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The environment of the natural world in which plants live, have evolved, and within 32 

which photosynthesis operates, is one characterised by change. The time scales over 33 

which change occurs can range from seconds (or less) all the way to the geological 34 

scale. All of these changes are relevant for understanding plants and the vegetation 35 

they create. In this update review we will focus on how photosynthesis responds to 36 

fluctuations in irradiance with time constants up to the range of tens of minutes. 37 

Photosynthesis is a highly regulated process, in which photochemistry as well as the 38 

electron and proton transport processes leading to the formation of ATP and reducing 39 

power (reduced ferredoxin and NADPH) need to be coordinated with the activity of 40 

metabolic processes (Foyer and Harbinson, 1994). Light, temperature, the supply of the 41 

predominant substrate for photosynthetic metabolism (CO2), and the demand for the 42 

products of photosynthetic metabolism are all factors that are involved in short-term 43 

alterations of steady-state photosynthetic activity. The coordinated regulation of 44 

metabolism with the formation of the metabolic driving forces of ATP and reducing 45 

power is subject to various constraints that limit the freedom of response of the system. 46 

Of these constraints, the most prominent are the need to limit the rate of formation of 47 

active oxygen species by limiting the lifetime of excited states of chlorophyll a and the 48 

potential of the driving forces for electron transport (Foyer and Harbinson, 1994; Foyer 49 

et al., 2012; Rutherford et al., 2012; Murchie and Harbinson, 2014; Liu and Last, 2017); 50 

limiting the decrease of lumen pH to avoid damaging the oxygen evolving complex of 51 

PSII (Krieger and Weis, 1993), and adjusting stomatal conductance (gs) to optimise 52 

photosynthetic water-use efficiency (Lawson and Blatt, 2014). 53 

The processes that regulate electron and proton transport, enzyme activation and CO2 54 

diffusion into the chloroplast under steady-state conditions also react in a dynamic and 55 

highly concerted manner to changes in irradiance, balancing between light use and 56 

photoprotection. This overview of the physiological control underlying dynamic 57 

photosynthesis is specific to the C3 photosynthetic pathway. Much less is known about 58 

the dynamic regulation of the C4 and CAM pathways, though given their C3 heritage we 59 

expect that they share much of the regulation of C3 photosynthesis. We note here that 60 

in comparison to C3 plants, some C4 species, including maize, show a very slow 61 
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photosynthetic induction after an irradiance increase (Furbank and Walker, 1985; Chen 62 

et al., 2013) and that this phenomenon deserves further attention. 63 

If we grant that the regulation of photosynthesis at steady-state is in some way optimal, 64 

and represents an ideal balance between light-use efficiency and photoprotection, and 65 

an ideal balance between CO2 diffusion into the leaf with the loss of water vapour from 66 

the leaf, then significance to photosynthesis under a fluctuating irradiance is the loss of 67 

optimal regulation. The faster the response to change, the less is the loss of efficiency, 68 

whether that be in terms of water use efficiency (WUE) or light use efficiency. 69 

Since its birth one hundred years ago (Osterhout and Haas, 1918), research on the 70 

dynamics of photosynthesis and the limitations it produces in a fluctuating irradiance 71 

has come a long way (Box 1). While it has been apparent for some time that sunflecks 72 

occur in all kinds of canopies (e.g. Pearcy et al., 1990), research on sunfleck 73 

photosynthesis was until recently driven by its importance for forest understory shrubs 74 

and trees. The ecophysiological importance of sunflecks, photosynthetic responses and 75 

plant growth focussed on the importance of these responses for understory plants 76 

growing in shade (Pearcy et al., 1996; Way and Pearcy, 2012). Attention has more 77 

recently shifted to crop stands grown in full sunlight and the fact that the slow response 78 

of photosynthesis to sunflecks is a limitation to crop growth in the field (e.g. Lawson et 79 

al., 2012; Carmo-Silva et al., 2015). The importance of improved photosynthesis as a 80 

route to improving crop yields (Ort et al., 2015) has given new impetus into better 81 

understanding the physiology and the genetics of photosynthetic responses to 82 

fluctuating light, and improving upon them (e.g. Kromdijk et al., 2016).  83 
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Fluctuating irradiance in canopies 84 

i) Sunflecks 85 

Most studies have focused on irradiance fluctuations at the bottom of canopies or in 86 

forest understories. In these situations, a shade environment with little diurnal variation 87 

prevails, and most incoming irradiance arrives due to transmission and scattering by 88 

leaves higher up in the canopy. Also, gaps in the canopy, which move in response to 89 

wind, allow brief but significant increases in irradiance (Pearcy, 1990). Smith and Berry 90 

(2013) proposed a detailed classification of these fluctuations, resulting in the terms 91 
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sunfleck (<8 minutes and peak irradiance lower than above-canopy irradiance), sun 92 

patch (>8 minutes), sun gap (>60 minutes) and clearing (>120 minutes).  93 

In addition to the length of the fluctuation, classifying a fluctuation as a sunfleck 94 

depends on the irradiance increasing above a specific threshold during the fluctuation. 95 

