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Abstract 

The smallholder agriculture sector in East Africa is the dominant economic and social activity for 

millions of farm households who are often resource-poor, food-insecure and most vulnerable to 

climate change. In this region, population pressure has led to shorter fallow periods or continuous 

cropping even on hillslopes causing erosion and leading to reduced soil organic matter content and 

nutrient mining without replenishment. Consequently, poor agricultural productivity has led to food 

shortages and these problems are likely to intensify in the region, as the human population is growing 

faster than in other parts of the world. Agroforestry, a low-input technology, was shown to contribute 

to the enhancement of food production while ensuring sustainability in sub-Saharan Africa. 

Agroforestry may improve food security by increasing soil fertility and providing additional income 

from tree products. Thus, agroforestry is now receiving increasing attention as a sustainable land-

management option and some countries in East Africa (e.g. Rwanda) have pledged to restore up 

to 100% of their agricultural land mainly through agroforestry by the year 2020. Nevertheless, crop 

yields reduction in agroforestry are frequent due to competition for resources among trees and crops. 

In recent studies, tree canopy and root pruning were tested to improve light availability and 

resource use efficiency but studies that tackle crop management and tillage options to optimize 

crop productivity in the agroforestry systems are scarce. 

This thesis aims to assess the importance of agroforestry across Rwanda and its implication on 

crop productivity and food security of farm households, explore and recommend the maize 

varieties and tillage options that could minimize tree-crop competition in the equatorial savannah 

of Rwanda and Ethiopia. The approach combined household survey on the contribution of trees 

on household income and food security in six agroecologies of Rwanda, experiments on the 

microclimate and fertility effects of trees on crops in sub-humid region of Rwanda, maize variety 

testing in agroforestry systems and trials on conservation agriculture with trees in the equatorial 

savannah of two East African countries: Rwanda (Bugesera site) and Ethiopia (Meki site). The 

survey in Rwanda found that food security increases with increasing farm size and farmers with 

more trees tended to be wealthier (e.g. with larger land and more often higher crop and livestock 

income) and therefore tended to be more food secure in half of the agroecologies. The proportion 

of household income that came from tree products was the least among sources of income 

suggesting that most tree products are not sold but kept by farmers for their own use. Yet tree 
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income was important for about 12% of the farmers, contributing more than 20% of their overall 

income. Households having low food security relied more on income from tree products than those 

with higher food security status. Therefore, income from tree products can be seen as a ‘safety net’ 

for the poorest households.  

Experiments in the sub-humid environment of Rwanda assessed the effects of mature Alnus 

acuminata (Kunth) and Markhamia lutea (Seem.) on maize at different distances from tree trunk 

for four consecutive seasons. Nutrients availability was higher under A. acuminata compared with 

M. lutea, because of higher litter fall but maize nutrient uptake increased only under A. acuminata 

3 m from tree trunk during a wetter season. None of tree species affected water availability for 

maize in the topsoil. Total solar radiation, photosynthetically active radiation (PAR), and day air 

temperature were reduced by both tree species. Whereas crops consistently underperformed in M. 

lutea system, the competitive effect of A. acuminata for light was to some extent compensated by 

extra N input in the wetter seasons (2015 A and 2015 B) at 3 m but not at 1 m from the tree trunk. 

In an APSIM modelled scenario under low N fertilization, larger N input from trees could 

compensate for yield loss caused by reduction in radiation and temperature in about 60% of the 

seasons. This study suggested that adequate pruning and high leaf litter recycling can reduce the 

negative effect of shade in low intensity farming systems. The low competition of A. acuminata 

with crops was also perceived by Rwandan farmers, who ranked this tree species as the least 

competing among all the other upper story trees grown on-farm in the highlands.   

Experiments compared the performance of four maize hybrids and four OPVs was compared 

in sole crop and under mature Grevillea robusta and Senna spectabilis – in Bugesera, Rwanda or 

Acacia tortilis – in Meki, Ethiopia. In Bugusera, grain yields of hybrids (2 t ha-1) was significantly 

better than OPVs (1.5 t ha-1). Further, the presence of trees significantly reduced maize grain yield 

and total biomass in both hybrids and OPVs in the same manner. However, trees reduced harvest 

index significantly more in OPVs than in hybrids, suggesting that competition had a greater impact 

on grain yield of OPVs than on biomass production. In the experiments in Meki, the grain yield of 

OPVs (2.08 t ha-1) and hybrids (2.04 t ha-1) did not significantly differ and the presence of trees 

reduced their grain yields in the same manner. We concluded that agroforestry farmers could 

benefit from growing hybrids in the equatorial savannahs of Rwanda, but not in the equatorial 

savannahs of Ethiopia. It appears that the relevance of using either hybrids or OPVs in agroforestry 
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systems depends on local conditions and the comparative advantages in seed costs. Experiments 

in the same regions of Rwanda and Ethiopia were carried out to assess the effect of conservation 

agriculture with trees (CAWT) on crop productivity as compared to conventional tillage with trees 

(CTWT) in the equatorial savannah. Crop emergence was significantly reduced under CAWT 

compared with CTWT. Maize emergence rates in CAWT and CTWT were respectively 46.9% and 

70.1%, compared with 74.7% and 79.8% in sole maize under conservation agriculture (CA) and 

conventional tillage (CT). Grain yield in CAWT and CTWT were respectively 0.37 t dry matter 

(DM) ha-1 and 1.18 t DM ha-1 as compared with 1.65 t DM ha-1 and 1.95 t DM ha-1 in CA and CT. 

It was concluded that CAWT likely exacerbates tree-crop competition for water and nutrients and 

reduce crop yields and was therefore not considered as a viable alternative to CTWT or to CT in 

the studied systems.  

Overall, this study found that mixing trees and crops produced a worthwhile, if somewhat 

reduced, crop yield, and that on-farm trees can provide substantial income for the poorest 

households of Rwanda.  

 

 

Keywords: Conservation agriculture with trees, soil fertility, crop phenology, hybrids, OPVs, 

Rwanda, Ethiopia 
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1.1 Agroforestry as a sustainable land-management option  

Traditional and successful long-fallow land-use systems became more and more impracticable in 

1970-1980 in Africa, due to population growth. This created a need for new low-cost alternatives 

that could be applied by the poor rural population (Radersma 2002). Agroforestry was proposed 

as one such alternative; it combines fallow and production mechanisms at the same time and space 

(Kang et al. 1985). During the 1990s, agroforestry was globally recognized as an answer to 

problems such as the deterioration of family farms, increasing soil erosion, surface and ground 

water pollution, and decreasing biodiversity. Agroforestry is now considered by more and more 

experts to be a sustainable land-management option, because of its ecological, economic, and 

social functions (Garrity 2012).  

