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Abstract

The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long
and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (128,
16S), 22 tRNA genes, and a noncoding control region. We use these data and homologous sequence data from multiple other ostariophysan fishes
in a phylogenetic evaluation to test hypothesis pertaining to codon usage pattern of O. bidens mitochondrial protein genes as well as to re-examine
the ostariophysan phylogeny. The mitochondrial genome of O. bidens reveals an alternative pattern of vertebrate mitochondrial evolution. For the
mitochondrial protein genes of O. bidens, the most frequently used codon generally ends with either A or C, with C preferred over A for most
fourfold degenerate codon families; the relative synonymous codon usage of G-ending codons is greatly elevated in all categories. The codon
usage pattern of O. bidens mitochondrial protein genes is remarkably different from the general pattern found previously in the relatively closely
related zebrafish and most other vertebrate mitochondria. Nucleotide bias at third codon positions is the main cause of codon bias in the
mitochondrial protein genes of O. bidens, as it is biased particularly in favor of C over A. Bayesian analysis of 12 concatenated mitochondrial
protein sequences for O. bidens and 46 other teleostean taxa supports the monophyly of Cypriniformes and Otophysi and results in a robust
estimate of the otophysan phylogeny.
© 2007 Published by Elsevier B.V.
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1. Introduction subunits of the enzymes of oxidative phosphorylation as well as

genes for two rRNAs of the mitochondrial ribosome and the 22

In most metazoans the extranuclear mitochondrial DNA
(mtDNA) is generally a small genome ranging in size from 15 kb
to 20 kb. This single circular genome encodes genes for 13 protein

Abbreviations: ATPase 6 and 8, ATPase subunits 6 and 8; bp, base pair(s);
COI-III, cytochrome coxidase subunits I-III; cyt b, cytochrome b; LA PCR,
long and accurate polymerase chain reaction; ND1-6, 4L, NADH dehydroge-
nase subunits 1-6, 4L; rRNA, ribosomal RNA; TAS, termination associated
sequence; tRNA, transfer RNA.
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tRNAs necessary for the translation of the proteins encoded by
mtDNA (Boore, 1999). Structurally, most animal mitochondrial
genomes contain the same 37 genes (Boore, 1999), and the gene
order is highly conserved in vertebrates with a few exceptions, e.g. in
certain fish (Miya and Nishida, 1999) and amphibian (Liu et al.,
2005; Zhang et al., 2005) species. The mitochondrial genome also
contains a significant noncoding sequence, the control region, which
is involved in regulation of transcription and replication (Shadel and
Clayton, 1997).

Complete mitochondrial genomes from numerous vertebrate
species have now been determined. Because of their small size and
relative autonomy from the nucleus, mitochondrial genomes have
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proven to be valuable windows on the process of genome evolution
(Broughton et al., 2001; Gray et al., 1999) and with respect to the
correlation between codon usage and codon—anticodon adaptation
(Xia, 2005). Mitochondrial sequences have been the most widely
used markers in molecular phylogenetic and phylogeographic
analyses due to their mode of maternal inheritance and relative lack
of recombination. Furthermore, complete mtDNA sequences have
provided valuable insights into phylogenetic problems of many
different metazoan groups at various taxonomic levels (Boore and
Brown, 1998; Kawaguchi et al., 2001; Lavoue et al., 2005; Mindell
etal.,, 1998; Miya and Nishida, 2000; Miya et al., 2003; Naylor and
Brown, 1998; Rasmussen and Arnason, 1999; Zardoya and Meyer,
1997).

In this study, the complete mtDNA sequence of the Chinese hook
snout carp, Opsariichthys bidens, was newly determined. Opsar-
iichthys is a member of the order Cypriniformes (minnows, loaches,
and suckers), a large group of primary freshwater fishes distributed
throughout North American, Africa and Eurasia. Cypriniformes is in
turn placed within the series Otophysi, which also includes the order
Characiformes (leporins and piranhas), Siluriformes (catfishes), and
Gymnotiformes (South American knifefishes). The series Otophysi
and the order Gonorynchiformes (= Anotophysi) further compose
Ostariophysi (Fink and Fink, 1981; Nelson, 1994). Within Telesotei,
Ostariophysi is one of the most diversified groups and comprises
about 93% of primary freshwater fish species (Berra, 2001; Nelson,
1994). The piscivorous minnow, O. bidens, is one of the most
widespread species of eastern Asia. It occurs almost in all the
drainages of main rivers across China. The genus Opsariichthys is
placed within the family Cyprinidae and morphologically is
considered a primitive cyprinid (Howes, 1980; Regan, 1911).

