


ABSTRACT

Experimental Free Energy Landscape Reconstruction of DNA Unstacking Using

Crooks Fluctuation Theorem

by

Eric W. Frey

Nonequilibrium work theorems, such as the Jarzynski equality and the Crooks

fluctuation theorem, allow one to use nonequilibrium measurements to determine

equilibrium free energies. For example, it has been demonstrated that the Crooks

fluctuation theorem can be used to determine RNA folding energies. We used single-

molecule manipulation with an atomic force microscope to measure the work done on

poly(dA) as it was stretched and relaxed. This single-stranded nucleic acid exhibits

unique base-stacking transitions in its force-extension curve due to the strong interac-

tions among A bases, as well as multiple pathways. Here we showed that free energy

curves can be determined by using the Crooks fluctuation theorem. The nonequilib-

rium work theorem can be used to determine free energy curves even when there are

multiple pathways.



Acknowledgments

I thank my thesis committee members Prof. Ching-Hwa Kiang, Prof. Michael W.

Deem, and Prof. Peter J. Nordlander for their help and guidance. I also acknowl-

edge the outstanding work of Wei-Hung (Harry) Chen in poly(dA) data collection,

and Ashton Gooding’s collaboration in reviewing DNA single-molecule manipulation

background literature. I am grateful to my friend and colleague Sitara Wijeratne

for helpful discussions. This research was funded by a training fellowship from the

Alliance for NanoHealth, Houston, Texas, and the Keck Center of the Gulf Coast

Consortia, on the Nanobiology Interdisciplinary Graduate Training Program, Na-

tional Institute of Biomedical Imaging and Bioengineering (NIBIB) T32EB009379,

PI - Jennifer L. West.



Contents

Abstract ii

Acknowledgments iii

List of Figures v

1 Background and Motivation: Understanding the Physics

of DNA Using Nanoscale Single-Molecule Manipulation 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Single-Molecule Manipulation Experiments . . . . . . . . . . . . . . . 2

1.3 Polymer Physics Models of DNA . . . . . . . . . . . . . . . . . . . . 6

1.4 The Overstretching Transitions and Force-Induced Melting . . . . . . 8

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Using the Crooks fluctuation Theorem to Determine the

Free Energy Profile of Overstretching Single-Stranded

DNA through Multiple Pathways 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Bibliography 22



Figures

1.1 (a) Hierarchical organization of DNA packaged into a chromosome.

The nucleosomes are formed by histones which bend DNA into small

loops. From [1]. (b) Structure of the nucleosome. A central octamer

of histone proteins wraps two superhelical turns of the DNA double

helix by hydrogen bonds and electrostatic interactions. From [2]. . . 3

1.2 Illustrations of single-molecule manipulation techniques. (a) AFM.

The molecule is held by the tip and the substrate surface. The force

on the attached molecule is determined based on the displacement of

the cantilever. From [3]. (b) Optical tweezers. One end of a DNA

molecule is attached to a bead trapped by a laser beam, while the

other end is attached to a DNA-virus capsid complex on a second

bead, held by a micropipette tip. From [4]. (c) Magnetic tweezers.

Force is exerted on the molecule by an attached super-paramagnetic

bead in a magnetic field. The molecule can be twisted as well as

stretched by the applied field. Adapted from [5]. . . . . . . . . . . . 4

1.3 The polymer physics models that describe DNA. (a) Illustration of

the FJC and WLC models. (b) Force-extension behavior of a single

dsDNA molecule. dsDNA can be described accurately by the WLC

model (solid curve), but not the FJC model (dashed curve). Adapted

from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



vi

1.4 Force-induced transitions of DNA. (a) Force-extension data showing

stretching, melting, and overstretching of a λ-DNA. The data are fit

to extensible WLC and FJC models. From [7]. (b) Force-extension

pathways for poly(dA) compared to dsDNA and other ssDNA. From

[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 AFM measurements. (a) Schematic representation of poly(dA)

pulled by AFM. λ(t) is the position of the substrate relative to the

cantilever equilibrium position, and it is moved at speed ν. D(t) is

cantilever displacement, and z(t) is molecular end-to-end extension.

(b) FECs for pulling in the forward (red) and reverse (blue)

directions at pulling speed ν = 40 nm/s. (c) FECs for ν = 250 nm/s.