Often, fixed thresholds are used, but their values vary greatly (60-300 µmol m−2 s−1; 96 

Pearcy, 1983; Tang et al., 1988; Pearcy et al., 1990; Roden and Pearcy, 1993; 97 

Barradas et al., 1998; Naumburg and Ellsworth, 2002). Thresholds may be adjusted 98 

depending on canopy structure, position within the canopy where measurements are 99 

taken and angle of measurement (Pearcy, 1990; Barradas et al., 1998). An alternative 100 

approach is to use the fraction of irradiance transmitted by the canopy instead of 101 

absolute irradiance to calculate the threshold (Barradas et al., 1998). However, this 102 

approach requires an additional measurement of irradiance above the canopy. 103 

Short-lived sunflecks with low peak irradiance are particularly abundant in the lower 104 

layers of canopies and forest understories. Pearcy et al. (1990) reported that 79% of 105 

sunflecks were ≤1.6 s long in a soybean (Glycine max) canopy, and the same 106 

distribution was reported for aspen (Populus tremuloides; Roden and Pearcy, 1993). 107 

Peressotti et al. (2001) reported that most sunflecks in wheat (Triticum aestivum), maize 108 

(Zea mays) and sunflower (Helianthus annus) were ≤1 s long. Most sunflecks in bean 109 

(Phaseolus vulgaris) and rice (Oryza sativa) canopies were ≤5.0 s long (Barradas et al., 110 

1998; Nishimura et al., 1998). These results agree with our measurements in durum 111 

wheat (T. durum) and white mustard (Sinapis alba; Fig. 1). 112 

Canopy structure is assumed to affect sunfleck distribution (Pearcy, 1990), but this has 113 

so far only been systematically tested by Peressotti et al. (2001) who compared 114 

sunflecks in different crop canopies and found only small differences between wheat, 115 

maize and sunflower. Our data, on the other hand, revealed bigger differences between 116 

crops despite similar meteorological conditions (Fig. 1): in durum wheat, 2606 sunflecks 117 

(83% of total irradiance) were detected within six hours, while only 213 (22%) were 118 

observed in white mustard (Fig 1A). In white mustard, sunflecks tended to be shorter 119 

and weaker, though for both crops most sunflecks were <5 s long (Fig. 1B). For most 120 

sunflecks, the average irradiance increase was <350 µmol m−2 s−1 and peak irradiance 121 

was always below the irradiance measured above the canopy (Fig. 1A). However, a 122 
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large proportion of short sunflecks may not always contribute much to integrated 123 

irradiance, partly because of their short duration and partly because of their low peak 124 

irradiance (Pearcy, 1990). For example, in a soybean canopy, the peak irradiance in 125 

sunflecks less than 1.6 s long was two to three times less than that of longer sunflecks, 126 

and contributed only 6.7% of the total irradiance, while sunflecks lasting up to 10 s 127 

contributed only 33% of the total irradiance (Pearcy et al. 1990). 128 

Sunflecks can also be caused by the penumbra effect (Smith et al., 1989), a “soft 129 

shadow” that occurs when a light source is partially blocked. In canopies, a penumbra is 130 

produced by small canopy elements that partially obscure the solar disc as viewed from 131 

a lower leaf. When combined with rapid leaf movements, the penumbra causes 132 

sunflecks on leaves that are otherwise shaded. Due to the penumbra effect, it was 133 

estimated that a gap in a canopy must have an angular size greater than 0.5° in order 134 

for the sunfleck to reach full solar irradiance (Pearcy, 1990). The frequent, short 135 

sunflecks discussed above are probably caused by penumbra (Smith and Berry, 2013) 136 

and contribute to a substantial fraction of total irradiance in forest understories (Pearcy, 137 

1990). 138 

Due to wind-induced movements the structure of canopies is not static. Wind has two 139 

effects: (i) movement of the whole plant or “swaying” (de Langre, 2008; Tadrist et al., 140 

2014; Burgess et al., 2016) and (ii) fluttering of single leaves, especially in trees (Roden 141 
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and Pearcy, 1993; Roden, 2003; de Langre, 2008). Plant swaying alters the spatial 142 

distribution of canopy gaps, and the exposure of leaves to these gaps, adding sunflecks 143 

and shadeflecks to the baseline irradiance that would occur in the absence of wind. 144 

Fluttering allows individual leaves to have a more uniform diurnal distribution of 145 

absorbed irradiance and to maintain a high photosynthetic induction state (Roden, 146 

2003). Fluttering further increases the number of sunflecks at the bottom of the canopy 147 

(Roden and Pearcy, 1993). Leaves flutter at a wide frequency range (1-100Hz; Roden 148 

and Pearcy, 1993; Roden, 2003; de Langre, 2008) whereas plant swaying occurs at 149 