Here we describe the O. bidens mitochondrial genome with
respect to gene content and organization, codon usage, nucleotide
composition, and putative functional motifs. We aim to test
evolutionary hypotheses pertaining to nucleotide and amino acid
composition, genome-wide patterns of variability, and evolutionary
rates among major ostariophysan lineages. We also compare the
pattern of codon usage bias in O. bidens with the common pattern in
ostariophysans and vertebrates, and we analyze the mechanism of
codon usage bias in the course of the O. bidens mtDNA evolution.
According to a phylogenetic framework based on the mitochondrial
genomes of O. bidens and 46 other teleostean taxa, we want to
characterize O. bidens relative to other cypriniforms and we re-
examine phylogenetic relationships within the Ostariophysi.

2. Materials and methods
2.1. DNA extraction, LA PCR and sequencing

Total genomic DNA of O. bidens was extracted from the muscle
tissue using a QIAamp tissue kit following the manufacture’s
protocol. The mitochondrial genome DNA of O. bidens was
amplified in its entirety using a LA PCR technique (Miya and
Nishida, 1999). The primers designed by Miya and Nishida (2000),
and Inoue et al. (2000, 2001a,b) were used to amplify the total
mitochondrial genome in two reactions. LA PCR was done in a
PTC-100 programmable thermal controller (MJ Research, USA)
and reactions were carried out with 30 cycles of a 25 pl reaction

volume containing 8.75 pl sterilized distilled water, 2.5 ul 10 xLA
PCR buffer II, 4.0 pl deoxy nucleoside triphosphate (dNTP)
(5 mM), 2.5 ul MgCl, (25 mM), 2.5 pl each primer (5 uM), 0.25 ul
2.5 units/ul LA Taq polymerase (Takara), and 5.0 pl template
containing approximately 20 ng DNA. The thermal cycle profile
was: pre-denaturation at 94 °C for 2 min, and denaturation at 98 °C
for 10 s, annealing and extension combined at the same temperature
(68 °C) for 16 min, 72 °C for 5 min to denature the Taq polymerase.
The long PCR products were electrophoresed on a 0.8% agarose gel
and diluted in sterilized distilled water for subsequent use as PCR
templates.

We used 24 different primers that amplify contiguous,
overlapping segments to get the entire mitochondrial genome of
O. bidens (Table 2). Some of these primers were versatile,
designed from the complete mitochondrial genome of six bony
fish species according to Miya and Nishida (2000). The others
were specific for O. bidens, and designed from the sequence that
had been got from the versatile primers. PCR was done in a PTC-
100 programmable thermal controller, and reactions were carried
out with 30 cycles of 25 pl reaction volume containing 15.5 ul
sterilized distilled water, 2.5 pul 10xPCR buffer, 2.0 ul dANTP
(5 mM), 1.8 ul MgCl, (25 mM), 1.0 pl each primer (5 uM), 0.2 ul
5 units/ul Taq polymerase (Takara), and 1.0 pl long PCR products
as template. The thermal cycle profile was: pre-denaturation at
94 °C for 2 min, and denaturation at 94 °C for 15 s, annealing at
52 °C for 15 s, extension at 72 °C for 30 s, and 72 °C for 5 min to
denature the Taq polymerase. The PCR products were electro-
phoresed on a 1.0% agarose gel.

Double-stranded PCR products purified by filtration through
Millipore plates were subsequently used for direct cycle
sequencing with dye-labeled terminators (ABI). Primers used
were the same as those for PCR. All sequencing reactions were
performed according to the manufacturer’s instructions. Labeled
fragments were analyzed on a model MegaBACE 1000 DNA
sequencer (GE Healthcare Biosciences, USA).

2.2. Sequence analyses

Annotation of the O. bidens mitochondrial genome was
based on comparisons to genomes of other cyprinid fishes,
including the carp (Cyprinus carpio, Chang et al., 1994), the
goldfish (Carassius auratus, Murakami et al., 1998), and the
zebrafish (Danio rerio, Broughton et al., 2001). In addition,
identification of tRNA genes was verified using the program
tRNAscan-SE (Lowe and Eddy, 1997). The potential stem—loop
secondary structures within these tRNA gene sequences were
calculated using the tRNAscan-SE Search Server available
online (http://lowelab.ucsc.edu/tRNAscan-SE/).

The coding genes for the 13 mitochondrial proteins from 39
ostariophysan species and subspecies (Table 1) were concatenated
and aligned using Clustal W (Thompson et al., 1994) and
corrected by eye to preserve reading frame. The sequence for
NDG6 gene is the reverse complement to maintain a consistent
reading frame. Codon usage and nucleotide and amino acid
frequencies were calculated using the program DAMBE (Xia and
Xie, 2001) and relative rate tests were conducted with the program
HyPhy (Pond et al., 2005).
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Table 1

List of fish species analyzed in this study
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Classification

Species

Accession no.