Positive forest transitions are now under way in many countries in both the tropical and 

temperate zones (Figure 1.1). The replacement of natural forest by planted tree cover has occurred 

in a gradual process of agroforest development (by a direct replacement of natural forest, by a 

transition to plantation forestry or the combined cultivation of trees and crops, and/or after a phase 

interlinkage), interrupted by ‘degraded land’ developing a low tree cover. The various components 

of the ‘tree-cover transition’ may not spatially move at the same rate, and the zone being in the 

‘intermediate, low tree cover’ stages can expand and contract as a consequence. Agroforestry for 

land restoration is spreading in the developing world, particularly in areas with resource-poor 

farmers with limited access to forests.  

 

Figure 1.1. Tree cover transitions with agroforestry as a reinvestment in land restoration. Adapted 

from van Noordwijk M et al. (1995).  
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Agroforestry was recently defined by ICRAF (2016) as ‘the practice and science of the 

interface and interactions between agriculture and forestry, involving farmers, livestock, trees and 

forests at multiple scale’. Agroforestry systems have been classified into two groups, namely 1) 

those that are sequential, where crops are grown either in natural (herbaceous) fallows or in fields 

previously improved by growing trees; and 2) those that are simultaneous, where trees scattered 

on fields and alleys are grown together with crops (Cooper et al. 1996).  

 Like much of tropical Africa, East Africa is faced with problems of low agriculture 

productivity, land degradation and massive deforestation because of the expansion of land used 

for agriculture. A wider adoption of agroforestry may help to reverse the effects of deforestation 

and land degradation in Africa (FAO 2012). Depending upon the species are used, their arrangement 

and how they are managed, trees incorporated into crop fields and agricultural landscapes may help 

to:  

(i) increased the nutrient availability for crops through nitrogen fixation and enhanced nutrient 

recycling (Barnes and Fagg 2003), and to increase soil organic matter content and thereby to 

ameliorate soil structure (Chirwa et al. 2007a); 

(ii) improved water infiltration (Sanou et al. 2010); resulting in increased water use efficiency by 

reducing the unproductive components of the water balance (Ong et al. 2002);  

(iii)  ameliorate the micro-climate effects by reducing wind speed, raising humidity and reducing leaf 

temperature of crops (Brenner 1996); 

(iv)  increase the abundance and activity of beneficial soil organisms (Barrios et al. 2011); 

(v) increase yields of fruit, fodder, fuel, fibre, and timber from trees/shrubs, allowing an income 

increase directly through sales or indirectly through intensifying the system (Garrity et al. 2010); 

(vi) provide pruning mulch that increases C and N in the soils (Youkhana and Idol 2009), and 

enhances carbon storage both above and below ground (Makumba et al. 2007). 

 

However, the success of agroforestry depends on the balance of positive (facilitation) and 

negative (competition) interactions between the components (Vandermeer 1992). It is necessary to 

quantify the balance between positive and negative effects of trees on crops in order to provide a 

scientific basis for the improvement of traditional as well as evolving agroforestry systems.  
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1.2 Quantification of tree effects on crops  

The nature and intensity of interactions in agroforestry systems depend on the rate at and the extent 

to which light, water and nutrients resources are captured and utilized by the components of a 

particular system (Rao et al. 1997). The net effect of these interactions is often determined by 

measuring the influence of the tree component on the other components, and is usually expressed in 

quantifiable responses such as soil fertility changes, microclimate modification, or resource 

availability and utilization (Okorio 2000).  

Ong (1995) and Akyeampong et al. (1995) developed a simple equation for quantifying tree-

soil-crop interactions (I), distinguishing between the positive effects of trees on crop growth via soil 

fertility improvement (F) and the negative effects of competition (C) for light, water and nutrients. 

The interaction term is positive and the combined system may make sense if F > C, and not if F < C. 

Their equation was simply I = F + C. However, this equation had two weaknesses: it lacked a time 

frame, and could not be transferred from one environment to another. Kho (2000a) developed a 

method to overcome these weaknesses.  The factors he uses are the tree effects on crop production 

(t ha-1) via the availability of different resources (light (L), water (W), Nitrogen (N), Phosphorus and 

bases (P). These factors are multiplied by an environmental factor (l, w, n, p) indicating the degree 

of limitation of each resource in a specified environment. The sum of all environmental factors is 

one (l + w + n + p = 1), and each of the environmental factors vary between 0-1. The largest factor 

indicates the main limitation of an environment, the lowest the least limiting resource. Thus the 

equation becomes: 

I = l × L + w × W + n × N + p × P. 

Cannell et al. (1996) have also attempted to clarify the resource base of the production by the 

crop and the tree, for simultaneous agroforestry systems, such as scattered trees on farms. They 

express the interaction effect (I) on crop yields as:  

I = F + C + M + P + L + A 

where: F = relates to soil fertility interaction 

 C = relates to competition for water, nutrients and radiation, 

 M = relates to micro-comate interactions, 

 P = relates to pest and disease interactions, 
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 L = relates to soil conservation interaction, and  

 A = relates to allelopathy interaction.  

 

Many of the above interactions are interdependent; therefore, they cannot be experimentally 

estimated independently of each other (Cannell et al. 1996). Part of the fertility effect of the tree is 

based on light, water and nutrient resources which the tree has acquired in competition with the crop 

(Fcomp); another part may have been obtained in complement to resources available for the crop 

(Fnoncomp). Likewise, part of the resources acquired by the tree in competition with the crop is recycled 

within the system and may thus be used by a future crop (Crecycl). Tree products that are not recycled 

may have direct value for the farmer (Cnonrecycl). One may argue that Fcomp is based on the same 

resources as Crecycl and that in the longer run the two terms would cancel each other out. If tree 

products have no direct value, agroforestry systems may only be justified if Fnoncomp > Cnonrecycl. With 

increasing direct value of the tree products, the requirements of complementarity decrease 

(Noordwijk et al. 2011).  