0.1-10 Hz (de Langre, 2008; Burgess et al., 2016). Wind thus introduces rapid 150 

irradiance fluctuations in the entire canopy. Without wind, sunflecks and shadeflecks 151 

can still be caused by gaps in the canopy structure and by penumbra, but high wind 152 

speeds have been correlated with increasing irradiance fluctuations (Tang et al., 1988). 153 

 154 

ii) Shadeflecks 155 

As long as the total irradiance intercepted by a canopy remains the same, the existence 156 

of sunflecks necessitates the existence of shadeflecks (i.e., transient excursions below 157 

a baseline that is the average irradiance (Pearcy, 1990; Pearcy et al., 1990; Barradas et 158 

al., 1998; Lawson et al., 2012). It is important to distinguish between sunflecks and 159 

shadeflecks, as the dynamic responses of photosynthesis are different for increasing 160 

and decreasing irradiance and involve different potentially limiting processes (see 161 

below). A shadefleck should not be seen as a “period between sunflecks”, but rather as 162 

a brief period of low irradiance with respect to a baseline of intermediate or high 163 

irradiance, which tends to occur in the top and middle layers of a canopy. A special type 164 

of shadefleck is a cloudfleck (Box 2; Knapp and Smith, 1988).  165 
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The regulation of photosynthesis in fluctuating irradiance 166 

 167 

i) Responses and regulation of electron and proton transport 168 

The shorter term physiological responses of photosynthesis begin with light-driven 169 

redox state and pH changes occurring within and close to the thylakoid membranes. 170 

Photochemistry, the primary chemical event of photosynthesis, provides the redox 171 

driving forces for electron and proton transport, which result in the feed-forward 172 

activation of metabolic processes that produce CO2 assimilation. Metabolism, when 173 

limiting, will down-regulate electron transport via feed-back mechanisms. This balance 174 

between feed-forward and feed-back regulation is at the heart of photosynthetic 175 

regulation, including responses to changing irradiance. 176 

In a leaf initially subject to a sub-saturating irradiance, a sudden increase in irradiance 177 

results in an increase in the rate of photochemistry and then an increase in the rate of 178 

linear electron flow (LEF) from water to ferredoxin within milliseconds. For every 179 

electron passing along the LEF, three protons are translocated from the stroma into the 180 

thylakoid lumen, which changes the electric (Δψ) and pH (ΔpH) gradients across the 181 

thylakoid membrane. Together, Δψ and ΔpH constitute the proton motive force (pmf). 182 

The pmf is further modulated by cyclic electron flux (CEF) around photosystem I (PSI; 183 

Strand et al., 2015; Shikanai and Yamamoto, 2017) and alternative non-cyclic electron 184 

flux (ANCEF; Asada, 2000; Bloom et al., 2002), making the pmf more flexible to 185 

changing metabolic demands for ATP and NADPH (Kramer and Evans, 2011) and 186 

adjustments in lumen pH resulting in regulatory responses of thylakoid electron 187 

transport and non-photochemical quenching (NPQ). The acidification of the lumen upon 188 

increases in irradiance partially drives the fastest component of NPQ (Fig. 2), qE. This 189 

form of NPQ acts to reduce the lifetime of excited singlet states of chlorophyll a (1chl*) in 190 

PSII. When the rate of PSII excitation and 1chl* formation exceeds the potential for 191 

photochemical dissipation of 1chl* via electron transport (e.g. during irradiance 192 

increases), the lifetime of 1chl* in PSII tends to increase, potentially increasing the rate 193 

of formation of triplet chlorophylls in the PSII pigment bed and reaction centre, resulting 194 

in the formation of reactive singlet oxygen (Müller et al., 2001). Upregulating NPQ 195 

activity counteracts the tendency for increased 1chl* lifetime and moderates the 196 
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increase in singlet oxygen formation (Müller et al., 2001). The protein PsbS senses the 197 

low pH in the lumen (Li et al., 2000; 2002) and may mediate conformational changes in 198 

trimeric LHCII antenna complexes that allow the LHC to more efficiently dissipate 199 

excitons formed in PSII as heat (Ruban, 2016). The presence of the carotenoid 200 

zeaxanthin further amplifies qE (Niyogi et al., 1998). Zeaxanthin is formed from 201 

violaxanthin via antheraxanthin by the enzyme violaxanthin deepoxidase upon 202 

acidification of the thylakoid lumen, and is reconverted to violaxanthin as lumen pH 203 

increases (Demmig-Adams, 1990). 204 

Since after drops in irradiance NPQ relaxes only slowly (Fig. 2), LEF is transiently 205 

limited by an overprotected and quenched PSII, potentially limiting photosynthesis (Zhu 206 

et al., 2004). In Arabidopsis thaliana, the ΔpH component of the pmf was increased in 207 

plants overexpressing K+ efflux antiporter (KEA3) proteins, accelerating NPQ induction 208 

and relaxation kinetics and diminishing transient reductions in LEF and CO2 assimilation 209 
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upon transitions from high to low irradiance (Armbruster et al., 2014). In tobacco 210 