Cypriniformes
Cyprinidae

Balitoridae

Catostomidae

Cobitidae

Characiformes
Alestiidae

Characidae
Gymnotiformes
Apteronotidae

Eigenmanniidae

Siluriformes

Cyprinus carpio
Carassius auratus
Carassius auratus
auratus

Carassius carassius

Coreoleuciscus
splendidus

Hemibarbus labeo
Hemibarbus longirostris
Hemibarbus mylodon
Sarcocheilichthys
variegatus microoculus
Phenacobius mirabilis
Notropis stramineus
Chondrostoma
lemmingii

Gila robusta

Cyprinella spiloptera
Campostoma anomalum

Rhodeus uyekii

Opsariichthys bidens
Danio rerio

Crossostoma lacustre
Lefua echigonia
Myxocyprinus asiaticus
Minytrema melanops
Carpiodes carpio
Cobitis sinensis
Cobitis striata
Phenacogrammus

interruptus
Chalceus macrolepidotus

Apteronotus albifrons
Eigenmannia sp.

Bagridae Pseudobagrus tokiensis
Callichthyidae  Corydoras rabauti
Ictaluridae Ictalurus punctatus
Pangasiidae Pangasianodon gigas
Gonorynchiformes

Chanidae Chanos chanos
Gonorynchidae Gonorynchus greyi

X61010 (Chang et al., 1994)

ABO006953 (Murakami et al., 1998)

ABI11951 (Murakami et al.,
unpublished)

AY714387 (Guo et al.,
unpublished)

DQ347951 (Lim et al.,
unpublished)

DQ347953 (Lim et al.,
unpublished)

DQ347952 (Lim et al.,
unpublished)

DQ345787 (Lim et al.,
unpublished)

ABO054124 (Saitoh et al., 2003)

DQ536431 (Broughton and
Reneau, 2006)

DQ536429 (Broughton and
Reneau, 2006)

DQ536427 (Broughton and
Reneau, 2006)

DQ536424 (Broughton and
Reneau, 2006)

DQ536422 (Broughton and
Reneau, 2006)

DQ536421 (Broughton and
Reneau, 2006)

DQ155662 (Kim et al.,
unpublished)

DQ367044 (this study)
AC024175 (Broughton et al.,
2001)

M91245 (Tzeng et al., 1990)
ABO054126 (Saitoh et al., 2003)
AY986503 (Peng et al., 2006)
DQ536432 (Broughton and
Reneau, 2006)

AY366087 (Broughton et al.,
unpublished)

AY526868 (Chen and Wang,
unpublished)

ABO054125 (Saitoh et al., 2003)

AB054129 (Saitoh et al., 2003)

AB054130 (Saitoh et al., 2003)

AB054132 (Saitoh et al., 2003)
ABO054131 (Saitoh et al., 2003)

AB054127 (Saitoh et al., 2003)
ABO054128 (Saitoh et al., 2003)
AF482987 (Waldbieser et al.,
2003)

AY762971 (Jondeung and
Sangthong, unpublished)

ABO054133 (Saitoh et al., 2003)
AB054134 (Saitoh et al., 2003)

Table 1 (continued)

Classification  Species Accession no.
Gonorynchiformes
Kneriidae Cromeria nilotica AP007275 (Lavoue et al., 2005)

Grasseichthys gabonensis AP007277 (Lavoue et al., 2005)
Kneria sp. AP007278 (Lavoue et al., 2005)
Parakneria cameronensis AP007279 (Lavoue et al., 2005)
Phractolaemidae Phractolaemus ansorgii  AP007280 (Lavoue et al., 2005)

Clupeiformes

Chirocentridae  Chirocentrus dorab AP006229 (Ishiguro et al., 2005)

Clupeidae Sardinops melanostictus  AB032554 (Inoue et al., 2000)
Jenkinsia lamprotaenia  AP006230 (Ishiguro et al., 2005)

Denticipitidae  Denticeps clupeoides AP007276 (Lavoue et al., 2005)

Engraulidae Engraulis japonicus ABO040676 (Inoue et al., 2001a,b)

Sundasalangidae Sundasalanx mekongensis AP006232 (Ishiguro et al., 2005)

Salmoniformes

Salmonidae Salmo salar U12143 (Hurst et al., 1999)

2.3. Phylogenetic analyses

In addition to the newly determined sequence of the O. bidens
mitochondrial genome, we also included in our phylogenetic
analysis the mitochondrial genomes from 39 ostariophysan
species and subspecies plus six clupeiform species and one
outgroup species, Salmo salar (Table 1). The 12 proteins of
mtDNA were concatenated and used for phylogenetic analyses.
The ND6 protein was encoded by the opposite strand of mtDNA
with quite different base and codon biases and was not used. All
positions with gaps or ambiguous alignment were excluded. The
total number of remaining codons is 3582.

