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Introduction  

Metachromatic leukodystrophy (MLD; OMIM 250100) is an inherited lysosomal disorder, 

caused by recessive mutations in ARSA, located on chromosome 22q13.33 and encoding 

arylsulfatase A (ASA). The estimated birth prevalence of MLD is 1.4-1.8 per 100.000.1 ASA is 

essential for sulfatide metabolism through the hydrolysis of the 3-O ester bond of galactosyl 

and lactosyl sulfatides. Deficiency of ASA results in accumulation of undegraded sulfatides in 

the lysosomes and membranes of all cell types, especially in myelinating cells, 

oligodendrocytes and Schwann cells.2 This results in progressive demyelination of the central 

and peripheral nervous system (CNS and PNS). The disease is classified into a late-infantile, 

juvenile and adult onset type, based on the age of onset of presenting symptoms.  

 

Genetics  

More than 150 ARSA mutations have been described to date.3 The characterized mutations 

are divided into two groups: 0 alleles, which are associated with extreme low enzyme activity, 

and R alleles which have detectable residual activity.1 The following mutations are the most 

common ones in Europe: c.465+1G>A (p.?) (0 allele and commonly found in the late-infantile 

type), c.542T>G (p.Ile181Ser) and c.1283C>T (p.Pro428Leu) (R allele, common adult 

variant).2 The c.827C>T (p.Thr276Met) variant is frequently associated with the late-infantile 

type. Pseudodeficiency alleles are the result of the c.1055A>G, p.(Asn352Ser) (traditionally 

named c.1049A>G)) and the c.*96A>G variant and result in 10-15% of normal enzyme 

activity, which is sufficient to hydrolyze sulfatides and does not cause disease symptoms, 

even in a homozygous state.4  

The prosaposin gene (PSAP) is an activator protein of ASA, and mutations in this gene, 

though rare, also lead to MLD.5 Multiple sulfatase deficiency (MSD) is characterized by 

deficiency of all sulfatase activities, caused by a mutation in the sulfatase modifying factor 1 

(SUMF1) gene, that encodes a protein involved in the post translational modification of 
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sulfatases.6 The phenotype of MSD is a combination of the different sulfatase defects. The 

neurodegenerative course of the disease is similar to MLD. In addition, hepatosplenomegaly, 

short stature, corneal clouding, ichthyosis and skeletal changes are common.7 

Even between patients sharing the same genotype, there is considerable clinical variability. 

Still, the amount of residual ASA does correlate with the subtype; homozygosity for 0 alleles 

is mainly prevalent in the late-infantile type, whereas compound heterozygosity for 0 and R 

alleles usually causes the juvenile type, and patients with the adult type are mostly carrying 

two R alleles.1 The involvement of the peripheral nervous system (PNS) varies depending on 

the genotype. In patients carrying at least one 0 allele (coinciding with rapid disease 

progression), the PNS is likely to be involved already at diagnosis, whereas in the adult type 

PNS involvement occurs late and is mild.1 Cesani et al described the genotype-phenotype 

correlation in 432 patients that were published in the international literature up to 2015. They 

found the late-infantile form to be the most common disease variant (around 48%), followed 

by the juvenile (23%) and the adult (22%).2 In our Dutch patient cohort however, the juvenile 

form is most prevalent (accounting for 61% of diagnosed cases between 2008 and 2017), 

followed by the late infantile (23%) and adult form (16%). 

 

Pathophysiology of MLD 

Sulfatide (3-O-sulfogalactosylceramide) is the most abundant sulfoglycolipid (Figure 1).5 

Sulfoglycolipids form a considerable fraction of glycolipids. These glycosphingolipids form an 

abundant component of cellular membranes in all eukaryotic cells.5 Sulfatide is degraded in 

lysosomes, after a sphingolipid activator protein, saposin B, has extracted it from membranes 

to make it accessible for arylsulfatase A, which then hydrolyzes the sulfate group.5 In the 

nervous system, sulfatides are mostly present in oligodendrocytes and Schwann cells.5  
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Figure 1. Structure of sulfatide. 

Galactosylceramide, the precursor of sulfatide, and sulfatide are the two major 

glycosphingolipids of the myelin sheath and contribute to the stability, flexibility and 

compaction of myelin.3 Sulfatide negatively regulates oligodendrocyte differentiation, has a 

function in the initiation of myelination and inhibits axonal outgrowth.5,8 In MLD, the metabolic 

defect is the failure to catabolize sulfatide.9 There is no, or insufficient ASA activity, and 

accumulation of sulfatides takes place in oligodendrocytes, Schwann cells, phagocytes, 

astrocytes, neurons and macrophages.5 Why this accumulation leads to a loss of myelin and 

neuronal degeneration is not completely understood. A possibility is that lysosomes stop 

functioning because of the massive sulfatide accumulation, ensuing cell death.10 Also, 

sulfatide loading triggers inflammatory cytokines,11 thought to be involved in apoptosis.12 

Microglial activation, invasion of peripheral macrophages and astrogliosis, all indicating 

inflammation, are found in the CNS of MLD patients. This Ca2+ increase leads to activation of 

intracellular proteases and subsequent injury.8 The precise trigger for the inflammatory 

response is not yet understood, but of great importance to fully understand the 

pathomechanism of the disease. In chapter 6, we study the inflammatory response in brain 

tissue of transplanted and non-transplanted MLD patients. 
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Pathology of the central nervous system 

MLD owes its name to the pathological feature of metachromasia;13 describing the 

accumulated sulfatides which are periodic acid-schiff (PAS)-positive (staining blue-violet) and 

pink or dull red/brown with the toluidine blue stain (Figure 2), in place of the orthochromatic 

blue staining for the latter.13 This is caused by the shift of the absorption spectrum of anionic 

groups in sulfuric acid radicals when present in high concentrations.  

 

 

 

Figure 2. Macrophages are red with the toluidine blue stain indicating that they contain sulfatides; 
metachromasia. 
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Macroscopically, the brain of MLD patients appears initially normal, but with progression of 

the disease cerebral and cerebellar atrophy occurs. There is thinning of the corpus callosum 

and diffuse sclerosis of the frontal, parietal, temporal and occipital white matter.14 The size of 

the thalamus can be markedly reduced. The brain stem and basal ganglia seem 

macroscopically unaffected. 

 

Figure 3. (A) Large, foamy macrophages containing metachromatic granules. (B) shows the storage of sulfatides 
in astrocytes. In (C) the sulfatide storage in neurons is visible.  

 

Histologically, MLD is characterized by reactive macrophages and astrocytes containing 

metachromatic granules (Figure 3A).13 These macrophages are present throughout and at 

the edges of the lesions. Analytical histopathological studies of the brain of MLD patients 

showed that the white matter is most severely affected by metachromatic deposits, with a 

sulfatide content up to 8 times higher than normal, with relatively few gross chemical 

changes in gray matter.9 Isolated myelin sheaths with granules as a result of demyelination 

are found in the corpus callosum, the internal capsule, centrum semiovale and frontal, 

parietal and temporal white matter. Oligodendroglia are practically absent in demyelinated 

areas.14 The U-fibers tend to be spared. The pyramidal tracts are usually early affected, 

containing numerous metachromatic granules. The sulfatide storage also affects axon 

density and neurons (Figure 3B,C).13 Fibrous gliosis arises in the extracellular spaces of the 

demyelinated cerebral white matter as a result of astrocyte proliferation.14 These astrocytes 

contain metachromatic granules. The cortex is usually spared from demyelination and 

oligodendrocyte loss. However, thinning of myelin, loss of neurons, reactive astrocytes and 

sulfatide containing granules have occasionally been observed.15 



 
13 

 

MLD has always been seen as a primarily white matter disease. However, since sulfatide is a 

constituent of membrane lipid rafts, it is logical that its accumulation also affects neurons. 

The cerebral cortical gray matter (GM) and thalamic volume are already reduced at 

diagnosis, regardless of age at onset, in MLD patients compared to controls.16 The neurons 

of the cerebral and cerebellar cortex hardly ever contain metachromatic materials with 

exception of the large pyramidal neurons.17 At the end stage of the disease, especially in the 

adult onset type, patients suffer from dementia. Interestingly, in these patients the cortical 

neurons and axons are usually relatively spared, suggesting that the white matter 

degeneration is mainly contributing to the dementia.  

 

Pathology of the peripheral nervous system 

The accumulation of sulfatides in the PNS results in peripheral demyelinating neuropathy; 

characterized by severe slowing of motor and sensory conduction. Histopathology shows 

reduced density of large myelinated fibers and accumulation of sulfatides in macrophages 

and Schwann cells.8 Disease mechanisms in the CNS and PNS have been hypothesized to 

be separable processes. The degree of damage to the PNS (as measured by nerve 

conduction velocity and sural nerve sulfatide levels) does not always correlate with CNS 

disease manifestations (degree of affected motor function or change in metabolite 

concentrations such as N-acetylaspartate (NAA) in the white matter measured by 

quantitative magnetic spectroscopy (MRS)).18 Interestingly, the level of sulfatides in the 

cerebral spinal fluid (CSF) does not reflect the extent of central white matter injury, but is 

proportional to PNS damage.19 The peripheral nerves are enlarged (and not thinned as a 

result of atrophy as would be expected in a neurodegenerative disease) on ultrasound in 

MLD,20  probably as a result of the accumulation of metachromatic inclusions.  
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Storage in other organs 

The accumulation of sulfatides is not limited to the CNS and PNS, but also occurs in visceral 

organs, such as the gallbladder 21-23 which is further described in chapter 9 of this thesis. 

Other organs affected by the disease are intestines, adrenal glands, lymph nodes and 

ovaries.24 The accumulation of sulfatides in the kidney leads to an increased sulfatide 

excretion in urine in patients, which is further described in the discussion of this thesis. 

 

Clinical spectrum  

The three clinical subtypes vary in disease progression and prevailing symptoms. The late-

infantile form starts before 30 months of age. First symptoms are usually psychomotor 

regression resulting in ataxia, weakness and areflexia.1 The juvenile form starts between 30 

months and 16 years and usually presents with a combination of motor regression (due to 

ataxia, a pyramidal syndrome and peripheral neuropathy), behavioral abnormalities and 

deterioration in school performance. The adult form starts after the age of 16 years with 

behavioral and intellectual changes.11,25 Peripheral neuropathy follows as the disease 

progresses but remains mild in most cases. Beyond infancy, peripheral neuropathy as 

presenting sign is uncommon. In general, the earlier the disease onset, the faster it 

progresses.  

In the late-infantile form, language regression usually occurs one year after onset, and 

complete loss of speech before the age of 3 years.26 Kehrer and colleagues observed loss of 

any communication in half of the late-infantile patients 3 years after onset. Complete 

regression of gross motor function takes on average 15 months after the first signs of motor 

deterioration.27 

In juvenile patients, a complete loss of language occurs around 6 years after disease onset 

in most patients, and complete loss of any communication nine years after onset in a quarter 

of patients. The deterioration of gross motor function has a similar pace; the loss of complete 
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motor function takes approximately 6 years after first signs of regression of motor function.27 

Eventually, all acquired skills are lost and patients die.  

In the juvenile and adult form, psychiatric symptoms can precede overt neurological signs, 

sometimes by years. This makes obtaining a correct diagnosis challenging, which we further 

describe in chapter 3. 

Diagnosis  

Diagnosis of MLD is made through clinical presentation, brain MRI, measurement of ASA 

activity in leukocytes and sulfatides levels in urine, and ARSA mutation analysis. Brain 

abnormalities seen on MRI are bilateral symmetric abnormal hyperintense T2 signal changes 

starting in corpus callosum and subsequently involving the periventricular white matter.28 

Depending on the age of onset, the white matter abnormalities either start in the splenium of 

the corpus callosum and the parieto-occipital white matter (late-infantile form) or in the genu 

and the frontal white matter (adult form) (Figure 4A,C).  

A pattern of radially oriented stripes of low signal intensity throughout the diffuse high signal 

intensity on T2-weighted images is typical for MLD and represents a combination of storage 

material and better preserved myelin (Figure 4B,D).29 As the disease progresses, the 

subcortical white matter (U-fibers) become involved as well. With disease progression, the 

entire white matter becomes affected, and cerebral atrophy occurs with enlargement of the 

ventricles, eventually also cerebellar atrophy and demyelination.30 The basal ganglia, 

especially the pallidum, and thalami usually have a decreased T2 signal intensity in this late 

disease stage, probably as a result of sulfatide accumulation.31 Gröschel and colleagues 

correlated regression of cognitive function to more pronounced involvement of frontal WM 

areas in juvenile MLD patients, sparing the central motor parts of the WM. In certain patients, 

they found frontal demyelination to appear independently without impairment of the central 

region, accompanied by a relatively preserved motor function.32  
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Eichler et al developed an MRI scoring system specifically for MLD.31 Brain abnormalities on 

MRI can be scored based on their extent and intensity of abnormal white matter signal. 

Cerebral and cerebellar atrophy is also taken into account. The total amount of points gives 

an estimation of disease severity; categorized as either mild, moderate or severe.  

 

Figure 4. Axial T2-weighted and sagittal T1 weighted MR images of patients with late-infantile (A), juvenile (B) 
and adult (C) MLD. (A) shows parietooccipital predominance, involvement of the splenium and the periventricular 
white matter. In (B) the typical pattern of radiating stripes with bands of normal signal intensity in between is 
shown. This aspect is highlighted in (D). In the adult patient (C) there is frontal predominance and cerebellar 



 
17 

 

atrophy. In (E) involvement of the splenium is shown in a very early disease stage in a presymptomatic juvenile 
MLD patient. 

Quantitative MRI 

Quantitative MRI techniques can provide additional information about the physiology and 

pathophysiology of brain tissue next to the anatomical information provided by MRI. MRS is a 

technique providing chemical information on certain metabolites in the brain.33 In MLD, 

spectra are characterized by decreased NAA, elevated myo-inositol (Ins) and choline-

containing compounds (Cho) in the abnormal white matter.34,35 We describe the relationship 

between clinical outcome of patients and their baseline white matter spectra in chapter 7. 

Diffusion tensor imaging (DTI) is a MRI technique that quantifies the direction and magnitude 

of water diffusion in the brain.36 There are different diffusion parameters describing different 

degrees of displacement of water molecules. Fractional anisotropy (FA) and mean diffusivity 

(MD) are a combined measure of axial diffusivity (AD) and radial diffusivity (RD). Since the 

displacement of water molecules is impeded by cellular microstructures surrounding it, 

pathological processes such as demyelination, loss of axonal integrity and inflammatory 

processes can modulate the direction of diffusion. In chapter 8, we study DTI parameters in 

MLD patients in order to gain insight into the organization and structure of brain tissue and 

how this is affected by the disease. 

 

Treatment  

Enzyme replacement therapy 

Animal models of intrathecal continuous infusion of ASA showed reversal of sulfatide 

storage, suggesting that this may be efficacious for the treatment of MLD.37 However, the 

rapid demyelination that occurs in the early onset forms is unlikely to be sufficiently halted by 

ERT. Intravenous administration of the enzyme has been found not to be effective due to the 

inability to cross the blood brain barrier. Currently, the IDEAMLD phase I/II clinical trial 
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(NCT01510028) uses multiple intrathecal infusions with recombinant ASA for patients with 

the late-infantile subtype. The trial has been completed in January 2017, preliminary results 

are expected soon.  

Hematopoietic Cell Transplantation 

The theory behind hematopoietic cell transplantation (HCT) is that monocytic cells of bone 

marrow or umbilical cord blood cells (from a donor) cross the blood brain barrier and 

differentiate into macrophages, which start producing ASA to cross-correct the enzyme 

deficiency. Still, its exact mechanism is not yet fully understood. Prior to the transfusion of 

donor cells, patients undergo myeloablative chemotherapy which makes it a complicated 

procedure with the risk of infections and post-transplant complications such as graft versus 

host disease (GvHD). Treatment related mortality was estimated to be 10-15%, but is 

nowadays, with less toxic induction protocols, considerably lower, at least in children.38 PNS 

involvement does not seem to be influenced by HCT, which hampers motor function in a 

substantial part of transplanted patients.12,39 Another important issue is the time it takes for 

the donor cells to replace resident tissue. This can take 6 to 12 months, whilst disease 

progression continues. Unfortunately, this makes HCT ineffective for patients with the late-

infantile form, because disease progression in these patients is too fast. Presymptomatic 

juvenile and adult patients are good candidates for HCT. In ambiguous cases, patients with 

mild symptoms at neurological examination or mild cognitive decline, the decision whether or 

not to transplant is often difficult. We assessed the efficacy of HCT in our patient cohort in 

order to formulate decision guidelines for the treatment of HCT, which is described in 

chapter 5.  

Hematopoietic Stem Cell-Gene Therapy 

It is evident that effective treatment for all clinical subtypes of MLD is needed. Recently, HCT 

and gene therapy have been combined into lentiviral vector-mediated hematopoietic stem 

cell gene therapy (HSC-GT).40 Bone marrow-derived CD34+ HSCs are transduced with a 
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clinical grade lentiviral vector, which introduces a functional ARSA gene into the HSCs. This 

results in supraphysiological expression of the ARSA gene throughout the HSCs. After 

myeloablative conditioning, the HSCs are infused and thought to mediate cross correction of 

CNS and PNS resident cells.40 The corrected cells secrete ARSA protein which is 

endocytosed by neighboring cells for therapeutic correction.3 It is therefore not necessary to 

transfer the normal ARSA cDNA to all of the cells in the CNS.3 There were concerns for an 

oncogenic potential of lentiviral vectors and possible negative effects of supraphysiological 

expression of ARSA, but animal and clinical studies so far report no increased incidence of 

neoplasms.3 Longer follow up studies are needed to gain insight on long-term effects of 

supraphysiological levels of ASA enzyme on the other sulfatases and sulfatide levels. 

 

Scope of this thesis 

This thesis provides a broad overview of MLD, by studying both its natural course and its 

course after treatment. In chapter 2, the disease and its current treatment options are 

reviewed. Chapter 3 presents late juvenile and adult cases, initially diagnosed with a 

psychiatric disorder. In chapter 4, we describe the effect of intrathecal baclofen treatment for 

spasticity in MLD. The efficacy of HCT compared to the natural course of the disease is 

analyzed in chapter 5. In chapter 6, the inflammatory response and oligodendrocyte 

numbers in brain tissue between transplanted and non-transplanted patients is compared. In 

chapter 7 we focus on the possible value of MRS parameters at diagnosis in predicting 

eventual clinical outcome. In chapter 8, we use DTI parameters to gain more insight into 

brain microstructure abnormalities in MLD. The association between gallbladder polyps and 

carcinoma and MLD is presented in chapter 9. A summary of these findings, their possible 

implications and future perspectives are discussed in chapter 10. 
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Abstract  

Metachromatic leukodystrophy is an inherited lysosomal disorder caused by recessive 

mutations in ARSA encoding arylsulfatase A.  Low activity of arylsulfatase A results in the 

accumulation of sulfatides in the central and peripheral nervous system leading to 

demyelination.  The disease is classified in a late-infantile, juvenile and adult onset type 

based on the age of onset, all characterized by a variety of neurological symptoms, which 

eventually lead to death if untreated.  There is no curative treatment for all types and stages. 

This review discusses diagnostic process and efficacy of current and possible future 

therapies such as hematopoietic stem cell transplantation, enzyme replacement therapy and 

gene therapy.  A systematic evaluation regarding the efficacy of hematopoietic stem cell 

transplantation and a longer follow-up period for gene therapy are needed to come to a 

general conclusion and improve treatment options for metachromatic leukodystrophy.  
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Introduction 

In this review, the pathology, diagnosis and possible treatment of metachromatic 

leukodystrophy MLD (250100), a rare disorder with an estimated birth prevalence of 1.4-1.8 

per 100.000,1 is described. At present no curative treatment is available for all types of MLD. 

This is an emerging field in which several clinical trials looking for a possible cure for this 

devastating disease are ongoing. Recently published data on patient care and treatment are 

discussed.  

Metachromatic leukodystrophy (MLD) is an autosomal recessive inherited lysosomal disorder 

caused by mutations in the ARSA gene located on chromosome 22q13.33, resulting in a 

deficiency of the enzyme arylsulfatase A (ASA). Some mutations result in pseudodeficiency 

alleles2 that result in 10-15% of normal enzyme activity, which is sufficient to physiologically 

hydrolyze sulfatides and does not lead to disease symptoms.2 This implicates that sulfatide 

degradation can function normally in the presence of only 10-15% functional ASA enzyme; 

which is an important consideration for the development of treatment options for MLD. 

Mutations in PSAP, encoding prosaposin, an activator protein of ASA, also lead to MLD 

(249900 ), but are rare.3 In multiple sulfatase deficiency (272200), caused by mutations in the 

sulfatase-modifying factor-1 gene (SUMF1)4, the function of the whole family of sulfatase 

enzymes is affected, leading to symptoms of MLD in addition to features of various 

mucopolysaccharidoses.5 

ASA is essential for sulfatide metabolism through the hydrolysis of the 3-O ester bond of 

galactosyl and lactosyl sulfatides.1 Its deficiency results in the accumulation of sulfatides into 

lysosomal storage deposits in the central and peripheral nervous system, which exhibit 

accumulation of sulfatides and metachromatic staining characteristics.6 In the nervous 

system, sulfatides accumulates in the oligodendrocytes, Schwann cells, phagocytes, 

astrocytes and also neurons (figure 1).3 Sulfatides are the most abundant sphingolipids in 

myelin, accounting for 4% of its composition. They have important functions in the 
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maintenance of myelin.2 Their accumulation leads to demyelination. It has been shown in 

vitro that sulfatide loading triggers inflammatory cytokines, which are thought to be involved 

in apoptosis.7 

 

Figure 1: Klüver-PAS staining of white matter in a control (A, 200x) and a patient with MLD (B-C, 100x). (B) 
demonstrates loss of the normally blue-stained myelin and enlarged macrophages accumulating sulfatides (see 
also inlay). (C) demonstrates relatively spared white matter in the cerebellum. (D) shows pencil fibers in the basal 
nuclei, again with myelin loss and storage cells, within relatively spared grey matter. 

Clinical presentation 

Metachromatic Leukodystrophy is divided into three clinical subtypes, based on the age of 

onset of the first symptoms. These can be deterioration in motor or cognitive function or 

behavioral problems, depending on the clinical subtype. The disease inevitably ends in a 

decerebrated state and eventually death.  Its course and duration are however highly 

variable, depending on the age of onset of the first symptoms.  
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The late infantile form has its onset before 30 months and is characterized by rapid 

progression of psychomotor regression resulting in ataxia and weakness with areflexia.1 

Some children have only signs of a progressive peripheral neuropathy during several 

months, before central nervous system involvement becomes apparent. As the disease 

progresses patients start suffering from dysphagia and drooling and feeding via gastrostomy 

usually becomes necessary. Seizures are common. Painful spasms and general irritability 

are particularly challenging. Death occurs within a few years after the onset of symptoms. 

The late infantile form is genetically characterized by homozygosity or compound 

heterozygosity for alleles that do not allow the synthesis of functional enzyme, resulting in 

rapid accumulation of sulfatides and rapid disease progression.8 

In the juvenile variant, symptoms start between 2.5 and 16 years of age. The disease often 

begins with deterioration of school performance or behavior abnormalities. The first 

neurological signs are often ataxia and a mild pyramidal syndrome, leading to gait problems. 

Peripheral nerve damage may result in reduced deep tendon reflexes.9 In the beginning, 

disease progression is slower than in the infantile onset form, but once the neurological signs 

become more evident, the decline is rapid and patients eventually lose all skills.10 Spasticity 

becomes prominent, and many patients also develop epilepsy. The end stage of the disease 

can last several years, and its duration is variable. Patients suffering from the juvenile type 

mostly carry one allele that allows for expression of low amounts of residual enzyme activity.8 

The adult variant has an insidious onset after the age of 16 years. Intellectual and behavioral 

changes, such as memory deficits or emotional instability, are usually the first presenting 

symptoms.9 Mild polyneuropathy develops in a later stage. Disease progression is generally 

slower than in the infantile and juvenile form. Death occurs within decades after disease 

onset. In the adult onset type, many patients carry two mild mutations, allowing for the 

expression of low amounts of functional enzyme, which delays the process of sulfatide 

accumulation and thereby the onset of the disease.8 As more siblings in one family can be 
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affected, it is important to test all siblings of the index patient for MLD regardless of their age 

as the age of disease onset can vary, especially for the juvenile or adult type.  

Non-neurological symptoms: Apart from the neurological symptoms the accumulation of 

sulfatides can also cause symptoms in visceral organs. Gallbladder involvement is seen 

most often, leading to symptoms such as thickening of the gallbladder wall, gallstones, 

cholecystitis, and a small or enlarged gallbladder.11 The diagnosis of MLD usually precedes 

the onset of gallbladder involvement, although cases have been reported in which 

gallbladder polyposis is the first symptom prompting the diagnosis.11 Relatively little is known 

about gallbladder involvement in long term surviving MLD patients. Other organs that can be 

affected are liver, pancreas, intestines and kidneys. Case reports have also been written 

about disease expression in the adrenal glands, lymph nodes and ovaries.12                                                                                                                

Diagnosis 

Magnetic Resonance Imaging: An important tool in establishing the diagnosis of MLD is MRI, 

which shows characteristic brain abnormalities. Demyelination in MLD leads to bilateral 

symmetric abnormal T2 signal hyperintensity starting in the corpus callosum and then 

involving the periventricular white matter. In the infantile form, the disease usually starts in 

the splenium of the corpus callosum and the parietooccipital white matter, in the adult form, 

in the rostrum and frontal white matter (figure 2). The subcortical fibers are usually spared.13 

In severe disease there is often involvement of the projection fibers, cerebellar white matter, 

basal ganglia and thalami which have a decreased signal intensity on T2-weighted images, 

probably as a result of accumulation of metal or other breakdown products in the brain.14  

Typical for MLD is a pattern of radiating stripes with bands of normal signal intensity within 

the abnormal white matter,15 the so called “tigroid-pattern”.  This is also seen in globoid cell 

leukodystrophy (Krabbe’s disease) and infantile GM1 gangliosidosis. Histopathological 

techniques confirmed that the stripes are related to perivascular preservation of myelin.15 
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Eichler et al14 developed a scoring system for the MRI abnormalities in MLD which can, when 

combined with clinical parameters, be used as a measure of disease severity. It takes into 

account extent and severity of abnormal white matter signal, involvement of projection fibers 

and basal ganglia and atrophy.14 Staging (mild, moderate or severe) is based on the total  

 

Figure 2: Axial T2-weighted (A, B, D, E, G, H) and sagittal T1-weighted (C, F, I) MR images of three patients with 
MLD. (A-C): 2-year-old patient with late-infantile MLD. Involvement of the periventricular white matter and centrum 
semiovale with parietooccipital predominance and involvement of the splenium. U fibers are spared. (D-F): 7-
year-old patient with juvenile MLD. (F) shows the typical pattern of radiating stripes with bands of normal signal 
intensity in between. U fibers are spared. (G-I): 28-year-old patient with adult MLD. In addition to the white matter 
signal abnormalities with frontal predominance, there is mild supratentorial atrophy (G, H). 

amount of points.  The amount of demyelinated white matter can also be quantified as 

demyelination load and is correlated with disease duration and deterioration of gross motor 

function.16 Proton magnetic resonance spectroscopy (1H-MRS) can be used to gain insight 

into chemical information in addition to the anatomic information provided by MRI.17 In MLD, 

1H-MRS is characterized by a low N- acetylasparate (NAA) level and elevated myo-inositol 

(figure 3).17 The low NAA level can be explained by the diffuse neuronal loss that is seen in 
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MLD. The high myo-inositol level has been attributed to reactive gliosis, characteristic for 

MLD.18 Assadi et al18 furthermore found an increased lactate to creatine ratio, which is likely 

due to oligodendrocyte injury limiting lactate transport into axons. 

