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Abstract

Hybridization plays an important evolutionary role in several groups of organisms.

A phylogenetic approach to detect hybridization entails sequencing multiple loci

across the genomes of a group of species of interest, reconstructing their gene trees,

and taking their differences as indicators of hybridization. However, methods that

follow this approach mostly ignore population effects, such as incomplete lineage

sorting (ILS). Given that hybridization occurs between closely related organisms, ILS

may very well be at play and, hence, must be accounted for in the analysis

framework. To address this issue, we present a parsimony criterion for reconciling

gene trees within the branches of a phylogenetic network, and a local search heuristic

for inferring phylogenetic networks from collections of gene-tree topologies under this

criterion. This framework enables phylogenetic analyses while accounting for both

hybridization and ILS. Further, we propose two techniques for incorporating

information about uncertainty in gene-tree estimates. Our simulation studies

demonstrate the good performance of our framework in terms of identifying the

location of hybridization events, as well as estimating the proportions of genes that

underwent hybridization. Also, our framework shows good performance in terms of

efficiency on handling large data sets in our experiments. Further, in analyzing a

yeast data set, we demonstrate issues that arise when analyzing real data sets. While

a probabilistic approach was recently introduced for this problem, and while

parsimonious reconciliations have accuracy issues under certain settings, our

parsimony framework provides a much more computationally efficient technique for

this type of analysis. Our framework now allows for genome-wide scans for

hybridization, while also accounting for ILS.

Key words: phylogenetic networks; hybridization; incomplete lineage sorting;

coalescent; multi-labeled trees.

Hybridization is believed to be an important evolutionary mechanism for several
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groups of eukaryotic organisms (Arnold, 1997; Barton, 2001; Mallet, 2005, 2007; Rieseberg,

1997). Evolutionary histories of species and genomes that involve hybridization are best

modeled by phylogenetic networks, which account for both vertical and non-vertical

evolutionary events (Nakhleh, 2010). Additionally, trees that trace the evolution of

different segments of the genome, also known as gene trees, grow within the branches of a

phylogenetic network (Maddison, 1997). This intertwined relationship between

phylogenetic networks and the trees they contain naturally gave rise to a phylogeny-based

approach to inferring phylogenetic networks from gene trees. In this approach, gene trees

are compared, typically using a metric such as the subtree prune and redraft (SPR)

distance, and the differences are taken as proxies for the amount and location of

hybridization events (Nakhleh, 2010).

However, in addition to hybridization, the incongruence among gene trees may be

partly caused by incomplete lineage sorting (ILS), or deep coalescence events (Maddison,

1997). Ignoring the presence of incomplete lineage sorting could result in an over- or

under-estimation of the amount of hybridization events and/or wrong inference of the

location of these events . Recent studies have documented large extents of incomplete

lineage sorting in groups of organisms across the Tree of Life (Syring et al., 2005;

Pollard et al., 2006; Than et al., 2008b; Kuo et al., 2008; Cranston et al., 2009;

White et al., 2009; Hobolth et al., 2011; Takuno et al., 2012). A wide array of methods

have been developed for species-tree inference from gene-tree topologies when all

incongruence is assumed to be due to incomplete lineage sorting (see

(Degnan and Rosenberg, 2009; Liu et al., 2009; Rannala and Yang, 2008) for recent surveys

of such methods).

Relevant to this study are methods for inference under hybridization alone and

under ILS alone that follow a parsimony approach: inferring the phylogenetic network with

minimum number of reticulations in the former case, and inferring the phylogenetic tree
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that minimizes the amount of ILS in the latter case. This approach in both cases was

proposed by Maddison (1997) and much progress has been made on developing methods for

parsimonious reconciliations ever since, both in the case of hybridization

(Bordewich and Semple, 2005; Nakhleh et al., 2005; MacLeod et al., 2005;

Beiko and Hamilton, 2006) and ILS (Maddison and Knowles, 2006; Than and Nakhleh,

2009, 2010; Yu et al., 2011b,c). Nonetheless, the first class of methods does not account for

ILS, and the latter does not account for hybridization. Accounting for both kinds of events

is a very challenging task (Mallet, 2005). Several attempts have been made in the last five

years to handle both reticulation and incomplete lineage sorting. Than et al. introduced a

stochastic framework for computing the probability of a gene tree given a species tree

under the coalescent, and in the presence of a single horizontal gene transfer event

(Than et al., 2007). Meng and Kubatko introduced methods for estimating the

contribution of hybridization using a model that allows for both hybridization and

incomplete lineage sorting (Meng and Kubatko, 2009). Kubatko further proposed using

model selection with standard information criteria to identify hybridization in the presence

of incomplete lineage sorting (Kubatko, 2009). Joly et al. introduced a statistical approach

for the same task based on genetic distances between sequences (Joly et al., 2009). Yu et

al. proposed extending the MDC (Minimize Deep Coalescences) criterion of (Maddison,

1997) to detect hybridization despite incomplete lineage sorting (Yu et al., 2011a).

However, these methods all focused on very limited cases: fewer than 5 taxa, one or two

hybridization events, and a single allele samples per species.

It is important to note that another ubiquitous cause of gene tree incongruence is

gene duplication and loss. Recent efforts have emerged for combining gene duplication/loss

with ILS (Rasmussen and Kellis, 2012) and for combining gene duplication/loss with

horizontal gene transfer (Bansal et al., 2012), but incorporating duplication/loss with ILS

and hybridization is beyond the scope of this work.
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Most recently, Yu et al. proposed a method for computing the probability of

gene-tree topologies given a phylogenetic network that is applicable to arbitrary numbers

of taxa, arbitrary configurations of hybridization events, and any number of alleles sampled

per species (Yu et al., 2012). While this general framework allows for inference of

hybridization in the presence of ILS, it currently suffers from two issues. First, to turn the

work of Yu et al. into an inference method, there is a need to develop methods for

searching the phylogenetic network space and optimizing branch lengths and inheritance

probabilities. Second, the method is computationally very expensive; developing new

algorithmic techniques to achieve scalability is imperative.