Bayesian phylogenetic analyses were conducted with
MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003). The
mtREV24 amino acid substitution model (Adachi and Hasegawa,
1996) with a proportion of invariable sites and the discrete I
distribution for among-site rate heterogeneity (/+ ') was adopted
in Bayesian analyses. For the concatenated protein matrix, two
independent Bayesian analyses were performed for 500,000
generations by using four independent chains (one cold and three
heated) and random starting trees. Parameter values and trees
were sampled every 100 generations. The first 1000 samples were
discarded as burn-in, and a majority-rule consensus tree
calculated from the 4000 remaining trees was used to determine
the posterior probabilities of clades.

3. Results
3.1. Mitochondrial genome of O. bidens

The total length of the complete O. bidens mitochondrial
genome nucleotide sequence was 16,611 bp. The genome is
composed of 13 protein-coding genes, two rRNA genes (12S and
16S), 22 tRNA genes and a noncoding control region.

All of O. bidens mitochondrial protein-coding genes use
ATG as the initiation codon with the only exception of COI,
which uses GTG as the start codon. Stop codons include five
TAA and four TAG. The COII, COIIl, ND4, and Cytb genes
possess incomplete stop codons and show a terminal T or TA.
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Fig. 1. Nucleotide proportions in the mitochondrial protein-coding genes of Opsariichthys bidens (left) and Danio rerio (right).

Of the 13 protein-coding genes, gene overlaps can be observed
between four pairs of the contiguous genes, ATP8—ATPG6,
ATP6—COIIl, ND4L-ND4, and ND5—-ND6, and they overlap
by seven, seven, one, and four nucleotides respectively.

Nucleotide composition of the O. bidens mtDNA protein-
coding genes reflects a weak bias against G on the light strand, the
sense strand for all protein genes except ND6, for which the heavy
strand serves as the sense strand. In cyprinids including the
zebrafish, the carp, and the goldfish, the strong bias against G is
particularly marked at third codon positions of mtDNA protein
genes (only 6—-7% of sites are G). In O. bidens, however, G
frequency of the mtDNA protein genes is found over 17% at the
third codons (Fig. 1). For the protein genes, C is most frequent at
third positions in O. bidens but A is most frequent at third
positions in the zebrafish (Fig. 1). At the second codon positions
of O. bidens mitochondrial protein-coding genes, pyrimidines are
overrepresented compared with purines (C+T=68%).

Codon usage of the O. bidens mtDNA protein-coding genes is
compared to that of eight other ostariophysan fishes in Table 3.
For O. bidens mtDNA fourfold degenerate codons (NNN
synonymous codon families, the [UB codes for the mixed bases
refer to Table 2), the codon families of threonine, proline, serine,
valine, and alanine end mostly with C or T (valine), but the
glycine codon family ends mostly with G and the codon families
of arginine and leucine mostly with A. Among twofold
degenerate pyrimidine codons (NNY codon families), the
frequency of codons ending in C appears to be somewhat higher
than that of codons ending in T. All NNR codon families end
mostly with A except methionine (where G is identical in
frequency to A). Consistent with the overall bias against G, G is
the least common third position nucleotide in all NNN codon
families except for arginine (where G is similar in frequency to C
and T but still less than A) and glycine (where G is most frequent).
However, relative synonymous codon usage of G-ending codons
in O. bidens are significantly higher than that in the zebrafish
(Table 3).

The O. bidens mitochondrial genome contains 22 tRNA genes
possessing anticodons that match the vertebrate mitochondrial

genetic code. These mitochondrial tRNA genes are interspersed
between ribosomal RNA and protein-coding genes and range in
size from 68 to 77 nucleotides. Each tRNA sequence can be
folded into a cloverleaf structure. All potential cloverleaf
structures, except that of tRNAS™™SY) contain 7 bp in the
amino acid stem, 5 bp in the anticodon and T{sC stems, and 4 bp

Table 2

PCR and sequencing primers for Opsariichthys bidens designed from the
complete mitochondrial genome of six bony fish species according to Miya and
Nishida (2000)

