transmitter, two-receiver network in which a dedicated

relay assists transmitters in communicating finite-field combinations to the receiver.

The relay operates according to one of two relay modalities. In the standard modality,

the relay transmits a function of signals received in previous symbol times. For this

scenario I construct a lattice-based compress-and-forward scheme. It achieves higher

rates than non-cooperative techniques, but it appears to give no improvement in

the high-SNR regime. In the instantaneous modality, the relay’s signal may be a

function of signals received in the current symbol time, meaning that there is no delay

between reception and transmission. For this scenario I construct a simple lattice-

based amplify-and-forward scheme. Not only does amplify-and-forward achieve the

optimal degrees-of-freedom (or multiplexing gain), but it also achieves rates within

a constant gap of capacity for a non-trivial set of channel gains. Thus, by contrast

with the non-cooperative case, relay cooperation permits near-optimal performance

at both moderate SNR and in the limit of high SNR.

1.3.2 Averaging Consensus

In Chapter 5 I present a comprehensive analysis of the resource demands of consensus

over wireless networks. First I define a realistic but tractable framework in which

to study the resource demands of consensus. It consists of a path-loss dominated

propagation model in which connectivity is determined by a signal-to-noise ratio

(SNR) threshold. Initially I suppose connected links are perfect and have infinite

capacity. For this case I propose three resource metrics appropriate to the wireless

medium: the total energy expended in order to achieve consensus, the total time

elapsed, and the time-bandwidth product consumed. Under this model, I derive
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lower bounds on the required resources and characterize the resource requirements of

several existing consensus strategies. Path averaging, which is optimal over graphical

networks in the number of required transmissions, turns out to be nearly order optimal

in the energy expended. However, it remains strictly suboptimal in elapsed time and

consumed time-bandwidth product.

Next, I propose a new consensus algorithm, termed hierarchical averaging, de-

signed specifically for wireless networks. Instead of communicating with neighbors

over a graph, nodes broadcast estimates to geographically-defined clusters of nodes.

These clusters expand as consensus proceeds, which is enabled by adjusting nodes’

transmit power. Much like the hierarchical cooperation of [87] and the multiscale

gossip of [28], small clusters cooperatively broadcast information to larger clusters,

continuing until consensus is achieved. Depending on the particulars of the channel

model, hierarchical averaging is nearly order optimal in all three metrics simultane-

ously. When channel phases are fixed and identical, hierarchical averaging is order

optimal, up to an arbitrarily small gap in the exponents, for path-loss exponents

2  ↵ < 4. In the more realistic case in which phases are random and independent,

however, hierarchical averaging is no longer order optimal in transmit energy when

↵ > 2, although it remains order optimal with respect to the other two metrics.

Finally, in Section 5.5 I incorporate quantization into the proposed model. Since

practical wireless links su↵er from noise, achievable rates are finite and estimates must

be quantized prior to transmission. This introduces a tradeo↵: Expending more en-

ergy increases the rate of the links, thereby reducing the quantization error inherent

to each transmission and therefore the estimation error accrued during consensus.

Therefore, in addition to the resource metrics of energy, time, and bandwidth, I con-

sider a fourth performance metric: mean-square error of the consensus estimates.

Again I characterize existing consensus techniques. I also apply quantization to hier-
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archical averaging, showing that it permits an e�cient tradeo↵ between energy and

estimation error.

1.4 Notation

Let R and Z be the real and integer fields, respectively. Let F
p

be the finite (Ga-

lois) field of prime characteristic p, and let � and � denote addition and (matrix)

multiplication, respectively, modulo p; however, I will occasionally treat the result of

modular arithmetic as a member of the reals according to context. Bold uppercase

letters (e.g. A) refer to matrices and bold lowercase letters (e.g. x) to refer to column

vectors. For n⇥m matrix A, a
i

refers to the ith column of A, i.e. A = [a
1

· · · a
m

]. I

denote subvectors of a vector using x[a : b] = (x
a

, x
a+1

, · · · , x
b

)T , where (·)T denotes

the usual transpose. I use k·k for the Euclidean norm. Let � denote the element-wise

or Hadamard product. Let F
p

denote the finite field of prime characteristic p Let

[x]+ = max{x, 0} denote the positive part of x. Let

C
mac

(h, P, �2) = min
B⇢{1,··· ,I}

1

2|B| log
✓

1 +
P
P

i2B h
2

i

�2

◆

denote the symmetric-rate capacity of the I-user Gaussian multiple-access channel

having channel gains h and noise variance �2. In discussing asymptotics, I use the

Landau notation: f(n) = O(g(n)) implies f(n)  kg(n), f(n) = ⌦(g(n)) implies

f(n) � kg(n), and f(n) = ⇥(g(n)) implies f(n) = O(g(n)) and f(n) = ⌦(g(n)), all

for arbitrary constant k and su�ciently large n.



Chapter 2

Lattices and Lattice Codes

Lattices are mathematical structures with a simple definition but far-reaching conse-

quences. In addition to their inherent mathematical significance, lattices have connec-

tions to cryptography, crystallography, solid-state physics, and, perhaps surprisingly,

information and coding theory. In this chapter I review a few basic facts about

lattices and their use as channel codes. I also present a decomposition of a nested lat-

tice codebook into independent subspaces for the purpose of block Markov encoding.

As a simple demonstration of the idea, I show how the decomposition can be used

to achieve the decode-and-forward rate of the three-terminal AWGN relay channel

proven in [15].

2.1 Lattices

Formally, a lattice ⇤ is a discrete additive subgroup of Rn, which implies that for any

�
1

,�
2

2 ⇤, both �
1

+�
2

2 ⇤ and �
1

��
2

2 ⇤. Equivalently, a lattice ⇤ is the set of all

integer combinations of a set of basis vectors, which need not be unique. Collecting

such a basis into a matrix, form the generator matrix of ⇤, denoted by G 2 Rn⇥n.
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One can therefore express ⇤ as:

⇤ = GZn. (2.1)

Define Q
⇤

to be the lattice quantizer, which maps any point x 2 Rn to the nearest

point in ⇤:

Q
⇤

(x) = argmin
�2⇤

kx� �k . (2.2)

The lattice ⇤ induces a partition of Rn into the Voronoi regions V(�) of each lattice

point � 2 ⇤:

V(�) = {x 2 Rn : Q
⇤

(x) = �}, (2.3)

where ties are broken arbitrarily. In other words, the Voronoi region of � 2 ⇤ is the

set of points that are closer to � than to any other lattice point.

Let V = V(0) be the fundamental Voronoi region of ⇤. The mod operation with

respect to ⇤ returns the quantization error

x mod ⇤ = x�Q
⇤

(x), (2.4)

which is always a member of V . The mod operation allows one to draw an analogy

with modulo arithmetic over a finite field. Just as modulo arithmetic ensures that the

result remains a member of the finite field, performing arithmetic modulo ⇤ “wraps”

the result within V . It is straightforward to prove that the mod operation obeys the

associativity property:

[[x] mod ⇤+ y] mod ⇤ = [x+ y] mod ⇤. (2.5)

The second moment �2(⇤) quantifies the average power of a random variable
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uniformly distributed across V :

�2(⇤) =
1

nVol(V)
Z

V
kxk2 dx, (2.6)

where Vol(A) is the volume of a set A ⇢ Rn. The normalized second moment is

defined as:

G(⇤) =
�2(⇤)

Vol(V) 2
n

. (2.7)

The normalized second moment provides a measure of the e�ciency of ⇤ as a shaping

region. The normalized second moment of a sphere in Rn is 1/2⇡e, which is the

minimum value for any lattice. The closer V is to being spherical, the smaller, and

closer to 1/2⇡e, G(⇤) is.

The covering radius r
cov

(⇤) is the radius of the smallest sphere that covers V :

r
cov

(⇤) = inf
r

{r > 0|V ⇢ rB
n

}, (2.8)

where B
n

is the unit sphere in Rn. The e↵ective radius r
e↵

(⇤) be the radius of a

sphere with the same volume as V :

r
e↵

(⇤) =

✓

Vol(V)
Vol(B

n

)

◆

1
n

. (2.9)

Note that r
cov

(⇤) � r
e↵

(⇤).

In order to construct lattice codebooks suitable for proving information-theoretic

results, sequences of lattices that asymptotically satisfy several desirable properties

are required. For example, a sequence of lattices {⇤(n)},⇤(n) 2 Rn, is said to be good

for covering or Rogers good [88] provided the covering radius approaches the e↵ective

radius:

lim
n!1

r
cov

(⇤(n))

r
e↵

(⇤(n))
= 1.
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Similarly, a sequence of lattices is said to be good for quantization provided

lim
n!1

G(⇤(n)) =
1

2⇡e
.

Finally, let z ⇠ N (0, �2I) be a Gaussian random vector. Define the volume-to-noise

ratio µ(⇤, P
e

) as

µ(⇤, P
e

) =
(Vol(V)) 2

n

�2

,

where �2 is chosen such that Pr{z /2 V} = P
e

. A sequence of lattices ⇤(n) is good for

AWGN coding or Poltyrev good if

lim
n!1

µ(⇤(n), P
e

) = 2⇡e, for 0 < P
e

< 1,

and if, for fixed µ(⇤(n), P
e

) greater than 2⇡e, P
e

goes to zero exponentially in n. The

existence of such sequences was proven by Poltyrev in [72]. Furthermore, Erez et al.

proved that there exist sequences of lattices that are simultaneously good for covering,

quantization, and AWGN coding [89].

2.2 Lattice Codes

In [74], Erez and Zamir showed that codes constructed from nested lattices can achieve

the capacity of the AWGN channel. Since it constitutes the backbone of techniques

used throughout this thesis, I briefly review their construction.

Let ⇤(n)

s

be a sequence of shaping lattices that are good for covering and AWGN

coding and satisfy �2(⇤(n)

s

) = 1, and let G(n)

s

denote a generator matrix of each

lattice in the sequence. Then, following [90], adapt Construction A [73] to construct

a sequence of coding lattices ⇤(n)

c

� ⇤(n)

s

. The construction goes as follows:

1. For each n, choose an integer k and a prime p. Draw a n⇥k matrix F(n)

c

2 Fn⇥k

p
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randomly and uniformly.

2. Construct the linear codebook over F
p

defined by F(n)

c

:

Ĉ(n) = F(n)

c

Fk

p

3. “Lift” the codebook Ĉ(n) to Rn by defining the lattice

⇤̂(n)

c

= p�1Ĉ(n) + Zn.

4. Finally, rotate ⇤̂(n)

c

so that it is nested inside ⇤(n)

s

:

⇤(n)

c

= G(n)

s

⇤̂(n)

c

.

The lattice codebook is the intersection of the coding lattice and the fundamental

Voronoi region of the shaping lattice:

C(n) = ⇤(n)

c

\ V (n)

s

.

The rate of this codebook is

R =
1

n
log

2

|C(n)| = k log
2

(p)

n
.

It is shown in [36] that choosing p such that n/p ! 0 as n ! 1 guarantees that the

sequence of coding lattices ⇤(n)

c

is good for AWGN coding. For any desired rate R > 0,

one can construct an appropriate sequence of codebooks by choosing p = n log
2

(n)

and k = b nR

log2(p)
c.

Intuitively, the preceding codebook construction allows one to take a random linear
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block code over F
p

and create a corresponding linear code over Euclidean space. If

the underlying linear code achieves capacity, as does the ensemble of random linear

codes, so too does the resulting lattice codebook. One can use any linear code in

place of the random code chosen above, including low-density parity-check codes or

other low-complexity linear block codes. The cost in achievable rate is only the gap

to capacity of the linear code chosen.

V
c

V
s

Figure 2.1: Nested lattice codes. White dots are elements of the coding lattice, and
black dots are elements of the shaping lattice. Each lattice point inside the shaded
Voronoi region V

s

is a member of the codebook.

2.3 The AWGN Channel

Next I review the lattice and decoding scheme proposed in [74] to achieve the capacity

of the AWGN channel. Along the way I give a bit of intuition—but no proofs!—as

to why the scheme achieves capacity.
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The point-to-point AWGN channel is described by the following input-output

relationship

y = x+ z,

where x 2 Rn is the transmitted signal, y 2 Rn the received signal, and z 2 Rn is ad-

ditive white Gaussian noise having variance N . The transmitted signal is constrained

to have average power P :
1

n
kxk2  P. (2.10)

The transmitter employs the nested lattice codebook C(n) as descried above. To

send the codeword � 2 C(n), it transmits the signal

x =
p
P [�+ t] mod ⇤(n)

s

,

where t is a random dither1 uniformly distributed across V (n)

s

and known to both

source and destination. Since t is uniformly distributed over V (n)

s

, and since ⇤(n)

s

has unit normalized second moment, the dithered codeword has unit average power.

Thus x has average power P .

The destination receives y = x + z. To decode �, the destination first scales the

received signal, subtracts the dither, and takes the result modulo the shaping lattice

to form

y0 = [�y � t] mod ⇤(n)

s

= [x� t+ �z+ (� � 1)x] mod ⇤(n)

s

= [�+ �z+ (� � 1)x] mod ⇤(n)

s

.

The factor � allows the receiver to tradeo↵ between the power in the noise term �z

1For further discussion of the need for dithers, see [91].
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and the power in the “self-noise” term (� � 1)x. A simple choice is � = 1, which

is equivalent to having signaled using no dither at all. In this case, the receiver

can correctly decode � so long as the volume-to-noise ratio is smaller than 2⇡e, which

corresponds to rates smaller than 1

2

log
2

(P/N). However, one can do better. Choosing

� as the MMSE coe�cient

� =
P

P +N

optimizes the e↵ective SNR at the receiver. The receiver estimates � by lattice quan-

tization

�̂ = Q
⇤

(n)
c
(y0).

It is shown in [74, Theorem 3] that, averaging over the dither t, reliable decoding is

possible if R < 1

2

log
2

(1 + P

N

).

2.4 Lattice subspaces

For the lattice compute-and-forward proposed in [36], an important fact is that there

exists a mapping from finite-field messages to lattice codewords that preserves linear-

ity. That is, the mapping sends finite-field linear combinations of messages to integer

sums of lattice points modulo the shaping lattice. Formally, this implies that there is

an isomorphism between the additive group of field elements and the group of lattice

codewords modulo the shaping lattice, as expressed in the following lemma.

Lemma 2.1. There exists an isomorphism � : Fk

p

! C(n), namely

�(w) = [G(n)

s

p�1F(n)

c

w] mod ⇤(n)

s

. (2.11)

Proof. To establish the claim, it is necessary to show that � is a bijection and that

it respects the group operation; that is, �(w
1

�w
2

) = [�(w
1

) + �(w
2

)] mod ⇤(n)

s

for
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any w
1

,w
2

2 Fk

p

. That � is a bijection was shown in [36, Lemma 5]. To see that �

respects the group operation, direct computation su�ces:

�(w
1

�w
2

) = [G(n)

s

p�1F(n)

c

(w
1

�w
2

)] mod ⇤(n)

s

(2.12)

= [G(n)

s

p�1(F(n)

c

(w
1

+w
2

) + pi)] mod ⇤(n)

s

, (2.13)

where i 2 Zn is a vector of integers corresponding to the discrepancy between real-

valued and modulo-p arithmetic. Further manipulations yield

�(w
1

�w
2

) = [G(n)

s

p�1F(n)

c

(w
1

+w
2

) +G(n)

s

i] mod ⇤(n)

s

(2.14)

= [G(n)

s

p�1F(n)

c

(w
1

+w
2

)] mod ⇤(n)

s

(2.15)

= [�(w
1

) + �(w
2

)] mod ⇤(n)

s

. (2.16)

where the last equality is due to the fact that G(n)

s

i 2 ⇤(n)

s

and that adding a member

of ⇤(n)

s

does not change the result of the arithmetic modulo ⇤(n)

s

.

In the cooperative strategy proposed in Chapter 3, I tailor block Markov encoding

to lattice codes. A key ingredient of this approach is the decomposition of the lattice

codebook into subspaces. Let k
r

 k, and let F(n)

r

2 Fn⇥kr
p

denote the matrix com-

posed of the first k
r

columns of F(n)

c

. Similarly, let k
v

= k � k
r

, and let F(n)

v

2 Fn⇥kv
p

denote the matrix of the remaining k
v

columns. Then define the resolution lattice ⇤
r

and the vestigial1 lattice ⇤
v

as

⇤(n)

r

= G(n)

s

(p�1F(n)

r

Fkr
p

+ Zn)

⇤(n)

v

= G(n)

s

(p�1F(n)

v

Fkv
p

+ Zn).

1This terminology is intended to convey the fact that this lattice component encodes the “resid-
ual” or “leftover” information bits. I use the less-common synonym in order to minimize notational
confusion.
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Since these sequences of lattices are special cases of the lattice construction from

the previous subsection, each sequence is individually good for AWGN coding. By

construction ⇤(n)

c

= ⇤(n)

r

+ ⇤(n)

v

and ⇤(n)

s

⇢ ⇤(n)

r

,⇤(n)

v

⇢ ⇤(n)

c

. Define the resolution

and vestigial codebooks

C(n)

r

= ⇤(n)

r

\ V
⇤

(n)
s

C(n)

v

= ⇤(n)

v

\ V
⇤

(n)
s
,

having rates

R
r

=
k
r

n
log

2

p

R
v

=
k
v

n
log

2

p.

By construction R
r

+ R
v

= R
c

. Furthermore, for any 0  R
r

 R, one can choose

k
r

= b nRr
log2(p)

c to achieve the desired resolution codebook rate. For any message

w 2 Fk

p

, define the projection onto the resolution and vestigial codebook as follows:

�
r

(w) = [G
s

p�1F
r

w[1 : k
r

]] mod ⇤
s

�
v

(w) = [G
s

p�1F
v

w[k
r

+ 1 : k]] mod ⇤
s

.

Using these projections, the lattice codebook can be decomposed linearly, as depicted

in Figure 2.2 and expressed in the following lemma.

Lemma 2.2. For any w 2 Fk

p

,

�(w) = [�
r

(w) + �
v

(w)] mod ⇤(n)

s

, (2.17)



25

Proof. The result follows from Lemma 2.1. By definition,

w = (wT [1 : k
r

]0T

kv
)T � (0T

kr
wT [k

r

+ 1 : k])T ,

so

�(w) = �((wT [1 : k
r

],0T

kv
)T � (0T

kr
,wT [k

r

+ 1 : k])T )

= [�((wT [1 : k
r

],0T

kv
)T ) + �((0T

kr
,wT [k

r

+ 1 : k])T )] mod ⇤(n)

s

= [�
r

(w) + �
v

(w)] mod ⇤(n)

s

,

where the last equality follows from the definition of F(n)

r

and F(n)

v

; zeroing out the

unwanted portions of w is equivalent to discarding the associated columns of F(n).

The codeword �(w) 2 C(n) is therefore the sum of two linearly independent lattice

points: �
r

(w), termed the resolution information and which encodes the first k
r

log
2

p

bits of the message, and �
v

(w), termed the vestigial information and which encodes

the remaining k
v

log
2

p bits. Furthermore, the decomposition is linear in the sense that

the decomposition of sums of lattice points is the same as the sum of decompositions,

as shown in the following lemma.

Lemma 2.3. Let w
1

and w
2

be messages in Fk

p

, and let w = w
1

�w
2

. Then

�
r

(w) = [�
r

(w
1

) + �
r

(w
2

)] mod ⇤(n)

s

, (2.18)

and

�
v

(w) = [�
v

(w
1

) + �
v

(w
2

)] mod ⇤(n)

s

. (2.19)
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V
r

V
s

V
v

V
s

Figure 2.2: Lattice subspace decomposition. Each lattice codeword in C(n) is the sum
of a point in C(n)

r

(upper) and a point in C(n)

v

(lower). The shaded region V
s

defines the
codebook, whereas the strip-shaped Voronoi regions V

r

and V
v

define the decoding
regions of the resolution and vestigial codebooks, respectively.
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Proof. This follows directly from the fact that � is an isomorphism:

�
r

(w) = �
r

(w
1

�w
2

) (2.20)

= �(w
1

[1 : k
r

]�w
2

[1 : k
r

]) (2.21)

= [�(w
1

[1 : k
r

]) + �(w
2

[1 : k
r

])] mod ⇤(n)

s

(2.22)

= [�
r

(w
1

) + �
r

(w
2

)] mod ⇤(n)

s

. (2.23)

A similar argument holds for �
v

.

The preceding decomposition permits a lattice-coding instantiation of block Markov

encoding, as illustrated in the next section.

2.5 A Diversion: Lattice Coding over the Relay

Channel

To illustrate how the preceding lattice subspaces can be used for block Markov en-

coding, I briefly examine the three-terminal relay channel. I present a lattice-based

encoding scheme that achieves the decode-and-forward rate derived by Cover and El

Gamal in [15].

The relay channel, depicted in Figure 2.3, is a fundamental unit of cooperative

communications. Three terminals comprise the relay channel: a source with a message

to transmit, a destination intending to receive the source’s message, and a relay willing

to facilitate communication with the destination. In the AWGN relay channel, the

source and relay transmit signals x
s

and x
r

, and the relay and destination receive
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signals y
r

and y
d

, as follows:

y
r

= x
s

+ z
r

y
d

= x
s

+ x
r

+ z
d

,

where z
r

and z
d

are AWGN having average power N
r

and N
d

, respectively. As in the

point-to-point AWGN channel, the transmit signals must obey power constraints:

1

n
kx

s

k2  P
s

,
1

n
kx

r

k2  P
r

.

