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Abstract

Missing transverse energy is an important aspect of physics analyses at hadron collider detec-

tors. While other particles can be identified by the energy they deposit in the detector, the

presence of neutrinos and other theorized particles must be inferred by an energy imbalance.

At the DØ experiment missing energy algorithms exist not only to calculate the missing en-

ergy in an event, but to distinguish between possible sources: detector measurement effects

or unobserved particles. DØ scientists rely on these algorithms to produce reliable physics re-

sults. This thesis presents updates made in the past year to missing energy certification, the

unclustered energy resolution, and the missing energy significance calculation. It describes a

new processor which calculates missing momentum from tracks as well as development work

toward an unclustered energy calibration.
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1

Chapter 1

Introduction

1.1 Standard Model of Particle Physics

High energy particle physics is the study of the most fundamental elements of matter in the

universe and the forces which govern them. Over the past hundred years the boundaries of

what are known as the fundamental particles have shifted drastically – the rapid discovery

of new particles in the twentieth century rivaled the previous century’s discoveries of the

atomic elements. Today the results of decades of study and experiment are summarized

in the Standard Model, which describes the properties of the twelve elementary particles,

four “force-carrying” gauge bosons, and the electroweak symmetry breaking Higgs boson

(Fig. 1.1).

Three of the forces which define the behavior of the universe and their representative

gauge bosons are elements of the Standard Model. All the forces of nature are mediated

by the exchange of particles [1]. Heisenberg’s uncertainty principle for virtual particles,

written as ∆E∆t ≤ ~, allows them to be created and carry energy as long as the transfer

happens so quickly that the energy imbalance, according to this principle, is impossible to

measure. This relationship defines how long a force-carrying boson can exist, and therefore

how far it can travel, before it completes the interaction. The electromagnetic force is
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Figure 1.1 : Particles of the Standard Model.

mediated by the massless photon (γ) which transfers a quantum of electromagnetic energy

between electrically charged particles. The strong force is mediated by massless gluons (g),

which transfer quanta of the whimsically named “color charge” between quarks and other

gluons. Because gluons, unlike photons, exhibit this self-interaction, particles which carry

color charge are confined within composite particles called hadrons which have a radius of

approximately one femtometer, about the size of a small atomic nucleus. The weak force

is mediated by the massive Z0, W+, and W− bosons and has an even shorter range than

the strong force. Since the weak gauge bosons have mass their energy for the uncertainty

principle can be written as E = mc2. So a W boson traveling near the speed of light can

only cover a small fraction of a femtometer before being reabsorbed.
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The fermions in the Standard Model are divided into three generations, or families,

containing two quarks and two leptons. The masses of the particles increase with each

successive generation. The lightest family contains the familiar atomic constituents: up and

down quarks which form protons and neutrons, the electron, and the electron neutrino. More

massive quarks and leptons were slowly discovered until the third generation was completed

with the discovery of the heavy top quark at Fermilab in 1995 [2].

The fermions can also be divided into groups of six quarks and six leptons. Quarks have

electric charge of +2/3 (up, charm, and top) or -1/3 (down, strange, and bottom), and

interact with the charged weak bosons to turn up-type quarks into down-type quarks or

vice-versa. Each quark has a theoretical “color” of red, green, or blue, and interacts with

other colored particles by exchanging gluons. Particles containing quarks are called hadrons,

which are stable in color-neutral quark combinations: mesons have a quark-antiquark pair

of the same color, and baryons have three quarks with one of each color.

Leptons have an electric charge of -1 (electron, muon, and tau) or zero (neutrinos).

They interact with the weak force in charged lepton/neutrino pairs, and do not interact

with the strong force at all. Neutrinos behave in very unique ways since their mass is

nearly zero and their only option for interacting with other particles is through the weak

force. While neutrinos are commonly produced in radioactive beta decays or high energy

particle collisions, once produced their probability of interacting again is very small. For

this reason neutrinos escape the trackers and calorimeters that make up collider detectors

without creating ionizing radiation to mark their trail. With patience and sufficiently large
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detectors neutrinos can be observed through their interactions with leptons in atoms, but

this is not possible at collider detectors.

One of the great successes of the Standard Model as a theory is its ability to unify the

electromagnetic and weak forces into a joint symmetry group. This formulation predicts a

relationship between the weak boson masses and a mixing angle which has been confirmed

by experiments. Another important element of the Standard Model is electroweak symmetry

breaking. To create a theory with massive weak bosons and a massless photon, symmetry

of the electroweak field must be broken by choosing one of many possible ground states, or

“gauges”. The result of this process, called the Higgs mechanism, is an additional massive

particle – the Higgs boson. The Standard Model cannot predict the masses of any particles,

but after a long search a boson with Higgs-like properties was recently discovered at a mass

of 125 GeV by the experiments at CERN’s Large Hadron Collider [3].

There are still many physical concepts which the Standard Model cannot describe. Neu-

trinos have now been discovered to have mass, which will require a modification to the theory.

Gravity is well understood on a macroscopic scale, but cannot be reconciled with the other

known forces into a unified theoretical framework. Other cosmological phenomena such as

dark matter and dark energy remain even more mysterious. The Standard Model has proved

itself an excellent theory, but the door to new discoveries is certainly not closed.
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1.2 Fermilab and the Tevatron

Fermilab is a United States Dept. of Energy laboratory in Batavia, Illinois, where a wide

range of particle physics experiments are conducted. For several decades it boasted the

largest and most energetic particle accelerator system in the world. Until recently, the

central focus of the physics program at Fermilab was the Tevatron, a hadron collider with two

multipurpose detectors. The Tevatron collided 980 GeV protons and antiprotons for a total

center of mass energy of 1.96 TeV. The Tevatron was supported by a series of accelerators

which worked together to produce and accelerate the particles (Fig. 1.2) [4].

Figure 1.2 : Overview of the accelerator system at Fermilab.
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The chain begins with a collection of Cockcroft-Walton accelerators, which feature columns

supporting large domes charged to -750 kV where hydrogen atoms pick up electrons to be-

come H- ions. The ions are influenced by the electric field and accelerate to an energy of 750

keV as they move down the columns to electrical ground. The ions are then transfered to

the Linac, or linear accelerator, which uses a series of 12 “radio frequency” (RF) cavities to

increase the ions’ energy to 400 MeV. An RF cavity is literally a gap in the metal beam pipe

where an electric field can be applied to the particles within, increasing their kinetic energy.

The applied electric field and induced magnetic field of the cavity are in resonance with each

other at a frequency designed to be in the radio range of the electromagnetic spectrum, hence

the label “RF” cavity. The Linac uses increasingly longer drift tubes between cavities so the

particles never cross a cavity when the electric field opposes their direction of motion. The

Linac then sends 400 MeV H- ions to the Booster, and also sends 66 MeV ions to Fermilab’s

Neutron Therapy Facility where neutrons are produced for medical radiation treatments.

In the Booster the H- ions are stripped of their electrons and accelerated to an energy

of 8 GeV. The Booster is the first circular “synchrotron” accelerator in the chain and has

19 RF cavities. Accelerators like the Booster are called synchrotrons because the RF cavity

frequencies must increase in sync with the growing beam energy to protect the particles from

opposing electric fields, like the drift tubes in the Linac. This way particles in the beam are

continually gaining energy until the RF frequency is set so that they cross the cavities when

the electric field is zero. This allows a single ring to both accelerate particles and store them

at the desired energy. The Booster transfers the 8 GeV protons to the Main Injector or to
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the MiniBooNE target for production of a neutrino beam.

The Main Injector is a much larger circular synchrotron which has 18 RF cavities, ac-

celerating protons to 150 GeV for the Tevatron and 120 GeV for producing antiprotons and

secondary beams such as kaons, pions, muons, or neutrinos. Antiprotons are produced when

the 120 GeV proton beam strikes a nickel target and magnets are used to isolate 8 GeV

antiprotons from the spray of collision products. The antiprotons go through several stages

of “cooling” which make the beam more uniform in both space and momentum. Antiprotons

undergo stochastic cooling in the Antiproton Source and electron cooling after they move

into the Recycler, a storage ring which shares the Main Injector Tunnel. Finally, the an-

tiprotons are returned to the Main Injector for acceleration to 150 GeV and injection into

the Tevatron.

The Tevatron is the most well known of Fermilab’s accelerators. It has a 4 mile circumfer-

ence and the protective berm can be seen from the air. Superconducting niobium-titanium

magnets cryogenically cooled to near four degrees Kelvin with liquid helium bend and focus

the particle beams, which are accelerated through 8 RF cavities to 980 GeV. The beams

are directed so that they collide in two detectors: the Collider Detector at Fermilab (CDF),

and DØ (named for its position on the Tevatron ring). The accelerator complex was devel-

oped over many years and represents an enormous engineering achievement. The Tevatron

run ended in September 2011 after the collider detectors recorded approximately 10 fb−1 of

integrated luminosity, or about five trillion collisions [5].
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1.3 The DØ Detector

The DØ detector is located on the southeast portion of Fermilab’s Tevatron accelerator. It

is a standard example of modern hadron collider detectors: the beampipe sits inside a tube

of silicon trackers which are surrounded by electromagnetic and hadronic calorimeters and

a muon tracking system (Fig. 1.3) [6].

Figure 1.3 : View of the full DØ detector in the y−z plane showing the beampipe, central tracking,
calorimetry, and muon system.
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1.3.1 Tracking and Preshowers

The tracker, the first layer of detector outside the beryllium beampipe, consists of the silicon

microstrip tracker (SMT) and the central fiber tracker (CFT). The SMT, a system of barrels

and disks equipped with silicon sensors, is close enough to the interaction point that it can

identify secondary vertices in b quark decays to a precision of approximately 15 µm. It

covers a wide range of polar angle so that tracks can be matched to energy clusters in the

calorimeters and muon system. The CFT is made of cylinders of polystyrene scintillating

fibers which are located just outside the SMT. The CFT measures tracks with a resolution of

about 100 µm. Charged particles moving through the trackers leave small amounts of ionizing

radiation behind, which are detected by sensitive amplifiers in the SMT readout chips and

by light produced in the CFT scintillators. Photons produced in the CFT fibers are carried

to Visible Light Photon Counters (VLPCs) which convert photons to electrical signals. The

VLPCs are operated at 9K and are capable of converting single photons to electrons with

an efficiency of greater than 75%. Signals from the tracking detectors are called “hits”, and

particle tracks are reconstructed by connecting hits along a path. Both layers of tracking

are encased in a 2T solenoid magnet which can be operated at both polarities. Tracking

a particle’s motion through the magnetic field gives information about electric charge and

momentum, which drastically improved DØ’s RunII performance over the RunI detector

which had no magnetic field in its tracker.

Outside the tracking solenoid are the central preshower (CPS) and forward preshowers

(FPS). In some ways these detectors act as both trackers and calorimeters, and help match
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tracks to the calorimeter showers. They are designed to contain approximately two radiation

lengths of material which will spark electromagnetic showers from electrons and photons. The

CPS is made of triangular scintillator strips which are interlaced so that tracks hit multiple

strips and there is no dead space. The FPS has three layers: a minimum ionizing particle

(MIP) layer which most particles travel through leaving only a minimum amount of energy, a

steel absorber layer, and a shower layer where electrons and photons will leave showers while

hadronic particles and muons continue traveling through as MIPs. These different types of

behavior in the preshower detectors provide valuable information for particle identification.