 

 

Figure 3: 1H-MRS of frontal and parietal white (A) and grey (C) matter in an 8-year-old MLD patient. 1H-MRS of 
frontal and parietal white (B) and grey (D) matter in a healthy 9-year-old control. The color maps are obtained 
from the same patient (E) and control (F) from the frontal and parietal central white matter and represent the 
concentrations of N-acetylasparate, choline and myo-inositol. Decrease of NAA and elevation of myo-inositol is 
typical for MLD. 

 

Biochemical and genetic diagnosis: Diagnosing MLD consists of a combination of 

biochemical procedures and genetic analysis.1 The biochemical procedure consists of 

measuring ASA enzymatic activity in leucocytes from whole blood.19 Sulfatide excretion in 

urine can be measured when the levels of ASA enzymatic activity are normal in a child with 

typical clinical presentation and MRI and also when there is doubt about pseudodeficiency. 

Mutation analysis is becoming an increasingly important tool in diagnosing MLD. Over 150 

mutations have been reported in the ARSA gene. Two mutations occur more frequently; one 

is the 459+1G>A splice-site mutation which is associated with late-infantile onset, the other 

one is the p.Pro426Leu missense mutation frequently found in the adult form.19  

Pitfalls in diagnosis: 
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- Clinical pitfalls: In the initial phase of late-infantile MLD, symptoms can be similar to 

those found in Guillain-Barre syndrome or chronic inflammatory demyelinating 

polyneuropathy (CIDP).20 The findings of reduced motor nerve conduction velocities 

and increased protein concentration in cerebrospinal fluid together with progressive 

gait abnormalities and hyperirritability can result in a wrong diagnosis, which is only 

revised when central nervous system signs as spasticity develop.20 Odd behavior, 

depression or psychotic symptoms in adult patients are often wrongly attributed to a 

primary psychiatric disorder, as neurological signs usually appear later. 

- Low ASA activity: the diagnosis of MLD cannot exclusively be based on the level of 

ASA activity, due to the presence of pseudodeficiency alleles in the population. In the 

case of pseudodeficiency alleles, ASA activity is low, which could be mistaken for 

MLD whilst the pseudodeficiency alleles do not lead to symptoms. Sulfatide excretion 

is normal in pseudodeficiency and can help with distinguishing the two, as well as 

mutation analysis. This is important in families with MLD and carrying 

pseudodeficiency alleles. 

- Normal ASA activity: Patients with saposin B deficiency do suffer from MLD but have 

an in vitro ASA activity in the normal range.19 In these cases, the measurement of 

sulfatide excretion in urine is helpful as it is elevated in saposin B deficiency. 

Molecular analysis of the PSAP gene can confirm the diagnosis. In vitro ASA activity 

is normal in these cases because it is performed in an assay with a water soluble 

artificial substrate, in which the hydrolysis does not depend on the presence of 

saposin B.9 

Current treatment 

At present, there is no curative treatment available for all patients with MLD. Hematopoietic 

stem cell transplantation (HSCT), gene therapy and enzyme replacement therapy have been 

extensively tested in mouse models. The positive results reported from the different animal 
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studies regarding HSCT, gene therapy and enzyme therapy have led to clinical trials 

investigating the efficacy of these approaches. 

Hematopoietic stem cell transplantation (HSCT):  Monocytic cells of bone marrow are 

able to cross the blood brain barrier, differentiate into microglial cells and deliver enzymes to 

oligodendrocytes and neurons to correct the enzyme deficiency. This promising procedure is 

at this moment the only treatment, which has proven to be able to stop the disease. One of 

the main problems regarding HSCT is the slow replacement of resident tissue compared to 

rapid progression of the disease. It can take 12 to 24 months until the disease stabilizes, 

which makes HSCT ineffective for patients with overt neurological symptoms or for those 

with the aggressive infantile onset type.1 In these patients, who are already symptomatic at 

the time of transplantation, neurologic involvement continues to deteriorate.21  Even in 

asymptomatic patients with the infantile onset type, neurological deterioration and 

progression of white matter abnormalities on MRI were reported,22 suggesting that disease 

progression is too fast for HSCT to influence. When HSCT was performed in patients 

suffering from the juvenile and adult form of MLD, both cerebral demyelination as well as 

disease progression have been reported to be delayed or stopped.23-25 Even improvements 

in motor and behavioral functions have been reported, together with a decrease of the white 

matter abnormalities seen on MRI.26-28 However, also cases, in which the disease takes the 

natural course or even worsens, have been reported. Smith et al29 report a case of a 

symptomatic patient with adult onset MLD in which HSCT does not halt disease progression 

and results in relentless cognitive decline. Hosson et al 30 describe 5 symptomatic patients 

with adult onset MLD who were treated with HSCT. Stabilization of the disease occurred only 

in one of the five patients who later also experienced disease progression. Levels of donor 

chimerism (and achieved enzyme level) are important, as mixed chimerism will dilute the 

post- HSCT enzyme level. In other lysosomal storage diseases, such as  

mucopolysaccaridosis(MPS) 1, the enzyme level achieved after HSCT is associated with 

long-term outcome, including development.31,32 
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Mesenchymal stem cells (MSC) are non-hematopoietic multipotent stem cell-like cells that 

are capable of differentiating into both mesenchymal and non-mesenchymal lineages. They 

have been found to be able to differentiate into neurons and astrocytes. Because of these 

capabilities, concomitant infusion of MSC with HSCT has been performed for a symptomatic 

patient with adult onset MLD by Meuleman et al.23 She had a complete stabilization of her 

disease during the 40-month follow up period. 

Apart from the uncertain long-term effects, HSCT is furthermore complicated by substantial 

risks of the procedure and post-transplant complications such as graft versus host disease 

(GvHD) and infections. Mortality is estimated to be 10 to 15%, improving over time. Another 

limitation of HSCT is the fact that the involvement of the peripheral nervous system does not 

seems to be influenced, causing severe motor impairment in a substantial part of 

transplanted patients.7 

Umbilical cord blood transplantation (UBCT) is an alternative for bone marrow transplantation 

with the advantage of quicker availability, less GvHD, lower risk of morbidity and mortality 

and better correction of enzymatic deficiency.24 Furthermore, UCBT is associated with higher 

rates of full-donor chimerism compared to mixed chimerism in HSCT or sibling 

transplantation.31 Martin et al 21 report a study of 27 children with both infantile and juvenile 

onset treated with UCBT.  In asymptomatic patients at the time of transplantation, UCBT 

resulted in successful replacement of the missing enzyme and disease stabilization. In the 

group of children with moderate to severe symptoms (N= 19), 7 children died. The surviving 

children of the symptomatic group did not benefit from UCBT. Cable et al 33 report a 5-year 

follow up of three affected siblings with juvenile MLD after an UCBT. The patient who was 

symptomatic at the time of the transplant deteriorated and now remains in a vegetative state. 

The other two patients, who were asymptomatic at the time of transplant stabilized within a 

year after UCBT and have remained stable regarding neurological examination, 

neuroimaging, nerve conduction studies and neuropsychological evaluations.  



 
35 

 

Presymptomatic patients with the juvenile and adult form are good candidates for HSCT. 

Late-infantile patients often deteriorate, even if transplantation has been performed before 

the first symptoms.22 In mildly symptomatic patients, the decision whether or not to perform 

HSCT is difficult. Better knowledge of the natural history of MLD will help in predicting clinical 

course in individual patients. One approach is by Kehrer et al 34 who modified the Gross 

Motor Function Classification (GMFC) system for MLD, which can be used as a robust and 

easy to use classification system to evaluate gross motor function from 18 months onwards. 

Both late infantile as well as juvenile patients who have just lost the independency of 

unsupported walking have a probability of more than 60% to have no locomotion or sitting 

without support within one year.34 This is an important criterion in the decision process of 

whether to perform a HSCT or not, since it takes around 6-18 months before the donor cells 

become functional. 

Although the first approach of using HSCT as a treatment for MLD was published in 1985 

(Bayever, Lancet 1985), we are still short of a systematic analysis of its effectiveness of 

HSCT. Such a study is further complicated by the different protocols that are being used for 

HSCT worldwide. Therefore, no standard decision criteria exist for the utilization of HSCT. To 

develop these, we need a systematic overview of the long-term effects and outcome of 

HSCT in a large sample of patients. 

Enzyme replacement therapy: The rationale for enzyme replacement therapy (ERT) is that 

extracellular lysosomal enzymes are taken up by cells and transported by endocytic 

receptors to the lysosome where they become active.35 Traditionally, ERT is done by 

intravenous injection of an enzyme and has shown to be effective for several lysosomal 

disorders without involvement of the CNS such as Gaucher disease type 1, Fabry disease, 

mucopolysaccharidosis type I, II and VI and Pompe disease.35 
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Animal studies 

The concept of enzyme replacement therapy has been proven to be effective in improving 

the function of the nervous system in several preclinical studies.  An ASA deficient knock out 

mouse model has been generated, which indeed accumulated sulfatides. However, these 

mice did not develop demyelination, which was thought to be due to an insufficient buildup of 

sulfatides.6 Transgenic mice were generated and crossed with ASA deficient mice resulting 

in an aggravated disease phenotype. In these mice, sulfatides were increased about two to 

threefold and demyelination in both peripheral and central nervous system was seen.8 

Matzner et al 36 were the first to provide proof of principle of enzyme replacement therapy 

when they reported a decline of sulfatide storage in kidney and peripheral nerves following 

intravenous injection of rhASA in ASA knockout mice. Furthermore, a reduction of storage in 

the central nervous system was noted, which could not clearly be explained since the brain 

did not acquire enzyme levels of more than 0.1% of wild type levels due to the impermeability 

of the blood brain barrier. Stroobants et al 35 reported a preclinical experiment in which the 

blood brain barrier of mice was bypassed by continuous infusion of rhASA into the brain 

ventricles using miniature osmotic pumps. They found an improvement in nervous system 

function and reported no adverse immunological effects. Furthermore, a reduction in sulfatide 

storage in the brain and spinal cord of mice was observed following intrathecal ERT.6 This 

suggests that rhASA is able to cross brain capillaries in a cell culture model of the blood 

brain barrier. The hydrolyzation of the storage material, however, seemed to be inversely 

dependent on the amount of accumulated sulfatides.  
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Table 1. Outcome after treatment 

Study Number of 
patients 

Infantile 
MLD 

Juvenile 
MLD 

Adult 
MLD 

Presymptomatic Symptomatic Type of 
intervention 

Clinical Outcome MRI Survival Follow 
up 

van Egmond 
(2013) 

1  1   1 UCBT Improving motor+ behavioral 
functions, stable cognition 

Improvement white 
matter abnormalities 

1/1 27 
months 

Krageloh-
Mann (2012) 

1  1   1 HSCT Stable cognitive function, 
progression neuropathy 

16m post HSCT: 
increase white matter 
abnormalities, 24 
months post: scores 
similar to pre HSCT 

1/1 10 years 

Hosson (2011) 5   5  5 HSCT Continious deterioration 
(N=4) and  stabilization 
(N=1) 

Stable (N=1). 
Progression white 
matter abnormalities 
(N=4). 

4/5 9 years 

Ding (2011) 1  1  1  HSCT No MLD symptoms Halt of demyelinization 
+ progress of 
myelination 

1/1 8 years 

Smith (2010) 1   1  1 HSCT Cognitive decline Persistent 
abnormalities+ 
progressive volume 
loss 

1/1 11 years 

Meuleman 
(2008) 

1   1  1 HSCT with 
MSC infusion 

Stabilization of neurological 
symptoms 

Stable cerebral lesions 1/1 40 
months 

Bredius (2007) 1 1     1   HSCT Continious deterioration  Progression of white 
matter abnormalities 

1/1 2 years 

Martin (2013) 27 10 17  8 19 UCBT Asymptomatic 
children:stabilization. 
Symptomatic:deterioration 

Improvement in LOES 
scores in 16/19 patients 

20/27 5.1 
years 

Cable (2011) 3   3   2 1 UCBT Symptomatic 
child:worsening.  
Other 2:stabilization 

Progression of white 
matter abnormalities 
(N=1). Resolvement of 
white matter 
abnormalities 1 year 
post HSCT (N=2) 

3/3 5 years 

Biffi (2013) 3 3   3  HSC gene 
therapy 

Halt of disease manifestation Stable small area of 
hyperintensity 
(N=2).Normal 
myelination progression 
(N=1). 

3/3 18-24 
months 
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Clinical studies 

In MLD, ERT has been administered intravenously but was found not to be effective, due to 

the inability of the enzyme to cross the blood brain barrier and thereby the inability to reach 

the nervous tissue (unpublished data). Different routes of administration, such as 

intracerebral agent delivery, are currently being tested in clinical trials to overcome this 

limitation. (http://www.clinicaltrial.gov/NCT01510028). The patients receive intracerebral 

injections of recombinant human arylsulfatase A every other week for 40 weeks. This trial is 

open for patients with the late infantile form who are still able to ambulate with help. In this 

selected group, the effectiveness of the treatment can be evaluated quickly due to the rapid 

progression of the disease. Moreover, no other treatment option is available for this group of 

patients. Even if the enzyme reaches the brain, this remains an intensive procedure with the 

risk of complications.  

Gene therapy: In gene therapy, the goal is to genetically modify autologous hematopoietic 

stem cells (HSC) to express the ARSA gene.1 Cells can also be modified to overexpress 

ARSA leading to a supraphysiological amount of enzyme. 

Animal studies 

This method has successfully been tested in experiments using the knock out animal model 

of MLD.24 Through the use of retroviruses new genes can be integrated into the host cell 

genome. Various viral vectors, such as adeno-associated viral (AAV), lentiviral (LV) and 

retroviral (RV) vectors, have been used and have been found suitable for clinical trials of 

gene therapy.24 In MLD, lentiviral vectors were successful in generating overexpression of 

the ARSA gene.2 Efficient gene marking of mouse and human HSC is possible, with full 

maintenance of stem cell properties and transgene expression.1  Biffi et al 37 transplanted 

HSCs transduced with a lentiviral vector carrying the ARSA cDNA in MLD mice. They report 

that enzyme activity was reconstituted in the hematopoietic system and development of 

central nervous system and peripheral nervous system disease manifestations was 



 
39 

 

prevented and corrected. Another approach is introducing the normal gene directly in the 

CNS. Colle et al 38 demonstrate the safety of intracerebral injection of AAV2-5 vector 

encoding human ARSA, which results in expression and activity of recombinant ASA enzyme 

in the brain of non-human primates. Piguet et al 39 compared the intracerebral injection of 

AAVrh.10cu ARSA vector with AAV5-PGK-ARSA vector and found the AAVrh.10vector to 

both result in a more robust and diffuse expression of ASA enzyme as well as in a correction 

of sulfatide accumulation in brain.  

Clinical studies 

Biffi et al 40 performed a phase I/II clinical trial in which they treated three presymptomatic 

infantile MLD patients with HSC-gene therapy. The autologous HSCs were transduced ex 

vivo with ARSA encoding LVs and reinfused after the patients had been treated with a 

myeloablative regimen. One year after HSC-GT, functional ASA was isolated from 

cerebrospinal fluid from all three patients; levels and activity were comparable to healthy 

donors. Moreover, disease manifestation was halted for the follow up times, ranging from 18-

24 months. This was based on findings on MRI and evaluation of cognitive and motor skills. 

No evidence for activation of a nearby oncogene by an insertion was found.  An advantage of 

this autologous gene-transduced HSCT is that supra –normal levels of the enzyme can be 

reached. In the future, better predictable gene-transduction efficacy and better predictable 

engraftment of transduced cells may further optimize treatment. At the moment a clinical trial 

of intracerebral gene therapy is performed in Paris by Aubourg et al. AAVhr.10 is used to 

transfer the ARSA cDNA coding for the ASA enzyme. Patients with an early onset MLD type 

are eligible, aged between 6 months and 4 years. The interval between the first symptoms 

and inclusion must be 12 months or less. Advantages of these approaches, when compared 

to allogeneic HSCT, are less transplant related morbidity and no risk of GVHD,40 limitations  

the uncertainty about the risk of mutagenesis of cancer.2 When vectors are integrated 

genome wide, they risk being integrated in the vicinity of proto-oncogenes, triggering their 

expression and thereby neoplasia. Another point of caution is the possible effect that the 
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overexpression of the ASA enzyme may have on the other sulfatases and the closely 

regulated sulfatide levels.37 

Table 1 provides a summary of the results of clinical studies regarding HSCT and HSC gene 

therapy.  

Other forms of therapy 

Small molecule based therapies: Small molecules can cross the blood brain barrier.2 Specific 

small molecules are able to rescue misfolded proteins. This could possibly enhance the level 

of the available mutant ASA, thereby increasing residual ASA enzymatic activity.2 

Pharmacological chaperones (PCs) are small molecules that can enhance the level of the 

misfolded-prone mutant enzymes. Proteostasis regulators (PRs) are small molecules that 

improve the protein folding capacity of cells. When these two classes of small molecules are 

used together, the misfolded enzyme can be guided to a folded state, maintaining its 

structural ability.2 Through high throughput screening (HTS) assays the small molecules that 

function as PCs or PRs can be identified. Small molecules for mutant ASAs have been 

identified by HTS assays using patient derived cells. This might allow the identification of 

potential drugs for MLD.41  Another way in which small molecules can be used is by 

manipulating downstream pathways that are initiated or disturbed by the enzyme defect; the 

so called pathogenic cascades.2 

Warfarin administration:  Vitamin K has been shown to play a role in the modulation of 

sphingolipid synthesis.18 It is thought to control the rate-limiting step in the production of 

sphingolipids and the conversion of cerebrosides to sulfatides.18 Warfarin as a vitamin K 

antagonist is hypothesized to reduce the formation of sulfatides. This is currently being 

tested in a clinical trial for which children with MLD, aged 1-10 years, were included who had 

received and failed a HSCT or were excluded from the treatment 

(http://clinicaltrials.gov/ct2/show/NCT00683189).  
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Symptomatic treatment 

In patients not eligible for HSCT, treatment should be focused on creating the greatest 

possible comfort for both patients and parents. Feeding via gastrostomy usually relieves 

discomfort and struggling and prevents aspiration pneumonia. Painful spasms are common 

and need to be treated with injection of botulinume toxine or (intrathecal) baclofen. 

Communication, even when speech is lost, can be assisted through electronically devices. 

Genetic counseling and psychological support are important for the whole family.  

Conclusion  

Metachromatic leukodystrophy is a devastating disease for which at present no curative 

treatment is available for many patients. Despite the use of HSCT for leukodystrophies for 

decades now, the effectiveness of this treatment is still under debate. In general, HSCT does 

not seem to be beneficial for patients with overt neurological symptoms or the aggressive 

late infantile form of MLD. Inconsistent results have been reported for asymptomatic patients. 

A systematic evaluation of the effectiveness of HSCT is needed in order to be able to decide 

for which patients HSCT is beneficial. Standardized treatment protocols and longer follow-up 

will help to come to a conclusion. 

Innovative strategies such as gene therapy and enzyme replacement therapy are now being 

tested in clinical trials. Gene therapy has the potential to produce more effective levels of 

enzyme by generating autologous hematopoietic cells that overexpress the ARSA gene, than 

through HSCT. The preliminary results of the first clinical trial regarding this type of therapy 

are promising. However, further evaluation regarding the safety and long-term effects of this 

approach are needed. If the current ongoing clinical trials studying enzyme replacement 

therapy are able to overcome its main limitation and cross the blood brain barrier, this type of 

therapy would not only be promising for MLD but also for several other lysosomal diseases. 

A combination of these approaches will hopefully lead to a satisfying treatment of patients 

suffering from MLD.  
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Practice Points: 

- The diagnosis of MLD cannot be always based on the level of ASA activity, but may 

need confirmation by mutation analysis or urinary sulfatide excretion due to the 

possibility of pseudodeficiency. 

- If clinical presentation and MRI suggest MLD, but ASA activity is normal, the 

measurement of sulfatide excretion in urine and mutation analysis of PSAP is 

necessary to come to a definite diagnosis.   

- A scoring system for brain abnormalities, in combination with clinical parameters, can 

be used to measure disease severity.  

Research agenda: 

- A systematic evaluation of the effectiveness of HSCT 

- Longer follow up on the preliminary results of gene therapy and intracerebral enzyme 

replacement therapy 

Summary 

MLD is a severe storage disease caused by deficiency of the lysosomal enzyme 

arylsulfatase A, resulting in accumulation of sulfatides in the central and peripheral nervous 

system. A late-infantile, juvenile and adult onset type are distinguished based on the age of 

onset of the disease. The diagnosis of MLD is established through MRI and the detection of 

levels of ASA enzymatic activity in leukocytes, accompanied by mutation analysis and, in 

selected cases, measurement of sulfatide excretion in the urine. Brain MRI is characterized 

by widespread white matter changes with T2-hyperintense signal starting in the corpus 

callosum and periventricular and central white matter, but sparing subcortical fibers.   

There are several pitfalls in the diagnostic process: resemblance of the presenting symptoms 

of MLD to those found in Guillain-Barré syndrome or chronic inflammatory demyelinating 

polyneuropathy (CIDP) in young children, the pseudodeficiency alleles with no symptoms but 
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low ASA activity, and patients with saposin B deficiency who are symptomatic with normal 

ASA activity. No curative treatment is available for all types of MLD. This review focuses on 

current therapeutic approaches as HSCT, but also on possible future therapies that are now 

being evaluated in clinical trials such as enzyme therapy and gene therapy. The preliminary 

results of the gene therapy trial are promising, but more information is needed regarding the 

safety and long-term outcomes of this therapy. HSCT does not seem to be beneficial for 

overtly symptomatic patients or patients with the aggressive late-infantile onset type. The 

results for asymptomatic juvenile and adult patients are more encouraging. In order to come 

to a valid conclusion, a systematic evaluation including a larger patient sample, and longer 

follow-up periods is necessary.  
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Summary 

Metachromatic leukodystrophy (MLD) is an inherited neurodegenerative demyelinating 

disorder. Its recognition may be challenging, especially when patients present with 

psychiatric symptoms. Early diagnosis is crucial to allow life-saving treatment, hematopoietic 

cell transplantation (HCT). We describe the clinical course of 4 MLD patients who were first 

evaluated by a psychiatrist. When MLD was eventually diagnosed, HCT was no longer 

possible in 2 patients due to disease progression between first symptoms and correct 

diagnosis. In the other 2 patients, diagnosis was made just in time to perform HCT, which 

halted disease progression.  
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Introduction  
 
Metachromatic leukodystrophy (MLD) is a lysosomal disorder caused by biallelic mutations in 

ARSA, resulting in arylsulfatase A (ASA) deficiency and sulfatide accumulation in the central 

and peripheral nervous system. Sulfatides are major myelin lipids, and their accumulation 

leads to demyelination. MLD is one of the most common leukodystrophies with an estimated 

incidence of 1.4-1.8 per 100.000. Greenfield first described its pathological features – 

widespread demyelination and neuroglial sclerosis – in 1933. Numerous clinical and 

pathological studies have broadened our knowledge of this disease.1  

Based on age at onset, MLD is divided into three clinical subtypes: late-infantile (onset 

before 30 months), juvenile (2.5 to 16 years) and adult (after 16 years. Level of residual ASA 

activity is correlated to the subtype, with (almost) no activity resulting in the late-infantile type. 

This form presents with rapid psychomotor regression, ataxia and weakness, sometimes also 

areflexia due to severe peripheral neuropathy.2 Spasticity, dysphagia and seizures follow. 

The juvenile form often presents with deterioration in school performance due to disturbed 

attention, reduced processing speed, impaired executive functioning and behavioral 

abnormalities. First neurological signs are slowly progressive ataxia and a pyramidal 

syndrome. The adult form is characterized by intellectual and behavioural changes such as 

memory deficits and emotional instability.2 Mild polyneuropathy usually develops as the 

disease progresses. With early disease onset, disease progression is fast; in later onset 

forms, deterioration is insidious. Eventually, all acquired skills are lost and patients die, 

depending on the clinical subtype, within a few years or decades after first symptoms. 

Diagnosis of MLD is made through clinical presentation, typical brain MRI abnormalities 

(Figure 1), measurement of ASA activity in leukocytes, sulfatide levels in urine and ARSA 

mutation analysis.1 MRI shows bilateral symmetric abnormal hyperintense T2 signal changes 

starting in the corpus callosum, subsequently involving the periventricular white matter, 

before spreading to the central and subcortical white matter.1 
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Still, diagnosing MLD may be challenging in juvenile and adult-onset patients when 

psychiatric symptoms precede the neurological signs, and this is not rare: Hyde et al 

describe 129 cases, half of whom with a disease onset between 10 and 30 years. Fifty-three 

percent of these presented with psychotic symptoms.3  

In 1985, the first hematopoietic cell transplantation (HCT) for MLD was performed in the 

USA.4 As for other lysosomal storage disorders, HCT is supposed to be effective because 

donor macrophages, a source of lysosomal enzymes, migrate to the recipient’s brain to 

produce the missing enzyme there, cross-correcting the deficiency. Since then, treatment 

has greatly been optimized by reduced conditioning regimens, decreased treatment related 

mortality (now estimated at less than 10% for children), the usage of umbilical cord cells and 

better knowledge about correct timing. The decision whether HCT is appropriate is based on 

cognitive function (IQ >75) and neurological examination (able to walk without support). HCT 

has now been proven to be able to halt or even prevent the disease, but only when 

performed before disease is too advanced.5 This is mainly due to the fact that it takes 6 to 12 

months after transplantation until donor cells become effective, months in which the disease 

still progresses. This underlines the essence of timely diagnosis, as exemplified by 4 cases.  

