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ABSTRACT

Autofocus for Synthetic Aperture Radar

by

Ricardo A Gallardo Palacios

In this thesis, I compare the performance of three different autofocus techniques

for Synthetic Aperture Radar (SAR). The focusing is done by estimating phase errors

in SAR data. The first one, the Phase Gradient Autofocus, is the most popular in the

industry, it has been around for more than 20 years and it relies on the redundancy of

the phase error in the SAR images. The second one, the Entropy-based minimization,

uses measurements of image sharpness to focus the images and it has been available

for about 10 years. The last, the Phase-space method, uses the Wigner transform

and the ambiguity function of the SAR data to estimate the phase perturbations and

it was recently introduced. Additionally, I develop a criteria for filtering the data

for the cases in which the Phase-space method does not capture the entirety of the

error.
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Chapter 1

Synthetic Aperture Radar

A SAR system consist of a side looking antenna placed on the fuselage of a plane.

The plane then follows a flight path over the region of interest while the antenna

emits a signal at repeated times during the flight. A receiver on the plane records

the signals, typically using the same antenna, known as the monostatic approach [7],

that are scattered back from the targets in the imaging scene. The recordings of the

scattered signals are the data.

With the acquired data, the problem of interest is to image the scene where the

signals scattered. Section 1.1 describes a generic SAR system and the data processing.

Section 1.2 presents the imaging process to recover the scene. Section 1.3 addresses

some of the difficulties encountered in SAR and section 1.4 introduces a brief history

of SAR and the existing attempts to overcome the difficulties.

1.1 Setup and data collection

The typical setup for a generic SAR system is shown in Figure 1.1. It shows a

plane flying far away from the imaging scene and following a specified flightpath.

The flightpath will be denoted by ~rp (s) and indexed by the slow time s. A signal

is transmitted at specific slow times sn = n∆s, n = 0, 1, . . . and the time between
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subsequent signal transmissions is parametrized by the fast time t ∈ (0,∆s).

Figure 1.1 : SAR typical setup.

The collected data shall be denoted by D (s, t) and it is indexed by the fast and

slow times. For a model of the data see Appendix B. It is relevant to point out

that any equipment records signals digitally, and hence the data is actually discrete,

i.e. D (sn, tk) exists for specific n, k ∈ N ∪ {0}. From the discrete data, the imaging

surface will be recovered.

Since the antenna emits long signals, linear chirps are the most commonly used

signals in SAR, it is impossible to read travel times from the data and hence the data

is pulse compressed by match-filtering it with conjugated and time-reversed signal

transmitted by the antenna which then allows for travel-time estimation. Appendix

A presents linear chirps formally and shows the effect of match-filtering on them.
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Additionally, the data is range compressed by centering the pulse compression

around the round-trip travel time from the antenna to any fixed point in the imag-

ing scene. This is computationally advantageous since it removes large phases from

the data and allows for more stable computations [3]. The data compressions are

performed simultaneously

Dr (s, t) =

∫
f (t′ − t− τ (s, ~ρo))D (s, t′) dt′ and

where τ (s, ~ρo) = 2 |~rp(s)− ~ρo| /co is the round-trip travel time from the antenna at

position ~rp(s) at time s to point ~ρo.,

After this processing, the compressed data is used to render an image of the scene

of which the waves scattered. This process is addressed in the following section.

1.2 Image Formation

The imaging scene now has to be reconstructed from the data. The imaging process

can be summarized as follows: Because the data consists approximately of time-

delayed copies of the transmitted signal, an image is obtained by synchronizing them

with travel-times and adding them over the aperture.

An image at point ~ρI can be calculated in the following way [3],

I
(
~ρI

)
=

S(a)∫

−S(a)

Dr

(
s, τ

(
s, ~ρI

)
− τ (s, ~ρo)

)
ds (1.1)

where S (a) is the slow time range over the aperture of length a.
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Since in a single pass of a standard SAR system there is not enough information for

a three dimensional reconstruction of the imaging scene, then the standard practice

in SAR is to assume that the imaging scene is flat, [8], and then to generate a grid of

points in the region of interest and calculate the image on that grid. Without loss of

generality, the imaging plane can be assumed to be at a height equal to 0, hence

~ρI =
(
ρIX−R, ρ

I
R, 0

)
(1.2)

where ρIX−R,ρIR are the cross-range and range components of ~ρI respectively.

Figure (1.2(a)) shows an image of a stationary point-like target. Figure (1.2(b))

shows an image of multiple targets. The images were generated with simulated data

using the same setup as in [3] for a particular SAR system known as Gotcha, see

Appendix C for more the specific properties of this system. The specific parameters

of this system are presented in appendix C. Both images corresponds to a single

aperture of length a = 124m.

If the exact flightpath is known and all the targets within the imaging scene are

stationary, the images produced will be focused. If, however, there is unaccounted

motion, be it in the flightpath or on the ground, the images will not be focused.

The scope of this thesis is to study the different algorithmic solutions given to the

problem of having unaccounted motion in the flightpath. In the next section, a couple

of examples of the image degradation that happens when the flightpath is not known

completely are provided.
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(a) Perfectly focused image of

a single point-like target

(b) Perfectly focused image of

multiple point-like target

Figure 1.2 : Perfectly focused images using one small aperture

1.3 Difficulties

To render images, Equation (1.1) has to be synchronized within a wavelength other-

wise, the images will be out of focus. Inexact knowledge of antenna position leads to

imprecision in travel-times that could potentially be larger than a wavelength. For

high resolution systems, such as Gotcha, the typical wavelength (λo) is in the order

of centimeters (λo ∼ 3cm for the system in appendix C). The flightpath can be

estimated by using GPS technology up to certain degree of accuracy which is often

insufficient for proper synchronization.

The perturbations are of the form

~rp(si) + ~µ (si) (1.3)
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for every firing time si where ~µ (si) could be large with respect to the typical wave-

length of a SAR system. Whilst very small perturbations can be neglected as they

will not affect the image significantly, if the perturbations are sufficiently large, the

images could be completely out of focus.

The effects of perturbations can be seen in Figure (1.3). For these images, the

perturbations are of the order of one wavelength λ0, i.e. |~µ (s)| = O (λo). These two

figures should be compared with Figures (1.2(a)) and (1.2(b)), which are images of

the same scenes, respectively. As it can be observed the main loss of focus occurs in

cross-range (along the x axis in this case).

(a) Unfocused image of a single point-like target (b) Unfocused image of multiple

single point-like target

Figure 1.3 : Unfocused images using one small aperture.

It is evident that for there to be a successful rendition of the imaging scene, there

has to be a sufficiently accurate knowledge of the travel times. If the perturbations
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are estimated and compensated for, then, the images can be focused. This process is

called autofocus. In the next section a brief history of SAR and some of the existing

autofocus algorithms are presented.

1.4 Historical Developments

Synthetic Aperture Radar (SAR) was introduced to the scientific and engineering

communities in 1960 as a collaboration between the University of Michigan and the

U.S. Army [9]. This radar system was originally intended to improve the Azimuth

resolution, the capability of distinguishing two targets close together in cross-range,

of radar systems in existence at the time.

To attain higher resolution, the idea proposed was to synthesize a long antenna

without actually building it. By mounting a smaller one on the side of a plane and

having the plane follow a flightpath, an effective synthetic antenna could be created

[9]. This synthesis allowed the new systems to create high-resolution images, using a

simple flight path, which would have otherwise been impossible to obtain. Although

the first successful image was generated in 1957, this new technology remained clas-

sified until 1960.

SAR, as any other radar system, relies on the reception and interpretation of waves

scattered back from a target or multiple targets. Within the diverse Radar systems in

existence, it is considered as an active system in that it provides its own illumination

(generates its own signal) and consequently can operate at any time of day [8] which
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makes it versatile for many applications of high-resolution daylight-independent imag-

ing [25]. Additionally, as it records both the phase and the magnitude of the reflected

signal, SAR is a coherent system [8].

Amongst the different SAR systems in existence, two main categories exist, Spot-

light and Strip map SAR, [8]. In spotlight SAR, the antenna always illuminates

the same location on the ground during the flight. In stripmat SAR, the antenna’s

illumination sweeps the ground following the flightpath, [7].

Since for ultra-high resolution images, short wavelength signals have to used, small

perturbations to the flightpath can cause severe problems in the image reconstruction.

Hence it became paramount to the development of the technique that some way of

focusing the images were devised.

The most celebrated method of automatically focusing the data is known as phase

gradient autofocus (PGA) and it was introduced in [13]. Since then, many of the

autofocus algorithms have been extensions of this method.