The relay is capable of full-duplex operation, meaning that it can transmit and

receive simultaneously. In general, the capacity of the relay channel is unknown, but

a popular lower bound is the achievable rate of the decode-and-forward scheme, in

which the relay decodes the source’s message entirely and retransmits (perhaps a

portion of) it to the destination. Decode-and-forward achieves rates satisfying

R < max
0�1

min

⇢

1

2
log

2

✓

1 +
�̄P

s

N
r

◆

,
1

2
log

2

✓

1 +
P
s

+ P
r

+ 2
p
�P

s

P
r

N
d

◆�

, (2.24)

where � denotes the split of the source’s power between sending fresh information and

resolution information to the destination, and �̄ = 1 � �. The decode-and-forward

rates are achieved using block Markov encoding, in which the source sends a message

during one block and in the next block collaborates with the relay to send resolution

Figure 2.3: The relay channel.
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information to the destination. Here I adapt block Markov encoding to lattice codes.

Encoding: To achieve (2.24), the terminals employ main, resolution, and vestigial

codebooks C, C
r

, and C
v

, respectively,1 constructed from lattices as described in the

previous section.

The encoding procedure, shown in Table 4.1, is based on block Markov encoding.

As in [15], the source transmit B messages over B + 1 blocks of n channel uses each.

Let w[b] 2 Fk

p

be the message transmitted by the source in block b. Then, let �[b] =

�(w[b]) be the associated lattice point, and let �
r

[b] = �
r

(w[b]) and �
v

[b] = �
v

(w[b])

be the resolution and vestigial components of �[b], respectively.

Fix 0  �  1. At block 1, the source transmits

x
s

[1] =
q

�̄P
s

([�[1] + t[1]] mod ⇤
s

),

where t[1] is a random dither, uniformly distributed over V
s

and known to source,

relay, and destination. Suppose the relay, which is silent during block 1, correctly

decodes �(1).

Table 2.1: Lattice block Markov encoding

b = 1 b = 2 · · · b = B + 1
Transmitter �[1] �[2] + �

r

[1] · · · �
r

[B]
Relay - �

r

[1] · · · �
r

[B]

During block 2 the source and relay cooperatively send resolution information—in

the form of �
r

[1]—to the destination. The relay transmits

x
r

[2] =
p

P
r

([�
r

[1]) + s[1]] mod ⇤
s

),

where s[1] is also a random dither, uniformly distributed over V
s

and known to source,

1From here on out, I omit the superscripts on lattices and lattice codebooks.
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relay, and destination. In addition to sending the resolution information, the source

needs to transmit the codeword for block 2, so it sends

x
s

[2] =
q

�̄P
s

([�[2] + t[2]] mod ⇤
s

) +
p

�P
s

([�
r

[1] + s[1]] mod ⇤
s

).

Encoding continues in this manner: at block b, the source sends

x
s

[b] =
q

�̄P
s

([�[b] + t[b]] mod ⇤
s

) +
p

�P
s

([�
r

[b� 1] + s[b� 1]] mod ⇤
s

),

while the relay sends

x
r

[b] =
p

P
r

([�
r

[b� 1] + s[b� 1]] mod ⇤
s

),

until block B + 1. At the final block, there is no fresh information for the source to

send, so it simply transmits

x
s

[B + 1] =
p

�P
s

([�
r

[B] + s[B]] mod ⇤
s

).

The source has transmitted nRB bits over n(B + 1) channel uses. The overall rate

can therefore be made as close as possible to R by choosing large enough B.

Decoding: Decoding proceeds in three stages. First, the relay decodes the entire

message �[b]; then, the destination decodes the resolution information �
r

[b]; finally,

it decodes vestigial component �
v

[b]. In each case, the receiver takes the incoming

signal y[b], subtracts any known interference, and scales down by the transmit power

to form y0[b]. Then, as in the single-user case described in Section 2.3, the receiver

applies MMSE scaling and subtracts the random dither to form y00[b]. Finally, the

receiver estimates the desired codeword by quantizing y00[b].
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After each block b, the relay decodes �[b] from y
r

[b]. It receives the signal

y
r

[b] =
q

�̄P
s

([�[b] + t[b]] mod ⇤
s

) +
p

�P
s

([�
r

[b� 1] + s[b� 1]] mod ⇤
s

) + z
r

[b].

The relay first subtracts the �
r

[b� 1] component—which, supposing decoding in the

previous block was successful, it already knows—from y
r

[b] and scales the signal down

by (�̄P
s

)�
1
2 :

y0
r

[b] = [�[b] + t[b]] mod ⇤
s

+ z0
r

[b],

where z0
r

[b] = z
r

[b]/
p

�̄P
s

. The relay then applies MMSE scaling and subtracts the

dither t[b]:

y00
r

[b] = [�
r

y0
r

[b]� t[b]] mod ⇤
s

= [�
r

(�[b] + z0
r

) + (�
r

� 1)t[b]] mod ⇤
s

,

where �
r

=
¯

�Ps
¯

�Ps+Nr
is the appropriate MMSE coe�cient. The relay then forms the

estimate

�̂r(i) = Q
⇤c(y

00
r

[b]). (2.25)

The destination first decodes �
r

[b] from y
d

[b+ 1], which arrives as

y
d

[b+ 1] = (
p

�P
s

+
p

P
r

)([�
r

[b] + s[b]] mod ⇤
s

)

+
q

�̄P
s

([�[b+ 1] + t] mod ⇤
s

) + z
d

[b+ 1].

Treating the portion encoding �[b+ 1] as noise, the destination scales down y
d

[b+ 1]

by (
p
�P

s

+
p
P
r

)�1, yielding

y0
d

[b+ 1] = [�
r

[b] + s[b]] mod ⇤
r

+ z0
d

[b+ 1],



32

where z0
d

[b+1] is a scaled version of the interference-plus-noise term. The destination

then forms y00
d

[b+ 1] by applying MMSE scaling and subtracting the dither s[b]:

y00
d

(i+ i) = [�
r

y0
d

(i+ 1)� s[b]] mod ⇤
s

= [�
r

(�
r

[b] + z0
d

[b+ 1])� (�
r

� 1)s[b]] mod ⇤
s

where �
r

= �Ps+Pr+2

p
�PsPr

Ps+Pr+2

p
�PsPr+Nd

is the MMSE coe�cient. The destination then forms

the estimate

�̂
r

[b] = Q
⇤r(y

00
d

[b+ 1]). (2.26)

Now that the destination knows �
r

[b], it decodes �
v

[b] from y
d

[b]. First, it scales

down the incoming signal by (�̄P
s

)�
1
2 and subtracts (modulo ⇤

s

) �
r

[b]:

y0
d

[b] = [�
v

[b] + t[b] + z0
d

[b]] mod ⇤
s

,

where, as before, z0
d

[b] is a scaled version of the noise. The destination forms y00
d

[b] by

applying MMSE scaling and subtracting the dither t:

y00
d

[b] = [�
v

y0
d

[b]� t] mod ⇤(n)

s

= [�
v

(�
1

[b] + z0
d

[b])� (�
v

� 1)t] mod ⇤(n)

s

,

where �
v

=
¯

�Ps
¯

�Ps+Nd
is the appropriate MMSE coe�cient. The destination estimates

�
v

[b] using the lattice quantizer

�̂
v

[b] = Q
⇤v(y

00
d

[b]). (2.27)
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With estimates of �
r

[b] and �
v

[b], the destination can estimate the desired message

�̂d[b] = [�̂
r

[b] + �̂
v

[b]] mod ⇤
s

. (2.28)

Error Probability: Let P
e

be the probability of decoding any �[b] incorrectly at

the destination, which is governed by the error probabilities of the lattice decoders of

(2.25),(2.26) and (2.27):

P
r

= Pr

(

B

[

b=1

�̂r[b] 6= �[b]

)

P
0

= Pr

(

B

[

b=1

�̂
r

[b] 6= �
r

[b]

)

P
1

= Pr

(

B

[

b=1

�̂
v

[b] 6= �
v

[b]

)

.

Provided all three lattice decoders decode correctly, the destination can successfully

recover the desired message. By the union bound, P
e

satisfies

P
e

 P
r

+ P
0

+ P
1

.

Since ⇤
s

is good for covering and ⇤
s

and ⇤
c

are good for coding, [74, Theorem 3]

guarantees that, averaging over t[b], P
r

can be made small as long as

R <
1

2
log

2

✓

1 +
�̄P

s

N
r

◆

. (2.29)

Similarly, since ⇤
c

is good for AWGN coding and ⇤
m

is good for coding and for

covering, P
0

, averaging over s[b], can be made small provided

R
0

<
1

2
log

2

✓

1 +
�P

s

+ P
r

+ 2
p
�P

s

P
r

�̄P
s

+N
d

◆

. (2.30)
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Finally, since ⇤
m

is good for coding and ⇤
s

is good for coding and covering, P
1

can

be made small when

R
1

< log
2

✓

1 +
�̄P

s

N
d

◆

. (2.31)

The probabilities P
r

, P
0

, and P
1

are bounded above by exponential terms which

are functions of the Poltyrev exponent [72]. The asymptotic error probability is

dominated by the term with the smallest error exponent, corresponding to the rate

component closest to the bounds given in (2.29), (2.30), and (2.31).

Combining (2.29), (2.30), and (2.31), it is immediate that P
e

can be made small

for any rate satisfying (2.24).



Chapter 3

User Cooperation

In this chapter, I explore the benefits of user cooperation to physical-layer network

coding. I examine a single-layer network with L transmitters and M receivers, in

which the receivers intend to recover finite-field linear combinations of the transmit-

ters’ message. The transmitters overhear each other’s signals and can cooperatively

encode portions of their messages. For this topology, I present a decode-and-forward

style cooperative scheme, based on lattice block Markov encoding as described in

Chapter 2. The proposed scheme provides significant improvement in the achievable

computation rate. Furthermore, it improves the diversity-multiplexing tradeo↵. For

the special case of two users and a single receiver, the proposed scheme is DMT op-

timal. In the more general case of N transmitters and a single receiver, cooperation

a↵ords a DMT improvement; however, it does not achieve the optimum DMT.
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3.1 Preliminaries

3.1.1 System model

Here I study the cooperative computation channel, depicted in Figure 4.1. In the

cooperative computation channel, L transmitters communicate with M  L receivers

over the wireless medium. Each of the L users has B messages w
l

[b] 2 Fk

p

, for

1  t  T . Structurally, this channel resembles the compound multiple-access channel

or, when M = L, the interference channel. However, unlike those more traditional

channels, here each receiver intends to decode a finite-field linear combination1 of the

transmitters’ messages:

f
m

[b] =
L

M

l=1

a
lm

�w
l

[b], (3.1)

for a
lm

2 Z. Let the matrix A = [a
lm

] 2 ZL⇥M describe the functions computed by

the receivers.

w
1

w
2

...

w
L

...

f
1

=
L

L

l=1

a
l1

�w
i

f
M

=
L

L

l=1

a
lM

�w
i

Figure 3.1: The cooperative computation channel. L users cooperatively transmit to
M receivers, which decode the desired linear functions.

In order to accommodate block Markov encoding, transmissions are divided into

B+1 blocks of n channel uses each. At block b, each transmitter l broadcasts a signal

1Very precisely, receivers compute any of a sequence of linear combinations since, as will be
shown later, k, p ! 1 as the codeword length becomes large.
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x
l

[b] 2 Rn, subject to an average power constraint:

1

n
kx

l

[b]k2  P,

for some P > 0. The superposition of the transmitters’ signals, scaled by channel

coe�cients and corrupted by noise, arrives at each receiver:

y
m

[b] =
L

X

l=1

h
lm

x
l

[b] + n[b], (3.2)

where h
lm

2 R is the channel coe�cient from transmitter l to receiver m, and n[b] is

a white, unit-variance Gaussian random vector. For convenience, the channel coe�-

cients are gathered into the matrix H = [h
lm

].

Each transmitter l also obtains the noisy superposition of the other transmitters’

signals:

z
l

[b] =
L

X

l

0
=1

l

0 6=l

g
l

0
l

x
l

0 [b] + n
l

[b], (3.3)

where g
l

0
l

2 R is the channel coe�cient from transmitter l0 to transmitter l, and

n
l

[b] is again white, unit-variance Gaussian. Again define the matrix G = [g
l

0
l

] with

diagonal elements equal to zero. The choice of zero for the diagonal elements implies

that a transmitters’ signal does not self-interfere; in other words, each transmitter is

capable of full-duplex operation and can transmit and receive simultaneously. Channel

matrices H and G are taken to be fixed and known globally among the transmitters

and receivers.

Also define the non-cooperative computation channel, which is identical to the co-

operative network except that the transmitters have no access to each other’s trans-

missions. Equivalently, G is the all-zero matrix.
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3.1.2 Computation capacity

The primary figure of merit is the computation capacity of the channel. Since the

receivers recover functions of incoming messages, rather than the messages themselves,

the computation capacity is defined somewhat di↵erently than the usual Shannon

capacity. Each transmitter has an encoder E
l

: Fk⇥B

p

⇥ Rn⇥B ! Rn⇥(B+1). That is,

the encoder E
l

takes as its input the messages w
l

[b] and the received signals z
l

[b] and

generates as its output the codewords x
l

[b]. The encoder must be causal: The output

codeword x
l

[b] may depend on received signals z
l

[s] only for s < b. As usual, the

encoding rate is defined as the logarithm of the cardinality of the message set divided

by the number of channel realizations over which the messages are encoded:

R =
B log

2

(|Fk

p

|)
n(B + 1)

=
Bk log

2

(p)

n(B + 1)
⇡ k log

2

(p)

n
, (3.4)

where the approximation holds for large B. Note that this is the symmetric rate

among all transmitters.

Each receiver has a decoder D
m

: Rn⇥(B+1) ! Fk⇥B

p

, taking as inputs the received

signals y
m

[b] and generating as outputs the estimates f̂
m

[b]. Let the absolute proba-

bility of error be the probability that any receiver makes an incorrect estimate of any

of the desired functions:

P
e

= Pr{f̂
m

[b] 6= f
m

[b], for any 1  m  M, 1  b  B}. (3.5)

A computation rate R is said to be achievable if for any ✏ > 0 there exists a sequence

of encoders with encoding rate greater than R� ✏ and decoders such that P
e

! 0 as

n ! 1. For fixed channel gains H,G, function coe�cients A, and transmit power

P , let R(H,G,A, P ) denote the supremum over all achievable computation rates.

In order to define the computation capacity, there must be limitations on the
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permissible function coe�cients A. Otherwise one could choose a trivial coe�cient

matrix, such as the all-zero matrix, for which the achievable computation rate is

unbounded. Therefore, A must be a member of the following set:

A = {A 2 ZL⇥M : rank(A) = M, 8 m 9 l such that a
ml

6= 0}. (3.6)

The first condition ensures that the recovered functions retain as much information

as possible about the individual transmitters’ messages; for L = M it implies that

one can recover the individual messages from the recovered functions. The second

condition, which is redundant for L = M , ensures that each transmitter is represented

in the recovered messages; the receivers cannot simply ignore a transmitter in order

to achieve a higher computation rate.

Finally, define the computation capacity as the supremum of achievable rates over

the set of permissible coe�cient matrices:

C(H,G, P ) = sup
A2A

R(H,G,A, P ). (3.7)

In their seminal work, Nazer and Gastpar developed a computation strategy based

on nested lattice codes [36]. It achieves the following computation rate:

R
nc

(H, P ) = max
A2A

min
1mM



1

2
log

2

(1 + P kh
m

k2)

� 1

2
log

2

(ka
m

k2 + P (ka
m

k2 kh
m

k2 � |aT

m

h
m

|2))
�

+

. (3.8)

The first term in (3.8) corresponds to the power in the received signal, whereas the

second term is a penalty determined by the gap in the Cauchy-Schwarz inequality

between h
m

and a
m

. The closer h
m

and a
m

are to being co-linear, the smaller is the

rate penalty. Since the Nazer-Gastpar scheme was designed for a non-cooperative
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network, the rate does not depend on G; nevertheless, it serves as a lower bound on

the cooperative computation capacity C(H,G).

3.1.3 Diversity-multiplexing tradeo↵

A major advantage of user cooperation is that cooperating transmitters can achieve

performance similar to that of a multiple-antenna transmitter. Multiple antennas can

improve performance on two fronts: increased reliability in the presence of channel

fading, and increased throughput. In the high-SNR regime, the diversity-multiplexing

tradeo↵ quantifies this improvement [92]. Let the elements of H and G be identically

and independently distributed according to a Rayleigh distribution. Next, suppose

there is a scheme that achieves the computation rate R
scheme

(H,G, P ). Then, the

diversity order at multiplexing gain r is defined as

d(r) = lim
P!1

log Pr{R
scheme

(H,G, P ) < r

2

log(P )}
logP

. (3.9)

In other words, d(r) is the exponent of the outage probability, with the rate taken

to have multiplexing gain r, as the SNR goes to infinity. The diversity-multiplexing

tradeo↵ of the system, denoted by d⇤(r), is the supremum of d(r) over all possible

schemes.

The multiplexing gain for compute-and-forward is studied in [44]. There it is

shown that, using the Nazer-Gastpar approach, the multiplexing gain can be no

higher than 2

L+1

. In other words, d(r) = 0 for r > 2

L+1

for this scheme.
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3.2 Computation Rates

3.2.1 Upper bounds

First I present two upper bounds on the cooperative computation rate. I obtain the

first bound by supposing that the transmitters are capable of perfect cooperation,

which is equivalent to having a genie supply all messages to each transmitter. The

problem then reduces to a multiple-input, single-output (MISO) broadcast channel,

the capacity of which is known [86]. In Section 3.3 I use this result to bound the

diversity-multiplexing tradeo↵.

Theorem 3.1. Denote the capacity region of a Gaussian MISO broadcast channel by

C
miso

(H, P ) = conv

(

[

⇡2⇧

(

r : r
m

 1

2
log

2

 

1 +
h
⇡(m)

V
⇡(m)

hT

⇡(m)

h
⇡(m)

P

m�1

i=1

V
⇡(i)

hT

⇡(m)

+ 1

!))

,

(3.10)

where conv{·} is the convex hull, ⇧ is the set of permutations from {1, · · ·L} to itself,

and V
m

is a collection of positive semi-definite matrices such that
P

M

m=1

tr(V
m

) 
NP . Then the computation capacity of the cooperative computation channel is bounded

above by

C(H,G, P )  R+

miso

(H, P ), (3.11)

where

R+

miso

(H, P ) = sup{r : r1 2 C
miso

(H, P )} (3.12)

is the symmetric-rate capacity of the Gaussian MISO broadcast channel.

To prove Theorem 3.1, a quick lemma is necessary.
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Lemma 3.1. Let w
1

, · · · ,w
L

2 Fk

p

be independently and uniformly distributed mes-

sages. Then, the functions f
1

, · · · , f
M

are also independent and uniformly distributed

across Fk

p

.

Proof. Since the finite-field linear combinations in f
l

are taken element-wise, it is

su�cient to show the result for an arbitrary element of both messages and functions.

Therefore, let w = (w
11

, · · · , w
L1

)T and f = (f
11

, · · · , f
M1

)T = Aw. It remains to be

shown that the elements of f are independent and uniformly distributed.

Since w is uniformly distributed over FL

p

, its probability mass function is

p(w) = p�L. (3.13)

The conditional pmf of f is, trivially,

p(f |w) = �(f �Aw), (3.14)

where �(·) is the Kronecker delta function. Now, compute the marginal pmf for f :

p(f) =
X

w2FL
p

p(f |w)p(w) (3.15)

= p�L

X

w2FL
p

�(f �Aw) (3.16)

= p�L

�

� {w|Aw = f} �� (3.17)

= p�LpL�M = p�M , (3.18)

where (3.17) follows because A is full rank. Since the pmf p(f) does not depend on

f , the elements are independent and uniformly distributed.

With Lemma 3.1, it is straightforward to prove Theorem 3.1.
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Proof of Theorem 3.1. Suppose that a genie provides the messages w
l

(t) to each of

the transmitters. Then the transmitters each can compute the functions f
m

(t). By

Lemma 3.1 these functions are independent and uniformly distributed, so the scenario

is equivalent to an L-transmitter antenna having M independent messages to send

to M users. In [86] the capacity region is shown to be (3.10). Since the computa-

tion capacity is defined in terms of achievable symmetric rate, it cannot exceed the

symmetric-rate MISO capacity given in (3.12).

I obtain the second bound by supposing that a genie supplies to the receivers all

messages except for those of a single transmitter l. Then the receivers need only to

recover the messages of transmitter l in order to compute any suitable set of functions.

This converts the system to a compound relay channel in which the other transmitters

serve as dedicated relays, the capacity of which can be bound using cut-set arguments.

This upper bound is somewhat more realistic than R+

miso

, and I use it in Section 3.4

for comparisons to the achievable rates.

