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S U M M A R Y
While inversion of seismic velocity from receiver function data could be instable due to
its intrinsic non-linearity and non-uniqueness, improper stacking of receiver function could
also introduce significant biases to the resulting velocity structure. In a distance section of
receiver functions, the Moho Ps conversion and the two reverberations possess a positive
and negative moveout, respectively. Stacking receiver functions without moveout correction
could significantly reduce and distort the amplitude and waveform of these phases. Inversion
with these incorrectly stacked receiver functions will thus inevitably introduce artefacts to the
resulting velocity structure. In this study, we have improved the inversion procedure in two
ways. First, we introduce a ray-parameter based (RPB) stacking method to correctly construct
receiver function data for inversion. Specifically we develop a ‘four-pin’ method that accounts
for the moveout effect of the converted and reverberated phases in stacking individual receiver
functions recorded at various distances. Secondly, we divide the receiver function trace into
conversion and reverberation windows and assign different weights between the two windows
in the inversion. More weight is given to the Ps conversion window in resolving the shallow
structure, which can be nearly fixed in the successive inversion of deeper structure. We also
employ other pre-conditioning proposed by previous studies, such as balancing the receiver
function data being filtered with different Gaussian filters, smoothing the velocity model and
further regulating the model based on existing information. We compute synthetic receiver
functions at distances between 30◦ and 90◦ from a target model and then use the RPB stacking
method to generate the input data for various inversions (iterative linear) with different initial
models. Our inversions with enhanced pre-conditioning and RPB stacked data demonstrate a
good capability in recovering the target model from generally more stable iterations. Applying
these techniques to two broad-band stations in China indicates that the improvements on data
stacking and inversion can eliminate potential stacking-induced artefacts, and yield models
more consistent with surface geology.

Key words: Time-series analysis; Numerical solutions; Inverse theory; Body waves; Crustal
structure; Asia.

1 I N T RO D U C T I O N

With the rapid increase of three-component broad-band seismo-
graphs around the globe, the receiver function analysis has become
an effective tool extensively used in modelling lithospheric structure
beneath the receiver sites. The advantage of receiver function anal-
ysis attributes to its capability of isolating the response of Earth’s
structure from source signatures by deconvolving the incident wave
recorded on the vertical component from the mode-converted waves
on the horizontal components. The deconvolution results in a series
of P to S converted and reflected S waves associated with Earth’s
internal boundaries beneath the seismograph. Since the concept of
receiver function was first introduced (e.g. Langston 1979), many

methods and techniques have been developed to apply receiver func-
tion data to estimate crustal properties, image lithospheric structure
and model depth profile of shear wave velocity.

Receiver function analysis provides a robust way to character-
ize the first-order properties of crustal structure such as crustal
thickness (H), VP/VS ratio (κ), hence the Poisson’s ratio, as well as
velocity and density contrasts at the Moho discontinuity. The H–κ

analysis is now a widely used method in simultaneously estimating
crustal thickness and VP/VS ratio (e.g. Clarke & Silver 1993; Zandt
& Ammon 1995; Zandt et al. 1995; Chevrot & van der Hilst 2000;
Zhu & Kanamori 2000; Nair et al. 2006; Niu et al. 2007; Chen et al.
2010). The inherent problem within this method is the substantial
trade-off between H and κ (Nair et al. 2006). Although it can be
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partially reduced by including the major reverberation phases in the
analysis (Chevrot & van der Hilst 2000; Zhu & Kanamori 2000;
Nair et al. 2006), a ‘band’ area of amplitude peaks along the opti-
mal H and κ pairs is always shown in the amplitude contour map, in
which multiple acceptable H and κ values can be marked. Niu et al.
(2007) improved the H–κ method by introducing a cross correlation
between the Ps phase and the crustal multiple phases as additional
weight factors. This modified H–κ method has proven successful in
reducing the ‘band’ to a small area centred at the optimal H–κ pair
when it was applied in various tectonic regions with complicated
crustal structure (Niu et al. 2007; Chen et al. 2010; Pan & Niu 2011;
Sun et al. 2012). An accurate estimate of H and κ plays an important
role in this study. First, they are crucial parameters in computing
the moveout corrections of the converted and reverberated phases
for the ray-parameter based (RPB) stacking method developed here;
secondly, they are used in constructing the starting model and the
P-wave velocity in our inversion.

Inversion of receiver function data for 1-D velocity structure is
generally regarded as a strongly non-linear and non-unique inverse
problem (e.g. Langston 1979; Ammon et al. 1990; Ammon 1991;
Jacobsen & Svenningsen 2008). The non-linearity arises mostly
from the complicated relationship between the conversion/reflection
coefficient and velocity contrast at the Earth’s internal boundaries,
such that for any reasonable perturbations to an initial model the
higher-order terms in the Taylor expansion of receiver functions are
not negligible (e.g. Jacobsen & Svenningsen 2008). The linearized
inversion thus strongly depends on the choice of the starting model.
Many authors have employed an iterative method to gradually ap-
proach the optimum model (e.g. Ammon et al. 1990; Ammon &
Zandt 1993; Searcy et al. 1996; Julià et al. 1998; Mangino et al.
1999). In order to circumvent problems associated with lineariza-
tion, various non-linear approaches, which combine forward mod-
elling and Monte Carlo method, have been introduced to search for
the global optimum in the parameter space. These non-linear meth-
ods include the interactive forward modelling of receiver functions
(e.g. Tkalčić & Banerjed 2009), grid search (e.g. Sandvol et al.
1998; Tkalčić et al. 2006, 2011), genetic or niching genetic algo-
rithm (e.g. Shibutani et al. 1996; Koper et al. 1999; Chang et al.
2004; Lawrence & Wiens 2004; Chang & Baag 2005; Lawrence
et al. 2006; Ma et al. 2007), simulated annealing (e.g. Zhao et al.
1996; Vergne et al. 2002; Vinnik et al. 2004) and neighbourhood
algorithm (e.g. Sambridge 1999a,b; Agostinetti et al. 2002). The
non-uniqueness of receiver function inversion arises from the trade-
off between depth and velocity, which makes the response of a
shallow low-velocity model in the receiver function data to be very
similar to that of a deep high-velocity model (Ammon et al. 1990;
Jacobsen & Svenningsen 2008). The trade-off is caused by the fact
that receiver functions are sensitive to gradients in seismic veloci-
ties, but weakly sensitive to absolute velocities. It has been shown
that a joint inversion of receiver functions and surface wave disper-
sion data is able to provide better estimates of the overall velocity
structure (e.g. Özalaybey et al. 1997; Du & Foulger 1999; Julià
et al. 2000, 2003; Chang et al. 2004; Lawrence & Wiens 2004;
Chang & Baag 2005; Lawrence et al. 2006; Tkalčić et al. 2006; Yoo
et al. 2007). The alternative approach is to include a priori on the S-
and P-wave velocity information from other independent geophys-
ical studies to constrain a better starting velocity model before the
start of the inversion. A well-constrained starting model can pre-
vent the iterative inversion from falling into local minima. Tkalčić
et al. (2011) made use of crustal S-wave velocity derived from a
coarse grid search method, crustal thickness and VP/VS ratio from
H–κ analysis, and the uppermost mantle velocity structure from

tomography study to build up their starting models, and success-
fully inverted for the S-wave velocity profile from receiver function
data recorded at 18 stations in southeast China.

The advantages and limitations of the receiver function tech-
nique have been discussed in numerous previous studies. On the
other hand, properly and efficiently processing observed data is
another challenging issue in utilizing receiver function technique,
especially when large numbers of receiver functions are available.
In performing receiver function inversion, it is usually preferred to
have the stacked data as the input as noise level and 2-D/3-D effects
are significantly suppressed in the stacked receiver function data.
In this study, we first develop a RPB stacking method that is able
to stack receiver functions generated from earthquakes occurring at
different epicentral distances without distorting the waveform of the
converted and reverberated phases provided that the Earth structure
beneath the station may be reasonably well represented by a 1-D
velocity model. We then optimize the iterative linearized inversion
method of Ammon et al. (1990) by pre-conditioning both the data
and the model. To show the effectiveness of our method, we conduct
extensive inversion tests with synthetic receiver function data. We
also examine the improvement on receiver function inversion using
real seismic data recorded at two permanent broad-band stations
in China, XAN and MDJ. These two stations are selected for two
reasons: (1) the sites have unique tectonic settings and (2) the litho-
sphere structure beneath the two stations has been investigated by
previous studies, allowing us to verify the inversion results.