In addition to competition and complementarity in the capture of light (which figure in crop 

models), water and nutrients must often be considered in attempts to predict the yield of tree-crop 

mixtures (Luedeling et al. 2016). Many models have been developed for agroforestry: (i) the 

WaNuLCAS model, developed as a generic model for water, nutrient and light capture in 

agroforestry systems (Noordwijk et al. 2011) , (ii) the Agricultural Production Systems Simulator 

Modelling framework (APSIM), which includes tree sub-models (Luedeling et al. 2016), (iii) the 

Yield-SAFE model for Europe (van der Werf et al. 2007), (iv) the Simile model (Muetzelfeldt and 

Massheder 2003) and (v) the Soil Changes Under Agriculture, Agroforestry and Forestry model 

(SCUAF) (Young et al. 1998). However, the usefulness of these models has remained limited for 

reasons including insufficient flexibility, a restricted ability to simulate interactions, extensive 

parameterization needs or a lack of model maintenance. Rapid progress in the reliable modelling of 

tree and crop performance of agroforestry systems is needed to ensure that agroforestry fulfils its 

potential to contribute to reducing poverty, improving food security and fostering sustainability 

(Luedeling et al. 2016).  
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1.3 Problems of agricultural production and food insecurity in East Africa 

In East Africa smallholder agriculture is the dominant economic and social activity for millions of 

farm households which are often resource-poor, food-insecure and particularly vulnerable to 

climate change (Salami et al. 2010). Population pressure has led to shorter fallow periods or 

continuous cropping, which in turn leads to reduced soil organic matter content and to nutrient 

mining without replenishment (Stoorvogel and Smaling 1990). Intensive cropping on hill slopes has 

resulted in increased soil erosion and low agricultural productivity (Lewis and Nyamulinda 1996). 

Due to soil erosion processes and limited fertilizer use, the productivity of the small agricultural plots 

is no longer sufficient to provide food security for the majority of the farmers (Ansoms and McKay 

2010). The East Africa region has four out of the nine hunger and poverty hotspots in Africa, spread 

out over parts of Ethiopia, Rwanda, Kenya, Uganda, Tanzania and Burundi (Inter-Academy Council 

2004). In this region, food shortages are mainly caused by an increase in population pressure coupled 

with inadequate attempts to increase agricultural production. Poor agricultural productivity and food 

insecurity problems are likely to intensify in East Africa, as the human population is growing faster 

here than in other parts of the world (Sanchez and Leakey 1997; Godfray et al. 2010).  

The farming systems of Rwanda are mainly focused on subsistence; the agricultural activities of 

over 70% of the country’s households take place on small plots of land (the national average is 0.6 

ha per household) dispersed over plateaus and hills with high soil erosion risks (NISR 2014b). Major 

food crops include cereals, banana, roots and tubers, coffee and legume crops (Bucagu 2013). During 

the last decades, Rwandan agriculture has made remarkable progress. Accounting for 32.7% of the 

GDP in 2015, agriculture is the most significant driver of economic growth (7.6%, 2000-15) and 

poverty reduction, contributing up to 35% to the total drop in the poverty rates over the past decade 

(REMA 2015). Despite these impressive developments, Rwanda still falls short of its production 

potential. The key agricultural yields are estimated to be at about 40-50% of their production 

potential (MINAGRI 2014), which points to a still suboptimal use of production factors. A projected 

increase of the rural population by 2.5-3.5 million people by 2032 (MINECOFIN 2014) is likely to 

put more pressure on land resources and farm incomes. Even today, Rwanda is challenged by 

malnutrition, with a stunting rate of 37.9%, while its food security index lies below the average of 

the Sub-Saharan African countries. Around 20% of the Rwandan households remain food-insecure; 

most of the food-insecure households are located in the western and northern parts of the country 

(Franchis 2012). 
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The situation described above for Rwanda is common to East African countries. For example, 

agriculture is the backbone of the Ethiopian economy, contributing about 52% to the GDP. The 

sector is dominated by small-scale farmers who practice mixed farming, employing traditional 

technology, relying on a low-input and low-output production system. Agriculture supports 83% of 

the population, mainly through the production of rain-fed grain, predominantly teff, maize and wheat 

as well as livestock, principally cattle, sheep and goats (Deressa et al. 2009). Small-scale farmers 

produce 94% of the food crops. Ethiopian agriculture faces daunting challenges from over-reliance 

on rain-fed agriculture, high levels of environmental degradation, high poverty levels, rapid 

population growth, frequent natural drought cycles and low level of adaptive capacity to climate 

variability and change (Kidanu et al. 2009). Ethiopia continues to be one of the largest recipients of 

food aid in the world, with overall, about 10% of the population continuously requiring food aid 

assistance annually (Conway and Schipper 2011). 

 

1.4 Rationale of the study 

The integration of on farm trees improves not only food and nutritional security, but also income and 

energy security, by providing tree products including fruits, fodder, fuel wood, timber, mulch and 

medical herbs. It allows smallholders to diversify their income sources, especially when they are 

well-linked to markets. However, while agroforestry can improve food security through increased 

income from tree products and increased crop productivity  (Garrity et al. 2010), it can also reduce 

crop yields in some instances, due to competition for resources among trees and crops (Kho 

2000b). When trees and crops are mixed, tree competition for light, nutrients and water reduces crop 

yields, while rings of soil fertility around trees may be detected when fields are nutrient deficient 

(Buresh and Tian 1997). Given the current ambitious political plan to scale up agroforestry in 

Africa (www.bonnchallenge.org), an improved understanding of the effects of the adoption of 

agroforestry on the population’s food-security situation is of crucial importance. This can be 

achieved by assessing the effects of trees on the production of food crops and the contribution trees 

make to the household income.   

1.5 Research objectives and hypotheses 

The main objective of this study was to assess the importance of agroforestry in Rwanda, determine 

the impacts of on-farm trees on crop productivity in Rwanda and Ethiopia, and to assess the 
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contribution agroforestry practices can make to food security among smallholder farmers of Rwanda. 

It was hypothesized that the benefits of on-farm trees outweigh their competition with crops for 

resources, as the trees provide valuable products and increase soil fertility.  

The specific hypotheses tested in this study were these: 

i. The adoption of trees on-farm increases income and food-security. 

ii. Trees influence crop production by reducing the fraction of radiation intercepted by the crops 

and by competing for soil water and nutrients. 

iii. Conservation agriculture with trees (CAWT) will exacerbate below-ground competition for 

water and nutrients by trees, and therefore will reduce crop yields.  

iv. Open-pollinated varieties of maize (OPVs) outperform maize hybrids under trees, and 

maize genotypes differ in their response to the presence of trees. 