Curves shown were averaged for display purposes. . . . . . . . . . . 14

2.2 Work distributions. (a) Distributions PF (Wz)zA→zM and

PR(−Wz)zM→zA for intermediate extensions zM spanning the

overstretch transition, smoothed with a Gaussian kernel and

visualized as two intersecting surfaces labeled at one end by a solid

and dashed curve, respectively. R distributions were obtained from

the data by deconvolution. (b) Representative unsmoothed F (solid)

and R (dashed) distributions from (a). Circles indicate where F and

R pairs cross, which determines our free energy estimate using the

CFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



vii

2.3 Free energy profile reconstruction. (a) Profiles estimated using the

CFT and our deconvolution method GCFT , using the JE and F (R)

direction data GF
JE (GR

JE), and by taking the average work in the F

direction ⟨W F
z ⟩ and R direction ⟨WR

z ⟩. Inset: the difference between

each estimate Gest and the average of low-speed pulling JE estimates,

A = (GF
JE +GR

JE)/2. The yellow band represents ± the bootstrap

error in A. Results shown are for low-speed (ν = 40 nm/s), with

selected high-speed (ν = 250 nm/s) results in brown. (b) Derivative

of free energy profile estimates, and the average force in each

direction ⟨FF ⟩ and ⟨FR⟩. Inset: results from high-speed pulling,

compared to GCFT from low-speed pulling (solid gray). . . . . . . . . 20



1

Chapter 1

Background and Motivation: Understanding the

Physics of DNA Using Nanoscale Single-Molecule

Manipulation

1.1 Introduction

DNA is the carrier of genetic information and is involved in biomolecular processes

such as transcription and replication. Many of these processes are governed by the

mechanics and thermodynamics of bending, stretching, twisting, and unzipping the

double helix [8, 9, 10, 11, 12, 13]. Double-stranded DNA (dsDNA) is a semi-flexible

polymer, with its base-stacking architecture and negative charges along its phosphate

backbone. In physiological conditions, thermal fluctuations do not bend it signifi-

cantly on length scales below 50 nm, which is equivalent to 150 base pairs (bp) [14].

The 10 µm-long DNA of a viral genome can be packed inside a capsid of 50 nm

in diameter [4, 15, 16], and in eukaryotic cells, histones bend DNA into loops of 10

nm in diameter. The latter serves as the first step in the hierarchical packaging of

the genome in eukaryotes (Fig. 1.1), and it regulates gene expression by obstructing

access to base pairs [1]. Histones, helicases, topoisomerases, and RNA and DNA

polymerases are examples of proteins that generate or relieve tension and torque in

DNA to enable its biochemical functions [17, 12, 18, 19, 20]. With advances in single-

molecule techniques, it has been possible to examine the physics of DNA directly.

By providing control and measurement of force of a single molecule, these techniques
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have revealed a variety of DNA conformations and much of DNA’s complex behavior.

1.2 Single-Molecule Manipulation Experiments

Single-molecule manipulation techniques using atomic force microscopy (AFM), opti-

cal tweezers, and magnetic tweezers are illustrated in Fig. 1.2. These techniques have

been used to manipulate a variety of biological molecules. In each of these methods,

a single DNA molecule is attached between a substrate and a force probe, either an

AFM tip or a micron-sized bead, in an aqueous solution. The change in molecular

end-to-end extension is determined from the change in probe and substrate positions.

The force on the molecule is determined from displacement of the probe relative to

its equilibrium position. Nonspecific attachment, typically used in AFM, is achieved

by adsorption of DNA to the substrate surface or the probe surface. Specific attach-

ment, employed by optical and magnetic tweezers, is achieved by functionalization of

probe and substrate surfaces. These modifications exploit the high affinity of binding

among ligand-receptor, antibody-antigen pairs and DNA hybridization. Other tech-

niques elongate DNA by confining the molecule within micro or nano-sized obstacles.

Such techniques include driving DNA electrophoretically through microlithographic

arrays [21], nanochannels [22, 23], and nanopores [24].