About a decade late, an optimization based method that uses entropy as a mea-

surement of image contrast for autofocus was introduced in [24] and later in [21] the

ideas were extended to more general image contrast metrics. The main limitations of

these methods are those of non-convex optimization in high dimensions.

Recently a somewhat different approach using Wigner transforms and ambiguity

functions is employed in [3]. The use of the Wigner transform had already been

proposed for velocity estimates in [2] and also used in [11] and [10] but not for the
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autofocus problem and with the analysis from first principles shown in [3].

In the following chapters, three different algorithms to solve the autofocus prob-

lem will be compared side by side on both simple and complex imaging scenes with

increasing levels of perturbations in the flightpath.
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Chapter 2

Autofocus

The purpose of autofocus techniques is to compensate for the imprecision of travel-

times that do not take into account the flightpath perturbations. If an autofocus

algorithm is successful, the SAR images produced will be focused. In this chapter,

three different methods will be explained and compared. The first one is the most

popular focusing techniques, the phase gradient autofocus algorithm, and it was in-

troduced in [12] and it has proven to be quite robust for most spotlight SAR imaging.

The second one, image entropy minimization, was introduced in [24] and it belongs to

more general series of algorithms based on measurements of image contrast [21]. The

third one, the phase-space method, was introduced in [3]. It uses both the Wigner

transform and the ambiguity function of the data for autofocus. Additionally, it pro-

vides an algorithm for target tracking (velocity estimation of a moving target) that

can be used when no autofocus is required.

Section 2.1 will describe PGA, section 2.2 is devoted to the entropy based auto-

focus and section 2.3 presents the phase-space method along with a filter designed to

attenuate high frequency perturbations.

The comparison is done using the Gotcha system described in Appendix C for a

single point-like target scene with induced perturbations and a more complex scene
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with multiple targets. The first two methods, PGA and the image entropy mini-

mization, provide point-wise estimations of the perturbations for each slow time s.

The Phase-Space Method, on the other hand, provides a parametric estimation of

the magnitude of the perturbation, its speed and its acceleration, via a second order

polynomial. That is, it approximates locally the flightpath, over a slow time interval

by a polynomial of degree 2.

2.1 Phase Gradient Autofocus

In 1988 an automated algorithm, know as phase gradient autofocus (PGA), was

proposed to focus data [12] by estimating and correcting phase errors for spotlight

SAR [13]. The original algorithm used adjacent range-compressed image data to

estimate the phase differences iteratively. More recently, the original PGA algorithm

was shown to be particular case of a maximum-likelihood estimation of the phase

errors, [5]. This maximum-likelihood estimation is now the most widely used version

of PGA.

A schematic representation of the algorithm is shown in Figure 2.1, [5], [14]. An

explanation of the steps will be presented after a brief discussion of the algorithmic

assumptions.

Starting with the definition of two concepts: range and cross-range line. A range-

line consists of all the data points that fall into the same fast-time bin over all the

slow times. A cross-range line corresponds to the data acquired for a fixed slow-
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Figure 2.1 : Phase Gradient Autofocus Algorithm.

time. It is assumed that there exist only one main scatterer (target) per range-line

and they are mutually independent across cross-range lines, i.e. the position of each

scatterer in cross-range does not affect the position of any other target in cross-

range. Figure 2.2 shows that situation where sufficiently separated point-like targets

uniformly distributed in range produce data that can easily be binned together for

each fast-time provided a sufficiently short aperture.

If the aperture is sufficiently small, an approximate image can be formed by Fourier

transforming the data in both dimensions [15], [19]. For given data D̂r (sk, ωm), where

k ∈ {1, . . . , K} refers to the cross-range index and m ∈ {1, . . . ,M}, to the range

index, the image is formed by, [4],

IF = FFT 2

(
D̂r

)
, (2.1)

where FFT 2 is the two-dimensional Fourier transform, resulting in an image IF
km,
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Figure 2.2 : Slow time / Fast time separation

for convenience of notation we shall omit the F superscript in the remainder of the

section. As it should be expected, a Fourier transform based image is typically faster

to compute via FFT’s compared to Equation (1.1), [1] but an error is induced due to

the lack of a uniform grid.

Algorithmic steps

The algorithms starts with an image that has already been formed which is a ma-

trix denoted by Ikm where k = 1, . . . , K corresponds to cross-range and m = 1, . . . ,M

to range. The first step of the algorithm is to circular shift the main (brightest)

scatterers to the center of the image along range-lines. Each range line is shifted

independently and the number of bins it was shifted is recorded.

The second step is to then window in cross-range the shifted image around the
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aligned targets to maximize the average target-to-clutter ratio to avoid the possible

existence of other targets in the same range-line to affect the estimation of the phase

error. This is done simply by zeroing out what is outside the central window. The

window has to be chosen correctly to both avoid either discarding relevant phase

information or adding too much noise to the phase estimation. It is standard practice

for SAR imagery to use a 16dB threshold from the brightest point of the image in

the azimuth direction, [17]. The windowed image shall be denoted by Iw
km.

The third step is to Fourier transform Iw
km along the cross-range (along k) direction

but leaving the range one unaltered. The image after such a transformation is referred

to as the range-compressed phase-history domain,[5] and it shall be denoted by Ĩw
km.

The range compressed domain can be seen as a rank one matrix (made of rows that

are scaled version of each other) plus some complex noise i.e.

[
Ĩw

]
= [~p~aᵀ] + [η] (2.2)

where ~p =
[
1, eiΨ2 , . . . , eiΨK

]ᵀ
. Alternatively this relationship can be written as

Ĩw
km =ame

iΨk + ηkm

where Ψk is the common phase of the data across cross-range lines that is at slow

time k due to track perturbations, am is a scattering amplitude due to the target at

range bin m and [η] is complex with uncorrelated real and imaginary parts modeled

as white noise, i.e.

[η] = [ηR] + i [ηI ] (2.3)
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where

[ηR]km , [ηI ]km ∼ N (µ, σ) . (2.4)

Here the notation ∼ means it is distributed according to a Gaussian distribution with

some mean µ and some standard deviation σ, and each entry is independent of the

others. Since now there is a distribution associated to the error, a statistical approach

can be taken.

The fourth step is to estimate the phases of ~p. Let Ψ = [Ψ1,Ψ2, . . . ,ΨK ]T denote

such phases. The estimation of the phases is done as to maximize the log-likelihood

of range-compressed data Ĩ over the phases. If p denotes the density of the data,

then, the density and the log-likelihood of the data given the phases can be written

as

p
(
Ĩ|Ψ

)
=

1(
(2π)K |C|

)M
e
− 1

2

MP
m=1

Ĩ
ᵀ
mC−1Ĩm

ln p
(
Ĩ|Ψ

)
= −M ln

[
(2π)K |C|

]
− 1

2

M∑
m=1

Ĩ
ᵀ
mC−1Ĩm (2.5)

with C being the covariance matrix of the range lines Ĩm = ame
iΨ and |C| denoting

it’s determinant. The idea if to find the phases Ψ that maximize the log likelihood

of the current data. If these are estimated, they can be removed and the resulting

image will be better focused. Hence the maximization can be formulated as

Ψ∗ = argmaxΨ ln p
(
Ĩ|Ψ

)
(2.6)
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Since |C| is independent of Ψ, then relation (2.6) is equivalent to the following max-

imization problem which can be relaxed to a eigenvector calculation,

Ψ∗ = argmaxΨ

(
e−iΨ

)ᵀ
CeiΨ,

with the obesrvation that now C, and not C−1, appears.

Since C is unknown, the empirical correlation matrix is used

Ĉ =
1

M

M∑
m=1

ĨmĨ
ᵀ
m.

This estimation has been shown to attain the Cramer-Rao lower bound on variance

on real SAR data, [5].

The last step is to focus the data updating Ĩkm ← Ĩkm×e−ibΨ∗k and inverse Fourier

transforming the range-compressed phase-history domain back to an image. It should

be noted that the correction is applied to the data without windowing, otherwise,

information would be lost. Hence only phase information is updated. The process

can be iterated until eiΨk ≈ 1, k = 1, . . . , K, i.e. mod (Ψk, 2π) ≈ 0 for every k, where

mod (·, ·) is the modulus of the number, to some predetermined tolerance.