In this paper we present a parsimony framework for inferring hybridization in the

presence of ILS that extends Maddison’s proposal (Maddison, 1997) to phylogenetic

networks, and extend in novel ways the work of (Yu et al., 2011a) to general networks. The

computational contribution of this work is two-fold: A parsimony criterion for reconciling a

gene tree within the branches of a phylogenetic network so as to account for both

hybridization and ILS, and a phylogenetic network search heuristic to enable inference of

evolutionary histories from sets of gene-tree topologies. The framework only assumes

knowledge of gene-tree topologies, which can be inferred by the method of choice of the

practitioner, and infers a phylogenetic network with inheritance probabilities that

correspond to proportions of genes involved in each of the hybridization events inferred.

Our framework is general enough that it allows for multiple hybridization (in any

configuration), multiple alleles sampled per species, arbitrary divergence patterns following

hybridizations, and methodologically no bounds on the numbers of leaves in the gene trees.

We demonstrate the performance of our framework in terms of estimating the

hybridization events and inheritance probabilities on simulated data under different

evolutionary settings. For most cases, the framework exhibits very good performance from

a small number of loci. Further, we reanalyze a yeast data set and show the performance of
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the framework on biological data. We highlight two important issues: how to deal with

uncertainty in the input gene trees, and the model selection problem that naturally arises

when inferring phylogenetic networks. The speed of this parsimony framework makes it a

good candidate for unrestricted analyses of multi-locus data sets, where hybridization is

suspected, at least in order to obtain a first approximation to the true evolutionary history.

While parsimonious reconciliation of species/gene trees and inference under such a criterion

is known to have consistency issues under certain settings (Than and Rosenberg, 2011),

parsimony remains a powerful approach in this domain, given its speed and good accuracy

in many cases. We believe that our framework here can help in identifying good

evolutionary hypotheses, which can be further analyzed with more detailed approaches

such as the one of (Yu et al., 2012).

We have implemented our method and made it available in open-source form in the

software package PhyloNet (Than et al., 2008a). The software package, as well as

supporting documentation and a tutorial on its use, can be accesses at:

http://bioinfo.cs.rice.edu/PhyloNet.

Methods

Here we describe our parsimony criterion for reconciling gene trees within the branches of

phylogenetic networks, and our heuristic search for inferring phylogenetic networks and

inheritance probabilities under this criterion.

Phylogenetic Networks and Gene Trees

The coalescent model (Kingman, 1982) views the evolution of multiple alleles of a locus

backward in time. The multispecies coalescent generalizes the model to a phylogenetic tree

that captures the evolution of multiple populations (Degnan and Rosenberg, 2009). Under
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this model, a gene tree may disagree with a species tree due to incomplete lineage sorting

(Fig. 1A). Here, each gene tree models the evolution of a set of alleles at a single locus in

multiple species, and all incongruence is assumed to be due to incomplete lineage sorting.

When hybridization between two populations occurs, the evolutionary history of the

species takes the form of a phylogenetic network, rather than a tree, so as to capture the

contributions of genetic material from two parents (Fig. 1B). A phylogenetic network is a

rooted, directed, acyclic graph whose leaves are labeled uniquely by a set of species. A

phylogenetic network contains a unique node of in-degree 0 and out-degree 2 (the root), a

set of nodes of in-degree 1 and out-degree 0 (the leaves), a set of nodes of in-degree 1 and

out-degree 2 (the tree nodes), and a set of nodes of in-degree 2 and out-degree 1 (the

reticulation nodes). Associated with every pair of reticulation edges (e1,e2) that are

incident into a reticulation node are two real numbers γe1 and γe2 , respectively, such that

γe1 + γe2 = 1. These parameters are interpreted as the inheritance probabilities: Given a

lineage x at a reticulation node, it is inherited from one parent with probability γe1 and

from other parent with probability γe2 (see Section 1 in Supplementary Material for more

details; doi:10.5061/dryad.sr534). If γe1 = 0 for a reticulation edge e1 incident into node x,

this indicates that e1 is redundant and that no hybridization involves x.

The evolution of a gene within the branches of a phylogenetic network can be

viewed backward in time, such that whenever a reticulation node is encountered, the gene

traces one of the two parents with a certain probability (the inheritance probability). Fig. 1

shows examples of a phylogenetic network on three species A, B, and C, and a gene tree

with one allele sampled from A, two alleles sampled from B, and one allele sampled from

C. An inheritance probability that is estimated at a value different from 0 and 1 indicates

hybridization at the reticulation node, whereas a value of 0 or 1 imply that the reticulation

node is redundant and can be replaced by a tree node attached to one of the two parents

only.
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Coalescent Histories and the MDC Criterion

We denote by V (g) and E(g) the sets of nodes and edges, respectively, of graph g, and by

Ct(v) the subtree of tree t that is rooted at node v. For a phylogenetic network N , we

denote by CN(v) the subgraph of N that is induced by all the nodes reachable (or,

“under”) from v.

Given gene tree gt and species phylogeny ST (tree or network), a coalescent history

is a function f : V (gt) → V (ST ) such that the following conditions hold: (1) if w is a leaf

in gt that is labeled by an allele from species x, then f(w) is the leaf in ST labeled with x;

and, (2) if w is a node in Cgt(v), then f(w) is a node in CST (f(v)). Fig. 1A shows a

coalescent history of the gene tree in Fig. 1C within the branches of a species tree, whereas

Fig. 1B shows a coalescent history of the same gene tree yet within the branches of a

species network.