2 M E T H O D S

2.1 ‘Four-pin’ moveout correction

The relative arrival times of the primary P to S converted phase,
0p1s, and the two major crustal multiple phases, 2p1s and 1p2s,
with respect to the direct P wave are usually approximated by the
following equations (e.g. Chevrot & van der Hilst 2000; Zhu &
Kanamori 2000; Nair et al. 2006):
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We have followed Niu & James (2002) on the notation of the
later arrivals, npms, where n and m are the numbers of P- and S-
wave legs within the crust. Here H, VP, κ and p are the crustal
thickness, average P-wave velocity, VP/VS ratio and the P-wave ray-
parameter, respectively. In eqs (1)–(3), we have made a plane wave
assumption, which assumes that the Ps conversion and reverberation
phases possess a ray-parameter similar to the direct P wave. This is
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actually not true for a point source, as ray paths for different arrivals
can never be exactly parallel. An increasing of ray-parameter, p
(equivalent a decreasing in epicentral distance) in eqs (1)–(3) results
in an increase of t0p1s and a decrease of t2p1s and t1p2s. Eqs (1)–(3)
thus suggest that the arrival times of the 0p1s, and 2p1s/1p2s have
a negative and positive relative ray-parameter with respect to the
direct P wave, respectively, that is a negative and positive moveout.

As shown above, the moveout of the converted and reverber-
ated S-wave phases with respect to the direct P wave is not zero;
stacking receiver functions aligning to the direct P wave can thus
significantly weaken the amplitude and distort the waveform of
these later arrivals. Since the arrival moveout is larger for the mul-
tiples, they suffer more severe stacking induced distortions. This
is particularly true for high-frequency receiver function data. The
destructive stacking can become even worse when a thick crust is
present and the distance coverage of the data is broad. For example,
for a crust with a thickness of 50 km and an average VP/VS ratio of
1.78, the arrival time of the 0p1s, 2p1s and 1p2s phases can differ
as much as ∼0.4, 1.2 and 0.8 s, respectively, in the distance range
between 30◦ and 90◦, equivalent to a ray-parameter range between
4.7 and 8.9 s deg–1. When receiver functions are constructed using a
Gaussian filter width a = 2.5 or above, such large phase shifts can
result in completely out-of-phase stacking if no moveout correction
is made. In principle, this problem can be avoided by narrowing
distance range of the receiver functions used for stacking and con-
structing a set of receiver functions at different epicentral distances
for inversion. However, the global seismicity is highly heteroge-
neous, and it may not be possible to gather enough receiver func-
tions at certain distance range, making this approach less feasible
than what one might have expected.

We therefore develop a ‘four-pin’ method to correct the move-
out of the Ps converted phase, 0p1s, as well as the following two
crustal multiples, 2p1s and 1p2s. Stacking the moveout corrected
receiver functions then becomes a straightforward task and is obvi-
ously applicable to all the events occurring at the entire teleseismic
distance range. To implement the ‘four-pin’ correction, first, we
need to choose one ray-parameter, p0, as a reference and compute
the arrival times of the three phases, t0

0p1s, t0
2p1s and t0

1p2s following
eqs (1)–(3) using the accurate estimates of crustal thickness and
VP/VS ratio derived from H-κ analysis (i.e. Niu et al. 2007) in ad-
vance. These three time points will be used as marks on a standard
receiver function to rescale all individual receiver functions to be
corrected. Next, for each receiver function, for example the ith re-
ceiver function with a ray-parameter of pi, we compute the three
later arrival times, ti

0p1s, ti
2p1s and ti

1p2s also using eqs (1)–(3). We
divide this receiver function into three segments bounded by time
zero (P-wave arrival time) to t0p1s, t0p1s to t2p1s and t2p1s to t1p2s, re-
spectively. For each segment, we try to pin its two ends to the marks
on the standard receiver function by stretching or contracting this
segment to make its length equal to the same segment on the stan-
dard receiver function. In an evenly sampled digital seismogram,
such stretching/contracting procedure changes the sample interval
of the raw seismogram. We simply resample the stretched/contracted
seismogram using the original sample rate to implement the stretch-
ing/contracting process. The stretching/contracting is performed in
a consecutive manner, that is we first pin the direct P-wave phase
on the ith receiver function onto the direct P wave on the standard
receiver function, and stretch/contract the segment from the direct
P wave to 0p1s to align the time point ti

0p1s to t0
0p1s. Once this align-

ment is done, we next pin the corrected ti
0p1s to t0

0p1s and rescale
the second segment along the time axis in order to align its right
end ti

2p1s to the second mark t0
2p1s. Finally, we repeat the process

to the last segment of the data to match ti
1p2s to the third marker

t0
1p2s. An analogy of this process is to pin down four specific points

of a spring to four marks of a ruler on a wall, thereby we refer
this method as ‘four-pin’ correction method, which simultaneously
aligns the three later arrivals on all the receiver functions to the ref-
erence arrival times as if they all occur at the same location as the
reference source. Fig. 1(a) demonstrates the steps of the ‘four-pin’
method. In this example, the corrections are made with respect to
a reference ray-parameter p0 = 6.5 s deg–1. The arrival times of the
converted and reverberated phases before the corrections are indi-
cated by red dots on each receiver function trace, and the traces are
stretched or contracted so that they are aligned along three vertical
lines.

2.2 RPB stacking

In order to demonstrate the effect of the RPB stacking, we gener-
ate a serial of synthetic receiver functions using the target velocity
profile shown in Fig. 2. The model has a Moho discontinuity at
53 km deep and an average VP/VS ratio of 1.736 across the crust.
The purpose of choosing a model with a deep Moho is to clearly
illustrate the significance of the moveout on different receiver func-
tions. We first compute 150 synthetic receiver functions randomly
distributed in the ray-parameter range between 4.5 and 8.9 s deg–1

using the target model. We then apply the ‘four-pin’ correction to
simultaneously align the converted and reverberated phases to a
reference trace with p0 = 6.5 s deg–1. Since the ray-parameter is
proportional to the incidence angle of the direct P wave, an increase
of ray-parameter results in a nearly linear increase of the P-wave am-
plitude on receiver function data (Fig. 1b), as well as the following
converted and reverberated S-wave amplitudes. We thus normalize
the amplitude of each receiver function by dividing by its own ray-
parameter and then multiplying the reference ray-parameter. Since
the pre-stacking corrections of time and amplitude are made solely
based on ray-parameters, we call the stacking after the corrections
as RPB stacking to distinguish it from the direct stacking without
any correction.

We show the stacked receiver functions using the RPB stacking
and direct stacking methods in Fig. 1(c). To make comparison,
we also show the receiver function computed using the reference
ray-parameter of p0 = 6.5 s deg–1, which is also the average of
ray-parameters of all the 150 receiver functions. The differences
between the stacked receiver functions and the reference trace are
shown in the lower panel of Fig. 1(c). The three later arrivals on the
direct stacked trace (blue lines in Fig. 1c) all show a large deviation
from the reference receiver function, mainly due to the out-of-
phase stacking. In contrast the RPB stacked trace is very similar to
the reference receiver function with slight difference because the
later phases waveform of each receiver function is not exact the
same. In practice, the reference ray-parameter does not necessarily
correspond to a specific individual receiver function. We can choose
any value for the reference ray-parameter as long as the value falls
in the teleseismic distance range. This means that we can construct
multiple RPB stacks using different reference ray-parameters.