In AFM (Fig. 1.2a), the force probe is an AFM tip attached to a cantilever, and the

solid substrate surface is mounted on a piezoelectric scanner. Moving the substrate

toward the AFM tip allows nonspecific or specific molecular attachment between the

substrate and cantilever. When the molecule is attached to the tip and the sub-

strate, moving the substrate away from the cantilever produces force on the attached

molecule, bending the cantilever. The force exerted on the molecule is determined
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Figure 1.1 : (a) Hierarchical organization of DNA packaged into a chromosome. The
nucleosomes are formed by histones which bend DNA into small loops. From [1].
(b) Structure of the nucleosome. A central octamer of histone proteins wraps two
superhelical turns of the DNA double helix by hydrogen bonds and electrostatic in-
teractions. From [2].
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Figure 1.2 : Illustrations of single-molecule manipulation techniques. (a) AFM. The
molecule is held by the tip and the substrate surface. The force on the attached
molecule is determined based on the displacement of the cantilever. From [3]. (b)
Optical tweezers. One end of a DNA molecule is attached to a bead trapped by a laser
beam, while the other end is attached to a DNA-virus capsid complex on a second
bead, held by a micropipette tip. From [4]. (c) Magnetic tweezers. Force is exerted
on the molecule by an attached super-paramagnetic bead in a magnetic field. The
molecule can be twisted as well as stretched by the applied field. Adapted from [5].
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by Hooke’s law, F = kD, where k is the cantilever’s spring constant and D is the

cantilever displacement from its equilibrium position. The displacement is detected

by the deflection of the laser beam bouncing off the back of the cantilever. Using

the equipartition theorem, the spring constant is determined using 1
2
kBT = 1

2
k⟨D2⟩,

where kB is Boltzmann’s constant and T is temperature [25]. AFM cantilevers used

for single-molecule manipulation typically have a spring constant k = 10 pN/nm or

higher. This results in unloaded cantilever fluctuations of at least 5 pN at room tem-

perature, which sets the limit of the noise level in the force on an attached molecule

measurable by AFM. AFM is able to measure high forces up to a few nanoNewtons,

the limit usually being set by the strength of the attachment [26].

In a typical optical tweezers setup (Fig. 1.2b), the force probe is a micrometer-

sized dielectric bead captured in an optical trap. The substrate may be the side of a

translatable fluid chamber, or a second bead held by micropipette or a second optical

trap [17, 11, 19]. The optical trap consists of a tightly-focused laser, which exerts a

three-dimensional restoring force on a dielectric bead trapped near the laser focus.

To minimize photodamage to the trapped biomolecules, near-infrared wavelengths

are used [27]. The displacement of the bead from the trap center can be measured by

video tracking via an optical microscope. For small displacements of the bead, the

force is determined using Hooke’s law, and the trap stiffness using the equipartition

theorem, as in the case of AFM. Optical traps typically have spring constants ranging

from 0.005–1 pN/nm, which is softer than the AFM cantilevers. The low noise level

allows measurement of forces on the molecule as low as 0.1 pN. Optical tweezers

are generally used to probe forces less than 100 pN, where the ligand-receptor or

antibody-antigen pairs used to attach the DNA unbind [28].

Magnetic tweezers (Fig. 1.2c) are similar to optical tweezers, except that the
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force probe consists of a super-paramagnetic bead in an applied magnetic field. The

force on the bead is proportional to the gradient of the square of the magnetic field.

In addition, a torque is applied to the bead due to its small magnetic polarization

anisotropy, which tends to align the bead with the applied magnetic field. Thus, by

rotating the applied field, the attached molecule can be twisted as well as stretched.

Magnetic tweezers have miniscule stiffness as low as 10−6 pN/nm, allowing them to

probe forces as low as 10−3 pN. Like optical tweezers, they can probe up to 100 pN

until the DNA handles break [28, 29, 30].

1.3 Polymer Physics Models of DNA

Single-molecule manipulation experiments measure the force-extension curve of DNA,

and the data are fitted to polymer physics models to determine parameters that de-

fine its mechanical properties (Fig. 1.3). In solution, DNA adopts a random coil

conformation which minimizes free energy. Extending the molecule imposes a con-

straint limiting the number of accessible conformations, thus the work done on the

molecule is mainly used to offset the reduced entropy. For dsDNA, at forces less than

10 pN the force-extension curve is dominated by this entropic elasticity. At higher

forces, dsDNA begins to exceed its contour length and, consequently, its double-helix

structure is disrupted. The polymer elasticity models which best describe the force-

extension curves of single-stranded DNA (ssDNA) and dsDNA are the freely-jointed

chain (FJC) and worm-like chain (WLC) models, respectively.