Case reports 

Patient 1 (MLD-58) had typical motor and cognitive development, but always problems with 

social interaction. His premorbid IQ (age 9), was in the superior range (verbal IQ 119, 

performance IQ 130 on the Wechsler Intelligence Scale for Children-III (WISC-III)). At age 

12, his school performance dramatically declined, from regular to special education within 

one year, leading to the diagnosis of Asperger syndrome. Eventually, his behavior became 

so aggressive and disinhibited that admission to a psychiatric ward was necessary at age 13. 

His motor function remained typical. Coinciding with an exacerbation of behavioral problems, 

a discrepancy between performance (81) and verbal (111) IQ (WISC-III) led to referral to a 

neurologist. MRI, at age 13, revealing white matter abnormalities suggesting MLD, which 
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was confirmed by biochemical and genetic analyses. Despite the delay between first 

symptoms and diagnosis, he was still a candidate for HCT with a total IQ of 92 and only 

minor abnormalities at neurological examination. Now, 2.5 years after HCT, his cognitive 

abilities have stabilised after an initial further decline (verbal IQ (73), performance IQ (65)). 

Motor function remained typical. His behavioral problems, treated with risperidone since age 

13, are now well controlled.  

  

Patient 2 (MLD-60) had a typical early development. At 8 years, her cognitive function 

gradually declined; she could no longer learn new tasks and even lost previously gained 

skills as reading, resulting in special education. Her behavior became increasingly 

aggressive and disinhibited. The diagnosis attention deficit and hyperactivity disorder 

(ADHD), was made, for which she was treated with methylphenidate and risperidone. At age 

12 she developed repetitive motor and vocal tics. Her IQ was tested after parents noticed 

that her 2 years younger sister outran her in tasks (both cognitive as daily living such as 

getting dressed). An IQ drop from 70 to 55 (WISC-III) led to a brain MRI suggestive for MLD 

(Figure 1B). At age 13, diagnosis was confirmed biochemically and genetically. Although 

neurological examination was without major abnormalities, cognitive function had declined up 

Figure 1: Axial T2-weighted 
and sagittal T1-weighted MR 
images of (A) a healthy 
adolescent control, and MLD-
60 (B) and MLD-61 (C), both 
with late juvenile onset. (B) 
shows white matter 
abnormalities with frontal 
predominance and extensive 
periventricular white matter 
abnormalities. In (C) the 
typical radial oriented striped 
pattern of low signal intensity 
throughout the diffuse high 
signal intensity on T2-
weighted images is shown, 
and involvement and atrophy 
of the corpus callosum. 
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to a point (IQ 52) where HCT was judged to be no longer beneficial. Now, 1.5 year after 

diagnosis, motor function is starting to decline. She can still walk independently, but drags 

both feet, and fine motor movements are increasingly difficult for her. Her tics are 

progressive, and cognitive decline continues. 

Patient 3 (MLD-61) had typical milestones and school career, but started to deteriorate, 

initially cognitively, at age 13. Within a period of 2 years she dropped from A level schooling 

to vocational level. As the cognitive deterioration developed soon after a major life event, this 

was initially interpreted as reactive to this incident, resulting in a period of 8 years with 

relentless cognitive decline. Eventually, her father insisted on referral to a neurologist., Her 

cognitive function had declined to an IQ of 60 on the Wechsler Adult Intelligence Scale 

(WAIS)-III. This, in combination with her abnormal neurological examination (hyperreflexia, 

muscle weakness and ataxia), resulted in an MRI at age 21 suggestive for MLD (Figure 1C). 

In hindsight, an MRI would have been justified when it became clear that the cognitive 

deterioration was progressive. HCT was no longer an option. Now, 2 years after diagnosis, 

she is wheelchair dependent with increasing spasticity and severely affected cognitive 

function. In her symptom-free brother, the diagnosis of MLD was also confirmed, and he was 

eligible for HCT.  

Patient 4 (MLD-2) was already symptomatic at diagnosis at age 27, suffering from delusions 

and aggressive behavior and disinhibited behavior. As his older brother had been diagnosed 

with MLD many years earlier, diagnosis was made relatively fast. Because his treating 

physicians were unaware of HCT as possible treatment for MLD, he was not considered for 

HCT until one year after diagnosis. Meanwhile his increasing dangerous conduct resulted in 

compulsory admission to a psychiatric clinic. He was treated with risperidone, pipamperone 

and valproate. At time of his HCT evaluation, neurological examination showed no major 

abnormalities, and cognitive function was in the acceptable range (IQ 72, WAIS-III). After 

HCT, his behavior improved considerably with valproate, lithium and cognitive therapy, 
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allowing him to live at home. He still encounters concentration problems and fatigue. With an 

IQ of 76 (WAIS-III), 3 years after HCT, his overall cognitive function remained stable.  

 

Discussion 

These cases illustrate that, especially early on in the disease, when motor function is still 

intact, it is challenging to distinguish MLD from a primary psychiatric disorder as late juvenile 

and adult MLD patients have an insidious disease onset and often present with psychiatric 

symptoms. Initial symptoms can be similar to a first presentation of schizophrenia,  

depression, learning difficulties, ADHD or autism spectrum disorder.6  Despite the 

acknowledgement of these types of presentation already in 19757 and several case reports 

since8, knowledge about this differential diagnosis is not widespread, although during the last 

40 years, we have achieved a much better understanding of pathophysiology and natural 

history, allowing it to evolve from an untreatable towards a treatable condition. Thanks to 

HCT, we now have the possibility to greatly alter both quality of life and life expectancy. 

Awareness of this diagnosis and the current therapeutic options among child and adult 

psychiatrists is therefore crucial to allow for correct and early patient identification and to 

avoid other potential pitfalls as deferral in testing (asymptomatic) siblings of already 

diagnosed patients and delay in referral to specialized centers. 

There are clues to this diagnosis. All our cases had typical initial development, followed by a 

period of regression, first insidious, then overt. Concretely, the combination of an initially 

typically developing child with a clear change of behavior together with (in the beginning 

mild) cognitive deterioration should prompt diagnostic evaluation for neurometabolic 

disorders.9 This should include both neurological examination and brain MRI. Psychiatric and 

neurological symptoms together are even more suggestive of a degenerative disorder and 

warrant prompt referral to a neurologist. Though a discrepancy between verbal and 
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performance IQ is also seen in other conditions, its combination with the afore mentioned 

symptoms is especially suspect.  

The patients for whom HCT was no longer a possibility illustrate how crucial it is to be aware 

of this diagnosis and to properly identify patients who are likely to present first to psychiatrists 

and psychologists. Siblings of a patient (including older ones) should always be tested, 

making presymptomatic treatment possible. For patients who are no longer candidates for 

HCT, correct diagnosis is also essential to provide appropriate treatment and genetic 

counselling. 
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Abstract  

Aim  To describe the course of treatment with intrathecal baclofen (ITB) in children and 

young adults with metachromatic leukodystrophy (MLD) compared to spastic cerebral palsy 

(SCP).  

Method   All MLD patients in our center on ITB treatment since a minimum of six months 

were included (4 male, 6 female, mean age 10y 8m (range 6–24y)). Those with a 

predominantly spastic (SMLD; n=8) and dyskinetic (DMLD; n=2) motor impairment were 

compared. SMLD patients were compared with matched-control SCP patients (n=8). 

Treatment goals, programming mode, ITB dose, number of boluses and complications were 

registered at six months after baclofen pump implantation.  

Results Treatment goals were mainly to improve care and sitting position and to reduce 

pain. At six months, pump programming mode and mean dose of ITB did not differ between 

groups. However, the number of boluses was significantly higher (p = 0.03) in SMLD 

compared to SCP. Complication rates related to baclofen pump and its catheter were similar 

in MLD and SCP. 

Interpretation  ITB treatment course in the first six months after pump implantation is mostly 

comparable between MLD and SCP. ITB is a feasible therapy to improve comfort and daily 

care in MLD patients and should therefore be considered early. 



 
59 

 

What this paper adds  

• ITB is a feasible and safe therapy to improve comfort and daily care in children and 

youth with MLD. 

• Course of ITB treatment in the first 6 months is mostly comparable between MLD and 

SCP. 

 

Metachromatic leukodystrophy (MLD, OMIM 250100) is an autosomal recessive lysosomal 

disorder leading to progressive neurological decline in a previously healthy child or young 

adult. Increasing motor impairments such as spasticity and dyskinesia are challenging to 

treat and often lead to limitations in daily care and comfort. 1-3 

MLD is divided into three clinical subtypes, based on the age of onset: The late-infantile form 

starts before 30 months of age, the juvenile form before 16 years and the adult form 

thereafter. First symptoms and signs in younger patients consist of motor deterioration, older 

patients usually present with cognitive and psychiatric symptoms.4  

Currently, there is no curative treatment for MLD. Hematopoietic cell transplantation (HCT) 

has led to encouraging results, once performed in an early stage of the disease, especially 

for juvenile and adult patients.5,6 First results for a gene-therapy approach are promising.7 

In the many patients for whom the diagnosis comes too late and who are are no longer 

candidates for HCT, relentless disease progression is inevitable. Decline in level of mobility 

can be classified by an adapted gross motor function classification (GMFC-MLD),8 based on 

the gross motor function classification system (GMFCS) for children with cerebral palsy. 9 All 

juvenile MLD patients develop spasticity and often also a dyskinetic movement disorder, 

young patients rapidly, older patients more slowly. Sometimes, demyelinating peripheral 

neuropathy becomes so overwhelming as to effectively counteract spasticity. However, in our 

clinical experience, this is not frequent, certainly not in patients with the juvenile and adult 

forms. Spasticity, dyskinesia and pain caused by these movement disorders can limit optimal 

daily care, transfers and sitting.  
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The first step in treatment is oral spasmolytic medication as baclofen,10,11 a GABA-agonist 

that inhibits neural transmission at the level of the spinal cord, thereby leading to muscle 

relaxation.12 When side effects occur (>10%) and problems persist, intrathecal baclofen 

therapy (ITB) is an alternative treatment. It delivers the baclofen locally to the spinal fluid by 

an intrathecal catheter. To reach an adequate effect, the dose is increased in a stepwise 

manner in continuous delivery or, when repeated vanishing effect occurs, by a flexible 

program with periodic boluses.13,14 

During the last decades, experience with ITB has been increasing, and it is now known as an 

effective therapy to treat spasticity related problems in daily life in spastic cerebral palsy 

(SCP).15-17 Positive effects in dyskinetic cerebral palsy have also been reported, but current 

evidence is limited.18 ITB has recently been described to have beneficial effects in treatment 

of spasticity in progressive neurological diseases like MLD,16,19 and in our center, ITB is 

frequently used as therapy in children with cerebral palsy and progressive neurological 

disorders. 

As little is known about the clinical course of ITB treatment in MLD, our aim is to describe the 

course of ITB treatment in juvenile MLD patients and contrast it with SCP patients. We were 

interested whether the progressive nature of the disease makes other dose adaptations 

necessary than normally applied in static encephalopathies in children and young adults.   

 

Methods 

Design 

This study is a retrospective cross-sectional cohort study with matched-control SCP patients.  

Setting and participants 

All patients with juvenile MLD (diagnosis established by typical clinical and MRI findings, 

ASA activity and ARSA mutation analysis) who were treated with ITB in our center between 

February 2002 and December 2016, and had a baclofenpump for at least six months, were 

included. All children were non-walking (GMFC-MLD level 3 to 6).  
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For the SMLD group, a matched control group of patients with SCP treated with ITB was 

composed, out of all ITB patients treated in our center. This SCP group was matched with 

the SMLD group for age, sex and functional mobility level (non-walking, GMFCS 4 and 5). 

Only the MLD patients with a spastic movement disorder were matched with SCP patients, 

as patients with spasticity seem to require different dosing than dyskinetic patients,20 and the 

DMLD group (n=2) was too small to match. 

Patient characteristics  SMLD   DMLD SCP  
Sex (n) Male  
             Female 

4 
4 

 
2 

4 
4 

Clinical subtype (n) 
  Late infantile 
  Early juvenile 
  Late juvenile  
  Adult 

 
0 
3 
5 
0 

 
0 
0 
2 
0 

 
 
 
 
 

Type of predominant movement disorder (n) 
  Spastic 
  Dyskinetic 

 
8 
0 

 
0 
2 

 
8 
0 

Age at diagnosis 
Mean (range)  

 
8y 0m (5y – 14y)   

 
8y 0m (7y – 9y) 

 

Age when wheelchair dependent 
Mean (range) 

 
9y 0m (6y – 17y) 

 
8y 6m (8y – 9y) 

 

Age at pump implantation 
Mean (range) 

 
11y 0m (6y – 24y) 

 
9y 6m (9y – 10y) 

 
11y 0m (5y – 26y) 

GMFC-MLD /GMFCS level* (n) 
3 
4 
5 
6 

 
1 
2 
4 
1 

 
0 
0 
2 
0 

 
0 
3 
5 
 

Cathetertip (n) 
  C4 
  Th4 
  Th10 

 
0 
5 
3 

 
2 
0 
0 

 
0 
3 
5 

Purpose of ITB (multiple goals possible) (n) 
  Improve care  
  Decrease pain 
  Improve transfers  
  Improve sitting position  
  Prevent contractures 

 
7  
1 
1 
3 
0 

 
0 
2 
0 
1 
0 

 
8 
2 
0 
1 
1 

Complications (n) 
   Pump infection ** 
   Catheter disconnection *** 

 
0  
1  

 
0 
0 

 
1  
1 

 
Table 1. Patient characteristics 
CSF = cerebral spinal fluid; GMFC-MLD = gross motor function classification in metachromatic leukodystrophy; 
ITB = intrathecal baclofen; MLD = metachromatic leukodystrophy; SCP = spastic cerebral palsy.  
    * Score at pump implantation 
  ** at 0.5 month: negative cultures, removal of the pump. Second implantation included in the study 
*** One SMLD patient at 0.5 month: revision of the catheter; One SCP patient at 1 month: revision of the catheter. 
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Variables, data sources and measurement 

Of all included patients we collected age, sex, age at pump implantation and height of 

catheter tip. In MLD, we noted clinical subtype, age at diagnosis and at wheelchair 

dependency, and whether spasticity (SMLD) or dyskinesia (DMLD) was the predominant 

motor impairment. Mobility status was scored via GMFC-MLD in MLD patients, and GMFCS 

in SCP patients. The goals of ITB were noted. Dose pump settings at six months after 

implantation, including dose of baclofen in micrograms (μg) per day and baclofen pump 

dosing mode (simple continuous or flexible program with bolus administration) were used as 

outcome parameter. The starting dose after pump implantation was used as first 

measurement (t = 0).  

 

Data analysis 

The correlation between age at pump implantation and baclofen dosage at six months was 

calculated. An Independent Samples T-Test was used to search for a difference in baclofen 

dosage between DMLD and SMLD and between SMLD and SCP patients at 6 months after 

pump implantation. For the mode of baclofen dose and number of boluses, the Chi Square 

test was used. P < 0.05 was considered statistically significant. Analyses were performed 

using SPSS version 22.0.  

 

Ethics 

The medical ethical committee of the VU University Medical Center Amsterdam approved the 

study. 
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Figure 1. Study scheme 
MLD = metachromatic leukodystrophy; ITB = intrathecal baclofen; SMLD = spastic MLD; DMLD = dyskinetic MLD; 
SCP = spastic cerebral palsy. 

 

Results 

Eleven patients with MLD were treated with ITB between 2006 and 2016 (Figure 1). One of 

them was excluded from the study because of removal of the baclofen pump due to infection 

with staphylococcus aureus within two weeks; reimplantation was followed by re-infection 

and definitive pump removal. Eight patients had SMLD, two DMLD. The eight matched SCP 

patients for the SMLD group had a pump implantation between 2002 and 2016. Patient 

characteristics are summarized in table 1. In one MLD patient and in one SCP patient, 

catheter disconnection occurred as a complication, necessitating operative revision. In one 

SCP patient, the baclofen pump became infected within 1 month after implantation, leading 

to pump removal. The patient was included in the study after reimplantation.  

All MLD patients were wheelchair dependent within three years after diagnosis (mean 8y 

10m, range 6y - 17y). Six out of eight patients with SMLD (aged 6 to 8 years) were started on 

 
    

 

 

 

 
                 

    

Cohort of MLD patients with ITB pump 
implantation from 2006 – 2016 

N = 11 

Pump removal < 3 months 
N = 1 

MLD patients with ITB pump 
N = 10 

  
  

Matched group of SCP patients with ITB 
pump implantation from 2002 – 2016  

N = 8 

DMLD 

N=2 

SMLD 

N=8 
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ITB therapy within two years after wheelchair dependency. In two older children (13 and 17 

years old at the moment of wheelchair dependency), ITB treatment started seven years later. 

In both patients with DMLD, ITB therapy started one year after wheelchair dependency.    

 

Results 

Metachromatic leukodystrophy 

In the eight SMLD patients, mean starting dose was 68μg per day (SD 23.60, range 40 – 

100). Both DMLD patients started at 50μg per day. At six months, five out of eight SMLD 

patients and both DMLD patients had a flexible program with bolus administration. The mean 

dose in SMLD and DMLD at six months was 210μg (SD 119.97, range 70 – 428) and 308μg 

(SD 81.32, range 250 – 365), respectively (Figure 2). 

 

 

Figure 2. Course per subject in MLD and SCP group: 6 months follow up. MLD = metachromatic leukodystrophy; 
SMLD = metachromatic leukodystrophy with predominant spastic motor impairment; DMLD = metachromatic 
leukodystrophy with predominant dyskinetic motor impairment; SCP = spastic cerebral palsy.  
Catheter disconnection (months after pump implantation): one SMLD patient at 0.5 month; one SCP patient at 1 
month.          
* DMLD ** Mean of SMLD  *** Mean of SCP 
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In patients who had a flexible program, mean dose of baclofen given by boluses was 112μg 

per day (SD 128.29, range 10 – 335) administered in 2.2 (SD 0.45, range 2 – 3) boluses in 

SMLD, and 140μg per day (SD 84.85, range 80 – 200) in 2.5 (SD 0.71, range 2 – 3) boluses 

in DMLD (Table 2). No correlation was found between age at pump implantation and 

baclofen dosage at six months (R = 0.33, p = 0.35 ).  

 Baclofen in mcg per 24 

hours (SD, range)   

Dose of baclofen in boluses in 

mcg per 24 hours (SD, range) 

Number of boluses (SD, 

range) 

SMLD 210 (119.97, 70 – 428) 112 (128.29, 10 – 335) 2.2 (0.45, 2 – 3) 

DMLD 308 (81.32, 250 – 365)  140 (84.85, 80 – 200) 2.5 (0.71, 2 – 3)  

SCP 150 (79.37, 60 – 277) 35 (33.91, 10 – 85) 1.5 (1.00, 1 – 3) 

 

Table 2. Results per group at 6 months after starting ITB 
SMLD = metachromatic leukodystrophy with predominant spastic motor impairment; DMLD = metachromatic 
leukodystrophy with predominant dyskinetic motor impairment; SCP = spastic cerebral palsy; ITB = intrathecal 
baclofen.  
 

Spastic cerebral palsy  

In SCP, the starting dose was 67μg per day (SD 19.64, range 50 – 96). At six months, four 

had a simple continuous program and four had a flexible program with boluses added. Mean 

dose of baclofen was then 150μg per day (SD 79.37, range 60 – 277) (Figure 2). Of patients 

with a flexible program, mean dose of baclofen given by boluses was 35μg per day (SD 

33.91, range 10 – 85), administered in an average of 1.5 boluses (SD 1.00, range 1 – 3) 

(Table 2). As in MLD, no correlation was found between age at pump implantation and 

baclofen dosage at six months (R = 0.41 , p = 0.32). 

 

Comparison between groups 

SMLD vs DMLD 

At six months after initiating therapy, no statistically significant differences were found in the 

dose of baclofen between SMLD and DMLD patients (p = 0.32). The difference in simple 

continuous or flexible program with boluses was not significant between both groups (X(1) = 
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1.07, p = 0.30). In patients with a flexible program, the mean dosage of baclofen given in 

boluses (p = 0.79) and the number of boluses (X(1) = 0.63, p = 0.43) did not differ 

significantly between groups. 

 

SMLD vs SCP 

No statistically significant differences were found in the dose of baclofen between SMLD and 

SCP patients (p = 0.26) after six months. There was also no difference in whether patients 

had a simple continuous or flexible program with boluses (X(1) = 0.25, p = 0.61). The number 

of boluses (X(2) = 6.98, p = 0.03) was significantly higher in the SMLD group. The mean 

dosage of baclofen given in boluses (p = 0.29) did not differ significantly between groups. 

 

Discussion 

In this study, we showed that ITB is a feasible therapy in MLD patients with either 

predominant spastic or dyskinetic motor impairment, with a treatment course comparable to 

SCP. The complication rate in MLD was comparable to SCP patients and similar to rates 

reported in previous studies.21,22 

The dosing in the first six months of ITB after pump implantation was mostly comparable in 

SMLD and SCP. Only the bolus number administered in flexible programming mode was 

higher in the SMLD group compared to SCP, indicating that more flexible programming may 

be more effective in improving care and comfort in SMLD than static administration of 

baclofen. As relevant spasticity in MLD usually occurs rather rapidly after wheelchair 

dependency, especially in younger patients, ITB should be considered early in the disease 

course.   

Goals of treatment were mainly to improve care, improve sitting position and reduce pain. In 

this study, we did not formally evaluate whether goals were reached; still, families reported 

clear improvements on follow-up visits. A previous study on the effect of ITB on activities of 

daily life in SCP, DCP and progressive neurological disorders showed that caregivers were 



 
67 

 

generally satisfied with the improvement in comfort and daily care. However, the group with 

progressive neurological disorders showed less improvement in comfort during ITB treatment 

than the two CP groups. This study counted only two MLD patients.4  

A limitation of this study is the small number of patients and the short follow-up time. To 

obtain more evidence on optimal treatment programs and efficacy of ITB in MLD, future 

research should address treatment course and outcomes in larger cohorts. This could likely 

be achieved by studying larger clinical cohorts with systematic gathering of data in 

multicenter studies, for example by centers of expertise participating in the European 

Reference Network for Rare Neurological Diseases (ERN-RND).  It is important to also 

address goal achievement and outcomes at the level of activities as well as body structure 

and function, at the same time taking into account that MLD is a progressive disorder with 

inherent decline of function despite treatment. 
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Metachromatic leukodystrophy (MLD) is a neurodegenerative disorder caused by deficiency 

of arylsulfatase A,1 leading to sulfatide accumulation and subsequent demyelination of the 

central and peripheral nervous system.2,3 

MLD is divided into 3 subtypes, based on the age of onset, late-infantile (< 30 months), 

juvenile (2.5-16 years) and adult (>16 years). With early disease onset, progression is fast 

and motor signs are prominent, in contrast to later forms with insidious onset of cognitive 

deterioration.6 Eventually, all acquired skills are lost and patients die. Hematopoietic cell 

transplantation (HCT) is a possible treatment, but systematic outcome data are lacking, due 

to the use of different eligibility criteria and protocols worldwide.6-12 In order to assess HCT 

efficacy, we evaluated all 35 consecutive MLD patients presenting between 2004 and 2015 

in our department, the Dutch Leukodystrophy Referral Center (Figure 1A).  

Patients with a total intelligence quotient (IQ) above 70 and without gross neurological signs 

(i.e. ambulation without support, no dysphagia) were considered HCT candidates (Tables 1 

and 2). HCT was performed at the University Medical Center Utrecht (UMCU; Blood and 

Marrow Transplantation Program) according to international protocols.13 Patients received 

HCT from either a HLA identical sibling (n=3; noncarrier) or from an unrelated umbilical cord 

blood (n=10) donor (with a minimum match of 4 out of 6 HLA-loci) after fludarabine 

(160mg/m2) + busulfan (targeted to cumulative exposure of 90mg*h/L); thymoglobuline was 

added in cord blood recipients. For details, see supplemental Methods (available on the 

Blood Web site). 

Transplanted patients were followed for a mean duration of 4.7 years, assessments including 

neurological examination, cognitive function, brain magnetic resonance imaging (MRI) rated 

by the MLD-Loes score,14 measurement of arylsulfatase A activity, and assessment of nerve 

conduction velocity. Gross motor function (GMF) was scored according to a classification 

developed for MLD.15 
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After 5 years, follow-up intervals were adapted to clinical status. Follow-up of 

nontransplanted patients (mean, 4.6 years) consisted of neurological examination, in some 

cases, assessment of nerve conduction velocity, and MRI, the intervals depending on clinical 

condition. Two composite survival endpoints were analysed; intervention-free survival (IFS) 

and activities of daily living-compromise free survival (AFS). 

There was no transplantation-related mortality. All patients engrafted and achieved full donor 

chimerism. Three symptomatic patients (23%; 1 late-infantile,1 juvenile,1 adult) died due to 

disease progression, all within 1 year after HCT. Eight nontransplanted patients (36%) died 

22 to 72 months after diagnosis. Overall survival at latest assessment was 76.9% for 

transplanted and 63.6% for non-transplanted patients (Figure 1B). One patient experienced 

acute, 3 chronic graft-versus-host disease (1 extensive). All were effectively successfully 

treated with corticosteroids and came off immunosuppressive therapy. 

 

Figure 1: Patient cohort and outcome after HCT. (A) 13 transplanted patients (magenta shades, 6 asymptomatic 
(diagnosed because of an affected sibling), mean age 14.4 years, range 2-35 years) and 22 non-transplanted 
patients (blue shades, mean age 6.5 years, range 2-32 years). Four patients were referred from other European 
countries (Belgium, Denmark and Luxemburg); the remainder came from the Netherlands. (B) Overall survival 
probability for transplanted and non-transplanted patients. (C) Probability of IFS and AFS for transplanted and 
non-transplanted patients. (D) Probability of IFS and AFS for symptomatic (n=7) and presymptomatic (n=6) 
transplanted patients. 
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IFS (whereby death, wheelchair dependency, gastrostomy and intrathecal baclofen treatment 

were regarded as events) was 69.2% for transplanted and 9.1% for non-transplanted 

patients (P=.03; Figure 1C). Symptomatic transplanted patients had lower estimated IFS 

(42.9%) than presymptomatic transplanted patients (100%) at HCT (P=.052; Figure 1D). AFS 

was defined as no occurrence of death, motor (clinically relevant peripheral neuropathy, 

spasticity or ataxia, gross motor function ≥ 3) or cognitive (IQ decline ≥ 6 points) 

deterioration. Transplanted patients had higher AFS (46.2%) than nontransplanted patients 

(0%; P=.01; Figure 1C). Symptomatic transplanted patients had an AFS probability of 28.6%, 

versus 66.7% for presymptomatic transplanted patients (P= .11; Figure 1D). The only 

surviving late-infantile patient had very limited motor function 3 years after HCT, due to 

progressive neuropathy. Motor function remained preserved in 2 out of 4 surviving juvenile 

and 5 adult patients. Progressive neuropathy hampered motor function in 2 juvenile patients. 