2.3 Enhanced pre-conditioning for the iterative
linearized inversion

As mentioned above, various techniques have been developed to ex-
tract lithospheric structure from receiver function data. In this study,
we choose to use the iterative linearized inversion method based on
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Figure 1. (a) Steps illustrating the ‘four-pin’ method used to correct the distance moveout of the 0p1s, 2p1s and 1p2s phases. In this example, the correction is
made with respect to p0 = 6.5 s deg–1. The arrival time of the 0p1s, 2p1s and 1p2s phases are marked with red dots on each time trace. The vertical lines crossing
these phases indicate their corresponding moveout correction in each step. (b) Peak amplitude of direct P wave is shown as a function of ray-parameters. (c)
Top panel shows the direct stacking (blue line) and RPB stacking (red line) with respect to the reference receiver function (black line), and bottom panel shows
the difference of two types of stacks from the reference receiver function.

the least-square technique to extract S-wave velocity structure be-
neath a seismic station. The method is known for its high-resolution
power to determine crustal structure and also for its relatively low
cost in computing (e.g. Snieder & Trampert 1999, 2000). Most of
the non-linear inversions are based more or less on Monte Carlo
search, and thus demand a lot of computation. For instance, the
niching genetic algorithm adopted by Ma et al. (2007) requires ap-
proximately a 1-hr run on 11 CPUs in parallel implementation, or
more than 10 hr on a single CPU to search 500 000 candidates for an
optimal model. In contrast, an iterative linearized inversion method
demands only several minutes of computing with a single CPU to
perform the same inversion (Chen et al. 2011).

Following Ammon et al. (1990), we formulate the linearized
inversion as

D · m = r + D · m0, (4)

where m is the model, and r is the residual of receiver function.
The matrix D is the sensitivity kernel defined as the partial deriva-
tives of receiver function with respect to the model parameters,
which are computed numerically using the efficient forward pertur-
bation algorithm developed by Randall (1989). We use petrophysical

relationships such as the empirical Birch’s law (Birch 1961) and
Poisson’s ratio to tie density and P velocity to S velocity, leaving
S velocity the only independent model variable in our inversion.
Eq. (4) is performed iteratively to upgrade the model gradually.

The direct application of eq. (4) usually leads to rapid, large
amplitude variation in the resultant model due to the lack of damping
in the inversion. The smoothness control is thus always required to
add on eq. (4). We adopt the second-order difference smoothing
scheme (Ammon et al. 1990) as the first pre-conditioning in our
study

S · � · m = 0, (5)

where the matrix � is a double difference operator applied on
model m and the diagonal matrix S controls the trade-off between
waveform fitness and model smoothness. In the inversion in this
study, we simply use uniform values of S, in which S = sI (I is the
identity matrix), and change s gradually to investigate the effect of
smoothness controls on an inversion.

We choose velocity models down to 500 km deep for forward
modelling, but only invert velocity structure of the top 200 km. Our
receiver function usually has a time-window length of 30–50 s,
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Figure 2. S-wave velocity models. The target model (red line) is used to
generate synthetic receiver functions. Models M1 to M5 are initial velocity
models used in inversion tests. Note the five models have very different
Moho depth and average crustal velocity.

which is not long enough to model structure deeper than 200 km.
The second pre-conditioning in our inversion is thus to fix the deep
layers in the model to predetermined values, such as those of the
AK135 or the PREM model. This can be achieved by adding the
following equations into eq. (4) (e.g. Herrmann et al. 2000):

W · m = W · m0, (6)

where W is a diagonal matrix of weights and the model vector
m0 contains predetermined velocity values. For layers shallower
than 200 km, the corresponding weighting factors wii are zeros, and
the corresponding equations are in fact excluded from our linear
system. For the layers that require to be fixed to some extent, wii are
assigned to adjustable values larger than zero, generally in the range
of 1.0–10.0. The weight-adjustable scheme can also be applied to
crustal layers when a priori determined information, such as the
well-constrained sedimentary structure below Earth’s surface, is
available.

The construction of receiver function, no matter in frequency
domain or in time domain, usually involves the convolution of a

low-pass Gaussian filter with the expression, exp
(

−ω2

4α2

)
, where ω

is radial frequency, and a is width factor controlling the cut-off
frequency and also affecting the overall amplitude of the receiver
function. For example, a = 1.0 roughly corresponds to a cut-off
frequency at 0.5 Hz, whereas a = 2.5 corresponds to about 1.2 Hz.
A higher a value thus yields a receiver function containing higher-
frequency information. If an inversion involves multiple receiver
functions generated with different values of a, a division by a is
required to properly weight these receiver function data. Otherwise,
a noisy receiver function with a higher a value can dominate the

inversion. This division is the third pre-conditioning we used in our
inversion.

In an individual receiver function, the Moho Ps converted phase
is usually located within the first ∼10 s after the P arrival, while the
crustal multiples appear at the later part of the trace. We divide
the receiver function trace into a Ps conversion segment and a
reverberation segment. Since the two segments possess different
signal-to-noise ratio (SNR) and sensitivity to the crustal structure,
and hence different importance in an inversion, we assign different
weights to the two segments as the last pre-conditioning in our
inversion.

All of the pre-conditions discussed above are integrated in eq. (4),
and our final linear inversion system turns to

⎡
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0

W

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· m0, (7)

where index i denotes any one receiver function generated with
Gaussian width a, and p and q are the weighing factors assigned
to the conversion and the reverberation segments in this receiver
function, respectively. In order to balance the two segments that
usually have different length, we define the two weighting factors
as

p = c

N1
, q = 1 − c

N2
(8)

where N1 is the number of points in the conversion segment, and N2

is the numbers of points in the reverberation segment. The adjustable
parameter c controls the relative weight between the two segments.

In summary, the regularizations we have employed for the lin-
earized inversion can be grouped into two categories: (1) the model
regularization, which include the model smoothness and the fixed-
layers constraint; (2) data weighting scheme, which consist of inter-
nal waveforms balancing achieved by the division of a and segment
weighting for individual receiver function data. In our inversion
scheme, the model regularization limits the number of free parame-
ters, while the data weighting balances the effects of receiver func-
tions derived from different a values and also helps to emphasize
specific phases. These pre-conditions may not necessarily increase,
or even decrease waveform fit as discussed in Ammon et al. (1990).
However, the regularization is necessary to stabilize the inversion
and to generate models consistent with geological observations.
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3 S Y N T H E T I C T E S T S

The purpose of our synthetic tests is to examine the capability and
stability of the inverse problem through linearized method with en-
hanced pre-conditioning on RPB stacked data. In all the synthetic
tests, we intend to recover the target model shown in Fig. 2 by in-
verting either the RPB or direct stacks of receiver function data. We
adopt various one-layer crustal models with different Moho depth
and velocity value as the starting models. Since our receiver func-
tion data are filtered by low-pass Gaussian filters with the highest
equivalent corner frequency of ∼1.0 Hz, which corresponds to S-
wave wavelength of ∼4 km in crust, we thus divided the crust and
another 20 km of the upper mantle into layers of 2 or 3 km thick.
The rest upper mantle structure down to 500 km is taken from the
AK135 model (Kennett et al. 1995), and is divided into layers with
a thickness varying from 12 to 50 km with increasing depth. In gen-
eral, the misfit decreases with increasing number of layers before
it reaches to a stable value. Using ∼0.5 Hz low-pass filtered data,
Tkalčić et al. (2011) showed that the waveform fit improved sub-
stantially when increasing the number of crustal layers from 4 to 8,
but saturated at 12 with an average layer thickness of 2.5 km.

The synthetic receiver functions used for RPB and direct stacking
are generated randomly in the ray-parameter range between 4.7 and
8.9 s deg–1 and have a mean ray-parameter of 6.5 s deg–1. The inver-
sions are conducted on both the direct (DRT case) and RPB (RPB
case) stacks. The mean ray-parameter is used in the forward mod-
elling part of the inversion with the directly stacked data. The RPB
stacking can be generated with respect to different ray-parameters
including this mean, such that the inversions could be conducted on
any single RPB stack or on multiple RPB stacks simultaneously. We
do not add noise on the synthetic receiver function data as we expect
that a RPB stack possesses significantly less noise than an individual
receiver function. The noise-free data can also help us to track down
potential sources of misfit in the inversion. We use two Gaussian
filters with width a = 1.0 and 2.5 in forming the synthetic receiver
functions. Hereafter we refer them as the low- and high-frequency
data, and both are used in the inversions. Including high-frequency
data ensures proper parametrization of the crust and helps to reveal
small-scale structure sensitive to high-frequency seismic wave.