Forward®  Sequence (5’ to 3/)° Reverse® Sequence (5’ to 3')°
L709-12S  TAC ACATGC AAG H2009-16S CCT AAG CAA CCA
TCT CCG CA GCT ATA AC
L1969-16S CGT CTC TGT GGC H3058-16S TCC GGT CTG AAC
AAA AGA GTG G TCA GAT CAC GTA
L709-12S  TAC ACATGC AAG H3058-16S TCC GGT CTG AAC
TCT CCG CA TCA GAT CAC GTA
L2946-16S GGG ATA ACA GCG H3934-ND1 GCG TAT TCT ACG
CAATC TTG AAT CC
L3074-16S CGA TTA AAG TCC H5937-CO1 TGG GTG CCA ATG
TAC GTG ATC TGA TCT TTG TG
GTT CAG
L4633-ND2 CAC CGC CCW CGA H8319-Lys CAC CWG TTT TTG
GCA GTT GA GCT TAA AAG GC
L8329-Lys AGC GTT GGC CTT H10035-Gly CTT TCC TTG GGK
TTA AGC TTT AAC CAA G
S3-6-F4 CCC CCC AAC TAA H10035-Gly CTT TCC TTG GGK
CCC TCC TTT AAC CAA G

L9220-CO3 AAC GTT TAATGG
CCC ACC AAGC

H12293-Leu TTG CAC CAA GAG
TTT TTG GTT CCT
AAG ACC

S3-16-F CAA CTG TTC ATT S3-16-R ATG CTT GTG GTG
GGC TGG GAG G TTT GCT TAT TCA G
S3-7-F5 GCT AAC TTG TTG S3-19-R GGT TTG CGG GGG

ACT CCT TCC C
L15180-Cyb CAG ATATCATTC
TGA GGT GCY ACA GT

TGA AG
H1552-12S  ACT TAC CGT GTT
ACG ACT TGC CTC

? L and H denote light and heavy strands, respectively.
Y Positions with mixed bases are labeled with their [UB codes: R=A/G; Y=C/T;
K=G/T; M=A/C; S=G/C; W=A/T, N=A/G/C/T.
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Table 3
Comparison of codon usage (number of codons) among Opsariichthys bidens
and selected ostariophysan fishes

Codon®

Species”
1 2 3 4 5 6 7 8 9

Lys AAA* 46 68 62 81 58 67 74 75 63
AAG 31 7 16 8 18 13 8 7 15
Asn AAC* 75 67 63 65 8 73 8 70 88

Amino
acid

AAT 38 59 50 56 33 47 34 57 29
Thr ACA* 98 142 124 140 112 110 135 138 113
ACG 35 13 19 13 32 9 7 14 20
ACC 104 8 104 77 103 123 128 110 127
ACT 60 55 36 63 42 52 54 59 38
Stop AGA 0 0 0 0 0 0 1 0 0
AGG 0 0 0 0 0 0 0 0 0
Ser AGC* 44 30 40 38 42 37 43 46 48
AGT 15 22 17 14 14 9 8 11 11
Met ATA 84 129 117 139 101 113 140 143 73
ATG* 84 54 55 52 70 59 27 59 78
Ile ATC* 82 60 81 107 115 118 128 93 152

ATT 185 222 186 201 154 179 166 190 114
Gln CAA* 60 8 82 8 79 93 & 79 79

CAG 36 8 16 10 21 7 3 18 19
His CAC* 66 63 70 68 75 78 73 6l 81
CAT 36 42 34 34 32 31 32 40 21
Pro CCA* 68 108 8 115 90 68 117 87 113
CcCG 25 4 15 13 22 8 12 17 12
CcCC 77 54 65 40 74 99 64 83 58
CCT 44 47 49 40 28 34 23 34 32
Arg CGA* 34 50 37 53 42 43 43 53 52
CGG 18 6 17 9 12 6 6 8 8
CGC 14 11 17 4 12 19 19 12 12
CGT 10 10 4 9 10 6 10 3 4
Leu CTA* 151 219 197 179 226 254 214 236 223
CTG 9% 38 60 29 98 51 30 43 68

CTC 108 59 81 38 101 103 130 8 162
CTT 129 130 135 146 87 92 122 102 108
Glu GAA* 57 84 67 8 76 81 89 81 81
GAG 45 17 33 20 29 15 12 16 19
Asp GAC* 53 48 45 54 57 49 50 54 sl

GAT 25 31 31 30 20 29 22 19 24
Ala GCA* 87 129 118 132 112 99 96 122 112
GCG 38 12 23 13 28 15 6 13 22
GCC 165 138 152 96 164 174 158 141 174
GCT 56 56 55 87 57 54 73 Sl 52