For a single scatter scene with a known platform perturbation of the form

λ0 sin (γ (s− so)), the estimates rendered by PGA can be seen in Figure (2.3). In

figure (2.3(a)), γ = 4, PGA produces a good estimate of the phase error and is hence

able to focus the image. However, in figure (2.3(b)), where γ = 4/3, it seems at first

sight that PGA does not capture the phase error correctly. This is actually not the

case since the estimate produced by PGA captures most of the non-linear tendencies
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in the error. Since the images are obtained by Fourier transforming the corrected

data to an image, linear tendencies in the phase error only produce shifting in the

position of targets in the image. They do not affect the focus.

(a) Recovered perturbation using PGA, γ = 4 (b) Recovered perturbation using PGA, γ = 4/3

Figure 2.3 : Phase error estimation using PGA

PGA is usually implemented to remove such linear tendencies from the phase esti-

mation at every iteration [5]. This is done by fitting a line, in the least squares sense,

to the pairs
(
sk, Ψ̂k

)
and subtracting it from Ψ̂. Hence the phases recovered by PGA

will only contain the non-linear parts of the estimates. Removing the linear tenden-

cies in the phases also tries to minimize possible artificial shifting that the method

could induce. PGA, then, needs additional information about the true location of at

least one of the targets to correctly center the image, but the sharpness of the image

is not affected by this.
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2.1.1 Original algorithm

PGA can also be implemented by taking a partition of the slow-times and performing

the estimate over each subset of slow times. Then, the estimates can be combined by

adding them over each subset of slow-times. When only 2 contiguous slow-times are

used for the estimation, the result of the eigenvalue problem is comparable to that of

the first PGA algorithm proposed, [12]. In this setting, only two adjacent cross-range

lines are considered, hence what is obtained is the phase difference between them, i.e.

for cross-range lines ` and `+ 1, ∆Ψ` = Ψ`+1 −Ψ`

∆̂Ψ` = ∠
(

M∑
m=1

Ĩ`,mĨ`+1,m

)
.

Where ∠ denotes the principal value of the argument of the complex number. This is

done for each pair over the entire cross-range. Since the algorithm relies only on phase

differences, the first azimuth line can assigned a phase value of zero. The estimated

phase correction can be recovered by simple addition

Ψ̂l =
l−1∑

`=1

∆̂Ψ`+1

The phase update is the same as above. While this case is less computationally

demanding per iteration, it requires more iterations to reduce the phases sufficiently,

[5]. By defining

ε̂l = (Ψl+1 −Ψl)− ∆̂Ψl,
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the following error estimation can be made,

Ψl − Ψ̂l =
l−1∑

`=1

(Ψ`+1 −Ψ`)−
l−1∑

`=1

∆̂Ψ` =
l−1∑

`=1

ε̂`. (2.7)

If the error is not zero mean, then there is a linear tendency introduced into the

estimation which is addressed by removing all linear trends from the estimation.

2.1.2 Examples and difficulties

As an example of the performance of the PGA, Figure 2.4(a) shows a focused image

of real SAR data, obtained from Sandia National Labs. Figure 2.4(b) shows a blurred

image of the same scene. Figure 2.4(c) shows the result of applying PGA for the case

M = 2 after 6 iterations.

After a series of numerical experiments, it was empirically observed that even if all

the steps in the algorithm are performed properly, the method can still fail to focus

the data. The reason behind the majority of the failures in the simulations was due

to the presence two very similar targets aligned in cross-range within the window.

That is, if two very similar (highly correlated) and aligned in range target patterns

exist, the method will render an unfocused image. This suggests that the windowing

should be made smaller at the risk of removing too much phase information of the

image. Hence, this empirically suggests that applying the same windowing criterion

to all images might lead to some images not to be focused.

In the next section, a different idea, a contrast-metric based optimization method

will be presented.
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(a) Original focused image (b) Blurred image

(c) Image deblurred by PGA

Figure 2.4 : PGA example using Sandia National Laboratories SAR imagery

2.2 Contrast-metric method

Contrary to PGA that uses the redundancy of the phases in the range-compressed

phase-history domain, contrast-metric based algorithms use a proxy for the focus of

the image and then use optimization tools to focus the image via that proxy. In [24],

an algorithm that minimizes the entropy of the image, in the sense of Shannon [22],

was proposed to improve focus. This algorithm assumes, in the same fashion as PGA,

that the focusing is done by correcting phasees that are common for each cross-range

line in the phase-history domain. It was later shown that this algorithm was a part of
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a more general collection of algorithms that focus SAR images based on any metric

of sharpness [21].

The basic assumptions are as follows. Once again, the flightpath ~rp(s) is assumed

to be a straight path, if not, a change of variables is performed. An image is formed

by Fourier transforming the data in both frequency and slow time as in Equation

(2.1).

In this section, the notation for the data and the images will be different from

the previous section ,mainly due to the fact that there is no windowing or shifting

performed. Let Zkm = Z (ξk, tm) be the (k,m) pixel of the unfocused complex image

where k and m correspond to cross-range and range respectively. By taking a Fourier

Transform in cross-range of the unfocused image (landing in the rage-compressed

phase history domain), denoted by Z̃km, then a relationship with the perfectly focused

image can be established. Let Ikm be the focused complex image, (Ĩkm after taking

Fourier Transform in cross-range) then, following relationships is assumed hold

Z̃km = eiφk
e Ĩkm,∀m = 1, . . . ,M, and k = 1, . . . , K

where φk
e is the unknown phase error that only depends on cross range because cross-

range is affected by the precision of the knowledge of the track as seen in figures

1.3. The problem now becomes to find Ikm given only Zkm. This estimate can be

expressed in terms of matrices in the following way

Î
(
~φ

)
= FFT k

(
diag

[
e−i~φ

]
Z̃

)
,
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where ~φ = (φ1, . . . , φN) is a phase correction, diag
[
e−i~φ

]
is a diagonal matrix with

e−iφk as it’s diagonal elements, Î is the image as focused by the phase correction and

after applying discrete Fourier Transform in cross-range (FFT k) of the unfocused

image corrected by the phase.

It is clear that I is not known and hence what is usually done is to find ~φ
∗

such

that

~φ
∗

= arg min
~φ∈[0,2π]N

Φ
(
Î

(
~φ

))
(2.8)

for some function Φ that acts as a way of measuring the sharpness of the image. For

simplicity, the explicit dependency on the image will be dropped, i.e.

Φ
(
~φ

)
= Φ

(
Î

(
~φ

))
. (2.9)

As with any optimization problem when the objective function is not sufficiently

well behaved, it is possible for any optimization algorithm to find a local minimum

which will not necessarily render a focused image.

2.2.1 Entropy based autofocus

The entropy of an image is a measurement of the contrast there exist between the

intensities of the pixels. Hence a focused image should have lower entropy than an

unfocused one. The assumption is that the entropy of the image is the lowest when

it is perfectly focused. With this idea, [24] proposes to find the phase vector that

minimizes this measurement and thus focus the images.
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For this case, the function Φ
(
~φ

)
will be the entropy of the focused image and it

can be expressed in terms of the following quantities:

EbI =
∥∥∥Î

∥∥∥
2

F
=

∑

k,m

ÎkmÎkm

Φ
(
~φ

)
= −

∑

k,m

ÎkmÎkm

EbI
log

(
ÎkmÎkm

EbI

)

With this particular choice of metric, the optimization can be done directly and

even first-order optimization methods can be readily used since Φ
(
~φ

)
is differentiable

and the `−th component of its gradient is given by

∂Φ

∂φ`

(
~φ

)
=

2

NE2
bI

{∑

a,b

Im (ηab`)
∑

k,m

ÎkmÎkm log
(
ÎkmÎkm

)

−EbI
∑

k,m

Im (ηkm`) log
(
ÎkmẐkm

)}
(2.10)

where ηab` = Îabe
−i2π`b/Ke−iφ`Z̃`a. Even though this seems like a straight forward

optimization problem, if the images are sufficiently large, this can become intractable

for most computers. Since the optimization is performed over each cross-range line,

there are as many variables in the search space as there are cross-range lines (slow-

times). Hence even for relatively small pictures the optimization can be very time-

consuming.

2.2.2 Implementation

To address the computational burden of high dimensional optimization, a simplified

coordinate descent method was proposed in [16]. The idea behind this method is to
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use a first degree Taylor approximation to the entropy function as a surrogate function

that is easier to optimize and then to use a coordinate descent iterative method to

find the optimum phase correction. In this case the function being optimized at the

l−th iteration will be

Θ(~φ, ~φ
(l)

) = −1/EbI
∑
n,m

∣∣∣Îkm

∣∣∣
2

log
∣∣∣Î(l)

km

∣∣∣
2

+ log
(EbI

)
. (2.11)

where Îkm = Îkm

(
~φ

)
and Î(l)

km = Îkm

(
~φ

(l)
)
.