Regarding the adult patients, none showed signs of spasticity or ataxia, and when present (n 

= 2), polyneuropathy was mild and did not interfere with motor function. In the entire 

transplanted group, nerve conduction remained normal in 1, stabilized in 8 and further 

decreased in 2 patients.  In comparison, in the nontransplanted patients, all late-infantile and 

all 13 juvenile patients deteriorated from intact motor function within 16 months to hardly any 

remaining motor function. In only 2 patients (adult onset) did motor function remained intact 

for the duration of follow up (Tables 1 and 2).  
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Table 1: Evolution with and without HCT 

 

Patient 
ID 

MLD type Follow-up 
since HCT 
(months) 

GMF pre 
HCT 

GMF post 
HCT* 

Cognition  pre 
HCT (age in 
years/months) 

Cognition post 
HCT (age in 
years) 

MRI pre 
HCT 

MRI post HCT* Deceased (age 
in years) 

 Transplanted patients  
MLD-50 Late-infantile 10 2 6 DQ 105 (25m) NA 2 20 yes (3y) 
MLD-45 Late-infantile  60 2 5 DQ 101 (35m) 70 (4y) 3 8 no 
MLD-16 Juvenile  36 0 0 104 (6y) NA 0 0 no 
MLD-37 Juvenile  127 0 2 DQ 116 (26m) 95 (6y) 2 4 no 
MLD-4 Juvenile  112 1 1 110 (5y) 56 (10y) 4 8 no 
MLD-53 Juvenile  11 1 6 74 (7y) NA 20 25 yes (8y) 
MLD-14 Juvenile  61 1 1 94  (14y) 93 (17y) 12 11 no 
MLD-21 Adult  27 0 0 100 (17y) 95 (18y) 10 10 no 
MLD-30 Adult  94 0 1 104 (19y) 107 (21y) 7 11 no 
MLD-41 Adult  77 0 0 91 (25y) 89 (27y) 12 13 no 
MLD-15 Adult  59 0 0 87 (35y) 73 (40y)  11 14 no 
MLD-51 Adult  2 1 2 61 (22y) NA 16 24 yes (22y) 
MLD-2 Adult  62 0 0 72 (28y) 76 (31y) 13 12 no 
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Abbreviations: GMF, gross motor function; MRI, magnetic resonance imaging; DQ, developmental quotient; NA, not available. 

* GMF and MRI post HCT are scored at latest follow-up assessment. 

Patient ID MLD type Follow-up 
(months) 

GMF at 
diagnosis  

GMF latest 
assessment* 

Cognition at 
diagnosis (age 
in years) 

MRI at 
diagnosis  

MRI at latest 
assessment * 

Deceased  

 Non-transplanted patients  
MLD-8 Late- infantile 39 6 6 NA 4 NA yes (5y) 
MLD 20 Late-infantile  36 6 6 NA 10 NA yes (6y) 
MLD-26 Late-infantile  72 5 6 NA 17 NA yes (8y) 
MLD-34 Late-infantile  36 6 6  NA 12 NA yes (4y)  
MLD-40 Late-infantile  19 6 6 NA 8 NA no 
MLD-57 Late-infantile  29 4b 6 NA 13 NA no 
MLD-5 Juvenile 42 1 6 71 (7y) 22 26 no 
MLD-6 Juvenile 42 1 6 65 (9y) 21 23 no 
MLD-10 Juvenile  84 1 5  NA 18 NA no 
MLD-11 Juvenile  84 1 5  NA 14 NA no 
MLD-12 Juvenile  93 1 6 68 (6y) 12 NA no 
MLD-17 Juvenile  72  1 6 66 (6y) 14 NA yes (12y) 
MLD-18 Juvenile  48 1 6 75 (6y) 14 NA yes (12y) 
MLD-22 Juvenile  44 1 6 65 (15y) 22 NA no 
MLD-29 Juvenile  22 1 6 61 (7y) 18 NA yes (8y) 
MLD-33 Juvenile  68 NA 6 NA 15 25 yes (11y)  
MLD-38 Juvenile  29 1 5 NA 17 NA no 
MLD-39 Juvenile  33 1 4b 63 (7y) 15 NA no 
MLD-54 Juvenile  87 1 5 NA 17 19 no 
MLD-25 Adult  103 1 3 50 (22y) 19 23 no 
MLD-32 Adult  70 0 0 NA 16 16 no 
MLD-56 Adult  38 1 2  53 (32y) 13 17 no 
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Cognitive function (Tables 1 and 2) remained unchanged in 6 transplanted patients. One 

late-infantile, 1 juvenile and 1 adult patient showed clear cognitive deterioration after HCT. 

For the evaluable nontransplanted patients at diagnosis (n = 10), all IQs were low. At follow-

up, cognition was not formally tested, but, clinically, patients continued to deteriorate.  

Other neurological symptoms were more severe in nontransplanted patients. Epilepsy 

developed in half (11 of 21; 52%) versus 1 of 13 (8%) of the transplanted group. Additionally, 

severe spasticity was a frequent problem in nontransplanted patients with 9 of 21 (43%) 

juvenile patients needing intrathecal baclofen treatment. At latest assessment, 17 of 21 

(81%) evaluable non-transplanted patients required feeding via gastrostomy while only 1 

transplanted patient (late-infantile) required gastrostomy 5 years after HCT. Brain MRI 

(Tables 1 and 2) improved in 5 of 10 (50%) surviving transplanted patients, after initial 

deterioration, and stabilized in the remainder. In all nontransplanted patients, but one adult, 

MRI deteriorated over time. 

In summary, the unique characteristics of this study are the comparison of disease evolution 

in transplanted patients with the natural course of patients no longer eligible for HCT 

diagnosed within the same period. We used consistent decision guidelines, and all 

transplantations were performed in a single center. Our data show that, under these 

conditions, HCT is a safe procedure for pre- and early symptomatic MLD patients with the 

juvenile or adult type, resulting in disease stabilization and high disease burden-free survival, 

with even the suggestion of some brain repair, reflected by improvement of brain MRI 

abnormalities, confirming earlier findings.6,16-19 For late-infantile and more advanced patients, 

results are not encouraging, suggesting that HCT in those at best delays disease 

progression. Our study shows that motor and cognitive functions are good predictors of 

outcome. Clearly, affected motor (inability to walk without support) and cognitive (IQ below 

75) function resulted in no benefit of HCT. Brain MRI abnormalities were more severe and 

extensive in the patients rejected for HCT than in successfully transplanted patients, 

suggesting that an MRI score above 15 is associated with an unsuccessful outcome. As HCT 
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remains an intensive treatment and initial neurological worsening is to be expected, it should 

not be considered if the disease has progressed beyond a certain stage. In these patients, 

HCT negatively impacts their life and that of their families at a time, which should be 

cherished before the inevitable frank disease progression sets in.  

Limitations of our study are its retrospective character and the inevitable selection bias 

resulting from the fact that nontransplanted patients were more severely affected than the 

transplanted patients at diagnosis. In addition, some issues remain: 3 patients (2 with the 

juvenile form) showed cognitive deterioration, despite presymptomatic HCT, and despite 

relatively stable white matter changes, suggesting neuronal involvement perhaps less 

amenable to treatment with HCT. Peripheral nerve involvement seemed unaltered, despite 

normal circulating enzyme levels after transplantation. Lastly, especially for the slowly 

progressive adult forms, follow-up needs to be longer to fully evaluate effects of HCT. 

As the best moment for HCT is as early as possible and before clinical disease onset, it is of 

utmost importance to test all siblings of an index case, including older ones. For more 

advanced and late-infantile patients, results are discouraging. For the majority of patients 

evaluated, HCT was no longer an option neither did they qualify for treatment trials, 

emphasizing the need of earlier diagnosis and better treatment strategies. 
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Supplementary data  

Methods 

Clinical parameters 

Gross motor function (GMF) for MLD: GMF consists of seven different levels and can be 

applied to children aged 18 months and older.1 All patients were scored by a child neurologist 

(MSK or NIW). 

GMF for MLD 

Level 0 Walking without support with quality of performance normal for age 

Level 1 Walking without support but with reduced quality of performance, i.e. instability 

when standing or walking 

Level 2 Walking with support. Walking without support not possible (fewer than five 

steps) 

Level 3 sitting without support and locomotion such as crawling or rolling. Walking with 

or without support not possible 

Level 4 (a) Sitting without support but no locomotion or 

 (b) Sitting without support not possible, but locomotion such as crawling or 

rolling 

Level 5 No locomotion nor sitting without support, but head control is possible 

Level 6 Loss of any locomotion as well as loss of any head and trunk control 

 

NCV: Motor NCV of the anterior tibial nerve was considered abnormal if conduction velocity 

was below the mean (± SD) reference values. Pediatric reference values were applied for 

children ≤16 years (2-4 years 49.8±5.79 m/s, 4-16 years 47.9±9.2 m/s).2 For adults, we used 

local reference values, derived from published cohorts.3 

Evaluation of cognitive function:  patients received a developmental evaluation or IQ testing 

prior to HCT with the exception of ten children (six with late-infantile MLD, table 1, main text) 

already clearly affected so that HCT was evidently no longer an option. One adult patient 

declined HCT (MLD-32) and was therefore not tested.  

Depending on patients’ ages and proficiencies, cognitive function was evaluated using the 

Dutch versions of the Bayley Scales of Infant Development-II (BSID-II-NL; < 48 months), the 

Wechsler Intelligence Scale for Children-III (WISC-III-NL; 6–18 years)4, the Wechsler 
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Nonverbal Scale of Ability (WNV-NL; 4–22 years) or the Wechsler Adult Intelligence Scale-III 

(WAIS-III-NL; ≥ 18 years). As a consequence, outcomes of cognitive function could not be 

immediately correlated. Especially the predictive validity of the BSID-II-NL for later cognitive 

function in terms of Wechsler IQs is poor and should therefore be interpreted with care.5 

MRI evolution: For all patients, brain magnetic resonance imaging (MRI) was available at the 

time of diagnosis. Transplanted patients underwent an MRI at 6 months after HCT, thereafter 

every 1 year or on indication. Axial T2-weighted images were scored using the MLD Loes 

score.6 

 

Statistical analyses 

Kaplan-Meier estimates were used to depict outcome probabilities for the main and other 

outcomes of interest. Descriptive statistics were used to describe primary and secondary 

endpoints, using SPSS version 22.0.  

 

HCT procedure  

All patients received a myeloablative conditioning regimen of busulfan (75 to 90 mg*h/L) and 

antithymocyte globulin (ATG) (10 to 2.5 mg/kg/day, day -8 till -4) combined with either 

cyclofosfamide (200 mg/kg total) or fludarabine (160 mg/m2 or 40 mg/m2 from day -5 till -1). 

All patients received cyclosporine (target range 200–250 µg/L,) as Graft versus Host Disease 

(GvHD) prophylaxis. Prednisone was given to cord blood recipients from day 0 until day 28, 1 

mg/kg per day, as well as methotrexate 10 mg/m2 at days +1, +3 and +6. The average total 

nucleated cell dose was 2.26 x 105 cells/kg, with a median of 2 x 105/kg CD34+ dose (range 

0.2–3.3 x 105/kg).  

 

Engraftment 

Median interval to neutrophil engraftment was 19 days (range 14–45 days). Median time to 

platelet engraftment was 45 days (range 28–91 days). Neutrophil engraftment was defined 

as the first of three consecutive days with an absolute neutrophil count > 500. Platelet 

engraftment was defined as the first of three consecutive days of an absolute thrombocyte 

count of > 50.  

Chimerism analysis was done by variable number of tandem repeats (VNTR) by polymerase 

chain reaction (PCR) after engraftment, at day 60, and subsequently every year post HCT. 

Full donor chimerism was defined as ≥ 95% donor derived hematopoietic stem cells, mixed 
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chimerism if 10% to 94% donor derived hematopoietic cells were of donor origin, and 

autologous recovery if ≤ 10% of hematopoietic cells were donor derived. GvHD was scored 

according to standard criteria.7 ASA activity was measured at each follow-up and regarded 

as normal if within the range of normal according to the institutional reference range, and low 

if below the lower limit of normal but not within disease range.  

 

Results 

At latest assessment all patients were full chimeras. ASA activity at latest assessment was in 

the normal range for 11/13 patients. In 2 patients, ASA activity was low (36 and 38 

nmol/mg/17h), but substantially higher than the disease range (0–11 nmol/h/mg). The sibling 

donor for both patients was heterozygous for the pseudodeficiency allele, resulting in this low 

activity, as no matched unrelated donor could be found. 
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Abstract  

In metachromatic leukodystrophy (MLD), a lysosomal storage disorder,1 hematopoietic cell 

transplantation (HCT), when performed early, stops brain demyelination and even allows 

remyelination, thereby halting white matter degeneration.2-5 However, it remains unknown 

how disease stabilization is achieved. Brain tissue of eight patients with MLD, obtained at 

autopsy, was investigated for macrophage activation and polarization, myelin content and 

numbers of oligodendrocytes and their precursors. Additionally, sulfatide storage and 

digestion were assessed. Two of the patients had received HCT 10 to 12 months before 

death. We show that in brain tissue of transplanted MLD patients, metabolically competent 

donor macrophages are present and distributed throughout the white matter. Compared to 

untreated patients, these macrophages are activated and preferentially express markers of 

an M2 phenotype that supports oligodendrocyte survival and differentiation. The numbers of 

oligodendrocyte precursors and, even more, mature oligodendrocytes are increased in 

transplanted patients. Beyond cross-correction of enzyme deficiency, transplanted activated 

macrophages may play a neuroprotective role for resident oligodendrocytes, thereby 

enabling remyelination. These results support the importance of modulation of inflammation 

for oligodendrocyte survival and myelin restoration in MLD, which could be exploited for 

better therapeutic outcome. 
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Introduction 

Metachromatic leukodystrophy (MLD, MIM 250100) is a devastating inherited white matter 

(WM) disorder caused by biallelic mutations in ARSA, leading to deficient activity of 

arylsulfatase A (ASA), a lysosomal enzyme digesting sulfatides (figure 1a).1 Sulfatides are 

enriched in myelin sheaths; their accumulation in MLD causes demyelination and inhibits 

oligodendrocyte differentiation from precursor cells.6  Depending on the age at onset, MLD is 

divided into late-infantile (onset before 30 months of age), juvenile (onset between 30 

months and 16 years of age) and adult (onset after 16 years of age) forms. If MLD is 

diagnosed early, its later-onset forms (juvenile and adult) can be treated by allogenic 

hematopoietic cell transplantation (HCT).2,3 Ex vivo gene therapy with ASA overexpression 

has been shown to treat the late-infantile form when done early, before symptoms develop.7 

HCT halts further demyelination, and in some patients brain white matter abnormalities even 

improve on MRI (figure 1b, c).4,5 Mechanisms of HCT action in MLD, however, are not yet 

fully understood. HCT is supposed to provide cross-correction of deficient enzyme levels by 

secreting ASA from donor cells migrated into the brain, thus restoring sulfatide degradation, 

but its exact mechanism remains elusive.8 Until HCT becomes effective, there is an 

estimated six to twelve month delay possibly causing treatment failure in the rapidly 

progressive late-infantile form and in juvenile cases presenting with significant disability and 

MRI abnormalities. Using tissue of children with MLD, two of whom HCT-treated2 and six 

untreated, we ascertained the presence of metabolically competent cells in the brain 

following HCT and compared inflammatory response and oligodendrocyte numbers in the 

two groups. 
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Figure 1. MLD at a glance. (A) shows the biochemical reaction impaired in MLD, the desulfation of 3-0-
sulfogalactosyl glycolipids (“sulfatides”) to galactosylceramide. (B) T2-weighted MRIs demonstrating the 
improvement of brain white matter abnormalities in a successfully transplanted patient, compared with patient 1 
whose HCT was not successful. (C) illustrates the effect of HCT in MLD as interpreted so far.  
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Methods  

The study was approved by the IRB of the VU University Medical Center, with informed 

parental consent. Brain autopsies of patients 1, 2 and 3 were performed within six hours 

post-mortem in our center; brain tissue of patients 4 to 8 was obtained through the NIH 

NeuroBioBank (https://neurobiobank.nih.gov).  

Tissue staining 

Six-μm-thick formalin-fixed paraffin-embedded tissue sections were routinely stained with 

Haematoxylin&Eosin and Toluidine blue. Immunohistochemistry was done as described9  

using antibodies targeting the microglia/macrophages markers CD68 (1:1600 Dako, M0814) 

and CD45 (1:100 Dako, 0701), the myelin marker proteolipid protein (PLP, 1:3000, Biorad, 

MCA839G), and the M2 marker CD163 (1:300, Cell Marque, MRQ-26).10 Five-μm-thick 

frozen tissue sections were stained with Oil red O and with antibodies against M1 marker 

CD40 (1:500, Dako, ab13545) and CD64 (1:250, Abcam, ab104273)11,12, M2 marker 

mannose receptor (CD206, 1:500, Dako, ab125028)[10] and oligodendrocyte lineage-specific 

marker Olig2 (1:100, Millipore, AB9610) as described.13 Frozen tissue was also used for 

double staining of the M1 and M2 markers CD40 and CD206, respectively. CD40 

immunoreactivity was visualized with an Envision+ system HRP-labelled antibody and 3,3’-

Diaminobenzidine (Dako, K4002, K3467), CD206 with liquid permanent red (1:100, Dako, 

K00640) after secondary incubation with biotinylated secondary antibody (1:100, Dako, 

E0432) followed by streptavidin with an alkaline phosphatase conjugate (1:100, Sigma-

Aldrich, 11089161001). Sections were counterstained with haematoxylin. Fluorescence in 

situ hybridization (FISH) against chromosomes X and Y was performed using a XY CEP 

probe (Abbott, 05J10-051) and a FISH Accessory Kit (Dako, K5799).  

Image acquisition and analysis 

Pictures were taken with a Leica DM6000B microscope (Leica microsystems). The number 

of positive pixels was quantified using the colour deconvolution plugin for imaging software 

ImageJ.14,15 Total cell number were counted with the ImageJ cell counter. Oligodendrocytes 



 

 
88 

 

were classified as mature or precursor cells (OPC) based on Olig2 intensity as validated 

before.16  

Statistical analysis 

Statistical analysis was performed with GraphPad Prism v7.0a. Data are displayed as mean 

± standard error of the mean. An unpaired t-test or the nonparametric Mann-Whitney U-test 

was performed to evaluate differences between non-transplanted and HCT-treated patients 

(considered significant when p < 0.05). 

 

Results 

Patients 

Patient 1 presented at age 2 years with peripheral demyelinating polyneuropathy and mildly 

delayed myelination on brain MRI (figure 1b). Absent ASA activity and mutations c.245C>T, 

p.(Pro82Leu) and c.1168C>T, p.(Arg390Trp) in ARSA confirmed the diagnosis of late-

infantile MLD. Cognitive function was age-adequate. Because there was no clear CNS 

involvement, HCT from a mismatched (5 out of 6 matched) unrelated female cord blood 

donor was performed, unfortunately followed by disease progression albeit rapid successful 

engraftment and full donor chimerism. He died one year after HCT. Patient 2 was diagnosed 

at age 7 years with gait abnormalities due to mild spasticity and ataxia. MRI showed 

extensive white matter abnormalities. Diagnosis of juvenile MLD was confirmed by low ASA 

activity; ARSA mutation analysis revealed c.830delTCinsAA, p.(Ile277Lys) and c.1277C>T, 

p.(Pro426Leu). Total IQ was 74. HCT was performed with a fully matched unrelated male 

cord blood donor. Despite fast successful engraftment and full donor chimerism, the disease 

rapidly progressed. She died one year after diagnosis. Patient 3 (female) was 26 months old 

when diagnosed with late-infantile MLD because of motor regression, confirmed by absent 

ASA activity and mutations c.245C>T, p.(Pro82Leu) and c.287C>T, p.(Ser96Phe) in ARSA. 

MRI showed extensive white matter abnormalities with sparing of the direct subcortical white 
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matter and the typical hypointense stripes within the abnormal white matter. She continued to 

deteriorate and died three years after diagnosis from disease progression. Patient 4 

(NBB5505) died at age 3 years from late-infantile MLD, after having been diagnosed at age 

22 months because of delayed acquisition of independent walking, with low ASA activity and 

mutations c.841G>T, p.(Asp281Tyr) and c.1004A>T, p.(Asp355Val) in ARSA. He deceased 

because of disease progression in the context of feeding difficulties and a respiratory 

infection. Patient 5 (NBB3308) died at age 21 years, patient 6 (NBB1144) at age 12 years, 

patient 7 (NBB5381) at age 7 years and patient 8 (NBB5509) at age 6 years. Regarding 

these patients, no further information was available. 

 

Histopathology 

In the two transplanted patients, donor macrophages had successfully reached the brain. 

Histopathology showed metabolically competent macrophages able to degrade sulfatides to 

cholesterol (orthochromatic and Oil red O-positive cells) next to macrophages loaded with 

sulfatides (metachromatic cells). FISH studies for X and Y chromosomes confirmed the 

presence of donor cells in the transplanted brains (figure 2).  

In most WM areas of transplanted patients, the number of CD45-positive activated 

microglia/macrophages was greatly elevated compared to untreated individuals (figure 3). 

Notably, the total number of microglia/macrophages, as assessed by CD68, did not 

significantly differ in treated versus untreated patients, suggesting that HCT is associated 

with a more robust microglia/macrophage activation rather than with increased proliferation 

of these cells. We then questioned whether HCT had an effect on the microglia/macrophages 

phenotype. In vitro, these cells can be polarized towards opposite states of a spectrum, one 

being pro-inflammatory (M1) and the other anti-inflammatory (M2). In transplanted patients, 

macrophage expression of M2-associated proteins was significantly higher than in untreated 

patients in all WM areas examined.  



 

 
90 

 

 

Figure 2. Donor cells reach the brain of transplanted MLD patients. (A, patient 5) Stain with Klüver (blue dye 
for myelin) and periodic acid Schiff (PAS, pink, stain for sulfatides in macrophages) of the cerebral periventricular 
white matter shows loss of myelin and abundance of cells loaded with PAS-positive granular material. (B, patient 
1) Hematoxylin&Eosin stain of the frontal subcortical white matter shows presence of macrophages with intense 
eosinophilic cytoplasm (arrows) next to macrophages loaded with clearer granular material. (C, patient 1) A 
Klüver-PAS stain of the same region confirms the presence of a double population of macrophages, more (open 
arrows) and less (closed arrows) intensely PAS-positive. (D, patient 2) Toluidine stain of the parietal white matter 
reveals that only a subset of macrophages is metachromatic (purple, i.e. loaded with sulfatides), the remaining 
being orthochromatic (brown). (E, patient 1) Metabolic competence of a subset of macrophages is confirmed by 
their ability to digest sulfatides to cholesterol, as shown in this Oil Red-O stain for neutral fats. (F, patient 1) FISH 
against the X and Y chromosomes confirms cells of both sexes in the brain of this transplanted child.  

 

Looking at oligodendrocytes, we found that numbers of both oligodendrocyte precursors and 

mature myelin-forming oligodendrocytes was significantly higher in transplanted than untreated 

patients (figure 4). The amount of total myelin as assessed by PLP immunopositivity was 

unchanged, indicating that in the white matter of treated patients, oligodendrocytes and their 

precursors may survive despite a similar degree of myelin loss.  
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Figure 3. Robust microglia/macrophage activation and M2-like polarization in the white matter of 
transplanted MLD patients. (A-C) stain against the general macrophage marker CD68 shows similar abundance 
of immunopositive cells in transplanted (blue bars) and untreated patients (purple bars). (D-F) Stain against 
CD45, a marker for activated microglia/macrophages, reveals a strong microglia cell activation in the white matter 
of transplanted compared to untreated patients (color bars as in A-C). (G,H and J,K) Stain against the M1 marker 
CD40 shows more marked M1-polarization of microglia/macrophages in the brains of untreated compared to 
transplanted patients, whereas stain against the M2-marker CD163 shows the opposite. (I) Quantification of M1- 
versus M2- versus double polarized cells demonstrates lower numbers of M1-polarized cells and greater numbers 
of M2- and double polarized cells in treated compared to untreated patients.  
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Figure 4. Transplantation prevents loss of white matter oligodendrocytes. Stain with Klüver-PAS of whole 
mount coronal brain slices of an untreated (A, patient 3) and a transplanted patient (B, patient 1) shows a variable 
degree of myelin loss in the periventricular and deep white matter, with relative sparing of the subcortical white 
matter and U-fibers. (C, patient 4) Klüver-PAS stain of an untreated patient shows the centrifugal progression of 
the demyelinating process, with the periventricular white matter (below the dotted line) containing less myelin than 
the subcortical white matter (between dotted and solid line). (D) Quantification of immunoreactivity against the 
myelin protein proteolipid protein (PLP) confirms that myelin loss is more marked in the deep white matter of 
untreated compared to transplanted patients, whereas myelin amounts in the subcortical frontal and parietal 
regions are comparable. (E-G) Stain against the oligodendrocyte lineage-specific marker olig2 shows marked loss 
of oligodendrocytes in untransplanted patients (E, patient 6), but preservation of cells in transplanted patients (F, 
patient 2). In treated patients (F), cells with more or less intense immunoreactivity are appreciable, corresponding 
to oligodendrocyte progenitors and mature cells. Quantification (G) confirms that oligodendrocyte numbers are 
much higher in the white matter of treated compared to untreated patients.  