1.3.2 Calorimeters and Muon System

The next layer of the DØ detector is a series of liquid argon sampling calorimeters. There

is no magnetic field in this region so the particles are acted upon by creating short distance

electric fields between grounded absorber plates and electronic readout boards with high

voltage surfaces. Shower particles created in the absorber plates ionize liquid argon atoms,

and the electric field moves the ionization electrons to the readout boards so their energy

can be measured. The innermost calorimeter is the electromagnetic calorimeter with 3-4

mm uranium absorber plates which cause electrons and photons to create showers of other

electromagnetic particles as they slow down and lose energy. The next layer is the hadronic

calorimeter which has two segments: fine and coarse. The fine hadronic calorimeter has

thicker absorber plates, 6 mm uranium-niobium alloy, in which hadronic particles begin

showers. The coarse hadronic calorimeter’s plates are much thicker, 46 mm, and made of
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copper or stainless steel. While traveling through the calorimeter all hadronic particles will

shower into cone-shaped clusters of energy. Collections of closely spaced showers form “jets”

which are used to trace hadronic particles back to the original quarks from a collision and

estimate their energies.

The calorimeters exist in three sections, a central barrel and two endcaps, so to main-

tain the 90K liquid argon temperature three separate cryostats are needed. Just inside each

cryostat, outside the first layer of uranium, are subdetectors called the massless gaps (MG),

which are essentially one calorimeter readout cell. In between the cryostats are the intercryo-

stat detectors (ICD) which are made of scintillating tiles in light-tight aluminum boxes. The

light from particles impacting the scintillator is directed through wavelength shifting fibers to

photomultiplier tubes. Also between the calorimeter cryostats are the luminosity monitors.

The luminosity monitors are two arrays of twenty-four scintillating crystals and photomulti-

plier tubes which are mounted around the beampipe next to the endcap calorimeters. They

measure pp̄ inelastic scattering to calculate the number of collisions in the detector as well

as to monitor beam halo backgrounds.

The muon tracking system is the exterior layer of the DØ detector and tracks the mo-

mentum of muons, the only charged particles which travel through all the tracking and

calorimeter layers without interacting. The muon system uses a 1.8T toroidal magnetic

field, drift tubes, and scintillation counters to make an independent momentum measure-

ment which helps match muons to tracks left in the central detector and improve the muon

momentum resolution.
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Figure 1.4 : Close up view of the central region of the DØ detector showing the SMT, CFT,
solenoid, preshower detectors, luminosity monitors, and intercryostat detectors.
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1.3.3 Triggers and Data Reconstruction

Collisions are processed through three levels of triggers to collect events with interesting

physics processes. The first level is a series of hardware triggers which make decisions to

keep or reject events based on calorimeter energy deposits or track momenta above certain

thresholds. These triggers accept an average of 2000 events per second, or a rate of 2 kHz.

The second trigger level combines hardware triggers with computer processors which can

form physics objects, match tracks to calorimeter clusters, and calculate quantities such as

missing transverse energy and a track’s impact parameter with the beam. This information

is used to look for known signatures across the subdetectors and reduce the accepted event

rate by half. The Level 3 trigger is a farm of microprocessors which make more detailed

calculations and study relationships between objects in the event to reduce the accept rate

to 50-100 Hz. This final output rate is manageable for the tape record system and promotes

high quality physics data samples.

Events passing all three trigger levels are processed through DØ’s reconstruction code

and “skimmed” to produce smaller data samples containing events with similar objects or

conditions. Reconstructed data samples are stored and accessed with a program called SAM:

Sequential data Access via Metadata. Each data sample has a unique SAM “definition”

which allows the program to access specific files and make them available to a user’s analysis

program. SAM definitions are used here to identify the samples for each study in a way

that other DØ users could replicate. DØ’s Common Samples Group creates SAM definitions

with consistent terms. The definition “CSG CAF 2EMhighpt PASS5 p21.18.00 p20.16.08”
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provides the following information:

• CSG: definition produced by the Common Samples Group.

• CAF: data processed using DØ’s Central Analysis Framework.

• 2EMhighpt: name of the specific data skim.

• PASS5: indicates a major version of the reconstruction code; also the data epoch.

• p21.18.00: CAF version number.

• p20.16.08: specific version of the reconstruction code.

1.3.4 Monte Carlo Simulation

DØ data is simulated using Monte Carlo methods. The Monte Carlo events are produced

using the geant3 program [7] to model the detector materials and alpgen [8] and/or

pythia [9] to model the physics processes. Monte Carlo (MC) has been produced to simulate

a large number of physics processes for each data epoch. MC for the studies presented here

uses alpgen for particle generation combined with pythia for hadronization processes, and

the CTEQ6L1 parton distribution function library [10].

DØ MC is also identified and accessed using SAM. Common SAM definitions for MC have

different identifiers than data definitions. For example, a SAM definition for Z → ee events

“CSG alpgenpythia gamz ee 75 130 p212100 Run2b3 v3” gives the following information:

• CSG: definition produced by the Common Samples Group.
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• alpgenpythia: alpgen+pythia used to model physics processes.

• gamz: main particles (γ or Z) produced in the collision.

• ee: decay products (two electrons) of the main particles.

• 75 130: mass range of the main particles.

• p212100: CAF version number.

• Run2b3 v3: data epoch and version of the simulation.

1.4 Missing Energy in the DØ Framework

Because neutrinos cannot be directly detected in collider experiments we rely on missing

transverse energy to identify their presence. Since the colliding beams move in opposite

directions with equal energy, conservation of momentum requires that the vector sum of par-

ticle momenta orthogonal to the beam direction be equal to zero. When this sum is nonzero

noise in the detector, random fluctuations of measured particle energies, or undetected par-

ticles like neutrinos participated in the event. Many models of physics beyond the Standard

Model also include particles, such as the supersymmetric neutralino, whose only signature is

a substantial excess of missing energy.

DØ calculates missing transverse energy ( 6ET or MET) as the negative vector sum of

all energy deposits in a collection of calorimeter cells. Energy is a scalar quantity, but the

magnitude and location of calorimeter energy deposits can be used to closely estimate a

particle’s momentum. A spatial coordinate system is defined for the DØ detector such that
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x̂ points out of the Tevatron ring, ŷ points up, and ẑ points along the direction of the proton

beam. In this coordinate system the x and y components of 6ET for a group of cells are

calculated as:

6ET,x =−
∑

cells

Ecell
x (1.1)

6ET,y =−
∑

cells

Ecell
y (1.2)

The magnitude and direction of 6ET are then:

6ET =

√

(6ET,x)
2 + ( 6ET,y)

2 (1.3)

φ 6ET
= tan−1 ( 6ET,y/ 6ET,x) (1.4)

The scalar sum of calorimeter cell energy deposits is called scalar transverse energy (SET):

SET =
∑

cells

Ecell
T (1.5)

6ET and SET are calculated for each calorimeter component and sums of these components

form the various definitions of 6ET. The two most basic definitions are called “METC” and

“METD”:

METC =METEM+METMG+METICD+METFH+METCH (1.6)

METD =METEM+METMG+METICD+METFH (1.7)

SETC =SETEM + SETMG + SETICD + SETFH + SETCH (1.8)

SETD =SETEM + SETMG + SETICD + SETFH (1.9)

where METEM is the 6ET from the electromagnetic calorimeter, METMG is the 6ET from

the massless gaps, METICD is the 6ET from the intercryostat detectors, METFH is the 6ET
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from the fine hadronic calorimeter, METCH is the 6ET from the coarse hadronic calorimeter,

and SET follows the same conventions. In general the coarse hadronic calorimeter suffers too

much from noise to be useful in 6ET calculations so it is discarded from METD, the standard

form of uncorrected 6ET .

Since the energies of physics objects are corrected for detector effects after reconstruc-

tion 6ET also requires correction. The processor ReComputeMET in the DØ analysis frame-

work adjusts METD and SETD as necessary to correct for jet energy in the coarse hadronic

calorimeter (CHcorr), scaling of jet energy (JEScorr), scaling of electromagnetic object en-

ergy (EMcorr), muon momentum measured in the muon system (MUcorr), and energy left by

muons in the calorimeter (MUCalcorr). For each term the corrections to METDx, METDy,

and SETD are calculated and added to the uncorrected value.

CorrMET = METD+CHcorr+ JEScorr

+ EMcorr+MUcorr+MUCalcorr (1.10)

CorrSET = SETD + CHcorr + JEScorr + EMcorr +MUcorr +MUCalcorr (1.11)

These corrected versions of 6ET and SET serve as the basic variables for analysts.

Since 6ET is a crucial component of events with neutrinos in the final state there are

multiple algorithms dedicated to both measuring the missing energy and identifying collisions

with real missing energy from physics processes. Chapters 2-5 detail the work that has been

done to certify the missing energy measurements at DØ, develop new missing energy tools,

and improve the existing tools.
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Chapter 2

Missing ET Certification

2.1 6ET Certification for RunIIb4

Data collected at DØ during RunII is split into several sections, or epochs. RunIIa encom-

passes the time up to March 2006. A major upgrade was performed on the detector and data

taken after the upgrade, from June 2006 through September 2011, is called RunIIb. RunIIb

is further separated into four epochs: RunIIb1 - RunIIb4. After the data for each epoch

was completed and cataloged, 6ET and other reconstructed objects required certification to

ensure that the identification algorithms performed properly in the analysis framework.

Unlike physics objects such as electrons, which have a certain probability of being cor-

rectly identified in an event, 6ET is always measured. To certify 6ET , distributions from one

epoch are compared to that of another and the differences interpreted. Certification is per-

formed on the events in the “zero-bias/minimum-bias” (ZBMB) data sample. Zero-bias and

minimum-bias events form a random sample of activity in the detector. Zero-bias events

only require that a beam crossing occurred, while minimum-bias events add the requirement

that inelastic collisions be observed in the luminosity monitor. Figure 2.1 shows the METD

distributions for the RunIIb4 certification. Similar distributions are plotted for all the 6ET

definitions used in Eq. 1.6 (Fig. 2.2) so that each subdetector can be checked for discrep-
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ancies. The RunIIb4 certification revealed large tails in the 6ET distributions, which were

eventually linked to events with poorly reconstructed primary vertices. Figure 2.3 shows

RunIIb4 6ET compared to RunIIb3 after a cut at 1.0 cm is placed on the radial position of

the primary vertex. The study leading to this choice of vertex cut is described in the next

section.