In all the following tests, we balance the low- and high-frequency
receiver function data by dividing by their Gaussian filter width
factors, and include the regularization on the smoothness of the
model, with the control parameter s varying from 0 to 1.0 in a step
of 0.05. The detailed information and inversion results of all tests
are summarized in Table 1. We compute the variance reduction (VR)
to measure waveform misfit:

VR =

⎛
⎜⎝1 −

√√√√∑(
dobs − dsyn

)2∑
d2

obs

⎞
⎟⎠ × 100%, (9)

where dobs and dsyn are the observed and predicted values of re-
ceiver functions, respectively. The summation is taken over the
entire time window, including both the Ps conversion and reverber-
ation segments, of an individual receiver function. VR is not used
as a threshold to stop iteration of an inversion; rather it is used as a
criterion to determine the optimum model. Since the target model
is known in advance in our synthetic tests, we introduce rms dif-
ference to evaluate how similar the inverted model is to the target
model,

rms =
√∑(

m inv − m tgt

)2

M
, (10)

where minv and mtgt denote the value at one layer in the inverted
model and the target model, respectively. The rms is averaged over
all M model layers. As we use a set of smoothness parameters to
conduct inversion, we obtain a set of models for each data set derived
from either DRT or RPB stacking. We further define a harmonic
mean 〈rms〉:

〈rms〉 = 1
/√√√√ 1

K

K∑
i

1

rms2
i

, (11)

which is the average over a total of K models derived from inversions
with different smoothness parameters. The harmonic mean reduces
the effect of the outliers of the rms difference.

The first test case starts from the model M1 shown in Fig. 2, which
has a constant crustal velocity that equals to the weighted average of
the crustal velocity of the target model, and the depth of the Moho
is kept as the same as the target model. In the DRT case 1.0, we
employ neither the fixed-layer regularization on model nor the seg-
ment weighting on data. As shown in Fig. 3(a), the resulting model
(red line) possesses a high-velocity zone in the upper crust and a
low-velocity zone in the middle to lower crust down to ∼35 km. The
velocity perturbation along the depth direction roughly follows the
target model; however, the inversion apparently overestimates those
velocity values. From ∼35 to ∼60 km, the S-wave velocity grad-
ually increases with depth, without showing a clear velocity jump
as the Moho discontinuity in the target model does. The model
also shows a high-velocity zone in the uppermost mantle (Fig. 3a),
which is apparently an artefact induced by inversion procedure. In
the DRT case 1.1, we fix the upper mantle layers from 120 down to
500 km by assigning a gradually increasing weight factors from 0.5
to 1.0, and in DRT case 1.2, we adopt a segment weighting scheme
to the data in the inversion. The inverted models of the two cases
are shown in Figs 3(b) and (c), respectively. These two models do
not show significant difference from the model of the DRT case 1.0.
The fixed-layer regularization diminishes waveform fit and affects
the estimate of the velocities of the deep layers, and forces the data
to blend smoothly into all free layers. Adding more weight to the
Ps conversion segment in the inversion only slightly increases the
whole waveform fit, but has almost no influence on the inversion
result. When the fixed-layer regularization on model and the seg-
ment weighting on data are combined, which is referred as the full
constraints hereafter, the resulting model shows a high similarity to
the target model (DRT case 1.3, Fig. 3d). Here, limiting changes
of the velocity values on the lowermost upper mantle layers and
the segment weighting scheme apparently boost the mean 〈rms〉
by approximately 30 per cent (Table 1). However, a notable feature
presented in all the iterations is that the Moho discontinuity is not
as sharp as in the target model. It is very likely that this feature of
the Moho discontinuity results from the distortion of the converted
and reverberated phases associated with the direct stacking. The
stacking induced broadening of the lateral arrivals is better matched
by a gradual crust–mantle boundary. This is particularly true with
the high-frequency receiver function data, that is those filtered by a
Gaussian width of a = 2.5. Fig. 3(e) shows the fitting of waveforms
generated from starting and final models to the direct stack (ob-
served data) of both low- and high-frequency bands. The shading
areas in Fig. 3(e) mark the crustal multiples, clearly showing the
difference between the observed data and the forward mapping of
the resultant model.

We next repeat the inversions but using the RPB stacked syn-
thetic data and taking the same initial model M1 (Fig. 2). In
the RPB case 1.0, we apply neither velocity fixing nor segment
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Table 1. Summary of synthetic tests.

Test case Starting model Inversion details VR range Rms range (mean)

DRT case 1.0 M1 Without fixed-layer and segment weight 81.98–90.97 0.1451–0.1983 (0.1740)
DRT case 1.1 M1 With fixed-layer 81.94–86.33 0.1201–0.2256 (0.1459)
DRT case 1.2 M1 With segment weight 90.38–92.47 0.1115–0.1575 (0.1365)
DRT case 1.3 M1 Full constraints 89.95–91.85 0.0795–0.1860 (0.1092)
RPB case 1.0 M1 Without fixed-layer and segment weight; p = 6.5 80.82–93.24 0.1037–0.1623 (0.1280)
RPB case 1.1 M1 Full constraints; p = 5.5 87.99–92.24 0.0696–0.1782 (0.0999)
RPB case 1.2 M1 Full constraints; p = 6.5 89.01–92.79 0.0375–0.0681 (0.0504)
RPB case 1.3 M1 Full constraints; p = 8.0 89.79–90.91 0.0739–0.0784 (0.0762)
RPB case 1.4 M1 Full constraints; p = 5.5, 6.5, 8.0 90.78–91.25 0.0483–0.0577 (0.0505)

DRT case 2 M2 Full constraints 90.66–92.30 0.0651–0.2432 (0.0898)
RPB case 2.1 M2 Full constraints; p = 6.5 89.49–92.77 0.0463–0.1428 (0.0636)
RPB case 2.2 M2 Full constraints; p = 5.5, 6.5, 8.0 90.50–91.09 0.0540–0.0660 (0.0569)

DRT case 3 M3 Full constraints 90.09–91.97 0.1402–0.1678 (0.1533)
RPB case 3.1 M3 Full constraints; p = 6.5 88.60–91.65 0.0710–0.1866 (0.0876)
RPB case 3.2 M3 Full constraints; p = 5.5, 6.5, 8.0 90.29–91.12 0.0547–0.0607 (0.0547)

DRT case 4 M4 Full constraints 89.75–91.08 0.1618–0.1966 (0.1755)
RPB case 4.1 M4 Full constraints; p = 6.5 88.77–90.77 0.0812–0.1936 (0.0946)
RPB case 4.2 M4 Full constraints; p = 5.5, 6.5, 8.0 90.45–91.04 0.0501–0.0666 (0.0501)

DRT case 5 M5 Full constraints 86.32–90.67 0.0672–0.3085 (0.1307)
RPB case 5.1 M5 Full constraints; p = 6.5 83.26–89.15 0.0675–0.3205 (0.1537)
RPB case 5.2 M5 Full constraints; p = 5.5, 6.5, 8.0 83.80–84.37 0.2599–0.2947 (0.2774)

weighting, just like the DRT case 1.0. The receiver function data
with a = 1.0 and 2.5 are RPB stacks at p0 = 6.5 s deg–1. The re-
sulting model (Fig. 4a) is, however, not greatly improved compared
to the cases using the direct stacks (Fig. 3). Since the RPB stack is
equivalent to a single receiver function with a ray-parameter p0 =
6.5 s deg–1, the inversion using the data at a single ray-parameter
falls into the inherent limit of receiver function modelling, that is
the depth–velocity trade-off due to its strong non-linearity and non-
uniqueness.

The constant crustal velocity in the starting model is quite dif-
ferent from the target model, and it gives full freedom to allow
the inversion to fall into any local minima with a decent wave-
form fit (Fig. 4b). The VR in RPB case 1.0 indicates waveform
fit as good as 93.24 per cent, but the model rms of all iterations
are all pretty poor (Table 1). In the RPB cases 1.1, 1.2 and 1.3,
we employ the enhanced pre-conditioning inversion method which
includes a regularization on model and segment weighting on data
using RPB stacks at a ray-parameter of p0 = 5.5, 6.5 and 8.0 s deg–1,
respectively. The inversion method and weights are similar to those
used in the DRT case 1.3. The results are plotted in Figs 4(c)–
(e), showing that all of the three final S-wave velocity profiles
are very close to the target model. In the RPB case 1.4, we use
three RPB stacks at p0 = 5.5, 6.5 and 8.0 s deg–1 as the input data
to conduct the enhanced pre-conditioning inversion. The synthetic
seismograms in the forward modelling are accordingly computed
using these three ray-parameters. As shown in Fig. 4(f), the result-
ing model is also very close to the target model, but no substantial
improvement is found from both VR and rms (Table 1) comparing
to the RPB cases (1.1–1.3) using single ray-parameter. The result
from the RPB case 1.4 in fact confirms the conclusion drawn by
Ammon et al. (1990) that the range of ray-parameter typically used
in receiver function inversion appears to be not broad enough to
eliminate the depth–velocity ambiguity. However, the inversion us-
ing multiple rays greatly increases the convergence of the models
for every smoothness control (Fig. 4f), and hence increases the sta-
bility of the solutions around the global optimum. This makes the
RPB case 1.4 the best solution among all the test cases in terms of

convergence and stability of the iterations although it may not gen-
erate the highest VR and lowest rms.