This optimization is done sequentially for each φ` in the usual coordinate-descent

fashion. Let ψ (φ`) = Θ
(
~φ, ~φ

(l,`)
)

where

~φ
(l,`)

=
(
φ

(l+1)
1 , . . . , φ

(l+1)
`−1 , φ`, φ

(l)
`+1, . . . , φ

(l)
K

)
.

So the interest is to calculate

φ
(l+1)∗
` = arg min

φ`

ψ (φ`) (2.12)

which has a exact solution. By writing

ψ (φ`) = A` cos
(
φ` − φ(l)

`

)
+B` sin

(
φ` − φ(l)

`

)
+ C` (2.13)

where

A` = −ψ′′
(
φ

(l)
`

)

B` = ψ′
(
φ

(l)
`

)

C` = ψ
(
φ

(l)
`

)
+ ψ′′

(
φ

(l)
`

)
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then the solution to equation (2.12) is given by

φ
(l+1)
` = φ

(l)
` + tan−1 (B`/A`) (2.14)

and the image can be sequentially focused by

Î(l,`+1)
km = Î(l,`)

km +
1

N
ei2π`n/N

(
eiφ

(l+1)
` − eφ

(l)
`

) ̂̃I
(0,0)

km (2.15)

where Î(0,0)
km = Zkm. This entropy-based method can be viewed as a solution to

a particular form of a multichannel problem [21]. Using these multichannel ideas,

a slightly different algorithm using low rank approximations was proposed in [20].

However, the formulations lead to the same optimization problem and hence are no

different than the one presented.

2.2.3 Examples and difficulties

A small section of the image used for illustration of a complex scene for PGA is shown

in figure (2.5). The reason to choose a smaller image is that the computational time

is too long for such large apertures ( 2,500 slow-times). Figure (2.5(c)), the algorithm

is able to focus an artificially blurred image. However, the algorithm depends on

the starting point of the minimization since for (2.5(c)) the initial phases are all the

same but for (2.5(d)), a random vector of phases was selected and the was no real

improvement to the image.

Since the entropy of an image is invariant under circular shifts of the image,

image-entropy minimization cannot hope to recover linear tendencies in the phase
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(a) Original focused image (b) Blurred image

(c) Image deblurred using φ` = π as

starting point

(d) Focus attempt using random start-

ing point

Figure 2.5 : Entropy based autofocus example using Sandia National Laboratories
SAR imagery

error. Hence this method will also need additional information on the position of at

least one target in the scene to be able to center the image. Contrary to PGA, image-

entropy minimization does not require the presence of only one dominant scatterer per

range-line (fixed fast-time). Figure (2.6(a)) and (2.6(b)) show the phase recovered by

image-entropy minimization method for perturbations of the form λ0 sin (γ (s− so)).

For figure, (2.6(b)), it can be seen that the linear tendencies in the phase error are

not quite captured by the method.
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(a) Recovered perturbation minimizing entropy,

γ = 4

(b) Recovered perturbation minimizing entropy,

γ = 4/3

Figure 2.6 : Phase error estimation Minimizing Entropy

In the next section, a non parametric approach to the phase error estimation,

called the Phase-space method, is presented.
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2.3 Phase-space based autofocus

The use of the Wigner transform for SAR estimations was introduced in [2] and it

was originally used to detect and focus moving targets. This transform is also used

in [11] and [10] for focusing moving targets. More recently, [3] studied in detail

the use of both the Wigner transform and the ambiguity function of SAR data for

autofocus and target tracking in SAR. The method in [3] allows for flightpath error

compensation when the target is stationary. Conversely, if the flightpath is known,

[3] presents an algorithm that allows for estimation of target velocity.

This thesis will only focus on the autofocus algorithm presented in [3] and it shall

be referred to as the Phase space method.

The ambiguity function and the Wigner transform of the range-compressed data

D̂r (s, ω), as defined in [3], are, respectively,

A (s,Ω, s̃, T ) =

ωo+πB∫

ωo−πB

dω

S∫

−S

dsD̂r

(
s+ s+

s̃

2
, ω

)
D̂r

(
s+ s− s̃

2
, ω

)
eisΩ−i(ω−ωo)T ,

(2.16)

W (s,Ω, ω, T ) =

Ω̃∫

−Ω̃

dω̃

S∫

−S

ds̃D̂r

(
s+

s̃

2
, ω +

ω̃

2

)
D̂r

(
s− s̃

2
, ω − ω̃

2

)
eis̃Ω−iω̃T (2.17)

with Ω and T the dual variables to s and ω − ωo, respectively, in the ambiguity

function and to s̃ and ω̃ in the Wigner transform. The limit of integration, in the

Wigner transform, Ω̃ is chosen so that ω ± ω̃/2 remains in the support of D̂r, i.e.

Ω̃ = 2πB − 2 |ω − ωo|. By taking S̃ = a/ (2V ), the Wigner transform uses more than

a single sub-aperture. This is also true for the ambiguity function if S = a/ (2V ).
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Unlike the previously presented methods, the Phase space method provides a para-

metric estimation the actual perturbations to the flightpath over a small sub-aperture

a. That is, it approximates locally the flightpath over slow time by a polynomial of

degree 2. That is, the approximation is of the form

~µ (s) ' ~c0 + ~c1s+ ~c2s
2. (2.18)

where ~c0, ~c1 and ~c2 constant vector coefficients.

Additionally, even though the Wigner transform and the ambiguity functions are

four-dimensional functions they have well defines peaks when the correct parameters

are chosen, [3]. The location of these peaks can be used to obtain information about

the trajectory of the antenna. The need for a quadratic approximation of the per-

turbation comes from the clear existence of the peaks in the transforms when this

approximation is sufficiently good. However, there is not enough information in the

data to be able to estimate all the entries of the vector coefficients in Equation 2.18,

but as it is shown in [3], this is not necessary.

The peaks of the transforms can be used to estimate

• ~µ (sc) · ~mo (sc),

• ~µ′ (sc) · ~mo (sc), and

• ~µ′′ (sc) · ~mo (sc)

where sc refers to center of the sub-aperture and

~mo (s) = (~rp (s)− ~ρo) / |~rp (s)− ~ρo| . (2.19)
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The perturbations affect the image as explained in Appendix D. Under certain con-

ditions, these projections are sufficient to recover the main contributions of the per-

turbation to the focus of the images.

For a scene where there is only a single point-like target and if the perturbations to

the flightpath can be reasonably approximated by a second degree polynomial, where

reasonable will be explained later, the Wigner transform and the ambiguity function

of the data will each have one dominant peak that is used by the algorithm. However,

if multiple targets exist, there will be multiple peaks to each of the functions [3].

To solve this issue, an average of the peak locations, known as a centroid, is used in

[3] for the estimation. It should be noted that the centroid corresponds to the peak

location should there only be one target in the scene. The centroid for the Wigner

transform
(
ΩW (s) , TW (s)

)
is defined as follows

ΩW (s) =

∞∫
−∞

dΩ
∞∫
−∞

dTΩW (s,Ω, ωo, T )

∞∫
−∞

dΩ
∞∫
−∞

dTW (s,Ω, ωo, T )

, TW (s) =

∞∫
−∞

dΩ
∞∫
−∞

dTTW (s,Ω, ωo, T )

∞∫
−∞

dΩ
∞∫
−∞

dTW (s,Ω, ωo, T )

,

and the centroid for the ambiguity function is similarly defined.

Recalling from Equation (1.3) that the perturbations to the flightpath are denoted

by ~µ (s), then, the method produces

~µPS (s) =

[
ϕ0 + sV ϕ1 +

(sV )2

2
ϕ2

]
~m. (2.20)

Formally, the algorithm is presented in Algorithm 1. The algorithm can be sum-

marized as follows: Using the transformations of the data, the centroids are evaluated
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Algorithm 1 Estimate ~µ (s)

DATA:Range-compressed data D̂r (s, ω)

OUTPUT: Approximation of ~µ (s)

1. Calculate the centroids of the Wigner Transform and the Ambiguity functions

ΩW =

∞∫
−∞

dΩ
∞∫
−∞

dTΩW (0,Ω, ωo, T )

∞∫
−∞

dΩ
∞∫
−∞

dTW (0,Ω, ωo, T )

, TW =

∞∫
−∞

dΩ
∞∫
−∞

dTTW (0,Ω, ωo, T )

∞∫
−∞

dΩ
∞∫
−∞

dTW (0,Ω, ωo, T )

,

ΩA =

∞∫
−∞

dΩ
∞∫
−∞

dTΩA
(
0,Ω, a

2V
, T

)

∞∫
−∞

dΩ
∞∫
−∞

dTA
(
0,Ω, a

2V
, T

) .