Theorem 3.2. For each transmitter 1  l  L, let S
l

= {1, · · · , l � 1, l + 1, · · · , l}
be the set of transmitters other than transmitter l. Then the computation capacity of

the cooperative computation channel is bounded above by

C(H,G, P )  R+

single

(H,G, P ),

where

R+

single

(H,G, P ) = min
1lL

max
A2A

min
m,alm 6=0

max
p(x)

min
S2Sl

I(x
l

, x
S

; y
m

, z
S

C |x
S

C ), (3.19)

where p(x) is any distribution over the transmitted signals (x
1

, · · · x
L

)T satisfying the

input power constraint.
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Proof. Choose a transmitter l, and suppose that a genie supplies the messages w
l

0(t)

to the receivers for every l0 6= l. By the crypto lemma [74], each f
m

(t) such that

a
lm

6= 0 is statistically independent of the messages w
l

0(t), so the receivers remain

equivocal as to the desired functions. Thus the scenario is equivalent to a compound

relay channel, with transmitter l acting as the source, the transmitters l0 acting as

relays, and each receiver m such that a
lm

6= 0 acting as destinations all needing

the messages w
l

(t). The capacity of the compound relay channel can be bounded

using cut-set arguments. For any cut S 2 S
l

, the capacity of the compound relay

channel, and thus the computation capacity of the cooperative computation channel,

is bounded by

C(H,G, P )  max
p(x)

min
m,alm 6=0

I(x
l

, x
S

; y
m

, z
S

C |x
S

C ) (3.20)

 min
m,alm 6=0

max
p(x)

I(x
l

, x
S

; y
m

, z
S

C |x
S

C ). (3.21)

Taking the minimum over all transmitters and all cuts S yields the result.

3.2.2 Lower Bound

Here I detail the proposed cooperative computation strategy and derive the com-

putations rates it achieves. The scheme is decode-and-forward in nature: at one

block transmitters send out lattice codewords corresponding to their individual mes-

sages; these messages are decoded by other transmitters. At the next block transmit-

ters cooperatively encode resolution information to assist the receivers. As with any

decode-and-forward strategy, one must contend with the fact that it may be di�cult

for transmitters to decode each other’s messages. Therefore, not every transmitter

will cooperate.1 A subset B of the transmitters decodes the messages of every other

1Other approaches are possible. For example, in an earlier work [93] transmitters are partitioned
into clusters; transmitters decode only in-cluster messages. In the interest of brevity I discuss only



45

user, after which they cooperatively transmit resolution information to the receivers.

Transmitters not in B, not having decoded incoming messages, do not send any res-

olution information.

Theorem 3.3. Let B ⇢ {1, · · · , L}. In the cooperative computation channel, the

following computation rate is achievable:

R
c

(H,G, P ) = max
A2A

min

⇢

min
l2B

C
mac

(g
l

[1 : l�1, l+1 : L]�v
0

[1 : l�1, l+1 : L], P, 1),

min
1mM

⇢

1

2
log

2

✓

1 +
P |hT

m

v
m

|2
1 + I

m,r

◆

+



1

2
log

2

(P kh
m

� v
0

k2 + I
m,v

)�

1

2
log

2

�ka
m

k2 (1 + I
m,v

) + P
�ka

m

k2 kh
m

� v
0

k2 � |aT

m

(h
m

� v
0

)|2��
�

+

��

, (3.22)

where

I
m,r

= P

 

kh
m

� v
0

k2 +
X

m

0 6=m,0

|hT

m

v
m

0 |2
!

(3.23)

is the interference power seen at receiver m as it decodes its resolution information,

I
m,v

= P
X

m

0 6=m,0

|hT

m

v
m

0 |2 (3.24)

is the interference seen at receiver m as it decodes the vestigial information, and for

any vectors v
0

,v
1

, · · · ,v
M

such that

M

X

m=0

|v
lm

|2  1, 8l (3.25)

and v
lm

= 0 for l 6= B and m > 0.

The achievable rate (3.22) comprises three main components. First is the rate of a

the approach presented in Theorem 3.3.
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Gaussian multiple-access channel, which corresponds to the rate at which cooperating

transmitters can decode others’ messages. Second is the rate at which each receiver

can decode the resolution information, which is that of a virtual MISO link between

cooperating transmitters and the receiver; signals unrelated to the resolution infor-

mation are treated as noise. Third is the rate at which the receivers, having already

decoded the resolution information, can decode the vestigial component of the desired

combination of lattice points; this is the Nazer-Gastpar rate of (3.8), with resolution

information intended for other receivers treated as noise.

Each transmitter splits its power between sending its own lattice codewords and

cooperatively sending resolution information. The split is defined by the steering

vectors v
0

,v
1

, · · · ,v
M

. Each element v
l0

dictates the fraction of power transmitter

l expends on its own lattice codewords. For cooperating transmitter l, each element

v
lm

dictates the fraction of power expended on resolution information for receiver

m. The steering vectors introduce two separate notions of alignment. First, one can

choose v
0

in order to minimize the Cauchy-Schwarz penalty in (3.22). Second, one can

choose the remaining vectors v
m

to trade o↵ between increasing the coherence gain

at the intended receivers and decreasing the interference generated at other receivers.

Finding the optimum steering vectors is a non-covex problem; for further results and

in simulations I relay on several heuristics for selecting them.

Before proving Theorem 3.3, I examine a few of its corollaries. One can obtain a

simpler expression for the achievable rate by choosing B = {1, · · · , L} and taking the

steering vectors v
1

, · · · ,v
M

to be zero-forcing beamformers. Thus the cooperative

signals do not interfere at other receivers.

Corollary 3.1. The following computation rate is achievable for the cooperative com-
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putation channel:

R
zf

(H,G, P ) = max
A2A

min

⇢

min
1lL

C
mac

(g
l

[1 : l�1, l+1 : L]�v
0

[1 : l�1, l+1 : L], P, 1),

min
1mM



1

2
log

2

(1 + P (kh
m

� v
0

k2 + |hT

m

v
m

|2))�

1

2
log

2

�ka
m

k2 + P
�ka

m

k2 kh
m

� v
0

k2 � |aT

m

(h
m

� v
0

)|2��
�

+

�

, (3.26)

for any vectors v
0

,v
1

, · · · ,v
M

satisfying

M

X

m=0

|v
lm

|2  1 (3.27)

and

vT

m

h
m

0 = 0, 8 m 6= m0. (3.28)

Since L � M , it is possible to choose non-trivial zero-forcing beamforming vectors

for almost every H.

Finally, choosing B = ;, one obtains an achievable rate for both the cooperative

and non-cooperative computation channel. This yields a rate similar to (3.8), except

that each transmitter can adjust its transmit power in order to tune the e↵ective

channels to match the desired linear functions. In fact this rate is a special case of

the “superposition” compute-and-forward presented in [36, Theorem 13].

Corollary 3.2. In both the non-cooperative computation channel and the cooperative

computation channel, the following rate is achievable:

R(H,G, P ) = max
A2A

min
1mM



1

2
log

2

(1 + P (kh
m

� v
0

k2))�

1

2
log

2

�ka
m

k2 + P
�ka

m

k2 kh
m

� v
0

k2 � |aT

m

(h
m

� v
0

)|2��
�

+

, (3.29)
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for any v
0

satisfying

|v
l0

|2  1, 8 1  l  L. (3.30)

Proof of Theorem 3.3. The proof goes in three parts: a description of the encoding

scheme, a description of the decoding scheme, and an analysis of the probability of

error.

Encoding: Each transmitter employs identical lattice codebooks C having rate

R
c

. As shown in Chapter 2, the codebook C decomposes into resolution and vestigial

codebooks C
r

and C
v

which have respective rates R
r

and R
v

. Recall that R
c

= R
r

+R
v

.

Transmitters encode their B messages over B +1 blocks as depicted in Table 3.1.

At block b, each transmitter l has a message w
l

[b], which it encodes by mapping it to

the corresponding codeword in C:

�
l

[b] = �(w
l

[b]). (3.31)

By Lemma 2.2, each lattice codeword can be decomposed by projecting onto the

resolution and vestigial codebooks:

�
r,l

[b] = �
r

(w
l

[b])

�
v,l

[b] = �
v

(w
l

[b]).

Each transmitter dithers the lattice codewords over the shaping region. Therefore,

define the e↵ective codeword

c
l

[b] = [�
l

[b] + t
l

[b]] mod ⇤
s

, (3.32)

where t
l

[b] is a dither drawn randomly and uniformly over V
s

, independent for each

1  l  L and 1  t  T . Each receiver m intends to recover the finite-field linear
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combination f
m

[b] =
L

L

l=1

a
lm

w
m

[b], which corresponds to the lattice point

�
m

[b] = �(f [b]) =

"

L

X

l=1

a
lm

�
l

[b]

#

mod ⇤
s

. (3.33)

As with the individual codewords, one can decompose �
m

[b] into resolution and

vestigial components:

�
r,m

[b] = �
r

(f
m

[b]) (3.34)

�
v,m

[b] = �
v

(f
m

[b]). (3.35)

The transmitters in B will cooperatively transmit �
r,m

[b] to each receiver, again dither-

ing the lattice point over V
s

. The e↵ective codeword is

c
r,m

= [�
r,m

[b] + s
m

[b]] mod ⇤
s

, (3.36)

where, similar to before, s
m

[b] is a dither drawn uniformly over V
s

and independent

for each 1  m  M , and 1  t  B.

At block t = 1, each transmitter simply sends its own lattice codeword:

x
l

(1) =
p
Pv

l0

c
l

[b]. (3.37)

For subsequent blocks 2  t  B, each transmitter in B sends a combination of

“fresh” information corresponding to its own message w
l

[b] and resolution informa-

tion corresponding to the messages sent in the previous time slot. Suppose that

each transmitter in B has successfully decoded �
l

0 [b � 1] for each l0 6= l. Then each

transmitter in B can construct every �
m

[b] and, by extension, every �
r,m

[b]. Every

transmitter sends its own lattice codeword, and transmitters in B send the resolution
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components for each receiver:

x
l

[b] =

8

>

>

<

>

>

:

p
P
⇣

v
l0

c
l

[b] +
P

M

m=1

v
lm

c
r,m

[b� 1]
⌘

, for l 2 B
p
Pv

l0

c
l

[b], otherwise

. (3.38)

Finally, at block b = B + 1 there is no new fresh information for the transmitters to

send. Each transmitter in B sends only the resolution information corresponding to

block B, and the other transmitters send nothing:

x
l

[B + 1] =

8

>

>

<

>

>

:

p
P
P

M

m=1

v
lm

c
r,b(l)m

[B], for l 2 B

0 otherwise

. (3.39)

Table 3.1: Superposition Block Markov encoding for Theorem 3.3

b = 1 b = 2 · · · b = B + 1

x
1

[b], 1 2 B v
10

c
1

[1] v
10

c
1

[2] +
P

M

m=1

v
1m

c
r,m

[1] · · · P

M

m=1

v
1m

c
r,m

[B]
x
2

[b], 2 /2 B v
20

c
2

[1] v
20

c
2

[2] · · · 0
...

...
...

...
...

x
L

[b], L 2 B v
L0

c
L

[1] v
L0

c
L

[2] +
P

M

m=1

v
Lm

c
r,m

[1] · · · P

M

m=1

v
Lm

c
r,m

[B]

Note that, since ⇤
s

has normalized second moment equal to unity, and since the

dithers are independently and uniformly drawn from V
s

, with high probability

1

n
kx

l

[b]k2 ! P
M

X

m=0

v2
lm

 P. (3.40)

Thus the transmit signals obey the average power constraint.

Decoding: Decoding proceeds in three stages. Each transmitter decodes the

messages of every other transmitter, the receivers decode the resolution information

send cooperatively by the clusters, and finally the receivers decode the vestigial in-

formation. Having decoded both components of the desired lattice point, the receiver
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can recover the desired linear function.

At block t = 1 each transmitter receives the superposition of all the other trans-

mitters’ signals, scaled by channel gains and corrupted by noise:

z
l

[1] =
p
P
X

l

0 6=l

v
l

0
0

g
l

0
l

c
l

0 [1] + n
l

[1]. (3.41)

Each transmitter forms estimates ŵ
l

0
l

[1] for every l0 6= l via typical sequence decoding:

if there is a unique collection of messages jointly typical with the received signal, that

collection is taken as the estimate; otherwise an error is declared. Note that here the

transmitters do not employ lattice decoding.

For blocks 2  t  B the situation is similar. Each transmitter receives the

superposition of other transmitters’ signals, but here the received signals also contain

resolution information:

z
l

[b] =
p
P

 

X

l

0 6=l

g
l

0
l

v
l

0
0

c
l

0 [b] +
X

l

02B

M

X

m=1

g
l

0
l

v
l

0
m

c
r,m

(t� 1)

!

+ n
l

[b]. (3.42)

Supposing that each transmitter has successfully decoded the messages from block t�
1, it also knows the resolution information. It therefore can subtract this component

out, resulting in the e↵ective signal

z0
l

[b] = z
l

[b]�
p
P
X

l

02B

M

X

m=1

g
l

0
l

v
l

0
m

c
r,m

(t� 1) (3.43)

=
p
P
X

l

0 6=l

g
l

0
l

v
l

0
0

c
l

0 [b] + n
l

[b] (3.44)

Now, just as for b = 1, each transmitter can form estimates ŵ
l

0
l

[b] of the other

transmitters’ messages via typical sequence decoding.

Next, consider the receivers. To decode the function f
m

[b], each receiver first
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decodes the resolution information from the signal received in block t+ 1:

y
m

[b+ 1] =
p
P

L

X

l=1

h
lm

v
l0

c
l

[b+ 1] +
p
P

M

X

m

0 6=m

X

l2B

h
lm

v
lm

0c
l,m

0 [b]+

p
P
X

l2B

h
lm

v
lm

c
r,m

[b] + n
m

[b+ 1]. (3.45)

Each receiver decodes the resolution information treating the interference—the fresh

information from each transmitter and the resolution information intended for other

receivers—as noise. Each estimate �̂
r,m

[b] is formed via lattice decoding as outlined

in Chapter 2. The receivers first apply MMSE scaling to the incoming signal and

subtract o↵ the dither. Let

n0
m

[b+ 1] =
p
P

L

X

l=1

h
lm

v
l0

c
l

[b+ 1] +
p
P

M

X

m

0 6=m

X

l2B

h
lm

v
lm

0c
l,m

0 [b] + n
m

[b+ 1] (3.46)

be the sum of the interference and noise at receiver m. Then the scaled signal is

y0
m

[b+ 1] = [�
m

[b+ 1]y
m

[b+ 1]� s
m

[b+ 1]] mod ⇤
s

(3.47)

=

"

�
m

[b+ 1]
p
P
X

l2B

h
lm

v
lm

c
r,m

[b] + �n0
m

[b+ 1]� s
m

[b+ 1]

#

mod ⇤
s

(3.48)

=

"

�
r,m

[b+ 1] +

 

�
m

[b+ 1]
p
P
X

l2B

h
lm

v
lm

� 1

!

c
r,m

[b]+

�
m

[b+ 1]n0
m

[b+ 1]

#

mod ⇤
s

(3.49)

= [�
r,m

[b+ 1] + n00
m

[b+ 1]] mod ⇤
s

, (3.50)
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where

n00
m

[b+ 1] =

 

�
m

[b+ 1]
p
P
X

l2B

h
lm

v
lm

� 1

!

c
r,m

[b] + �
m

[b+ 1]n0
m

[b+ 1] (3.51)

is the e↵ective noise, including thermal noise, interference, and self-noise associated

with MMSE scaling. Then, the estimate is formed by lattice quantization:

�̂
r,m

[b] = Q
⇤r(y

0
m

[b+ 1]). (3.52)

After decoding the resolution information, each receiver turns to y
m

[b] to decode

the vestigial component �
v,m

[b]. First, note that, supposing that each receiver has suc-

cessfully decoded the resolution information from the previous block, it can subtract

away that portion of the interference, yielding:

y0
m

[b] = y
m

[b]�
p
P
X

l2B

h
lm

v
lm

c
r,m

[b� 1] (3.53)

=
p
P

L

X

l=1

h
lm

v
l0

c
l

[b] +
p
P

X

m

0 6=m

X

l2B

h
lm

v
lm

0c
r,m

0 [b� 1] + n
m

[b]. (3.54)

Furthermore, supposing that the resolution information was decoded successfully,

each receiver can subtract �
r,m

[b] from the received signal modulo the shaping lattice.

Finally, in preparation for lattice decoding, receivers apply MMSE scaling to the

signal and subtract the dithers as in [36, 74]. Let

n0
m

[b] =
p
P

X

m

0 6=m

X

l2B

h
lm

v
lm

0c
r,m

0 [b� 1] + n
m

[b] (3.55)
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be the sum of the interference and noise in y
m

[b]. The resulting signal is then

y00
m

[b] =

"

↵
m

[b]y0
m

[b]� �
v,m

[b]�
L

X

l=1

a
lm

t
l

[b]

#

mod ⇤
s

(3.56)

=

"

L

X

l=1

(↵
m

[b]
p
Ph

lm

v
l0

c
l

[b]� a
lm

t
l

[b])� �
r,m

[b] + ↵
m

[b]n0
m

[b]

#

mod ⇤
s

(3.57)

=

"

L

X

l=1

a
lm

(c
l

[b]� t
l

[b])� �
r,m

[b]+

L

X

l=1

(↵
m

[b]
p
Ph

lm

v
lm

� a
lm

)c
l

[b] + ↵
m

[b]n0
m

[b]

#

mod ⇤
s

(3.58)

=

"

�
m

[b]� �
r,m

[b] +
L

X

l=1

(↵
m

[b]
p
Ph

lm

v
lm

� a
lm

)c
l

[b] + ↵
m

[b]n0
m

[b]

#

mod ⇤
s

(3.59)

=

"

�
v,m

[b] +
L

X

l=1

(↵
m

[b]
p
Ph

lm

v
lm

� a
lm

)c
l

[b] + ↵
m

[b]n0
m

[b]

#

mod ⇤
s

(3.60)

= [�
v,m

[b] + n00
m

[b]] mod ⇤
s

, (3.61)

where

n00[b] =
L

X

l=1

(↵
m

[b]
p
Ph

lm

v
lm

� a
lm

)c
l

[b] + ↵
m

[b]n0
m

[b] (3.62)

is the e↵ective noise, including thermal noise, interference from other transmitters

and clusters, and self-noise associated with MMSE scaling. Each receiver decodes the

estimate �̂
v,m

[b] by quantizing to the nearest point in ⇤
v

:

�̂
v,m

[b] = Q
⇤v(y

00
m

[b]). (3.63)

Finally, having recovered both the resolution and vestigial components, each re-

ceiver constructs its estimate of the desired lattice codeword, from which it can recover
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the desired finite-field message:

f̂
m

[b] = ��1(�̂
m

[b]) = ��1

⇣h

�̂
r,m

[b] + �̂
v,m

[b]
i

mod ⇤
s

⌘

. (3.64)

Probability of error: An error occurs when (a) any of the transmitters in B fails

to decode the other transmitters’ messages, (b) any of the receivers fails to decode

correctly the incoming resolution information, or (c) when any of the receivers fails

to decode correctly the vestigial information associated with the desired lattice point.

By the union bound, the probability of error follows

P
e


B

X

b=1

M

X

m=1

Pr{f̂
m

[b] 6= f
m

[b]} (3.65)


B

X

b=1

X

l2B

X

l

0 6=l

Pr{ŵ
l

0
l

[b] 6= w
l

0 [b]}+
B

X

b=1

M

X

m=1

Pr{�̂
r,m

[b] 6= �
r,m

[b]}+

B

X

b=1

M

X

m=1

Pr{�̂
v,m

[b] 6= �
v,m

[b]}.
(3.66)

It remains to show that as long as the rates satisfy (3.22), each error term in

(3.66) goes to zero exponentially. I start with the first summation. Each transmitter

decodes the messages within its cluster via typical sequence decoding while treating

all out-of-cluster interference as noise. By Lemma A.1 the joint mutual information

between the transmit codewords c
l

[b] and the receive signal z0[b] approaches that of a

Gaussian multiple-access channel with channel coe�cients g
l

0
l

v
l

0
0

, transmit power P ,

and unit noise power. Therefore, so long as

R < min
l2B

C
mac

(g
l

[1 : l � 1, l + 1 : L] � v
0

[1 : l � 1, l + 1 : L], P, 1), (3.67)

then Pr{ŵ
l

0
l

[b] 6= w
l

0 [b]} ! 0 exponentially for each l and l0 6= l.

Next, consider the resolution information. Here each receiver decodes �
r,m

[b] via
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lattice decoding on y
m

(t + 1). In [74] it is shown that lattice decoding is su�cient

to achieve the capacity of the Gaussian channel. From (3.46) it follows that the

interference power in n0
m

(t+ 1) is

I
m,r

=
1

n
E[kn0

m

(t+ 1)k2] = P

 

kh
m

� v
0

k2 +
X

m

0 6=m,0

|hT

m

v0
m

|2
!

. (3.68)

Similarly,the power of the resolution information in y
m

(t + 1) is P |hTv
m

|2. Putting

these together, if

R
r

< min
1mM

1

2
log

2

 

1 +
P |hT

m

v
m

|2
1 + P (kh

m

� v
0

k2 +P

m

0 6=m

|hT

m

v0
m

|2)

!

, (3.69)

then Pr{�̂
r,m

[b] 6= �
r,m

[b]} ! 0 exponentially for each m.

Finally, consider the vestigial information. Here each receiver decodes �
v,m

[b]

by lattice decoding the sum of multiple incoming lattice points, so the main result

from [36] applies directly. The interference power in (3.55) is

I
m,v

= P
X

m

0 6=m

|hT

m

v
m

0 |2, (3.70)

and the e↵ective channel gains in (3.61) are h
m

� v
0

. Applying these to the rate in

(3.8), if

R
v

<

"

1

2
log

2

(kPh
m

� v
0

k2 + I
m,v

)�

1

2
log

2

�ka
m

k2 (1 + I
m,v

) + P
�ka

m

k2 kh
m

� v
0

k2 � |aT

m

(h
m

� v
0

)|2��
#

+

, (3.71)

then Pr{�̂
v,m

[b] 6= �
v,m

[b]} ! 0 exponentially.