The research objectives were to: 

1. determine whether agroforestry practices lead to increased income and improved food 

security for smallholder farmers;  

2. evaluate the direct effects of trees on maize, with emphasis on microclimate variables (e.g. 

radiation, temperature) and growth resources (e.g. radiation, water, N and P); 

3. assess the direct effects of trees on the performance of maize genotypes (hybrids and open 

pollinated varieties) in nutrient- and water-limited growth conditions;  

4. assess the performance of sole maize under conventional tillage (CT) and conservation 

agriculture (CA), as well as maize under conventional tillage with trees (CTWT) and 

conservation tillage with trees (CAWT) in two semi-arid regions of East Africa. 
 

A large survey in Rwanda was analysed, and different on-farm experiments with trees mixed with 

crop were conducted in Rwanda and Ethiopia. The outcomes of this research are reported in the 

different chapters of this thesis.   

 

1.6 Outline of the thesis  

This thesis is composed of six chapters. This chapter presents the general background to the study 

of problems relating to agricultural production and food security in East Africa, and especially to 
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the question whether agroforestry is a sustainable option to intensify crop production. Chapter 2 

offer data on the food-security status of farmers practicing different kinds of agroforestry in the 

six agroecologies of Rwanda, and on the basis of them, assesses the impact of agroforestry scaling-

up efforts on the population. It gauges the current numbers of on-farm trees grown by farmers and 

the contribution trees make to the households’ income and food-security status. Chapter 3 presents 

the results of research on tree-crop interactions in the smallholdings in northern Rwanda, and 

discusses how trees affect light, air temperature and soil water, and contribute to soil fertility 

through litter fall. The chapter also explores, through modelling, scenarios of maize yields 

production under different microclimate conditions and with different N inputs, in order to produce 

recommendations that can help to minimize the negative effects and maximize the positive effects 

of trees.  

 Chapter 4 describes the performance of maize hybrids and open-pollinated varieties in 

agroforestry systems in Rwanda and Ethiopia. The chapter stresses the importance of selecting 

maize genotypes suited to agroforestry conditions. In Chapter 5, the effects of conservation 

agriculture with trees (CAWT) on maize performance in both Rwanda and Ethiopia are described 

and discussed. The chapter compares CAWT with conventional tillage with trees (CTWT) and 

highlights the importance of tillage to limit below-ground competition between trees and crops. In 

Chapter 6, the major findings of this study are discussed, and the major conclusions to be drawn 

from them are specified.   
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Chapter 2 
 

 

The value of on-farm trees in relation to food security and farm 

income in Rwanda 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter is to be submitted as: 

Ndoli, A., Mukuralinda A., Baudron, F., Schut, A. G. T, Iiyama M., Ndayambaje J.D., Mowo J.G., & Giller, 

K. The value of on-farm trees in relation to food security and farm income in Rwanda. Food security 
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Abstract 

Given the ambitious plans to scale up agroforestry in Africa, an improved understanding of the 

effect of agroforestry practice on the food security of rural households is crucial. The present study 

was carried out to understand whether farm households growing more trees on-farm were better 

off in terms of food security in Rwanda. A survey including 465 farmers, selected from six 

agroecologies of Rwanda was conducted. For each agroecology, farmers were grouped in four 

categories of agroforestry practice (i) non practitioners (NoAP) who had no tree on farm, (ii) low 

practitioners (LAP) represented by the third of the households with the lowest number of trees per 

farm, (iii) medium practitioners (MAP) represented by the next third of households in terms of tree 

numbers on farm and (iv) high practitioners (HAP) represented by the third of the households with 

the highest number of trees on farm. Assets values, household income sources, crop production, 

farm area, crop yield, cover of household food energy (caloric) needs and farmers’ perceptions on 

tree effects on crops were quantified among the categories of agroforestry practice. The proportion 

of households that reported to have access to enough amount and diversity of food were higher in 

HAP when compared to MAP and LAP categories. Coverage of household caloric needs was also 

highest in the HAP category, coinciding with an increased crop and livestock income as compared 

to other categories. In half of the agroecologies, households in HAP tended to have relatively more 

land and their higher food security compared to other categories might be due to more crop income 

than other sources. Farmers in the eastern agroecologies reported negative effects of on-farm trees 

on crops which may explain the low tree adoption found in this area. We found no relationship 

between asset endowment and categories of agroforestry practice, while farmers in agroecologies 

with smaller farms had more on-farm trees than farms in agroecologies with larger farms. Our 

results suggest that households with more trees on farm are not better off in terms of food security 

than those without or with less trees on farm. Large differences between agroecological zones in 

Rwanda were observed for both food self-sufficiency and food security. Households with larger 

farms were more food secure than those with smaller farms. The proportion of income that came 

from tree products was important for a small fraction of farmers, with households with low food 

security relying more on income from tree products than household with higher food security 

status. Thus tree income can be seen as a “safety net” for the poorest households. 
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2.1 Introduction 

The double challenge faced by the world is to meet the food demand of the growing population, 

and to do so in ways that are environmentally and socially sustainable (Von Braun 2007). Sub-

Saharan Africa remains amongst the most food insecure regions in the world, with almost one in 

three people being chronically hungry (FAO 2008). In this region, population pressure has led to 

shorter fallow periods or continuous cropping, even on hillslopes causing erosion and leading to 

reduced soil organic matter content and nutrient mining (Stoorvogel and Smaling 1990). 

Agroforestry, a low-input technology, was shown to contribute to the enhancement of food 

production while ensuring sustainability in sub-Saharan Africa (Garrity 2012). Agroforestry was 

recently defined by ICRAF (2016) as “the practice and science of the interface and interactions 

between agriculture and forestry, involving farmers, livestock, trees and forests at multiple scales”. 

Agroforestry is now receiving increasing attention as a sustainable land-management option 

because of its ecological, economic, and social attributes.  

Agriculture is the primary source of livelihood for 85% of the rural population in the 

developing world (Dixon et al. 2001). In countries such as Rwanda, low-income agriculture is 

commonly practiced on farms smaller than one ha (NISR 2010) and is highly vulnerable to weather 

related shocks, such as drought and irregular rains (Hjelm et al. 2015). Rwanda is characterized by 

one of the most severe nutrient depletion rates in Africa and low organic carbon content of the soil 

(Stoorvogel and Smaling 1990; Drechsel et al. 2001). The country is dominated by sloping 

agricultural land (up to 55%) with 50% of it showing signs of erosion.  Producing enough food on 

nutrient deficient land for the rapidly growing Rwandan population is challenging and buying 

imported food would be too expensive for the majority of the population that live currently on less 

than one dollar (USD) per day. Despite the economic recovery of Rwanda since 1994, household 

food insecurity and undernutrition remain a challenge in Rwanda. In 2012, as many as 460,000 

households (21%) were food insecure (Franchis 2012). This number increased to 473,847 

households (20%) in 2015 (Hjelm et al. 2015).   