Gly GGA* 70 111 80 116 109 8 90 110 120
GGG 74 42 58 45 57 49 34 48 48

GGC 58 53 71 39 56 8 68 58 66
GGT 44 36 38 36 23 26 44 26 15
Val GTA* 72 112 97 111 90 8 80 103 86
GTG 59 17 39 22 46 30 1728 30
GTC 51 31 37 21 55 46 38 31 76
GTT 73 66 72 69 56 6l 50 53 55
Stop TAA 5 7 4 7 7 6 7 7 6
TAG 4 3 7 3 3 3 1 2 4
Tyr TAC* 61 48 54 57 78 64 68 48 77
TAT 52 6l 57 55 36 49 50 62 32
Ser TCA* 61 82 75 108 70 ol 779 67
TCG 20 6 14 9 12 7 3 12 13
TCC 62 51 43 19 70 81 76 46 71
TCT 48 52 50 57 32 38 43 38 32
Trp TGA* 79 108 98 107 82 92 113 101 104
TGG 41 11 20 11 39 30 7 17 18
Cys TGC* 10 11 15 15 16 17 19 20 22
TGT 15 15 11 14 10 10 9 9 6
Leu TTA* 90 132 131 181 76 112 121 125 55
TTG 52 24 20 26 34 22 22 31 16

Table 3 (continued)

Codon?

Species”
1 2 3 4 5 6 7 8 9

Phe TTC* 119 106 110 88 117 118 141 108 149
TTT 108 123 114 148 108 108 92 115 86

Amino
acid

* Codons for which a tRNA with matching anticodon occurs in mitochondria
are marked with asterisk.

® Species are indicated by numbers. 1, Opsariichthys bidens; 2,
Coreoleuciscus splendidus; 3, Gila robusta; 4, Danio rerio; 5, Myxocyprinus
asiaticus; 6, Icatlurus punctatus; 7, Apteronotus albifrons; 8, Kneria sp.; 9,
Chanos chanos.

in the DHU stem. The O. bidens tRNAS™ASY) has no
recognizable DHU stem and loop. As seen in other vertebrate
tRNAs, numerous noncomplementary and T—G base pairs were
found in tRNA stem regions. The 12S and 16S ribosomal RNA
genes in O. bidens are 955 and 1694 nucleotides long,
respectively. Both ribosomal RNA genes show great sequence
similarity to ostariophysan fishes.

The control region, the largest noncoding region found in the
O. bidens mtDNA, is 927 nucleotides long. The control region of
O. bidens was much less similar to non-cyprinid ostariophysan
fishes than were the coding sequences, with numerous nucleotide
substitutions and insertions and deletions. The control region has
an overall nucleotide composition that is rich in A and T (A
+T=65.7%). The conserved sequence blocks CSB I-III, which
are thought to be involved in positioning RNA polymerase both
for transcription and for priming replication (Clayton, 1991;
Shadel and Clayton, 1997), are found at the 3’ end of the control
region. Another relatively conserved element is the TAS located at
the 5" end of the control region. Two putative TASs are identified
in the O. bidens control region. Moreover, the palindromic
sequence motifs TACAT and ATGTA are repeated three and two
times, respectively at the 5" end of the O. bidens control region.
These motifs are thought to act as a signal for the termination of
heavy strand elongation by forming stable hairpin—loop structure
(Saccone et al., 1991) (Fig. 2). The secondary structure of TAS in
O. bidens shows strong similarity to another East Asian cyprinid
fish, the grass carp (Ctenopharyngodon idellus, Zhang et al.,
1999).

AT
T A
T

ATT
C A

T
A
C
s G a0
-T A\\AC
T
TA
A
T
G
T
A

T
A
T
G
T
A
T
T
A
T
A
C
A
T TTATCACC—¥

5—TG GTATAG

Fig. 2. The potential hairpin—loop structure of TAS at the 5’ end of the O. bidens
control region.
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Fig. 3. The 50% majority-rule consensus tree resulting from Bayesian analysis of the concatenated 12 mitochondrial protein sequences dataset. Numbers at nodes

represent posterior probabilities for Bayesian analysis.

3.2. Evolutionary patterns in ostariophysan mitochondrial
genome

A strong correlation between regional nucleotide variation
and amino acid variation for all protein genes is found across
mitochondrial genome. Although the spatial pattern of vari-
ability is consistent over all positions, the magnitude of var-
iability at first and second positions is consistently lower than at

third positions. An extremely high magnitude of variability is
found at all positions of ATP8 gene. Rate of amino acid var-
iation is the lowest for the COI gene and somewhat higher for
others. A clear pattern of alternating regions of high and low
variability is observed in all of the ND genes and ATP6. Across
mitochondrial genomes, peaks of variability of nucleotides
and amino acids coincide with extremes of hydropathy, either
positive or negative.
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Relative evolutionary rates were evaluated by comparing the
amount of change in two ostariophysan lineages relative to the
outgroup (Salmo salar). The test statistic is asymptotically chi-
square distributed and can be used to determine whether the number
of changes on two lineages is significantly different (Tajima, 1993).
All comparisons (data not shown) among ostariophysan orders
showed significant differences, and many interfamily comparisons
were significantly different as well. However, rate differences
within the family Cyprinidae are frequently as great as differences
between the cypriniform families. Rates for Carassius and Cobitis
are not significantly different, yet the rate for Carassius is
significantly different from the rate for Danio. Within the family
Cyprinidae, the rate of sequence evolution in Danio as well as in
Rhodeus and in Opsariichthys significantly differs from the other
analyzed cyprinids.