Recall that R
c

= R
r

+R
v

and R = BRc
B+1

. Choosing B arbitrarily large, the desired
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result obtains.

3.3 Diversity-multiplexing Tradeo↵

In this section I present inner and outer bounds on the diversity-multiplexing tradeo↵,

which coincide in several cases.

3.3.1 Non-cooperative Computation Channel

First, I consider the DMT of the non-cooperative computation channel, which is

bounded above by that of a scalar Gaussian channel. In the case of a single receiver,

one can achieve this upper bound with lattice codes and signal alignment. With

the steering vector v
0

chosen such that the equivalent channel vector is a constant,

the achievable rate—and therefore the error probability—is approximately that of a

single SISO link.

Theorem 3.4. For the non-cooperative computation channel, the diversity-multiplexing

tradeo↵ for any scheme is upper-bounded as follows:

d⇤(r)  d+
nc

(r) = 1� r. (3.72)

For the case of M = 1, d⇤(r) = d+
nc

(r).

Proof. First I prove the upper bound. For the non-cooperative case, Nazer and Gast-

par proved in [36, Theorem 13] that the computation capacity is upper-bounded by

C(H, P )  max
A2A

min
l,m

alm 6=0

1

2
log

2

(1 + Ph2

lm

) (3.73)

 1

2
log

2

(1 + Ph2

lm

), (3.74)
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where l and m can be chosen arbitrarily such that a
lm

6= 0. Then the computation

capacity is bounded by the Shannon capacity of a single SISO link, which is proven

in [92] to have diversity-multiplexing tradeo↵ d⇤(r) = 1�r. The computation channel

therefore has DMT bounded by

d⇤(r)  d+
nc

(r) = 1� r. (3.75)

To prove the lower bound for M = 1, I apply the non-cooperative rate of Corollary

3.2, choosing v
0

to align with the channels. For multiplexing gain r, choose a = 1

and v2
l

= P r�1/h2

l

, resulting in the achievable computation rate

R(H, P ) =
1

2
log

2

(1 + LP r)� 1

2
log

2

(L) (3.76)

=
1

2
log

2

✓

1 + LP r

L

◆

(3.77)

� 1

2
log

2

(P r). (3.78)

Outage occurs only when the power constraint precludes v2
l

= P r�1/h2

l

. Since v2
l

 1,

this occurs when h2

l

 P r�1. The probability of outage is therefore

P
o

 Pr

(

L

[

l=1

h
l

 P r�1

)


L

X

l=1

Pr
�

h2

l

 P r�1

 ⇡ LP r�1. (3.79)

Therefore, the scheme achieves a diversity order at multiplexing gain r of

d�
nc

(r) = lim
P!1

� log(P
o

)

log(P )
(3.80)

� lim
P!1

(1� r) log(P )� log(L)

log(P )
(3.81)

= 1� r. (3.82)
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Since this matches the upper bound, the DMT is established.

3.3.2 Cooperative Computation Channel

Next, I examine the DMT of the cooperative computation channel, which is upper

bounded by that of a single MISO link.

Theorem 3.5. For the cooperative computation channel, the diversity-multiplexing

tradeo↵ is upper-bounded as

d⇤(r)  d+
c

(r) = L(1� r). (3.83)

Proof of Theorem 3.5. The result follows directly from the MISO outer bound on the

computation capacity in Theorem 3.1. The symmetric-rate capacity of the MISO

broadcast channel is trivially upper bounded by the capacity of the single-user MISO

link between the source and any destination. Thus the DMT is upper-bounded by

that of a single L-antenna MISO link, which is shown in [92] to be d⇤(r) = L(1� r).

Therefore,

d⇤(r)  d+(r) = L(1� r). (3.84)

In the case of L = 2 and M = 1, the upper bound is tight, and can be achieved

by the proposed block Markov strategy.

Theorem 3.6. For the cooperative computation channel with L = 2 transmitters and

M = 1 receiver, the diversity-multiplexing tradeo↵ is

d⇤(r) = 2(1� r). (3.85)
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Proof. That d⇤(r)  2(1 � r) follows directly from Theorem 3.5. To show that the

upper bound is achievable, I invoke the decode-and-forward rate of Theorem 3.3.

Choose a = (1, 1)T , and choose v
0

in order to align the equivalent channels to a:

v
l

=
min{h

1

, h
2

}
h
l

. (3.86)

From (3.22), it is immediate that each rate satisfies

RB(H,G, P ) � min

(

min
l2B

1

2
log

2

 

P

✓

min{h
1

, h
2

}
h
l

0

◆

2

g2
l

0
,l

!

,

1

2
log

2

 

P
X

l2B

h2

l

!

� 1

2

)

. (3.87)

For each B, define the outage event

OB =
n

RB(H,G, P ) <
r

2
log(P )

o

. (3.88)

Outage occurs when each choice of B fails, or

O =
\

B

OB ⇢ O{1} \O{2}. (3.89)

As suggested by the latter inclusion, it is su�cient to consider only B = {1} and

B = {2}. The achievable rate for each case obeys

R{l}(H,G, P ) � min

(

1

2
log

2

 

P

✓

min{h
1

, h
2

}
h
l

0

◆

2

g2
l

0
,l

!

,
1

2
log

2

�

Ph2

l

�

)

(3.90)

The rate has two terms, the failure of either of which results in the failure of the

cooperation modality. Therefore, define the events C
l

, in which transmitter l fails to

decode the message from receiver l0, andN
l

, in which, even if transmitter l successfully
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decodes, the receiver fails to decode the desired linear combination. The event C
l

can

be written as

C
l

=

(

1

2
log

2

 

P

✓

min{h
1

, h
2

}
h
l

0

◆

2

g2
l

0
,l

!

<
r

2
log

2

(P )

)

(3.91)

=

(

✓

min{h
1

, h
2

}
h
l

0

◆

2

g2
l

0
,l

< P r�1

)

. (3.92)

Similarly, N
l

can be written as

N
l

=
�

h2

l

< P r�1

 

. (3.93)

By the union bound, the outage probability therefore obeys

Pr(O)  Pr(N
1

\N
2

) + Pr(N
1

\ C
2

) + Pr(N
2

\ C
1

) + Pr(C
1

\ C
2

), (3.94)

which can be expanded as

Pr(O)  Pr
��

h2

1

< P r�1

 �

Pr
��

h2

2

< P r�1

 �

+

Pr

 

�

h2

1

< P r�1

 \
(

✓

min{h
1

, h
2

}
h
1

◆

2

g2
1,2

< P r�1

)!

+

Pr

 

�

h2

2

< P r�1

 \
(

✓

min{h
1

, h
2

}
h
2

◆

2

g2
2,1

< P r�1

)!

+

Pr

 (

✓

min{h
1

, h
2

}
h
2

◆

2

g2
2,1

< P r�1

)

\
(

✓

min{h
1

, h
2

}
h
1

◆

2

g2
1,2

< P r�1

)!

(3.95)

Each term in (3.95) is approximately equal to P 2(r�1). The first term entails that

both h2

1

and h2

2

are small, each of which occurs with approximate probability P r�1.

The second term can be estimated similarly: h2

1

must be small, which implies with

high probability that h
1

< h
2

; therefore g2
2,1

must be small. Again, each occurs
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with approximate probability P r�1. The third term can be estimated by the same

argument. For the final term, suppose without loss of generality that h
1

< h
2

. Then

g2
1,2

must be small alongside either h2

1

or g2
2,1

(or both). Again, each term is small with

probability P r�1, and since each term involves independently-distributed channels,

the total probability is approximately P 2(r�1).

Putting the result into the definition of the DMT yields

d⇤(r) = lim
P!1

�Pr(O)

log(P )
(3.96)

& � log(P 2(r�1))

log(P )
(3.97)

= 2(1� r), (3.98)

as was to be shown.

In the case of a single receiver and an arbitrary number of transmitters, deriv-

ing the DMT is a more challenging task. The main di�culty is the Cauchy-Schwarz

penalty inherent to lattice coding. In the 2⇥ 1 case, the optimum DMT is achieved

by choosing v
0

to align the equivalent channels with a suitable function. In the case

of multiple transmitters, however, doing so precludes cooperation with high proba-

bility. Therefore I present two approaches which, while DMT-suboptimal, garner an

improvement over noncooperation. The first is derived using a rather simple strategy

employing time sharing and Gaussian codes. It achieves the full diversity gain, but

it has somewhat poor multiplexing performance.

Theorem 3.7. For the cooperative computation channel, the following diversity-

multiplexing tradeo↵ is achievable:

d�
random

(r) = Lmin{1� 2r, (L� 1)(1� 2(L� 1)r)}. (3.99)
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In particular, d�
random

(0) = L.

The proof of Theorem 3.5, depends on an achievable rate using Gaussian codes

and time sharing, which is established in the following lemma.

Lemma 3.2. Let B ⇢ {1, · · · , L}. In the cooperative computation channel with

M = 1 receiver, the following computation rate is achievable:

R
random

(H,G, P ) = min

⇢

min
l2B

1

4
C

mac

(g
l

[1 : l � 1, l + 1 : L], P, 1),

1

4
log

2

(1 + P (hT

B1)
2)

�

. (3.100)

Proof. The encoding scheme is simple, so I only sketch the proof. Divide transmission

into two equal time blocks. At the first block, each transmitter encodes and broadcasts

its message using a random Gaussian codebook of power P . The transmitters in B
decode the incoming messages using typical sequence decoding. This is nothing more

than a Gaussian multiple-access channel, so decoding is successful as long as the rate

is below the first term in (3.100). The multiple-access rate is cut in half due to time

sharing.

At the second block, the transmitters in B directly encode and broadcast the

linear combination desired at the receiver, again using a random Gaussian codebook

of power P . The receiver decodes the desired function from the signal received in

the second block only. This is equivalent to a MISO channel with equal beamformer

weights, so decoding is successful as long as the rate is below the second term in

(3.100). As before the MISO rate is cut in half due to time sharing.

Proof of Theorem 3.7. Achievability is based on the strategy from Lemma 3.2. The

achievable rate depends on B, which may vary according to the channel realizations,
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so the overall rate is

R(H,G, P ) = max
B

min

⇢

min
l2B

1

2
C

mac

(g
l

[1 : l � 1, l + 1 : L], P, 1),
1

4
log

2

(1 + P (hT

B1)
2)

�

(3.101)

� max
B

min

⇢

min
l2B

1

2
C

mac

(g
l

[1 : l � 1, l + 1 : L], P, 1),
1

4
log

2

(1 + P (khBk2)
�

.

(3.102)

Let each rate term in (3.102) be denoted by RB(H,G, P ). Then define the event in

which a particular cooperation modality fails:

OB =
n

RB(H,G, P ) <
r

2
log(P )

o

. (3.103)

Outage occurs when each cooperation modality fails simultaneously:

O =
\

B

OB (3.104)

⇢
L

\

l=1

O{l}. (3.105)

As suggested by the latter inclusion, it is su�cient to consider only the events in

which a single transmitter decodes the messages. Each term in (3.102) has two

components, the failure of either of which results in the failure of the cooperation

modality. Therefore, define two events: C
l

, the event that transmitter l fails to

decode the other transmitters’ messages, and N
l

, the event that, even if transmitter

l decodes successfully, the receiver fails to decode the linear function. The first event
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can be expressed as

C
l

=

⇢

1

2
C

mac

(g
l

, P, 1) <
r

2
log(P )

�

(3.106)

=
[

L⇢{1,··· ,L}\{l}

(

1

4|L| log2
 

1 + P
X

l

02L

g2
l

0
l

!

<
r

2
log(P )

)

(3.107)

⇡
[

L⇢{1,··· ,L}\{l}

(

X

l

02L

g2
l

0
l

< P 2|L|r�1

)

(3.108)

⇢
[

L⇢{1,··· ,L}\{l}

(

\

l

02L

�

g2
l

0
l

< P 2|L|r�1

 

)

. (3.109)

The second event can be expressed as

N
l

=

⇢

1

4
log

2

�

1 + Ph2

l

�

<
r

2
log

2

(P )

�

(3.110)

⇡ �

h2

l

< P 2r�1

 

. (3.111)

Since each cooperation modality involves a di↵erent set of channel coe�cients, the

failure events O
l

are independent. Therefore the outage probability is bounded by

Pr(O) 
L

Y

l=1

Pr(C
l

[N
l

) (3.112)

.
L

Y

l=1

 

X

L

Y

l

02L

Pr(g2
l

0
l

< P 2|L|r�1) + Pr(h2

l

< P 2r�1)

!

(3.113)

⇡
0

@

L�1

X

|L|=1

(P 2|L|r�1)|L| + P 2r�1

1

A

L

(3.114)

⇡
✓

max
1|L|L�1

P |L|(2|L|r�1) + P 2r�1

◆

L

. (3.115)

To find the terms with the largest error exponent, one must maximize the quadratics

in (3.115) over |L|. Since the quadratics in question are positive, the maximizer is
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either |L| = 1 or |L| = L� 1. This yields

Pr(O) .
�

max
�

P (L�1)(2(L�1)r�1), P 2r�1

 

+ P 2r�1

�

L

(3.116)

⇡ �

max
�

P (L�1)(2(L�1)r�1), P 2r�1

 �

L

. (3.117)

Finally, plugging (3.117) into the definition of the DMT yields

d⇤(r) = lim
P!1

log(Pr(O))

log(P )
(3.118)

� Lmin{1� 2r, (L� 1)(1� 2(L� 1)r)}. (3.119)

The second bound is derived using the cooperative computation strategy of The-

orem 3.3. Since aligning equivalent channels to the desired functions is infeasible,

v
0

is taken to be a constant. Transmitters balance transmit power between sending

fresh information, which helps transmitters decode others’ messages, and sending res-

olution information, which helps the receiver decode the desired linear combination.

Choosing the balance properly, the benefits of cooperation outweigh the Cauchy-

Schwarz penalty, but only enough to obtain a diversity gain of approximately 1/2 per

transmitter. Nevertheless, for higher multiplexing gains lattice coding outperforms

the strategy of Theorem 3.7.

Theorem 3.8. For the cooperative computation channel, the following diversity-

multiplexing tradeo↵ is achievable:

d�
lattice

(r) = 1� r +min{[1� 2r]+, [(L� 1)(1� rL)]+}+

max
0x1

(L� 2)min{[1� x� r]+, [(L� 1)(1� (L� 1)r � x)]+, [x� r]+}. (3.120)
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Here, d�
lattice

(0) = 2 + L�2

2

.

Proof. The proof follows a similar outline to that of Theorem 3.7, except that it

depends on the rates proved in Theorem 3.3 using lattice block Markov encoding.

Again the subset of cooperating users B to varies according to the channel realizations,

and the receiver chooses a = 1, resulting in the following achievable rate

R(H,G, P ) = max
B

min

⇢

min
l2B

C
mac

(g
l

[1 : l�1, l+1 : L]�v
0

[1 : l�1, l+1 : L], P, 1),



1

2
log

2

(1+P (kh � v
0

k2+|hTv
1

|2))�1

2
log

2

�

L+ P
�

L kh � v
0

k2 � |1T (h � v
0

)|2��
�

+

�

.

(3.121)

Similar to before, let each term in (3.121) be denoted by RB(H,G, P ) and define the

events corresponding to the failure of each cooperation modality:

OB =
n

RB(H,G, P ) <
r

2
log(P )

o

. (3.122)

Outage occurs when each cooperation modality fails simultaneously:

O =
\

B

OB (3.123)

⇢ O{1,...,L} \
L

\

l=1

O{l} \O;. (3.124)

It is su�cient to consider the events in which all transmitters cooperate, in which

L � 2 individual transmitters cooperate, and in which no one cooperates. When

B = ;, transmitters use the strategy outlined in the proof of Theorem 3.4, choosing

v2
l

= P r�1/h2

l

. Following that line of analysis, the non-cooperative modality fails only
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when any channel gain is too low:

O; ⇢
(

L

[

l=1

h
l

< P r�1

)

. (3.125)

For B 6= ;, transmitters choose v
l0

= P�xB/2 for every l, and v
l1

=
p
1� P�xB for

every l 2 B; otherwise v
1l

= 0. Using this, the rate is bounded as follows:

RB(H,G, P ) � min

⇢

min
l2B

C
mac

(g
l

[1 : l � 1, l + 1 : L], P 1�xB , 1),
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L+ P 1�xB
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L khk2 � khk2��
�

+

�

. (3.126)

For large P , this becomes

RB(H,G, P ) � min

(

min
l2B

C
mac

(g
l

[1 : l � 1, l + 1 : L], P 1�xB , 1),

1

2
log

2

✓

P xB
P

l2B |hl

|2
(L� 1) khk2

◆

)

. (3.127)

As before, define events corresponding to the failure of either term in (3.127): CB, the
event that the transmitters in B fail to decode the other transmitters’ messages, and

NB, the event that, even if the transmitters decode each other properly, the receiver

fails to decode its linear function at the required rate. The first event can be expressed
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as

CB =
[

l2B

n

C
mac

(g
l

[1 : l � 1, l + 1 : L], P 1�xB , 1) <
r

2
log(P )

o

(3.128)

=
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l2B
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L⇢{1,··· ,L}\{l}
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2|L| log2
 

1 + P 1�xB
X
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02L
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!
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log(P )
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(3.129)

⇡
[

l2B

[

L⇢{1,··· ,L}\{l}

(

X

l

02L

g2
l

0
l

< P |L|r+xB�1

)

(3.130)

⇢
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l2B

[

L⇢{1,··· ,L}\{l}

(

\

l

02L

�

g2
l

0
l

< P |L|r+xB�1

 

)

. (3.131)

For B = {1, · · · , L}, the second event can be expressed as

N{1,··· ,L} =

(

1

2
log

2

 

P xB khk2
(L� 1) khk2

!

<
r

2
log

2

(P )

)

(3.132)

= {P x{1,··· ,L} < (L� 1)P r} . (3.133)

Based on (3.133), choose x{1,··· ,L} = r � ✏ for any ✏ > 0. As P ! 1, this forces

N{1,··· ,L} ! ; deterministically. For B = {l}, second event can be written as

N{l} =

⇢

1

2
log

2

✓

P x{l}h2

l

(L� 1) khk2
◆

<
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log

2

(P )

�

(3.134)

=

⇢

h2

l

(L� 1) khk2 < P r�x{l}

�

(3.135)

⇢ �
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< P r�x{l}�✏
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⇢
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L� 1

�

. (3.137)
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Combining the above with (3.124) yields

O ⇢
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. (3.138)

Equation (3.138) contains too many terms to enumerate in full. Since only asymptotic

behavior a↵ects the DMT, it su�ces to examine only the term with the highest

exponent. This term contains one channel failure in C{1,··· ,L}, L� 2 failures in C{l} \
N{l}, and one failure in N;. The final error event, in which khk2 is too large, has

negligible contribution to the error probability. Combining these yields
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Since each term in (3.139) is independent, the probabilities evaluate separately, yield-

ing
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= P r�1

0

@

X

L⇢{1,··· ,L}\{1}

(P |L|(|L|r+x+✏�1)

1

A

0

@

X

L⇢{1,··· ,L}\{3}

(P |L|(|L|r�x�1)) + P r�x�✏

1

A

L�2

,
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where x{l} = x for every l. Similar to the proof Theorem 3.7, the maximizer of the

quadratics in (3.141) is either |L| = 1 or |L| = L� 1. This yields

Pr(O) . P r�1

�

max
�

P 2r�1+✏, P (1�L)(1�rL)+(L�1)✏

 �⇥
⇣

max
x

min
�

P r+x�1, P (1�L)(1�(L�1)r�x), P r�x�✏

 

⌘

L�2

. (3.142)

Finally, plugging (3.142) into the definition of the DMT, taking the supremum over

all ✏ > 0, and taking the maximum over all x yields

d�
c

(r) = lim
P!1

log(Pr(O))

log(P )
(3.143)

� 1� r +min{[1� 2r]+, [(L� 1)(1� rL)]+}+

max
0x1

(L� 2)min{[1� x� r]+, [(L� 1)(1� (L� 1)r � x)]+, [x� r]+}.

(3.144)

Figure 3.2 shows the DMT regions. For L = 2 lattice coding is su�cient to

achieve the full DMT. For L > 2, lattice coding achieves better performance only for

su�ciently high multiplexing gain. Random coding fails altogether at multiplexing

gains higher than (L�1)/2 due to the need for transmitters to decode L�1 separate

messages and the need for time-sharing. Lattice coding, on the other hand, maintains

non-zero diversity for every 0  r < 1. Between the two strategies, the corner points

of the DMT region are achieved.
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Figure 3.2: Diversity-multiplexing tradeo↵ for L = 2, L = 5 transmitters and a single
reciever.
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3.4 Numerical Examples

In this section I examine a few example scenarios in which to demonstrate the benefits

of user cooperation. The first example, depicted in Figure 3.3, comprises L = 2

transmitters and a single receiver. The channels are symmetric, with the forward

coe�cients constant h
1

= h
2

= 1 and the inter-transmitter coe�cients a variable

g
12

= g
21

= g, which vary such that the gain g2 ranges between �10dB and 30dB. I

set the transmit SNR at P = 10dB. Since the channel gains are symmetric, either both

transmitters can decode the other’s message or neither of them can; therefore I choose

either B = {1, 2} or B = ; for cooperative computation. Similarly, by symmetry it is

easy to see that the optimal choice for the linear function is a = (1, 1)T and that the

optimal steering vectors v
0

and v
1

are constant. I find the optimal tradeo↵ between

v
0

and v
1

numerically.

gg

1

1

Figure 3.3: A two-by-one computation network with symmetric channel gains.