 

Discussion 

In brain tissue of MLD patients, HCT leads to presence of metabolically competent 

macrophages, able to digest sulfatides, as expected. There was clear macrophage activation 

in transplanted patients, notably with a polarization of these macrophages towards an M2-

like phenotype. Oligodendrocyte precursors and mature myelin-forming oligodendrocytes 

were present in higher numbers in brain tissue of transplanted than untreated patients, 
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suggesting an explanation for the improvement of MRI white matter changes in effective 

treatment.4,5 

The obvious limitation of our study is that transplantation in the two HCT-treated patients was 

not sufficient to halt disease progression. Evidently, brain tissue of successfully treated MLD 

patients cannot be obtained. Nonetheless, we found key differences between treated and 

untreated patients that help explain the improvement of MRI WM abnormalities in 

successfully treated patients. In the WM, M1-like macrophages are considered detrimental 

whereas M2-like cells support regeneration. The potential of M2-like macrophages to sustain 

oligodendrocyte survival and remyelination was proven in vitro. Following demyelination, 

activated microglia signal to OPCs inducing them to proliferate and mature into myelin-

forming cells.17 M1-like macrophages dominate early after myelin loss and promote OPC 

proliferation. A switch to a M2-dominant phenotype is then necessary to bring about timely 

OPC differentiation. Consistent with this, M2-like macrophages predominate over M1-like 

cells in active multiple sclerosis lesions ongoing remyelination.18 The findings of higher 

(mature) oligodendrocyte numbers in the WM of HCT-treated MLD patients suggests that 

HCT supports such M1-to-M2 switch resulting in a macrophage population that supports 

OPC survival and differentiation. In addition, ongoing myelin loss with abundance of myelin 

debris is a potent inhibitor of oligodendrocyte progenitor proliferation and maturation.19 This 

myelin loss is moderated by metabolically competent macrophages. Both mechanisms are 

prerequisites for remyelination. Interestingly, in a Plp1-overexpressing mouse model for 

Pelizaeus-Merzbacher disease, the prototype hypomyelinating leukodystrophy,20 

transplantation of neural and oligodendrocyte progenitor cells is also able to modify CNS 

inflammation by microglia polarization towards an M2-like phenotype, resulting in 

remyelination and prolonged survival.21 This indicates that, besides myelin restoration, 

modulation of inflammation may be necessary to promote clinical recovery. 

Therapeutic strategies for MLD (and other lysosomal disorders) are changing: non-cellular 

options as enzyme replacement therapy and substrate inhibitors are being explored 22 and 
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gene therapy by autologous genetically manipulated HCT has been shown effective.7,23 

Likely, MLD treatment in the future will be multimodal. Our data point to additional beneficial 

effects of HCT beyond cross-correction of enzyme deficiency that could be further exploited 

in order to improve outcome, probably not only for MLD, but also for other leukodystrophies 

treated with HCT (e.g. Krabbe disease) and acquired white matter disorders as multiple 

sclerosis.     
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Abstract  

Objective: To determine whether proton magnetic resonance spectroscopic imaging is useful 

in predicting clinical course of patients with metachromatic leukodystrophy (MLD), an 

inherited white matter disorder treatable with hematopoietic cell transplantation (HCT).  

Methods: 21 patients with juvenile or adult MLD (12 HCT treated) were compared to 16 

controls in the same age range. Clinical outcome was determined as good, moderate, or 

poor. Metabolites were quantified in white matter, and significance of metabolite 

concentrations at baseline for outcome prediction was assessed using logistic regression 

analysis. Evolution of metabolic changes was assessed for patients with follow-up 

examinations.  

Results: In this retrospective study, 16 patients with baseline scans were included, 5 with 

good, 3 with moderate, and 8 with poor outcome, and 16 controls. We observed significant 

group differences for all metabolite concentrations in white matter (p<0.001). Compared with 

controls, patients had decreased N-acetylaspartate and glutamate, and increased myo-

inositol and lactate, most pronounced in patients with poor outcome (post-hoc, all p<0.05). 

Logistic regression showed complete separation of data. Creatine could distinguish poor 

from moderate and good outcome, the sum of glutamate and glutamine could distinguish 

good from moderate and poor outcome, and N-acetylaspartate could distinguish all outcome 

groups. 

For 13 patients (8 with baseline scans) one or more follow-up examinations were evaluated, 

revealing stabilisation or even partial normalisation of metabolites in patients with moderate 

and good outcome, clearly visible in the ratio choline/N-acetylaspartate. 

Conclusion: In MLD, quantitative spectroscopic imaging at baseline is predictive for outcome 

and aids in determining eligibility for HCT.  
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Introduction  

Metachromatic leukodystrophy (MLD, Online Mendilian Inheritance in Man (OMIM) 250100) 

is an autosomal recessive lysosomal disorder with deficient activity of arylsulfatase A (ASA), 

essential for sulfatide degradation.1 Sulfatides are major myelin components; their 

accumulation in MLD results in demyelination and neurological decline.2   

MLD has 3 clinical subtypes, based on age of onset. The late-infantile form starts < 30 

months of age, the juvenile form between 2.5 and 16 years and the adult form thereafter.1  

Hematopoietic cell transplantation (HCT) shows promising results, especially for patients with 

juvenile and adult MLD in early disease stages.3-5 Eligibility for HCT is currently based on 

neurological examination and cognitive function; the degree of MRI abnormalities6 is also 

prognostic.7,8 Proton magnetic resonance spectroscopy (1H-MRS) provides additional 

metabolic information, as either single voxel MRS or MR spectroscopic imaging (MRSI).9 

MLD spectra are characterized by decreased N-acetylaspartate (NAA), elevated myo-inositol 

(Ins) and choline-containing compounds (Cho) in abnormal white matter (WM).10,11    

This study investigates the relationship between clinical outcome in patients with juvenile or 

adult MLD and WM metabolite concentrations at baseline. All examinations at diagnosis at 

the same scanner using two-dimensional (2D) MRSI, for simultaneous acquisition of spectra 

in multiple regions of a single slab9 were defined as  baseline scans. For patients with follow-

up examinations, we additionally studied longitudinal evolution of metabolites.  

Methods 

Patients and control subjects  

In this retrospective study, approved by the institutional review board, we included 21 MLD 

patients (12 juvenile, 9 adult) and 16 subjects who served as controls (same age range; 

median 10.6 y, range 4.2-29.6 y; undergoing MRI for reasons like mild developmental delay, 

tics, headache; they had normal MRI and neurological examination) who underwent 

quantitative MR imaging including MRSI between January 2007 and April 2013. One patient 
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was described before.12 MLD was diagnosed by brain MRI, ASA activity and ARSA mutation 

analysis. Patient characteristics and number of examinations at the same scanner are 

summarized in Table 1. 

 

Table 1. Characteristics of MLD patients 

MLD 
code 

MLD 
type 

Age  
/ y a 

Baseline 
scan b 

Follow-up 
scans b 

Eligible 
for HCT 

Treated 
with HCT 

Outcome 
 

37 Juvenile 6.4 No 5 Yes Yes Moderate 
16 Juvenile 6.5 Yes 1 Yes Yes Good 
39 Juvenile 7.0 Yes 0 No No Poor 
29 Juvenile 7.1 Yes 0 No No Poor 
53 Juvenile 7.1 Yes 1 No Yes Poor 
5 Juvenile 7.2 Yes 0 No No Poor 
4 Juvenile 8.1 No 1 Yes Yes Moderate 
33 Juvenile 8.1 No 1 No No Poor 
6 Juvenile 8.6 Yes 0 No No Poor 
54 Juvenile 12.5 Yes 0 No No Poor 
14 Juvenile 14.1 Yes 3 Yes Yes Good 
22 Juvenile 15.1 Yes 0 No No Poor 
21 Adult 17.8 Yes 1 Yes Yes Good 
30 Adult 20.1 No 5 Yes Yes Good 
51 Adult 22.5 Yes 0 No Yes Poor 
41 Adult 25.4 Yes 2 Yes Yes Good 
32 Adult 26.9 Yes 1 Yes No Moderate 
2 Adult 28.4 Yes 3 Yes Yes Good 
46 Adult 28.8 No 1 Yes Yes Good 
23 Adult 32.5 Yes 0 No No Moderate 
15 Adult 35.2 Yes 2 Yes Yes Moderate 
 

a) Age at first examination at 1.5T Siemens Sonata. 
b) At 1.5T Siemens Sonata. 
  

Eleven patients were eligible for HCT (four juvenile, seven adult); twelve received HCT: ten 

eligible (one eligible adult patient declined HCT), and two initially classified as non-eligible, 

after careful consideration and discussion with parents. HCT was performed as previously 

described.7    

For 16 patients baseline data at the 1.5T Siemens Sonata (Erlangen, Germany) were 

available, and follow-up data for eight of these. The dedian age at baseline scan was 14.6 y 
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(range 6.5-35.3 y). At latest clinical follow-up, five (all eligible and treated) had good 

outcome, three (two eligible, one treated) moderate and eight poor outcome (all non-eligible, 

two treated, three deceased).  

 

For five additional patients, MRI scans at diagnosis were obtained with a different protocol at 

another scanner or in another hospital. For these patients, only follow-up data after HCT or 

diagnosis were available, (median interval 3.3 y (range 11 months -14.8 years) until first 

follow-up, median age at first follow-up 8.1 years, range 6.4-28.8 years). Two adult patients 

(eligible and treated) had good outcome at latest follow-up, two juvenile patients (eligible and 

treated) had moderate outcome and one juvenile patient (non-eligible and untreated) had 

poor outcome (now deceased).  

Clinical status 
Motor function was scored by the MLD Gross Motor Function (MLD-GMF).13 Cognitive 

function was determined through developmental or IQ testing and clinically estimated in 

evidently non-eligible patients. Depending on age and proficiencies, cognitive function was 

assessed using the Wechsler Intelligence Scale for Children-III (6–18 years), the Wechsler 

Nonverbal Scale of Ability (4–22 years) or the Wechsler Adult Intelligence Scale-III (≥ 18 y).7 

Median follow-up of surviving transplanted patients was 7.7 years (range 4-16.9 years), of 

surviving non-transplanted patients 4.1 years (range 2.7-7.8 years). Clinical outcome at latest 

follow-up was defined as good (MLD-GMF ≤1, IQ deterioration ≤5 points), moderate (MLD-

GMF 2-4, IQ deterioration >5 points) or poor (MLD-GMF ≥5 or deceased). While peripheral 

neuropathy contributed to a suboptimal outcome in two patients, their classification was not 

influenced by this. Accordingly, classification reflected central nervous system (CNS) 

involvement for all patients.  

MR Data Acquisition  

All subjects were examined at 1.5T (Siemens Sonata) with an eight-channel phased-array 

head-coil. MR imaging included axial T2-weighted fast spin-echo images (repetition time 
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(TR) 2450 ms, echo times (TE) 24/85 ms, 4 mm slice thickness, in-plane resolution 1 mm), 

axial fluid attenuated inversion recovery (FLAIR) images (TR/TE/ inversion time (TI) 

9000/108/2500 ms, 5 mm slice thickness, in-plane resolution 1 mm), and sagittal 3D T1-

weighted images using a 3D magnetization prepared rapid acquisition gradient echo 

sequence (TR/TE/TI 2700/5/950 ms, 1 mm isotropic voxels). MRSI was obtained with point 

resolved spectroscopy localization (TR/TE 3000/30 ms, 6 acquisitions with weighted phase-

encoding) on a single 15 mm slice (field of view 160x160 mm2, volume of interest (VOI) 

80x100 mm2, 16x16 phase-encodings, voxel size 10 x10x15 mm3) centered onto the corpus 

callosum (Figure 1A). Unsuppressed water reference scans were obtained with head and 

body coil.14   

 

MR Data Analysis 

For quantification of metabolite concentrations measured by MRSI, we used the signal 

intensity of water in the unsuppressed reference scans obtained with head coil and body coil, 

i.e. the voxel-wise ratio SIbody/SIhead multiplied by the transmitter amplitude of the body coil.15-

17 All spectra within the VOI were quantified using LCModel.18 Metabolite concentrations (in 

mmol/L VOI) were reported for creatine and phosphocreatine (Cr), NAA (including 

contributions of N-acetyl-aspartylglutamate), Cho, Ins, glutamate (Glu), and lactate (Lac). 

Because estimation of glutamine (Gln) was less reliable in the majority of spectra, indicated 

by Cramer Rao lower bounds (CRLB) above 20%,18 we also reported Glx, which is the sum 

of Glu and Gln. Although the low concentration of Lac in controls and some patients 

inherently led to large CRLB values as well, we included all estimated Lac concentrations 

because they were necessary for comparison with patients in whom Lac was clearly 

detectable.  

Lesions were outlined and quantified on FLAIR using the semi-automatic tool clusterize19   

and linearly registered to 3D T1 (Figure 1). Lesion masks in 3D T1 were filled with the signal 
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intensity of normal-appearing WM (NAWM) to ensure correct segmentation into grey matter 

(GM), WM and cerebrospinal fluid (CSF) with SIENAX from FMRIB’s software library FSL.20  

  

Figure 1: A: Top: sagittal 3DT1 weighted image showing position of CSI slab (field of view  in yellow, PRESS VOI 
in white), original FLAIR image with rectangular PRESS VOI in white, FLAIR with lesions as outlined with 
clusterize (yellow), NAWM (gray scale) and cortical GM (red) as determined on lesion-filled 3DT1 weighted 
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image. Bottom: partial volume estimates (PVE) of respective tissue classes within MRSI grid. B,C: Spectra (1.5T, 
PRESS, TR/TE 3000/30 ms) of selected and indicated WM voxels in 2 patients at baseline. B: juvenile MLD, no 
HCT, poor outcome. NAA concentration in overall WM is 0.92 mM. C: juvenile MLD, with HCT, good outcome. 
NAA concentration is 5.9 mM. Indicated concentrations are based on analysis of all WM voxels. 
Because the MRSI slab may include subcortical areas, these were segmented with FIRST, 

also part of FSL.20 Extrapolation analysis combining the MRSI slab and partial volume 

estimates of CSF and tissue from segmentation resulted in concentrations for GM, overall 

WM, and NAWM and lesions separately. In this analysis concentrations in CSF are assumed 

negligible, and concentrations in mM indicate mmol/L tissue. Because of large variability 

between patients in lesion volume, our main analysis involved concentrations in overall WM 

(NAWM + lesions), unless otherwise indicated. Subcortical areas had no or only a minor 

contribution to the MRSI slab and were taken into account for determining the other tissue 

concentrations, but not further evaluated.  

The quantitative analyses were not blinded for patient characteristics, but apart from the 

semi-automatic lesion segmentation, all analyses were user-independent. 

Axial T2-weighted images were scored using the MLD-MRI score.6   

 

Statistical analysis 

We performed statistical analysis (using IBM SPSS V.22) for patients with baseline 

examinations and the control subjects. We first corrected for age-dependency: for each 

metabolite, we estimated the parameters a, b and tau based on a mono-exponential fit 

(a+b·exp(-age / tau)) through the control measures. For both control subjects and patients, 

we subtracted the predicted concentration at corresponding age from the observed 

concentration (residuals).14 A general linear model was used for overall comparison of these 

age-corrected metabolite concentrations (residuals) at baseline. Post-hoc, we compared 

differences between all four groups, i.e. patients with good, moderate or poor outcome, and 

controls, with Dunnett’s T3 (correcting for multiple comparisons in case of small groups with 

unequal variances). MRI scores and lesion volumes were similarly compared between 

patients. p<0.05 was considered significant. 
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For patients with baseline examinations, we intended to use logistic regression to determine 

which (age-corrected) metabolites at baseline explained outcome. However, data showed 

complete separation, as illustrated by scatterplots of age-corrected metabolite concentrations 

(shown in Results). Therefore, we distinguished groups based on visual comparison of 

scatterplots.  

Spearman’s rank correlations were determined between baseline metabolite concentrations 

and MLD-GMF at latest follow-up.  

 

Results 

Metabolite concentrations at baseline and clinical outcome  

In all MLD patients at baseline, there were significant group differences in MRI score and 

lesion volume (p≤0.001). Patients with poor outcome had significantly larger lesion volumes 

than patients with moderate or good outcome, p<0.001 (Table 2), such that overall WM 

represents predominantly lesions in poor outcome patients.  

 

Table 2. Demographics and quantitative MR results of control subjects and MLD patients at baseline 

    controls     
good 
outcome     

moderate 
outcome     

poor 
outcome   

n - male/female 16 
 

8m/8f 5 
 

2m/3f 3 
 

3f 8 
 

1m/7f 
age / y median  
range 

10.6 
4.2 - 29.6 

17.8 
6.5 - 28.4 

32.5 
26.9 - 35.3 

7.9 
7.1 - 22.5 

Cr / mM a 3.77 ± 0.38 4.80 ± 0.52 b 4.61 ± 0.58 3.12 ± 0.82 c 
NAA / mM a 6.99 ± 0.65 6.53 ± 0.98 5.56 ± 0.20 b 1.99 ± 0.73 b,c,d 
Cho / mM a 1.49 ± 0.21 2.11 ± 0.23 b 1.84 ± 0.24 1.67 ± 0.41 
Ins / mM a 2.95 ± 0.46 6.85 ± 1.41 b 7.25 ± 1.25 7.05 ± 1.88 b 
Glu / mM a 4.68 ± 0.50 4.80 ± 0.80 4.46 ± 0.75 1.68 ± 0.55 b,c,d 
Glx / mM a 6.88 ± 0.59 8.43  ± 0.38  b 6.50 ± 0.89  4.82 ± 1.28 b,c 
Lac / mM a 0.33 ± 0.08 0.59 ± 0.14 0.80 ± 0.40 1.57 ± 0.66 b,c 
MRI score a 

 
 

 
9.4 ± 5.4 14.7 ± 3.2 20.1 ± 3.0 c 

lesion volume / mL a 
 

 
 

32.5 ± 20.7 43.9 ± 11.8 111.7 ± 25.1 c,d 
             

Values are given as mean with standard deviation, unless indicated otherwise 
Actual metabolite concentrations in overall WM (NAWM + lesions) are shown, but statistical comparisons were 
performed on age-corrected values (see methods).  
a: group-wise GLM, p<0.001; b,c,d: post-hoc Dunnett’s T3, p<0.05, b) compared to controls, c) compared to good 
outcome, d) compared to moderate outcome. 
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We observed significant group differences (p<0.001) for all investigated metabolites (Table 2, 

Figure 2). Compared with controls, differences were most pronounced in patients with poor 

outcome, for whom concentrations of NAA, Glu and Glx were severely reduced, while Ins 

and Lac were increased (all p<0.01). Patients with moderate outcome had decreased NAA 

(p<0.01), and patients with good outcome had increased Cr, Cho, Ins and Glx compared with 

controls (p<0.05). Differences in metabolite concentrations compared with control WM were 

most prominent in lesions, and less so in NAWM (data not shown).  

 

 

Figure 2: Mean metabolite concentrations in overall WM (NAWM+lesions) of control subjects (black, n=16) and 
MLD patients at baseline, categorized per clinical outcome: good outcome (green, n=5), moderate outcome 
(orange, n=3), poor outcome (red, n=8). Error bars indicate standard deviations. Based on age-corrected values, 
all metabolites showed significant overall group differences (p<0.001). See Table 2 for differences between 
groups with post-hoc Dunnett’s T3 analysis.  
 

Scatterplots for age-corrected concentrations of metabolites that were different between 

patient outcome groups (i.e. NAA, Cr, Glx and Lac) are shown in Figure 3. This figure 

illustrates that patients with poor outcome were completely separated from moderate and 

good outcome based on NAA and also on Cr. Vice versa, patients with good outcome were 

completely separated from moderate and poor outcome based on NAA and also on Glx. 

Despite prominent differences in mean Lac between groups, Lac could not uniquely 

distinguish the groups. Scatterplots for MRI score and lesion volume (Figure 3E, F) show that 

these parameters had less power to distinguish good and moderate outcome.  

 



 

 
108 

 

Figure 4: MLD-GMF score at latest follow up 
as function of WM NAA concentration at 
baseline. Spearman’s rank correlation = -0.78 
(p<0.01). Green, orange and red symbols 
correspond to patients with good, moderate 
and poor outcome, respectively. Non-eligible 
patients are indicated with triangles, and 
eligible patients with circles. 

 

Figure 3: Scatterplots per clinical outcome. A-D: age-corrected WM metabolite concentrations. E: MRI score. F: 
lesion volume.  Lines indicate mean and standard deviation. 
 

The natural course of the disease inevitably results in poor outcome after a longer follow-up.  

To achieve insight into the pace of disease progression, we also evaluated outcome for non-

transplanted patients two years after diagnosis, which altered outcome for only one patient 

(good 2 years after diagnosis, moderate at end of follow-up). In this case, the moderate 

outcome group contained only 2 patients, and was marginally separated from the good 

outcome group.  

Spearman’s rank correlations between metabolite concentrations at baseline and motor 

performance at latest follow-up showed a strong correlation between MLD-GMF and NAA 

(r=-0.78, p<0.001, Figure 4), as well as with age-corrected NAA (r=-0.75, p=0.001). 
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Longitudinal evaluation  

Baseline and longitudinal WM concentrations of NAA, the concentration ratio Cho/NAA, MRI 

scores, and lesion volumes for all patients are shown in Figure 5. In general, absolute 

metabolite concentrations showed longitudinal fluctuations, for NAA as well as for Cr, Glx 

and all other metabolites (not shown), comparable to those observed in healthy control 

subjects.17  

 

Figure 5: Longitudinal WM metabolite concentrations of (A) NAA, (B) concentration ratio Cho/NAA (a single 
extreme value of 2.1 outside the range is shown at the top border). C: longitudinal MRI score. D: longitudinal 
lesion volumes. Control values are indicated with black asterisks, and the black line is the mono-exponential fit 
visualizing the age-dependency. Green, orange and red symbols correspond to patients with good, moderate, and 
poor outcome, respectively. Non-eligible patients are indicated with triangles, and eligible patients with circles. 
After patients are transplanted, symbols are filled. To distinguish overlapping symbols (patients of the same age 
with similar scores), symbols are outlined and connected with different colors. The treated eligible patient (good 
outcome) that was described before had her first scan at the age of 14.1 y.  
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Concentration ratios have higher reproducibility, and since we previously showed that 

Cho/NAA is sensitive for improvement after HCT,12 we chose to display this ratio in figure 5B. 

Although this ratio slightly increased in some patients in the first examination after HCT, this 

was reversible in all patients with good outcome. 

 

In adult patients with moderate outcome, we also observed ongoing decrease of Cho/NAA, 

but this ratio did not decrease in two juvenile patients with moderate outcome. Remarkably, 

in several patients with good or moderate outcome we observed a decrease of Cho/NAA, 

which did not coincide with a decrease in MRI score or lesion volume (Figure 5C,D). In the 

treated non-eligible patient who died 11 months post-HCT, metabolites and imaging markers 

all clearly deteriorated as both Cho/NAA and the MRI score and lesion volume strongly 

increased after HCT. 

 

Discussion  

Metabolite concentrations at baseline in relation to outcome 

MRS is a powerful method to gain insight into brain metabolites, thereby contributing to 

understanding pathological processes. Reduced concentrations of NAA and Glu are 

associated with neuroaxonal damage.9-11 Increased Lac reflects energy failure,9 probably 

also macrophage/microglia activation,21 and oligodendrocyte injury leading to limiting Lac 

transport into axons.22 Cho is increased in regions of active demyelination.9-11,23,24   

Using MRSI in juvenile and adult MLD, WM metabolite concentrations at diagnosis correlate 

well with outcome, with NAA as main explanatory variable. This is underlined by the strong 

association between baseline NAA concentrations and motor function at follow-up in our 

cohort, but also in late-infantile MLD,25 indicating that preserved neuroaxonal function is a 

prerequisite for good or moderate clinical outcome. The same conclusion was drawn in an 

MRS study on outcome after HCT in patients with X-linked adrenoleukodystrophy.26   
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Patients with poor outcome had severely reduced concentrations of NAA, Glu and Glx, and 

increased Lac and Ins. In patients with moderate outcome, most metabolite concentrations 

were closer to normal. Compared with controls, Cho was increased only in patients with good 

outcome, possibly reflecting signs of active demyelination and/or increased glial density. This 

latter explanation is supported by the observation of increased Cr and Glx in patients with 

good outcome compared to controls. Because concentrations of NAA and Glu are similar in  

patients with good outcome and controls, it can be assumed that axonal density is preserved 

in an early disease stage. The increased Glx must be due to a higher concentration of Gln, 

which together with Cr suggest a higher glial density in this disease stage.27 

It should be noted that these results were obtained from metabolite concentrations in overall 

WM using a combined analysis of tissue segmentation and 2D MRSI. However, since lesions 

in MLD start to develop in periventricular WM, it can be assumed that single voxel MRS in a 

periventricular WM region will give comparable results. 

 

Longitudinal evolution 

Even in some patients with good outcome, metabolic and imaging markers deteriorated in 

the first follow-up scan six months after transplantation, indicating ongoing disease activity 

and delayed treatment effect. Partial normalization of the Cho/NAA ratio in subsequent 

examinations in successfully treated patients implies reduction of demyelinating activity and 

some axonal tissue recovery. In several patients, Cho/NAA improvement indeed coincided 

with a reduction of MRI score and lesion volume, supporting our interpretation of tissue 

repair. However, in a few patients we could not observe a concomitant decrease of MRI 

score or lesion volume. This may be partly explained by the fact that the MRI score reflects 

WM damage at the level of the MRSI slab as well as WM involvements in other regions and 

atrophy of both supra- and infratentorial structures. 
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The small number of patients for each of the outcome groups is a limitation of this study, 

although the total patient number, given the fact that the study was performed in a single 

center on the same scanner, is rather large for a rare disorder. In addition, age distribution 

differed between groups, a fact which can hardly be prevented, because treatment eligibility 

and success are related to age of onset. Finally, the inevitable selection bias of this 

retrospective study results in an eventual poor outcome for all non-transplanted patients.  

Despite these difficulties, this study shows that quantitative MRSI has high discriminative 

power regarding clinical outcome in MLD already at diagnosis with NAA as the most 

important parameter. Severely abnormal metabolite concentrations at baseline indicate low 

probability of good outcome. Therefore, results are helpful in deciding whether HCT will be 

beneficial, certainly for patients with borderline neurological and cognitive examination. 
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Abstract 

Objective: We aimed to gain more insight into the pathomechanisms of metachromatic 

leukodystrophy (MLD), by comparing magnitude and direction of diffusion between patients 

and controls at diagnosis and during follow-up. 

Methods: Four late-infantile, 16 juvenile and 8 adult onset MLD patients (of which 13  

considered eligible for hematopoietic cell transplantation (HCT)) and 47 controls were 

examined using diffusion tensor imaging. Fractional anisotropy (FA), mean diffusivity (MD), 

axial diffusivity (AD) and radial diffusivity (RD) were quantified and compared between 

groups using tract-based spatial statistics (TBSS). Diffusion measures were determined for 

normal-appearing white matter (NAWM), corpus callosum, thalamus (all based on subject-

wise segmentation), and pyramidal tracts, determined with probabilistic tractography. 

Measures were compared between HCT-eligible patients, non-eligible patients and controls 

using general linear model and permutation analyses (randomise) for TBSS data.  