2. Estimate the coefficients - V denotes platform speed

ϕ0 = −co
2
TW

ϕ1 = − λo

4πV
ΩW

ϕ2 = − λo

2πaV
ΩA.

3. Estimate the perturbation

~µPS (s) =

[
ϕ0 + sV ϕ1 +

(sV )2

2
ϕ2

]
~m (2.21)

RETURN ~µPS (s)
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for both the ambiguity function and the Wigner transform, with these centroids, the

coefficients in Equation 2.20 are calculated by the following relationships

ϕ0 = −co
2
TW

ϕ1 = − λo

4πV
ΩW

ϕ2 = − λo

2πaV
ΩA,

where V is the platform speed.

With the estimate produced by the algorithm, ~µPS (s), the travel times can be

updated, that is,

τPS (s, ~ρo) =
2

co

∣∣∣~rp(s) + ~µPS (s)− ~ρo

∣∣∣ . (2.22)

These updated travel times can then be used in the formation of images via Equation

(1.1).

In the following section, a few examples of the performance of this method are

presented.

2.3.1 Examples and difficulties

As an example of the performance of the phase-space method for a complex scene is

shown in Figure (2.7). This is a sub-scene from the one used for PGA tuned for the

size used with Gotcha parameters. Figure (2.7(b)) shows a blurred image of the same

scene. Figure (2.7(c)) shows the result of applying the Phase-space method with

induced perturbations. Since no flightpath information was available, an artificial
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one was created with induced perturbations taking the information used for (2.8) for

γ = 2

(a) Original focused image (b) Blurred image

(c) Image deblurred by Phase-space method

Figure 2.7 : Phase-space method example using Sandia National Laboratories SAR
imagery

If the perturbations are small enough, |~µ (s)| ¿ λo then the effects on the images

are negligible. However, when the magnitude of the perturbations becomes larger, i.e.

|~µ (s)| ≈ λo and the speed and acceleration bounds are violated (this happen when the
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perturbations become rougher), then the phase-space method will produce estimates

that cannot hope to capture the behavior of the perturbations. Intuitively, this is

easy to understand since the estimation of rougher or highly oscillatory functions by

means of a quadratic approximation is not very good.

For a single scatterer scene with a known platform perturbation of the form ~µ (s) ·

~m (s) = λ0 sin (γ (s− so)), the estimates rendered by the phase space method can be

seen in Figure (2.8). In figure (2.8(a)), γ = 4, in this case, the phase-space method is

not able to recover the phase error due to the fact that a second degree polynomial

is not sufficient to capture such type of perturbations. However in figure (2.8(b)),

γ = 4/3, the Phase space recover the from of the perturbation quite well. Whilst

there is a shift in the phase, that is known to have a negligible effect on the focusing

of the image.

(a) Recovered perturbation using Phase Space

Method, γ = 4

(b) Recovered perturbation using Phase Space

Method, γ = 4/3

Figure 2.8 : Phase error estimation using the phase space method
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If ~µ (s) is very rough, then it cannot be approximated by a polynomial over an

aperture of reasonable aperture needed by the Wigner transform and the ambiguity

function. That is, for the approximation to be better the apertures has to be reduced

and reduced until not enough is left for a proper estimation. In Figure (2.9) the

Fourier transform of the data in slow time is used to show the effects of a very rough

perturbation versus a smoother one for the central frequency ωo. In the next section

Figure 2.9 : Fourier transform in slow time of the data with different perturbations.

a filter will be proposed to smooth the track so that the phase space method can

adequately capture the perturbation.

2.3.2 Bounds on approximation

The interest of this section is to devise a filtering criterion what will smoothen the

track. The filtering is done by removing the high frequency components in the dual
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variable to slow time so that the phase space method can capture the lower-frequency

oscillations.

Recall from Algorithm 1 that the approximation is actually to ~µ (s) · ~m (s) which

comes out of the analysis in [3]. Since we can decompose ~µ (s) · ~m (s) in its Fourier

series, then, we look at platform perturbation of the from

~µ (s) · ~m (s) = αλ0 cos (γ (s+ so)) ,

with α ∈ [0, 1] and γ the (angular) frequency of oscillation, which includes both sine

and cosine cases.

Since the phase space method approximates the perturbations via a second degree

polynomial, it is a relevant question what is the error that such an approximation pro-

duces in the presence of high frequency perturbations. To answer that question, first

an ideal case should be considered, that is, what is the best approximating polynomial

in an L2 sense that can approximate the perturbations. The best approximations to

~µ (s) · ~m (s) can be calculated by orthogonally projecting over that space of polyno-

mial of degree up to 2. Given α, so and γ the best approximating quadratic function

is then given by

1

αλo

2V

a
p2 (s) = s2

(
180V 3

γ2a3
cos

( aγ
2V

)
+

(
30V 2

γa2
− 360V 4

γ3a4

)
sin

( aγ
2V

))
cos (γso)

+ s

(
6V

γa
cos

( aγ
2V

)
− 12V 2

γ2a2
sin

( aγ
2V

))
sin (γso)

+

((
30V 2

γ3a2
− 3

2γ

)
sin

( aγ
2V

)
− 15V

γ2a
cos

( aγ
2V

))
cos (γso) . (2.23)

It is important to notice that as γ →∞ then p2 → 0. Hence, for higher frequen-



37

cies, the residual ε~µ = ~µ · ~m− p2 ≈ ~µ · ~m. We know that the Wigner transform will

have a main peak for a single point-like target when the error is a quadratic func-

tion. However, when higher degrees appear, multiple peaks start appearing which

makes the focusing fail. Hence, we should consider the cases when a single dom-

inant peak appears in the Wigner transform. This can be done by studying the

peaks of the Fourier transform of eiε~µ/λo in s. We consider first cubic polynomials for

ε~µ. From there we can empirically observe that the peak becomes non unique when

‖ε~µ‖ / ‖p2‖ & 1. Figure (2.10) shows the magnitude of the Fourier transform of eiε~µ

for 3 different settings

‖ε~µ| ≈ 0.74 ‖p2‖

‖ε~µ| ≈ 0.89 ‖p2‖

‖ε~µ| ≈ 1.003 ‖p2‖ .

As it can be readily observed, as ‖ε~µ‖ starts being large with respect to ‖p2‖, the

magnitude of the Fourier transform of eiε~µ starts having multiple peaks of comparable

height. This means that even for a single target, it could become impossible to

correctly estimate the peak location that will effectively focus the image. Hence, the

autofocus of the phase-space method will be better provided

‖ε~µ‖ / ‖p2‖ . 1. (2.24)

Consequently, the interest at hand is to find Γ such that

‖ε~µ‖
‖p2‖ . 1
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Figure 2.10 : No single peak appears when ‖ε~µ‖ / ‖p2‖ & 1

for γ ∈ [0,Γ]. Since p2 is an orthogonal projection over the space of polynomials of

degree at most 2, then by orthogonality, ‖ε~µ‖2 = ‖~µ · ~m‖2−‖p2‖2, then this condition

can also be formulated as ‖~µ · ~m‖2 . 2 ‖p2‖2 for γ ∈ [0,Γ]. However,

−α
2λ2

o

2γ
≤ ‖~µ · ~m‖2 − α2λ2

o

2V

a
≤ α2λ2

o

2γ
(2.25)

for γ ≥ 1 and hence is bounded away from 0, a plot of this is shown in Figure (2.11(b)).

Therefore the bound for the quotient will be violated when 2 ‖p2‖2 becomes smaller

than the lower bound on ‖~µ · ~m‖2, i.e.

‖p2‖2 ≤ α2λ2
o

2

(
2V

a
− 1

2γ

)
. (2.26)

In this case, finding Γ can be formulated as a root finding problem. Since ‖p2‖2 → 0

as γ →∞and 0 ≤ α2λ2
o

2

(
2V
a
− 1

2γ

)
, then there exists one Γ such that

‖p2‖2 − α2λ2
o

2

(
2V

a
− 1

2γ

)
≤ 0 (2.27)
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for all γ ≥ Γ. The numerical simulations performed empirically suggest to use the

minimum γ where ‖p2‖2 = α2λ2
o

2

(
2V
a
− 1

2γ

)
which is again, a root finding problem.