(Nicotinia tabacum), the simultaneous overexpression of PsbS, violaxanthin de-211 

epoxidase and zeaxanthin epoxidase increased the rate of NPQ relaxation, which 212 

subsequently increased growth in the field by 14-20% (Kromdijk et al., 2016). These 213 

results prove that slow NPQ relaxation is an important limitation in naturally fluctuating 214 

irradiance. Further, the results of Kromdijk et al. (2016) are a powerful testament to the 215 

fact that irradiance fluctuations strongly diminish growth in the field; they provide a 216 

glimpse into growth accelerations that would be possible if the rate constants of other 217 

processes responding to fluctuating irradiance were enhanced. 218 

 219 

ii) Chloroplast movement 220 

Another potential limitation to electron transport under fluctuating irradiance is the 221 

movement of chloroplasts in response to blue irradiance. At high blue irradiance, 222 

chloroplasts move towards the anticlinal walls of the mesophyll cells while at low blue 223 

irradiance, they move to the periclinal walls (Haupt and Scheuerlein, 1990), resulting in 224 

decreases and increases of absorptance, respectively (Gorton et al., 2003; Williams et 225 

al., 2003; Tholen et al., 2008; Loreto et al., 2009). In leaves of some species, 226 

chloroplast movements can change irradiance absorptance by >10%, although in other 227 

species the effect is <1% (Davis et al., 2011). The reduction in absorptance in high 228 

irradiance has a photoprotective effect and significant reductions in photoinhibition have 229 

been demonstrated for A. thaliana (Kasahara et al., 2002; Davis and Hangarter, 2012). 230 
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Furthermore, chloroplast movements alter the area of chloroplasts exposed to the 231 

intercellular spaces, changing mesophyll conductance (gm). Importantly, chloroplasts 232 

move within minutes (Brugnoli and Björkman, 1992; Dutta et al., 2015; Łabuz et al., 233 

2015), so the effects of their movement on absorptance and gm (Box 3) should be 234 

relevant under naturally fluctuating irradiance. In particular, slow chloroplast movement 235 

towards the low irradiance position (time constants of 6-12 minutes; Davis and 236 

Hangarter, 2012; Łabuz et al., 2015), which lead to increased absorptance, would 237 

transiently decrease absorptance after drops in irradiance, thus limiting electron 238 

transport and photosynthesis (i.e., similar to the effect of slow qE relaxation, see 239 

above). However, experimental evidence of this possible limitation is currently lacking. 240 

 241 

iii) Enzyme activation and metabolite turnover 242 

 www.plantphysiol.orgon October 23, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 12

The activity of several key enzymes in the Calvin Benson cycle (CBC) is regulated in an 243 

irradiance-dependent manner, much of which depends on the thioredoxin (TRX) system 244 

(Geigenberger et al., 2017). There is a multitude of TRX types and isoforms. For 245 

example, A. thaliana chloroplasts contain 10 different TRX isoforms (Michelet et al., 246 

2013). Chloroplastic TRXs may be reduced by ferredoxin-dependent or NADPH-247 

dependent thioredoxin reductases (Nikkanen et al., 2016; Thormählen et al., 2017). In 248 

the chloroplast, f-type TRXs control the activation state of fructose-1,6-bisphosphatase 249 

(FBPase), sedoheptulose-1,7-bisphosphatase (SBPase) and Rubisco activase (Rca; 250 

Michelet et al., 2013; Naranjo et al., 2016). While oxidized FBPase maintains a basal 251 

activity of 20-30%, the oxidized form of SBPase is completely inactive (Michelet et al., 252 

2013). In Pisum sativum, the activities of phosphoribulokinase (PRK) and 253 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are controlled by the redox-254 

regulated protein CP12, which binds the enzymes together in low irradiance and 255 

thereby inactivates them even if they are reduced (i.e. active; Howard et al., 2008). 256 

However, this type of regulation by CP12 is not universal as in several species, the 257 

complex formed by CP12, GADPH and PRK was mostly absent in darkness or the 258 

enzymes existed both in the bound and free form (Howard et al., 2011). Apart from the 259 

action of CP12, PRK activity is also regulated by TRX m and f (Schürmann and 260 

Buchanan, 2008).  261 

Within the first minute after a switch from low to high irradiance, SBPase, FBPase and 262 

PRK are believed to limit photosynthesis via the slow regeneration of RuBP 263 

(Sassenrath-Cole and Pearcy, 1992; 1994; Sassenrath-Cole et al., 1994; Pearcy et al., 264 

1996). These enzymes activate and deactivate quickly, with time constants (τ) of ~1-3 265 

minutes for activation and ~2-4 minutes for deactivation (Table S1). Compared to 266 

limitation by either Rubisco or gs (see below), which often (co-) limit photosynthetic 267 

induction for 10-60 minutes, the limitation due to activation of SBPase, FBPase and 268 