Results: In both patient groups FA was decreased and MD and RD increased throughout 

WM, while AD was decreased in NAWM and corpus callosum. In the thalamus no differences 

in FA were observed, but all diffusivities were increased in both patient groups. Differences 

were most pronounced between controls and patients non-eligible for HCT. Longitudinally, 

diffusion measures remained relatively stable for HCT-treated patients, but were 

progressively abnormal for non-eligible patients. 

Interpretation: The observed diffusion measures confirm that brain microstructure is 

changed in MLD, reflecting different pathological processes including loss of myelin and 

sulfatide accumulation. The observation of both increased and decreased AD probably 

reflects a balance between myelin and axonal loss versus intracellular storage in 

macrophages, depending on region and disease stage.  
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Introduction 

 

Metachromatic leukodystrophy (MLD, OMIM 250100) is an autosomal recessive lysosomal 

disorder caused by mutations in ARSA. This results in deficiency of the enzyme arylsulfatase 

A (ASA), essential for sulfatide metabolism.1 Sulfatides are major myelin lipids; their 

accumulation, mainly in membranes, leads to demyelination and subsequently storage in 

macrophages that cannot digest them.1 MLD is a devastating disease: without treatment, 

eventually all acquired skills are lost and patients die. 

MLD has three clinical subtypes, based on age of onset. The late-infantile form starts before 

30 months, usually presenting with motor deterioration. The juvenile form presents with a 

combination of motor and cognitive decline before 16 years. The adult form begins with 

cognitive decline and psychiatric symptoms thereafter.2 When performed early, 

hematopoietic cell therapy (HCT) has promising results, especially for juvenile and adult 

patients.3,4 

Brain magnetic resonance imaging (MRI) in MLD is characterized by bilateral symmetric T2 

signal hyperintensities, starting in the corpus callosum and subsequently involving the 

periventricular white matter (WM), followed by projection fibers and cerebellar WM.(5) 

Thalamic volume and signal intensity on T2-weighted images in the thalamus are decreased 

already at diagnosis.6,7 Typical for MLD are stripes of low signal intensity throughout the 

hyperintense signal on T2-weighted images in the cerebral WM, related both to the 

accumulation of macrophages bursting with undigested lipids and to better preserved 

perivascular myelin.8  

Brain diffusion tensor imaging (DTI) is based on the motion of water molecules, which is 

more restricted perpendicular to than along WM fibers, a feature termed diffusion 

anisotropy.9 Magnitude and direction of diffusivity are determined by molecules, membranes 

and microtubules, and provide information about tissue composition and microstructure and 

its architectural organization.10,11 
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The tensor model is a relatively simple model using diffusion weighted images (DWI) 

obtained with one b-value. It results in axial diffusivity (AD), radial diffusivity (RD) and the 

derived fractional anisotropy (FA) and mean diffusivity (MD).(11) Often, RD is thought to be 

correlated to myelin degradation and AD to axonal degeneration or inflammation and 

gliosis,12-17 but it is difficult to unequivocally associate the interpretation of diffusivity 

variations with specific biophysical changes.18  

The precise pathomechanisms involved in MLD, such as importance of inflammation or how 

accumulated sulfatides lead to demyelination, are not completely understood. DTI is, taking 

into account its recognized limitations, a valuable tool to gain more insight into changes in 

tissue properties in MLD. We therefore compared diffusion measures (FA and the three 

diffusivities) between patients who were eligible for HCT, patients not eligible at time of 

diagnosis, and controls. HCT-eligible patients are typically in an early disease stage, while 

patients not eligible for HCT have more advanced disease with extensive demyelination of 

the WM. We also studied the longitudinal behavior of diffusion measures of both treated and 

untreated patients 

Methods  

Patients and control subjects: All 28 MLD patients (4 late-infantile, 16 juvenile, and 8 adult 

onset), visiting the Center for Childhood White Matter Disorders, who underwent a 

quantitative MRI protocol at time of diagnosis between January 2007 and April 2017 were 

included in this retrospective study, in addition to 47 control subjects in the same age range 

(Table 1), after informed consent.  
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Table 1. Subjects demographics 

       

       

 Controls All MLD 

patients 

Eligible 

for HCT 

 Not eligible for 

HCT 

Contrasts 

p 

       

Number of subjects 

Male / female 

47 

23 / 24 

28 

9 / 19 

13  

6 / 7 

 15 

3 / 12 

 

(NS) 

Age at first scan (mean , SD, y) 10.5 (5.3) 14.5 (9.5) 16.9(10.6)  12.4(8.3) 0.017a 

Late-infantile /juvenile / adult  

 

 

 
 
 
 

4 / 16  / 8 

 

2 / 5 / 6  2 / 11 / 2 (NS) 

a  Post-hoc Dunnett’s T3 revealed no significant pairwise group differences 

 

The study was approved by the institutional review board. Diagnosis of MLD was established 

by brain MRI, ASA activity and ARSA mutation analysis.(4) Motor function was scored by the 

MLD Gross Motor Function (MLD-GMF) at baseline and at latest clinical follow up.19 

Cognitive function was evaluated through neuropsychological examination. Eligibility for HCT 

was based on patients’ neurological examination (no major abnormalities and able to walk 

independently) and cognitive function (IQ>75). Treatment with HCT was performed as 

described before.4 Characteristics of individual patients are described in Table 2. Thirteen 

patients were considered eligible for HCT, and 15 non-eligible for HCT. Fourteen patients 

received HCT (2 patients initially classified as non-eligible; one eligible patient declined 

HCT).4 Follow-up MRI examinations were available for 17 patients (12 HCT-eligible, 5 non-

eligible).  
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Table 2. Characteristics of MLD patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Age at baseline examination 
b follow-up examinations at 1.5T 
c follow-up examinations at 3T 
d follow-up examinations at both 1.5T and 3T 
 
Control subjects at 1.5T had normal MRI and neurological examination. Controls at 3T had 

experienced a non-neurological trauma and were included in a previous study.20  

Acquisition: Between January 2007 and April 2013, 19 patients and 20 controls were 

examined at 1.5T (Siemens Sonata, Erlangen, Germany). Between May 2013 and April 

2017, 9 patients and 27 controls were examined at 3T (GE Signa HDxt and MR750, 

Milwaukee, WI).  

MLD 
code 

MLD  
type 

Age/
ya 

Baseline  
scan 

Number 
of follow 
up scans 

Eligible 
for HCT 

HCT-
treated 

 

045 Late-infantile  2.0 1.5T  3 b Yes  Yes   
050 Late-infantile 2.1 1.5T  1  b Yes  Yes   
057 Late-infantile 2.4 3T  0  No  No   
026 Late-infantile 2.6 1.5T  0 No  No   
016 Juvenile  6.5 1.5T 3  d Yes Yes  
039 Juvenile  7.0 1.5T 1 c No No  
029 Juvenile  7.1 1.5T 0 No No  
053 Juvenile  7.1 1.5T 1  b No Yes  
005 Juvenile  7.2 1.5T 1  c No No  
065 Juvenile  7.4 3T  2  c  Yes  Yes   
064 Juvenile  8.6 3T 0 No      No   
006 Juvenile 8.6 1.5T 1  c  No No  
054 Juvenile  12.5 1.5T 1  c  No No  
060 Juvenile  13.1 3T  0 No  No   
058 Juvenile 13.8 3T  3  c  Yes  Yes   
014 Juvenile  14.1 1.5T 4  d  Yes Yes  
022 Juvenile  15.1 1.5T 0 No No  
067 Juvenile  17.6 3T  0 Yes  Yes   
068 Juvenile  19.2 3T  0 No  No   
061 Juvenile  20.1 3T  0 No  No   
021 Adult  17.8 1.5T 3  d  Yes Yes  
051 Adult  22.5 1.5T 0 No Yes  
063 Adult 23.1 3T  1  c  Yes  Yes   
041 Adult  25.4 1.5T 6  d  Yes Yes  
032 Adult  26.9 1.5T 2  d  Yes No  
002 Adult 28.4 1.5T 5  d  Yes Yes  
056 Adult  32.5 1.5T 0 No No  
015 Adult 35.2 1.5T 4  d  Yes Yes  
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Conventional imaging included sagittal 3-dimensional (3D)-T1 and axial FLAIR, using the 

same spatial resolution at both field strengths.20,21 FLAIR imaging was not performed for 

control subjects at 3T. DTI was obtained with a multi-slice echo planar imaging sequence 

and isotropic 2.5x2.5x2.5mm3 voxels. At 1.5T we obtained 1 b0 volume and 12 gradient 

directions with b-value 750s/mm2, 2 acquisitions, TR/TE 6700/81 ms.(21) At 3T we obtained 

5 b0 volumes and 30 gradient directions with b-value 750s/mm2, 1 acquisition, TR/TE 

5100/75 ms, and parallel imaging factor 2.20 

Analysis: DTI data were analyzed using FMRIB’s software library FSL after correction of 

distortion and subject motion. The diffusion tensor was fitted resulting in maps of FA, AD, RD 

and MD. Tract based spatial statistics (TBSS) was used to align FA images from all subjects 

into a common space and to create a mean FA skeleton. Each participants’ aligned FA data 

were projected onto this skeleton and fed into voxel-wise cross participant statistics using 

randomise (see statistical analysis).22 

Based on the regional differences found in the TBSS analyses we further analyzed diffusion 

measures in the following regions of interest (ROIs): normal-appearing white matter (NAWM, 

corpus callosum and thalamus in all subjects, and abnormal cerebral WM in patients. In 

addition, we analyzed the pyramidal tracts, which were determined for each subject by 

tractography between motor cortex and cerebral peduncles (see below).  

To determine these ROIs in DTI subject space, we first outlined abnormal WM on 2D FLAIR 

images of patients using clusterize.23 The mask of abnormal WM was registered to the 

corresponding 3DT1, and filled with signal intensity of NAWM. This 3DT1 image was then 

segmented with the FSL tools FAST 24 and FIRST 25 to obtain WM, grey matter (GM) and 

deep GM (DGM) structures, including the thalamus. DGM and abnormal WM were 

subtracted from the WM mask to obtain NAWM. ROIs for corpus callosum and cerebral 

peduncles were identified using the Johns Hopkins University (JHU) WM atlas defined in 

standard Montreal Neurological Institute (MNI) space.26 The motor cortex was identified in 
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MNI space using the Automated Anatomical Labeling (AAL) atlas.27 ROIs in MNI space were 

warped into 3DT1 subject space after linear and non-linear registration. All ROIs were 

subsequently registered to DTI subject space using nearest neighbor interpolation. 

The ROIs of motor cortex and cerebral peduncles were used as seed and target for 

probabilistic tractography using the FSL tools bedpostx and probtrackx2 to obtain the left and 

right pyramidal tract.28 Mean diffusion measures within the pyramidal tracts were determined 

by weighting the underlying FA and diffusivity maps by the probability of a voxel within the 

tract. 

Statistical analysis: Statistical analyses were performed for HCT-eligible and non-eligible 

patients at baseline and control subjects. Groups were compared on demographic variables 

using ANOVA and chi-square tests, as appropriate. In the TBSS analysis FA, MD, AD and 

RD were compared between the three groups with nonparametric permutation analysis 

(randomise), using age and scanner as covariate. We considered a family-wise error 

corrected p<0.05 significant.  

General linear model analyses including age and scanner as covariates were performed for a 

3-group comparison of diffusion measures at baseline within selected ROIs. In case of main 

group effects, we performed post-hoc pairwise comparisons between groups, using 

Dunnett’s T3. 

The pyramidal tracts primarily regulate motor function. We therefore determined Spearman 

rank correlations between diffusion measures of all 28 patients at baseline and motor 

function, determined with MLD-GMF, at latest clinical follow-up. P<0.05 was considered 

significant. 

Results 

Baseline: Controls, HCT-eligible and non-eligible patients did not differ on demographic 

variables. Only for age a main group effect was detected (p 0.017), which was not reflected 

in post-hoc testing(Table 1).  
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In the TBSS analysis of all baseline examinations (see Fig. 1), FA was decreased in HCT-

eligible and non-eligible patients compared to controls, and in non-eligible patients compared 

to eligible patients in almost the entire skeleton. An increase of MD and RD in both patient 

groups compared to controls was also observed in almost the whole skeleton. An increase of 

MD and RD in non-eligible patients compared to eligible patients was limited to a smaller part 

of the skeleton. An increase in AD in HCT-eligible patients compared to controls was 

restricted to part of the periventricular WM and the genu and splenium of the corpus 

callosum. In HCT-non-eligible patients compared to both controls and eligible patients, AD 

was increased mainly in the thalamus, but decreased in a large part of the skeleton, including 

the corpus callosum.  

 

Figure 1. TBSS analysis for FA, MD, AD and RD  comparing HCT-eligible patients vs control subjects (left 
column), non-eligible patients vs. control subjects (middle column) and non-eligible vs. eligible patients (right 
column). FA was decreased (orange-yellow) in eligible and non-eligible patients compared to controls and in non-
eligible patients compared to eligible patients in almost the whole skeleton. MD and RD were increased (blue-
lightblue) in both patient groups compared to controls, and in non-eligible patients compared to eligible patients. 
AD was increased in eligible patients compared to controls in parts of the skeleton. When comparing non-eligible 
patients to controls or to eligible patients, AD was increased mainly in the thalamus (blue-lightblue), and 
decreased in WM areas including the corpus callosum (orange-yellow). The part of the WM skeleton that does not 
differ between groups is indicated in green. A family-wise error corrected p<0.05 was considered significant. 
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In the selected ROIs (see Fig. 2), FA was decreased for both patient groups compared to 

controls in NAWM, corpus callosum and pyramidal tracts. Differences were most pronounced 

between controls and HCT-non-eligible patients. The relative and absolute decrease in FA 

was largest in corpus callosum. In patients, FA in abnormal WM was smaller than in NAWM, 

and lower in HCT-non-eligible patients than in eligible patients (not shown). Although the 

TBSS analysis showed group differences in FA in the skeletonized thalamus, there were no 

FA differences in the thalamus based on a ROI analysis. 

 

 

Figure 2. Mean values for FA, MD, AD and RD in NAWM, corpus callosum, pyramidal tracts and thalamus for 
control subjects (blue), eligible (green) and non-eligible (pink) patients. Error bars indicate standard deviations.  
Significant differences between groups are indicated with square brackets and a single asterisk (post-hoc 
Dunnett’s T3, p<0.05). 

 

Following the TBSS findings, MD and RD were increased in both patient groups in NAWM, 

corpus callosum, pyramidal tracts and thalamus, and differences were most pronounced 
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between controls and non-eligible patients. Differences in RD were larger than differences in 

MD, again with the corpus callosum showing most prominent differences between groups. 

MD and RD within abnormal WM were higher than in NAWM, but did not differ between 

patient groups (not shown). 

In the pyramidal tracts, there were no group differences in AD. Following the TBSS findings, 

in NAWM and corpus callosum, AD was lower in both patient groups than in controls, 

whereas in the thalamus AD was higher in patients. Again, these differences were most 

pronounced between HCT-non-eligible patients and controls. AD within abnormal WM was 

higher than in NAWM, and lower in non-eligible patients than in eligible patients (not shown).  

Spearman rank correlations with MLD-GMF were significant for FA (-0.84), MD (0.78) and 

RD (0.86), all p<0.01. Thus, low FA and high MD and RD of the pyramidal tracts at baseline 

indicate poor motor function at follow up.  

Longitudinal evolvement of diffusion measures: Figure 3 shows longitudinal diffusion 

measures in selected ROIs. For each patient with follow-up measurements, symbols are 

connected by lines. The longitudinal variation indicates the actual course, but also the 

reproducibility of the measurement, including the effect of examinations at both field 

strengths for some patients. The effect of field strength can also be appreciated when 

comparing control subjects at 3T and 1.5T. Overall, measures remained relatively stable, 

especially for HCT-eligible patients after treatment. In non-eligible patients, values showed a 

progressively abnormal trend.  
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Figure 3. Longitudinal evolvement of (A) FA in NAWM, (B) FA and (C) AD in corpus callosum, (D) FA in 
pyramidal tracts, (E) FA and (F) AD in thalamus. Control values are indicated in black, HCT-eligible patients in 
green and non-eligible patients in pink. Data measured at 1.5T are indicated with a circle, data measured at 3T 
with a triangle. After transplantation, symbols are filled. 

 

In NAWM, FA mildly fluctuated for treated eligible patients, while FA further decreased for 

HCT-non-eligible patients (Fig. 3A). Diffusivities remained relatively stable for all patients. In 

the corpus callosum, FA tended to decrease in the treated eligible patients, while the 

reduction in the non-eligible patients was marginal (Fig. 3B). However, MD, AD and RD 

longitudinally increased especially in non-eligible patients, which meant that AD, which was 

decreased at baseline, showed a pseudo-normalization (Fig. 3C).  
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In the pyramidal tracts, FA remained constant or slightly increased over time in most treated 

eligible patients, whereas FA slightly decreased in HCT-non-eligible patients (Fig. 3D). 

Diffusivities showed some longitudinal variability, but no clear trend was observed.  

In the thalamus, in which FA did not differ between groups at baseline, FA remained stable in 

treated eligible patients, and showed a slight decrease in non-eligible patients (Fig. 3E). 

Diffusivities in treated eligible patients remained stable or showed a mild increase, whereas a 

larger increase was observed in non-eligible patients (as shown for AD in Fig. 3F).  

Discussion 

Using diffusion-weighted MRI, we compared magnitude and direction of diffusion between 

MLD patients and controls to gain insight into the microstructure of affected brain tissue. At 

baseline, FA was decreased and MD and RD were increased in MLD patients compared to 

controls throughout the WM, not only in the corpus callosum (affected early in the disease), 

but also in NAWM. FA measures of the thalamus did not differ between groups, but its 

components AD and RD were both increased in patients compared to controls. Whereas AD 

was increased in thalamus, it was unchanged in the pyramidal tracts and decreased in the 

corpus callosum and, to a lesser degree, in NAWM. All differences were most pronounced 

between controls and HCT-non-eligible patients. 

Longitudinally, in treated HCT-eligible patients diffusion measures remained stable or 

showed only minor changes. FA remained constant or even tended to increase in NAWM, 

pyramidal tracts, and thalamus, whereas it slightly decreased in the corpus callosum. HCT-

non-eligible patients had less follow-up examinations than eligible patients, but those 

available showed clear increases of RD and AD, causing a small FA reduction in all 

investigated regions. The treatment effect of HCT most likely influenced the longitudinal 

differences between treated eligible patients (approaching control values in NAWM and 

pyramidal tracts), and untreated non-eligible patients (increasingly abnormal values). This is 

in line with our observation that metabolite concentrations observed with magnetic resonance 
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spectroscopy partially normalized in successfully transplanted patients, whilst concentrations 

for non-treated patients further deteriorated.29  

Limitations of this study were its retrospective character, a large age range of patients 

(inherent to the inclusion of patients with all disease types), and a limited age range of 

controls at 3T. The combination of 1.5T and 3T data also introduced some variability, 

although these differences were typically smaller than differences between controls and 

patients. Also, the diffusion tensor model itself has limitations. Most importantly, it reflects the 

underlying structural characteristics in a simplified manner, hampered by partial volume 

effects and crossing fibers.18 Advanced multi-compartment diffusion models, such as the 

composite hindered and restricted model of diffusion (CHARMED), are more sensitive than 

the conventional ones.30-32 However, since our study, ongoing since 2007, concerns a rare 

disease, application of these advanced diffusion models was not feasible.  

These issues imply that we can merely hypothesize about the precise mechanism 

responsible for the observed differences rather than draw general conclusions because 

different cellular processes may lead to identical changes.9-11 Since both animal13,33,34 and 

human studies35 have shown an increased RD parallel to myelin loss, our results of 

increased RD in WM suggest myelin loss in patients, in line with histopathological findings.36 

This is also supported by our observation that high RD and low FA in the pyramidal tracts at 

baseline indicate poor motor function at follow-up. 

With regard to AD, animal and human studies provide discrepant results, correlating axonal 

damage to either an AD decrease13,17 or increase 37,38, respectively. This reflects the difficulty 

in relating AD to underlying pathological processes. Our observation of opposing AD patterns 

in MLD suggests that different pathological mechanisms can cause either a decrease or an 

increase in AD, with the overall balance between these effects depending on brain region 

and disease stage. MLD is characterized by accumulation of sulfatides, major myelin lipids 

mainly synthesized by oligodendrocytes. Analytical studies of MLD patients’ brain tissue 

showed that metachromatic deposits are mainly present in the WM, with a sulfatide content 
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up to eight times higher than normal, with relatively minor chemical GM changes.36 

Regarding WM, we assume that the massive intracellular sulfatide accumulation in swollen 

macrophages, in vain trying to digest these lipids, causes overall diffusion restriction and 

thereby AD reduction. Using conventional DWI, restricted diffusion in the outermost part of 

the demyelinated WM has indeed been described for single cases in relatively early disease 

stage.39,40However, as the disease progresses, axons are increasingly damaged. Based on 

previous observations in human studies, we expect that loss of both myelin and axons will 

lead to an AD increase.37,38 Our results suggest that, particularly in the corpus callosum of 

non-eligible patients at baseline, diffusion restriction due to sulfatide accumulation in 

macrophages contributes more to the severely reduced AD values than increased diffusion 

due to myelin and axonal loss. Our longitudinal observation of an increase, and thereby a 

pseudo-normalization of AD, in the corpus callosum suggests that myelin and axonal loss 

likely becomes more prominent in progressive disease. The corpus callosum is, of the 

investigated ROIs, least hindered by limitations of the tensor model, suggesting that the 

interpretation of AD values is not much influenced by the presence of crossing fibers. 

The thalamus is a DGM structure, in which sulfatide accumulation is much more limited than 

in WM.36 In addition, the thalamus has a different microstructure than WM as it largely 

consists of neurons and contains few axons. In control subjects, this is mirrored by low 

thalamic FA, as the difference between AD and RD is much smaller than for a WM structure 

like the corpus callosum. In the thalamus of patients, we observed an increase of AD and RD 

of similar relative magnitude, which had hardly any effect on FA. This increase of both AD 

and RD probably implies an increase in extracellular space due to neuronal loss, which 

apparently dominates reductions in diffusivity due to storage material. 

Overall, the observed changes of FA, RD, and especially AD indicate that MLD alters certain 

aspects of brain microstructure. These changes most likely reflect a multitude of pathological 

processes such as accumulation of metachromatic material, followed by myelin and axonal 

loss. The differences between untreated and treated patients indicate that diffusion 
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measures are positively affected by HCT, further emphasizing the beneficial effects of this 

intervention on WM and supporting the findings of other quantitative MR measures as proton 

MR spectroscopy.29 Altogether, quantitative MR measures provide more insight into time-

dependent disease mechanisms and might in the future aid in determining the right window 

for intervention.  
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Abstract 

Objectives To assess frequency of gallbladder polyposis and carcinoma in metachromatic 

leukodystrophy (MLD).  

Methods We evaluated 34 MLD patients (average age 16.7 years, age range 2-39 years) 

screened for gallbladder abnormalities by ultrasound. In the case of cholecystectomy, 

findings at pathology were reviewed. 

Results Only 8 of 34 (23%) patients had a normal gallbladder at ultrasound. Gallbladder 

polyps were visible in 8 (23%) patients. Cholecystectomy was performed in 11 (32%) 

patients. In these, pathology revealed various abnormalities, including hyperplastic polyps, 

intestinal metaplasia, prominent Rokitansky-Aschoff sinuses and sulfatide storage.  

Conclusions Our results demonstrate that gallbladder involvement is the rule rather than the 

exception in MLD. The high prevalence of hyperplastic polyps, a known precancerous 

condition, and one death from gallbladder carcinoma at a young age suggest that MLD 

predisposes to neoplastic gallbladder abnormalities. As novel therapies for this patient group 

are emerging leading to increased life expectancy, we recommend screening for gallbladder 

abnormalities by ultrasound in order to prevent early death. 
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Introduction 

Metachromatic leukodystrophy (MLD, OMIM #250100) is an autosomal recessive 

storage disorder caused by deficiency of the lysosomal enzyme arylsulfatase A. 

Consequently, sulfatides accumulate mainly in oligodendrocytes and Schwann cells in 

the central and peripheral nervous system, resulting in demyelination.1 Onset is from 

infancy to adulthood, with the late-infantile form starting before 30 months of age, the 

juvenile form before 16 years and the adult form thereafter. First symptoms and signs in 

younger patients consist of motor deterioration, in older patients of cognitive decline and 

psychiatric symptoms. The disease relentlessly progresses and eventually all acquired 

skills are lost.2 Hematopoietic stem cell transplantation (HSCT) is a possible treatment 

for selected patients, if MLD is diagnosed early;3 gene therapy is emerging as a novel 

treatment option.4 Both aim at halting or preventing the neurodegenerative process. 