6ET certification also includes a study of the relationships between 6ET , scalar ET (SET),

number of jets, number of primary vertices, and luminosity. Luminosity and SET are both

general measures of the amount of activity in an event, so it is expected that the average

amount of 6ET will increase steadily with both of these variables (Fig. 2.4). A primary vertex

is the location of an interaction between a proton and antiproton in the beams, as opposed

to vertices formed by the decay of collision products. Aside from major changes in jet or

primary vertex algorithms, the relationships between these variables, 6ET , and SET should

remain constant (Fig. 2.5). Significant changes in these relationships can help identify issues

with the reconstruction. This part of the RunIIb4 certification revealed a marked decrease

in the number of primary vertices along with an increase in the average 6ET per vertex. Both

discrepancies arose from changes in the vertexing algorithms for RunIIb4.

The final component of 6ET certification involves studying the relationship between
√
SET

and the mean and RMS of METx and METy (Fig. 2.6). Since the average value of 6ET has

been shown to increase linearly with
√
SET it is expected that the width of the x and y

components will exhibit the same relationship. While the widths of METx and METy are

expected to grow with increasing event activity, the mean values of these distributions should
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Figure 2.1 : Certification of METD and SETD in RunIIb4 ZBMB events showing excesses in the
tail regions. METD (a) is the 6ET from the electromagnetic and fine hadronic calorimeters as well
as the massless gaps and intercryostat detectors. SETD (b) is the scalar sum of energy deposited
in each of these subdetectors. METDx (c) and METDy (d) are the spatial components of METD.
For example, METDx = −∑

EM calo Ex −
∑

FH calo Ex −
∑

MGEx −
∑

ICDEx.
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Figure 2.2 : Certification of subdetector 6ET in RunIIb4 ZBMB events with radial primary vertex
position less than 1 cm. This primary vertex cut reduces the high 6ET tails seen in Fig. 2.1.
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Figure 2.3 : RunIIb4 METD and SETD with radial primary vertex position less than 1 cm, a cut
which removes the high 6ET tails seen in Fig. 2.1.

remain close to zero. It has been consistently observed that METx shifts slowly to positive

values as
√
SET increases and METy shifts slowly to negative values. In RunIIb4 the mean

values of both distributions remained closer to zero than in RunIIb3.

2.2 Dependence on Primary Vertex Position

While 6ET certification shows that scalar ET distributions remained fairly constant over the

course of RunIIb, distributions of 6ET exhibit tails which vary with data epoch (Fig. 2.7). To

some extent, these tails are the result of primary vertex locations that are unphysical. METD

distributions were studied in each data epoch using the data samples listed in Tab. 2.1.

Primary vertex positions were compared for events in two categories: “peak” events with

METD less than 15 GeV, and “tail” events with METD greater than 40 GeV.
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Figure 2.4 : Certification of relationships between METD, SETD, and luminosity in RunIIb4 ZBMB
events. METD has the expected monotonic increase with respect to SETD and luminosity (a-b),
and no large changes are shown between run periods.
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in RunIIb4 ZBMB events. Changes in the primary vertex algorithms caused a reduced average
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Figure 2.7 : METD distributions in RunIIb1 and RunIIb2 show tail excesses in RunIIb1.

Data Epoch SAM Definition N events

RunIIb1 CSG CAF ZBMB PASS2 p21.10.00 39585760

RunIIb2 CSG CAF ZBMB PASS4 p21.1x.00 60805480

RunIIb3 CSG CAF ZBMB PASS5 p21.18.00 68885411

RunIIb4
CSG CAF ZBMB PASS6 p21.20.00

45617957
CSG CAF ZBMB PASS6 p21.21.00

Table 2.1 : Primary vertex study data samples.
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Peak events, regardless of data epoch, tend to have highly central primary vertex posi-

tions, with a small fraction of events uniformly scattered outward (Fig. 2.8). Tail events,

however, do not show a uniform scatter (Fig. 2.9). The primary vertex is either central,

corresponding to well-vertexed events with real 6ET , or greater than approximately 2 cm

away.

This effect is especially noticeable for RunIIb1 and RunIIb4 data, which have significantly

more tail events than RunIIb2 and RunIIb3 because of changes in requirements for identifying

a primary vertex. During RunIIb1 only two tracks were required for a vertex to be labeled

a primary vertex. For RunIIb2 and RunIIb3 the requirement was changed to three tracks,

although four or more tracks were preferred. In RunIIb4 a fake track killer was implemented,

so the requirement was loosened to two tracks.

While the ratio of peak to tail events falls relatively smoothly (Fig. 2.10), a plot of

radial primary vertex position for peak and tail events in all RunIIb epochs shows a bimodal

distribution for the tail events, with a clear minimum near 1.0-1.5 cm (Fig. 2.11). The

minimum region is in good agreement with the 1.42 cm inner radius of the beampipe [11],

and cuts at 1 cm greatly improve the agreement in METD distributions across data epochs

(Fig. 2.12). This is an appropriate cut for many analyses studying events with two-particle

vertices, especially those which also rely heavily on 6ET .

RunIIb4 was reconstructed in five segments, and the final two segments place a radial

cut of 1.6 cm on the primary vertex position, consistent with the results of this study. No

manual vertex cut was needed to reduce 6ET tails in these segments. Combined with vertex
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Figure 2.8 : Primary vertex position of peak events in each RunIIb epoch.
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Figure 2.9 : Primary vertex position of tail events in each RunIIb epoch.
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Figure 2.12 : METD distributions for each RunIIb epoch after a primary vertex cut at 1 cm.

cuts on the earlier RunIIb4 data the 6ET distributions can be brought to agreement with

earlier epochs.

2.3 6ET Certification for Reprocessed Events

After the end of operations at DØ approximately fifteen percent of the total RunIIb data was

reprocessed to apply improved calibrations and reconstruction algorithms. The reprocessed

data was then certified against the original data to ensure good performance. Reprocessed

data was matched to original data using the run and event numbers to ensure a direct

event-to-event comparison. With few exceptions, agreement in the 6ET distributions was

nearly perfect. The only issues found were in RunIIb1 METMG and METICD, where the

reprocessed data showed slightly less 6ET than the original data (Fig. 2.13(e-f)). The origin
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of these discrepancies is not clear, however the overall effect on the main 6ET definitions is

negligible (Fig. 2.13(a-d)). Figures 2.13 - 2.16 show the uncorrected (METD) and corrected

(CorrMET) versions of 6ET and scalar ET for reprocessed data in each epoch.

Two versions of Monte Carlo were produced to simulate the reprocessed data: RunIIb1

and a combination of RunIIb2,3,4. Comparisons of 6ET in reprocessed data to reprocessed

Monte Carlo show the same type of discrepancies seen in the original data and Monte Carlo

(Figs. 2.17 - 2.20). The corrected version of 6ET from the ReComputeMET processor consistently

provides the best agreement between data and Monte Carlo, but as seen in these figures there

can be 10-20% disagreements even in the high statistics regions of the CorrMET distributions.

An attempt to improve the modeling will be discussed in Chapter 5.
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Figure 2.13 : RunIIb1 reprocessed Z → ee data compared to original data. Discrepancies seen in
METMG (e) and METICD (f) do not have a noticeable effect on METD (a).



34

METD (GeV)
0 10 20 30 40 50 60 70 80 90 100

1

10

210

310

410

2b2 Repro Data

2b2 Original Data

METD Distribution

(a) METD

SETD (GeV)
0 100 200 300 400 500 600 700

1

10

210

310

410

2b2 Repro Data

2b2 Original Data

SETD Distribution

(b) SETD

CorrMET (GeV)
0 10 20 30 40 50 60 70 80 90 100

1

10

210

310

410

2b2 Repro Data

2b2 Original Data

CorrMET Distribution

(c) CorrMET

CorrSET (GeV)
0 100 200 300 400 500 600 700

1

10

210

310

410

2b2 Repro Data

2b2 Original Data

CorrSET Distribution

(d) CorrSET

Figure 2.14 : RunIIb2 reprocessed Z → ee data compared to original data.
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Figure 2.15 : RunIIb3 reprocessed Z → ee data compared to original data.
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Figure 2.16 : RunIIb4 reprocessed Z → ee data compared to original data.
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Figure 2.17 : CorrMET in RunIIb1 reprocessed Z → ee data/MC and original data/MC. Agreement
in the reprocessed version is similar to that of the original version.
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Figure 2.18 : CorrSET in RunIIb1 reprocessed Z → ee data/MC and original data/MC. Agreement
in the reprocessed version is similar to that of the original version.



39

CorrMET (GeV)
0 10 20 30 40 50 60 70 80 90 100

1

10

210

310

410

2b234 Repro Data

2b234 Repro MC

CorrMET Distribution

CorrMET (GeV)
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5

4

Data/MC Ratio

(a) Reprocessed CorrMET

CorrMET (GeV)
0 10 20 30 40 50 60 70 80 90 100

1

10

210

310

410

2b234 Original Data

2b23 Original MC

CorrMET Distribution

CorrMET (GeV)
0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

3.5

4

Data/MC Ratio

(b) Original CorrMET

Figure 2.19 : CorrMET in RunIIb2,3,4 reprocessed Z → ee data/MC and original data/MC.
Agreement in the reprocessed version is similar to that of the original version.
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Figure 2.20 : CorrSET in RunIIb2,3,4 reprocessed Z → ee data/MC and original data/MC. Agree-
ment in the reprocessed version is similar to that of the original version.
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Chapter 3

Unclustered Energy Resolution & Missing ET

Significance

An algorithm known as 6ET significance (METsig) was developed to identify events where

it is unlikely that the 6ET originated from a physics process. This algorithm calculates a

measurement resolution for 6ET , a key component of which is the resolution for unclustered

energy, defined in detail below. While the detector resolutions for the physics objects (jets,

muons, and electrons) have been maintained throughout the lifetime of DØ, until recently

the unclustered energy resolution used to calculate METsig had not been updated since

RunIIa. New resolution functions were derived in 2012 for both RunIIa and RunIIb, and

issues discovered in certain analyses spurred a study of the behavior and origin of the older

resolution functions.

3.1 Unclustered Energy

In all events recorded at DØ there are many energy deposits in the calorimeter which are

not included in a reconstructed physics object. The vector sum of transverse energy in

these cells is the “unclustered” energy (UE) and the scalar sum is labeled scalar unclustered

energy (SUE). UE comes from a variety of sources: jet energy outside reconstruction cones,

“soft” particles or jets with energies below the reconstruction thresholds, and “hot” or noisy
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calorimeter cells (although data quality information allows rejection of events with excessive

noise). In the DØ framework unclustered energy information is stored in a TMBLeBob object.

Unclustered energy variables from this object will be denoted UEx, UEy , and SUE.