PRK appears negligible but is relatively understudied. Due to their relatively quick 269 

deactivation in low irradiance, it may be that in the field the activation states of these 270 

enzymes are a stronger limitation of CO2 assimilation than Rubisco or gs (Pearcy et al., 271 

1996), as the majority of sunflecks in canopies are short and narrowly spaced (see 272 

above). More research into this potentially large limitation is needed, e.g. by using 273 
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plants with increased concentrations of CBC enzymes (e.g. Simkin et al., 2015), as well 274 

as “always-active” FBPase and PRK (Nikkanen et al., 2016). 275 

The dependence of the activation state of Rubisco upon irradiance resembles that of a 276 

irradiance response curve of photosynthesis (Lan et al., 1992). In low irradiance, 30-277 

50% of the total pool of Rubisco is active (Pearcy, 1988; Lan et al., 1992; Carmo-Silva 278 

and Salvucci, 2013). The remainder is activated with a τ of 3-5 minutes after switching 279 

to high irradiance (Pearcy, 1988; Woodrow and Mott, 1989; Kaiser et al., 2016; Taylor 280 

and Long, 2017). Activation of Rubisco active sites requires the binding of Mg2+ and 281 

CO2 to form a catalytically competent (carbamylated) enzyme, after which RuBP and 282 

another CO2 or O2 molecule have to bind for either carboxylation or oxygenation to 283 

occur (Tcherkez, 2013). Rubisco activates more quickly at higher CO2 partial pressures, 284 

both in folio (Kaiser et al., 2017) and in vitro (Woodrow et al., 1996), a phenomenon that 285 

is not well understood and whose kinetics cannot be explained by carbamylation.  286 

Several types of sugar phosphates can bind to Rubisco catalytic sites and block their 287 

complete activation (Bracher et al., 2017). Removal of these inhibitors requires the 288 

action of Rca (Salvucci et al., 1985), whose activity depends on thioredoxin and ATP. 289 

Rca light-activates with a τ of ~4 minutes in spinach (Spinacia oleracea; Lan et al., 290 

1992). In A. thaliana, Rca is present in two isoforms of which the larger, α-isoform is 291 

redox-regulated and the smaller, β-isoform is regulated by the α-isoform (Zhang and 292 

Portis, 1999; Zhang et al., 2002). In transgenic plants only containing the β-isoform, 293 

photosynthetic induction after a transition from low to high irradiance was faster than in 294 

the wildtype, as Rca activity was constitutively high and independent of irradiance 295 

(Carmo-Silva and Salvucci, 2013; Kaiser et al., 2016). Modifying the composition of Rca 296 

(Prins et al., 2016) or its concentration, either transgenically (Yamori et al., 2012) or 297 

through classical breeding (Martínez-Barajas et al., 1997), might enhance 298 

photosynthesis and growth in fluctuating irradiance (Carmo-Silva et al., 2015). 299 

After the fixation of CO2 into RuBP, the triose phosphates may be transported out of the 300 

chloroplast and converted into sugars, after which the phosphate is transported back 301 

into the chloroplast and recycled via the chloroplast ATPase and the CBC (Stitt et al., 302 

2010). The enzyme sucrose phosphate synthase can transiently limit photosynthesis 303 

after a transition from low to high irradiance, but this has so far only been shown in 304 

 www.plantphysiol.orgon October 23, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 14

elevated CO2 (Stitt and Grosse, 1988). After decreases in irradiance, pools of CBC 305 

intermediates can transiently enhance photosynthesis (“post-illumination CO2 fixation”), 306 

while the turnover of glycine in the photorespiratory pathway may be visible as a 307 

transient decrease in photosynthesis (“post-illumination CO2 burst”). After very short (≤1 308 

s) sunflecks, post-illumination CO2 fixation enhances total sunfleck carbon gain greatly, 309 

such that the CO2 fixed directly after a sunfleck exceeds the CO2 fixed during the 310 

sunfleck (Pons and Pearcy, 1992). The negative effect of post-illumination CO2 fixation 311 

on the carbon balance of a sunfleck seems less pronounced in comparison (Leakey et 312 

al., 2002). For more details on both phenomena, see Kaiser et al. (2015). 313 

 314 

vi) CO2 diffusion into the chloroplast 315 

Diffusion of CO2 to the site of carboxylation is mediated by gs and gm. Stomata tend to 316 

decrease their aperture in low irradiance, when evaporative demand and demand for 317 

CO2 diffusion are small. Vast differences exist between species (15-25 fold) for steady-318 

state gs in low and high irradiance (e.g. McAusland et al., 2016), for rates of stomatal 319 

opening after irradiance increases (τ = 4-29 minutes) and for rates of stomatal closure 320 

after irradiance decreases (τ = 6-18 minutes; Vico et al., 2011). Often, initial gs after a 321 

switch from low to high irradiance is small enough, and stomatal opening is slow 322 

enough (Fig. 2), to transiently limit photosynthesis (McAusland et al., 2016; Wachendorf 323 

and Küppers, 2017). Manipulating gs to respond more quickly to irradiance could greatly 324 

enhance photosynthesis and WUE in fluctuating irradiance (Lawson and Blatt, 2014; 325 