In light of recurring food shortages, projected climate change, and rising prices of fossil fuel-

based agricultural inputs, interest in agroforestry has recently increased as a cost-effective means 

to enhance food security, while at the same time contributing to climate change adaptation and 

mitigation (Mbow et al. 2014). Rwandan government officials, NGOs, and extension specialists 
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perceive smallholder agroforestry as a suitable strategy for Rwandan smallholder farmers 

(Stainback et al. 2012). Consequently, Rwanda has pledged to restore 2 million of hectares of land 

(almost 100% of arable land) by the year 2020 mainly through agroforestry 

(http://www.bonnchallenge.org/content/rwanda). While agroforestry may improve food security 

through increased income from tree products (Garrity et al. 2010)  and enhanced crop productivity 

(Coulibaly et al. 2017), it may also reduce food self-sufficiency by lowering crop yields (Ndoli et 

al. 2017) under trees in some instances due to competition for resources between trees and crops 

(Kho 2000b), threatening food security. 

An improved understanding of the role of trees on farm income and the food security status of 

farmers with different degrees of agroforestry practices is needed to better understand and 

anticipate the impact that the current efforts to upscale agroforestry are likely to have on rural 

households in Rwanda. The present study seeks to understand how the number of trees grown and 

managed on-farm affects farm income and food security of households in the six agroecological 

zones of Rwanda. The specific objectives were: (i) to determine whether agroforestry practices 

lead to diversification and increase of income and value of assets; (ii) to assess farmers’ 

perceptions of the impact of trees on crop yields and (iii) to evaluate food security for households 

that differ in the number of trees on their farms.  

 

2.2 Methods 

2.2.1 Data collection  

The study was conducted in six agroecologies of Rwanda as defined by Djimde (1988). 

However, the Eastern savannah lowland, as defined in 1988 was subdivided into two systems, 

namely Eastern savannah and Eastern plateau (Table 2.1). This because the Eastern savannah 

became heterogeneous in terms of socioeconomic and biophysical characteristics in the last two 

decades. The Eastern savannah of 1988 was a less populated parkland with the protected Akagera 

national park covering half of it. The largest part of the Akagera Park was settled in the late 1990s 

by former refugees returning in 1994 when land was allocated as farms. A short description of the 

characteristics of the land use systems is presented in Table 2.1. In each agroecology, one 

representative district was selected, based on biophysical and socio-economic factors. In each 



13 

district, two cells were selected for assessment of the contribution of trees on household food 

security.  

A household survey was conducted between November and December 2014 in each cell with about 

30-50 randomly selected households. A total of 465 households were interviewed in the 12 selected 

cells. A structured questionnaire was administered to respondents’ household heads or their 

representatives during the survey. Detailed questions asked were related to tree species, number 

of trees, products and income from trees and perception of the impact of trees on crop yields. Each 

farmer was asked for his/her top three priority grown trees to score -1 if these trees had a negative 

effect on crop, 0 if the effect was neutral and 1 if the effect was positive, thus the higher the mean 

score, the less these top three trees compete with crops in a particular agroecology. The 

questionnaire also captured the household socioeconomic characteristics, crop production, and 

income from crops, from livestock and from off farm activities. Farm area was recorded with a 

Global Navigation Satellite System (GNSS) receiver (Garmin) and with this on-farm crop 

productivity (i.e. crop yields converted to GJ energy per ha) was determined. Household asset 

values were determined. Assets were grouped into four categories: (i) domestic (i.e., sofa set, 

refrigerator, wood stove, kerosene stove, gas/LPG stove, granary and water tank domestic), (ii) 

communication (i.e., radio, mobile phone, television), (iii) transport (i.e. bicycle, motorbike, 

car/truck and ox cart), and (iv) farming assets (i.e. water tank for farm, hoes, machetes, ox-plough, 

wheelbarrow, grain-mill, water pumps, milk can, shovel, spades, axe, and sprayer). Food security 

status throughout the year was evaluated by assigning each month to one of the following category: 

(1) not enough food for all members of the household, (2) enough food but not enough diversity, 

or (3) enough food and enough diversity.  
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Table 2.1 Characteristics of the six agroecologies [source: Djimde (1988), if not otherwise specifid 

with a superscript number] 

Characteristics Eastern 
Savannah 

Eastern 
Plateau 

Buberuka 
highland 

Volcanic 
highland 

Central 
Plateau Congo Nile Crest 

Elevation (m) 1200-1400  1200-1500  1900-2000  2200-2400  1100-1700  1900- 2500  
Rainfall (mm year-1)  800-1000  800-1000  1200-1300  1300-1500  1000-1500  1300-2000   
Temperature (0C) > 21 20 – 21 15-18 < 15 18-20 <1 5-18 
Proportion of very fertile 
soil (%)1 

48 54 37 66 41 6 

Food insecure households 
in the study cells (%)2 

3-7 8-15 15-28 8-28 15-28 33-43 

Dominant agroforestry 
practices2  

Trees on farm 
boundaries 

Scattered trees 
on farm, trees 

on contour 

Woodlot, 
contour 

hedgerows and 
home gardens 

Woodlot, 
contour 

hedgerows  

Scattered 
trees on 

farm 

Woodlot, contour 
hedgerows, 

Scattered trees 
on farm 

Tree Species dominant in 
the surveyed zones1 

Grevillea, 
Eucalyptus, 

Avocado, 
Senna, 

Mango, 
Papaya  

Grevillea, 
Senna, 

Eucalyptus, 
Avocado,  

Mango,  
Calliandra 

Alnus, 
Eucalyptus, 

Avocado, 
Erythrina, 

Ficus, 
Grevillea 

Alnus, 
Eucalyptus, 

Erythrina 

Avocado, 
Eucalyptus, 
Calliandra, 

Grevillea, 
Citrus, 

Orange, 
Mango 

Eucalyptus, 
Grevillea, 
Avocado, 

Calliandra, 
Ficus 

Livelihood2 Agro pastoral Banana, 
cassava and 

mixed 
agriculture 

Beans, wheat, 
Irish potato 

and vegetables 

Irish potato Cassava 
and coffee 

Subsistence food 
crop farming and 

labour in tea 

  1Mukuralinda et al. (2016) 

  2Franchis et al. (2012) 
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Figure 2.1 Map of tree cover in Rwanda displaying the six agrecologies and the study cells that 

were selected for this study.  