Figure 3.4 shows the achievable rate of the cooperative scheme against the upper

bound of Theorem 3.2, using the Nazer-Gastpar rate of (3.8) as a baseline. The trends

are easy to appreciate. When the channels between transmitters are weak, decoding

each other’s messages is too di�cult, and the cooperative rate collapses to (3.8). As

the inter-transmitter gains become stronger it becomes easier for the transmitters

to decode, and cooperation can improve the computation rate and eventually ap-

proaches the upper bound. Note the “dimple” in the cooperative rate as g2 becomes

large. For su�ciently large g2, the optimal strategy is to turn the steering vector v
0
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down far enough that the Nazer-Gastpar component of the cooperative rate is zero,

meaning that only the jointly-encoded resolution information carries information to

the receiver. At this value of g2 there arises a dimple, after which the rate quickly

converges on the upper bound.
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Figure 3.4: Achievable rates as a function of inter-transmitter channel gains

Next I examine a scenario in which channel gains are chosen randomly, as depicted

in Figure 3.5. I place a single receiver at the origin and place L = 3 transmitters

randomly and uniformly on a segment of the circle having specified arclength. From

the geometric configuration of the network, I compute channel magnitudes according

to a path-loss model:

g
ij

=

s

1

d(i, j)↵
, h

i

=

s

1

d(i, 0)↵
,

where d(i, j) is the Euclidean distance between users i and j and. I choose P = 10dB

and a path-loss exponent of ↵ = 4.

For each realization I calculate the cooperative computation rate. Since the gains
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arclength = ⇡ arclength = ⇡/2

Figure 3.5: Three users are placed along a segment of the unit circle, while the receiver
is placed at the origin.

from transmitters to receiver are equal, a = (1, 1, 1)T is the optimal choice. The

steering vectors and the clusters are optimized numerically. I run 500 simulations

each for arclengths varying from 0 to ⇡, and plot the average computation rates in

Figure 3.6. Again the trends are easy to appreciate. Cooperation o↵ers the greatest

improvement when transmitters are close together. Even as transmitters spread fur-

ther apart, on average enough transmitters can cooperate that cooperation garners a

noticeable improvement.
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Figure 3.6: Average computation rate vs. angle between transmitters.
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In the next example I examine the variation in cooperative computation rate with

respect to the channel gain between transmitters and receivers. As depicted in Figure

3.7, I again take L = 2 and M = 1, but now every channel gain is unity except for h
12

.

Since the channels between transmitters and receiver are not symmetric, I cannot take

a = (1, 1)T or v
0

and v
1

to be constant. Instead, I iterate manually through possible

choices of a and numerically optimize over the set B of cooperating transmitters and

the steering vectors v
0

and v
1

.

11

1

h
21

Figure 3.7: A two-by-one computation network with asymmetric channel gains.

In Figure 3.8 I plot the cooperative rate alongside (3.8) for a variety of transmit

signal-to-noise ratios P . I make a few observations. First, the non-cooperative rate

is low for h
21

near to zero. Since functions must contain elements from both trans-

mitters’ messages, it becomes di�cult for the receiver to decode such a function. In

the cooperative case, however, the rates do not fall, since transmitter 1 can decode

w
2

and transmit the desired function to the receiver. This result hints at the diver-

sity gains inherent to the cooperative approach; even when one link fails, successful

computation is possible.

Furthermore, cooperation achieves the full multiplexing gain as the SNR becomes

large. Non-cooperative computation results in “peaks” which correspond to rational

channel gains with low denominator. The further h
21

is from a low-denominator

rational, the harder it is to align the function with the channels and the higher

the Cauchy-Schwarz penalty in (3.8). However, one can always choose v
0

such that
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the equivalent channel vector is rational, allowing receivers to eliminate completely

the Cauchy-Schwarz penalty. Note that this is not explicitly due to the cooperative

nature of the approach; as shown in 3.4 non-cooperative transmitters can get the

full multiplexing gain using lattice codes. However, cooperation does permit the

transmitters to use the remaining power to secure rate and diversity gains.

Finally, I examine the system depicted in Figure 3.9. Here L = M = 2, and again

all channel gains are unity except for h
21

. Again asymmetry prevents an easy choose

of a and the steering vectors. I iterate manually over the possible choices for a, choose

zero-forcing beamformers for v
1

and v
2

, and numerically optimize over v
0

. In order

for zero-forcing to succeed, I choose B = {1, 2}.
Figure 3.10 shows the cooperative rate alongside (3.8), again for a variety of signal-

to-noise ratios. In contrast to the previous scenario, here the rate drops when h
12

⇡ 1;

this is because the channel matrix becomes increasingly ill-conditioned. Similar to

before, in the cooperative case the rate remains non-zero, but here it occurs because

the transmitters can cooperatively send a full-rank set of equations even though the

channel matrix is nearly singular. However, in this example cooperation does not

obtain the full multiplexing gain. The freedom to choose v
0

allows the receivers to

mitigate the peakiness of the achievable rate, but they cannot eliminate the Cauchy-

Schwarz penalty at both receivers simultaneously. Even for high SNR, however, there

remains considerable robustness to channel variation.
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Figure 3.9: A two-by-two computation network with asymmetric channel gains.
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Chapter 4

Relay Cooperation

In this chapter, I explore the benefits of relay cooperation to physical-layer network

coding. I examine a two-transmitter, two-receiver system aided by a dedicated relay.

I derive results for two relay modalities: the standard relay, in which the relay’s trans-

mission depends only on signals received in previous time slots, and the instantaneous

relay, or “relay-without-delay,” in which the relay’s transmission may depend on sig-

nals received in the current time slot. For the standard relay, a compress-and-forward

strategy improves the achievable computation rate, but it comes with no guarantees

of even approximate optimality. However, for the instantaneous relay, an amplify-

and-forward strategy is optimal in the degrees-of-freedom, and for symmetric channel

gains it achieves computation rates within a constant gap of capacity.

4.1 Preliminaries

Here I study the relay computation channel, depicted in Figure 4.1. It consists of two

sources, two destinations, and a single dedicated relay. The relay operates under one

of two relay modalities: the standard modality, in which the relay’s transmission is

a function only of signals received in previous symbol times, and the instantaneous
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modality, in which the relays’ transmission may be a function of signals received

during the current symbol time. While the distinction may seem small, the resulting

system models are su�ciently di↵erent that I describe them separately.

w
1

w
2

f
1

= a
11

w
1

� a
21

w
2

f
2

= a
12

w
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22

w
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h
1
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h
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g
1

r

g 2
r

g r1

g
r
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Figure 4.1: The relay computation channel.

4.1.1 System Model: Standard Relay

For the standard relay, as in the previous chapter, I will develop a block Markov

strategy. Therefore I again divide transmission into B + 1 blocks of n channel uses

each. Each source l 2 {1, 2} has B messages w
l

[b] 2 Fk

p

. Structurally, this channel

resembles the two-user relay-interference channel. But, as before, each receiver in-

tends to decode a finite-field linear combination of the transmitters’ messages instead

of the messages themselves:

f
m

[b] = a
1m

�w
1

[b]� a
2m

�w
2

[b], (4.1)

for a
lm

2 Z. Again the function coe�cients are represented by the 2 ⇥ 2 matrix

A = [a
lm

]. The matrix A must be full rank.

At block b, each transmitter l sends a signal x
l

[b] 2 Rn, subject to the average

power constraint
1

n
kx

l

[b]k2  P. (4.2)
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The relay receives the signal

y
r

[b] = g
1r

x
1

[b] + g
2r

x
2

[b] + z
r

[b], (4.3)

where g
1r

and g
2r

are fixed and globally-known channel gains, and z
r

[b] is additive

white Gaussian noise having unit variance.

Regardless of relay modality, the relay is assumed to be capable of full-duplex

transmission. The relay sends a signal x
r

[b], subject to the same power constraint P .

Each receiver m 2 {1, 2} obtains the signal

y
m

[b] = h
1m

x
1

[b] + h
2m

x
2

[b] + g
rm

x
r

[b] + z
m

[b], (4.4)

where again z
j

is unit-variance AWGN, and again channel coe�cients are known

globally.

The computation capacity is defined in a manner similar to that of Chapter 3.

Each transmitter l employs an encoder E
l

: Fk⇥B

p

! Rn⇥B+1, which maps the messages

w
l

[b] to the signals x
l

[b]. The relay employs a decoder E
r

: Rn⇥B ! Rn⇥B+1 mapping

received signals y
r

[b] to transmit signals x
r

[b], with the caveat that x
r

[b] can only

depend on y
r

[s] for s < b.

Each receiverm employs a decoderD
m

: Rn⇥B+1 ! Fk⇥B

p

mapping received signals

y
m

[b] to function estimates ŵ
m

[b]. The rate1 of each encoder, in bits per channel use,

is

R =
Bk log

2

(p)

(B + 1)n
. (4.5)

1Note that, unlike in Chapter 3, each transmitter may encode at a di↵erent rate.
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Define the probability of error

P
e

= Pr

 

B

[

b=1

{f̂
1

[b] 6= f
1

[b]} [ {f̂
2

[b] 6= f
2

[b]}
!

(4.6)

A rate R is said to be achievable if, for any � > 0 and ✏ > 0, there exist encoders E
1

and E
2

having rates larger than R
1

� � and R
2

� �, respectively, along with a relaying

function and decoders D
1

and D
2

, for which P
e

< ✏. The computation capacity is the

supremum of all achievable rates.

4.1.2 System Model: Instantaneous Relay

With an instantaneous relay, I will propose a simple amplify-and-forward strategy

for which block Markov encoding is not required. Communication therefore simply

occurs over n channel uses, rather than B + 1 blocks thereof. Each source l 2 {1, 2}
has a single message w

l

2 Fk

p

, and each receiver intends to decode a single finite-field

linear combination thereof:

f
m

= a
1m

�w
1

� a
2m

�w
2

, (4.7)

for a
lm

2 Z, where again the matrix of coe�cient A must be full rank.

Each transmitter l sends a signal x
l

, which must conform to the average power

constraint P . The relay obtains the signal

y
r

= g
1r

x
1

+ g
2r

x
2

+ z
r

, (4.8)

where again g
lr

are fixed channel gains and z
r

is unit-variance AWGN. The relay

transmits a signal x
r

, which also obeys the power constraint P . Each receiver m
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obtains the signal

y
m

= h
1m

x
1

+ h
2m

x
2

+ g
rm

x
r

+ z
m

. (4.9)

Each transmitter employs an encoder E
l

: Fk

p

! Rn mapping messages w
l

to

transmit signals x
l

. The relay employs a decoder E
r

: Rn ! Rn from received signals

y
r

to transmit signals x
r

. Since the relay is instantaneous, the ith element of x
r

may depend on the 1st through ith elements of y
r

. Finally, each receiver employs a

decoder D
m

: Rn ! Fk

p

, mapping received signals y
m

to function estimates f̂
m

.

In this case, the rate of each encoder is

R =
k log

2

(p)

n
. (4.10)

Define the probability of error

P
e

= Pr
⇣

{f̂
1

6= f
1

} [ {f̂
2

6= f
2

}
⌘

(4.11)

Again any rate R is said to be achievable if there exist encoders and decoders su�-

ciently close to the desired rates with arbitrarily low probability of error, and again

define the computation capacity as the supremum over all achievable rates.

For both relay modalities, the non-cooperative approach of Nazer and Gastpar [36]

can be trivially applied. Applying (3.8) to either system model, It achieves the

following rates:

R  min
l

min
m:alm 6=0



1

2
log

2

(1 + P kh
m

k2)

� 1

2
log

2

(ka
m

k2 � P (kh
m

k2 ka
m

k2 � hh
m

, a
m

i2))
�

+

, (4.12)

where h
m

= (h
1m

, h
2m

)T , a
m

= (a
1m

, a
2m

)T , and where a
1

, a
2

must be linearly inde-
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pendent.

4.1.3 Degrees-of-Freedom

In Chapter 3, I studied the diversity-multiplexing tradeo↵, which provides an approx-

imate characterization of performance at high signal-to-noise ratios. Here I examine

only the multiplexing gain, which when referred to singly is commonly termed the

degrees-of-freedom. For a scheme that achieves common computation rate R
scheme

,

define the sum degrees-of-freedom as

DoF = lim
P!1

2R
scheme

1

2

log
2

(P )
. (4.13)

In other words, the degrees-of-freedom compares the asymptotic achievable sum rate

to that of a single point-to-point AWGN channel.

It is straightforward to show that the maximum DoFs of the relay computation

channel is two, regardless of relay modality. Indeed, the maximum DoFs can be

achieved even without the relay, using the interference alignment scheme presented

in [44]. However, schemes that also perform well at low-to-moderate SNR are desired.

Therefore, for the remainder of this chapter I examine the extent to which relay

cooperation can satisfy both desiderata.

4.2 Standard Relay

Consider first the standard relay modality, in which the relay function can depend

only on signals received in previous symbol times. I begin by establishing an upper

bound on the computation capacity region.

Theorem 4.1. For the two-user standard relay computation channel, any achievable
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computation rate pair satisfies

R  min
l

min
m:alm 6=0

max
|↵|1

min

⇢

1

2
log

2

(1 + (1� ↵)P (h2

lm

+ g2
rm

)),

1

2
log

2

(1 + P (g2
lr

+ h2

lm

+ 2g
lr

h
lm

p
↵))

�

, (4.14)

for some full-rank set of coe�cients a
lm

.

Proof. The result relies on a genie-aided argument. Suppose a genie supplies w
2

to

both destinations. Then destinations need only to recover w
1

in order to recover any

linear combination. This is equivalent to the relay channel formed by source 1, the

relay, and each destination for which a
1m

6= 0. Bounding the capacity of the relay

channel by the cut-set bound [15] yields the result for transmitter 1. Repeating the

argument while supplying w
2

to the destinations establishes the result for transmitter

2.

Theorem 4.1 clearly shows an upper bound of two DoFs, which, as mentioned

above, can be achieved by the alignment scheme of [44]. To obtain good finite-SNR

performance, I propose a compress-and-forward scheme.

Theorem 4.2. For the relay computation channel with an standard relay, the follow-

ing rate is achievable:

R
standard

= min
l

min
m:alm 6=0



1

2
log

2

⇣

1 + P 0
m

kh0
m

k2
⌘

�

1

2
log

2

⇣

ka
m

k2 � P 0
m

(kh0
m

k2 ka
m

k2 � hh0
m

, a
m

i2)
⌘

�

+

, (4.15)

where

P 0
m

=
P

1 + �
m

(1 + �2

r

)
, (4.16)
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h0
m

= v � (h
m

+ �
m

g
r

), (4.17)

where

�2

r

= max
m2{1,2}

1/P + kv � h
m

k2 + kg
r

k2
g2
rm

+

P (kv � h
m

k2 kg
r

k2 � hv � h
m

,g
r

i2)
g2
rm

, (4.18)

for any �
1

, �
2

2 R and any v such that

|v
l

|  1, l 2 {1, 2}. (4.19)

Proof. I prove this result with an encoding scheme based on via block Markov encod-

ing, in which transmitters communicate B combinations of messages over B+1 blocks

of n symbol times each. However, unlike the decode-and-forward scheme presented

in Chapter 3, here the relay employs compress-and-forward cooperation. During one

block the relay overhears the noisy superposition of lattice codewords. It encodes

the received signal using Wyner-Ziv binning and transmits the compressed version

during the next block. Each destination recovers the compressed relay signal, takes

a linear combination of the relay signal and its own received signal, and performs

lattice quantization on the result.

Encoding: Each transmitter employs a lattice codebook C, constructed from

nested lattices ⇤
c

and ⇤
s

as described in Chapter 2. For each message w
l

[b], let

c
l

[b] = [�(w
l

[b]) + d
l

[b]] mod ⇤
s

(4.20)

be the dithered lattice codeword, where d
l

[b] is independent and uniform over V
s

for



89

every b. Recall that � is the mapping from the finite field to the lattice codebook. At

each block 1  b  B, source l transmits a scaled version of its dithered codeword;

at block B + 1, having no codeword to send, it transmits nothing:

x
l

[b] =

8

>

>

<

>

>

:

v
i

p
Pc

i

[b], for 1  b  B

0, for b = B + 1

. (4.21)

Following (4.3), the relay receives the following signal at block b:

y
r

[b] = g
1r

v
1

p
Pc

1

[b] + g
2r

v
2

p
Pc

2

[b] + z
r

[b]. (4.22)

To facilitate recovery of linear combinations of messages at the destinations, the

relay forwards a compressed version of y
r

[b] by means of Wyner-Ziv coding with side

information at the destinations [94]. The relay has a quantization codebook Cq

r

⇢ Rn

containing 2n ˜

Rr codewords drawn randomly and independently from a zero-mean

Gaussian distribution having variance E[y2

r

[b]] + �2

r

= P (g2
1r

v2
1

+ g2
2r

v2
2

) + 1 + �2

r

.

The set of codeword indices [1 : 2n ˜

Rr ] are partitioned into 2nRr equal-sized bins by

the binning function

 (u) = [(u� 1)2n(
˜

Rr�Rr) : m2n(
˜

Rr�Rr)], (4.23)

for bin index u 2 [1 : 2nRr ]. The relay also has an standard codebook C
r

⇢ Rn, with

2nRr codewords drawn i.i.d. from a zero-mean Gaussian distribution with variance

P . Obviously there exists a one-to-one mapping between bin indices and codewords

in C
r

.

To compress y
r

[b], the relay first finds a codeword ŷ
r

[b] 2 Cq

r

jointly typical with

y
r

[b], randomly choosing between them if there is more than one such codeword and
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declaring an error if there is no such codeword. Then the relay finds the bin index u[b]

such that the bin �(u[b]) contains the selected codeword. Finally, the relay selects the

unique codeword c
r

[b] 2 C
r

corresponding to the bin index b[u]. The relay transmits

c
r

[b] in block b+ 1:

x
r

[b] =

8

>

>

<

>

>

:

0, for b = 1

c
r

[b� 1], for 2  b  B + 1

. (4.24)

The encoding process is summarized in Table 4.1.

Table 4.1: Block Markov encoding for compress-and-forward

b = 1 b = 2 · · · b = B + 1
x
1

[b] v
1

c
1

[1] v
1

c
1

[2] · · · —
x
2

[b] v
2

c
2

[1] v
2

c
2

[2] · · · —
x
r

[b] — c
r

[1] · · · c
r

[B � 1]

Decoding: To decode f
m

[b], destination m first recovers ŷ
r

[b] from its received

signal in block b+ 1, which by (4.4) is

y
m

[b + 1] = h
1

v
1

p
Pc

1

[b + 1] + h
2m

v
2

p
Pc

2

[b + 1] + g
rm

c
r

[b] + z
m

[b + 1]. (4.25)

Destination j decodes c
r

[b], treating the rest of the signal as noise. It is immediate

that decoding is successful provided

R
r

 1

2
log

2

✓

1 +
Pg2

rm

1 + P kv � h
m

k2
◆

. (4.26)

From c
r

[b], the destination can recover the bin index u[b]. To recover ŷ
r

[b] from u[b],

destination j uses y
m

[b] as side information. First, supposing that c
r

[b�1] has already
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been decoded, destination m subtracts it from y
m

[b] to form

ỹ
m

[b] = y
m

[b]� c
r

[b� 1] (4.27)

= v
1

h
1m

p
Pc

1

[b] + v
2

h
2m

p
Pc

2

[b] + z
m

[b]. (4.28)

Finally, destination j chooses the unique ŷ
r

[b] 2 Cq

r

that is both jointly typical with

ỹ
m

[b] and a member of the bin  (u[b]). The Wyner-Ziv theorem guarantees that the

reciever recovers the correct ŷ
r

[b] so long as

R
r

� I(y
r

[b]; ŷ
r

[b]|ỹ
h

[b]). (4.29)

Substituting (4.26) into (4.29) and carrying out straightforward manipulation yields

the bound on quantization error �2

r

given in (4.18).

To decode f
m

[b], destination m combines ỹ
m

[b] with ŷ
r

[b] to form

y0
r

[b] = ỹ
m

[b] + �
m

ŷ
r

[b] (4.30)

= h0
1m

c
1

[b] + h0
2m

c
2

[b] + z
m

[b] + z
r

[b] + z
q

[b], (4.31)

where h0
ij

is defined as in (4.17). Now destination j can employ standard compute-

and-forward decoding. Applying (4.31) to the standard compute-and-forward rate in

(4.12) yields the rates claimed in (4.15), which establishes the claim.

The quantized relay signal ŷ
r

[b] a↵ords the destinations quite a bit of flexibility.

For almost every channel realization, it is straightforward to choose �
j

such that the

equivalent channels h0
lm

are co-linear with suitable finite-field linear combinations,

thus eliminating the Cauchy-Schwarz penalty. However, (4.18) shows that the distor-

tion �2

r

grows linearly in P . This fact induces a tradeo↵. By limiting the magnitude of

�
j

, destination j can mitigate the compression noise, but only at the cost of reduced
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freedom to align the equivalent channels h0
lm

. To the best of my knowledge, while

this tradeo↵ is su�cient for a clear improvement at finite SNR, it does not improve

the degrees-of-freedom.