In order to further illustrate the effectiveness of our new method
in stabilizing the inversion, we conduct inversions with other two
starting models. The Moho depth in the two initial models is, re-
spectively, 5 km deeper (M2) and shallower (M3) than the target
model (Fig. 2). For all of our inversions hereafter, we start to use
full enhanced preconditioning scheme. The inversions on the di-
rect stacks are categorized as DRT case 2 and DRT case 3, and
the results are shown in Fig. 5. Here in both cases, the Moho is
rapidly rectified to the correct depth after several iterations. The
major structure presented in the velocity profiles is the two high-
velocity zones in the upper crust at ∼10 km and in the lower crust
at ∼45 km. These artificial structures, on the other hand, disappear
on the crustal models inverted from the RPB stacked data (RPB
case 2.1 and RPB case 3.1, Figs 6a and c). In RPB case 2.1 and
RPB case 3.1 we use the same initial models, M2 and M3, as DRT
case 2 and DRT case 3, respectively. Since we employ the same
inversion method and the only difference here is the data used in
the inversion, we thus believe that the artificial structures in the
DRT cases are associated with the direct stacking, which causes
significant distortion to the data. In RPB case 2.2 and RPB case 3.2,
we simultaneously invert three receiver functions stacked at p0 =
5.5, 6.5 and 8.0 s deg–1 starting from the initial model M2 and M3,
respectively (Figs 6b and d). As it has been shown in the RPB case
1.4, using multiple rays enhances model convergence and inversion
stability.

To further test our method, we also use another type of initial mod-
els. Initial models M4 and M5 have a crustal velocity 10 per cent
higher and 10 per cent lower, respectively, than the average crustal
velocity of the target model (Fig. 2). Consequently, the velocity
jump at the Moho of these two models is very different from the
target model, leading to a very poor fit between the model synthet-
ics and the data. Receiver function inversion is well known for its
non-linearity, so we expect that it is likely to be difficult to con-
verge to the target model from these two initial models. In the DRT
case 4, we utilize the enhanced preconditioning method to invert
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Figure 3. (a)–(d) Results of four inversions using different methods on
directly stacked synthetic receiver function data and the initial model M1
in DRT cases 1.0–1.3. In each panel, initial model M1 is plotted in thin
dashed black line and the target model is shown in blue line. Grey thin
lines indicate all the inverted velocity profiles using different smoothness
parameters s, whereas the red line marks the preferred model. (e) Receiver
function waveforms in DRT case 1.3. Green thick lines are the ‘observation’
data, whereas thin lines in blue and red correspond to receiver functions
generated from the initial and final velocity model, respectively. The low- and
high-frequency receiver functions shown in the top and bottom, respectively,
are processed by a Gaussian low-pass filter with a = 1.0 and 2.5.

the directly stacked data from the initial model M4. The resulting
S-wave velocity model shown in Fig. 7(a) is higher than the tar-
get model in most of the 120-km depth range. It also has a deeper
Moho than the one in the target model. The higher velocity and
deeper Moho can be explained by the velocity–depth trade-off. The
inversions with the RPB stacks, on the other hand, show a much
better convergence to the target model during the iterations (Figs 8a
and b). In both the RPB case 4.1 (inversion using a single stack at
p0 = 6.5 s deg–1) and RPB case 4.2 (inversion using three stacks
at p0 = 5.5, 6.5 and 8.0 s deg–1), it appears that the depth–velocity
trade-off affects only the first a few iterations. In the later itera-
tions, the inversions are able to rectify the models to the target
model for any given smoothness parameter (Figs 8a and b). Com-
paring the results between RPB case 4.1 and 4.2, the relatively
high-velocity zones at ∼5–15, ∼40–55 and ∼55–75 km shown in
RPB case 4.1 are corrected in RPB case 4.2, suggesting that us-
ing multiple receiver function stacks can result in a more stable
inversion.

The initial model M5 is used in the inversions of DRT case 5,
RPB case 5.1 and RPB case 5.2. In contrast to the DRT case 4,
the inversion in the DRT case 5 results in a velocity profile lower
than that of the target model, and a shallower Moho (Fig. 7b).
Only when a very smooth parameter (s ≥ 0.85) is used in the
inversion, the crustal velocity can be rectified back to the ex-
pected values. Because of the large velocity jump at the Moho
in M5, large smooth parameters are required to reduce velocity
contrast between model layers. With this starting model, the inver-
sion using one RPB stack (RPB case 5.1) performs just like DRT
case 5 and fails in recovering the target model(Fig. 8c). Although
inversions with high-smoothness parameters do generate accept-
able models, the resultant Moho depth vibrates between the initial
model and the target model when variable smoothness is given.
The inversion of RPB case 5.2 uses multiple RPB stacks, but it
is also unable to generate an acceptable model either. As shown
in Fig. 8(d), all models tend to have lower velocity with a shal-
lower Moho. Comparing the results of these two RPB cases, we
have reason to believe the inversions in RPB case 5.1 are unsta-
ble in spite of the acceptable models occasionally derived at high-
smoothness controls. For real seismic data, because the crustal
and Moho structures are unknown in advance, we have no idea
whether increasing smoothness makes the inverted model towards
or away from the real Earth structure. In general, a change in Moho
depth only results in a shift on the arrival times of the converted
and reverberated phases in the synthetic receiver function trace,
whereas changes in crustal velocity alter both the arrival time and
amplitude of these phases. It thus makes the target model more
difficult to be recovered from those starting models with large
deviations in velocity than those with large variations in Moho
depth.

Overall, the above synthetic tests have demonstrated the capa-
bility of the enhanced preconditioning inversion method with data
from the RPB stacking. Before we further validate this new tech-
nique with real data, here we summarize what we have learned
from the synthetic tests: (1) the regularization on both model and
data reduces the number of free parameters and force an inver-
sion towards the correct direction. In a rather 1-D structure be-
neath the station, the RPB stacked data possess more information
about the converted and reverberated S-wave phases leading to a
more realistic velocity structure through the inversion procedure.
A combination of regulating the model on the inversion side and
using more accurate observation on the data side is capable of
stabilizing the inversion process and also significantly reducing
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Figure 4. (a), (c)–(f) Results of five different inversions using RPB stacked synthetic receiver function data and the initial model M1 in RPB cases 1.0–1.4.
They are plotted in the same way as Figs 3(a)–(d). (b) Receiver function waveforms in RBP case 1.0. They are plotted in the same manner as Fig. 3(e).

the non-uniqueness of the inversion. Resolving only one side of
the problem may not be able to produce sufficient effect as an-
ticipated; (2) simultaneously inverting multiple RPB stacks can
substantially improve the model convergence, but helps little in re-
solving the inherent depth–velocity trade-off problem in receiver
function modelling and (3) a well constructed starting model is
always preferred in receiver function modelling. Even non-linear
method cannot guarantee an inversion moving towards the correct
direction if it starts from a poorly configured model. As shown in
RPB case 5.2, all of our improvements cannot prevent the inversion
from falling into a local minimum due to the strong depth–velocity
trade-off.

4 A P P L I C AT I O N T O DATA

In order to extend the success with synthetic data, we have applied
our new methods on two broad-band stations situated in China with
distinct geological environments. Station XAN is located at cen-
tral China, and MDJ is located at northeast China (Fig. 9). Both
stations belong to the IRIS GSN network installed in the last cen-
tury. They have been recording a large amount of waveform data
over their 20+ yr operation history. We collect teleseismic events
with Mw ≥ 5.9 and an epicentral distance between 30◦ and 90◦

occurring in the last 10 yr and generate individual receiver func-
tion traces using the time-domain iterative deconvolution method
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Figure 5. Results of the inversions using direct stacks in DRT case 2 (a)
and in DRT case 3 (b). Initial model M2 is used in (a) and M3 is used in (b).
Lines in each panel are the same as in Figs 3(a)–(d).