 

2.2.2 Data analysis  

Assets as well as income were compared between categories of agroforestry practice and between 

agroecologies using a Kruskal Wallis test while proportions of farmers in different food security 

categories were compared with Chi-square tests. Four relative categories of number of trees on 

farm were constructed in each agroecology; (i) non practitioners (NoAP) (i.e., no trees on farm), 
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(ii) low practitioners (LAP) defined as the lower third of the households in terms of tree number, 

(iii) medium practitioners (MAP) represented by the middle third of the households in term of tree 

numbers and (iv) high agroforestry practitioners (HAP) represented by upper third of the 

households in terms of tree numbers.  

However, all agroecologies had very few non-practitioners (4 to 14%) with the exception of 

Eastern savannah. The NoAP were not included in the analysis of food security levels since they 

were disproportionately few as compared to the rest of the categories. Farmers were asked to rank 

food security as ‘1’ if they had not enough food and not enough variety, ‘2’ if they had enough 

food but not enough variety and ‘3’ if they had enough food and enough variety. Generalized linear 

models were used to assess the source of variability in food security. Model 1 aimed at testing the 

effect of tree number when controlling for structural variables (e.g. farm area). Model 2 aimed at 

testing the effect of tree income when controlling for other functional variables (e.g. crop 

productivity, off-farm income). Both Model 1 and Model 2 were run for the whole dataset and for 

each agroecology separately (the factor ‘agroecology’ was removed in the latter case). In the 

analysis, the scores 2 and 3 for the response variable ‘food security status’ were combined and 

considered as food secure households (coded as 1), these were compared to food insecure 

households (coded as 0). A logistic regression model was then used. The Analysis of Variance 

(ANOVA) was conducted to compare effects and differences were evaluated for their significance 

with a Chi-square test. Models were constructed as follows: 

(Model 1) 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑇𝑇𝑇𝑇𝑖𝑖 +  𝛾𝛾𝑀𝑀𝑀𝑀𝑖𝑖 + 𝛿𝛿𝐹𝐹𝐹𝐹𝑖𝑖 + 𝜇𝜇𝐴𝐴𝐴𝐴𝑖𝑖 + 𝜏𝜏𝑇𝑇𝑇𝑇𝑖𝑖𝐹𝐹𝐹𝐹𝑖𝑖 + 𝜀𝜀𝐴𝐴𝐴𝐴𝑖𝑖 +  𝜃𝜃𝐹𝐹𝐹𝐹𝑖𝑖𝐴𝐴𝐴𝐴𝑖𝑖 +  𝑅𝑅 

(Model 2) 𝑌𝑌𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼 + 𝛽𝛽𝑇𝑇𝑇𝑇𝑚𝑚 +  𝛾𝛾𝑇𝑇𝑇𝑇𝑚𝑚 + 𝛿𝛿𝐿𝐿𝑇𝑇𝑚𝑚 + 𝜇𝜇𝐴𝐴𝐴𝐴𝑖𝑖 +  𝜀𝜀𝑀𝑀𝑇𝑇𝑚𝑚 +   𝜖𝜖𝑇𝑇𝐶𝐶𝑚𝑚 +  𝜃𝜃𝐴𝐴𝐴𝐴𝑖𝑖𝑇𝑇𝑇𝑇𝑚𝑚 +  𝜗𝜗𝐴𝐴𝐴𝐴𝑖𝑖𝑇𝑇𝑇𝑇𝑚𝑚  +
 𝜋𝜋𝐴𝐴𝐴𝐴𝑖𝑖𝐿𝐿𝑇𝑇𝑚𝑚 +  𝜌𝜌𝐴𝐴𝐴𝐴𝑖𝑖𝑀𝑀𝑇𝑇𝑚𝑚 + 𝜎𝜎𝐴𝐴𝐴𝐴𝑖𝑖𝑇𝑇𝐶𝐶𝑚𝑚 +  𝑅𝑅 

where Yijklmnop and Yijklmno represents the binomial values of food security status (with the value 1 

for food secure and 0 for food insecure), TCi is the ith category of trees on-farm, MOj is the jth 

month of the year, FSl   is the lth farm size in hectares, AEm is the mth agroecology, CIo is the oth 

crop income, LIp is the pth livestock income, OIq is the qth off-farm income, CPr is the rth value 

of crop production in calories, and R is the residual, and where α, β, γ, δ, μ, τ, ε, θ, ϑ, π, ρ and σ  

represent effects values. We used R software for all statistical analyses (R Development Core 

Team 2014). 
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2.3 Results 

The number of households were equally distributed among categories of agroforestry practice 

after removing the households owning no trees (NoAP), see Table 2.2. The mean number of trees 

grown by households was higher in the Congo Nile agroecology, followed by Buberuka highlands, 

Eastern plateau, volcanic highlands, and central plateau while the Eastern savannah had the 

smallest number of trees. In fact, the latter was the agroecology with the highest number of 

households not managing any tree on-farm. Total farm area per household was generally larger in 

agroecologies with fewer trees per household. Farm size was larger in the Eastern plateau and 

Eastern savannah, followed by Buberuka highlands, Central plateau and lastly the Congo Nile 

agroecology. Farm size of HAP tended to be larger than the rest of the categories.  
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Table 2.2 Characteristics of the selected households in the six land use systems of Rwanda. 
Standard errors are given after the signs ‘±’ for mean number of trees and total land size per 
household.  