Figure 4.2 shows the achievable rate from Theorem 4.2 alongside the upper bound

from Theorem 4.1 and the lower bound provided by standard compute-and-forward.

Channel gains are set to unity except for h
21

= h
12

= h, which are taken to be

the independent variable. The optimal choice of v
1

, v
2

and �
1

, �
2

is non-convex and

even non-smooth. I therefore resort to numerical optimization, which introduces

numerical artifacts. Note, nevertheless, the noticeable increase in computation rate.

In particular, many of the “valleys” from the non-cooperative case become “peaks.”

4.3 Instantaneous relay

The instantaneous relay, or “relay-without-delay,” was first studied in [95] in the

context of the three-terminal relay channel. Instead of relying on signals received

only in previous symbol times, the relay can form its transmit signal from signals

received up to the current symbol time. In [95] it was shown that the capacity of the

instantaneous relay channel is often higher than that of the standard relay channel,

albeit with no improvement to the degrees-of-freedom. Moreover, for a non-trivial set

of channel gains, memoryless amplify-and-forward achieves capacity.

Instantaneous relaying has also been studied in the context of the relay-interference

channel. In [96] the strong and very strong interference regimes are examined, and the

capacity is derived for a range of channel coe�cients. In [97] the degrees-of-freedom

is studied. By contrast to the relay channel—as well as the relay-interference channel

with a standard relay—they find that the introduction of an instantaneous relay im-

proves the achievable DoFs. Using interference alignment techniques, they show that

3/2 DoFs can be achieved. This result falls short of the interference-free maximum
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Figure 4.2: Achievable rates as a function of h and P for the relay computation
channel with a standard relay.

of two, but it o↵ers a 50% increase over the case of an standard relay (or no relay at

all).

In the case of compute-and-forward, an instantaneous relay can obtain the full

DoF while retaining provably good performance at finite SNR. I begin by proving an

upper bound on the computation rate.

Theorem 4.3. For the two-user relay computation channel with an standard relay,
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any achievable computation rate satisfies

R  min
l

min
m:alm 6=0

max
|↵|1

min

⇢

1

2
log

2

(1 + P (g2
lr

+ h2

lm

+ 2g
lr

h
lm

p
↵)),

1

2
log

2

✓

1 + P

✓

g2
rm

+ h2

lm

� ↵

1 + g
rm

h
lm

(1� ↵)P

◆◆�

, (4.32)

for some full-rank set of coe�cients a
lm

.

Proof. As in Theorem 4.1, suppose a genie supplies w
2

to the destinations. Then, the

computation capacity is limited by the capacity of the relay channels between source

1, the relay, and the relevant destinations. The capacity of those relay channels in

bounded by the relay-without-delay cut-set bound derived in [95], which establishes

the result for transmitter 1. Repeating the argument for transmitter 2 by supplying

w
1

to the destinations establishes the result.

Again the upper bound clearly implies a maximum DoF of two. For this re-

lay modality, however, I construct an amplify-and-forward scheme that achieves this

maximum. Again the relay receives a noisy superposition of source transmissions.

Instead of compressing the signal and retransmitting in a subsequent block, the relay

instantaneously forwards a scaled version of the received symbols. The destinations

receive a noisy superposition of source transmissions that can be tuned by the choice

of scaling coe�cient at the relay. This scheme is detailed in the following theorem.

Theorem 4.4. For the two-user relay computation channel with an instantaneous

relay, the following computation rate is achievable:

R
instantaneous

= min
l

min
m:alm 6=0

"

1

2
log

2

⇣

1 + P 0 kh0
m

k2
⌘

�

1

2
log

2

⇣

ka
m

k2 � P 0(kh0
m

k2 ka
m

k2 � hh0
m

, a
m

i2)
⌘

#

+

, (4.33)
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where

h0
m

= v � h
m

+ v
r

g
rm

g
r

, (4.34)

and

P 0 =
P

1 + v2
r

, (4.35)

for any �1  v
1

, v
2

 1 and for any

v2
r

 P

P kv � g
r

k2 + 1
. (4.36)

Proof. As before, I present the encoding and decoding stages separately, then show

that they achieve the computation rates claimed.

Encoding: Again each transmitter employs a nested lattice codebook C, and,
similar to before, define

c
l

= [�(w
l

) + d
l

] mod ⇤
s

, (4.37)

where d
l

is uniform dither over V
s

and independent for each l. Transmitter l simply

transmits its dithered lattice codeword c
l

, scaled by the coe�cient v
l

:

x
l

= v
l

p
Pc

l

, (4.38)

where v2
l

 1 ensures that x satisfies the power constraint. By (4.3) the relay receives

the signal

y
r

= g
1r

v
1

p
Pc

1

+ g
2r

v
2

p
Pc

2

+ z
r

. (4.39)

The relay employs an amplify-and-forward strategy. It simply transmits a scaled

version of its incoming signal, which is possible because it can relay instantaneously:

x
r

= v
r

y
r

. (4.40)
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In order to satisfy the power constraint at the relay, the transmit signal must satisfy

1

n
kx

r

k  P, (4.41)

which implies

v2
r

P kv � g
r

k2 + 1  P (4.42)

=) v2
r

 P

P kv � g
r

k2 + 1
, (4.43)

which necessitates the requirement in (4.36).

Decoding: By (4.4) and (4.40), destination m receives the signal

y
m

= (h
1m

+ v
r

g
rm

g
1r

)v
1

p
Pc

1

+

(h
2m

+ v
r

g
rm

g
2r

)v
2

p
Pc

2

+ z
m

+ v
r

z
r

= h0
1m

p
Pc

1

+ h0
2m

p
Pc

2

+ z
m

+ v
r

z
r

, (4.44)

where h0
lm

is defined as in (4.34). Now the received signal is equivalent to the non-

cooperative case, where the presence of the relay noise yields an equivalent signal-

to-noise ratio of P 0 = P/(1 + v2
r

). Each destination performs ordinary compute-and-

forward lattice decoding on y
r

, which using (4.12) establishes the desired result.

By appropriate choice of the parameters v
1

, v
2

, and v
r

, one can show that the

amplify-and-forward scheme of Theorem 4.4 achieves the full DoFs.

Theorem 4.5. For the two-user relay computation channel with an instantaneous

relay, the achievability scheme of Theorem 4.4 achieves the maximum DoF of two.

Proof. Several parameter choices achieve the full DoFs; here I point out only one

option. The strategy is to choose v
r

in order to perfectly cancel out the contribution
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of c
2

to y
1

, and to choose v
1

, v
2

such that the contributions of c
1

(w
1

) and c
2

(w
2

) to

y
2

have the same magnitude.

To satisfy the first desideratum, the weights must obey

h
21

+ v
r

g
r1

g
2r

= 0

=) v
r

= � h
21

g
r1

g
2r

. (4.45)

To satisfy the second desideratum, they must obey

(h
12

+ v
r

g
r2

g
1r

)v
1

= (h
22

+ v
r

g
r2

g
2r

)v
2

=) v
1

v
2

=
h
22

+ v
r

g
r2

g
2r

h
12

+ v
r

g
r2

g
1r

=
h
22

� h
21

g
r2

/g
r1

h
12

� h
21

g
r2

g
1r

/(g
r1

g
2r

)
. (4.46)

If the numerator of the RHS of (4.46) has higher magnitude than the denominator, set

v
1

= 1 and solve (4.46) for v
2

; otherwise do the opposite. Note that (4.45) and (4.46)

have solutions for almost every set of channel gains. Furthermore, for su�ciently

large P the choice of v
r

in (4.45) satisfies the power constraint in (4.36).

With these choices, the received signals at the destinations are

y
1

= h0
1

c
1

(w
1

) + z
1

+ v
r

z
r

(4.47)

y
2

= h0
2

(c
1

(w
1

) + c
2

(w
2

)) + z
2

+ v
r

z
r

, (4.48)

where h0
1

, h0
2

are fixed equivalent channel gains. Choose a
1

= (1, 0)T and a
2

= (1, 1)T ,
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which yields the achievable rates

R
1

=
1

2
log

2

✓

1 +
P

1 + v2
r

(h0
1

)2
◆

⇡ 1

2
log

2

(P ) (4.49)

R
2

=
1

2
log

2

✓

1 +
4P

1 + v2
r

(h0
2

)2
◆

� 1 ⇡ 1

2
log

2

(P ). (4.50)

Substituting these into the DoFs definition of (4.13) establishes the result.

When channel gains are symmetric, one can do even better. Let g
ij

= 1 for all

i, j, h
ii

= 1 for all i, and h
ij

= h for all i 6= j. Then, the computation capacity is

bounded as follows.

Theorem 4.6. For the symmetric two-user relay computation channel with an in-

stantaneous relay, the computation rates are bounded as follows:

1

2
log

2

(P )� 1� c  R  1

2
log+

2

(P ) +
3

2
, (4.51)

for P � 1 and 0  h  1, except possibly for an outage interval I = [1� 2�c, 1].

Proof. First I prove the upper bound. Using the second term from the bound in

Theorem 4.3 and choosing ↵ = 0 yields

R  1

2
log

2

(1 + P (1 + max{1, h2})) (4.52)

 1

2
log+

2

(2P ) + 1 (4.53)

 1

2
log+

2

(P ) +
3

2
. (4.54)

The lower bound results from an explicit choice of function coe�cients and weight-

ing coe�cients. In particular, choose v
1

= v
2

= 1 and choose the function coe�cients

to be symmetric, i.e. a
11

= a
22

= a
1

a
12

= a
21

= a
2

. Then, choose v
r

such that the
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equivalent channel are co-linear with the function coe�cients, which entails

1 + v
r

= xa
1

(4.55)

h+ v
r

= xa
2

, (4.56)

for some x 2 R. Solving (4.55) and (4.56) for x and v
r

yields

x =
1� h

a
1

� a
2

(4.57)

v
r

= a
1

1� h

a
1

� a
2

� 1. (4.58)

Note that x and v
r

are uniquely determined by the choice of a
1

, a
2

. Substituting these

choices into the achievable rate from Theorem 4.4 yields

R � 1

2
log

2

✓

1 +
P

1 + v2
r

x2

◆

. (4.59)

Therefore, receivers choose a
1

and a
2

to minimize x2, which entails the minimization

of (a
1

� a
2

)2 subject to a feasible v
r

. Recall from (4.36) that v2
r

 P/(2P + 1) , V .

Therefore

�
p
V  a

1

1� h

a
1

� a
2

� 1 
p
V (4.60)

�p
V + 1

1� h
 a

1

a
1

� a
2


p
V + 1

1� h
. (4.61)

Define b , a
1

� a
2

. Then

b
�p

V + 1

1� h
 a

1

 b

p
V + 1

1� h
. (4.62)

Now, in order for a suitable a
1

2 Z to exist, the gap in (4.62) must be greater than
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unity, which entails

b � 1� h

2
p
V
. (4.63)

Since b 2 Z, choose

b =

⇠

1� h

2
p
V

⇡

, (4.64)

and choose a
1

to be any integer satisfying (4.62). Now, going back to the definition

of x, note that

x =
1� h

a
1

� a
2

=
1� h

b
(4.65)

� 1� h
1�h

2

p
V

+ 1
(4.66)

� 1� h
1

2

p
V

+ 1
(4.67)

� (1� h)2
p
V

3
. (4.68)

Substituting this result back into (4.59) yields

R � 1

2
log

2

✓

P (1� h)2
9

4
V

◆

� 1

2
(4.69)

=
1

2
log

2

✓

P (1� h)2
9P

8P + 4

◆

� 1

2
(4.70)

� 1

2
log

2

✓

P (1� h)2
3

4

◆

� 1

2
(4.71)

� 1

2
log

2

(P )� 1 + log
2

(1� h). (4.72)

Finally, note that log
2

(1 � h)  �c only when h � 1 � 2�c. Therefore, the outage

interval on which the claimed bound does not apply is no bigger than I = [1 �
2�c, 1].

Figure 4.3 shows the sum rates achieved by the strategy presented in Theorem
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4.6, alongside the upper and lower bounds proven therein and the rates achieved by

non-cooperative compute-and-forward. In these plots the constant c = 1 is chosen, so

the lower bound applies only when h < 1/2. As h approaches 1, the channel matrix

between transmitters and receivers approaches one, and it becomes impossible to

decode symmetric functions at non-zero rate. The amplify-and-forward rate, however,

varies relatively smoothly in h; the need for (approximately) rational channel gains

is eliminated.
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Figure 4.3: Achievable rates as a function of h and P for the relay computation
channel with an instantaneous relay.



Chapter 5

Consensus

In this chapter I study averaging consensus over wireless. By contrast to the previous

two chapters, here I study large, dense networks and derive inner and outer bounds

on how the resource requirements of consensus scale with the network size. I pro-

pose a simple but su�ciently realistic wireless model based on path-loss propagation

and SNR-based connectivity. I define three key resource metrics: expended energy,

elapsed time, and consumed time-bandwidth product. Under this model, I first exam-

ine a few existing consensus strategies, showing that they may be nearly optimal with

respect to expended energy, but they remain strictly suboptimal with respect to the

other two metrics. I then propose an explicitly wireless approach to consensus, termed

hierarchical averaging. Depending on the details of the propagation environment, hi-

erarchical averaging is order-optimal with respect to all three metrics simultaneously.

Finally, I examine the e↵ects of quantization on consensus performance, showing that

hierarchical averaging obtains a near-optimal tradeo↵ between resource consumption

and estimation error.
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5.1 Preliminaries

Consider a network of N nodes, each of which possesses a scalar measurement z
n

(0) 2
R. In averaging consensus, each node wishes to compute the average of these mea-

surements

z
ave

=
1

N

N

X

n=1

z
n

(0), (5.1)

by means of local interactions. As discussed earlier, most previous approaches to

consensus suppose a wired, graphical topology. In this chapter I examine the impli-

cations of the wireless medium on consensus, which necessitates the definition of a

tractable, but realistic, wireless model.

5.1.1 System Model

The proposed wireless model strikes a balance between tractability and practicality.

It entails four critical assumptions which capture the salient features of wireless while

maintaining simplicity: synchronous transmission, path-loss propagation, “protocol”-

model connectivity, and orthogonalized interference management. In this subsection

I detail and justify these assumptions.

Although consensus algorithms are occasionally defined over synchronous models

(e.g., the synchronized gossip from [55]), researchers more commonly assume com-

munications to be asynchronous. Each node has an independent clock that “ticks”

at Poisson-distributed intervals; upon each clock tick the node initiates a round of

consensus, which is assumed to take place instantaneously. This model is an idealized

version of ALOHA-style protocols, and it sidesteps the scheduling and interference

di�culties inherent to wireless communications. Here, however, the goal is both to

characterize the best possible performance under wireless and to address interference.

I therefore adopt a synchronous model in which nodes transmit simultaneously in



104

slotted time. In practice, near-perfect synchronization can be achieved via beacons,

as in the superframes of 802.15, or via GPS clocks. Formally, let x
n

(t) denote the

signal transmitted by node n, and let P
n

(t) = |x
n

(t)|2 denote the transmit power,

during time slot t.

I suppose a path-loss propagation model. Each node n has a geographic location

r
n

2 [0, 1]⇥[0, 1] taken to be independently drawn from a uniform distribution. Under

the path-loss model, the channel gain between any two nodes m,n is

h
mn

= ej✓mn kr
m

� r
n

k�↵/2

2

, (5.2)

where ↵ � 2 is the path-loss exponent, and ✓
mn

2 [0, 2⇡) is a random phase with

distribution to be specified later.

I further suppose a “protocol” connectivity model. The signal x
m

(t) is said to

arrive at node n provided the received power is above an arbitrary threshold �. Define

the neighborhood of node n as the set of nodes whose transmissions have su�cient

received power:

N
n

(t) = {m : P
m

(t)|h
mn

|2 � �}

= {m : P
m

(t) � � kr
m

� r
n

k↵
2

}. (5.3)

For nodes m /2 N
n

(t), I assume that node n su↵ers no interference from node m’s

transmission. This assumption permits a tractable, geometric analysis of connectivity.

In hierarchical averaging, presented in Section 5.4, nodes are grouped into clusters

which transmit cooperatively. In this case the definition of neighborhoods must be

expanded to characterize the number of unique signals arriving at node n. Let C ⇢
{1, · · · , N} denote a cluster of nodes transmitting the signal xC(t). Define the received



105

power at node n as

RC,n(t) = E

2

4

�

�

�

�

�

X

m2C

h
mn

p

P
m

(t)

�

�

�

�

�

2

3

5 ,

where the expectation is taken over the random phases. Then, the neighborhood of

n is the set of all clusters C such that the received power exceeds �:

N
n

(t) =

8

<

:

C : E

2

4

�

�

�

�

�

X

m2C

h
mn

p

P
m

(t)

�

�

�

�

�

2

3

5 � �

9

=

;

.

The connectivity of clusters depends on the distribution of the phases ✓
mn

. In the

sequel I consider two choices. First, I consider the simple case in which the phases

are equal and fixed. In this case, signals constructively combine at receivers, and the

neighborhood of n can be written as

N
n

(t) =

8

<

:

C :

 

X

m2C

h
mn

P
1
2
m

(t)

!

2

� �

9

=

;

. (5.4)

The second, and more realistic, case I consider is that each ✓
mn

is independently and

uniformly distributed across [0, 2⇡). In this case signals do not combine coherently,

and the neighborhood of n is

N
n

(t) =

(

C :
X

m2C

h2

mn

P
m

(t) � �

)

. (5.5)

The final assumption is a simple orthogonalized approach to interference manage-

ment. For every m 2 N
n

(t), node n receives the following signal:

y
mn

(t) = h
mn

x
m

(t) + w
mn

(t), (5.6)

where w
mn

(t) is unit-variance Gaussian noise. In other words, incoming signals arrive
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independently and do not interfere. In order to avoid such interference, incoming

transmissions must arrive on orthogonal sub-channels. The nature of the sub-channels

is left unspecified; they may be realized in time, frequency, or code. In order for nodes

to orthogonalize, there must be

B(t) = max
n

|N
n

(t)| (5.7)

sub-channels available during time slot t. I do not worry about the specific allocation

of nodes to sub-channels. In addition to distributed techniques such as asynchronous

CDMA, there exist distributed graph coloring algorithms [98] that achieve an order-

optimal sub-channel allocation.

5.1.2 Performance Metrics: Infinite-Rate Links

I first consider the case in which the links between neighboring nodes are perfect;

that is, at time t node n decodes a real-valued scalar from each m 2 N
n

(t). This is

obviously a simplification, since wireless links are necessarily rate-limited. However,

most gossip algorithms are founded on the ability to exchange values with infinite

precision, and I will make this assumption in the first part of this work. Later I will

assume finite-rate links, which will necessitate a di↵erent set of metrics.

The first figure of merit under consideration is the ✏-averaging time. During each

time slot t, nodes exchange estimates with neighbors and update their estimates

accordingly. The ✏-averaging time, denoted T
✏

, is the number of time slots required

to achieve consensus to within a specified tolerance:

T
✏

= sup
z(0)2Rn

inf

⇢

t : Pr

✓kz(t)� z
ave

1k
kz(0)k � ✏

◆

 ✏

�

, (5.8)

where z(t) is the vector of estimates z
n

(t). The scaling law of T
✏

is the primary focus
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of study for most gossip algorithms. However, it provides only a partial measure of

resource consumption in wireless networks, so I define further metrics.

I next examine energy, which is scarce in networks composed of cheap, battery-

powered nodes. Define the total transmit energy as the energy required to achieve

consensus to within the tolerance ✏:

E
✏

=
N

X

n=1

T✏
X

t=1

P
n

(t). (5.9)

Supposing each time slot to be of equal length, the transmit power P
n

(t) is propor-

tional to the energy consumed by node n over slot t. Summing over nodes and time

slots yields the total energy consumed.

The final figure of merit is the time-bandwidth product, defined as

B
✏

=
T✏
X

t=1

B(t) =
T✏
X

t=1

max
n

|N
n

(t)|. (5.10)

The metric B
✏

measure the total number of sub-channel uses required to achieve

consensus to tolerance ✏, which, as mentioned previously, may be realized in time,

frequency, or code. However T
✏

represents the temporal component of the time-

bandwidth product. The sequential nature of consensus dictates that T
✏

rounds occur

in succession. Therefore T
✏

characterizes a constraint on the realization of the time-

bandwidth product.:All of the time-bandwidth product may be realized with temporal

resources, but only a fraction of it may be realized by frequency resources.

5.1.3 Performance Metrics: Finite-Rate Links

In practice, wireless links are noisy and therefore have finite rate, which precludes the

infinite-precision exchange of scalars. Instead, nodes must quantize their estimates to

a finite alphabet prior to each round of consensus. To simplify the discussion, suppose
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that the measurements z
n

(0) are drawn from the finite interval [0, 1). Throughout

this paper, nodes employ dithered uniform quantization described in [66]. The quan-

tization alphabet Z is defined as

Z =

⇢

1

L+ 1
,

2

L+ 1
, . . . ,

L

L+ 1

�

, (5.11)

for some alphabet size L. The quantizer is defined as

�(z) = min
q2Z

|q � (z + u)|, (5.12)

where u is a dither, drawn uniformly and randomly from [��/2,�/2) each time � is

called. Statistically, one can write the quantized value as

�(z) = z + v,

where v is uniformly distributed across [��/2,�/2) and independent of z.