Nucleotide frequencies varied by codon positions and by
taxa. At first and second positions, a clear trend of relative
frequencies among ostariophysan taxa was T>C>A>G. At
third positions, relative frequencies were A>C>T>G (in some
cases, e.g. Danio and Coreoleuciscus, T is somewhat higher in
frequency than C) in all cypriniform taxa except for O. bidens,
where the relative frequencies were C>A>T>G. The O. bidens
pattern of relative nucleotide frequencies at third positions is not
unique within ostariophysans but is also observed in both
clupeiform taxa and Salmo salar (data not shown). Although
nucleotide frequencies among all ostariophysan taxa exhibit
significant heterogeneity at first and third codon positions, tests
of amino acid frequency indicate that no significant departure
from homogeneity occurs within ostariophysan taxa.

3.3. Phylogenetic analysis

Bayesian analysis of the concatenated dataset of 12
mitochondrial proteins, with the mtREV+/+1" model, pro-
duced a well resolved and well-supported phylogenetic tree
(Fig. 3). In this tree, the morphology-based groups such as
Cyprinidae, Catostomidae, Cypriniformes, Siluriformes, Clu-
peiformes, and Otophysi were recovered as monophyletic
groups with posterior probability (PP) support of 100%,
respectively. However, the currently recognized Gonorynchi-
formes did not form a monophyletic group; Gonorynchus was
positioned outside other Gonorynchiformes at the basal position
of the tree (Fig. 3). The association of the Clupeiformes and the
Otophysi was supported by somewhat low PP value (90%).

Within the Otophysi, the Cypriniformes was sister group to
the remaining otophysan orders (i.e., Siluriformes, Gymnoti-
formes, and Characiformes). Within the monophyletic Cypri-
niformes, the Cyprinidac appeared as sister group to the
Catostomidae, and this clade formed sister group to the
Balitoridae + Cobitidae.

4. Discussion
4.1. Mitochondrial genome evolution in the Ostariophysi

Despite identical gene order and content among O. bidens and
the other ostariophysan taxa, the patterns of strand specific nucle-

otide bias and unequal codon usage observed in O. bidens are not
conserved among the Ostariophysi. As seen in the zebrafish
mitochondrial genome (Broughton et al., 2001), a common fea-
ture for the protein-coding genes is that NNY synonymous codon
families end mostly in C and NNR and NNN codon families end
mostly in A. Such a pattern of codon usage is also universal in
vertebrates (Broughton et al., 2001; Xia, 2005). It is noteworthy
that the codon bias of O. bidens mitochondrial protein-coding
genes is quite different from that common codon bias pattern. In
O. bidens, the most frequently used codons end with C for most
NNN codon families, and the relative synonymous codon usage
of codons ending in G is greatly elevated in all categories. The
O. bidens pattern of nucleotide bias at third positions and codon
usage bias is also found in other ostariophysan and clupeiform
taxa (Table 3). These observations suggest that except for the
general codon usage bias pattern found across vertebrates
(Broughton et al., 2001; Xia, 2005), there is an alternative pattern
of vertebrate mitogenomic evolution.

The reasonable explanations of unequal codon usage in the
mitochondrial protein genes are that codon usage is generally
biased toward the available tRNA species and codon bias is
associated with the strand specific nucleotide bias in mtDNA
(Broughton et al., 2001). Because there are only 22 tRNAs in the
mitochondria, there is only one specific tRNA species for most
amino acids. For each amino acid, only codons ending in A or C
will be perfectly matched by a complementary tRNA anticodon.
Thus in the zebrafish (Broughton et al., 2001) and most other
ostariophysan fishes, the most frequently used codons for most
amino acids are those with matching tRNAs. Although there may
be some advantage to matched codons and anticodons in protein
translation, the phenomenon is not universal, as seen in O. bidens.
In O. bidens, most amino acids with NNN codon families are
preferentially specified by codons that do not match the available
tRNA (Table 3). This is due to the high number of codons ending in
C. It therefore appears that nucleotide bias at third codon positions
is the main cause of codon bias in ostariophysan mitochondrial
protein-coding genes. Usually, the strand specific nucleotide bias
particularly favors A over T at third codon positions of the
vertebrate mtDNA protein genes (Broughton et al., 2001), but it
dissimilarly favors C over A in O. bidens (Fig. 1).