2.3.3 Numerics for the filter

A few numerical experiments were done to find the cutoff of the frequencies that will

allow for
‖ε~µ‖
‖p2‖ 1.

The plots are as follows, (2.11(a)) shows ‖~µ · ~m− p2‖2 / ‖p2‖2 as a function of

γ for different shifts so. From it, it can be seen that for this particular setup of

parameters, any γ ≥ 5.289, violates the bound, shown by the dotted line and hence,

the filter would have to at least remove all frequencies higher than that. Figure

(2.11(b)) shows ‖~µ · ~m‖2 as a function of γ and the lower and upper bounds found in

equation 2.25 for different values of so. As it can be seen, the norm always remains

positive and bounded away from zero, which means that the polynomial has no hope

of approximating it correctly. Lastly, Figure (2.11(c)) shows ‖p2‖2 as a function of

γ for different values of so along with the lower bound on the value of ‖~µ · ~m‖2. As

it can be seen,for a sufficiently high value of γ, (2.11(c)) shows ‖p2‖2 will be smaller

than the lower bound and hence, the filter should any frequencies higher than that. It

is immediate to see that the intersection of the different curves with the lower bound

correspond to the point where the quotient condition is violated.

From these numerical results, we can design a filter that will zero out all data

from frequencies higher than the bound. In this particular case, the filter should be
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(a) ‖~µ · ~m− p2‖2 / ‖p2‖2 as a function of γ (b) ‖~µ · ~m‖2 as a function of γ

(c) ‖p2‖2 as a function of γ

Figure 2.11 : Phase error estimation using the phase space method

applied to γ ≥ 4.5.

In the next section a few numerical comparisons are presented that test all the

focusing methods for a single target scene with different perturbations.
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Chapter 3

Numerical Comparison

In this chapter a series of different scenarios are presented with varying levels of noise

both varying in amplitude and in frequency of their perturbations.

3.1 Direct comparison

The first series of plots correspond to the estimation done by the phase space method

for single frequency perturbations, single-frequency noise, under three different am-

plitudes. The induced platform perturbations are of the from

~µ · ~m (s) = αλ0 sin (γs) . (3.1)

The comparison is as follows, the real perturbation is compared against the estima-

tion provided by the Phase-space method, PGA for the full eigenvector problem, PGA

for only contiguous slow-times (original version of PGA), and the Entropy-based min-

imization. The perturbation parameters are γ = 1.33, 2, 4, 8 and α = 1, 0.1, 0.01. The

implementation of PGA in it’s two modalities, and the Entropy-based minimization,

were done by the author. As observed, the amplitude of the noise impacts signifi-

cantly the quality of the image produced regardless of the autofocus technique used.

The phase space method is initially applied without filtering to view the difficulties
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it encounters, however, once the filtering takes place the images are focused.

In the case of low frequency, γ = 1.33, Figure (3.1), the initial images are quite

good to begin with. All methods focus the image well. There are slight differences

in the estimation of PGA and the Entropy-based minimization with respect to the

real perturbation. The cause of this difference is that both PGA and the Entropy-

based minimization do not have a way to account for the linear tendencies in the

phase which just result in shifts in the image. However, as the frequency of the

perturbations increases, the linear tendency of the perturbations converges to zero.

The Phases-space method uses a good initial guess of the location of the target to

recover the linear tendencies.

For γ = 2,Figure (3.1),the same behavior of the estimates is observed, however,

the Entropy-based minimization reaches the maximum number of iterations allowed

in the current implementation and so fails to recover the perturbation very well. Once

again, the Phase-space method is the only one that recovers the linear tendencies of

the perturbation. PGA is able to produce a good estimate only in its eigenvector

formulation, while the contiguous version struggles to estimate the perturbations cor-

rectly when the amplitude is small. The Entropy-based minimization does remarkably

well for small amplitudes.

For γ = 4, Figure (3.1), the Phase-space method already has reached it’s limit

in terms of the frequencies it can estimate. The rest of the methods continue to

perform similarly to the previous case. Once again, the Entropy-based minimization
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does quite well for the smaller amplitudes.

For the last case, γ = 8, Figure (3.1), both the full eigenvector version of PGA

and the Entropy-based minimization continue to render very precise estimates of the

perturbation, specially for the smaller amplitudes. The Phase-space method is no

longer working inside it’s domain of estimation and the original PGA algorithm is

also unable of correctly estimating the perturbations.

3.2 Effects of a adding the filter

The effect of filtering the data so that the Phase-space method can estimate the

lower frequencies of the perturbations are shown in Figure (3.2). As it can be seen,

the method can perform much better than before and now render focused images in

the cases where it could not before.

3.3 Conclusions

As seen for SAR, as for any imaging method, focusing the images is crucial. The

different focusing methods presented in this thesis had never been compared, side to

side, before this work.

PGA is fast and effective but cannot focus images when there are scenes have

strong targets at the same range (resolution size). The entropy-minimization algo-

rithm is very good a capturing the perturbations but can be very slow for even not

so large apertures. It is also heavily dependent on the starting point for the opti-
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mization. Bad initial guesses lead to unfocused images. The phase-space method

provides a parametric estimation of the platform perturbations that had not been

done before and it is quite effective at estimating linear tendencies which none of the

other methods can accomplish. It can focus multiple target images regardless of their

position (within a certain imaging radius).

It should be noted that, unlike the other two methods, the phase-space method

can alternatively be used to estimate the velocity of a target [3]. This makes this

method more versatile for the usual SAR scenes that contain moving targets.

Additionally in this thesis we propose a filter to help the Phase-space method

focus images when the perturbations are outside of the original scope of its intent for

a fixed aperture.

This thesis also provides numerical examples for both simulated data and real

SAR data to illustrate the different methods and compare their performance.
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(a) Estimation for ~µ (s) · ~m (s)

(b) Focused images

Figure 3.1 : Focusing by phase space method using sinusoidal noise, γ = 1.33
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(a) Estimation for ~µ (s) · ~m (s)

(b) Focused images

Figure 3.2 : Focusing by phase space method using sinusoidal noise, γ = 2
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(a) Estimation for ~µ (s) · ~m (s)

(b) Focused images

Figure 3.3 : Focusing by phase space method using sinusoidal noise, γ = 4
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(a) Estimation for ~µ (s) · ~m (s)

(b) Focused images

Figure 3.4 : Focusing by phase space method using sinusoidal noise, γ = 8
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Figure 3.5 : Phase-space focusing with previous filtering
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Appendix A

Signals

SAR systems transmit a signal that has to be interpreted once it has been scattered
back to the receiver. Since travel times between the antenna and the targets are
essential for distance calculations, short pulses would be perfect for estimating such
times. Unfortunately, not enough power can be delivered in a short pulse, [7]. Longer
signals can deliver higher power. The most commonly used signals in SAR are linear
chirps [6]. A linear chirp is a signal of the form

f (t) = ei(−ωot+σt2)χ[− 1
2
, 1
2 ]

(
t

tc

)

= e−iωotfB (t) , (A.1)

where χ[− 1
2
, 1
2 ]

is the characteristic function of
[−1

2
, 1

2

]
, and tc determines the support

of the function, and fB (t) is called base-band waveform for a bandwidth B. The fre-
quency modulation parameter is σ and it should be strictly positive. In the frequency
domain, the signal has the from

f̂ (ω) = f̂B (ω − ωo) =

∞∫

−∞

ei(ω−ωo)t+iσt2χ[− 1
2
, 1
2 ]

(
t

tc

)
dt

= e−
i(ω−ωo)2

4σ

∞∫

−∞

χ̂ (w) ei
w(ω−ωo)

2σtc

∞∫

−∞

eiσ(t+ω−ωo
2σ )

2−i w
tc

(t+ω−ωo
2σ )dtdw

=

√
iπ

σ
e−

i(ω−ωo)2

4σ

∞∫

−∞

χ̂ (w)

2π
e

i
w(ω−ωo)

2σtc
−i w2

4σt2c dw. (A.2)

By taking

tc =
πB

σ
À 1√

σ
(A.3)

then the quadratic term in w in equation (A.2) can be neglected and hence

f̂ (ω) = f̂B (ω − ωo) ≈
√
iπ

σ
e−

i(ω−ωo)2

4σ χ[− 1
2
, 1
2 ]

(
ω − ωo

2πB

)
. (A.4)
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Hence, f̂ (ω) is supported for the frequencies in

|ν − νo| = |ω − ωo|
2π

≤ B (A.5)

with νo = ωo/ (2π), the carrier frequency. Additionally, the support of the signal
should never exceed the repetition time which restricts σ to satisfy πB/σ < ∆s.