The alphabet size L = |Z| depends on the quality of the wireless links. Since

connectivity requires signal-to-noise threshold �, L is determined by the Shannon

capacity of a wireless link at SNR �. Supposing unit bandwidth and block duration,

nodes successfully exchange log
2

(1+ �) bits over the wireless links [13], which results

in an alphabet size of L = b2log2(1+�)c = b1 + �c.
With quantization it becomes di�cult to speak of convergence time. For a large

class of consensus algorithms, the dynamics does not converge on the true average

to within any finite tolerance, precluding defining T
✏

as before. In fact, quantization

induces a tradeo↵ between resource consumption and estimate quality.

For a consensus algorithm with quantization, let T be the number of rounds for

which consensus runs. Then let B and E be the time-bandwidth product and total
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transmit energy, defined as before but with T taking the role of T
✏

. Finally, define

the mean squared error as

�2 = max
z(0)2[0,1)N

E

"

1

N

N

X

n=1

(z
n

(T )� z
ave

)2
#

, (5.13)

where the expectation is taken over the randomness in the quantization operator

as well as in the consensus algorithm. There is an inherent tradeo↵ between the

total transmit energy E and the mean-squared error �2; one can always reduce the

estimation error by injecting more transmit energy into the network and increasing

the rate of the wireless links.

Finally, throughout this chapter I will rely on the following lemma, which shows

that the number of nodes in a region is asymptotically proportional to its area to

within an arbitrary tolerance �.

Lemma 5.1 (Ozgur-Leveque-Tse, [87]). Let A ⇢ [0, 1]⇥ [0, 1] be a region inside the

unit square having area |A|, and let C = {n : r
n

2 A} be the nodes lying in A. Then,

for any � > 0,

(1� �)|A|N  |C|  (1 + �)|A|N, (5.14)

with probability greater than 1 � 1/|A|e��(�)|A|N , where �(�) > 0 and is independent

of N and |A|.

5.2 Inner Bounds

In this section I derive inner bounds on the resource costs for consensus over the

proposed wireless model. I begin with the case of infinite-rate links.

Theorem 5.1. For any consensus algorithm, with probability approaching 1 as N !
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1:

T
✏

= B
✏

= ⌦(1) (5.15)

E
✏

= ⌦(N1�↵/2). (5.16)

Proof. The bounds on T
✏

and B
✏

are trivial. To prove the bound on E
✏

, observe that

every node n must transmit its measurement z
n

(0) to at least one of its neighbors.

The energy required for each node to transmit to its nearest neighbor can be expressed

as

E
✏

�
N

X

n=1

min
m 6=n

�h�2

mn

= �
N

X

n=1

d↵
min

(n), (5.17)

where d
min

(n) is the distance between node n and its nearest neighbor. It is well-

known (e.g., in [99]), that d
min

(n) = ⇥(N�1/2) with high probability, so

E
✏

� �
N

X

n=1

⇥(N�↵/2)

= ⌦(N1�↵/2). (5.18)

In the case of consensus with rate-limited links, I derive an inner bound on the

tradeo↵ between resources and estimation error.

Theorem 5.2. For any consensus algorithm with rate-limited links, any achievable
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tradeo↵ in performance metrics satisfies the following with high probability:

T = B = ⌦(1) (5.19)

E =
N

X

n=1

⌦(Nxn�↵/2) (5.20)

�2 =
1

N

N

X

n=1

⌦(N�2xn), (5.21)

for x
n

> 0. In particular, choosing each x
n

= x yields

E = ⌦(N1+x�↵/2) (5.22)

�2 = ⌦(N�2x). (5.23)

Proof. As in the ideal-link case, the bounds on T and B are trivial. To bound the

tradeo↵ between energy and estimation error, momentarily consider a single node n.

Suppose a genie supplies node n with z
ave

, and further suppose that only node n’s

nearest neighbor, denoted by m, needs to compute the average. In this case, the

optimal strategy is for n to quantize z
ave

and transmit it directly to node m. In

principle, other nodes could transmit their measurements to m, but since they are

no closer order-wise, and since they have only partial knowledge of the average, any

energy they expend would be better used by node n.

Without loss of generality, let P
n

= Nxn�↵/2 denote the transmit power used

by node n to transmit z
ave

. Since again the distance between nearest neighbors is

⇥(N�1/2) with high probability, the size of the quantization alphabet is L = ⇥(Nxn).

Therefore, the square quantization error at node n on z
ave

is |e
n

|2 = ⇥(L�2) =

⇥(N�2xn). Repeating the argument for each n gives the result.
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5.3 Gossip Algorithms

In this section I characterize existing gossip algorithms with respect to the metrics

defined in Section 5.1. There are, of course, too many instantiations of gossip for to

analyze, so I focus on two variants1 that provide a relatively comprehensive look at the

state of the art: randomized gossip [55], which is probably the best-known approach

to gossip, and path averaging [27], which is order optimal in terms of convergence

speed. The first task is to adapt the graphical nature of gossip to the wireless model.

The key criterion is the required transmit power. In order to achieve consensus, it

is necessary to choose the topology of the network such that the resulting graph is

connected. In [100] it is shown that, with high probability, a necessary and su�cient

condition for connectedness is that each node be connected to every node within a

radius of ⇥(
p

logN/N). In terms of the neighborhood N
n

(t), this implies that, for

every node n that transmits during time slot t,

N
n

(t) = {m : kx
m

� x
n

k
2

< ⇥(
p

logN/N)}.

By (5.3), the transmit power must satisfy

P
n

(t) = �r↵ = ⇥(�(logN/N)↵/2), (5.24)

for every node n transmitting during time slot t. This holds for both gossip algorithms

considered in this section.
1Due to its similarity with hierarchical averaging, one might suspect that multiscale gossip [28]

has superior performance to the gossip algorithms studied here. However, one can show that the
performance of multi-scale gossip is rather similar to that of path-averaging.
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5.3.1 Randomized Gossip

Here I study the synchronized randomized gossip of [55]. At each time slot t, each node

is randomly paired up with one of its neighbors. Paired nodes exchange estimates

and average the estimates together, which results in the following dynamics:

z(t) =
1

2
(W(t) + I)z(t� 1),

where W(t) is a randomly-chosen permutation matrix such that w
mn

= 1 only if

nodes m and n are neighbors.

In [55, Theorem 9] the convergence of randomized gossip is characterized. It is

shown that the averaging time satisfies

T
✏

= ⇥

✓

N
log ✏�1

logN

◆

. (5.25)

Using these facts, one can derive statements about the performance of randomized

gossip with respect to the proposed metrics.

Theorem 5.3. For randomized gossip, the resource consumption scales as follows

with high probability:

T
✏

= ⇥

✓

N
log ✏�1

logN

◆

, (5.26)

B
✏

= ⇥
�

N log ✏�1

�

, (5.27)

E
✏

= ⇥(N2�↵/2(logN)↵/2�1 log ✏�1). (5.28)

Proof. The bound on T
✏

follows from (5.25). Since every node transmits during every
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time slot t, and since � is a constant, P
n

(t) = ⇥((logN/N)↵/2) for each t. Therefore

E
✏

=
T✏
X

t=1

N

X

n=1

⇥

✓

logN

N

◆

↵/2

= T
✏

⇥(N1�↵/2(logN)↵/2)

= ⇥(N2�↵/2(logN)↵/2�1 log ✏�1).

Next, the required connectivity radius means that each neighborhood is defined by a

region of area ⇥(logN/N). By Lemma 5.1, each neighborhood size satisfies

(1� �)⇡ logN  |N
n

(t)|  (1 + �)⇡ logN

|N
n

(t)| = ⇥ (logN)

with high probability. Plugging this into (5.10) yields

B
✏

= T
✏

⇥ (logN)

= ⇥
�

N log ✏�1

�

.

5.3.2 Path Averaging

Next I look at path averaging, a more sophisticated gossip algorithm proposed in [27].

Instead of exchanging estimates with a neighbor, in path averaging each node chooses

a geographically distant node with which to exchange; the exchange is facilitated by

multi-hop rounding. In addition to facilitating the exchange, the routing nodes add

their estimates “along the way,” allowing many nodes to average together in a single

round. Once the average of all the nodes’ estimates is computed at the destination,
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the result is routed back to the source.

Path averaging is described in an asynchronous framework in which nodes in-

dependently “wake up,” initiate multi-hop exchanges, and return to an idle state

su�ciently quickly that no two exchanges overlap in time. Placing path averaging

into the proposed synchronous framework, suppose that at time t a pair of nodes n,m

is randomly selected to engage in a multi-hop exchange. Letting P(t) be the set of

nodes routing from n to m, suppose that the 2(|P(t)|� 1) transmissions required to

route from n to m and back happen sequentially and thus require 2(|P(t)|� 1) time

slots. At time slot t + 2(|P(t)| � 1), a new pair is chosen. The dynamics for path

averaging has the following form:

z
n

(t+ 2(|P(t)|� 1)) =

8

>

>

<

>

>

:

1

|P|
P

m2P(t)

z
m

(t), n 2 P(t)

z
n

(t), otherwise

. (5.29)

In [27, Theorem 2] it is shown that, for a random uniform network1, the expected

path length is E[|P(t)|] = ⇥(
p

N/ logN) and the number of exchanges required to

achieve ✏-consensus is ⇥(
p
N logN log ✏�1). Combining these facts, the total number

of required transmissions is ⇥(N log ✏�1).

In casting path averaging in the synchronous framework, I have retained the as-

sumption that multi-hop exchanges do not overlap in time. In principle one could

construct a synchronous path-averaging gossip in which multiple exchanges occur

simultaneously, perhaps reducing the total amount of time required to achieve con-

sensus. In the following theorem, I provide a rather optimistic bound on the resource

consumption of any such synchronous formulation.

Theorem 5.4. For any synchronous path-averaging gossip, the resource consumption

1Technically, the convergence speed of path averaging is proven over a torus, so the results proven
in the sequel apply to the torus. Later I provide numerical results that establish empirically that
the same results apply to a square network.
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scales as follows with high probability:

T
✏

= B
✏

= ⌦

 

s

N

logN

!

(5.30)

E
✏

= ⇥(N1�↵/2 log ✏�1). (5.31)

Proof. The bound on T
✏

and B
✏

follows from the fact that each route has ⇥(
q

N

logN

)

hops. Even in the ideal case in which every round of gossip occurs simultaneously, T
✏

=

⌦(
p

N/ logN) sequential transmissions are still required. Supposing optimistically

that constant bandwidth is su�cient to accommodate the multiple exchanges, the

same bound applies to B
✏

.

To bound E
✏

, note that, as with randomized gossip, P
n

(t) = ⇥((logN/N)↵/2) is

required for every transmission. Since path-averaging requires ⇥(N log ✏�1) transmis-

sions, the overall energy consumption scales as

E
✏

= ⇥(N1�↵/2(logN)↵/2 log ✏�1). (5.32)

5.4 Hierarchical averaging

In this section I introduce hierarchical averaging. Much like multi-scale gossip [28]

and the hierarchical cooperation of [87], in hierarchical averaging the network is recur-

sively partitioned into geographically defined clusters. Each cluster achieves internal

consensus by mutually broadcasting estimates. Nodes within a cluster then cooper-

atively broadcast their identical estimates to neighboring clusters at the next level.

The process continues until the entire network achieves consensus. In the following

subsection I describe the recursive partition, after which I describe the algorithm in
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C
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C44[T�2]

t = T � 2

Figure 5.1: Hierarchical partition of the network. Each square cell is divided into
four smaller cells, which are each divided into four smaller cells, and so on.

detail and characterize its resource requirements.

5.4.1 Hierarchical Partitioning

The network is partitioned into T sub-network layers, one for each round of consensus,

as depicted in Figure 5.1. At the top layer, which corresponds to the final round t = T

of consensus, there is a single cell. At the next-highest level t = T � 1, the network is

divided into four equal-area square cells. Continuing, each cell is recursively divided

into four smaller cells until the lowest layer t = 1, which corresponds to the first

round of consensus. At each level t there are 4T�t cells, formally defined as

C
jk

(t) = {n : r 2 [(j � 1)2t�T , j2t�T )⇥ [(k � 1)2t�T , k2t�T )}, (5.33)

where 1  j, k  2T�t index the geographical location of the cell.

Let C(n, t) denote the unique cell at layer t containing node n. Using the Pythagorean
theorem, one can easily bound the maximum distance between any two nodes:

M(t) =
p
2 · 4 t�T

2 = ⇥(4
t�T
2 ), (5.34)
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where the maximum is achieved when two nodes lie on opposite corners of the cell.

The number of layers is chosen as T = dlog
4

(N1�)e, where  > 0 is a small

constant. In the following I characterize the order-wise cardinality of each cell, which

I will use in deriving the resource consumption of hierarchical averaging.

Lemma 5.2. For every 1  j, k  2T�t and 1  t  T ,

|C
jk

(t)| = ⇥(4tN), (5.35)

with probability greater than 1�N2�2/16 · e��(�)N


.

Proof. The area of each cell at layer t = 1 is, by construction

A = 41�T

41�log4(N
1�

)+1  A  41�log4(N
1�

)

N�1  A  4N�1.

Then, by Lemma 5.1, the cardinality of each cell at layer t = 1 is bounded by

(1� �)N  |C
jk

(t)|  (1 + �)4N, (5.36)

with probability greater than 1�N1�/16 · e��(�)N


.

Define E
jk

(1) as the event in which |C
jk

(1)| is outside the bounds specified in

(5.36). Clearly Pr{E
jk

(1)}  N1�/16 · e��(�)N


. Therefore, by the union bound,

Pr

0

@

[

1j,k2

T�1

E
j,k

(1)

1

A 
X

1j,k2

T�1

N1�/16 · e��(�)N


(5.37)

 N2�2/16 · e��(�)N

 ! 0. (5.38)
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Therefore, every cell at t = 1 simultaneously satisfies |C
jk

(1)| = ⇥(N) with the

desired probability. Now, since each cell at layer t is composed of 4t�1 cells at layer

1, with the same probability

|C
jk

(t)| = ⇥(4tN). (5.39)

5.4.2 Algorithm Description

Next I lay out the details of hierarchical averaging. Each node n requires the following

information about the network: the total number of nodes N , its own location r
n

,

and the number of consensus rounds T .

At time slot t = 1, each node broadcasts its initial estimate z
n

(0) to every member

of its cluster C(n, 1). In order to ensure that n 2 N
m

(t) for every m 2 C(n, 1), each
node transmits at power

P
n

(1) = � max
m2C(n,1)

h↵

nm

 �M(1)↵ = O(N (�1)↵/2). (5.40)

Each node n takes a weighted average of the estimates in its cluster:

z
n

(1) =
1

41�TN

X

m2C(n,1)

z
m

(0). (5.41)

The nodes use the approximate normalization factor 1/41�TN instead of the exact

factor 1/|C(n, 1)| so that nodes at higher levels of the hierarchy need not know the

cardinality of the cells. This approximation introduces no error into the final estimate.

After time slot t = 1, each node in each cluster C
jk

(1) has the same estimate,

denoted by zCjk(1)(1). At each subsequent time slot 2  t  T , each cluster C(n, t�1)
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cooperatively transmits its estimate to its parent cluster at layer t. Each P
n

(t) is

taken to be a constant. The transmit power required depends on the phase of the

channel gains, as discussed in Section 5.1.1. When the phases are fixed and identical,

by (5.4), the transmit powers must satisfy

0

@

X

m2C(n,t�1)

h
mn

P 1/2

m

(t)

1

A

2

= �

=) P
m

(t) =
�

⇣

P

m2C(n,t�1)

h
mn

⌘

2

 �M(t)↵

|C(n, t� 1)|2

= O

✓

(4tN�1)↵/2

42tN2

◆

= O
�

4(↵/2�2)tN�↵/2+(↵/2�2)

�

. (5.42)

When the phases are random and uniform, on the other hand, by (5.5), they must

satisfy

X

m2C(n,t�1)

h2

mn

P
m

(t) = �

=) P
m

(t) =
�

P

m2C(n,t�1)

h2

mn

 �M(t)↵

|C(n, t� 1)|
= O

�

4(↵/2�1)tN (�1)↵/2

�

. (5.43)

After receiving estimates from the other sub-clusters, each node updates its estimate
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by taking the sum:

z
n

(t) =
1

4

X

C(n,t�1)⇢C(n,t)

zC(n,t�1)

=
1

4t�TN

X

m2C(n,t)

z
m

(0),

where the second equality follows straightforwardly by induction. At time t, the

identical estimate at each cluster is a weighted average of the measurements from

within that cluster.

Consensus is achieved at round T , where the four sub-clusters at level t = T � 1

broadcast their estimates to the entire network. Evaluating (5.44) for t = T , note

that hierarchical averaging achieves perfect consensus; there is no need for a tolerance

parameter ✏. This somewhat surprising result is the consequence of combining the

flexibility of wireless, which permits the adjustment of network connectivity at will,

with the simplifying assumption of infinite-rate links. In the next section I will revisit

this assumption.

In the following theorem I derive the resource requirements of hierarchical aver-

aging.

Theorem 5.5. With high probability, the resource consumption of hierarchical aver-

aging scales according to

T
✏

= B
✏

= O(N), (5.44)

E
✏

=

8

>

>

<

>

>

:

O(N1�↵/2+↵/2), for fixed phase

O(N↵/2), for uniform phase

, (5.45)

for any path-loss exponent 2  ↵ < 4, for any ✏ > 0 and for any  > 0.

Proof. The bound on T
✏

follows by construction; I chose T = dlog
4

N1�e = O(N)
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layers of hierarchy and constructed the algorithm such that consensus is achieved to

within any tolerance ✏ > 0,

I derive the bound on B
✏

by examining the cardinality of the neighborhoods for

each node. At time slot t = 1, by (5.40) each node transmits at power P
n

(1) =

O(N (�1)↵/2). The neighborhood size of each node therefore scales as the number of

nodes in a circle of radius O(N�1). By Lemma 5.1, this number is |N
n

(1)| = O(N)

with probability approaching 1 as N ! 1. Thus B(1) = O(N).

For rounds 2  t  T , it is necessary to bound the number of clusters in range of

each node. In (5.42) the transmit powers were chosen such that the clusters transmit

to each node in a circle of area ⇡M2(t) = O(4tN1�). By construction, each cluster

C(n, t) covers an area of O(4tN1�). Therefore, the number of clusters that can fit

into the circle is constant, so B(t) = O(1). Summing over all rounds yields

B
✏

=
T

X

t=1

B(t) = O(N) +
T

X

t=2

O(1) = O(N). (5.46)

Finally, I derive the bounds on E
✏

. For fixed phase, (5.40) and (5.42) imply

E
✏

=
T

X

t=1

N

X

n=1

P
n

(t)

= N ·O(N (�1)↵/2) +N

T

X

n=2

O
�

4(↵/2�2)tN�↵/2+(↵/2�2)

�

 O(N1�↵/2+↵/2) +O

 

N1�↵/2+(↵/2�2)

T�1

X

t=0

4(↵/2�2)t

!

= O(N1�↵/2+↵/2) +O

✓

N1�↵/2+(↵/2�2)

1� 4(↵/2�2)T

1� 4↵/2�2

◆

(5.47)

= O(N1�↵/2+↵/2) +O
�

N1�↵/2+(↵/2�2)N (↵/2�2)(1�)

�

(5.48)

= O(N1�↵/2+↵/2) +O
�

N�1

�

= O(N1�↵/2+↵/2), (5.49)
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where (5.47) follows from the finite geometric sum identity, and (5.48) holds only

when ↵  4. For uniform phase, note first that the condition in (5.43) is more strict

than that of (5.40), so

P
n

(t) = O
�

4(↵/2�1)tN (�1)↵/2

�

(5.50)

for all n, t. Substituting (5.50) into the definition of E
✏

yields

E
✏

=
T

X

t=1

N

X

n=1

P
n

(t) (5.51)

= O

 

N1+(�1)↵/2

T�1

X

t=0

4(↵/2�1)t

!

(5.52)

= O
�

N1�↵/2+↵/2(N↵/2�1 � 1)
�

(5.53)

= O(N↵/2), (5.54)

where again I have employed the finite geometric sum identity.

Hierarchical averaging achieves resource scaling arbitrarily close to the lower bound

of Theorem 5.1 when phase is fixed. When phase is uniform, however, the energy con-

sumption is strictly suboptimal for ↵ > 2. Note that the resource scaling does not

depend on the channel phases for ↵ = 2. For free-space propagation, hierarchical

averaging is order optimal regardless of phase.

5.4.3 Numerical Results

I next examine the empirical performance of the several consensus algorithms pre-

sented. Choosing � = 10dB, ↵ = 4, ✏ = 10�4, and  = 0, I let N run from 10 to 1000,

averaging performance over 20 random initializations for each value of N . Figure 5.2

displays the average transmit energy E
✏

and time-bandwidth product B
✏

. (Since the
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data for T
✏

are rather similar to that of B
✏

, I do not plot them.)

With respect to time-bandwidth product, hierarchical averaging performs best,

the required number of sub-channel uses growing slowly with N . The remaining two

schemes perform comparably, the required number of sub-channels growing approxi-

mately linearly in N . Note that, while I bounded the time-bandwidth product of path

averaging with a strictly sub-linear term, this bound applied to hypothetical instan-

tiations of the scheme in which multiple transmissions occur simultaneously. These

simulations used the ordinary algorithm, which requires ⇥(N) sub-channel uses.