Vialet-Chabrand et al., 2017b). Mesophyll conductance will further affect the CO2 326 

available for photosynthesis (Tholen et al., 2012; Yin and Struik, 2017), and steady-327 

state gm affects CO2 diffusion as strongly as does gs (Flexas et al., 2008; 2012). 328 

Mesophyll conductance may be variable under fluctuating irradiance (Campany et al., 329 

2016), as some of the processes determining gm are flexible (Price et al., 1994; Flexas 330 

et al., 2006; Uehlein et al., 2008; Otto et al., 2010; Kaldenhoff, 2012). The possibility 331 

that transient gm changes limit photosynthesis in fluctuating irradiance is discussed in 332 

Box 3. 333 

Limiting CO2 diffusion into the chloroplast after a switch from low to high irradiance may 334 

transiently limit photosynthesis in two ways: via a transiently low availability of the 335 
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substrate CO2 for carboxylation, and by decreasing the rate of Rubisco activation (Mott 336 

and Woodrow, 1993). While the former limitation is visible through a concomitant 337 

increase in A and chloroplast CO2 partial pressure (Cc) along the steady-state A/Cc 338 

relationship (Küppers and Schneider, 1993), the latter can be calculated by log-339 

linearizing CO2 assimilation after an increase in irradiance, after correcting for changes 340 

in Ci (Woodrow and Mott, 1989). The apparent τ for Rubisco activation calculated from 341 

gas exchange in folio correlates well with Rubisco activation in vitro (Woodrow and 342 

Mott, 1989; Hammond et al., 1998), and with Rca concentrations (Mott and Woodrow, 343 

2000; Yamori et al., 2012). Additionally, Rubisco activation during photosynthetic 344 

induction can be approximated by “dynamic A/Ci curves” which are achieved by 345 

measuring the rate of photosynthetic induction at several Ci levels and plotting 346 

maximum rates of carboxylation (Vcmax) as a function of time (Soleh et al., 2016). It was 347 

recently shown that the apparent τRubisco derived from dynamic A/Ci curves was in 348 

agreement with values derived using the procedure described by Woodrow and Mott 349 

(1989; Taylor and Long, 2017). Apparent τRubisco decreases with increases in Ci (Mott 350 

and Woodrow, 1993; Woodrow et al., 1996) and with relative air humidity (Kaiser et al., 351 

2017) during photosynthetic induction. The latter phenomenon was caused by humidity 352 

effects in initial gs, leading to faster depletion of Cc and transiently lower Cc after an 353 

increase in irradiance (Kaiser et al., 2017). The mechanism behind this slowing down of 354 

Rubisco activation due to lower Cc is of yet unresolved.  355 
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Phenotyping for faster photosynthesis in fluctuating irradiance 356 

High throughput phenotyping for natural variation (including mutant screens, e.g. Cruz 357 

et al., 2016) gained importance following the analyses of Lawson et al. (2012; Lawson 358 

and Blatt, 2014) and Long et al. (2006). These studies highlighted the response times of 359 

photosynthesis to changing irradiance as limitations to carbon gain, including the slow 360 

response of gs (Tinoco-Ojanguren and Pearcy, 1993), which can also diminish WUE 361 

(Lawson and Blatt, 2014), stressing their value as routes for improving assimilation. 362 

Kromdijk et al. (2016) consequently showed that improved relaxation of qE type NPQ 363 

improved tobacco yield under field conditions. While they used transgenics, the 364 

modifications used - increased amounts of PsbS, violaxanthin de-epoxidase and 365 

zeaxanthin epoxidase - could have occurred naturally. In fact, altering gene expression 366 

patterns has been a major route to improving the usefulness of plants for agriculture 367 

(Swinnen et al., 2016), either through natural variation in the gene pool of natural 368 

ancestors, or through mutations occurring during domestication. Naturally occurring 369 

variation in a trait can be used to analyse the genetic architecture of the trait, and this 370 

can be used to increase the efficiency of improving the trait by breeding. Knowing how a 371 

trait is genetically determined increases the options for its improvements by breeding 372 

beyond those emerging from the physiological or biochemical approaches of the kind 373 

used by Kromdijk et al. (2016). Variation for the kinetics of photosynthetic responses to 374 

changing irradiance is also another resource for further conventional physiological and 375 

biochemical analyses of the regulation and limitations acting on photosynthesis under 376 

these conditions. 377 

If variation for a quantitative trait, such as photosynthetic responses, is identified in a 378 

genetically diverse population, and the genetic diversity has been mapped by means of 379 

e.g. single nucleotide polymorphisms, it is possible to correlate genetic with phenotypic 380 

variation (e.g. Harbinson et al., 2012; Rungrat et al., 2016) and to identify the QTL 381 

(quantitative trait loci) whose variation correlates with phenotypic variation. Different 382 

types of mapping populations can be used for QTL identification: genome-wide 383 

association study (GWAS) and linkage mapping using recombinant inbred lines. These 384 

strategies have their own advantages and disadvantages (Bergelson and Roux, 2010; 385 