Given a gene tree gt and a species phylogeny ST , and given a function f defining a

coalescent history of gt within ST , the number of lineages in each branch in ST can be

computed by inspection. For example, in Fig. 1A, the number of lineages in the branch

leading directly to taxon B is 2, whereas the number of lineages in the branch leading

directly to C is 1. Given a coalescent history of a gene tree within the branches of a species

tree, the number of extra lineages on a branch of the species tree is the number of lineages

“exiting” the branch minus one. For example, the number of extra lineages on the branch

incident with species B in Fig. 1A is 1, since two lineages exit the branch. In fact, given

the gene tree in Fig. 1C and species tree in Fig. 1A, the reconciliation given in panel A is

the one with the smallest number of extra lineages (for that fixed species tree). Given a set

of coalescent histories for a set of gene trees, the total number of extra lineages is obtained

by summing the number of extra lineages over all gene trees. More formally, let us denote

by XL(ST, gt) the number of extra lineages within an optimal coalescent history of gt
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within ST . For a set G of gene trees, we have

XL(ST,G) =
∑
g∈G

XL(ST, g). (1)

Under parsimony, a reconciliation of the set of gene trees within the branches of a species

tree that minimizes the total number of extra lineages over all gene trees provides an

optimal evolutionary history of the gene genealogies for the given species tree; this is the

minimizing deep coalescences (MDC) criterion proposed in (Maddison, 1997). Given a

collection G of gene trees, the MDC (Minimizing Deep Coalescences) criterion (Maddison,

1997) seeks the species tree ST ∗ where

ST ∗ = argminSTXL(ST,G).

For the inference problem, a species tree is sought so as to minimize deep coalescences over

all possible (species) tree candidates. Efficient algorithms for solving this inference problem

were recently introduced (Than and Nakhleh, 2009, 2010; Yu et al., 2011b,c).

ILS and Hybridization: MDC on Phylogenetic Networks

While Maddison defined this criterion for species trees, we extend it naturally to

phylogenetic networks, given that we defined the concept of coalescent histories on

phylogenetic networks above. Than and Nakhleh (2009) defined a mapping between a

species tree and a gene tree that yields the optimal coalescent history that results in the

minimum number of extra lineages . The key principle is to let the gene lineages coalesce

as “low” as possible as long as they are consistent with the topologies of the gene and

species trees. However, a similar idea for obtaining the optimal coalescent history of a gene

tree within the branches of a phylogenetic network does not work; we illustrate this issue in
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Section 2 in Supplementary Material. Further, Than and Nakhleh (2009) devised exact

algorithms for inferring species trees from collections of rooted, binary gene trees under the

MDC criterion, which were later extended to handle cases of unrooted or non-binary gene

trees and with arbitrary numbers of alleles sampled per species (Than and Nakhleh, 2009;

Yu et al., 2011b,c). However, none of these algorithms apply directly to the case where the

species phylogeny is a network with at least one reticulation node.

We recently introduced an approach for reconciling a gene tree within the branches

of a species network based on the concept of a multi-labeled tree, or MUL-tree (Yu et al.,

2012). A phylogenetic network can be converted to a MUL-tree by proceeding in a

bottom-up fashion (leaves to root), replicating the subtree at a reticulation node every

time such a node is encountered. Upon termination of this process (when the root is

reached), the resulting structure is a rooted tree whose leaves are not necessarily uniquely

labeled. Each of the four panels in Fig. 2 shows the single MUL-tree that corresponds to

the phylogenetic network in Fig. 1B. Once the MUL-tree is obtained, the evolution of a

gene tree is modeled by mapping the alleles it contains to the respective species from which

they were sampled. Fig. 2 shows the four possible allele mappings for the gene tree in

Fig. 1C. Given an allele mapping, the multispecies coalescent then proceeds in the

standard manner within the branches of the MUL-tree. Every coalescent history of a set of

alleles on a phylogenetic network corresponds to a coalescent history of an allele mapping

on the corresponding MUL-tree. Consequently, the optimal number of extra lineages

arising from reconciling a gene tree within the branches of a species network can be

computed using a slightly modified application of the MDC criterion on the MUL-tree and

the set of allele mappings (Yu et al., 2012). Our method is illustrated in Fig. 3 and its full

details are given in Section 3 in the Supplementary Material.

Given a collection G of gene trees, once the optimal coalescent histories for all of

them are computed within the branches of a phylogenetic network N (using the MUL-tree
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approach), the inheritance probabilities associated with the reticulation nodes are

estimated as follows. Let x be a reticulation node in N . Given the optimal coalescent

histories computed, let lx be the number of lineages that trace the left parent in all the

coalescent histories, and let rx be the number of lineages that trace the right parent in all

the coalescent histories. Then, the probability associated with the left reticulation edge

incident with x is lx/(lx + rx) and the probability associated with the right reticulation

edge incident with x is rx/(lx + rx) (see Section 4 in Supplementary Material for details of

special cases).

Searching the Network Space

The space of phylogenetic networks is very large, and it is infeasible to enumerate all

networks in order to identify the optimal one under the MDC score. Instead, we employ a

local search heuristic that searches the space of phylogenetic networks, while scoring them

based on Eq. (1). We denote by Ω(n, k) the space of phylogenetic networks that contain n

taxa and k reticulation nodes. Suppose an optimal phylogenetic network with at most m

reticulation nodes is sought. Our search strategy first searches the space Ω(n, 0) until some

(potentially local) optimum is reached. The search then proceeds to Ω(n, 1), searches in

that space until an optimum is reached, and then jumps to Ω(n, 2). This strategy continues

until either an optimal network is reached in Ω(n,m), or the locally optimal score in

Ω(n, k + 1) is not better than that in Ω(n, k) for some k < m.