In the FJC model, the polymer consists of a chain of freely rotating segments of

characteristic Kuhn length. The extensible FJC assumes the polymer is stretchable,
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dsDNA can be described accurately by the WLC model (solid curve), but not the
FJC model (dashed curve). Adapted from [6].
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and the force is related to extension z by [28, 31]

z = bss

[
coth(2βPssF )− 1

2βPssF

] [
1 +

F

Kss

]
(1.1)

where Pss, bss, andKss are the persistence length, contour length, and stretch modulus

of ssDNA, respectively, and β = 1/kBT . The persistence length is a measure of

bending stiffness. The Kss accounts for the extensibility of the molecule. For ssDNA,

Pss = 0.75 nm and Kss = 800 pN [28, 32, 33, 7].

The WLC models a polymer as a flexible rod characterized by a bending stiffness.

In an extensible WLC model, force can be related to extension by [34, 14, 31]

z = bds

[
1− 1√

4βPdsF
+

F

Kds

]
(1.2)

where Pds, bds, and Kds are the persistence length, contour length, and elastic stretch

modulus of dsDNA, respectively. For dsDNA, Pds = 50 nm and Kds = 1200 pN

[28, 32, 33, 7].

1.4 The Overstretching Transitions and Force-Induced Melt-

ing

Fig. 1.4a is a typical force-extension curve of dsDNA. At low forces, the curve can

be fitted to the WLC model [34, 14, 31, 7]. When the force reaches 65 pN, the force-

extension curve shows a plateau, indicating a cooperative transition of B-DNA to

S-DNA. At forces around 150 pN, dsDNA melts into ssDNA [26, 11, 32, 35, 36, 7],

where the force-extension curve is best described by the extensible FJC model (Eq.

1.1) with a persistence length and stretch modulus consistent with ssDNA [28, 32, 33].

Another example is poly(dA) (ssDNA composed only of adenine bases), where distinct

plateaus and multiple force-extension pathways have been observed [37, 3]. One
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Figure 1.4 : Force-induced transitions of DNA. (a) Force-extension data showing
stretching, melting, and overstretching of a λ-DNA. The data are fit to extensible
WLC and FJC models. From [7]. (b) Force-extension pathways for poly(dA) com-
pared to dsDNA and other ssDNA. From [3].

poly(dA) pathway is similar to that of random-sequence ssDNA, whereas the other

pathway has an additional, energetically favored transition (Fig. 1.4b). The multiple

pathways suggest that poly(dA) has two conformational states when stretched almost

twice its contour length.

Pulling single DNA molecules has been found to unzip as well as stretch DNA.

Unzipping occurs when the secondary structure, i.e. the double helix of dsDNA

is disrupted, resulting in unpairing of the bases. The dynamics of unzipping are

sequence-dependent, as evidenced by higher observed forces in GC-rich regions [38]

and good reproducibility for unzipping/rezipping molecules of the same sequence
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[39, 40].

1.5 Conclusions

The active processes of life, including the packaging, recombination, transcription,

and replication of the information stored in DNA, typically involve the deformation

of DNA from its equilibrium structures such as bending, stretching, twisting, and

unzipping of the double helix. Single-molecule manipulation techniques have made it

possible to control DNA conformation and simultaneously detect the induced changes,

revealing a rich variety of mechanically-induced conformational changes and thermo-

dynamic states. These single-molecule techniques helped us to reveal the physics of

DNA and the processes involved in the passing on of the genetic code.
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Chapter 2

Using the Crooks fluctuation Theorem to

Determine the Free Energy Profile of

Overstretching Single-Stranded DNA through

Multiple Pathways

2.1 Introduction

Advances in statistical physics, namely the Jarzynski equality (JE) [41] and the

Crooks fluctuation theorem (CFT) [42], have made it possible to obtain equilibrium

information from nonequilibrium experiments. These equations relate the fluctua-

tions in work done on a system repeatedly driven from equilibrium to the free energy

difference between equilibrium states. Meanwhile, experimental techniques such as

atomic force microscopy (AFM) and optical tweezers have enabled control and mea-

surement of the force on a single molecule as it is stretched or unfolded, a process

which typically drives the system out of equilibrium. The challenge of applying the

JE and CFT to single experiments in order to recover free energies has become an

area of great interest [43, 44].

One remarkable property of the JE is that it can be used to determine the equi-

librium free energy profile of a molecule, G(z) as a function of end-to-end extension

z, without waiting for equilibration at each step along z [45, 44]. Instead, G(z) is

determined by repeated, nonequilibrium work measurements using a predetermined

protocol, e.g. moving an AFM cantilever or optical trap from position λA → λB
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at constant velocity. In some cases, this can be done with a modest number of

repetitions, and with fast protocols which drive the molecule far from equilibrium

[46, 47, 44]. One might expect the same to be true of the CFT, given its close

relationship to the JE [48].