With respect to total transmit energy, hierarchical averaging performs best so long

as the phases are fixed, in which case the performance is on par order-wise with the

lower bound. When phases are uniform, however, performance depends on N . Even

though path averaging has better scaling than hierarchical averaging under uniform

phase, for small N hierarchical averaging requires less power. Finally, as expected,

randomized gossip requires the most energy in any regime.

5.5 Quantization

In this section I examine consensus with quantization. As in the case with ideal

links, I first characterize the performance of existing quantized consensus algorithms

with respect to the metrics specified in Section 5.1.3. It is impossible to survey every

approach in the literature, so I focus on the quantized consensus of [64], in which

consensus is modified to preserve the average of quantized estimates each round.

After deriving bounds on its performance, I turn to hierarchical averaging, showing

that it achieves the lower bound of Theorem 5.2 when phases are fixed.
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5.5.1 Quantized Consensus

In ordinary gossip, the primary di�culty of quantization is that quantizing estimates

in general alters the average across the network. Thus, even if consensus is achieved,

the dynamics will not in general converge on the true average of the (quantized) mea-

surements. In quantized consensus [64], a family of consensus algorithms is proposed

that preserves the average at each round; it converges to near-consensus around the

true average.

Recall from Section 5.1.3 that Z is the set of L points evenly distributed across

[0, 1), separated by quantization bin width � = 1/L. Quantized consensus operates

only on quantized values, so first nodes must quantize the real-valued measurements

z
n

(0):

q
n

(0) = �(z
n

(0)), (5.55)

where � is the dithered quantizer described in Section 5.1.3. Let e
n

(0) = �(z
n

(0))�
z
n

(0) denote the quantization error.

Much like in randomized gossip, at each round every node randomly selects a

neighboring node and mutually averages, with the caveat that one node rounds “up”

to the nearest member of Z while the other rounds “down.” Letting i and j denote

the two nodes in the exchange, the dynamics1 are

q
i

(t) =

⇠

q
i

(t� 1) + q
j

(t� 1)

2

⇡

Z
(5.56)

q
j

(t) =

�

q
i

(t� 1) + q
j

(t� 1)

2

⌫

Z
, (5.57)

where d·eZ and b·cZ represent rounding up and down to the nearest element of Z, re-

spectively. In [64, Theorem 1] this algorithm is proven to converge on near-consensus:

1In fact, [64] proposes a family of algorithms, and the one used here is only one possibility. The
convergence properties exploited in the following are independent of the specific algorithm chosen.
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in the limit, each q
n

(t) di↵ers by at most a single bin, and the sum of the quantized

measurements is preserved. It is di�cult to bound the convergence speed of this

process in general due to the non-linearity of the updates. However, for the case

of a fully-connected graph, in [64, Lemma 6] it is shown that quantized consensus

requires ⌦(N2) transmissions over ⌦(N) consensus rounds. Using this fact, I bound

the overall performance.

Theorem 5.6. The performance of quantized gossip scales, with high probability, as

T = ⌦(N), (5.58)

B = ⌦(N logN), (5.59)

E = ⌦(N2�↵/2+x(logN)↵/2), and (5.60)

�2 = ⌦(N�2x�1), (5.61)

for any x � 0.

Proof. Choose an alphabet size L, which may vary withN . Then, in order to maintain

connectivity, links must have signal-to-noise ratios � = ⇥(L) at radius
p

logN/N ,

which implies

P
n

(t) = ⇥

 

L

✓

logN

N

◆

↵/2

!

. (5.62)

By [64, Lemma 6], consensus requires ⌦(N) rounds for fully-connected graphs, and the

performance for random graphs cannot be any better. As in the proof of unquantized

randomized gossip, the neighborhood size scales as ⇥(logN), so the time-bandwidth

product scales as

B = ⌦(N logN). (5.63)
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Since ⌦(N2) total transmissions are required for consensus,

E = ⌦(LN2�↵/2(logN)↵/2). (5.64)

Finally, I examine the mean-squared error. In the best case, the dynamics converge

on true consensus, meaning that q
n

(T ) is the same for each n. In this case the final

estimates are merely the average of the quantized measurements z
n

(0). Therefore,

q
n

(T ) =
1

N

N

X

n=1

q
n

(0)

=
1

N

N

X

n=1

(z
n

(0)� e
n

(0))

= z
ave

� 1

N

N

X

n=1

e
n

(0),

where e
n

(0) is the quantization error of the initial estimate. In the worst case, each

|e
n

(0)| = �/2 = L�1/2. Since the errors are uncorrelated, the squared error follows

�2 = E

2

4

 

1

N

N

X

n=1

e
n

(0)

!

2

3

5

� 1

N2

N

X

n=1

E[|e
n

(0)|2]

= N�1L�2/2

= ⌦(N�1L�2).

Choosing L = Nx gives the result.

I hasten to point out that the bounds here are rather generous, since they presup-

pose that convergence on a random graph is as fast as on a fully-connected graph.

In practice, as will be shown in numerical results presented later, the performance is
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somewhat worse.

5.5.2 Hierarchical Averaging

Here I characterize the performance of hierarchical averaging with quantization. As

before, cells of nodes at lower layers achieve local consensus, after which they broad-

cast their estimates to nearby clusters, continuing the process until global consensus

is achieved. Here, however, each estimate is quantized prior to transmission, which

introduces error that accumulates during consensus.

As in the previous subsection, nodes employ the dithered quantizer. For the

uniform quantization alphabet with cardinality L, let the quantized version of the

estimate z
n

(t) be denoted

q
n

(t) = �(z
n

(t)). (5.65)

Each quantized value can be written as

q
n

(t) = z
n

(t) + v
n

(t), (5.66)

where each v
n

(t) is uniform over [��/2,�, 2) and independent for every n, t.

Choose T = dlog
4

N1�e and define the cells C
jk

(t) as before. At time slot t = 1,

each node n quantizes its initial measurement z
n

(0) and broadcasts the quantized

value to the nodes in C(n, 1). Following (5.40), this requires

P
n

(1) = O(LN (�1)↵/2), (5.67)

where the dependence on L arises since � = ⇥(L) and L, and therefore �, may depend

on N . Each node n updates its estimate by averaging the quantized estimates in its
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cluster:

z
n

(1) =
1

41�TN

X

m2C(n,1)

q
m

(0) (5.68)

=
1

41�TN

X

m2C(n,1)

z
m

(0) + v
m

(0). (5.69)

As before nodes use the normalization factor 1/41�TN in order to avoid nodes’ needing

to know the cluster cardinalities. Next, at time slot 2  t  T , each cluster at layer

t�1 quantizes its estimate and cooperatively broadcasts to the members of its parent

cluster at layer t. Following (5.42) and (5.43), this requires

P
n

(t) =

8

>

>

<

>

>

:

O(L4(↵/2�2)tN�↵/2+(↵/2�2)), for fixed phases

O(L4(↵/2�1)tN (�1)↵/2), for uniform phases

. (5.70)

At time step t = 2, each node n averages together the estimates from each of the

subclusters C(m, t� 1) ⇢ C(n, t), yielding

z
n

(2) =
1

4

X

C(m,1)⇢C(n,2)

qC(m,1)

(1)

=
1

4

X

C(m,1)⇢C(n,2)

zC(m,1)

(1) + vC(m,1)

(1)

=
1

4

X

C(m,1)⇢C(n,2)

0

@

1

41�TN

X

k2C(m,1)

z
k

(0) + v
k

(0)

1

A+ v
m

(1)

=
1

42�TN

X

k2C(n,2)

(z
k

(0) + v
k

(0)) +
1

4

X

C(m,1)⇢C(n,2)

vC(m,1)

(1).

Continuing by induction, at arbitrary round t the estimate is

z
n

(t) =
1

4t�TN

X

k2C(n,t)

(z
k

(0) + v
k

(0)) +
t�1

X

s=1

X

M2Rn(t,s)

4s�tv
M

(s), (5.71)
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where R
n

(t, s) is the set of all clusters C(m, s) that are subsets of C(n, t). In other

words, at round t nodes have the total average so far, corrupted by quantization noise

from each of round s < t.

In the following theorem, I detail the resource-estimate tradeo↵ achieved by this

scheme.

Theorem 5.7. Using dithered quantization, hierarchical averaging achieves the fol-

lowing tradeo↵ between resource consumption and estimation error with high proba-

bility:

T = B = O(N) (5.72)

E =

8

>

>

<

>

>

:

O(N1�↵/2+↵/2+x), for fixed phases

O(N↵/2+x), for uniform phases

(5.73)

�2 = ⇥(N�2x), (5.74)

for any x � 0,  > 0, and 2  ↵ < 4. In particular, for x = 0 the estimation error is

constant in the network size using the same amount of energy as in the non-quantized

case.

Proof. Choose an alphabet size L. Since the number of rounds and the cluster geom-

etry is unchanged from the non-quantized case, I repeat the argument from Theorem

5.5, yielding T = B = O(N). Since the transmit power is changed only by a factor

of L, I can repeat the arguments from Theorem 5.5, which yields

E =

8

>

>

<

>

>

:

O(LN1�↵/2+↵/2), for fixed phases

O(LN↵/2), for uniform phases

.

All that remains is to bound the estimation error. Evaluating (5.71) for t = T ,
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for every n

z
n

(T ) =
1

N

N

X

k=1

(z
k

(0) + v
k

(0)) +
T�1

X

s=1

X

M2Rn(t,s)

4s�Tv
M

(s)

= z
ave

+
T�1

X

s=0

X

M2Rn(t,s)

4s�Tv
M

(s).

The mean squared estimation error is therefore

�2 = E

2

4

�

�

�

�

�

�

T�1

X

s=0

X

M2Rn(t,s)

4s�Tv
M

(s)

�

�

�

�

�

�

2

3

5

=
T�1

X

s=0

X

M2Rn(t,s)

42(s�T )E[|v
M

(s)|2],

where the equality is due to the independence of the quantization error terms. Since

each v
M

(s) is uniformly distributed across [��,�), E[|v
m

(2)|2] = ⇥(�2) = ⇥(L�2).

Therefore,

�2 = ⇥(L�2)
T�1

X

s=0

X

M2Rn(t,s)

42(s�T )

= ⇥(L�2)
T�1

X

s=0

4T�s42(s�T )

= ⇥(L�2)
T�1

X

s=0

4s�T

= ⇥(L�2N�1)
1� 4T

1� 4

= ⇥(L�2),

since 4T = ⇥(N). Choosing L = Nx yields the result.
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5.5.3 Numerical Results

Here I examine the empirical performance of the quantized consensus discussed. I

also run simulations for randomized gossip, employing dithered quantization to ac-

commodate the finite-rate links. I again choose � = 10dB,  = 0, let N run from 10

to 1000, and average performance over 20 initializations, but here ↵ = 2. Choosing

� constant means that the quantization error � is constant in N , and the minimum

quantization error is itself constant. Figure 5.3 shows the energy E plotted against

the mean-square error �2.

The energy expenditure for hierarchical averaging is consistent with theory; how-

ever, note that uniform phase results in higher expenditure than fixed phase, even

though the scaling laws are the same. The energy expenditure for randomized gossip

increases roughly linearly in N , suggesting that the energy burden with fixed � is

similar to the non-quantized case. As expected, quantized consensus performs worse

than predicted by Theorem 5.6. The energy consumption is on par with random-

ized gossip, but it accrues estimation error as N increases. The other schemes have

bounded or decreasing error.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, I have studied computation problems from an explicitly wireless per-

spective. I have considered both situations in which terminals desire to compute

functions of others’ digital messages—as exemplified by network coding—and situa-

tions in which terminals desire to compute a function of sources—as exemplified by

averaging consensus. In both cases, I proposed cooperative schemes. For suitable

scenarios, these cooperative schemes are provably near-optimal in a few senses: in

terms of diversity-multiplexing tradeo↵, in terms of capacity to within a constant

gap, or in terms of order optimality.

In Chapter 3, I studied the impact of user cooperation on physical-layer network

coding. Constructing a lattice-coding version of block Markov encoding, I presented

a strategy that introduces a “decode-and-forward” element into computation coding.

Transmitters decode each other’s messages, enabling them to transmit resolution in-

formation cooperatively to the receivers. This strategy achieves higher computation

rates than previous approaches, since transmitters can jointly encode part of their

messages, and coherent signals benefit from a beamforming gain. Furthermore, coop-
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eration enables an improvement in the diversity-multiplexing tradeo↵. For the 2⇥ 1

channel, the proposed approach is DMT optimal, achieving the same tradeo↵ as a

two-antenna MISO channel. For more general M ⇥ 1 channels, cooperation garners

a DMT improvement, obtaining full diversity, but it falls short of the tradeo↵ of the

equivalent MISO channel. For channels with multiple receivers, however, the DMT

is mostly unknown, although the proposed approach provides an improvement in

achievable rates at finite SNR.

In Chapter 4, I studied the impact of relay cooperation on physical-layer network

coding. I considered a two-transmitter, two-receiver network aided by a dedicated

relay. I found that the benefits depend on the relay modality. For a standard relay,

in which the relay transmission depends on signals received previously, a compress-

and-forward scheme improves the achievable rate, but does not provably improve the

degrees-of-freedom. For an instantaneous relay, in which the relay transmission may

depend on signals currently being received, however, an amplify-and-forward scheme

provides substantial gains. Amplify-and-forward is provably optimal in the degrees-

of-freedom for almost every channel realization. Furthermore, for symmetric channel

gains, it obtains computation rates that di↵er from capacity by only a constant gap

for a non-trivial range of channels.

Finally, in Chapter 5 I studied consensus under a wireless framework. I proposed

a simple path-loss model which captures the broadcast and superposition properties

inherent to wireless communication, and I defined resource consumption in terms of

energy, time, and bandwidth. Under this model, I studied existing consensus strate-

gies, showing that while they may be order-optimal with respect to the amount of

energy required to achieve consensus, they are strictly suboptimal with respect to

the time and bandwidth required. Additionally, I proposed hierarchical averaging, a

cooperative approach to consensus designed explicitly for the wireless medium. For
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free-space propagation (i.e. the path-loss coe�cient ↵ = 2), hierarchical averaging

is nearly order optimal with respect to all three metrics. For 2 < ↵  4, optimality

depends on assumptions about channel phase. If phases are taken to be constant, hier-

archical averaging remains nearly optimal; if they are taken to be random, uniformly

distributed, and independent, hierarchical averaging is suboptimal in the required

transmit energy. Furthermore, I studied the e↵ects of quantization. Using dithered

quantization, I showed that, without expending any additional energy over the non-

quantized case, hierarchical averaging su↵ers estimation error that is constant in the

size of the network.

6.2 Future Directions

The ideas explored in this thesis, of course, have applications beyond the problems

studied herein. The following are a few areas in which these ideas show promise:

• Practical codes for the relay channel: The decode-and-forward rates for

the three-terminal relay channel have been known for decades, and they even

achieve rates within a constant gap of capacity. Although several approaches for

binary or discrete-input relay channels, as yet practical, near-capacity codes for

the AWGN channels do not exist. The lattice block Markov strategy introduced

in Chapter 2 and exploited for computation in Chapter 3 may, in principle, be

used to construct such codes. Low-density lattice codes, proposed by Sommer

et al. [75], have been shown to have low encoding and decoding complexity as

well as near-optimal performance, much like LDPC codes over discrete chan-

nels. Conceptually, it is straightforward to decompose an LDLC into resolution

and vestigial codebooks and carry out block Markov encoding. In practice, of

course, there is a plethora of details to work out before such an approach can
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be implemented. As of this writing, initial investigations into this approach are

underway. They show that, at least under a few scenarios, the proposed scheme

indeed provides low-complexity codes with near-capacity performance.

• Diversity-multiplexing tradeo↵ of the cooperative computation chan-

nel: In Chapter 3, I fully characterized the DMT of the 2 ⇥ 1 channel. When

there are more than two transmitters or, worse, more than one receiver, the

DMT is only partially characterized. The primary obstacle to complete DMT

characterization is the di�culty in aligning channels to suitable integer com-

binations of lattice points. However, as mentioned in the introduction, Niesen

and Whiting [44] proposed a scheme that combines compute-and-forward with

interference alignment and achieves the optimum degrees-of-freedom for the

non-cooperative computation channel. Since their scheme involves linear/lattice

codes, it is again possible to construct a block Markov version of the scheme via

decomposition into resolution and vestigial codebooks. I anticipate that such a

scheme would be DMT optimal for the 2⇥2 channel, and would garner a DMT

gain generally for channels with multiple receivers.

• Computation over layered networks: The amplify-and-forward scheme of

Chapter 4 achieved rates within a constant gap of capacity for the symmet-

ric, instantaneous relay computation channel. It is likely, however, that these

results can be extended to more general topologies. Lee and Jafar [97] show

that gains in interference channels with an instantaneous relay can be adapted

to layered interference channels. In the case of computation, an alternating

amplify-and-forward/compute-and-forward scheme seems fruitful: at one layer,

terminals amplify incoming messages by carefully chosen coe�cients in order to

align the e↵ective messages at the next layer to a suitable set of integer combi-

nations of lattice codewords. It is straightforward to prove that such a scheme
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is su�cient to achieve the optimum degrees-of-freedom of a three-layer network;

in the case of symmetric channels, arguments similar to those used in Chapter 4

may establish constant-gap bounds on computation capacity. Furthermore, this

scheme can be extended to networks with arbitrarily many layers without loss

of performance. So long as every other layer successfully decodes suitable finite-

field linear combinations of messages, noise is not amplified in the network, and

the performance is essentially identical to that of a network with fewer layers.

• Information-theoretic treatment of consensus performance: The model

over which the resource cost of consensus is studied in Chapter 5 entails several

assumptions made for the sake of tractability. Most critically, interference of

su�ciently low power is neglected, and terminals are restricted to simple, one-

shot quantization. I envision a more comprehensive research program which

relaxes these assumptions and provides an information-theoretic analysis of the

performance bounds of consensus. Each terminal possesses a k-length source

according to an arbitrary distribution, and desires the element-wise average of

all N sources up to some distortion criterion. The performance metric is the

consensus capacity, defined as the limiting ratio of the number of channel uses

needed to achieve consensus and the source length k. Such an asymptotic anal-

ysis permits the use of powerful source coding tools, including rate-distortion

theory, Wyner-Ziv encoding, etc. Coupling such tools with hierarchical aver-

aging may again yield order-optimal performance. If not, a further search for

near-optimal strategies will doubtless shed important insight on wireless sensor

networks.

This is but a partial list of possible extensions of the work presented in this

thesis. In general, the philosophy of cooperative computation—whether by means

of the decomposition of structured codes, hierarchical partitioning of networks, or
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both—can be applied to problems across the board in wireless networks.



Appendix A

Mutual information of dithered lattices over the

multiple-access channel

Here I prove that the mutual information between dithered lattice codewords and any

receiver approaches that of a Gaussian multiple-access channel.

Lemma A.1. Let

x
l

=
p
P [�

l

+ t
l

] mod ⇤
s

(A.1)

be a collection of independent lattice codewords, dithered across the shaping lattice,

for 1  l  L. Let

y =
L

X

l=1

h
l

x
l

+ n, (A.2)

be a noisy sum of the codewords, where the noise n has i.i.d. elements with variance

�2. Then, for any set B 2 {1, · · · , L}, the normalized mutual information between

the transmit signals and the receive signal approaches at least that of a Gaussian

multiple-access channel:

lim
n!1

1

n
I(xB;y|xBC ) � 1

2
log

2

✓

1 +
P
P

l2B h
2

l

�2

◆

. (A.3)



142

When n is Gaussian, this bound is tight.

Proof. Since y is the sum of transmitted signals, conditioning entails only subtracting

away the known component. Therefore, letting

yB =
X

l2B

h
l

x
l

+ n, (A.4)

the mutual information is

lim
n!1

1

n
I(xB;y|xBC ) = lim

n!1

1

n
I(xB;yB) = lim

n!1

1

n
(h(yB)� h(n)), (A.5)

where h(·) is the di↵erential entropy. Since the Gaussian distribution maximizes the

di↵erential entropy for a given variance,

1

n
h(n)  1

2
log(2⇡e�2). (A.6)

To bound h(yB), note that in [36, Lemma 8] it was shown that the density function

f
yB is bounded by

f
yB  ec(n)nf

y

⇤ , (A.7)

where y⇤ is an i.i.d. Gaussian vector with variance P
P

l2B h
2

l

+ �2, and c(n) is a

term approaching zero from above as n ! 1. Plugging this into the definition of
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di↵erential entropy, yields, for su�ciently high n,

1

n
h(yB) � � 1

n

Z

ec(n)nf
y

⇤ log(ec(n)nf
y

⇤) (A.8)

= � 1

n
ec(n)n

Z

f
y

⇤ log(f
y

⇤)� 1

n
ec(n)nc(n)n (A.9)

= ec(n)n
✓

1

n
h(y⇤)� c(n)

◆

(A.10)

� 1

n
h(y⇤)� c(n) (A.11)

! 1

n
h(y⇤) (A.12)

=
1

2
log

 

2⇡e

 

P
X

l2B

+�2

!!

, (A.13)

where (A.11) follows because ec(n)n � 1 and for su�ciently high n the term 1

n

h(y⇤)�
c(n) is positive. Combining (A.6) and (A.13), yields

lim
n!1

1

n
I(xB;y|xBC ) � 1

2
log
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P
X

l2B
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� 1
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log
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1 +
P
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l2B h
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l
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◆

. (A.15)

When n is Gaussian, it is well-known that Gaussian inputs are optimal and result in

the same mutual information as the bounds just established. In this case the bound

is tight.
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