The optimality scoring is done using the MUL-tree technique discussed above, and

we now describe the topological operations that we employ to search the phylogenetic

network space. For every phylogenetic network N , we define two disjoint neighborhoods:

∆(N), which contains networks with the same number of reticulation nodes as that in N ,

and ∆+1(N), which contains networks with one more reticulation node than that in N .

Given a phylogenetic network N , a neighbor N ′ ∈ ∆(N) is obtained by either relocating
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the source of one edge in N or relocating the destination of one reticulation edge in N .

Relocating the source of one edge in N follows three steps:

1. Choose two distinct edges (u1, v1) and (u2, v2) in N such that u1 is neither a

reticulation node nor a predecessor of v2.

2. Delete node u1 and the four edges (u1, v1), (u2, v2), (w, u1) and (u1, z), where w is the

parent node of u1 and z is a child node of u1 other than v1.

3. Add a new node x and four new edges (u2, x), (x, v2), (x, v1) and (w, z) to the

network.

Relocating the destination of one reticulation edge in N follows three steps:

1. Choose two distinct edges (u1, v1) and (u2, v2) in N such that v1 is a reticulation node

and v2 is not a predecessor of u1.

2. Delete node v1 and the four edges (u1, v1), (u2, v2), (w, v1) and (v1, z), where w is a

parent node of v1 other than u1 and z is the child node of v1.

3. Add new node x and four new edges (u2, x), (x, v2), (u1, x) and (w, z) to the network.

Given a phylogenetic network N , a neighbor N ′ ∈ ∆+1(N) is obtained from N by adding a

single edge to form a new reticulation node using the following three steps:

1. Choose two distinct edges (u1, v1) and (u2, v2) in N such that v2 is not a predecessor

of u1.

2. Delete both (u1, v1) and (u2, v2).

3. Add two new nodes x1 and x2 and five new edges (u1, x1), (x1, v1), (u2, x2), (x2, v2)

and (x1, x2).
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Given a collection G of gene trees, we search in Ω(n, k) as follows. Assume the

current optimal network in the search is N ∈ Ω(n, k) and we search for the next optimal

network in Ω(n, k). We compute minN ′∈∆(N)XL(N ′,G) and compare this value to

XL(N,G). If the latter is larger, we replace the current network N by the new optimal one

and continue the search in Ω(n, k) from the new network; otherwise, we stop the search in

Ω(n, k) since the local optimum has been reached. If the search has stopped and k has

reached a pre-specified upper bound of the number of reticulation nodes, the entire search

terminates and the current network is returned as the inferred optimal network. If the

pre-specified upper bound is not reached, the search moves up to Ω(n, k + 1) by computing

minN ′∈∆+1(N) XL(N ′,G) and compare this value to XL(N,G). If the latter value is larger,

we replace the current network N by the new optimal one and continue the search in

Ω(n, k + 1) from the new network N using ∆(N); otherwise, the search terminates and N

is returned as the optimal phylogenetic network inferred. It is important to note that since

the optimal network in Ω(n, 0) is the optimal species tree under the MDC criterion, the

globally optimal network in this sub-space can be found efficiently (without search) using

the method of Than and Nakhleh (2009).

Handling Gene Tree Uncertainty

When analyzing biological data sets, gene tree topologies are estimated from sequence

data. Consequently, these gene tree estimates may have uncertainty associated with them.

We handle this uncertainty in two different ways. First, consider a case where for each

gene, a non-binary tree is obtained, such as in an analysis involving bootstrapping followed

by contraction of all branches with low support or in an analysis that considers the strict

consensus of all optimal trees under a maximum parsimony analysis. In this case, for each
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gene we have a tree g that is not necessarily binary, and we replace Eq. (1) by

XL(ST,G) =
∑
g∈G

min
g′∈b(g)

XL(ST, g′) (2)

where b(g) is the set of all binary refinements of g. Of course, if g contains nodes of very

high degrees, this approach is computationally infeasible if done in a brute-force fashion

(explicitly considering all possible refinements). However, using our MUL-tree conversion

technique, the efficient algorithms for (Yu et al., 2011b,c) apply directly and achieve this

computation in polynomial time (in the size of the MUL-tree), as opposed to the

exponential time (in the size of the MUL-tree) of the brute-force approach.

The second way of dealing with gene tree uncertainty is by incorporating the

posterior probabilities computed by a Bayesian inference of the gene tree topologies. For

each locus i, let gi1, . . . , g
i
q be the set of gene trees along with their posterior probabilities

pi1, . . . , p
i
q. For a gene tree topology g, let pg be the sum of posterior probabilities

associated with all gene trees that have the same topology as g over all loci. Then, we

replace Eq. (1) by

XL(ST,G) =
∑
g∈G

[XL(ST, g)× pg] (3)

where G the set of all distinct gene tree topologies computed over all loci.