The sum of physics object energies and unclustered energy describes all the transverse

energy deposited in the calorimeter. Since 6ET is defined as the opposite of this quantity,

UE values can be calculated from 6ET , scalar ET (SET), and the physics object transverse

momenta. This calculated version of unclustered energy will be denoted with lowercase

letters:

ue+
∑

objects

pT =
∑

calo

ET = − 6ET (3.1)

ue = − 6ET −
∑

leptons

pT −
∑

jets

pT (3.2)

sue = SET −
∑

leptons

pT −
∑

jets

pT (3.3)

3.2 6ET Significance

6ET Significance is a measure of how well 6ET can be described by random fluctuations of

the physics objects’ energies within their energy resolutions [12]. The DØ detector measures

energies of objects such as electrons and photons with good precision, while objects such as

jets may have much larger resolutions. The measured value of 6ET alone is often not sufficient

to determine whether a real source of missing energy (i.e. a neutrino) was present in the

event. METsig combines 6ET with the information from the directions and energy resolutions

of the physics objects to present a clearer picture of the source of missing energy in the event.
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Assuming each term in the 6ET calculation (Eq. 3.1) is independent of the others, the 6ET

resolution will equal a quadrature sum of their resolutions. Since the measured energy of

each physics object fluctuates along its direction, which is generally well-measured at DØ, its

contribution to the 6ET resolution is the projection of the object’s resolution in the direction

of the 6ET . Since UE comes from many small clusters of energy it can theoretically fluctuate

in any direction, so no projection of its resolution is taken. Letting σ2
object represent a physics

object’s resolution, θ the angle between 6ET and the physics object, and σ2
UE the unclustered

energy resolution, the 6ET resolution (σ2
6ET
) is written as:

σ2
6ET

=
∑

objects

σ2
object cos

2 θ + σ2
UE (3.4)

To calculate METsig the 6ET measurement’s probability density function is taken to be a

normalized Gaussian distribution, N (µ, σ), centered at the value of 6ET with variance equal

to the calculated 6ET resolution. METsig is defined as the natural logarithm of the ratio of

two probabilities from this distribution: the probability of 6ET equal to its measured value,

and the probability of 6ET equal to zero.

p( 6ET ) = N ( 6ET , σ6ET
) (3.5)

METsig ≡ log
p( 6ET = 6ET,meas)

p( 6ET = 0)
(3.6)

In general, events with large 6ET resolutions or small amounts of 6ET will have smaller

METsig values. Events with narrow resolutions or large amounts of 6ET will have high METsig

values. Larger METsig values indicate a higher probability that the missing energy in the

event originated from a physics source. The range of METsig values is determined by the
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minimum value of the denominator in Eq. 3.6. To avoid division by zero a lower bound must

be placed on that probability. To establish a convenient METsig range of approximately one

through ten, the lower bound was traditionally set to:

p( 6ET = 0) = 1× 10−4 (3.7)

By changing the exponent in this relationship, the range of METsig can be extended and

the shape of the distributions will change.

3.3 UE Resolution Functions

3.3.1 Derivation Procedure

UE resolution functions are derived from Z → ee events, which have well-measured electrons

and no real missing energy. The UE vector can be described in component form in two

ways, the simpler of which is UEx and UEy as defined by the physical positioning of the

detector. UE is azimuthally symmetric to within a small effect from longer readout cables

below the detector, which require higher noise thresholds. The UEx and UEy distributions

are therefore nearly equivalent and have traditionally been combined to increase statistics.

Figure 3.1 gives an example of this procedure: combining UEx and UEy produces only small

changes in the RMS.

UE can also be decomposed onto the axes defined by the transverse momentum of the

Z boson. The component of the unclustered energy parallel to this momentum describes

the system’s hadronic recoil from the Z boson. The orthogonal component (UE⊥) is a

combination of noise, detector fluctuations, and unclustered energy from the underlying
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Figure 3.1 : UEx (a) and UEy (b) distributions are nearly equivalent and have traditionally been
combined to derive UE resolution functions. In this example of RunIIa MC events with 0 jets,
combination (c) increased the RMS of the bin (8 <

√
SUE < 9) by less than one percent.

event. Using this component allows calculation of the UE detector resolution with less

influence from the type of event. UE⊥ is constructed as follows:

Zx =
∑

electrons

px (3.8)

Zy =
∑

electrons

py (3.9)

Z =
√

Z2
x + Z2

y (3.10)

UE⊥ =
1

Z
(UEyZx − UExZy) (3.11)

Because energy surrounding reconstructed jet cones is a major component of unclustered

energy, a UE resolution function is derived separately for cases of 0, 1, and 2 or more jets.

Events are further separated into bins of scalar unclustered energy (specifically
√
SUE)

and for each bin a histogram is filled with the values of a UE component (UE⊥ or UEx,y).

These distributions have a Gaussian shape which is fitted using the root program [13]. The

fitted width of this Gaussian is the resolution value for that
√
SUE bin. The UE resolution
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function is the function which describes the relationship between the fitted RMS values and

√
SUE. The parameters of a polynomial fit define a parametrization used in METsigAlg.

Figure 3.2 demonstrates this procedure for 0 jet events in RunIIa Z → ee Monte Carlo.
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Figure 3.2 : Gaussian fits are performed on UE distributions in each bin of
√
SUE (a). The σ value

and its uncertainty are plotted as a function of
√
SUE (b). The linear fit parameters are used in

METsigAlg to calculate the UE resolution.

3.3.2 2012 RunIIa & RunIIb Resolutions

Z → ee events were selected according to the following criteria from the datasets listed in

Tab. 3.1 and Tab. 3.2.

• 2 Point1 electrons [14]

• opposite sign electrons

• electron and jet pT > 15 GeV
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• 75 GeV < dielectron mass < 110 GeV

• primary vertex radial position < 1.0 cm

Electrons are selected using a “working point” (Point0, Point05, Point1, Point2), which is

a collection of electron identification and quality requirements [14]. The requirements grow

stricter at each successive working point. The Point1 definition requires that the energy

cluster in the electromagnetic calorimeter match a track in the central tracking system.

All RunIIb epochs were combined, and it was determined (Fig. 3.3) that the resolutions

did not show significant luminosity dependence. All Z → ee events meeting the selection

criteria in the complete DØ dataset were used in the derivation.
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Figure 3.3 : RMS of UE⊥ in RunIIb Z → ee events in several luminosity bins. The distributions
overlap sufficiently that luminosity bins were deemed unnecessary for the RunIIb UE resolution
functions.

In RunIIa, linear fits of the UE⊥ resolution in bins of
√
SUE gave the best description

of the data. Fit variable
√
SUE − 5 was used for consistency with previous convention.
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Data Epoch SAM Definition 0 jets 1 jet 2+ jets

RunIIa CSG CAF 2EMhighpt PASS3 50235 11269 2851

RunIIb1 CSG CAF 2EMhighpt PASS2 44879 10676 2778

RunIIb2 CSG CAF 2EMhighpt PASS4 92451 24702 7230

RunIIb3 CSG CAF 2EMhighpt PASS5 65890 17727 5181

RunIIb4 CSG CAF 2EMhighpt PASS6 79344 21120 6903

RunIIb Total 282564 74225 22092

Table 3.1 : Data samples used to derive UE resolutions

MC Epoch
SAM Definition

0 jets 1 jet 2+ jets
CSG alpgenpythia gamz ee 75 130

RunIIa p181400 v12 1294278 523195 248054

RunIIb1 p211100 v12 4888894 2017022 831796

RunIIb2 p211800 Run2b2 v6 2277634 803296 287149

RunIIb3 p212100 Run2b3 v3 1810744 630164 231810

RunIIb Total 8977272 3450482 1350755

Table 3.2 : Monte Carlo samples used to derive UE resolutions
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For RunIIb, better fits were achieved by linear fits in bins of SUE. Resolution functions for

RunIIa and RunIIb are listed in Tabs. 3.3 and 3.4, with fits shown in Figs. 3.4 and 3.5.

3.3.3 2006 RunIIa Resolutions

The original unclustered energy resolution functions were derived in 2006 for the top quark

group, using the calculated version of UE and decomposing the ue vector along the standard

x and y axes rather than finding ue⊥. The presentation of the derivation by Peter Renkel

[15] notes the following selection criteria, but not specific data samples.

• 2 tight electrons

• opposite sign electrons

• pT of second electron > 15 GeV

• pT of second jet (or only jet in 1-jet events) > 20 GeV

The 2006 resolution functions, which were used in METsigAlg from its creation in 2007

until 2012, are summarized in Tab. 3.5.

3.3.4 2007 RunIIa Resolutions

In January 2007, Renkel presented updated UE resolution parameters with improvements

in the 2 or more jet bin [16]. Data to Monte Carlo agreement was substantially improved

with the update, and the slope parameters in the 2 or more jet bin were decreased by

approximately a factor of two, bringing them more in line with slope parameters in the other



50

N jets Type p0 p1

0 jet
Data 2.184 ± 0.009 0.4374 ± 0.0047

MC 2.287 ± 0.007 0.4918 ± 0.0034

1 jet
Data 2.99 ± 0.03 0.5256 ± 0.0145

MC 2.774 ± 0.022 0.5765 ± 0.0087

2+ jet
Data 3.259 ± 0.097 0.536 ± 0.041

MC 2.995 ± 0.065 0.6376 ± 0.0198

Table 3.3 : RunIIa UE Resolution Functions. σUE⊥
= p0 + p1(

√
SUE − 5). The resolution grows,

as seen in both p0 and p1 values, with increases in jet multiplicity.

N jets Type p0 p1

0 jet
Data 1.432 ± 0.011 0.03292 ± 1.7×10−4

MC 1.48 ± 0.01 0.03571 ± 1.5×10−4

1 jet
Data 2.323 ± 0.032 0.03128 ± 3.9×10−4

MC 2.007 ± 0.029 0.03543 ± 3.5×10−4

2+ jet
Data 2.487 ± 0.07 0.03158 ± 7.6×10−4

MC 2.302 ± 0.074 0.03544 ± 7.6×10−4

Table 3.4 : RunIIb UE Resolution Functions. σUE⊥
= p0+ p1 ∗SUE. As jet multiplicity increases

the resolution grows, as seen in the p0 values.
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Figure 3.4 : RunIIa RMS of UE⊥ in bins of
√
SUE with linear fits.
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Figure 3.5 : RunIIb RMS of UE⊥ in bins of SUE, with linear fits.
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N jets Type p0 p1

0 jet
Data 2.1 0.4

MC 2.1 0.4

1 jet
Data 3.0 0.5

MC 3.2 0.6

2+ jet
Data 3.0 1.7

MC 4.0 1.1

Table 3.5 : October 2006 UE Resolution Functions. σuex,y = p0 + p1(
√
sue− 5)

jet cases. The updated functions are summarized in Tab. 3.6. The 2007 functions are more

reproducible in the current framework (Fig. 3.6), however this update was never propagated

to METsigAlg.
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Figure 3.6 : RMS of uex,y versus
√
sue in RunIIa Z → ee data events (0, 1, and 2+ jets) compared

to UE resolution functions from October 2006 and January 2007.
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N jets Type p0 p1

0 jet
Data 2.83 ± 0.02 0.52 ± 0.08

MC 1.97 0.65

1 jet
Data 3.77 ± 0.07 0.51 ± 0.024

MC 3.06 0.60

2+ jet
Data 4.14 ± 0.19 0.58 ± 0.065

MC 4.38 0.52

Table 3.6 : January 2007 UE Resolution Functions. σuex,y = p0 + p1(
√
sue− 5)

3.4 Effect on 6ET Significance

3.4.1 Jet-Inclusive Comparison

Effects on 6ET significance of switching from the 2006 resolution functions to the 2012 func-

tions were tested on the RunIIa and RunIIb3 samples listed in Tab. 3.7. Z → ee events

were selected with the same criteria listed in section 3.3.2. W → eν Monte Carlo events

were required to have exactly one Point1 electron, and QCD data events were required to

have exactly one Point0 electron and pass one of several jet triggers which define the “QCD”

data skim. The Point0 electron definition has looser requirements than Point1 and does not

require that the energy cluster be matched to a track.