An example of a chirp is portrayed in Figure A.1(a). To time compress the chirps,
they are matched-filtered. Match-filtering corresponds to convolving the incoming
signal with the time-reversed complex conjugate of the transmitted signal. Formally
expressed,

M [f ] (t) =

∫
f (t′ + t) f (t′)dt′, (A.6)

where f denotes the complex conjugate of f . By taking the Fourier transform of the
match-filtered signal

M̂ [f ] (ω) =

∫
M [f ] (t) eiωtdt = f̂ (ω) f̂ (ω)χ[− 1

2
, 1
2 ]

(
ω − ωo

2πB

)

=
∣∣∣f̂ (ω)

∣∣∣
2

χ[− 1
2
, 1
2 ]

(
ω − ωo

2πB

)
=

∣∣∣f̂B (ω − ωo)
∣∣∣
2

χ[− 1
2
, 1
2 ]

(
ω − ωo

2πB

)

≈ π

6

∣∣∣∣χ[− 1
2
, 1
2 ]

(
ω − ωo

2πB

)∣∣∣∣ . (A.7)

Since
∣∣∣f̂B (ω − ωo)

∣∣∣
2

≈ π
6

for ω ∈ [ωo − πB, ωo + πB], then
∣∣∣f̂B (ω − ωo)

∣∣∣
2

≈
∣∣∣f̂B (0)

∣∣∣
2

.

Therefore,

M̂ [f ] (ω) ≈
∣∣∣f̂B (0)

∣∣∣
2

, (A.8)

for ω ∈ [ωo − πB, ωo + πB], which is approximately the Fourier transform of a sinc
function. The compressed signal has now a support of O (1/B) which is much smaller
than tc. Figure A.1(b) portrays the matched-filtered version of the chirp used in
Figure A.1(a). As it can be seen, the pulse is heavily concentrated around t = 0.
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(a) Linear Chirp signal for σ = 120,
ωo = 15 and tc = 2

(b) Matched-filtered chirp
resembling a sinc function

Figure A.1 : Chirps as Linearly Frequency Modulated waveforms
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Appendix B

Modeling of the data

The data acquired by a SAR systems consists of the recorded echoes from the signal
that scatter back from the scene to the antenna on the plane. In this appendix, a
model for the data will be presented.

Since radar systems use electromagnetic waves, Maxwell’s equations are used to
describe their behavior, however, in non scattering media each Cartesian component
of the waves can be modeled by the scalar wave equation [7].

∆p (t, ~x)− 1

c2 (t, ~x)

∂2p (t, ~x)

∂t2
= −f (t) δ (~x−~rp(s)) (B.1)

where f (t) denotes the transmitted signal from the point-like antenna at position
~rp (s) and c is the wave speed. For a homogeneous medium, like air, it satisfies

1

c2 (t, ~x)
=

1

c2o
[1−R (t, ~x)] (B.2)

where co is the wave speed in air and R (t, ~x) is the reflectivity.
The solution of equation (B.1) can be decomposed into the scattered and incident

fields,

p = psc + pin.

The incident field corresponds to the waves as they would travel though a homoge-
neous medium and the scattered field is the effect of all scatterers in their path. The
scattered field can be characterized by the Lippmann-Schwinger integral equation
[7].

psc (t,~r) =

∫∫
G (t− τ,~r− ~x)R (τ, ~x)

∂2

∂τ 2
p (τ, ~x) dτd~x (B.3)

where G (t, ~x) = δ(t−|~x|/co)
4π|~x| is the causal Green’s function of the wave equation in

homogeneous media.
The scattered waves are commonly approximated by means of the Born Approx-

imation, by substituting pin for p in equation (B.3). Hence,

psc (t,~r) ≈
∫∫

G (t− τ,~r− ~x)R (τ, ~x)
∂2

∂τ 2
pin (τ, ~x) dτd~x. (B.4)
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This approximation is used when the reflectivity is either small or it has small sup-
port. An in-depth study of the Born approximation in the one-dimensional case is
found in [18], where a bound is derived for the difference between the true solu-
tion and the approximation. For a more general discussion of the use and validity
of the approximation the reader should also see [23], since it is unknown how good
this approximations is in more general settings. For the purposes of this thesis, the
approximation will be assumed to be valid.

Since the interest lies only in the scattered field its sub-indexing in expression
(B.4) will be dropped henceforth and pin (t, ~x) = f(t−|~x−~rp(s)|)

|~x−~rp(s)|
In the frequency domain, expression (B.4) can be written as

p̂ (ω,~r) =

∫
p (t,~r) eiωtdt

≈ − 1

c2o

∫
eik|~x−~r|

4π |~x−~r|
[(
ω2

o f̂ (ω)
eik|~x−~rp(s)|

4π |~x−~rp|
)
∗ R̂ (ω, ~x)

]
d~x (B.5)

≈ −ω
2
o

c2o

∫∫
Ĝ (ω, ~x−~r) Ĝ (ω − ξ, ~x−~rp(s))×

f̂ (ω − ξ) R̂ (ξ, ~x) dξd~x.

where Ĝ (ω,~z) = eik|~z|
4π|~z| , k = ω

co
, R̂ (ξ, ~x) =

∫ R (τ, ~x) eiωτdτ , and ∗ denotes a convolu-
tion in frequency,

(
f̂ (ω) Ĝ (ω,~z)

)
∗ R̂ (ω, ~x) =

∫
Ĝ (−xi,~z) f̂ (ξ) R̂ (ω − ξ, ~x) dξ. (B.6)

Now the forward model can be defined as an operator F acting on reflectivities
R (t, ~x) and mapping them to measurements of the pressure field p at ~rp.

F [R] (t,~rp (s+ t)) := ∫
ω2

of
′′ (t− 2 |~rp (s+ t)− ~x| /co)
(4πco |~rp (s+ t)− ~x|)2 R (t− |~rp (s+ t)− ~x| /co, ~x) d~x.

(B.7)

If the scene consist of a stationary point-like target, i.e. R (t,x) = δ (~x− ~ρ) then

F [R] (t,~rp (s+ t)) =
ω2

of
′′ (t− 2 |~rp (s+ t)− ~ρ)| /co)
(4πco |~rp (s+ t)− ~ρ|)2 . (B.8)
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Appendix C

Gotcha

As one of the many spotlight SAR systems available, GOTCHA is X-band persistent
surveillance system. In this regime, the aircraft flies a circular path and aims the
antenna at a target located within the projection of the circle on the imaging surface.

The desired circular flightpath is assumed to be at height H = 7.3km with radius
R = 7.1km. The plane will be traveling at a constant speed of V = 250km/h
(equivalent to 70m/s). Targets will usually be at distance L = 10km away from the
antenna platform.

For the GOTCHA system considered, the central frequency is ν0 = 9.6GHz, and
hence the central wavelength is λo = 3cm. The bandwidth is B = 622MHz with a
sampling of 424 frequencies rendering ∆ν = 1.5MHz. The signal repetition time is
∆s = 0.015s, which means that a pulse is sent every 1.05m. The expected resolution
for the case of known movement of targets and flightpath perturbations will be for
range c/B = 48cm and for cross-range λoL/a = 2.5m.

With this example in mind, a few different scales can be identified in the setup.
The next section is devoted to such identification.
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Appendix D

Analysis for Phase-space method

D.1 Single target case

Part of the analysis done in [3], done from a single point-like target, is shown here to
motivate the algorithm. The perturbations, ~µ (s), impact travel times in the following
way

2

co
|~rp(s) + ~µ (s)− ~ρ (s)| − τ (s, ~ρ (s)) =

2

co
~µ (s) · ~m (s) +O

(
|~µ (s)|2
coL

)
. (D.1)

The effect the modified travel-times have on the image can be seen from the follow-
ing approximation, up to a multiplicative constant, (denoted as ∼), of the image,
as defined in equation (1.1). Henceforth, the lack of time argument for slow-time
dependent variables implies evaluation at the center of the sub aperture.