Results

Evaluating Inference on Simulated Data

To study the performance of our criterion and method in terms of the phylogenetic network

they infer and the inheritance probabilities they estimate, we first used simulated data. We

considered four phylogenetic networks (Fig. 4) depicting evolutionary scenarios that
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present different challenges. The phylogenetic network in Scenario I includes speciation

after hybridization. Scenario II presents two independent hybridization events involving

terminal taxa (leaves). Scenario III includes a hybrid species that further speciates, and

then the two sister taxa hybridize again. Scenario IV includes two hybridization events the

more recent of which involves a descendant and a descendant of a parent of the earlier

hybrid. These different phylogenetic networks allow us to examine how combinations of

speciation and hybridization affect the detectability of hybridization in particular, and the

inference of phylogenetic networks in general. Further, we varied the inheritance

probabilities associated with the hybridization events in the phylogenetic networks. For

Scenario I, we considered α ∈ {0.0, 0.3, 0.5}, and for Scenario II and III we considered

(α, β) ∈ {(0.0, 0.5), (0.3, 0.3), (0.5, 0.5)}. Since the hybridization events in Scenario IV are

overlapping, we considered (α, β) ∈ {(0.0, 0.5), (0.3, 0.3), (0.5, 0.0), (0.5, 0.5), (0.5, 1.0)} in

this case. The rationale for selecting the three values 0.0, 0.3, and 0.5 is that they represent

no hybridization, ”skewed” hybridization (different genetic contributions of the two parents

to the hybrid), and perfect hybridization (equal genetic contributions of the two parents to

the hybrid). Finally, to vary the extent of deep coalescence within each of the four

evolutionary histories, we considered two settings for the branch lengths t1, . . . , t4 (as

measured in coalescent units): setting 1, in which t1 = t2 = t3 = t4 = 1.0, and setting 2, in

which t1 = t2 = t3 = t4 = 2.0. As the extent of ILS increases as branches become shorter,

we expect setting 1 to provide more challenging data for the method.

Using each combination of phylogenetic network, inheritance probabilities, and

branch length setting, we used the ms program (Hudson, 2002) to generate 10, 25, 50, 100,

500, 1000 and 2000 gene trees within the branches of the phylogenetic networks. To obtain

statistically significant results, we generated 100 data sets per parameter setting and

evaluated the performance as averaged over these 100 data sets, for each point in the

parameter space. In these experiments, a single allele per species per gene was sampled.
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Using the input sets of gene tree topologies, we inferred phylogenetic networks along

with inheritance probabilities. In this experiments, we started our search from the optimal

species tree under MDC by the exact method of Than and Nakhleh (2009). In this section,

we assume knowledge of the true number of hybridization events and made inference with

these (known) numbers of hybridization events. More specifically, for data sets

corresponding to Scenario I, we inferred phylogenetic networks with single hybridization

events, and for the other three scenarios, we inferred phylogenetic networks with two

hybridization events. We discuss later the issues arising when we do not control for the

number of hybridization events. We compared each inferred phylogenetic network against

the (known) true phylogenetic network in terms of the topology and estimated inheritance

probability. For comparing the topologies of two phylogenetic networks, we used the

dissimilarity measure of (Nakhleh et al., 2004; Than et al., 2008a) which computes the

symmetric difference between the two sets of taxa clusters induced by the two networks.

Results of the application of our methods to gene trees under Scenarios I, II, and III are

given in Fig. 5.

In terms of the accuracy of the inferred phylogenetic network topology, we observe

that as the number of gene trees used increases, the error in the estimated network

decreases. For all three evolutionary scenarios, using about 50 gene trees under time

setting 2 for branch lengths results in phylogenetic network inferences with 0 error.

However, the performance is different under time setting 1, which incorporates larger

extents of incomplete lineage sorting. Here, we see that using about 50 gene trees results in

correct network inference only under Scenario II, which is the least challenging for all

scenarios considered. When we consider Scenario I, which adds to Scenario II the

complexity of divergence after hybridization, we observe that the number of genes required

to obtain accurate phylogenetic networks increases significantly (by an order of

magnitude). For Scenario III, we observe that even with 2000 gene trees, the search
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heuristic fails to identify the true phylogenetic network. It is important to note here that

we must distinguish between the performance of the optimality criterion and that of the

search heuristic employed for inference. In this case, our search heuristic begins with a

species tree that minimizes the number of extra lineages (or, deep coalescences) over all

possible tree candidates, given the set of gene tree. Using this tree, the search proceeds in a

hill descent fashion, each time exploring all neighboring topologies of the current optimal

network, and continuing with the best found. An artifact of this search heuristic is that if

the true network cannot be obtained from the starting tree in any possible way, then this

search heuristic would not converge to the true network. Of course, this problem could be

ameliorated by random restarts of the search heuristic or by exhaustively starting from all

possible trees. While the former is also not guaranteed to result in convergence to the true

network, the latter is prohibitive but for data sets with very small numbers of taxa, given

the exponentially large size of the tree space. Nevertheless, we have inspected the cases

pertaining to Scenario III and verified that the reason behind the lack of convergence to

0-error networks is the criterion: The number of extra lineages in the optimal network that

the heuristic infers is smaller than that in the true network. This is not surprising, since

parsimonious reconciliation and inference is known to have consistency issues, even when

ILS is the only event at play (Than and Nakhleh, 2009, 2010; Than and Rosenberg, 2011).

Finally, we observe that the performance is better for inheritance probabilities that are

closer to 0.5. This is due to the fact that under these settings the contributions of the two

parents to the genetic makeup of a hybrid species is more balanced, providing more

phylogenetic signal for the method to infer the correct evolutionary history.

In terms of estimating the inheritance probabilities, the results show that our search

heuristic makes very good estimates, regardless of the evolutionary scenario and branch

length setting. Even though branch length setting 2 yields slightly more accurate

estimates, which is expected, it is important to note that the method produces very good
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estimates even for the shorter branch lengths, where the extent of ILS is much larger.

Further, it is worth emphasizing that these good estimates are obtained even with the

smallest data sets (in terms of the number gene trees). This is a strength of the method.

More Loci or More Alleles?