The heavy strand is left as single strand for hours during the
asymmetrical replication of vertebrate mtDNA (Clayton, 1982,
2000). Spontaneous hydrolytic deamination of both A and C
(Lindahl, 1993; Sancar and Sancar, 1988) occurs frequently in
human mitochondrial DNA (Tanaka and Ozawa, 1994). The
hydrolytic conversion of C to U and the conversion of A to
hypoxanthine generate C—T mutations and A—G mutations,
respectively on the heavy strand (consequently G—A mutations
and T—C mutations, respectively on the light strand) of mtDNA
(Lindahl, 1993; Sancar and Sancar, 1988). Among these two
types of spontaneous deamination, the C—T mutations generally
occurs more frequently than the A—G mutations (Lindahl, 1993).
Therefore, the G—A mutations happening at third positions on
the light strand tend to accumulate and would lead to an increased
frequency of A-ending codons and substantial bias against G-
ending codons, as seen in the zebrafish and most vertebrates
(Broughton et al., 2001; Xia, 2005). In O. bidens mitochondrion
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protein genes, however, the associated T—C mutations happen-
ing at third positions on the light strand accumulate and lead to the
codon bias toward C-ending codons. The difference in deamina-
tion rates of C and A is remarkable (Lindahl, 1993), and would
hardly make the A—G mutations happen more frequently than
the C—T mutations on the heavy strand of mtDNA. But the effect
of mutation fixation can be amplified by different rates of DNA
repair. The codon bias toward C-ending codons and the relatively
increased frequency of G-ending codons in O. bidens mitochon-
drial protein genes are remarkably different from the common
vertebrate codon usage pattern found in the zebrafish mitochon-
drion, probably because the repair reaction of the deaminated
form of C might be significantly more efficient in O. bidens
mitochondrion than in the zebrafish mitochondrion.

Relative rate tests indicate that evolutionary rates of mito-
chondrial protein genes vary considerably within and among the
ostariophysan orders. Rate differences within the family Cypri-
nidae and among the cypriniform families show a complicated
pattern, which apparently due to rate increases in certain cyprinid
lineages. The fact that rates differ among cyprinids indicates that
there are still unknown factors that remarkably influence rates of
sequence evolution between the closely related taxa.

The other important finding is that nucleotide composition of
the mtDNA protein genes varies widely both within and among
the ostrariophysan orders, whereas amino acids composition tends
to be conserved within the Ostariophysi. Coupled with significant
heterogeneity of nucleotide composition, the amino acid
frequency homogeneity within the Ostariophysi suggests that a
majority of substitutions are occurring at third codon positions,
where substitutions are less likely to alter encoded amino acids.
The present study also shows that the high number of possible
synonymous third position substitutions results in saturation at
third positions of the mtDNA protein genes, which could be
expected to negatively affect the phylogenetic performance of
these gene sequences. For the vertebrate mtDNA protein genes,
the strand specific mutational biases in mitochondrion have a
major effect on molecular evolution of gene sequences. This result
has a strong influence upon the interpretation of mitochondrial
phylogenies of ostariophysan fishes based on the mtDNA protein
gene sequences. Therefore, for ostariophysan mtDNA proteins,
phylogenetic analysis of the amino acid sequences may better
reflect patterns of historical descent in ostariophysan fishes than
the analysis of nucleotide gene sequences.

4.2. Temporal mitochondrial phylogeny

As expected, the present analysis strongly supports monophy-
ly of the Cypriniformes. The otophysan order Cypriniformes was
morphologically recognized as a natural group (Fink and Fink,
1981) and recovered as monophyletic in recent molecular
phylogenetic studies (Lavoue et al., 2005; Liu et al., 2002). The
mitochondrial protein phylogeny also recovers the well-supported
monophyletic Otophysi, comprising the Characiformes, Cyprini-
formes, Gymnotiformes, and Siluriformes. Our inferred phylo-
genetic relationships among the otophysan orders are largely
consistent with other molecular phylogenies (Dimmick and
Larson, 1996; Lavoue et al., 2005; Orti, 1997; Saitoh et al., 2003).

However, our ostariophysan mitochondrial protein phylogeny
calls into question the monophyly of the Ostariophysi and
suggests that the Otophysi is more closely related to the
Clupeiformes than to the Gonorynchiformes. Our study strongly
supports a clade consisting of the Gonorynchiformes (except
Gonorynchus), Clupeiformes, and Otophysi.
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