Harbinson et al., 2012; Korte and Farlow, 2013; Rungrat et al., 2016). Once identified, 386 
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QTL are invaluable as markers for conventional plant breeding approaches, and as a 387 

starting point for identifying the causal gene for the QTL. It is obviously advantageous to 388 

maximise the chances of finding an association by including as much genetic diversity 389 

as possible in a mapping population. In the case of crop plants domestication results in 390 

a loss of genetic diversity (Doebley et al., 2006; Shi and Lai, 2015), so there is much to 391 

be gained by including field races and wild types in the construction of mapping 392 

populations or RILs. The phenotypic data required for QTL mapping requires 393 

measurements upon hundreds or thousands of individuals depending on the mapping 394 

approach adopted, the precision of the phenotyping procedure compared to the 395 

variability of the trait and the heritability of the trait. In photosynthesis, which even in 396 

stable environments can change diurnally, quick measurements are needed (Flood et 397 

al., 2016). Measuring this many plants quickly places considerable demands on the 398 

design of high-throughput systems. Currently, the measuring technologies that are best 399 

suited to automated high throughput phenotyping of plant photosynthetic traits, including 400 

those in unstable irradiance, are chlorophyll fluorescence imaging (Barbagallo et al., 401 

2003; Furbank and Tester, 2011; Harbinson et al., 2012; Rungrat et al., 2016) and 402 

thermal imaging for measuring stomatal responses (Jones, 1999; Furbank and Tester, 403 

2011; McAusland et al., 2013). While it is based on fluorescence from PSII, chlorophyll 404 

fluorescence allows the measurement of many useful photosynthetic parameters such 405 

as the electron transport efficiency of PSII, NPQ and its components (of which qE is 406 

most commonly reported), Fv/Fm, qP, Fv’/Fm’ and similar parameters (Baker et al., 2007; 407 

Furbank and Tester, 2011; Harbinson et al., 2012; Murchie and Harbinson, 2014). 408 

Chlorophyll fluorescence procedures are well developed and the phenomenology and 409 

correlations of fluorescence-derived physiological parameters are well understood (e.g. 410 

Baker et al., 2007; Baker, 2008; Murchie and Harbinson, 2014). Biomass accumulation 411 

can also be used as a measure of plant fitness, and while this is not high-throughput nor 412 

specific for a photosynthetic process, it is simple to apply, requires no specific 413 

technology, and gives a useful measure of the extent to which a plant can successfully 414 

adapt to fluctuating irradiance. 415 

While the technologies and procedures for phenotyping and QTL identification are 416 

promising, the application of this approach to photosynthesis is still limited, especially in 417 
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the case of photosynthetic responses to fluctuating irradiance. QTL for qE have been 418 

identified using low throughput phenotyping (Jung and Niyogi, 2009). van Rooijen et al. 419 

(in press) have identified a gene (YS1) underlying longer term responses to an 420 

irradiance change using a GWAS analysis of an A. thaliana mapping population (Li et 421 

al., 2010). This work demonstrates that phenotyping combined with further genetic 422 

analysis can be used for identifying QTLs and genes linked to variation in a 423 

photosynthetic trait, opening the door to a new approach to understanding 424 

photosynthetic responses to fluctuating irradiance. If a QTL can be found for a trait, 425 

such as faster responses to fluctuating light, then by implication there is an association 426 

with genetic markers. This association can be used in marker-assisted breeding to 427 

accelerate the transfer of the QTL into a genotype which lacks the trait but which has 428 

otherwise desirable properties.  429 
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Concluding remarks 430 

Average rates of photosynthesis decrease under fluctuating irradiance when compared 431 

to a constant environment. Whereas part of this decrease is explained by the non-linear 432 

response of photosynthesis to irradiance, further decreases are the result of slow 433 

changes in enzyme activities, stomatal conductance and NPQ. Changes in mesophyll 434 

conductance and irradiance absorbance (caused by chloroplast movements) may add 435 

to these limitations, but this awaits experimental verification. Whereas much of the 436 

earlier research focused on Rubisco activity and dynamic stomatal conductance, recent 437 

experimental and modelling studies suggest other processes (and enzymes) to be 438 

limiting (Hou et al., 2014; Guo et al., 2016). Therefore, both models and experiments 439 

should widen their scope. This requires extending the toolbox of the dynamic 440 

photosynthesis experimentalist to include rapid gas exchange systems, chlorophyll 441 

fluorescence and spectroscopic techniques and the design of new measurement 442 

protocols and mathematical models to provide the necessary parameters. There is also 443 

the realization that the growth environment of plants should approximate that 444 

experienced in the field (Poorter et al., 2016). Recent developments of lighting 445 

technology (LEDs) enable this. Increasingly, plants are grown under more fluctuating 446 

conditions (Külheim et al., 2002; Leakey et al., 2003; Athanasiou et al., 2010; Alter et 447 

al., 2012; Vialet-Chabrand et al., 2017a), but the complex nature of natural irradiance 448 

fluctuations and the scarcity of measurements in the field mean that to date no standard 449 

exists for defining relevant fluctuating growth conditions in the laboratory. 450 