Given the finite resources associated with any phylogenomic analysis, a natural question to

ask is: In order to obtain more accurate inferences of phylogenetic networks and

inheritance probabilities, should one sample more loci across the genomes or more alleles

per locus? To explore this question, we used the above simulation procedure to generate

gene trees under evolutionary Scenario IV, where 1, 2, 4 and 8 alleles per locus per species

were sampled. The multi-allele gene trees were then used as input in the inference

procedure. The results of this experiment are shown in Fig. 6.

Several observations are in order. First, in the case of this evolutionary scenario, the

ability of the method to infer the correct topology of the phylogenetic network is not

affected much by the branch length settings, unlike the performance on the other three

scenarios. However, in this case, the method always overestimates the inheritance

probability (by about 5% hybridization), more so in the case of time setting 1. Second, in

this case, the estimates of the probability β of the lower (closer to the leaves) hybridization

are more accurate than that of the estimates of α, which is unlike Scenarios II and III,

where we did not observe any differences in the quality of the estimates of the two

hybridization events. The reason for this is that in this scenario, some lineages, or alleles,

from species D that trace different parents at the hybridization event undergo a further

hybridization event, affecting the coalescence patterns towards the root. Regarding the

benefit obtained by increasing the number of alleles, none are observed in terms of the

inheritance probability, and some are observed in terms of the phylogenetic network

accuracy under time setting 1. That is, if the branches are very short, sampling two alleles,
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instead of one, improves the quality of the inferred network significantly. However, adding

alleles beyond that does not seem to add more power, or signal, to the method. Under the

other three scenarios, a single allele was already sufficient to provide highly accurate

estimates. In summary, given the experimental settings we used here, there does not seem

to be much benefit in sampling many alleles per species. Rather, sampling more loci per

genome, particularly when the number of loci afforded is smaller than 100, provides more

benefit. It is worth mentioning that the probabilistic method of (Yu et al., 2012) yields

very accurate estimates of the inheritance probabilities under this evolutionary scenario,

even when a single allele is sampled per species (see supplementary material of (Yu et al.,

2012)).

Evaluating Inference on a Yeast Data Set

To study the performance of our framework on biological data, we reanalyzed the yeast

data set of (Rokas et al., 2003). This data set consists of 106 loci, each present in exactly a

single copy in each of seven Saccharomyces species, S. cerevisiae (Scer), S. paradoxus

(Spar), S. mikatae (Smik), S. kudriavzevii (Skud), S. bayanus (Sbay), S. castellii (Scas), S.

kluyveri (Sklu), and the outgroup fungus Candida albicans (Calb). We reconstructed gene

trees from sequence data using maximum parsimony in PAUP* (Swofford, 1996) and

Bayesian inference in MrBayes (Huelsenbeck and Ronquist, 2001). In each of 106 gene

trees, the genes from the five species Scer, Spar, Smik, Skud and Sbay formed a

monophyletic group. From a parsimony perspective, all coalescent events involving genes

from these five species occur at or below their most recent common ancestor. Therefore, in

our analysis, we only focused on the evolutionary history of these five species.

It is important to note that the gene trees used in the analysis here are not all

binary. In the case where the gene trees were inferred by maximum parsimony, we used the

strict consensus of all optimal trees found for each gene, which resulted in non-binary trees.
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In the case of Bayesian inference, we used each gene tree with its posterior probability. See

Methods for how we accounted for uncertainty in gene trees using these two approaches.

Using our method, we inferred the optimal species networks containing 0, 1 and 2

reticulation nodes. The resulting species networks inferred from gene trees reconstructed

by maximum parsimony are shown in Fig. 7 along with inheritance probabilities and total

number of extra lineages. The optimal species tree in Fig. 7A has been reported by several

studies (Edwards et al., 2007; Rokas et al., 2003; Than and Nakhleh, 2009). The optimal

species network containing one reticulation node in Fig. 7B has also been proposed as an

alternative evolutionary history under the stochastic framework of

(Bloomquist and Suchard, 2010), the parsimony framework of (Than and Nakhleh, 2009)

and the likelihood framework of (Yu et al., 2012). It is worth mentioning that the

inheritance probability inferred by our method is almost the same as that inferred by the

probabilistic approach of (Yu et al., 2012). The optimal species network with two

reticulation nodes in Fig. 7C was not reported in any of the aforementioned studies.

For gene trees reconstructed using MrBayes, the inferred species networks are shown

in Fig. 8. The optimal species tree in Fig. 8A has been reported as a very close candidate

(Edwards et al., 2007; Than and Nakhleh, 2009). The optimal species network containing

one reticulation node in Fig. 8B has the same topology as the one inferred from gene trees

reconstructed by maximum parsimony in Fig. 7B, but with a slightly higher inheritance

probability.

The Model Selection Problem

A major confounding issue that arises when inferring phylogenetic network topologies is

that of determining the correct number of reticulation events (Nakhleh, 2010). As we

observed in the yeast data set analysis, adding a single reticulation node to the optimal

species tree reduces the number of extra lineages by about 70%. Further, adding an
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additional reticulation node to the optimal species network with a single reticulation node

reduces the number of extra lineages by about a half. This is the classical model selection

problem arising in the domain of phylogenetic networks: Increasing the complexity of the

phylogenetic network topology by adding more reticulation nodes to it mostly improves the

fit of the data. Simply minimizing the sum of the number of hybridization events and deep

coalescence events does not solve the problem. Further, minimizing a weighted sum of

these two numbers raises the questions of how to weight them and whether weights are

data-dependent or not.