(i.e. Ligorrı́a & Ammon 1999). We select over 300 highly coherent
individual receiver functions for analysis at each station using the
cross-correlation matrix method (Chen et al. 2010; Tkalčić et al.
2011). The cross-correlation coefficients of all the selected receiver
functions are ≥85 per cent. The selected data set has a good back-
azimuthal coverage (Fig. 9, insets), although most of the selected
events are located in the Tonga-Fiji and the Indonesia subduction
zones. We further filter the receiver functions with two types of
Gaussian low-pass filters, one with a width parameter a = 1.0 and
another one with a width of a = 2.5 to generate low- and high-
frequency data.

4.1 Results from station XAN

Station XAN is situated at the Qinling Mountain Range, an oro-
genic belt located between the Sino-Korean Craton and the Yangtze
Craton. The northward underthrusting of the Yangtze Craton to
the Sino-Korean Craton occurring in the Permian-Triassic has re-
sulted in the development of complicated crustal structure along the
Qinling-Dabie suture. We first use the H–κ analysis of Niu et al.
(2007) to determine the crustal thickness and VP/VS ratio. Two max-
imum amplitudes appear on the H–κ contour map (Fig. 10a). One
is located at a depth of 39 km with a VP/VS value of 1.66, whereas
the other is located at a depth of 34 km and a higher VP/VS value
of 1.74. By comparing the results with previous studies (i.e. Sun &
Toksöz 2006; Chen et al. 2010), we prefer to interpret the deeper
one as the Moho, as it also shows a better prediction of the 0p1s
and 2p1s arrival times (Fig. 10b). Fig. 10(a) shows the results using
low-frequency (a = 1.0) receiver function data, but the same two
peaks also present on the H–κ contour map using high-frequency
(a = 2.5) receiver functions. The H–κ measurements derived from
both frequency bands are consistent with each other (Table 2). The
slight difference between them can result from either processing

Figure 6. Results of the inversions using RPB stacks in RPB case 2.1 (a),
RPB case 2.2 (b), RPB case 3.1 (c) and RPB case 3.2 (d). Initial model M2
is used in (a) and (b), and M3 is used in (c) and (d). Lines in each panel are
the same as in Figs 3(a)–(d).

induced noise or the nature of the crust–mantle boundary, which
may cause different frequency response.

Tkalčić et al. (2011) inverted the receiver function data of this
station and found no sharp velocity jump corresponding to either
depth observed in H–κ measurements. The velocity changes as-
sociate with a crustal–mantle transition starts from as shallow as
15 km and extends to almost 50 km deep, which makes it almost
impossible to identify the Moho. We select the receiver func-
tions in the backazimuth range of 90–240◦ to repeat the inver-
sion analysis. The backazimuth range is determined for two rea-
sons: (1) most of the teleseismic events fall in this range and
(2) we would like to compare our results with Tkalčić et al.
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Figure 7. Results of the inversions using direct stacks in DRT case 4 (a) and
DRT case 5 (b), which use the initial model M4 and M5, respectively. Initial
model is plotted in thin dashed black line and target model is shown by blue
line. Grey thin lines indicate the inverted velocity profiles using different
smoothness parameters s. Red lines indicate the optimal models recovering
target model. In (b), the magenta line indicates the model using s = 0.35,
and the red line indicates the model with s = 0.85.

(2011), which also used earthquakes roughly in this backazimuth
range.

Using the estimated H and κ values, we make RPB stacks at three
reference ray-parameters, p0 = 5.5, 6.5 and 8.0 s deg–1(Fig. 10b). As
noted before an increase of ray-parameter results in an increase and
decrease of Ps and reverberation arrival time, respectively, together
with an increase in amplitude. We also create the direct stack of
receiver function data by simply averaging the receiver functions at
each time point. In order to illustrate the effect of RPB stacking,
we plot the standard deviation curbs (grey area) of all receiver
functions involved in each type of stack around the stacked trace
in Fig. 11(a). The average standard deviation of direct stack is
3.4 per cent, while the average standard deviation of RPB stack
reduces to only 2.3 per cent. The decrease in variance, particularly
around the Ps conversion and the reverberation phases is presumably
related to the corrections on moveout and amplitude of the RPB
stacking.

Following Tkalčić et al. (2011), we also make a great effort to
construct the initial velocity. To do so, we refer multiple model
sources and employ the following steps: (1) we conduct a coarse
grid search to determine a preliminary S-wave velocity model with
four layers in the crust (Sandvol et al. 1998), we then calculate
the corresponding P-wave velocity and density using the estimated
VP/VS ratio from the H–κ analysis and Birch’s law; (2) we take the
Pn and Sn models from tomography studies (e.g. Pei et al. 2004,
2007; Sun et al. 2004; Sun & Toksöz 2006) for the uppermost
mantle velocity; (3) the velocities of the rest upper mantle are taken
from the global AK135 model (Kennett et al. 1995); (4) we fix

Figure 8. Results of the inversions using RPB stacks in RPB case 4.1 (a),
RPB case 4.2 (b), RPB case 5.1 (c) and RPB case 5.2 (d). The initial model
M4 is used in (a) and (b), and M5 is used in (c) and (d). Lines in each panel
are the same as in Fig. 7.

the Moho at the depth determined by the H–κ analysis. Finally, we
parametrize the crust and the uppermost mantle with thin constant
velocity layers of 2–3 km thick. The initial velocity model has two
velocity jumps at 30 and 40 km, respectively (black dashed line in
Fig. 12c).

In addition to the initial model, our inversion with the direct stack
also has some notable difference from Tkalčić et al. (2011). We use
more teleseismic events, and generate both low- and high-frequency
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Figure 9. Map showing the geographic locations of two seismic stations XAN and MDJ used in this study. Two maps on the top show the distribution of
teleseismic events recorded by the two stations.

receiver functions for the inversion as shown in Fig. 12(a). Most of
all, we employ the enhanced preconditioning inversion scheme that
regulates the model and weights different segments of the data. For
each inversion, we use scalar smoothness control s, and vary s from
0.05 to 1.0 for different inversions, and the VR of each inversion is
shown in Fig. 12(b) as a function of s. Although the VR reaches to
the maximum at s = 0.1–0.2, the resultant model is rougher than
the model of Tkalčić et al. (2011). We thus choose the one corre-
sponding to s = 0.3 as the final model (red solid lines in Fig. 12c).
For comparison, we also show the models of individual iterations
(grey lines) together with the initial model (black dashed line) in
Fig. 12(c). Our final model is actually quite similar to the model of
Tkalčić et al. (2011). It possesses a broad transition zone featured
by a gradual increase of S-wave velocity from 3.5 to 4.25 km s–1

at depths from approximately 30–40 km (Fig. 12c). Although the
transition zone is much narrower than that of Tkalčić et al. (2011)
(∼15–50 km), it is also not easy to define a Moho from this model.

In the RPB data inversion, we make use three RBP stacks of
receiver functions aligned at reference ray-parameters of p0 = 5.5,
6.5 and 8.0 s deg–1 and filtered with a = 1.0 and 2.5, respectively, and

conduct the inversion with the enhanced preconditioning method as
shown in Fig. 13. The final model, which is indicated by the red
line in Fig. 13(c), is obtained from the inversion with s = 0.45. The
most prominent feature revealed by the S-wave velocity profile is the
increased sharpness of the Moho at ∼38 km. There is another mild
velocity jump at ∼30 km, which may be related to the shallower
peak in the H–κ contour map.