Figure 3.7 shows that in Z → ee events the main effect of using the new resolutions was

a decrease of high METsig events, which is appropriate since well-measured Z → ee events
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Name Epoch SAM Definitions N events

Z → ee MC
RunIIa CSG alpgenpythia w lnu p181400 v12 32854

RunIIb3 CSG alpgenpythia w lnu p212100 Run2b3 v3 25994

2EM Data
RunIIa CSG CAF 2EMhighpt PASS3 p18.14.00 64364

RunIIb3 CSG CAF 2EMhighpt PASS5 p21.18.00 p20.16.08 38135

W → eν MC
RunIIa CSG alpgenpythia w lnu p181400 v12 32355

RunIIb3 CSG alpgenpythia w lnu p212100 Run2b3 v3 16415

QCD Data
RunIIa CSG CAF QCD PASS3 p18.14.00 34143

RunIIb3 CSG CAF QCD PASS5 p21.18.00 p20.16.08 35541

Table 3.7 : 6ET significance UE resolution test samples

should not have 6ET from any physics process. METsig in W → eν Monte Carlo events

changes slightly: the double peak structure seen when using the old resolutions broadens

into a single peak. QCD data events do not show any significant change in METsig.

3.4.2 Issues in 2+ Jet Case

For analyses interested exclusively in the case of two or more jets, separation between mul-

tijet data and high METsig signal samples was negatively affected by using the 2012 UE

resolutions, especially when a high 6ET requirement is added (Fig. 3.8(e-f)). This issue was

identified in the ZH → νν̄bb̄ Higgs boson analysis and made it clear that the 2006 resolution

functions were not well understood.
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Figure 3.7 : 6ET significance distributions with 2006 and 2012 UE resolutions in Z → ee data/MC
(a-b), W → eν MC, and QCD data (c-d).
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Figure 3.8 : 6ET significance distributions in each jet case with 2006 and 2012 UE resolutions in
RunIIb3 W → eν MC and QCD data. The 2+ jet case (e), especially combined with high 6ET (f),
shows QCD events moving into the W boson region.
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3.4.3 Resolution Function Comparison in ZH → νν̄bb̄ Samples

The effects on METsig of all UE resolution parameter sets were tested using two samples

from the ZH → νν̄bb̄ analysis. A “multijet” selection on data from the New Physics skim and

a “signal” selection on W → lν Monte Carlo were performed according to criteria detailed

by the ZH → νν̄bb̄ group [17]. Of importance in this study is that both selections required

two or more jets. The data samples are listed in Tab. 3.8.

While the “true” UE resolution of any given sample will vary based on selection criteria,

ideally the resolution parameters in METsigAlg will produce a reasonable estimate of the true

resolution. The true resolution function is derived using the procedure from section 3.3.1,

with UE from TMBLeBob and x, y components. The width of the UEx,y distribution in bins

of
√
SUE is fitted with a polynomial. Figure 3.9 compares the true UE resolutions of these

samples to the three available resolution functions. The 2006 function consistently overesti-

mates the true resolution, driving METsig values down. Because of data/MC disagreement

in the 2006 function this effect on METsig will be more pronounced in data distributions.

Figure 3.10 compares METsig calculated using the true UE resolutions to METsig calcu-

Name SAM Definition N events

Multijet CSG CAF NP PASS5 p21.18.00 p20.16.08 44924

Signal CSG alpgenpythia w+2lp lnu+2lp Run2b3 v3 10317

Table 3.8 : ZH → νν̄bb̄ samples.
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lated using the three available resolutions. It is clear from these comparisons that the 2006

resolutions are a poor estimate of the true METsig of these samples, and that either the

2007 or 2012 parameterizations are reasonable choices.

(a) Multijet Selection (b) Signal Selection

Figure 3.9 : UE Resolution comparison in a ZH → νν̄bb̄ multijet and signal selection

Figure 3.10 confirms that the true METsig of the ZH → νν̄bb̄ samples is not as effective

for separating multijet events from signal-like events as METsig calculated using the 2006

UE resolution functions. To some extent this effect is dependent on the minimum probability

used in the METsig calculation (Eq. 3.7). For the case of the ZH → νν̄bb̄ samples, separation

of multijet and signal-like events similar to that achieved by using the 2006 UE resolutions

can be reproduced by extending the traditional limit to 1 × 10−6 or 1 × 10−8 [18]. Figure

3.11 compares METsig for these two samples with four different limits.
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(a) Multijet Selection (b) Signal Selection

Figure 3.10 : 6ET significance comparison in a ZH → νν̄bb̄ multijet and signal selection

3.5 Summary & Application

Unclustered energy resolution functions have now been derived for use with RunIIb data

and Monte Carlo, dependent on the number of jets and the value of scalar unclustered

energy. Resolution functions for RunIIa were shown to overestimate the unclustered energy

resolution in two jet samples, so new functions were also derived for RunIIa data and Monte

Carlo. While the update to these resolution parameters caused a loss of separation power

for two jet analyses, by adding the option for a flexible minimum probability this problem

has been resolved.

In the DØ analysis framework 6ET significance is calculated by the METsigAlg processor,

which calculates uses the known values of SUE and the number of jets to set the correct

function parameters and obtain the UE resolution value. The METsigAlg configuration flags

related to unclustered energy are described in Tab. 3.9.
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Figure 3.11 : 6ET Significance comparison in a multijet and signal selection with four lower proba-
bility limits.
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Flag Name Description Default Allowed Values

UseOldUERes Turn on 2006 UE resolution false true/false

Use07UERes Turn on 2007 UE resolution false true/false

UseUEsmearing Turn on RunIIb MC SUE smearing false true/false

metLMinProbability Adjust minimum probability 1×10−08 [1×10−37,1]

Table 3.9 : METsigAlg processor configuration options

In the most recent version of METsigAlg the default UE resolution is the 2012 derivation

and the minimum probability is set to 1 × 10−8. Also updated is the default value for

UseUEsmearing. Since 2009 the value of SUE was smeared in the UE resolution calculation

for RunIIb Monte Carlo events. This smearing has now been shown to severely degrade

agreement between data and Monte Carlo in the SUE distribution [18], so the default has

been changed to “false” to turn off the smearing. The default settings of the METsigAlg

processor now use a reliable model of the unclustered energy resolution with a minimum

probability designed to regain familiar separation power against multijet events.
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Chapter 4

Missing Momentum from Tracks

TrackMPT is a new processor in the DØ analysis framework which calculates missing trans-

verse momentum from tracks and other related quantities. These variables show promise for

helping analysts separate out background events from signal events expected to have large

amounts of real missing energy. Many background events can pass high 6ET requirements

and tools to compare 6ET with both the magnitude and direction of missing momentum from

the particle tracks can help reduce these backgrounds further.

4.1 Missing pT and Dphi

Missing transverse momentum from tracks ( 6pT) is the negative vector sum of track momenta

transverse to the beamline. Its magnitude is expressed as 6pT . In the DØ framework tracks

are stored using a TMBTrack object. Two accessible parameters are azimuthal angle φ and

charge/momentum (q/pT ), called c for curvature. These variables are used to calculate px,y

for each track associated with the primary vertex.

pTx = pT cosφ =
cos φ

|c| (4.1)

pTy = pT sinφ =
sin φ

|c| (4.2)
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Track momenta are summed such that:

6pTx = −∑

tracks pTx (4.3)

6pTy = −∑

tracks pTy (4.4)

And therefore:

6pT =
√

6p2Tx+ 6p2Ty (4.5)

φ 6pT = tan−1
(

6pTy

6pTx

)

(4.6)

The angle between 6 pT from tracks and calorimeter missing transverse energy ( 6ET) is

labeled Dphi.

Dphi ≡ |φ 6ET
− φ 6pT |, 0 ≤ Dphi ≤ π (4.7)

4.2 Significance Variables

To construct a significance measure for 6 pT , similar to 6ET significance, the variance on the

magnitude of 6pT must be calculated. An error matrix is available for the track parameters c

and φ, and from this initial matrix a series of propagations yields the necessary 6pT variance.

In the following derivation covariance matrices will be denoted with one index, i.e. σ2
a, and

their elements (the variances or covariances of specific quantities) will be be denoted with

two indices, i.e. σ2
cc.

4.2.1 pxpy Covariance Matrix

The covariance matrix of track parameters, labeled σ2
track, is used to compute a covariance

matrix in the pxpy coordinate system, labeled σ2
p . The formula for propagating an error
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matrix from one coordinate system to another is [19]:

(

σ2
x

)

ij
=

∑

kl

∂xi

∂ak

∂xj

∂al

(

σ2
a

)

kl
(4.8)

To calculate σ2
p from σ2

track for one track, let:

a1 = |c| x1 = px =
cos φ

|c|
∂px
∂c

= −cosφ

c2
∂px
∂φ

= −sin φ

|c| (4.9)

a2 = φ x2 = py =
sinφ

|c|
∂py
∂c

= −sinφ

c2
∂py
∂φ

=
cos φ

|c| (4.10)

σ2
track =









σ2
cc covcφ

covcφ σ2
φφ









(4.11)

By applying Eqs. 4.9 - 4.11 to Eq. 4.8:

σ2
pxpx =

(

∂px
∂c

)2

σ2
cc + 2

∂px
∂c

∂px
∂φ

covcφ +

(

∂px
∂φ

)2

σ2
φφ (4.12)

=
cos2 φ

c4
σ2
cc + 2

cosφ sinφ

|c|3 covcφ +
sin2 φ

c2
σ2
φφ (4.13)

covpxpy =
∂px
∂c

∂py
∂c

σ2
cc +

(

∂px
∂c

∂py
∂φ

+
∂py
∂c

∂px
∂φ

)

covcφ +
∂px
∂φ

∂py
∂φ

σ2
φφ (4.14)

=
cos(φ) sin(φ)

c4
σ2
cc +

sin2(φ)− cos2(φ)

|c|3 covcφ +
− sin(φ) cos(φ)

c2
σ2
φφ (4.15)

σ2
pypy =

(

∂py
∂c

)2

σ2
cc + 2

∂py
∂c

∂py
∂φ

covcφ +

(

∂py
∂φ

)2

σ2
φφ (4.16)

=
sin2 φ

c4
σ2
cc − 2

cosφ sinφ

|c|3 covcφ +
cos2 φ

c2
σ2
φφ (4.17)
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(

σ2
p

)

track
=









σ2
pxpx covpxpy

covpxpy σ2
pypy









(4.18)

4.2.2 6pT Covariance Matrix

Measurements of individual tracks within an event are not correlated to each other, so the

tracks’ pxpy error matrices are summed in quadrature, following Eqs. 4.3 - 4.4:

(

σ2
p

)

6pT
=

∑

tracks

(−1)2
(

σ2
p

)

track
(4.19)

Another propagation yields the covariance matrix for the 6pT -φ 6pT magnitude-direction coor-

dinate system, labeled σ2
6pT
.