Land use 
  

NoAP 
 

LAP 
 

MAP 
 

HAP 
No. of households 

        
Buberuka H 

  
2 

 
14 

 
14 

 
12 

Central Plat 
  

15 
 

29 
 

29 
 

29 
Congo Nile 

  
6 

 
17 

 
16 

 
17 

Eastern Plat 
  

6 
 

23 
 

23 
 

23 
Eastern Sav 

  
23 

 
18 

 
17 

 
17 

Volcanic H 
  

3 
 

27 
 

28 
 

27 
Mean no. of trees 

        
Buberuka H 

  
0  

 
29 ± 1 

 
95 ± 2 

 
500 ± 30 

Central Plat 
  

0  
 

2 ± 0.1 
 

10 ± 0.3 
 

195 ± 14 
Congo Nile 

  
0  

 
3 ± 0.1 

 
59 ± 3.4 

 
528 ± 28 

Eastern Plat 
  

0  
 

7 ± 0.2 
 

26 ± 0.2 
 

355 ± 40 
Eastern Sav 

  
0  

 
2 ± 0.1 

 
7 ± 0.2 

 
143 ± 17 

Volcanic H 
  

0   
 

14 ± 0.5 
 

42 ± 1 
 

293 ± 26 
Total land size (ha) 

        
Buberuka H 

  
0.7 ± 0.06 

 
0.64 ± 0.06 

 
0.63 ± 0.05 

 
1.23 ± 0.09 

Central Plat 
  

0.7 ± 0.04 
 

0.32 ± 0.02 
 

0.38 ± 0.03 
 

0.77 ± 0.06 
Congo Nile 

  
0.86 ± 0.01 

 
0.53 ± 0.06 

 
0.29 ± 0.02 

 
0.61 ± 0.05 

Eastern Plat 
  

1.1 ± 0.01 
 

0.75 ± 0.04 
 

0.74 ± 0.06 
 

1.39 ± 0.04 
Eastern Sav 

  
0.66 ± 0.03 

 
0.59 ± 0.04 

 
0.92 ± 0.06 

 
1.23 ± 0.05 

Volcanic H 
  

0.72 ± 0.07 
 

0.38 ± 0.02 
 

0.46 ± 0.06 
 

0.60 ± 0.04 

 

Income from trees was higher for HAP than MAP and LAP in Central plateau, Congo Nile and 

Eastern plateau but its contribution to total household income was small compared with other 

sources of income (crop, livestock, and off-farm activities) in nearly all the agroecologies (Table 

2.3). HAP had also higher crop income in the Eastern savannah, Eastern plateau, Central plateau 

and Volcanic highland agroecologies. Income from livestock was higher for HAP compared to the 

other categories of agroforestry adoption in the Congo Nile agroecology, but not in the other 

agroecologies. Off-farm income did not significantly differ between the different categories of on 

farm tree numbers.  Figure 2.4 shows the contribution of four farm income sources to the total 

household income. Around 35% of farm households earn income from trees, about 25% of 
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households had only income from crops and livestock, while about 40% of households earned off-

farm income (Figure 2.4).  

Table 2.3 Agroforestry practice levels as a function income sources (USD/year). P values from 

Kruskal-Wallis tests are given to compare levels of adoption per income source. Standard errors 

are given after the signs ‘±’.  

Agroecolo
gy 

 Income 
source (USD)  NoAP 

 
LAP  MAP  HAP 

  
P 

Buberuka  
Higland 

 Tree 
 

0   7 ±1 
 

6 ±1 
 

40 ±5  ns 
 Crop 

 
396 ±28  155 ±18 

 
139 ±14 

 
293 ±29  ns 

 Livestock 
 

0   10 ±3 
 

22 ±5 
 

34 ±7  ns 
 Off farm 

 
0   90 ±10 

 
445 ±96 

 
109 ±18  ns 

Central 
Plateau 

 Tree 
 

0   5 ±0.1 
 

26 ±4 
 

195 ±20  0.004 
 Crop 

 
39 ±5  213 ±24 

 
320 ±34 

 
345 ±42  0.024 

 Livestock 
 

51 ±12  39 ±6 
 

25 ±4 
 

262 ±53  ns 
 Off farm 

 
52 ±5  216 ±38 

 
144 ±17 

 
135 ±24  ns 

Congo 
Nile 

 Tree 
 

0   11 ±3 
 

11 ±2 
 

190 ±24  0.001 
 Crop 

 
83 ±11  73 ±12 

 
135 ±15 

 
220 ±25  ns 

 Livestock 
 

0   68 ±14 
 

60 ±10 
 

152 ±16  0.04 
 Off farm 

 
134 ±32  131 ±10 

 
599 ±105 

 
159 ±23  ns 

Eastern 
Plateau 

 Tree 
 

0   5 ±1 
 

23 ±3 
 

128 ±9  <0.001 
 Crop 

 
147 ±17  124 ±13 

 
322 ±35 

 
651 ±54  0.033 

 Livestock 
 

0   10 ±1 
 

59 ±13 
 

83 ±10  ns 
 Off farm 

 
1940 ±437  430 ±60 

 
678 ±120 

 
556 ±131  ns 

Eastern 
Savannah 

 Tree 
 

0   0  
 

6 ±2 
 

2 ±0.1  ns 
 Crop 

 
295 ±20  298 ±26 

 
525 ±54 

 
1174 ±115  0.02 

 Livestock 
 

2 ±1  5 ±1 
 

32 ±8 
 

43 ±9  ns 
 Off farm 

 
1321 ±181  1362 ±234 

 
321 ±41 

 
609 ±99  ns 

Volcanic 
Highland 

 Tree 
 

0   1 ±0.1 
 

2 ±1 
 

43 ±6  ns 
 Crop 

 
349 ±25  143 ±10 

 
273 ±19 

 
341 ±17  0.03 

 Livestock 
 

199 ±48  69 ±8 
 

218 ±24 
 

191 ±24  ns 
 Off farm 

 
0 ±0  99 ±8 

 
170 ±17 

 
271 ±34  ns 

 

Asset ownership tended to be similar among the different categories of on-farm trees, except 

in the Congo Nile agroecology where communication and farm assets were significant different 

between HAP and the other categories. On average, HAP had assets worth USD 315, 78, 34, and 
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52 for domestic, communication, transport and farm assets respectively. MAP had assets worth 

USD 310, 61, 181, and 29 for domestic, communication, transport, and farm assets respectively 

(Table 2.4). The corresponding asset value in the LAP category were USD 267, 54, 177, and 19 

while they were USD 233, 60, 34, and 61 for the few farming households with no trees (NoAP) 

(Table 2.4). 

Table 2.4 Assets owned (USD) as a function of agroforestry practice categories. The P values from 

Kruskal-Wallis test are given to compare differences per asset type between categories of 

agroforestry practice. Standard errors are given after the signs ‘±’.  