4.2 Results from station MDJ

The other station MDJ is located near the Suolon suture in northeast
China (Fig. 9). Reports on the crustal thickness in the vicinity of
MDJ from previous studies are really diverse, covering a depth range
of 27–42 km. Regional P- and PP-waveform modelling by Beckers
et al. (1994) suggested that the crust is rather thin, ∼27 km thick.
Study of active source refraction data by Yuan et al. (1986) indicated
a 34–36-km-thick crust near the station. Surface wave and receiver
function studies, on the other hand, found that the Moho depth in
the area is ∼42–43 (Feng et al. 1981) and 36–42 km (Mangino
et al. 1999), respectively. Our H–κ analysis gives an estimate of
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Figure 10. (a) Result of the H–κ analysis obtained from station XAN.
Colour contours show the summed amplitude as a function of crustal thick-
ness and VP/VS ratio. The peaks marked by the white plus signs indicate
the optimal crustal thickness (H) and average VP/VS ratio (κ). (b) Direct
stack (green) of receiver functions is plotted to compare with RPB stacks
generated at different ray-parameters (black, red and blue). Events in the
backazimuth range of 90◦ to 240◦ are used in the stacking.

the crustal thickness of 36–37 km and VP/VS ratio of 1.74–1.80
(Table 2). The diversity among these measurements may reflect the
complexity of the Moho structure beneath the station, as well as
the sensitivity of different types of the data. It may also result from
the biases in data processing and in the analysis methods. Ma et al.
(2007) performed both linearized and non-linear inversions using
receiver function data to obtain an S-wave velocity profile beneath
the station down to 200 km. They found that the two methods yield
nearly similar velocity structure in the crust and the uppermost
mantle. There are, however, significant differences in the upper
mantle below. Models from the linearized inversion always show
a low-velocity zone (LVZ) at approximately 140–160 km depths,
which is not presented in the models from non-linear inversion. It

Figure 11. (a) Standard deviation curbs (grey areas) of the receiver functions
in the backazimuth range between 90◦ and 240◦ recorded at XAN are shown
with the stacked data. The RPB and direct stacks are shown in the top and
bottom of the panel, respectively. (b) Same as (a) but for station MDJ, where
events in the backazimuth range of 120–240◦ are used in the stacking. (c)
Direct stack (green) of receiver functions at MDJ is plotted to compare with
RPB stacks generated at different ray-parameters (black, red and blue).

was not revealed in Ma et al. (2007) whether the LVZ reflects the
true structure of the Earth, or is just an artefact associated with the
linearized inversion.

Chen et al. (2010, 2011) found evidence for dipping and
anisotropic structure beneath the station and attributed their ori-
gins to the Jurassic Suolon suture, which was reactivated during the

Table 2. H–κ measurements on XAN and MDJ.

Station Lat Lon a = 1.0 a = 2.5

H (km) VP/VS (κ) H (km) VP/VS (κ)

XAN 34.03 108.92 38.88 ± 0.20 1.659 ± 0.005 40.12 ± 0.07 1.662 ± 0.001
MDJ 44.62 129.59 37.36 ± 0.08 1.739 ± 0.003 36.39 ± 0.05 1.801 ± 0.001
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Figure 12. Results from the inversion using directly stacked receiver function data recorded at the XAN station. (a) Green thick lines indicate observation data,
whereas thin lines in blue and red correspond to the synthetic receiver functions generated from the initial and final velocity model, respectively. Both low- and
high-frequency receiver functions generated by a Gaussian low-pass filter with width a = 1.0 (the top ones) and a = 2.5 (the bottom ones) are employed in the
inversions. (b) VR is shown as a function of smoothness parameter s. (c) S-wave velocity profiles. The initial model is plotted in thin dashed black line and the
preferred model is shown in red line. The grey thin lines indicate all the inverted velocity profiles using different smoothness parameters s.

Cenozoic. The major heterogeneity here is thus the structural differ-
ence between the two sides of the NE–SW trending Suolon suture.
To avoid this complexity, we choose earthquakes between backaz-
imuth 120◦ and 240◦ where the receiver functions have a high pair
cross-correlation coefficient for data stacking. The standard devia-
tion of direct stack is ∼3 per cent, but reducing to 2.1 per cent after
the RPB corrections (Fig. 11b). The comparison between three
RPB stacks (with reference ray-parameters of p0 = 5.5, 6.5 and
8.0 s deg–1, respectively) and the direct stack is shown in Fig. 11(c).

We process the data in a similar manner as we do with station
XAN. First, we filter the receiver functions with a Gaussian width
a = 1.0 and 2.5. For each frequency band, we then conduct the RPB
stacking at three different reference ray-parameters, p0 = 5.5, 6.5
and 8.0 s deg–1. We also used results from grid search, H–κ analysis
and Pn/Sn tomography to build the initial model. We divide the crust
and the uppermost mantle down to 60 km deep into layers with a
thickness of 2 or 3 km, and divide the upper mantle between 60 and
200 km into layers of 5–9 km thick. Finally, we use the enhanced pre
conditioning method to invert both the DRT and RPB stacked data.

The inverted S-wave velocity structure with the DRT and RPB
data is shown in Figs 14 and 15, respectively. In general, the two
models agree with each other quite well in the crustal and upper-
most mantle depths. Both show a sharp velocity jump at ∼37 km,
consistent with the H–κ analysis. Ma et al. (2007) also found a
relatively sharp velocity jump at nearly the same depth, while the
crust–mantle boundary in the model of Mangino et al. (1999) cov-
ers a much broader depth range. Both the DRT and RPB models
also show a high-velocity zone at 20 km depth, followed by a low-
velocity zone in the lowermost crust. However, the most significant
difference is that the DRT model reveals a distinct LVZ in upper
mantle at ∼140 km depth, but which is not seen in the RPB model.
The preconditioning used in the DRT and RPB inversions is the
same, and the only difference in these inversions is the input data.
Since the RPB stack does a better job in preserving the true ampli-
tude and the shape of the three later arrivals, we tend to conclude
that that the mantle LVZ shown in the DRT model is an artificial
structure associated with the improper stacking of receiver function
data. The amplitude of the crustal multiples predicted by the sharp
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Figure 13. Results from the inversion using RPB stacked receiver function data of XAN. (a) Green thick lines are observation data, whereas thin lines in blue
and red correspond to the synthetic receiver functions generated from the initial and final velocity model, respectively. Both low- and high-frequency receiver
functions generated by a Gaussian low-pass filter with width a = 1.0 and 2.5 are employed in the inversions. Three reference ray-parameters, p0 = 5.5, 6.5
and 8.0 s deg–1, are used to form RPB stacks for per couple of low- and high-frequency data. The receiver functions corresponding to the three p0 are plotted
in the order form the bottom to the top. For per couple of waveforms, the top one is for a = 1.0 and the bottom one is for a = 2.5. A total of six receiver
function stacks are used in the inversion. (b) VR is shown as a function of smoothness parameter s. (c) S-wave velocity profiles. The initial model is plotted in
thin dashed black line and the preferred model is shown in red line. The grey thin lines indicate all the inverted velocity profiles using different smoothness
parameters s.

Moho is larger than the one shown in the DRT stack, which is caused
by out-of-phase stacking (Fig. 11b). For example, the relative am-
plitude of 2p1s with respect to direct P in the three RPB stacks
is ∼24 per cent, whereas the relative amplitude in the DRT stack
is only ∼19 per cent (Fig. 11c). To compensate the weak amplitude
of the crustal multiples in the DRT data, an LVZ at ∼140 km is
required to generate Ps conversion energy that partially cancels the
2p1s multiple. This explains why the mantle LVZ in the DRT model
is unlikely a true structure.

5 D I S C U S S I O N

Iterative linearized inversions of receiver function data are widely
used nowadays to obtain high-resolution velocity structure of the
crust and upper mantle beneath seismic stations. The input data of

the inversions are usually the stacked receiver functions, as stacking
can reduce the noise level and digital errors, and suppress 2-D/3-D
structural effects, which otherwise may mislead the direction of an
iterative inversion. As mentioned above the Ps converted phase and
the two crustal reverberations possesses a slightly different slow-
ness from the direct P wave, making it difficult to preserve the
true waveform of the three phases simultaneously with a simple
slant stacking method. The stacking induced error in data can be
suppressed by carefully selecting and stacking receiver functions
in a relatively narrow epicentral distance range. This practice is,
however, not always possible when the heterogeneous global seis-
micity is taken into account. Using the entire individual receiver
functions as the input data, and inverting them simultaneously is an
alternative approach. However, as the SNR of the converted and re-
verberated waves in the individual receiver function data is generally
not high, the large noise level can misguide the iteration direction.
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Figure 14. Same as Fig. 12, but for MDJ.

On the other hand, the out-of-phase stacking is less severe for low-
frequency data compared to high-frequency data. Thus inversion
with direct stacks of low-frequency receiver functions, for exam-
ples, those filtered with a Gaussian filter width a = 1.0, can work
reasonably well as long as the distance coverage is not so large.