For brevity, let: X ≡6pTx, Y ≡6pTy, P ≡6pT , φ ≡ φ 6pT (4.20)

a1 = X x1 = P =
√
X2 + Y 2

∂P

∂X
=

X

P

∂P

∂Y
=

Y

P
(4.21)

a2 = Y x2 = φ = tan−1

(

Y

X

)

∂φ

∂X
= − Y

P 2

∂φ

∂Y
=

X

P 2
(4.22)

σ2
a =

(

σ2
p

)

6pT
=









σ2
XX covXY

covXY σ2
Y Y









(4.23)

By applying Eqs. 4.21 - 4.23 to Eq. 4.8:

σ2
PP =

(

∂P

∂X

)2

σ2
XX + 2

∂P

∂X

∂P

∂Y
covXY +

(

∂P

∂Y

)2

σ2
Y Y (4.24)

=
1

P 2

(

X2σ2
X + 2XY covXY + Y 2σ2

Y

)

(4.25)
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covPφ =
∂P

∂X

∂φ

∂X
σ2
XX +

(

∂P

∂X

∂φ

∂Y
+

∂φ

∂X

∂P

∂Y

)

covXY +
∂P

∂Y

∂φ

∂Y
σ2
Y Y (4.26)

=
1

P 3

(

−XY σ2
XX +

(

X2 − Y 2
)

covXY +XY σ2
Y Y

)

(4.27)

σ2
φφ =

(

∂φ

∂X

)2

σ2
XX + 2

∂φ

∂X

∂φ

∂Y
covXY +

(

∂φ

∂Y

)2

σ2
Y Y (4.28)

=
1

P 4

(

Y 2σ2
XX − 2XY covXY +X2σ2

Y Y

)

(4.29)

σ2
6pT

=









σ2
PP covPφ

covPφ σ2
φφ









(4.30)

4.2.3 pT Significance

6pT significance (MPTsig) is computed in the same manner as 6ET significance (METsig) [12].

Knowing the 6 pT magnitude variance from Eq. 4.25, a probability distribution p(MPT) can

be written for 6 pT . Probabilities are then evaluated for two hypotheses: 6 pT equal to its

measured value, and 6pT equal to zero. MPTsig is a measure of the difference in probability

between these two hypotheses. Low significance values indicate that the 6pT in an event

can be reasonably explained by fluctuations in the track momenta, while large significance

values indicate genuine 6pT . MPTsig is computed as follows, where N represents a normalized

Gaussian distribution:

p(MPT) = N
(

6pT ,
√

σ2
PP

)

(4.31)

MPTsig ≡ log
p(MPT = 6pT,meas)

p(MPT = 0)
(4.32)

The range of the MPTsig distribution is set by the minimum probability in Eq. 4.32, as

was done for METsig in section 3.2. TrackMPT is constructed using double precision, so the
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probability limit can be pushed close to the minimum double. The relevant equation is:

1× 10308 =
p(MPT = 6pT,meas)

ProbabilityLimit
(4.33)

A substantial “buffer” of 1×108 is chosen for the numerator, which gives a probability limit

of 1×10−300. This value was chosen to provide good separation between W boson and Z

boson events.

4.2.4 “MM” Significance

A variable called “MMsig” is a significance measure for the difference of 6pT and 6ET. The

difference vector is MM = α 6pT− 6ET, where α allows comparison of 6pT with some fraction

of 6ET. The pxpy covariance matrices for 6 pT and 6ET are summed to produce a covariance

matrix for MM .

(

σ2
p

)

MM
= α2

(

σ2
p

)

6pT
+
(

σ2
p

)

6ET
(4.34)

The matrix
(

σ2
p

)

6pT
is known from Eq. 4.19, and the pxpy covariance matrix for 6ET is con-

structed by summing matrices for each calorimeter object. These matrices are calculated

using the method in Eqs. 4.8 - 4.18, with the following input for each calorimeter object:

a1 = ET Ex = ET cosφ
∂Ex

∂ET
= cosφ

∂Ex

∂φ
= −ET sin φ (4.35)

a2 = φ ETy = ET sinφ
∂Ey

∂ET

= sin φ
∂Ey

∂φ
= ET cosφ (4.36)

σ2
a =









σ2
ETET

0

0 0









(4.37)
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In Eq. 4.37 the energy variances of the individual objects are known, and for the unknown

elements a value of zero is assumed. Direction is generally well-measured at DØ, and from

a study of the covariance matrix for track parameters it is clear that variance on energy

or momentum is much larger than matrix elements involving angle. Application of Eq. 4.8

gives:

(

σ2
p

)

object
=









σ2
ExEx

covExEy

covExEy
σ2
EyEy









=









σ2
ETET

cos2 φ σ2
ETET

cosφ sinφ

σ2
ETET

cosφ sinφ σ2
ETET

sin2 φ









(4.38)

(

σ2
p

)

6ET
=

∑

objects

(

σ2
p

)

object
(4.39)

From
(

σ2
p

)

MM
, an analog of Eq. 4.25 gives σ2

MM , the variance of the magnitude of MM,

and MMsig can be calculated. MMsig is a measure of how the probability of MM =

MMmeasured differs from the probability of MM = 0.

p(MM) = N
(

MM,
√

σ2
MM

)

(4.40)

MMsig ≡ log
p(MM = MMmeas)

p(MM = 0)
(4.41)

Events in which 6pT and 6ET differ only slightly, considering their variances, MMsig will have

a low value. Events with high MMsig indicate that 6pT and 6ET are clearly distinct from one

another.

4.3 TrackMPT Processor

TrackMPT has been implemented in the DØ framework as a processor which works alongside

ReComputeMET and METsigAlg. The processor runs over the collection of tracks, filtering
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them through quality and impact parameter requirements so that only good tracks asso-

ciated with the primary vertex are used to calculate 6pT. A track’s impact parameter is

the closest distance between a point on the track and the primary vertex. Examples of

impact parameters in the ẑ and r̂ directions are shown in Fig. 4.1. Track quality values are

determined by a processor called FakeTrackKiller, which was designed to identify poorly

reconstructed tracks, such as those originating from the unphysical vertices studied in section

2.2. TrackMPT output variables are listed in Tab. 4.1 and configuration options are listed in

Tab. 4.2.

(a) z impact parameter (b) r impact parameter

Figure 4.1 : A track’s impact parameter, labeled b, marks the closest distance between the track
and the primary vertex. TrackMPT calculates impact parameter along the z axis (a), and along the
radial direction r in the xy plane (b).

4.4 Performance in Z → ee events

TrackMPT variables have been studied in Z → ee events for data/Monte Carlo consistency.
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Name Description

trackMPT Magnitude of 6pT

trackMPTphi Direction of 6pT

trackMPTDphi Angle between 6ET and 6pT

trackMPTsigmaMPT Uncertainty on 6pT

trackMPTsigmaDphi Uncertainty on Dphi

trackMPTsignificance 6pT significance

trackMPTMMsignificance MM significance

Table 4.1 : TrackMPT processor output variables

Data and Monte Carlo events in the Run2b3 samples listed in Tables 3.1 and 3.2 were

used for this study. Figure 4.2 shows distributions for 6ET and 6pT . Values of 6 pT below

10 GeV are modeled poorly compared to the rest of the distribution. Figure 4.3 shows

distributions for φ 6pT and φ 6ET
. The asymmetric mis-modeling in φ 6ET

produces asymmetric

mis-modeling in Dphi values above π/2 if it is calculated without taking an absolute value,

though the area of common interest (Dphi ≤ π/2) shows good agreement (Fig. 4.4(a)).

Taking the absolute value cancels out this effect, producing a well-modeled Dphi distribution

(Fig. 4.4(b)). MPTsig and MMsig distributions are shown in Fig. 4.5. The uncertainty

on 6 pT is generally underestimated by the Monte Carlo (Fig. 4.6), which leads to a slight

overestimation of MPTsig, since narrower distributions in Eq. 4.31 produce larger significance

values for constant 6pT . These Z → ee events show a tail to high 6pT corresponding to events
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Name Description Default Allowed Range

FTKQuality FakeTrackKiller minimum quality 0 (-1, 1)

PVdZ CFTonly Max Z impact par, CFT only tracks 2.0 cm (0,∞)

PVdZ hasSMT Max Z impact par, tracks with SMT 1.0 cm (0,∞)

PVdR CFTonly Max Radial ip, CFT only tracks 1.0 cm (0,∞)

PVdR hasSMT Max Radial ip, tracks with SMT 0.5 cm (0,∞)

MCscale ccVar c-c matrix element multiplier 1 (-∞,∞)

MCscale cphiCov c-φ matrix element multiplier 1 (-∞,∞)

MCscale phiphiVar φ-φ matrix element multipler 1 (-∞,∞)

MMcoeffForMPT α coefficient in MM 1 (-∞,∞)

Table 4.2 : TrackMPT processor configuration options
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with very large track momentum uncertainties. The tails can be reduced by discarding events

with MPTsig very close to zero (Fig. 4.7).

4.5 Multi-sample Comparisons

The anticipated usage of TrackMPT is in cases where 6 pT has contributions from neutral

particles, as well as energy mis-measurement, dead cells, etc. Figures 4.8 and 4.9 show

distributions of 6pT , Dphi, MPTsig, and MMsig for the Z → ee MC, W → eν MC, and QCD

Data samples listed in Tab. 4.3. W → eν and QCD samples contain events with:

• 1 Point 0 (QCD) or Point1 (W → eν) electron

• electron pT > 10 GeV

• minimum 20 GeV of corrected 6ET

• primary vertex radial position < 1.0 cm

Both the 6 pT and Dphi distributions show a clear distinction between the W boson events,

with expected missing momentum from neutrinos, and events in which 6pT is only expected

from detector effects or an asymmetric distribution of neutral jet particles. MPTsig shows

good separation between W and Z peaks, similar to that relied upon in METsig. MMsig is

not as powerful a discriminant for these selections.
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Figure 4.2 : Distributions of 6ET and 6pT in RunIIb3 Z → ee events.