Sulfatides also accumulate in visceral organs, including the gallbladder. Case reports 

describe complications such as hemobilia and cholecystitis5-8 Histopathologic findings 

include macrophages filled with sulfatides, polyps, intestinal metaplasia and low-grade 

dysplasia. 9-13 

 

One of our MLD patients died at the age of 32 years from metastatic gallbladder carcinoma, 

a neoplasm usually occurring at an average age of 56-63 years.14 Together with the report of 

another MLD patient who died of gallbladder carcinoma at age 18 years,15 this observation 

raises the possibility of an increased vulnerability of MLD patients to develop this 

malignancy. We therefore started screening our patient group for gallbladder abnormalities 

by ultrasound. Retrospective evaluation of these data revealed a high rate of abnormal 

findings. 
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Patient 
ID 

MLD type Mutation 1  Mutation 2  Age at 
diagnosis 
(y) 

Age 
at 
HSCT 
(y) 

Age  
at US  
(y) 

Symptoms  
leading  
to US 

Ultrasound findings 

  cDNA level  Protein level cDNA level Protein 
level 

     

MLD-59 Late-infantile  c.465+1G>A p.? c.465+1G>A p.? 1 no HSCT 2 No Sludge  

MLD-50 Late- infantile c.245C>T  p.Pro82Leu c.1168C>T p.Arg390Trp 2 2 2 No  Thickened wall 

MLD-57 Late- infantile c.112_1126del p.Leu375fs c.112_1126del p.Leu375fs 2 no HSCT  3 No Collapsed gallbladder, sludge 

MLD-45 Late-infantile c.459+1G>A p.? c.830_831delTCinsAA p.Ile277Lys 1 2 6 No Normal gallbladder 

MLD-16 Juvenile c.459+1G>A p.? c.536T>G p.Ile179Ser 1 (sib) 7 9 No Normal gallbladder 

MLD-37 Juvenile c.1073T>C p.Leu358Pro c.1277C>T p.Pro426Leu 2 2 12 No  Thickened wall, sludge, possible polyps 

MLD-23 Juvenile c.1277C>T p.Pro426Leu Not found n/a 4 4 21 No  Thickened wall  

MLD-4 Juvenile  c.245C>T   p.Pro82leu c.1144G>A p.Glu382Lys 4 4 13  No  Normal gallbladder 

MLD-38 Juvenile  c.582dup   p.Trp195fs c.1277C>T p.Pro426Leu 5 no HSCT 6 Colic-like pain Thickened wall and sludge 

MLD-17 Juvenile  c.1.1217_1255del

9  

p.Ser406_Thr408d

el 

c.1277C>T p.Pro426Leu 6 no HSCT 7 Colic-like pain Thickened wall, collapsed gallbladder,  

sludge, cholelithiasis 

MLD-12 Juvenile c.634G>C  p.Ala212Pro c.1277C>T p.Pro426Leu 6 no HSCT 13 Colic-like pain Sludge  

MLD-29 Juvenile c.1372C>T p. Gln548* c.1277C>T p.Pro426Leu 7 no HSCT 8 Colic-like pain Sludge  

MLD-39 Juvenile  c.459+1G>A p.? c.1277C>T p.Pro426Leu 7 no HSCT 8 No  Sludge  

MLD-5 Juvenile c.459+1G>A  p.? c.1277C>T p.Pro426Leu 7 no HSCT 9 Vomiting Sludge  

MLD-10 Juvenile  n/a n/a n/a n/a 7 no HSCT 12 No   Sludge 

MLD-11 Juvenile  n/a n/a n/a n/a 7 no HSCT 12 No  Sludge 

MLD-6 Juvenile  c.459+1G>A p.? c.1277C>T p.Pro426Leu 9 no HSCT 11 No  Thickened wall and cholelithiasis 



 

 
139 

 

MLD-62 Juvenile  c.1277C>T   p.Pro426Leu c.1277C>T p.Pro426Leu 9 no HSCT 27 No  Sludge, infiltrated aspect gallbladder bed 

MLD-27 Juvenile  c.251G>A  p.Arg84Gln c.251G>A  p.Ser96Phe 10 no HSCT 23 No   Multiple polyps (maximal diameter 6mm) 

MLD-46 Juvenile c.1277C>T   p.Pro426Leu c.1277C>T p.Pro426Leu 12 14 30 No  Polyp 8mm 

MLD-54 Juvenile c.1277C>T p.Pro426Leu c.1277C>T p.Pro426Leu 12 no HSCT 18 No   Normal gallbladder 

MLD-58 Juvenile c.1277C>T p.Pro426Leu c.1277C>T p.Pro426Leu 13 no HSCT 13 No  Multiple  polyps (maximal diameter 13mm) 

MLD-60 Juvenile c.251G>A p.Arg84Gln c.287C>T p.Ser96Phe 13 no HSCT 13 No  Multiple polyps (maximal diameter 6mm) 

MLD-14 Juvenile  c.1277C>T  p.Pro426Leu c.1277C>T p.Pro426Leu 14 14 18 No   Normal gallbladder 

MLD-35 Juvenile  c.1277C>T p.Pro426Leu c.1277C>T p.Pro426Leu 14 no HSCT 25 No  Multiple polyps (maximal diameter 4mm) 

MLD-61 Juvenile c.1277C>T  p.Pro426Leu c.1277C>T p.Pro426Leu 21 no HSCT 21 No  Thickened wall, collapsed gallbladder, 

possible polyps 

MLD-63 Adult c.1277C>T p.Pro426Leu c.1277C>T p.Pro426Leu 23 no HSCT 23 No   Thickened wall, polyps (maximal diameter 6mm) 

MLD-21 Adult  c.635C>T p.Ala212Val c.1277C>T p.Pro426Leu 17 17 20 No Multiple polyps (maximal diameter 2·3mm) 

MLD-30 Adult c.1277C>T p.Pro426Leu c.1277C>T p.Pro426Leu 18 19 26 No   Multiple polyps (maximal diameter 10mm) 

MLD-49 Adult c.1189C>T p.His397Tyr c.1277C>T p.Pro426Leu 20 22 32 Colic-like pain Dilatation of hepatic bile ducts 

MLD-25 Adult  c.1194C>T   p.Phe398Phe c.1194C>T   p.Phe398Phe 22 no HSCT 29 No Normal gallbladder 

MLD-41 Adult c.459+1G>A p.? c.536T>G p.Ile179Ser 25 25 26 Pancreatitis  Normal gallbladder 

MLD-2 Adult c.251G>A p.Arg84Gln c.287C>T p.Ser96Phe 27 28 33 No  Thickened wall, collapsed gallbladder,  

possible polyps 

MLD-32 Adult c.536T>G p.Ile170Ser c.1171A>G p.Ser391Gly 30 no HSCT 32 No   Normal gallbladder 

MLD-15 Adult c.251G>A  p.Arg84Gln c.287C>T p.Ser96Phe 35 35 39 No  Thickened and uneven wall, possible polyps 

  

Table 1. Findings at gallbladder ultrasound. 
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Case report 

A 20-year-old male (MLD-49 in table 1) was diagnosed with the adult type of MLD and 

received two years later an HSCT from an HLA-identical unrelated donor. The procedure 

was performed without complications.16 At the time of transplantation his disease was 

already advanced: he had memory loss and behavioral changes, but his motor function was 

intact. He remained neurologically stable after HSCT during the entire follow up period. Nine 

years after the procedure, he presented with severe acute pain in the right upper abdomen. 

Ultrasound revealed dilatation of the intrahepatic and extrahepatic bile ducts and 

cholelithiasis. A large concrement in the cystic duct was seen on CT scan. Cytology of the 

endoscopic brushing revealed atypical cells suggesting adenocarcinoma. A cholecystectomy 

with bile duct resection and reconstruction with a hepaticojejunostomy was performed after 

microscopic pathology during the procedure was suspicious of malignancy. Definitive 

histological examination revealed adenocarcinoma. 

Five months later, a control CT scan showed ascites and two lesions in the liver. A biopsy 

revealed metastasis of the gallbladder carcinoma. Because of the poor prognosis of 

metastatic disease and neurological impairment as a consequence of his MLD, palliative 

care was provided. He died 2 months later, 7 months after the diagnosis of gallbladder 

carcinoma. 

Methods 

At the Center for White Matter Disorders, VU University Medical Center, we follow almost all 

Dutch patients with MLD. Diagnosis of MLD was established by brain MRI, measurement of 

arylsulfatase A activity, which was in the disease range for all patients, and ARSA mutation 

analysis. After our index patient was diagnosed with gallbladder carcinoma, we added 

gallbladder ultrasound to the routine clinical care of all MLD patients. Six patients had 

already undergone gallbladder ultrasound for symptoms such as biliary colic, abdominal pain 
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or vomiting. Twenty-six patients had not reported abdominal symptoms when they were 

screened with ultrasound at one of their routine follow-up appointments or at diagnosis. 

An experienced (pediatric) radiologist at the VU Medical Center performed ultrasound of the 

gallbladder in 30 cases; 4 patients were examined in 2 other centers. All examinations were 

carried out after at least 4 hours of fasting to ensure an optimally filled gallbladder. When 

polyps were detected, their maximal diameter was measured. Cholecystectomy was 

performed if polyps exceeded 5mm in patients having undergone HSCT or before planned 

HSCT. In the case of cholecystectomy, a pathologist experienced in neurometabolic 

disorders reviewed macroscopic and microscopic findings. In addition to routine hematoxylin 

and eosin stain, additional histochemical and immunohistochemical stains were used to 

identify macrophages containing sulfatides (metachromasia with toluidine blue), confirm 

intestinal metaplasia (Periodic acid-Schiff), and detect expression of the tumor suppressor 

gene product p53 (1:500, Dako).  

We reviewed the radiologic and pathologic results, collected between 2009 and 2015, in our 

cohort. Symptoms possibly related to gallbladder abnormalities, such as biliary colic, 

vomiting, nausea, jaundice, anorexia and abdominal pain in the right upper quadrant were 

screened for during the regular visits and information was collected from patient charts.  

Standard protocol approvals, registration and patient consents: the study received 

approval of the medical ethics review board of our hospital. 

Results 

Clinical characteristics and findings at ultrasound 

We included 34 patients in our study. Table 2 shows the demographic characteristics of our 

cohort. Thirteen patients of our cohort had received allogeneic HSCT for treatment of MLD. 

Eight patients (24%) had symptoms possibly related to gallbladder abnormalities such as 

episodes of biliary colic, nonspecific abdominal pain or frequent vomiting. Intestinal bleeding, 
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as previously described due to papillomatosis,9 was not encountered.  Unequivocal diagnosis 

of biliary colic was difficult in some cases with advanced neurologic disease. Management 

was usually conservative, vomiting was treated with antiemetic drugs, resulting in some 

relief. One patient with gallstones was treated during 6 months with ursodeoxycholic acid, 

without effect on cholecystolithiasis or on frequent vomiting. Another had recurrent 

pancreatitis in the absence of gallstones on ultrasound after a HSCT procedure. 

Characteristic Patients (n= 34) 

Age (mean, median, range) at US in 

years 

16.7, 13 (2-39) 

Sex- no. (%)  

         Male 15 (44.1) 

         Female 19 (55.8) 

Received HSCT- no. (%) 13 (38.2) 

MLD type- no. (%)  

         Late-infantile  4   (11.8) 

         Juvenile 22 (64.7) 

         Adult 8  (23.5) 

 

Table 2. Demographic characteristics of patient cohort 

Findings at gallbladder ultrasound are shown in figure 1 and table 1.  A normal gallbladder 

was found in only 8of 34 (24%) patients. Eight (62%) of HSCT-treated patients had an 

abnormal gallbladder at ultrasound, showing possible polyps in 6 of them.  

One patient had (asymptomatic) gallstones. Sludge was seen in 12 (35%) patients, one of 

whom was transplanted.  



 

 
143 

 

Increased thickness of the gallbladder wall up to 9mm (normal ≤ 3mm) 17,18 was seen in 10 

(29%) patients. Eight patients (24%) had polyps with a diameter exceeding 5 mm in 6 

patients, with a maximum of 13 mm (table1). Four (12%) patients had a small, collapsed 

gallbladder with a thickened wall. In this situation, polyps could not be ruled out. 

Laparoscopic cholecystectomy was performed in 11 patients (32%). Indications for 

cholecystectomy (table 3) were polyps ≥ 5mm visible on ultrasound (n=5), impossibility to 

exclude polyps due to thickening of the gallbladder wall (n=4), severe biliary colics (n=1) and 

recurrent pancreatitis (n=1) (table 3). In the patient with recurrent pancreatitis, these 

episodes stopped after removal of the gallbladder, in which gallstones were found. One 

patient with advanced early-juvenile MLD had sludge and a thickened gallbladder wall with 

episodes of severe, biliary colics that ceased after cholecystectomy. There were no 

complications directly related to the procedure.  

Pathology 

Table 3 and figure 2 give an overview of histopathological findings in the 12 patients (11 + 

the index patient). In patient MLD-49, our index patient, histopathology was reviewed and 

revealed a poorly differentiated adenocarcinoma. The gallbladder wall was infiltrated by a 

proliferation of highly atypical epithelial cells arranged in small glands and strings, and there 

was evidence of perineural invasion (figure 2P). There were no cholesterol polyps.   

Gross examination revealed presence of polyps in 7 patients (MLD-2, MLD-30, MLD-38, 

MLD-46, MLD-58, MLD-60, and MLD-63; figure 2), including 2 in whom these were not 

identified at ultrasound. Microscopically, the polyps were lined by normal to hyperplastic 

epithelium (figure 2 H). Multiple foci of intestinal metaplasia with clustered goblet cells were 

present in the polyps as well as in the mucosa of the wall (figure 2 I). In places, mild 

architectural and cytologic changes of the polyp epithelium were also seen, including nuclear 

hyperchromasia and stratification. Stain for p53 was focally positive in 2 patients (figure 2 N 

and O). There were no cholesterol polyps. In 3 HSCT-treated and 5 untreated patients 



 

 
144 

 

(including 2, MLD-58 and MLD-63, in whom cholecystectomy was performed prior to HSCT), 

premalignant changes (intestinal or gastric metaplasia and hyperplasia) were found. 

 

Figure 1. Gallbladder ultrasound findings in MLD. In (A), an 8mm polyp in the gallbladder of a transplanted 
patient (MLD-30) is depicted. (B) shows a 10mm polyp in the gallbladder of a patient before transplantation (MLD-
58). Cholelithiasis is present in (C) in a non-transplanted patient (MLD-6). A gallbladder with multiple polyps 
(maximal diameter 4mm) in a non-transplanted patient (MLD-35) is shown in (D). (E) shows a gallbladder with 
thickened wall and sludge in a non-transplanted patient (MLD-38) with episodes of severe colic-like pain. Polyps 
are not discernible, but were present at histopathological examination. A small and contracted gallbladder with 
thickened wall and polyps in a non-transplanted patient is seen in (F) (MLD-63). 
 

In 3 patients (MLD-2, MLD-37 and MLD-38) in whom ultrasound showed a thickened 

gallbladder wall, histology showed prominent Rokitansky-Aschoff sinuses with fibrosis and 

hyperplasia of the muscle wall. Prominent Rokitansky-Aschoff sinuses without hyperplasia of 

the muscle wall were also detected in 3 patients (MLD-46, MLD-60, MLD-63), in whom no 

wall thickening was detected at ultrasound. Besides cholelithiasis and scattered 

macrophages filled with storage material, histopathology of the patient with recurrent 

pancreatitis (MLD-41) showed normal findings. 

The stroma of the polyps and mucosa of the wall contained foamy macrophages with 

periodic-acid-Schiff-positive metachromatic material (2 L and M). Of note, presence and 

extent of sulfatide storage differed between HSCT-treated and untreated patients. The 
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number of macrophages containing sulfatides was considerably higher in untreated patients, 

including those who underwent cholecystectomy before transplantation, whereas little (MLD-

2, MLD-41 and MLD-37) or no storage material (MLD-46) was detected in HSCT-treated 

patients. There was no difference in incidence of other abnormalities between HSCT-treated 

and untreated patients.  

 

 

 



 

 
146 

 

Table 3: Indication for cholecystectomy and histopathological findings 

Patient 
ID 

MLD 
type  

Age at 
cholecys
tectomy 

Indication Macroscopy Histopathology Storage material 

MLD-38 Juvenile 7 Episodes with 

severe colic-like 

abdominal pain  

Wall thickness 2mm, mucosa 

unrecognizable, hemorrhagic bile 

Intestinal metaplasia, focal prominent 

Rokitansky- Aschoff sinuses, hyperplastic polyps 

Numerous macrophages with metachromatic material 

in both polyp stroma and gallbladder wall 

MLD-37 Juvenile 12 Possible polyps Small gallbladder, wall thickness 

3mm 

Gastric and intestinal metaplasia, prominent 

Rokitansky-Aschoff sinuses, no polyps 

Scattered macrophages with metachromatic material 

in gallbladder wall 

MLD-46 Juvenile 30 Polyp Serosa slightly hemorrhagic, wall 

thickness 4mm 

Rokitansky-Aschoff sinuses, small finger like 

polyps 

No metachromatic material-containing macrophages 

MLD-60 Juvenile 13 Multiple polyps  Serosa slightly hemorrhagic, wall 

thickness 4mm 

Intestinal metaplasia, focal prominent 

Rokitansky-Aschoff sinuses, hyperplastic polyps 

Numerous macrophages with metachromatic material 

in both polyp stroma and gallbladder wall 

MLD-58 Juvenile 13 Multiple polyps Hemorrhagic bile Intestinal metaplasia, hyperplastic polyps, 

hyperplasia 

Numerous macrophages with metachromatic material 

in both polyp stroma and gallbladder wall 

MLD-61 Juvenile 21 Possible polyps Wall thickness 3mm, hemorrhagic 

bile 

Intestinal metaplasia, hyperplasia, prominent 

Rokitansky-Aschoff sinuses 

Numerous macrophages with metachromatic material 

in the gallbladder wall 

MLD-63 Juvenile 23 Polyps  Several polyps, maximal diameter 

5mm, wall thickness 3mm 

Adenomyomatosis, focal prominent Rokitansky-

Aschoff sinuses, hyperplastic, polyps, intestinal 

metaplasia 

Numerous macrophages with metachromatic material 

in the polyp stroma 

MLD-41 Adult 26 Recurrent 

pancreatitis 

n/a Cholelithiasis, no polyps  Scattered macrophages with metachromatic material 

in gallbladder wall  

MLD-30 Adult 27 Multiple polyps Several polyps, maximal diameter 

10mm,wall thickness 3mm, 

Polyps with villous aspect                                              Numerous macrophages in the polyp stroma 

       

MLD-49 Adult 32 Suspected n/a Invasive poorly differentiated adenocarcinoma n/a 
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malignancy 

MLD-2 Adult 33 Possible polyps Small gallbladder, bile completely 

absent, wall thickness 3mm 

Hyperplastic polyps, prominent Rokitansky-

Aschoff sinuses 

Scattered macrophages with metachromatic material 

in both polyp stroma and gallbladder wall  

MLD-15 Adult  39 Possible polyps Small gallbladder, hardly any bile, 

wall thickness 4mm 

Intestinal metaplasia, hyperplasia, prominent 

Rokitansky-Aschoff sinuses, no polyps 

n/a 
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Discussion 

In this first systematic evaluation of gallbladder involvement in MLD, we found significant 

abnormalities in a high percentage of patients (26/34, 76%). Gallbladder sludge was 

frequent, regardless of transplantation status. Although HSCT is a known predisposing factor 

for its formation, 19,20 this typically occurs within the first 6 months after HSCT, while most of 

our patients were at least 1 year post HSCT. Furthermore, the conditioning regimens 

(hypothesized to impair gallbladder contractility resulting in sludge) used for MLD patients 

are not as intensive as those used for most hematological conditions. We therefore assume 

that MLD itself and not HSCT causes sludge. 

In one quarter, polyps were found by ultrasound, considerably more often than expected in a 

population of healthy children and young adults. The true prevalence of polyps in MLD is 

likely even higher, since in 2 patients polyps were detected only at histopathological 

examination while ultrasound only showed a thickened gallbladder wall. At histopathological 

examination, these polyps were all hyperplastic. In addition, intestinal metaplasia and 

hyperplasia of the gallbladder mucosa were present in 8 of 12 cases.   

The exact prevalence of gallbladder polyps in children is unknown, but considered as 

extremely rare.21 In healthy adults, irrespective of age, prevalence of gallbladder polyps 

varies between 3 and 7% at ultrasound, cholesterol polyps being by far the most frequent 

type at histologic examination.22, 23 Gallbladder polyps are usually asymptomatic and as such 

an incidental finding, with about 75% are benign.23, 24 They are, however, associated with an 

increased risk of evolving into carcinoma. This risk is substantially higher for hyperplastic 

than for cholesterol polyps, for polyps larger than 10 mm and for those associated with a 

thickened gallbladder wall.23, 25The evolution to gallbladder carcinoma, which takes 

approximately 10 to 15 years, progresses from metaplasia to dysplasia, carcinoma in situ 

and eventually invasive tumor.26 The average age for dysplastic changes in the general 

population is 51.9 years, for localized gallbladder carcinoma 56.8 years and for advanced 
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carcinoma 62.9 years.14 Because gallbladder carcinoma remains asymptomatic for a 

prolonged period,14 it is usually diagnosed in an advanced stage with a high risk for 

metastases and dismal prognosis, reflected by the overall mean survival rate of only 6 

months and a 5-year survival  of 5%.24 Current guidelines therefore recommend 

cholecystectomy for polyps larger than 10mm in otherwise healthy persons, and for polyps 

exceeding 5 mm in patients with conditions associated with increased risk of gallbladder 

carcinoma.27-29 

Findings in our patient cohort confirm earlier single case reports of gallbladder abnormalities 

in MLD. Our results suggest a causal relationship between MLD and the development of 

gallbladder polyps and eventually carcinoma, because of the high incidence of abnormalities 

found, in contrast to the situation in otherwise healthy children and young adults in whom 

polyps are very rare and carcinoma virtually nonexistent.14 It has been hypothesized that 

gallbladder polyposis in MLD is caused by the prolonged contact of gallbladder epithelium 

with sulfatides accumulating in bile.5 The putative role of sulfatides in this process is 

uncertain. Of note , sulfatide expression is elevated in many human cancer cell lines and 

tissues, although their role in carcinogenesis is not yet understood.30 After HSCT, the number 

of sulfatide-laden macrophages in the gallbladder wall was decreased, but not normal, 

consistent with a limited effect of HSCT on sulfatide accumulation in visceral organs. 

Presence and aspect of polyps were, however, grossly unchanged.  
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Figure 2. Pathology of the gallbladder in MLD. Gross inspection in (A-C) showing thickening of the gallbladder 
wall (A, MLD-37) and medium-sized (B, MLD 60) to large polyps (C, MLD-58). A whole mount preparation (D, 
MLD-37) demonstrates that thickening of the wall corresponds to prominent Rokitansky-Aschoff sinuses and 
muscle wall hyperplasia. (E-F) show the presence of small finger-shaped (E, MLD-60) or large polyps (F, MLD-
58) protruding into the gallbladder lumen. In (G) H&E stain of patient MLD-37 shows normal mucosal epithelium. 
H&E stain in (H, MLD-60) depicting hyperplasia of the epithelium lining a polyp. H&E stain in (I, MLD-60) shows 
abundance of goblet cells in the epithelium, indicating intestinal metaplasia. The mucin contained in goblet cells is 
intensely PAS-positive in (J, MLD-60). H&E stain in (K) showing numerous foamy macrophages in the stroma of a 
polyp (MLD-58). In (L-M) the foamy macrophages are PAS-positive (L) and metachromatic (red) with the 
Toluidine blue stain (M), indicating that they contain sulfatides (MLD-58). In (N, MLD-58) p53 stain shows 
pathologic nuclear expression in the epithelium lining a polyp. In MLD-46, p53 stain shows pathologic nuclear 
expression (O, left), in comparison to normal absent expression in the epithelium of the wall (O, right). In (P, MLD-
49) a proliferation of cytonuclear atypical epithelial cells in the gallbladder wall is shown. 
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With improved symptomatic treatment, the life expectancy of neurodegenerative disorders 

has increased over the last few decades. As treatments for MLD as HSCT and gene therapy 

are emerging, life expectancy of successfully treated patients will increase further and 

hopefully normalize. This implies that late or unusual disease complications will become 

more frequent. An additional risk factor for developing malignancies may be the exposure to 

the myelo-ablative and intensive immunosuppressive therapy that patients receive around 

HSCT although we did not find a higher incidence of premalignant abnormalities in HSCT-

treated compared to untreated patients, with the limitation of short follow-up time, not 

reflecting potential long-term effects of immunosuppression. 

Based on a previous report15 and the present findings, we consider MLD a disease 

associated with an increased risk of gallbladder carcinoma. Consistent with this, we followed 

current guidelines for patients with increased risk of malignant transformation of gallbladder 

polyps 29 and performed cholecystectomy for polyps exceeding 5 mm in HSCT-treated 

patients and also in untreated patients in good clinical condition. Patients with thickened 

gallbladder wall in whom ultrasound cannot rule out the presence of polyps should also be 

considered candidates for cholecystectomy, as radiologic follow-up is predicted to be difficult. 

In patients with advanced neurologic involvement, decision to operate or closely follow 

abnormal findings is more challenging and should be made on an individual basis, also 

taking into account the reduction in quality of life due to symptomatic gallbladder 

involvement. 

We propose adding ultrasound screening for gallbladder abnormalities to the standard 

clinical care of patients with MLD. Ultrasound is noninvasive and inexpensive and allows 

early detection of changes predisposing to gallbladder carcinoma, although one should bear 

in mind that it may miss polyps in patients with thickened wall or collapsed gallbladder. 

Patients at risk, as defined by polyps ≥ 5mm, (severe) thickening of the gallbladder wall or 

with symptomatic gallbladder involvement can be treated with laparoscopic cholecystectomy, 
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a relatively low risk procedure, in order to improve quality of life and avoid untimely death 

from a preventable cause. 
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Chapter 10 

Summary, discussion and future perspectives  
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Discussion and summary 

Clinical aspects 

In order for patients to be diagnosed in time for HCT, it is of great importance that the 

different possible presenting symptoms are recognized by physicians. We described in 

chapter 3 that in juvenile and adult onset patients, psychiatric symptoms can precede 

neurological signs. The combination of an initially normal child with a clear change of 

behavior together with mild cognitive deterioration should prompt diagnostic evaluation for 

neurometabolic disorders. Early and correct diagnosis is not only essential to allow for HCT, 

a possible life saving treatment, but also for appropriate palliative treatment and genetic 

counseling. In addition, only through correct (and timely) diagnosis, siblings can be 

diagnosed while they are still presymptomatic and thus ideal candidates for HCT.  

 

Treatment 

MLD patients not treated with HCT invariably develop spasticity and often also a dyskinetic 

movement disorder, which is painful in many patients and can hamper daily care. Baclofen is 

a GABA-agonist that inhibits neural transmission at the spinal cord and is therefore 

frequently used to improve spasticity.1 Intrathecal baclofen treatment (IBT) allows specific 

drug administration to tissues that are most responsible for spasticity with little exposure to 

the brain, thereby reducing side effects.2 In chapter 4 we studied ITB treatment in MLD 

patients to reduce spasticity and compared this to patients with spastic cerebral palsy (SCP). 

We showed that ITB is a safe and feasible therapy to improve comfort and daily care in MLD 

patients with both spastic and dyskinetic movement impairments. The treatment in MLD 

patients is comparable to SCP patients regarding baclofen dosage and complications. We 

recommend ITB early in the disease course for patients in whom oral baclofen no longer 

sufficiently reduces painful spasms and when spasticity hinders daily care.   
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In chapter 5, we compared our transplanted patients with patients no longer eligible for HCT, 

diagnosed in the same time period. We showed that HCT is a safe procedure, with no 

treatment related mortality (TRM) in this study.3 HCT has proven to be able to stop the 

disease once performed in pre- or early symptomatic patients with the juvenile or adult onset 

type. For more advanced and late-infantile patients, HCT at best delays disease progression. 