Our review of the literature indicates that the fluctuating regime strongly depends on 451 

whether fluctuations are caused by wind and gaps in the canopy (i.e., sunflecks) or by 452 

intermittent cloudiness (i.e., cloudflecks; Box 2). Whereas the former consists of 453 

fluctuations at the scale of seconds over a low irradiance background, cloudflecks are 454 

fluctuations at the scale of minutes over a high irradiance background. Furthermore, the 455 

variation across species, canopy structure and location seems to be small, but further 456 

characterization of cloudflecks and sunflecks is needed. Both fluctuating regimes are 457 

relevant to crops in the field, but the relative importance of processes limiting 458 

photosynthesis could depend on the specific irradiance pattern.  459 
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Figure captions: 460 

 461 

Figure 1. Sunflecks in two crop canopies. A) Irradiance fluctuations above and below a 462 

durum wheat and white mustard canopy, logged at 1 s resolution. B) Fraction of the 463 

total number of sunflecks as a function of sunfleck duration; calculations based on data 464 

displayed in panel A. Photosynthetically active irradiance (PAR; 400-700 nm) was 465 

logged using two LI-190R quantum sensors (Li-Cor Biosciences, Lincoln, Nebraska, 466 

USA) and a LI-1400 (Li-Cor) data logger. Data were recorded 10 cm above the ground 467 

for measurements below canopies and just above canopies for 6 h (11:00-17:00) on two 468 

consecutive days (May 26 and 27, 2017) in Wageningen, the Netherlands (51.97 °N, 469 

5.67 °E, 12 m above sea level). The two days were cloudless with average wind speeds 470 

of 3.5 m s−1 and 4.2 m s−1, respectively. In the absence of sunflecks, the irradiance 471 

measured below the canopy was 2.4% and 3.7% of above-canopy PAR, for white 472 

mustard and wheat, respectively, indicating full canopy closure. To detect sunflecks, a 473 

baseline was constructed by interpolating PAR values in the absence of sunflecks and 474 

defining a sunfleck as the absolute change in PAR with respect to the baseline >10 475 

µmol m−2 s−1 (this was larger than the measurement error). 476 

Figure 2. Schematic depiction of dynamic reactions of leaf photosynthetic processes to 477 

irradiance fluctuations. The leaf is initially adapted to shade (50 µmol m-2 s-1), then 478 

exposed to strong irradiance (1000 µmol m-2 s-1) for 60 minutes, after which it is shaded 479 

again for 35 minutes. Displayed are net photosynthesis rate (A; red line, continuous), 480 

stomatal conductance (gs; blue line, dots), substomatal CO2 partial pressure (Ci; green 481 

line, long dashes), non-photochemical quenching (NPQ; grey line, short dashes) and 482 

the electron transport efficiency of photosystem II (ΦPSII; black line, long dashes and 483 

dots). These values are representative of Arabidopsis thaliana Col-0, grown in climate 484 

chambers at a constant irradiance of 170 µmol m-2 s-1.  485 
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Supplemental material 486 

Table S1. Time constants of irradiance-dependent activation and deactivation of 487 

FBPase, PRK, and SBPase, based on fits to published data.  488 
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ADVANCES 

• For a long time, irradiance fluctuations have 

been considered to be important mainly in 

forest understory plants. Now, it is increasingly 

accepted that they affect photosynthesis in all 

plant systems, including crops. 

• Studying the regulation of processes underlying 

photosynthesis in fluctuating irradiance 

provides a key tool to improving crop 

photosynthesis, growth, and ultimately yield 

• Enhancing the rate of NPQ relaxation after 

decreases in irradiance boosts photosynthesis 

and crop growth in the field. 

• Imaging of plant photosynthetic responses to 

irradiance fluctuations can reveal phenotypes 

not visible under constant irradiance. 

• High-throughput phenotyping, using 

chlorophyll fluorescence and/or thermography, 

can help identify the genetic basis for fast 

responses of photosynthesis and gs to changes 

in irradiance 
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OUTSTANDING QUESTIONS 

• To what extent does the dynamic regulation of 

enzyme activity in the Calvin cycle (besides 

Rubisco) limit photosynthesis in a naturally 

fluctuating irradiance? 

• Could a variable gm limit photosynthesis in 

fluctuating irradiance? 

• To what extent can chloroplast movements limit 

crop photosynthesis in fluctuating irradiance? 

• Which factors limit photosynthesis under 

fluctuating irradiance in C4 and CAM plants? Do 

the specific mechanisms in C4 and CAM pathways 

increase the efficiency at which photosynthesis 

responds to fluctuating irradiance? 

• How does plant morphology affect the frequency 

and intensity of sunflecks in canopies? 
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