75

 (rad)
MET

φ
-3 -2 -1 0 1 2 3

600

800

1000

1200

1400

1600

1800

2000

2200

MC

Data

MET
φ ee →Run2b3 Z 

 (rad)φ
-3 -2 -1 0 1 2 3

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Data/MC Ratio

(a) φMET

 (rad)
MPT

φ
0 1 2 3 4 5 6

600

800

1000

1200

1400

1600

1800

2000

2200

MC

Data

MPT
φ ee →Run2b3 Z 

 (rad)φ
0 1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Data/MC Ratio

(b) φMPT

Figure 4.3 : Distributions of φ6ET
and φ6pT in RunIIb3 Z → ee events.
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Figure 4.4 : Distributions of Dphi calculated without (a) and with (b) an absolute value in RunIIb3
Z → ee events.
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Figure 4.5 : Distributions of MPTsig and MMsig in RunIIb3 Z → ee events.
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Figure 4.6 : Distributions of σ 6pT and σDphi in RunIIb3 Z → ee events.
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Figure 4.7 : Reduction of high 6pT (a-b) and σMPT (c-d) tails by discarding events with MPTsig
< 0.5.
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Name SAM Definition (CSG ) N Events

DiElectron Data CAF 2EMhighpt PASS5 p21.18.00 88,798

Z → ee MC alpgenpythia gamz ee 75 130 p212100 Run2b3 v3 2,672,718

EM Data CAF EMinclusive PASS5 p21.18.00 p20.16.07 reduced2 195,952

QCD Data CAF QCD PASS5 p21.18.00 p20.16.07 reduced2 11,859

W → eν MC alpgenpythia w lnu p212100 Run2b3 v3 1,188,714

Table 4.3 : RunIIb3 6pT test samples
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Figure 4.8 : Comparisons of 6 pT and Dphi distributions in several RunIIb3 samples. From these
distributions cuts are chosen at 6 pT = 15 GeV and Dphi = π/4 to separate W boson events from
QCD events.
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Figure 4.9 : Comparisons of MPTsig and MMsig distributions in several RunIIb3 samples.

4.6 W Boson Sample Background Reduction

TrackMPT variables are very useful for reducing background from multijet processes. A

combination of METsig, Dphi, and 6pT cuts can significantly improve background reduction

over a triangle cut, which is a common method for reducing multijet background in W boson

samples. A triangle cut rejects events in the triangular area defined by the x and y axes

and a line relating two quantities, traditionally 6ET and the transverse mass of the W boson

(Fig. 4.10). W transverse mass is calculated from the pT of the electron, 6ET , and the angle

θ between the electron and 6ET :

MT =
√

2peT 6ET (1− cos θ) (4.42)

The QCD data and W → eν Monte Carlo samples from Tab. 4.3 were treated as a

background/signal pair and used to test cuts for the EM Data sample, which was selected

using the same criteria as the QCD data. From Fig. 4.8 cuts of 6pT > 15 GeV and Dphi < π/4
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Figure 4.10 : Example of a triangle cut. Events that lie in the triangular area below the line
6ET ≥ 55 − 11

20MT are rejected. This cut rejects only a small percentage of W boson signal events
while discarding a large percentage of QCD background events.

were chosen to reduce the multijet background in the EM Data sample and help isolate its

W → eν component. Figure 4.11 shows the effect of the chosen cuts on the EM Data

MT distribution, after a preliminary cut on METsig which is used frequently in high 6ET

analyses. These cuts remove a large portion of the low mass backgrounds, centering the MT

distribution near the known W boson mass of 80 GeV.

Figure 4.12 compares the effects of the chosen METsig and Dphi cuts to the effects of

the following triangle cut, where MT is the transverse mass of the W boson.

6ET ≥ 55− 11

20
MT (4.43)

Table 4.4 lists the efficiencies of these cuts for the W → eν MC (signal), QCD Data (back-

ground), and EM Data samples. For the same signal efficiency, cuts on METsig and the

TrackMPT variables remove substantially more background events; they also produce higher
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Figure 4.11 : Effect of various cuts on W boson transverse mass distribution in RunIIb3 EM
Data. This study was performed prior to the METsig study detailed in Chapter 3. The METsig
distributions of these samples are analogous to those in Fig. 3.7(d), hence the cut of METsig > 5.

signal to background ratios over a wide span of cut points (Fig. 4.13).

4.7 Summary

TrackMPT is a new processor for DØ analysts that calculates missing transverse momentum

from tracks, and other useful variables such as the angle Dphi between 6pT and 6ET . Missing

momentum variables are calculated from tracks belonging to the primary vertex, and a study

of Z → ee events shows good data/Monte Carlo agreement in the angular distributions and

fair agreement in 6pT distributions, similar to that seen for 6ET . Distributions of Dphi and

6pT show distinct differences in behavior between events with expected missing neutrino mo-

mentum and those where missing momentum arises from mis-measurement or other random
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Figure 4.12 : Comparison of METsig andDphi cuts (center column) to a triangle cut (right column)
on RunIIb3 W → eν MC signal (a), QCD data background (b), and EM Data (c).
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Sample
Triangle Cut METsig > 5, Add to cuts:

6ET > 55− 0.55MT Dphi < π/4 6pT > 15 GeV

W → eν Signal 83.2% 83.2% 75.4%

QCD Background 48.1% 8.6% 5.6%

EM Data 43.4% 28.1% 21.2%

Table 4.4 : Cut Survival Efficiencies for Fig. 4.12
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Figure 4.13 : Signal/Background ratios (shown by the color bands) for various METsig and Dphi
cuts (a), and a triangle cut with varying slope and intercept (b).



86

factors. Cuts on METsig, Dphi, and 6 pT are shown to be especially powerful, compared to

a triangle cut, for rejecting multijet background events which pass lepton and 6ET selection

criteria.
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Chapter 5

Unclustered Energy Scale Development

A long-standing issue in the arena of 6ET and unclustered energy is disagreement between

data and Monte Carlo. Several analysis groups have employed reweighting schemes in order

to force improved agreement, for example weighting MC events so that the scalar unclustered

energy distribution is an exact match with data. It is possible that a general calibration of

the unclustered energy measurement could improve data/MC agreement in a more natural

manner. Unclustered energy contains the “soft” particles and jets which are not energetic

enough to be reconstructed. A UE calibration would act as an energy correction for these

particles, similar to the corrections applied to reconstructed objects. An attempt at such

a calibration by the CMS experiment lead to an investigation of whether this could benefit

DØ [20].

5.1 Derivation

A vector OT can be defined as the sum of the transverse momenta of the physics objects

(electrons, muons, jets, etc) in an event:

OT ≡
∑

objects

pT (5.1)
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Unclustered energy can then be written using OT, following Eq. 3.1:

ue = − 6ET −OT (5.2)

The “missing” unclustered energy, or the UE component of 6ET , is then:

mue = −ue = OT+ 6ET (5.3)

In a coordinate system defined by the direction of OT, the parallel direction will be called

ô, and the component of an arbitrary vector V parallel to OT will be denoted Vo:

ô =
OT

OT

(5.4)

Vo =
1

OT
(VxOx + VyOy) (5.5)

In the sample of Z → ee events used for this study (see Tabs. 3.1 - 3.2), the coordinate

system defined by the transverse momentum of the Z boson can also be considered. The

parallel unit vector will be labeled ẑ and the component of V in this direction will be denoted

Vz:

ZT =
∑

electrons

pT (5.6)

ẑ =
ZT

ZT
(5.7)

Vz =
1

ZT
(VxZx + VyZy) (5.8)

This study of unclustered energy scales will include V = −UE and V = mue. TMBLeBob

UE is used with a negative sign to facilitate comparison with mue.

For a distribution of ideally measured Z → ee events, 6ET is expected to be zero on average

since all missing energy arises from random fluctuations of noise or other measurement effects.
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Considering Eq. 5.3 with no 6ET, mue is left to oppose OT (allowing for an unknown scale

factor):

mue = r ×OT (5.9)

When unclustered energy has been scaled or calibrated correctly, r equals one. This corre-

sponds to the situation where, on average, mueo is equal to OT , mue perpendicular to OT is

zero, and 6ET is zero. Since all 6ET in the derivation sample is expected to be fake, calibrating

the unclustered energy could provide a more accurate 6ET value by reducing this fake 6ET .

In section 3.3.1 the component of unclustered energy perpendicular to the Z boson was

used to derive the unclustered energy resolution because this component consists primarily of

noise, fluctuations, and random energy from the underlying event. To isolate the unclustered

energy to be calibrated according to Eq. 5.9, the parallel component mueo is used [21]. The

scale factor, or “response”, is the mean of the ratio mueo/OT as a function of an independent

variable q. The mean of mueo/OT is calculated in each bin of q, and the response r(q) is the

best fit curve through all bins.
〈

mueo
OT

〉

= r(q) (5.10)

Calibrated mueo can then be defined in terms of r(q). Applying this calibration brings

the mean value of muecalo /OT in each bin of q equal to one.

muecalo ≡ mueo
r(q)

=
1

OT

(

muex
r(q)

Ox +
muey
r(q)

Oy

)

(5.11)

Calibrated mueo can also be written as the component of muecal in the direction of OT:

muecalo =
1

OT
(muecalx Ox +muecaly Oy) (5.12)
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Equating Eq. 5.11 with Eq. 5.12 shows that muecal is found by dividing components of mue

by r(q):

muecal = mue/r(q) (5.13)

Scalar unclustered energy (Eq. 3.3) is the scalar sum of transverse energy in unclustered

cells, so suecal is calculated as:

suecal =
∑

ue cells

√

1

r2(q)
(ue2x + ue2y) (5.14)

=
1

|r(q)|
∑

ue cells

ueT =
sue

|r(q)| (5.15)

The effect of applying the mue calibration to UE and SUE from TMBLeBob as in Eqs. 5.13

- 5.15 will also be considered:

UEcal =UE/r(q) (5.16)

SUEcal =
SUE

|r(q)| (5.17)

The calibrated unclustered energy can then used to calibrate other quantities. Calibrated

6ET and SET are found by replacing mue with muecal:

6ET

cal = 6ET +muecal −mue (5.18)

SET cal =SET + suecal − sue (5.19)

As a sanity check for the algorithm, the calibrated version of OT should be equivalent to

the original version:

OT

cal = muecal− 6ET

cal = OT (5.20)
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A similar calibration can be derived using the response of UE rather than mue, and in

the case of events with no jets the ZT frame can replace OT . Distributions of average UE or

mue with respect to ZT are shown in Fig. 5.1, and with respect to OT in Fig. 5.2.

One task of the calibration is to bring the response of the unclustered energy variable to

the transverse momentum variable equal to one. The uncalibrated responses of UE and mue

in bins of OT are shown in Fig. 5.3. The independent variable q must be chosen so that the

calibration meets this goal while also decreasing the widths of unclustered energy and 6ET

distributions and improving data/MC agreement. To function in the analysis framework,

q should be a universally accessible variable which is not dependent on the type of event.

Specifically, OT cannot be correctly defined in events with real missing energy since 6ET from

neutrinos cannot be separated from 6ET from detector effects. While many options for q have

been explored, q = −UEo, q = mueo, and q =
√
SET will be presented here. The response

as a function of OT is used as a benchmark to judge improvement since response functions

differ widely based on the choice of q.