I(ρI) ∼
ωo+πB∫

ωo−πB

dωexp

{
2iω

co

(
|~rp − ~ρ| −

∣∣∣~rp − ~ρI
∣∣∣ + ϕ0

)}

S(a)∑

si=−S(a)

exp{2iωsiV

co

[
~t · ( ~m− ~mI) + ϕ1

]
+

iωo (siV )2

co



~t′

V
· ( ~m− ~mI) +

∣∣∣P~t
∣∣∣
2

|~rp − ~ρ| −

∣∣∣PI~t
∣∣∣
2

∣∣∣~rp − ~ρI?
∣∣∣

+ ϕ2


} (D.2)

with the following phases,

ϕ0 = ~m? · ~µ,

ϕ1 = ~m · ~µ
′

V
+~t · P~µ

|~rp − ~ρ| ,

ϕ2 =
~µ′′ · ~m
V 2

+
2
(
~t + ~µ′

V

)

|~rp − ~ρ| ·
P~µ′

V

and ~ρI? =
(
ρI? , 0

)
, denotes the image peak, ~mI =

(
~rp − ~ρI

)
/
∣∣∣~rp − ~ρI

∣∣∣ and PI =

I − ~mI (
~mI)>. From equation (D.2), the image will peak when the Fresnel integral
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(here a sum) has its peak and the integral over the bandwidth also peaks, i.e. when

ϕ1 = −~t · ( ~m− ~mI) ϕ0 =
∣∣∣~rp − ~ρI

∣∣∣− |~rp − ~ρ| .

The analysis is performed under conservative bounds for the magnitude of the
perturbation, |~µ (s)|, its speed,

∣∣~µ′ (s)
∣∣, and its acceleration,

∣∣~µ′′ (s)
∣∣ are bounded.

|~µ (s)| ¿
√
λoL¿ a, S2

∣∣~µ′′(s)
∣∣¿ λoL

a
S

∣∣~µ′(s)
∣∣¿ a, S3

∣∣~µ′′′(s)
∣∣¿ λo, (D.3)

with S = a/ (2V ), but the method has been shown to focus the images fairly well
even when the bounds are not satisfied completely, particularly the bound on

∣∣~µ′′′(s)
∣∣

is known to be more flexible. However, for the purposes of this section, these bounds
will be assumed to be satisfied.

The effect the phases in equation (D.2) have on the focus of the image is seen by
linearizing about the true target location. The image peak will be shifted in range
and in cross-range respectively by

∣∣∣ ~m ·
(
~ρ− ~ρI?

)∣∣∣ = O (ϕ0) . O
(co
B

)
, (D.4)

∣∣∣∣∣∣
~t ·
P?

(
~ρ− ~ρI?

)

|~rp − ~ρ|

∣∣∣∣∣∣
= O (ϕ1) ∼ λoL

a2
(D.5)

Therefore the peak shift in range (equation (D.5)) is small, i.e. compared to the
range-resolution, but the shift in cross-range (equation (D.4)) can be large, with
respect to cross-range resolution. Additionally, since ϕ2 appears in the quadratic
part of the phase in the Fresnel integral in equation (D.2), then it only affects the
spread of the image in cross-range [3]. Since the quadratic part of the phase also
depends on the shift ~ρ− ~ρI? , the larger the shift, the more blur in the image.

D.2 Phase estimation

To focus the image, then, these phases need to be estimated and compensated. Much
of the analysis in [3] is devoted to careful derivation of conditions when peaks of the
Wigner transform and the ambiguity functions can be used to approximate the per-
turbation. The Wigner transform of the forward model in equation (B.8), evaluated
at ω = ω0, takes the from

W (s = 0,Ω, ωo, T ) ∼

∣∣∣f̂B (0)
∣∣∣
4

|~rp − ~ρ|4
sinc

(
πB

[
T + δTW

])
sinc

(
4πac0

(
Ω + δΩW

)

2λoV ωo

)
,

(D.6)
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where

δTW =
2~µ · ~m
co

,
coδΩ

W

2V ωo

= ~m · ~µ
′

V
+~t · P~µ

|~rp − ~ρ| (D.7)

The peak of this function occurs when both arguments inside the sinc functions are
zero. Let

(
ΩW , TW

)
denote the location of such a peak. Hence the phases that can

be approximated so far are,

ϕ0 (s) = −co
2
TW (s) +O

(co
B

)
, ϕ1 (s) = − λo

4πV
ΩW (s) +O

(
λo

a

)
(D.8)

Similarly, for the ambiguity function for s̃ = a/ (2V ) can be approximated as
follows

A
(
s = 0,Ω,

a

2V
, T

)
∼

∣∣∣f̂B (0)
∣∣∣
4

e−iωoδT A

|~rp − ~ρ|4
sinc

(
πB

[
T + δTA

])
sinc

(
a

(
Ω + δΩA

)

2V

)

(D.9)

where

δTA = − a
V

δΩW

ωo

,
δΩA

ωo

=
V a

co

[
2~t

|~rp − ~ρ| ·
P~µ′

V
+
~µ′′

V 2
· ~m

]
. (D.10)

This function will peak at
(
ΩA, TA

)
, and using these values, the following estimates

can be made,

ϕ1 (s) =
co
2a
TA (s) +O

( co
aB

)
, ϕ2 (s) = − λo

2πaV
ΩA (s) +O

(
λo

a2

)
. (D.11)

Since λo/a¿ co/ (aB), then the new estimate for ϕ1 coming from the ambiguity
function should not be used since it has lower resolution. Hence, the estimation of
the perturbations is given by

~µPS (s) =

[
ϕ0 + sV ϕ1 +

(sV )2

2
ϕ2

]
~m (s) (D.12)



59

Bibliography

[1] R. Bamler. A comparison of range-doppler and wavenumber domain sar
focusing algorithms. Geoscience and Remote Sensing, IEEE Transactions on,
30(4):706 –713, jul 1992.

[2] S. Barbarossa and A. Farina. A novel procedure for detecting and focusing
moving objects with sar based on the wigner-ville distribution. In Radar
Conference, 1990., Record of the IEEE 1990 International, pages 44 –50, may
1990.

[3] L Borcea, T Callaghan, and G Papanicolaou. Synthetic aperture radar imaging
with motion estimation and autofocus. Inverse Problems, 28(4):045006, 2012.

[4] W.G. Carrara, R.S. Goodman, and R.M. Majewski. Spotlight Synthetic
Aperture Radar: Signal Processing Algorithms. The Artech House Remote
Sensing Library. Artech House, 1995.

[5] Jr. Charles V. Jakowatz and Daniel E. Wahl. Eigenvector method for
maximum-likelihood estimation of phase errors in synthetic-aperture-radar
imagery. J. Opt. Soc. Am. A, 10(12):2539–2546, Dec 1993.

[6] E Chassande-Mottin and P Flandrin. On the timefrequency detection of chirps.
Applied and Computational Harmonic Analysis 6, 1999.

[7] M Cheney and B Borden. Fundamentals of Radar Imaging. CBMS-NSF
Regional Conference Series in Applied Mathematics. Society for Industrial
Mathematics, 2009.

[8] J Curlander and R McDonough. Synthetic Aperture Radar. Wiley Series in
Remote Sensing. Wiley Interscience, 1991.

[9] L J Cutrona, W E Vivian, E N Leith, and G O Hall. A high-resolution radar
combat-surveillance system. IRE Transactions on Military Electornics, 1961.

[10] Yu Ding and David C. Munson. Time-frequency methods in sar imaging of
moving targets. In Acoustics, Speech, and Signal Processing (ICASSP), 2002
IEEE International Conference on, volume 3, pages III–2881 –III–2884, may
2002.



60

[11] Yu Ding, Ning Xue, and Jr. Munson, D.C. An analysis of time-frequency
methods in sar imaging of moving targets. In Sensor Array and Multichannel
Signal Processing Workshop. 2000. Proceedings of the 2000 IEEE, pages
221–225, 2000.

[12] P Eichel, D Ghiglia, and C Jakowatz. A new phase correction method for
synthetic aperture radar. Proceedings of the Digital Signal Processing
Workshop at Stanford Sierra Lodge, 1988.

[13] P Eichel, D Ghiglia, and C Jakowatz. Speckle processing method for
synthetic-aperture-radar phase correction. Opticas Letters, 1989.

[14] P.H. Eichel, D.C. Ghiglia, C.V. Jakowatz, and D.E. Wahl. Phase gradient
autofocus for sar phase correction: Explanation and demonstration of
algorithmic steps. In Digital Signal Processing workshop, 1992. The, pages
6.6.1 –6.6.2, sep 1992.

[15] G. Franceschetti and G. Schirinzi. A sar processor based on two-dimensional fft
codes. Aerospace and Electronic Systems, IEEE Transactions on, 26(2):356
–366, mar 1990.

[16] T. J. Kragh. Monotonic iterative algorithm for minimum-entropy autofocus. In
Adaptive Sensor Array Processing (ASAP) Workshop, 2006.
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