For a repeated thermodynamic process carried out in forward (F ) and reverse (R)

directions, the CFT predicts a relationship between the work distributions P (W ) and

the change in free energy:

PF (W )

PR(−W )
= exp(β[W −∆Gλ]) (2.1)

where β = 1/kBT , kB is Boltzmann’s constant and T is temperature. Here, the

system starts in equilibrium for each repetition of the process, which is allowed to

drive the system arbitrarily far from equilibrium. The process is characterized by

control parameter λ which is varied by λA → λB in the F direction, and the time-

reversed process λB → λA in the R direction. ∆Gλ is the free energy difference

between equilibrium states at λA and λB. In order to reconstruct the free energy

profile, free energy differences must be determined across all intermediate positions

λM , where λA < λM < λB. This ostensibly requires many sets of experiments in order

to measure work distributions corresponding to λM → λB or λM → λA, where the

molecule must be allowed to equilibrate at every λM before pulling. Thus it seems

that the CFT would be more cumbersome in practice than the JE.

Here we derive a deconvolution approach to construct G(z) from nonequilibrium

single-molecule measurements using the CFT, without waiting for equilibration at

intermediate positions. The basis of our approach is to relate the measured work

distributions for pulling from the end positions, to the unknown work distributions

for pulling from intermediate positions, by convolution. The work distributions from

all positions are then related to free energy differences using the CFT. We also show
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how to determine free energy along z, even though Eq. (2.1) is written in terms

of λ, and z is not directly controlled in single-molecule experiments [Fig. 2.1(a)].

Furthermore, we show that both the CFT and JE pick out the equilibrium pathway

from nonequilibrium data involving multiple pathways.

2.2 Experimental Methods

We demonstrate our approach by studying the stretching and relaxation of poly(dA)

using AFM. Sample preparation and data collection was as previously described [3].

A silicon nitride AFM tip (Bruker) with cantilever spring constant k = 0.04 N/m

was used to pick up a single molecule [7, 37, 32, 26], which was repeatedly stretched

(F process) or relaxed (R process) by changing the position λ of the piezo-controlled

substrate stage at constant velocity ν [Fig. 2.1(a)]. We monitored cantilever displace-

ment D from its equilibrium position to measure the spring-like restoring force on

the molecule F = kD, and the extension z = λ−D, to obtain force-extension curves

[FECs, Fig. 2.1(b,c)]. After stretching or relaxing, the system was kept at fixed λ to

allow equilibration, which at high extensions was characterized by a sudden drop in

force [3].

A total of 110 FECs were measured at two pulling rates (ν = 40 and 250 nm/s). At

forces above 114 pN, an overstretching transition is observed with multiple pathways

[37, 3], which defines our region of interest. To remove instrument drift, FECs were

aligned in the reversible regions of the curves. The z-axis was normalized assuming

poly(dA) is fully stretched at 600 pN with an interphosphate distance of 0.7 nm

[37, 3]. The FECs in Fig. 2.1(b,c) show the expected behavior, including a low-force,

reversible pathway and a high-force, irreversible pathway, with occasional sudden

transitions from the higher to lower pathway.
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shown were averaged for display purposes.
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2.3 Results and Discussion

When applying the CFT to single-molecule experiments, it is important to realize

that the work in Eq. (2.1) is W =
∫
Fdλ, i.e. the work done on the entire molecule

+ AFM cantilever system [49]. Consequently, the free energy in Eq. (2.1) is the

reversible work done on this combined system, in terms of λ. In order to derive a

relation similar to Eq. (2.1) in terms of G(z), we start with the Crooks path ensemble

equation, from which both the JE and CFT can be derived [48]:

⟨F⟩F = ⟨F̂exp(−β[W +∆Gλ])⟩R. (2.2)

This equation relates work and free energy for the same repeated processes of λ

described above, for the CFT. The brackets ⟨...⟩F and ⟨...⟩R represent averages of

the paths taken by the system during the F process evaluated over forward paths

[x], and the time-reversed process R evaluated over reverse paths [x̂], respectively. F

represents an arbitrary functional of the path, with time-reversal F̂ , where F [x] =

F̂ [x̂]. Consistent with our above notation and following the convention of Ref. [48],

the “delta” is defined in terms of the forward process, i.e. ∆Gλ ≡ GλB
−GλA

.