As we pointed out above, when analyzing the simulated data, we assumed

knowledge of the true number of reticulation nodes. To understand the performance of the

method when this assumption is removed, we inferred phylogenetic networks with up to 4

reticulation nodes from the data we generated, and explored the number of extra lineages

in these inferred networks as a function of the number of reticulation nodes. The results for

Scenario III are shown in Fig. 9; similar results were observed under the other scenarios.

As the figure shows, the number of extra lineages of the optimal species networks

keeps decreasing as more reticulation nodes are added. Thus, using the minimization of the

number of extra lineages as the optimality criterion, without penalizing complexity, may

result in gross overestimation of the amount of reticulation in the data.

Performance on large data sets

We recently proposed another exact method for computing the number of extra lineages of

a phylogenetic network and showed that it is much faster than the MUL-tree based one

(Yu and Nakhleh, 2012). Since both methods are exact, substituting one for the other does

not affect the inference method. Still, the method based on MUL-trees has its advantages

in that it is applicable efficiently to unrooted and non-binary gene trees, as discussed

above. Since we seek to evaluate the performance of parsimonious inference of phylogenetic
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networks, we employ the method of Yu and Nakhleh (2012) for scoring phylogenetic

networks.

We conducted experiments on simulated data sets that are much larger than the

ones used above. We first generated 100 random species trees with 10, 20 and 40 taxa

using PhyloGen Rambaut (2012) and set the total heights of those species trees to 8 Ne, 16

Ne and 32 Ne, respectively. From each species tree, we then generated random species

networks with 1, 2, 3, 4 and 5 reticulation nodes respectively. When expanding a species

network with k reticulation nodes to a species network with k + 1 reticulation nodes, we

randomly selected two existing edges in the species network and connected their midpoints

from the higher one to the lower one and then the lower one becomes a new reticulation

node. For every reticulation node, we assigned random values from 0 to 1 as its inheritance

probability. Finally, we simulated 25, 50, 100 and 200 gene trees respectively within the

branches of each species network using the ms program Hudson (2002).

Using the input sets of gene tree topologies, we inferred phylogenetic networks using

the search procedure described above, and assuming knowledge of the true number of

reticulation nodes. The running times of the method are shown in Fig. 10. It is not

surprising that the running time increases with the increase in the numbers of taxa and

reticulation nodes. But overall our method is able to finish the computations on all data

sets in a reasonable amount of time. For the largest data set which has 40 taxa and 5

reticulation nodes, 75% of the computations finished within 24 hours. The outliers in the

figure indicate that some data sets took much more time than others, especially for larger

data sets. This occurs because the topology of the phylogenetic network and gene trees

affect the running time, even when keeping the numbers of taxa and reticulation nodes

fixed.

In addition to the running times, we also investigated the topological accuracy of

the inferred phylogenetic network. Since for each run we know the true network Nm and
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the inferred network Ni, the two networks can be compared using the normalized

symmetric difference of the two; that is, by calculating the number of clusters that appear

in one but not both of the networks, and dividing the number by twice the number of

clusters in Nm. This measure was first introduced in (Nakhleh et al., 2003) and

implemented in PhyloNet (Than et al., 2008a). The values of this measure for the pairs of

phylogenetic networks we consider here range between 0, indicating identical networks, and

1, indicating the pair of networks disagree on every cluster. Results on the accuracy of the

inferred phylogenetic networks are given in Fig. 11. For a fixed number of taxa, the error of

network inference increases with the number of reticulation nodes. It is expected because

the addition of reticulation nodes increases the complexity of the phylogenetic networks.

On the other hand, for a fixed number of reticulation nodes, the error of network inference

decreases as the number of taxa increases. This happens because for a network with larger

number of taxa, the randomly added reticulation nodes may have a higher chance to be

independent of each other, which actually makes the inference easier. Last but not least, as

the number of gene trees sampled increases, the accuracy improves, albeit slightly. This

may be due to issues with the search strategy, issues with the MDC criterion, or both.

Discussion

In this study, we extended the MDC criterion (Maddison, 1997; Than and Nakhleh, 2009)

in order to define a parsimonious reconciliation of a gene tree topology within the branches

of a phylogenetic network. By doing so, the resulting reconciliation accounts

simultaneously for incomplete lineage sorting and hybridization. Further, we devised a

local search heuristic for searching the phylogenetic network space to identify optimal ones

under the new criterion. We applied our criterion and search heuristic to simulated data

and a biological data set, and demonstrated the quality of inferences.
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A central technique that we use in our study entails converting a phylogenetic

network into its corresponding multi-labeled tree, or MUL-tree. This technique enables

applying existing, tree-based criteria and methods to phylogenetic networks by employing

them on the tree representation of the network. Indeed, in (Yu et al., 2012), we showed

how to apply standard coalescent-based probabilistic computations to MUL-trees, and in

this study we demonstrated how to extend parsimony-based tree reconciliations to

phylogenetic networks by working indirectly on the MUL-tree representations. A further

potential use of MUL-trees might be in facilitating phylogenetic network space search to

enable efficient inference techniques.

When inferring phylogenetic networks, the classical model selection problem arises:

More complex networks (that is, ones with more hybridization) may be found to fit the data

better than less complex ones. Even though there is a quadratic bound on the maximum

number of reticulation events in terms of the number of leaves in the phylogenetic network,

methods that do not account for this issue would result in gross over-estimations of

hybridization. This is one of the major problems with parsimonious reconciliations.

While various biological events can cause gene trees to disagree with each other as

well as with the species phylogeny, a major confounding factor that must be accounted for

when conducting analyses is uncertainty in gene trees. As gene trees are estimated from

sequence data using computational methods, not all branching patterns in these trees can

be inferred with certainty. Therefore, it is very important that criteria and methods

account for this issue. We showed two ways of doing so, by allowing for non-binary gene

trees and by considering posterior distributions.