The ‘four-pin’ method developed in this study is able to correct
the time-shift of the Moho conversion and two later reverberations
with respect to a specific ray path, that is a reference ray-parameter
as long as it is within the teleseismic distance range. The correction
only requires the knowledge on the average crustal P-wave velocity
VP, crustal thickness, and average VP/VS ratio, which can be de-
termined by the H–κ analysis, making it an automatic method to
process all receiver function data. Stacking moveout corrected data
is then straightforward avoiding the tedious tasks of data selection
and analysis. The RPB stacking is thus easy to be implemented,
particularly to large datasets such as the USArray. Although such a
correction for distance moveout has not been used in receiver func-
tion inversion, it has been used in many other studies to separate
variations of receiver functions related to distance and backazimuth.
For example, analysing crustal anisotropy using multiple receiver
functions requires the removal of the distance related time-shifts

from the Ps arrival time (e.g. Liu & Niu 2011). Actually, the essence
of the H–κ analysis is to find an optimal distance moveout for the
Ps conversion and reverberation phases to obtain the maximum
stacking amplitude of these phases.

We want to emphasize that the RPB correction and stacking
proposed here are based on 1-D velocity models. When there are
strong lateral heterogeneities within the crust, the arrival times of
the Ps conversion phase and the major reverberation phases may
significantly differ from those predicted by the 1-D reference model.
If this is the case, then the ‘four-pin’ moveout corrections are not
expected to be able to enhance signal coherence of receiver function
data from different backazimuthal. However, if data from a single
direction are sufficient, we expect that lateral heterogeneities have
minimum effect on the data and therefore the ‘four-pin’ moveout
corrections can still lead to in-phase stacking, as demonstrated by
the MDJ station. Also it should be noted that the RPB stacking is a
technique proposed for data processing, independent from the pre-
conditioning inversion part, we expect it to be used in any inversion
methods.

In order to stabilize the inversions, we have implemented four
types of pre-conditions: (1) add smoothness to the models, (2) fix
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Figure 15. Same as Fig. 13, but for MDJ.

the deep layers, (3) balance the data filtered with different Gaussian
functions and (4) weight differently between the conversion and
reverberation segments. Among the four types of preconditions set
up on model and data in this study, the regularization on the model
smoothness and the balance between the high- and low-frequency
receiver function data are always required in order to obtain phys-
ically meaningful velocity models. If these two preconditions are
not applied, the resulting S-wave velocity may go to negative dur-
ing the first few iterations. Selecting the smoothness parameter s is
somewhat subjective. A useful criterion for choosing this parame-
ter is to find the value that produces the inversion residual in the
same order of the pre-signal noise level in the receiver function
stacks. However, a poorly configured inversion may not be able to
reduce the residual to the pre-signal noise level by only adjusting
the smoothness parameter. In general, waveform fit (characterized
by VR) usually decreases with increasing model smoothness, al-
though this relation could become more complicated when multiple
regularizations are implemented (Fig. 13b, for example). On the
other hand, a set of depth-dependent smoothness parameters (eq. 5)
can also be easily employed in the linear equations. In practical
implementation, we can first search a wide range of smoothness

parameters to determine the optimal value that gives a good bal-
ance between model roughness and waveform fit (VR). We have
shown this type of plot (VR versus model smoothness) in the re-
sults of all the inversions conducted at the two stations in Figs 12(b)
to 15(b). We then tune the depth-dependent smoothness parameters
(S in eq. 5) to reduce the smoothness at depths with large velocity
jumps and raise smoothness at other depths.

The choice of the weight parameter wii to fix velocity of a certain
layer is also subjective if only it is large enough to keep the velocity
almost intact during an inversion. In this study, we have set wii = 1.0
to fix velocity structure between 200 and 500 km in our inversions
using both synthetic and field observed receiver function data. We
must say this scheme is not limited to the deepest layers in the upper
mantle, but also can be applied to crustal layers when their S-wave
velocity is well constrained by previous studies.

Balancing the weight of different segments of a receiver func-
tion trace for the inversion has something to do with the length
of each segment. Assuming that a receiver function trace is 50 s
long, we divide it into a 10 s Ps segment and a 40 s reverberation
segment. The second segment is thus three times longer than the
first one. Given the different length of the two segments, we adopt
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a similar method used in balancing receiver function and surface
wave dispersion data (refer to eqs 10and 11 in Julià et al. 2000)
to properly weight the two segments (eq. 8). Our numerical tests
suggest that assigning a weighting factor without considering data
length can lead to unstable inversion, and yield velocity structure
that is even worse than those inverted from data without segment
weighting. These preconditions provide us flexibility to regulate the
linearized receiver function inversion. For an instance, the segments
weight may introduce an Earth-stripping approach to determine the
crustal and upper mantle structure from the top to the bottom. We
first assign more weight (c ≥ 0.5) to the first segment containing
mainly the Ps converted waves to better constrain the shallow struc-
ture in an inversion. Once the shallow structure is determined such
as by reviewing VR, we then shift our weight to the later segment
comprised of reverberations of the shallow structure and the Ps con-
versions of the deep boundaries, fix the crustal layers, and continue
the inversion to characterize the deep structure.

Besides the VR, the rms of the difference between the observed
and predicted receiver function data or the residual of the least-
square solution can also serve as the indicator of data misfit. How-
ever, a model yielding the maximum VR or minimum misfit may
not necessarily be the best physical model. In practice, we may set
up a critical value that defines whether a model is acceptable or not,
and used the average of all the acceptable models as the preferred
model. We also intend to select models with minimum number of
free parameters as our final model. The simplicity of these models
makes them relatively easy to be interpreted, and thus can be widely
used in other studies.

The extensive tests with the synthetic and field data have demon-
strated the effectiveness of our integrated approach to stabilize
model convergence in receiver function inversion. Although our
regularizations for the linearized inversion may not fundamentally
solve the intrinsic problem of receiver function data regarding the
trade-off between velocity and depth under certain circumstance as
shown in the RPB case 5.1 and 5.2, it can be further integrated
into other techniques (e.g. Jacobsen & Svenningsen 2008) to re-
duce the non-uniqueness and non-linearity of receiver function in-
version. The non-linear methods may suffer less dependence on
initial models and be more suitable for high level of automation
(e.g. Bodin et al. 2012). However, the regularizations on models
and data proposed here should also be important issues for those
inversions.

6 C O N C LU S I O N

In this study, we intend to improve the iterative linearized inver-
sion of receiver function data in two aspects, from both the data
processing and inversion procedure itself. We first develop a ‘four-
pin’ method to simultaneously align the Moho Ps converted phase
and two reverberated phases by stretching/contracting and rescal-
ing each receiver function. The stretching/contracting and rescal-
ing are based on the ray-parameter of the incoming P wave, and
can be pinned to any standard receiver function travelling with a
certain ray-parameter. The stack of the receiver functions after be-
ing corrected on both arrival time and amplitude with respect to
the standard receiver function, referred as the RPB stack, is better
than the direct stack (DRT) at least in two aspects: (1) it preserves
the waveform of the three later arrivals, which is the accurate re-
sponse of the underneath structure of the receiver and (2) it allows
us to construct multiple stacks of receiver functions at any tele-
seismic distances. Our synthetic tests indicate that inversion with

multiple RPB stacks can enhance model convergence, leading to
speedy recovery of the target model.

In the inversion side, the integration of all preconditions discussed
in this study yields an algorithm that is able to provide better sta-
bility in the iterative linearized inversion procedure. Applying this
inversion algorithm to RPB data has demonstrated the capability in
recovering the target model from our extensive synthetic tests with
various types of starting models. We apply the integrated method
to two broad-band seismic stations in China, XAN and MDJ. Our
results show that the crust–mantle transition beneath XAN located
at the Qinling orogenic belt occurs at a depth range not as broad
as previously reported. On the other hand, the mantle LVZ beneath
MDJ in northeast China suggested by previous studies is likely
an artificial structure associated with the improperly constructed
receiver function data.
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Julià, J., Ammon, C.J., Herrmann, R.B. & Correig, A.M., 2000. Joint in-
version of receiver function and surface wave dispersion observations,
Geophys. J. Int., 143, 1–19.
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