Let us assume that at the beginning (t = 0) and end (t = τ) of the process, the

system has a well-defined z. That is, for the F process z(0) = zA and z(τ) = zB;

for the R process z(0) = zB and z(τ) = zA. This assumption does not preclude

nonequilibrium behavior, and it is satisfied by (i) waiting for the system to equili-

brate after each pulling process, which is already required when using the JE or CFT

to ensure the next measurement begins in equilibrium; and (ii) having a tight dis-

tribution of equilibrium z at the ends of the process, which is a good approximation

in our experiments. It follows that the reversible work for switching the molecule +

cantilever system from λA → λB is equal to the reversible work for switching the
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molecule from zA → zB, plus the reversible work for switching the cantilever from

(zA, λA) → (zB, λB). That is,

∆Gλ = ∆Gz + V (zB, λB)− V (zA, λA) (2.3)

where V (z, λ) is the energy stored in the cantilever, and ∆Gz is the reversible work for

switching the bare molecule between equilibrium states at extensions zA and zB. The

work can be written as W = Wz + V [z(τ), λ(τ)]− V [z(0), λ(0)], where Wz ≡
∫ τ

0
Fdz

is the “transferred” work done on the molecule [50, 49]. Plugging Eq. (2.3) and this

expression for work into Eq. (2.2), and noting that inside the brackets ⟨...⟩R we have

λ(0) = λB, z(0) = zB, λ(τ) = λA, and z(τ) = zA, gives

⟨F⟩F = ⟨F̂exp(−βWz[x̂] + ∆Gz)⟩R. (2.4)

For clarity in the next step, we have written the work explicitly as a functional

evaluated over time-reversed paths Wz[x̂], which is implied by its appearance within

the time-reversed path average ⟨...⟩R. Choosing F = δ(Wz − Wz[x]), we have F̂ =

δ(Wz +Wz[x̂]), since work is odd under time-reversal. Plugging this choice into Eq.

(2.4) gives

PF (Wz) = PR(−Wz)exp(β[Wz −∆Gz])

PF (Wz)

PR(−Wz)
= exp(β[Wz −∆Gz]). (2.5)

Here PF (Wz) represents the probability of measuring the amount of work Wz during

the F process, and PR(−Wz) is the probability of measuring the negative of that

amount of work during the R process. This is just another version of the CFT, which

is applicable to single-molecule experiments in that it derives from averages of the

molecule + cantilever system for a repeated process in λ, and relates those averages

to a quantity of interest, ∆Gz. ∆Gz can be determined from the data using the CFT
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prediction that the F and R distributions cross at work values equal to the free energy

difference [51]. This can be seen in Eq. (2.5) by setting Wz = ∆Gz, which implies

the distributions on the left side are equal.

In order to determine free energy differences at intermediate positions and thereby

reconstruct G(z) using the CFT, we assume work distributions can be related by

convolution:

PF (Wz)zA→zB = PF (Wz)zA→zM ⋆ PF (Wz)zM→zB

PR(−Wz)zB→zA = PR(−Wz)zB→zM ⋆ PR(−Wz)zM→zA (2.6)

where ⋆ indicates convolution, and the protocol from which each distribution derives

is written in subscripts, which we write in terms of z to emphasize that the system

starts and ends at well-defined z. Because the system was allowed to equilibrate at zA

and zB before pulling, in each convolution relation above two of the three distributions

were measured. The unknown distribution was deconvolved from Eq. (2.6) using the

discrete convolution theorem [52]. Since deconvolution is sensitive to input noise,

some of the deconvolved distributions oscillated wildly or had large negative values.

In these cases the input noise prohibited an accurate estimate of the distributions,

and they were excluded from further analysis.

Pairing the deconvolved R distributions zM → zA with measured F distributions

zA → zM and using Eq. (2.5) gives ∆Gz = GzM − GzA. Fig. 2.2 illustrates this ap-

proach. As expected, at increasing extensions the distributions move to the right, and

the F distributions separate into bumps due to multiple pathways. An analogous pro-

cedure of pairing deconvolved F with measured R distributions was also performed.

The free energy differences estimated from both procedures were combined to obtain

GCFT , a reconstruction of G(z) using the CFT [Fig. 2.3(a)].