Just as parsimony approaches can have consistency issues when inferring trees from

sequences (Felsenstein, 1978), their counterparts for species tree inference from gene trees

suffer from similar issues (Than and Rosenberg, 2011). We expect that this issue would

arise also in the case of parsimonious inference of phylogenetic networks. Nevertheless, we

23

 at R
ice U

niversity on June 18, 2013
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/


showed in this study that for many cases of hybridization and ILS, parsimony obtains the

same results as a probabilistic framework, within a fraction of the time that the latter

approach takes. We believe one of the best uses of parsimony would be to quickly obtain a

good initial network that can be used to seed searches for phylogenetic networks under

probabilistic approaches.

One major simplifying assumption that we made here is ignoring other discord

factors, such as gene duplication and loss. We will explore ways of incorporating

duplication and loss into our framework, potentially along the lines of combining the idea

of MUL-tree with that of the locus tree (Rasmussen and Kellis, 2012). Further, while we

specifically address hybridization in this study, the framework is applicable in theory to

horizontal gene transfer (HGT) in general. However, when only a single gene or very few

genes are transferred, a large extent of ILS might overwhelm the signal for HGT.

Supplementary Material

Supplementary material, including data files and/or online-only appendices, can be found

in the Dryad data repository at http://datadryad.org, doi:10.5061/dryad.sr534.
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Figure Captions

Figure 1: Gene trees within species trees and species networks. (A) Under the

multispecies coalescent model, a gene tree may be incongruent with the species tree due to

incomplete lineage sorting (ILS). (B) When hybridization occurs between two species (or,

populations), the species phylogeny takes the shape of a network, and a gene tree “grows”

within the branches of the network. The variable γ corresponds to the probability of a lineage

in the hybrid population being inherited from the “left” parent (1 − γ is the probability of

inheritance from the “right” parent). (C) ILS and hybridization can give rise to the same

gene tree shape (or, topology).

Figure 2: Phylogenetic networks and MUL-trees. The MUL-tree that corresponds to

the phylogenetic network in Fig. 1B. The four panels show the four possible allele mappings

of the gene tree in Fig. 1C. The allele mapping in (B) corresponds to the coalescent history

in Fig. 1B. Values of 1.0 and 0.0 for γ in panels A and D, respectively, indicate no support

for hybridization in these two cases. The MUL-tree in panel B has the lowest number of

extra lineages, and hence corresponds to the optimal reconciliation of the gene tree within

the branches of the phylogenetic network.
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Figure 3: A schematic illustration of our method for computing an optimal co-

alescent history of a gene tree within the branches of a phylogenetic network.

The phylogenetic network is converted to a MUL-tree, and the alleles sampled are mapped

in every possible way to the leaves of the MUL-tree. For each allele mapping, the number

of extra lineages is computed on the MUL-tree, and the mapping that yields the minimum

overall number corresponds to an optimal coalescent history.

Figure 4: Phylogenetic networks depicting different hybridiza-

tion/divergence/extinction scenarios. The α and β parameters denote the proportions

(or, probabilities) of alleles that are inherited from the “left” parents of the reticulation

nodes (1 − α and 1 − β denote the proportions of the alleles that are inherited from the

“right” parents of the nodes).

Figure 5: Accuracy of the inferred phylogenetic networks and inheritance prob-

abilities. The three columns from left to right correspond to Scenarios I, II, and III in

Fig. 4, respectively. One allele per gene per species is sampled.

Figure 6: The effect of the number of alleles. Accuracy of the phylogenetic networks

and inheritance probabilities estimated from gene trees simulated under Scenario IV, with

true inheritance probabilities α = β = 0.3, where the number of alleles sampled per species

also varies. Top and bottom rows correspond to time settings 1 and 2, respectively.
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Figure 7: Analysis of the yeast data set, where gene trees are reconstructed using

MP. Optimal species phylogenies, along with inheritance probabilities, inferred from gene

trees reconstructed by maximum parsimony for the yeast data set of (Rokas et al., 2003).

(A) The optimal species tree (network with 0 reticulation nodes). (B) The optimal species

network containing one reticulation node. (C) The optimal species network containing two

reticulation nodes. For each species phylogeny, the total number of extra lineages (XL) is

computed using Eq. (2) and reported.

Figure 8: Analysis of the yeast data set, where gene trees are reconstructed using

Bayesian inference. Optimal species phylogenies, along with inheritance probabilities,

inferred from gene trees reconstructed by MrBayes for the yeast data set of (Rokas et al.,

2003). (A) The optimal species tree (network with 0 reticulation nodes). (B) The optimal

species network containing one reticulation node. (C) The optimal species network contain-

ing two reticulation nodes. For each species phylogeny, the total number of extra lineages

(XL) is computed using Eq. (3) and reported.

Figure 9: Network complexity and the number of extra lineages. The decrease in the

number of extra lineages in the inferred phylogenetic network as a function of the increase

in number of hybridization events inferred. The results were obtained from data pertaining

to Scenario III under two different settings of the inheritance probabilities and two different

settings of the branch lengths.
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Figure 10: Running time of phylogenetic network inference. The three columns from

left to right correspond to data sets with 10, 20 and 40 taxa, respectively. The six rows

from bottom to top correspond to data sets with 0, 1, 2, 3, 4 and 5 reticulation nodes,

respectively. In each sub-figure, the x-axis is the number of gene trees sampled and the

y-axis is the running time in seconds.

Figure 11: Accuracy of inferred phylogenetic networks. The three columns from left

to right correspond to data sets with 10, 20 and 40 taxa, respectively.
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Figure 4
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Figure 9
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Figure 11
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