Together with our study, two other large studies compared the effect of HCT in MLD patients 

to non-transplanted patients.4,5 Boucher et al report a TRM of 23%, which they partially 

explain by the fact that part of their cohort was transplanted years ago when HCT was riskier 

due to less advanced protocols and techniques. In consensus with our results they report 

efficacy for early, pre-symptomatic transplantation in later onset MLD types, but their results 

also show benefit from HCT for long-term survival across all MLD subtypes. Gröschel et al 

report a TRM of 17% in a group of juvenile MLD patients. They recommend HCT in juvenile 

patients with an age of onset older than 4 years, pre- or early symptomatic (GMFC-MLD 0 or 

1 and IQ ≥ 85), MRI score less than 17 (with a temporal or parietooccipital white matter 

subscore ≤4) and no involvement of U-fibers.  

The difference in TRM between the studies of Boucher and Gröschel and our own study 

without TRM is remarkable. Boucher et al already point out the influence of older, less 

advanced protocols. In line with this, different conditioning regimens used are likely of 

influence on TRM. Another difference is that our cohort consisted of a large percentage 

(46%) of adult patients, whilst the other studies did not include adult patients or a smaller 

number of patients. How the subtype would influence TRM however is not evident, since the 

same conditioning regimens are used for children and adults. Moreover, the incidence of 

GvHD tends to be lower in children than in adults.6 Due to the slower disease progression, 

adults are usually less affected at time of transplantation, which might make them less 

vulnerable to the intensive treatment.  

Unfortunately, some of our patients did deteriorate cognitively after HCT, despite a pre- or 

early symptomatic clinical condition prior to HCT. The disease manifestations in these 
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patients are not only evidently slower compared to the natural course, but also progress 

despite stable white matter changes on MRI. This suggests neuroaxonal involvement less 

amenable to HCT. Why this decline is seen in some, but not all patients after HCT remains 

unclear. Both late-infantile, juvenile and adult patients were affected, so the subtype and 

pace of disease progression are not the only explanation. Longer follow-up time also for adult 

patients in whom the disease evolves slower will clarify how the disease fully unfolds after 

HCT and how often this cognitive deterioration occurs.   

Pre- and early symptomatic juvenile and adult MLD patients are good candidates for HCT. In 

these patients, HCT can result in disease stabilization or even some improvement. Patients 

that are no longer able to walk without support and whose cognitive function is clearly 

affected (IQ below 75) will have no benefit from HCT. However, for patients with early 

juvenile onset IQ should preferably be higher, whereas in adult patients the slow disease 

progression may allow less stringent criteria. Additionally, brain abnormalities (rated with the 

MLD-Loes score) are predictive for outcome: patients with an MRI score above 15 at 

diagnosis are likely to have an unsuccessful outcome. Quantitative MRS can further be of aid 

in determining eligibility for HCT in ambiguous cases: severely reduced concentrations of 

(NAA) indicate low probability of a successful outcome. 

In chapter 6 we compared brain tissue of transplanted and non-transplanted patients to 

compare the inflammatory response and oligodendrocyte numbers between these two 

groups to gain further insight into the exact mechanism by which HCT halts further 

demyelination or even improves myelination. We found that in transplanted patients, there is 

presence of metabolically competent macrophages that are able to digest sulfatides, with a 

polarization of these macrophages towards an M2-like phenotype. There was a higher 

number of oligodendrocyte precursors and mature myelin forming oligodendrocytes in 

transplanted than untreated patients. These data suggest additional beneficial effects of HCT 

beyond cross-correction of enzyme deficiency that could be further exploited in order to 
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improve outcome. That these changes could be demonstrated in spite of the fact that 

transplantation was not successful, underlines the robustness of these findings. 

 

Quantitative MRI techniques 

Quantitative MRI techniques such as proton MRS and DTI broaden our knowledge about the 

pathomechanisms involved in the disease. In chapter 7 we described that MRS at diagnosis 

is predictive for clinical outcome.7 Patients with abnormal concentrations (severely reduced 

NAA, Glu and Glx and increased Lac and Ins) had poor outcome, whilst patients with 

concentrations closer to normal had moderate outcome. NAA was the main explanatory 

variable. Notably, in some patients in whom we observed a normalization in the ratio of 

Cho/NAA, this improvement did not coincide with an improvement in MRI score or reduction 

in lesion volume. The MRI score also includes other WM regions and cerebral and cerebellar 

atrophy, which forms a partial explanation. MRS concentrations at diagnosis are of aid in 

deciding whether HCT will be beneficial, especially for patients with a borderline neurological 

and cognitive examination. If baseline metabolite concentrations are severely abnormal, 

there is low probability of a good outcome. In chapter 8 we studied DTI parameters at 

diagnosis and follow-up in MLD patients and found decreased FA and increased MD and RD 

in NAWM, corpus callosum,  and pyramidal tracts in patients compared to controls. In the 

thalamus no differences in FA were observed, but all diffusivities were increased in both 

patient groups. We found increased AD in the thalamus but decreased AD in the corpus 

callosum and NAWM of patients. These changes are most likely reflective of different 

pathological processes occurring in MLD, reflecting a balance between neuro-axonal loss 

and intracellular storage accumulation, depending on region and disease stage.  
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Extra-neurological involvement 

Despite the fact that ASA activity has been shown to return to normal reference values after 

HCT,5,8 both sulfatide excretion in urine (own unpublished findings) as sulfatide accumulation 

in visceral organs and in the peripheral nervous system are not affected by HCT.4,8,9 In our 

transplanted patients, we saw remarkably large intrasubject fluctuations of sulfatide excretion 

in urine after HCT (unpublished data). All values remained above normal references values. 

We do not understand the reason for this large intrasubject fluctuations. Measurements were 

corrected for dilution of urine, and a catabolic versus anabolic state would not be expected to 

be of influence. For the increased sulfatide excretion itself after HCT we hypothesize that 

damage to kidney tissue, not repaired by the transplantation, or clearance of sulfatides in a 

tissue dependent pace (possibly slower in the kidney than in the central nervous system), 

results in this increased excretion. An alternative hypothesis is that the degradation of stored 

sulfatides requires higher amounts of ASA enzyme than the prevention of storage,10implying 

that HCT does prevent further deterioration but does not restore ASA activity enough to 

ameliorate stored sulfatides. Another explanation might be that the donor macrophages do 

not reach the visceral organs (including the gallbladder and kidney) and the peripheral 

nervous system. The peripheral neuropathy can severely hamper motor function, especially 

in patients with an earlier onset, after transplantation.11,12 

All in all, the precise mechanism for the ongoing accumulation after HCT is not yet 

understood but definitely requires further attention since it will help us to optimize treatment 

options for MLD. It is evident that with the limitations of HCT, other therapy strategies are 

needed, perhaps even in combination with HCT, certainly for patients with early onset and for 

those in more advanced stages of the disease. This will be discussed under future 

perspectives 

In chapter 9 we reported a high incidence of gallbladder abnormalities found in our MLD 

patients, suggestive of a causal relationship between MLD and the development of 
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gallbladder polyps and eventual carcinoma. 13 The difficulty with gallbladder carcinoma is the 

extremely fast evolution, implying that usually, once it is symptomatic, curative treatment is 

no longer possible. Due to the various pathological abnormalities we found in our patients, 

including hyperplastic polyps, a known precancerous condition, we believe screening of the 

gallbladder by abdominal ultrasound should be added to the standard clinical care of MLD 

patients. If the ultrasound shows no abnormalities we recommend a follow-up ultrasound 

every 2 years. A cholecystectomy is advised for polyps exceeding 5 mm in HCT treated 

patients and untreated patients in good clinical condition in order to prevent untimely death 

from a preventable cause and improve quality of life. It is important to bear in mind that, due 

to the thickness of the gallbladder wall and a small collapsed gallbladder often found in MLD 

patients, there is a substantial risk of missing a polyp on ultrasound, with an increased risk of 

evolving into carcinoma. To minimalize this risk, we therefore advice considering 

cholecystectomy when polyps cannot be ruled out on the ultrasound. Kim et al9 also report a 

large MLD patient cohort with a high incidence of gallbladder abnormalities. Remarkably, 

they do not recommend to add an ultrasound to the standard clinical care of patients, but 

only for patients who present with abdominal pain. Additionally, they only advise 

cholecystectomy for patients with gallbladder abnormalities in the setting of relevant clinical 

symptoms, and not a prophylactic cholecystectomy in the case of asymptomatic polyps found 

on ultrasound. 

 

Follow-up of transplanted patients  

A standard, uniform treatment and follow-up protocol would be beneficial for patient care. 

Our current protocol contains a first assessment for transplanted patients 6 months after 

HCT, including neurological examination with scoring of gross motor function (GMFC-MLD), 

brain MRI (rated by the MLD-Loes score) including MRS, measurement of ASA activity, 

sulfatide excretion in urine and assessment of nerve conduction velocity. These 
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assessments are repeated a year after HCT and consequently each year until 5 years after 

HCT. Cognitive function is evaluated one year after HCT, depending on age of the patient 

through the Bayley Scales of Infant Development-II, the Wechsler Intelligence Scale for 

Children-III or the Wechsler Adult Intelligence Scale-III. Chimerism analysis is usually 

performed at day 60 after HCT and subsequently every year after HCT, at least during the 

first 5 years. After that time, follow-up is adapted per patient and clinical status.  

As previously stated, screening of the gallbladder by abdominal ultrasound should be added 

to the standard clinical care of MLD patients and included in the general evaluation prior to 

HCT; follow-up depends on the findings, but even in patients with normal ultrasound it should 

be repeated every 2 or 3 years. 

We see ovarian dysfunction after chemotherapy in a substantial number of our female HCT-

treated patients. Hormonal substitution is advised to prevent or treat symptoms related to 

estrogen deficiency such as osteoporosis and climacteric symptoms. Bone density should be 

followed as well.  

 

Palliative care 

Unfortunately, many patients are diagnosed when the disease has already progressed to a 

point where HCT or gene therapy would no longer be beneficial. For these patients, it is 

important that they receive the best possible care for their inevitably progressing symptoms, 

to maintain good quality of life. 

ITB as potent treatment of spasticity has been described above. Another treatment option for 

spasticity aside from ITB is a selective dorsal rhizotomy (SDR), in which the posterior 

lumbosacral rootlets from the spinal cord are partially transected in order to reduce the 

excitatory sensory input.14 The advantage of SDR is that it requires only one surgical 

intervention, whereas ITB requires multiple hospital visits for adjustment and refill of the 
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pump. We have little experience with SDR for our MLD patients, but it has been shown that it 

can have a positive effect on comfort in non-walking children with spasticity, but pain is not 

always completely alleviated and daily care problems often persist.14 Additionally, patients 

are at increased risk for developing dystonia, which should closely be evaluated when 

considering SDR.  

Epilepsy is a frequent symptom, especially in more advanced patients. Frequently occurring 

seizures should be treated in order to prevent possible co-morbidities as trauma, 

encephalopathy, aspiration and hospitalization.15 Seizures are usually well under control with 

medication.  

With disease progression, drooling and dysphagia usually occur, which ultimately makes 

feeding via gastrostomy necessary. Timely placement of a gastrostomy, when first signs of 

swallowing dysfunction develop, is important to reduce the risk of aspirations and 

malnutrition. Another frequent problem is sialorrhoea, which is often treated with 

anticholinergics, of which glycopyrronium is the first choice. In advanced cases 

glycopyrronium may no longer be sufficient. Botulinum toxin injections in salivary glands can 

also be used to suppress salivation. It should be used with caution since a possible side 

effect is deterioration of the dysphagia and thickening of secretions.16 

Chronic pain and irritability are unfortunately not uncommon, especially in later stages of the 

disease. One should be aware of possible underlying causes such as neuropathic pain, 

spasticity, joint dislocation, bone fractures, constipation, bowel obstruction, appendicitis, 

gastroesophageal reflux and dental injury.15 Gallbladder colics and urinary retention, the 

latter due to neuropathy, are other possible causes of pain in MLD patients. It is also 

important to distinguish pain from discomfort as a response to strong stimuli or 

overstimulation. The response to analgesics or sedation can help discriminating between 

these causes. Sleep can be affected by the irritability, pain and discomfort. Melatonine is 

recommend as first step, other options are alimemazine and gabapentine. Gabapentine is a 
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calcium channel modulator and is typically used to treat chronic pain or epilepsy.15 Apart from 

its regular indication, we used gabapentine in three patients suffering from irritability 

accompanied by increased muscle tone not sufficiently treated by ITB, with positive effect.  

 

Future perspectives   

Novel treatments 

It is likely that in the future, therapy for MLD will be multimodal, including HCT-GT and 

enzyme replacement therapy. We learned from patients in whom HCT was successful that 

there are still obstacles to overcome such as the previously mentioned cognitive decline and 

the continuing peripheral neuropathy.  

Hematopoietic Stem Cell- Gene Therapy (HSC-GT) 

In HSC-GT, HSCs culture and manipulation are essential steps to achieve gene transfer. 

Vectors integrate into the host genome, thereby expressing the corrective gene in their 

progeny.17 Preliminary results of a lentiviral mediated HSC-GT clinical trial of 9 patients with 

presymptomatic late-infantile and early symptomatic early juvenile patients report safety of 

the procedure.18 At a median follow-up of 3 years after treatment, all patients were alive with 

halted disease progression or prevention of disease onset. One patient, who did have 

disease progression between enrollment and treatment initiation, did not benefit from the 

treatment. Remarkably, peripheral neuropathy (already present at diagnosis) improved in 

one third of patients 2 years after HSC-GT. This suggests that the above normal enzyme 

expression reached by HSC-GT has an advantage in correcting MLD.18 Remyelination, by 

local Schwann cell precursors, is thought to take place after removal of sulfatides from nerve 

tissue.18 

Intrathecal GT with viral vectors encoding ARSA has the advantage of more rapid and 

significant expression of ARSA in the brain over lentiviral mediated HSC-GT. Disadvantages 
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are the invasiveness of the procedure and the risk of an immune reaction against the 

transgene.17 Intrathecal GT is thought to target mostly neurons, but the lysosomal enzyme 

could be secreted by transduced neurons and recaptured by other cells and thereby also 

correct the enzyme deficiency in oligodendrocytes. A phase 1/2 clinical trial to assess the 

safety of and efficacy of intrathecal GT with AAVrh.10hARSA into the white matter of both 

hemispheres (NCT01801709; clinicaltrials.gov) was stopped because of lack of efficacy (P. 

Aubourg, personal communication). 

Intravenous ERT has not been efficient in controlling CNS disease manifestations, and 

therefore intrathecal ERT agent delivery and trials are ongoing to prove its efficacy. One 

such trial, using a biological recombinant of human ASA, has now completed, but results are 

pending (clinical trials.gov: NCT01510028).  

Newborn screening 

Criteria for inclusion of diseases in screening programs are broadly based on frequency, 

severity of the disease in the untreated population, availability of reliable testing 

methodology, effective treatment options and cost effectiveness.19 Other metabolic diseases 

such as X-linked adrenoleukodystrophy (X-ALD) and mucopolysaccharidosis type I (MPS-I) 

have recently been recommended for newborn screening (NBS) in the Netherlands. Krabbe 

disease, another lysosomal storage disorder affecting the CNS and PNS, has a disease 

course comparable to MLD. NBS for Krabbe disease has been implemented in the US (in the 

state of New York) since 2006.20 Early diagnosed infants can be treated with HCT. The 

inclusion of MLD in the NBS program is complicated by the fact that HCT is not an effective 

therapy for all subtypes. HSC-GT is now emerging and results are promising and suggestive 

of a safe and effective therapy also for the late-infantile subtype. This would make MLD a 

disease with (possible) effective treatment options for all subtypes, warranting therefore 

implementation within NBS. Still, it is essential to know what subtype a patient would 

develop; most of all to determine the best moment for treatment. Subtype determination 



 

 166 

would require mutation screening after ASA activity has been found low, but is complicated 

by the heterogeneity of disease causing mutations. However, it is known that if a patient is 

homozygous for mutations predicted to lead to complete loss of ASA activity, they will 

develop the late-infantile form of the disease.21 In general, the more effective ASA is 

produced, the later the onset of the disease. 

Regarding the best moment for treatment, the question arises whether the earlier is per 

definition the better. For late-infantile patients this seems to be the case, but for adult 

patients one could question whether the benefit of treatment earlier than needed at a young 

age outweighs the possible risk of treatment related mortality and morbidity, risking otherwise 

healthy years. The best moment for treatment will therefore always remain a decision of both 

doctor and patient, different for each individual. More experience with the above-mentioned 

therapies and combinations of these will broaden our knowledge and will able physicians to 

provide the best possible counseling, 

Better understanding of the disease and its pathomechanisms will in the future optimize 

treatment options and will hopefully eventually make this devastating disease a treatable 

disorder, for all patients.  
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Nederlandse samenvatting 

Klinische aspecten 

Om patiënten op tijd te kunnen diagnosticeren voor HCT is het van groot belang dat de 

verschillende symptomen waarmee patiënten zich kunnen presenteren worden herkend door 

artsen. In hoofdstuk 3 beschrijven we dat in juveniele en adulte patiënten, psychiatrische 

symptomen vooraf kunnen gaan aan neurologische klachten. De combinatie van een initieel 

normaal ontwikkelend kind bij wie een duidelijke verandering van gedrag gepaard gaat met 

milde cognitieve achteruitgang zou moeten leiden tot diagnostische evaluatie gericht op 

neurometabole ziekten. Een vroege en juiste diagnose is niet alleen van essentieel belang 

voor de mogelijk levensreddende behandeling met HCT, maar ook voor het kunnen geven 

van de juiste palliatieve behandeling en genetische counseling. Daarnaast maakt alleen een 

correcte en vroege diagnose het mogelijk ook broers en zussen te diagnosticeren als zij nog 

presymptomatisch, en dus ideale kandidaten voor HCT, zijn. 

Behandeling 

In hoofdstuk 4 hebben we gekeken naar de behandeling van MLD patiënten met 

intrathecale baclofen (ITB), om spasticiteit te verminderen. We hebben dit vergeleken met 

dezelfde behandeling voor patiënten met spastische cerebrale parese (SCP). We laten hier 

zien dat ITB een veilige en haalbare behandeling is ter verbetering van comfort en dagelijkse 

verzorging voor MLD patiënten. De behandeling in MLD patiënten is vergelijkbaar met SCP 

patiënten wat betreft baclofen dosering en complicaties. Wij adviseren ITB in een vroeg 

stadium voor patiënten voor wie orale baclofen de spasmen niet langer adequaat verminderd 

en als de spasticiteit de dagelijkse zorg hindert. 

In hoofdstuk 5 hebben we onze getransplanteerde patiënten vergeleken met patiënten die 

in dezelfde periode waren gediagnosticeerd maar niet langer in aanmerking kwamen voor 

HCT. We hebben laten zien dat HCT in deze studie een veilige behandeling is, zonder 

behandeling gerelateerde mortaliteit. HCT is bewezen effectief in het stoppen van de ziekte, 



 

 170 

mits de behandeling wordt uitgevoerd in pre of vroeg symptomatische patiënten met de 

juveniele of adulte vorm. Voor patiënten in een verder gevorderd ziektestadium of voor 

patiënten met de laat infantiele vorm, vertraagt HCT in het beste geval de ziekte progressie. 

Pre en vroeg symptomatische juveniele en adulte MLD patiënten zijn goede kandidaten voor 

HCT. Voor deze patiënten kan HCT resulteren in ziekte stabilisatie of zelfs enige verbetering. 

Patiënten die niet meer in staat zijn om zonder steun te lopen en wiens cognitief functioneren 

reeds duidelijk aangedaan is (IQ onder de 75) zullen niet van HCT profiteren. Een hoger IQ 

is te prefereren bij patiënten met de vroeg juveniele vorm, in het geval van adulte patiënten 

laat de langzame ziekteprogressie wellicht ruimte voor minder strikte criteria. 

Hersenafwijkingen op de MRI (gescoord met de MLD-Loes score) zijn voorspellend voor de 

klinische uitkomst; patiënten met een MRI score boven de 15 ten tijde van diagnose hebben 

een grote kans op een slechte uitkomst. Kwantitatieve MRS kan, in het geval van twijfel, 

verdere ondersteuning bieden bij het bepalen van wie er in aanmerking komt voor HCT; 

duidelijk verlaagde concentraties van N-acetylaspartaat (NAA) duiden op een lage kans op 

een succesvolle uitkomst.  

In hoofdstuk 6 hebben we hersenweefsel van getransplanteerde en niet getransplanteerde 

patiënten vergeleken om de inflammatoire response en het aantal oligodendrocyten tussen 

deze 2 groepen te kunnen vergelijken. Het doel hiervan was meer inzicht te krijgen in het 

exacte mechanisme waarmee HCT de demyelinisatie stopt of myelinisatie zelfs verbetert. 

We hebben ontdekt dat in getransplanteerde patiënten metabool competente macrofagen 

voorkomen die in staat zijn om sulfatides te verteren. Deze macrofagen laten een polarisatie 

zien richting het M2 fenotype. Het aantal oligodendrocyt voorlopers en volgroeide myeline 

vormende oligodendrocyten was hoger in getransplanteerde dan in niet behandelde 

patiënten. Deze data suggereren dat HCT, naast cross correctie van de enzymdeficiëntie, 

positieve effecten heeft die verder onderzocht kunnen worden om de klinische uitkomst te 

verbeteren. Het feit dat deze veranderingen konden worden aangetoond ondanks dat de 
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transplantatie niet succesvol was in deze patiënten, onderstreept de robuustheid van deze 

bevindingen. 

Kwantitatieve MRI 

Kwantitatieve MRI technieken zoals proton MRS en DTI verbreden onze kennis over de 

pathomechanismen die ten grondslag liggen aan de ziekte. In hoofdstuk 7 beschrijven we 

dat MRS ten tijde van diagnose voorspellend is voor de klinische uitkomst. Patiënten met 

afwijkende metaboliet concentraties (duidelijk verlaagd NAA, Glu en Glx en verhoogd Lac en 

Ins) hadden een slechte klinische uitkomst, terwijl patiënten met minder afwijkende 

concentraties een matige klinische uitkomst hadden. NAA was hierin de belangrijkste 

verklarende variabele. Metabolieten concentraties ten tijde van diagnose kunnen de 

beslissing voor al dan niet transplanteren ondersteunen, met name voor patiënten wiens 

neurologisch en cognitief functioneren zich op de grens bevindt. Als er duidelijk afwijkende 

metaboliet concentraties ten tijde van diagnose zijn, is de kans op een goede klinische 

uitkomst laag. 

In hoofdstuk 8 hebben we DTI parameters ten tijde van diagnose en follow up onderzocht in 

MLD patiënten. We vonden een verlaagde FA en verhoogde MD en RD in de normaal 

uitziende witte stof, het corpus callosum en de piramidebanen voor patiënten in vergelijking 

met controles. In de thalamus vonden we geen verschillen in FA maar waren alle diffusie 

parameters verhoogd in beide patiënten groepen. AD was verhoogd in de thalamus maar 

verlaagd in het corpus callosum in de normaal uitziende witte stof van patiënten. Deze 

verandering zijn het meest waarschijnlijk het gevolg van verschillende pathologische 

processen die plaats vinden in MLD, en geven een weergave van de balans tussen neuro-

axonaal verlies en intracellulaire accumulatie van sulfatides, afhankelijk van de regio en staat 

van ziekteprogressie.  

MLD buiten het zenuwstelsel 
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In hoofdstuk 9 beschrijven we een hoge incidentie van galblaas afwijkingen in onze MLD 

patiënten, suggestief voor een causaal verband tussen MLD en de ontwikkeling van galblaas 

poliepen en uiteindelijk galblaas carcinoom. Vanwege de verschillende pathologische 

afwijkingen die we in onze patiënten vonden, inclusief hyperplastische poliepen (een 

bekende premaligne aandoening), zijn wij van mening dat het screenen van de galblaas door 

middel van een echo van de bovenbuik zou moeten worden toegevoegd aan de standaard 

klinische zorg voor MLD patiënten. Als de echo van de bovenbuik geen afwijkingen laat zien 

raden we aan om de echo elke 2 jaar te herhalen. We adviseren een verwijdering van de 

galblaas (cholecystectomie) als er poliepen groter dan 5 mm worden gezien bij 

getransplanteerde patiënten en bij niet getransplanteerde patiënten in een redelijke klinische 

conditie. Het doel van deze ingreep is het voorkomen van een voortijdig overlijden en het 

verbeteren van de kwaliteit van leven. Het is belangrijk om te realiseren dat vanwege de 

dikte van de galblaaswand en de smalle samengevallen galblaas zoals die vaak gevonden 

wordt bij MLD patiënten, poliepen kunnen worden gemist op de echo. Dit resulteert in een 

verhoogd risico op het ontwikkelen van galblaas carcinoom. Om dit risico te minimaliseren 

adviseren we daarom ook een cholecystectomie als poliepen niet kunnen worden uitgesloten 

op de echo. 

 

Toekomst 

Wij verwachten dat in de toekomst de behandeling van MLD een combinatie zal vormen van 

verschillende facetten, waaronder een combinatie van HCT en gentherapie (HCT-GT) en 

enzym substitutie. Er lopen op dit moment verschillende studies naar zowel HCT-GT en 

intrathecale enzym substitutie waarvan de resultaten binnen korte tijd bekend zullen worden.  

Als er een effectieve behandeling voor alle subtypen van MLD beschikbaar komt, maakt dit 

de implementatie van MLD in de hielprik screening mogelijk. Vraagstukken die daarvoor van 

belang zijn is zekerheid over welk subtype een patiënt zal ontwikkelen en wanneer het beste 
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moment van behandeling precies is. De vraag is of hoe eerder per definitie ook het beste is. 

Voor de vroege subtypes lijkt dit het geval te zijn, maar men kan zich afvragen of in het geval 

van de adulte vorm een risicovolle behandeling eerder dan strikt noodzakelijk opweegt tegen 

het risico van verlies van anders nog gezonde jaren. Het juiste moment van behandeling zal 

daarom altijd een individuele beslissing blijven. Maar met meer ervaring en inzicht in de 

nieuwe behandelingsmogelijkheden zullen artsen in de toekomst nog beter in staat zijn om 

het best mogelijke advies te bieden.  
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gegeven; nieuwsgierigheid, een kritische blik, doorzettingsvermogen en de passie voor je 

werk en daarmee een verschil willen maken. 
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Lieve Jasper, ik ben thuis bij jou. Onze liefde is onvoorwaardelijk, en dat besef maakt dat we 

samen veel aankunnen. Ik had hier nooit kunnen staan zonder jou, zonder jouw vertrouwen 

in mijn passie en mijn dromen, en de ruimte die je me daarvoor geeft. Ik kijk uit naar de rest 

van ons leven samen. IJHV. 

Lieve Zweder en Splinther, jullie zijn het allermooiste en het grootste geluk. Jullie zijn 

onderdeel van mij, en het feit dat ik jullie moeder ben vervult mij van trots. 
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