To check the accuracy of our approach, we used the same data to reconstruct



18

0.62

0.63

0.64

0.65

0.66

3

4

5

0.00

0.05

0.10

0.15

0.20

 

 

P
ro

b
a

b
il

it
y

Work (kcal/mol/base)

Ex
te

n
si

o
n

 (
n

m
/b

as
e
)

0.00

0.20

 

0.15

0.10

0.05

(a)

1 2 3 4 5
Work (kcal/mol/base)

0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

Forward
Reverse
0.54 nm
0.58 nm
0.62 nm
0.66 nm
0.67 nm

(b)

Figure 2.2 : Work distributions. (a) Distributions PF (Wz)zA→zM and PR(−Wz)zM→zA

for intermediate extensions zM spanning the overstretch transition, smoothed with a
Gaussian kernel and visualized as two intersecting surfaces labeled at one end by a
solid and dashed curve, respectively. R distributions were obtained from the data by
deconvolution. (b) Representative unsmoothed F (solid) and R (dashed) distributions
from (a). Circles indicate where F and R pairs cross, which determines our free energy
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G(z) using the JE. Using a form of the JE applicable to single-molecule experiments

[53, 50], the free energy profile was estimated as previously described [45, 47]. Because

data was collected in both F and R directions, the JE affords two estimates: GF
JE

and GR
JE. Curves were shifted to zero at low extension for comparison. The error

determined by bootstrap analysis (Nboot = 103 iterations) was 0.5(1)% and 0.3(2)%,

respectively, across the overstretching transition. In recent years, the JE has been

applied to data from single-molecule experiments to construct free energy profiles for

titin I27 domain unfolding [45, 47], membrane protein unfolding [54], the unfolding of

DNA hairpins [44] and RNA hairpins to within ± 1
2
kBT [55]. Figure 2.3(a) shows that

our deconvolution approach agrees with the JE. At higher pulling velocity, however,

the molecule rarely followed the reversible pathway, causing GF
JE to overestimate the

profile due to the finite number of measurements. As expected, the average work

in the F direction ⟨W F
z ⟩ overestimates G(z) due to the contribution of irreversible

trajectories following the high-force pathway, while ⟨WR
z ⟩ tends to underestimate it.

Taking the derivative d/dz of free energy recovers the reversible FEC. Figure 2.3(b)

shows derivatives of G(z) estimates obtained by taking the analytical derivative of

fitted smoothing splines. The average force measured in the F direction ⟨FF ⟩ deviates

from the reversible curve, due to the presence of nonequilibrium pathways which shift

the average force upward. The derivatives of our G(z) estimates, on the other hand,

exhibit the plateau characteristic of the reversible pathway. This demonstrates that

both the CFT and JE picked out the equilibrium pathway from nonequilibrium data

involving multiple pathways.

The utility of the CFT and JE requires a sufficient number N of repeated mea-

surements. In the case of the JE estimator, the problem of its convergence is basically

the problem of sampling the rare paths in the tail of the work distribution [55]. For
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this reason, the JE estimator is generally expected to converge well for nano-sized

systems and small dissipated work ∼ 1 kBT [41, 55]. However, here the work dis-

tribution had distinct peaks due to multiple pathways. The reversible work did not

occur in the tail of a Gaussian, but at the lower of these peaks. This non-Gaussian

nature of poly(dA) overstretching made the reversible pathway observable in an ex-

perimentally reachable N , for a system 1 µm long with dissipated work ∼ 1700 kBT .

The close agreement between GF
JE and GR

JE (Fig. 2.3) for ν = 40 nm/s indicates good

convergence after 19 stretching and 15 relaxing pulls. For comparison, for titin I27

domain unfolding it was found that at ν = 40 nm/s, GF
JE converged to within 10

percent in fewer than 30 pulls [47]. We also observed that the less-frequent, low-work

FECs in the F direction look like typical R-direction FECs. According to a useful

heuristic derived by Jarzynski [56], this is an indication that N was large enough to

sample the equilibrium pathway in both directions.

2.4 Conclusions

Previous studies have derived relations from the Crooks path ensemble equation to

determine the free energy profile of a composite system (molecule + force probe) [57].

Here we determined G(z) by repeating the same pulling protocol which is sufficient

for using the JE, without waiting for equilibration at intermediate positions. We also

showed that when distinct pathways are present, as in the case of poly(dA) pulling,

the CFT and JE pick out the equilibrium pathway.
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