5.2 Calibration based on UE

Following the example of CMS [21], an attempt was made to derive a calibration based on

unclustered energy parallel to the Z boson momentum in zero jet events. To derive the

calibration using UEz the range of ZT was limited to 10 GeV, below which UEz has the

expected linear relationship with ZT (Fig. 5.1(a)). The derivation sample was extended to

any number of jets by using the OT frame, however the OT range must still be capped around
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Figure 5.1 : In zero jet events, the OT and ZT frames are equivalent, but the TMBLeBob UE is not
proportional to the Z momentum above 10 GeV (a), even with low 6ET (b). As a sanity check, with
0 jets and very low 6ET (d), mue approximately equals ZT .
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Figure 5.2 : Unclustered energy as a function of OT in events with any number of jets.
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Figure 5.3 : Original responses of UE and mue to OT , with q = OT . Changes to these distributions
(closer to or further from unity) will be used to judge the effectiveness of the calibrations.
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10 GeV (Fig. 5.2(a)). For calibrations based on UE, Eqs. 5.18 and 5.19 are adjusted to read:

6ET

cal = 6ET −UEcal +UE (5.21)

SET cal =SET + SUEcal − SUE (5.22)

5.2.1 q =
√
SET

A calibration of the UE response in bins of
√
SET could be applied to any type of event.

The fit function is shown in Fig. 5.4 and written below, where x =
√
SET .

r = 4.161− 1.484x+ 0.217x2 − 0.015x3 + 0.0005x4 − 6× 10−6x5 (5.23)

Reasonable agreement between the corrected data and MC distributions was only obtained

by correcting both data and MC distributions by the function derived for MC events. This

calibration resulted in pronounced improvement in the slope of −UEcal
o respect to OT and

the UE response in bins of OT (Fig. 5.5). However, it failed to decrease widths or improve

data/MC agreement in the UE and 6ET distributions (Fig. 5.6).

5.2.2 q = UEo

A UE calibration can also be derived by calculating the response as a function of −UEo.

Since it is dependent on OT , which cannot be correctly defined in events with real missing

energy, this independent variable would not be directly applicable in the analysis framework.

Functions r(−UEo) are listed in Tab. 5.1 and shown in Fig. 5.7. The response function

r(−UEo) is derived on events with OT < 10 GeV and then applied to the full sample.

Fig. 5.8 shows that this calibration is not effective in adjusting the slope of −UEo with
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Figure 5.4 : MC fit of UE response r(
√
SET ). To improve agreement in the calibrated distributions,

this Monte Carlo function was used to calibrate both data and Monte Carlo events.
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Figure 5.5 : Calibration of UE response r(
√
SET ): significant improvement to the relationship

between −UEo and OT (a) and the response r(OT ) (b).
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Figure 5.6 : Calibration of UE response r(
√
SET ): widths of the UE and 6ET distributions are

greatly increased, showing that the calibration was unsuccessful.



97

respect to OT , or improving the UE response r(OT ). The width of the UE distribution is

decreased but its shape is distorted, and the width of the 6ET distribution is slightly increased.

Both show better agreement between data and Monte Carlo (Fig. 5.9). Agreement was also

improved in the scalar energy distributions (Fig 5.10).
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Figure 5.7 : Data and MC fits of UE response r(−UEo), in events with OT < 10 GeV.

Overall, no r(q) could be found which would appropriately calibrate UE in a way which

would meet all the calibration requirements. Although UE from TMBLeBob is straightforward

to access in the analysis framework, it is much less responsive than mue to changes in

the momenta of objects in the event, so deriving an appropriate scale factor for UE is

difficult. This study highlighted unexpected differences in the behavior of the two versions

of unclustered energy which must be investigated more thoroughly in the future.
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Range (GeV) r(x = −UEo) χ2/NDF

MC
−UEo < 1.5 r = −0.0028 + 0.329x 30/10

−UEo ≥ 1.5 r = 0.120 + 0.239x 14/13

Data
−UEo < 1.5 r = −0.012 + 0.327x 58/10

−UEo ≥ 1.5 r = 0.087 + 0.261x− 0.007x2 + 0.0002x3 21/10

Table 5.1 : Fit functions for the UE response r(−UEo), in events with OT < 10 GeV.
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Figure 5.8 : Calibration of UE response r(−UEo): neither the slope of −UEcal
o v. OT (a) nor the

response r(OT ) (b) are brought closer to one.
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Figure 5.9 : Calibration of UE response r(−UEo): the shape of the UE distribution is distorted
and the width of the 6ET distribution is slightly increased. Both exhibit slight improvements in the
data/MC agreement.
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Figure 5.10 : Calibration of UE response r(−UEo): improved data/MC agreement in scalar energy
distributions.
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5.3 Calibration based on mue

5.3.1 q =
√
SET

Calibrating the mue response to OT as a function of
√
SET would produce a calibration

that could be applied to all types of events. Figure 5.11 and Tab. 5.2 show the fitted

response functions and Fig. 5.12 shows the effect of this calibration on mueo with respect

to OT . In general the unclustered energy has been over-corrected, and the calibrated energy

distributions are much wider than the original distributions (Fig. 5.13), so the calibration is

unsuccessful.

5.3.2 q = mueo

As in the case of UE, a calibration of mue according to r(mueo) cannot be applied to events

with real missing energy. The fitted response functions are shown in Fig. 5.14 and listed in

Tab. 5.3. Comparison of Fig. 5.15 with Figs. 5.2(b) and 5.3(b) shows that the response of

muecalo to OT improves slightly with this calibration. Applying this calibration also produces

the desired effects in the energy distributions: smaller resolutions in calibrated unclustered

r(x =
√
SET ) χ2/NDF

MC r = −0.756 + 0.209x− 0.012x2 + 0.0002x3 1.3/12

Data r = −0.021 + 0.059x− 0.002x2 6.5/12

Table 5.2 : Fit functions for mue response r(
√
SET ).
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Figure 5.11 : Data and MC fits of mue response r(
√
SET ).
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Figure 5.12 : Calibration of mue response r(
√
SET ): general over-correction of mueo with respect

to OT .
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Figure 5.13 : Calibration of mue response r(
√
SET ): unsuccessful since the widths of the mue and

6ET distributions are greatly increased.
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energy, reduced fake 6ET , and significantly improved modeling of 6ET and SET (Figs. 5.16 -

5.18).
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Figure 5.14 : Data and MC fits of mue response r(mueo).

Long tails are present in the calibrated distributions because of the response functions

crossing zero. The tails can be reduced if the smoothness of the r(mueo) is broken in

the region near zero. Figure 5.19(a) shows that tails should be reduced over the range

−1.5 ≤ mueo ≤ 1.5. The value of r(mueo = −1.5) is applied over the range (−1.5, 0)

and the value of r(mueo = 1.5) is applied over the range (0, 1.5). Data/MC agreement in

the remaining tail region is poor, but is generally an improvement over the uncalibrated

distributions (Fig. 5.20).
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Range (GeV) r(x = mueo) χ2/NDF

MC
mueo < 6.5 r = −6.859 + 7.942× e−0.5(x−6.894)2/162.078 42/11

mueo ≥ 6.5 r = 0.921 + 2.910× e−0.5(x−13.522)2/59.892 5.6/14

Data

mueo < −10 r = 0.148 + 0.561x+ 0.016x2 0.6/1

−10 ≤ mueo < 6.5 r = −8.973 + 9.971× e−0.5(x−6.510)2/201.044 131/7

mueo ≥ 6.5 r = 0.870 + 0.199× e−0.5(x−11.227)2/33.744 17/14

Table 5.3 : Fit functions for mue response r(mueo).
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Figure 5.15 : Calibration of mue response r(mueo): calibrated mueo versus OT (a) shows some
distortion due to overcorrection at small OT , but in general the response (b) is improved.
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Figure 5.16 : Calibration of mue response r(mueo): original and calibrated mue and UE distribu-
tions.
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Figure 5.17 : Calibration of mue response r(mueo): original and calibrated sue and SUE distribu-
tions.
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Figure 5.18 : Calibration of mue response r(mueo): original and calibrated 6ET and SET distri-
butions. Unique to this calibration is the clear decrease in the mean value of 6ET and substantial
improvement in data/MC agreement (a).
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Figure 5.19 : Calibration of mue response r(mueo) leaves tails in calibrated 6ET and SET, which
are reduced after the tail correction.
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Figure 5.20 : Original and calibrated 6ET and SET distributions showing the effects of tail corrections
to the r(mueo) calibration.
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5.4 Summary

Calibration of r(mueo) produces narrower energy distributions, reduced fake 6ET , better

data/MC agreement, and improvements in the relationship between mue and OT . The sen-

sitivity of r(mueo) to events with a negative response appears to be the important difference

between q = mueo and others such as
√
SET (compare Fig. 5.14 to Fig. 5.11). It is clear that

an effective calibration variable q will be a vector component rather than a vector magni-

tude or scalar quantity. However, mueo cannot be calculated universally since it depends on

accurate knowledge of OT , and the mathematics of this calibration method produce infinite

tails which must be removed. If a system of ascertaining mueo without knowledge of OT

can be formulated, or another useful reference frame is found, a calibration of unclustered

energy could be a great improvement to DØ analyses.
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Chapter 6

Conclusions

Several improvements and additions have been made to missing transverse energy algorithms

in the DØ analysis framework. 6ET certification for RunIIb4 identified problems in the

primary vertex algorithms which were successfully resolved for the final segments of DØ

data. Certification of data reprocessed following the end of the Tevatron run showed that

the behavior of 6ET did not change significantly during reprocessing (Ch. 2).

The 6ET significance algorithm received substantial upgrades, both to the unclustered

energy resolution and the minimum probability used in the final calculation (Ch. 3). RunIIa

unclustered energy resolution functions for events with two or more jets were shown to

generally overestimate the correct resolutions, and new resolution functions were derived for

both RunIIa and RunIIb data and Monte Carlo. Background rejection efficiency which was

lost when using the new functions is regained by extending the minimum probability of the

METsig calculation. The METsigAlg processor was updated to include reliable unclustered

energy resolutions combined with a minimum probability value which provides users with

the desired background rejection efficiencies.

A new processor was added to the framework to calculate missing momentum from tracks

using a method analogous to the calculation of 6ET from calorimeter cells (Ch. 4). The

magnitude of 6pT and the angle it forms with 6ET (Dphi) have proved quite powerful against
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multijet backgrounds which persist after requirements of high 6ET and high METsig. In

a study of purifying a W → eν sample with high 6ET , cuts on METsig and Dphi removed

approximately forty percent more multijet background events than a traditional triangle cut.

Finally, the long-standing desire to improve data/Monte Carlo agreement in 6ET and

unclustered energy distributions prompted an effort to calibrate the unclustered energy

measurement (Ch. 5). No effective calibration mechanism has been found for the analy-

sis framework’s TMBLeBob UE, and the significant differences observed between this variable

and a calculated version of unclustered energy (mue) will be investigated more thoroughly

in the future. The only successful calibration method for mue depends on the sum of the

physics objects’ transverse momenta, which cannot be calculated correctly for events with

real missing energy, so the calibration cannot be applied universally. New developments are

necessary before this calibration effort can move forward.

Many DØ analyses investigate processes which produce neutrinos, and several searches

for physics beyond the Standard Model include potential weakly interacting particles which

would also be identified through missing energy. The recent improvements to the missing

energy algorithms provide users with up to date and reliable tools for understanding these

elusive particles.
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