Agroecology  Assets (USD) 
 

NoAP 
 

LAP 
 

MAP 
 

HAP  P 
Buberuka  
Highland 

 Domestic  0   97 ±27  1 ±0.1  78 ±16  ns 
 Communication  90 ±5  44 ±3  46 ±3  77 ±5  ns 
 Transport  0   10 ±2  10 ±2  17 ±2  ns 
 Farm  10 ±0  15 ±1  11 ±1  21 ±3  ns 

Central  
Plateau 

 Domestic  95 ±25  206 ±46  447 ±71  125 ±33  ns 
 Communication  44 ±3  48 ±2  58 ±3  54 ±2  ns 
 Transport  9 ±2  5 ±1  11 ±1  28 ±4  ns 
 Farm  196 ±35  19 ±1  64 ±14  116 ±19  ns 

Congo Nile  Domestic  112 ±29  358 ±66  72 ±13  353 ±59  ns 
 Communication  32 ±4  32 ±4  58 ±5  107 ±5  0.005 
 Transport  0   12 ±2  38 ±8  12 ±2  ns 
 Farm  6   14 ±1  12 ±1  17 ±1  0.028 

Eastern  
Plateau 

 Domestic  668 ±145  176 ±18  250 ±35  371 ±57  ns 
 Communication  48 ±4  63 ±3  71 ±4  68 ±3  ns 
 Transport  111 ±16  910 ±246  922 ±245  72 ±7  ns 
 Farm  8 ±0.1  18 ±1  20 ±1  48 ±4  ns 

Eastern  
Savannah 

 Domestic  291 ±42  334 ±68  473 ±66  409 ±63  ns 
 Communication  82 ±5  78 ±4  59 ±3  84 ±5  ns 
 Transport  46 ±2  67 ±6  31 ±2  63 ±7  ns 
 Farm  13 ±1  12 ±1  18 ±1  20 ±2  ns 

Volcanic  
Highland 

 Domestic  1 ±0.1  397 ±57  409 ±45  491 ±56  ns 
 Communication  29 ±5  58 ±3  67 ±3  89 ±4  ns 
 Transport  0   0   7 ±1  10 ±1  ns 
 Farm  7 ±0  30 ±3  28 ±2  45 ±3  ns 
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The proportion of households which reported to not have enough food throughout the year was 

smaller for HAP when compared with MAP and LAP with an annual average of 25, 39% and 47% 

respectively (Figure 2.2). The proportion of households with sufficient amounts and variety and 

insufficient amounts and variety of food was also less for HAP when compared with MAP and 

LAP. The April-May and October-November months showed an increased number of households 

with constraints in food access (Figure 2.2).  

In model 1, most variation in household food security was explained by the month of the year, 

and agroforestry categories followed by the farm size (Table 2.5). Larger farms were more food 

secure than smaller farms. The interaction of agroforestry categories and farm size was significant 

for all agroecologies except the Eastern plateau and for the overall dataset. This implies that the 

influence of adoption category on food security is mediated by farm size, positively in most 

agroecologies. In the 2nd GLM model, tree income was a significant factor in explaining 

differences in food security, although interactions between income categories and agroecologies 

indicate strong regional differences (Table 2.6). Tree income negatively affected food security in 

all regions, indicating that food insecure farmers are selling more wood products than food secure 

farmers. Income from crops was a positive factor in all regions, indicating that food secure farmers 

are selling more crop products than food insecure farmers.     
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Figure 2.2 Proportion of households with: (a) sufficient food and food variety; (b) sufficient food 

but insufficient variety; (c) insufficient food and variety as a function of month of the year for 

three agroforestry categories.  
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Table 2.5 Summary of the results of the structural GLM model 1 for explaining the effects of households’ 
number of trees, farm size, month of the year and agroecology factors on food security of farm households. 
Not significant effects (p<0.05) are shown in bold. 

Model  F Estimate P DF 
Model 1      
     Agroforestry categories 151  < 0.0001 2 
         MAP  -1  0.0009  
         LAP  -1.11 0.0002  
     Farm size 150 1.03 < 0.0001 1 
     Agroecology 25   0.0002 5 
     Months 187  < 0.0001 11 
     Agroforestry categories × Agroecology 95  < 0.0001 10 
     Agroforestry categories × Farm size 3  0.2757 2 
     Farm size × Agroecology  87  < 0.0001 1 
     MAP × Farm size  0.3 0.0483  
     LAP × Farm size  0.2 0.1045  
Eastern Savannah     
     Agroforestry categories 92  < 0.0001 2 
         MAP 94 -0.35 0.6305  
         LAP  -1.4 0.0602  
     Farm size 26 2.72 0.0039 1 
     Months 73  < 0.0001 11 
     Agroforestry categories × Farm size 16  0.0003 2 
Eastern Plateau     
     Agroforestry categories 64  < 0.0001 2 
         MAP  -1.37 < 0.0001  
         LAP  -1.69 < 0.0001  
     Farm size 0.63 -0.015 0.9114 1 
     Months 76  < 0.0001 11 
     Agroforestry categories × Farm size 0.84  0.6563 2 
Buberuka highland      
   Agroforestry categories 31  < 0.0001 2 
         MAP  -0.98 0.0135  
         LAP  -2.1 < 0.0001  
     Farm size 57 1.6 0.0237 1 
     Months 20  0.0444 11 
     Agroforestry categories × Farm size 24  < 0.0001 2 
Volcanic highland     
     Agroforestry categories 25  < 0.0001 2 
         MAP  -1 0.0005  
         LAP  -0.63 0.0028  
     Farm size 20 0.37  0.0861 1 
     Months 49  < 0.0001 11 
     Agroforestry categories × Farm size 37  < 0.0001 2 
Central plateau     
     Agroforestry categories 1.98  0.3704 2 
         MAP  -0.19 0.3615  
         LAP  -0.28 0.1712  
     Farm size 31.3 0.42 0.0039 1 
     Months 50.5  < 0.0001 11 
     Agroforestry categories × Farm size 6.1  0.0475 2 
Congo Nile      
     Agroforestry categories 31  < 0.0001 2 
         MAP  -2.3 < 0.0001  
         LAP  -1.3 0.0007  
     Farm size 86 1 0.0998 1 
     Months 38  < 0.0001 11 
     Agroforestry categories × Farm size 24  < 0.0001 2 
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Table 2.6 Summary of the results of the functional GLM model 2 for explaining the effects tree, 
crop, livestock and off-farm incomes and crop productivity and agroecology factors on food 
security of farm households. Not significant effects (p<0.05) are shown in bold. 

Model factors F Estimate P DF 
Model 2      
     Tree income 45 -0.01 < 0.0001 1 
     Crop income 270 0.007 < 0.0001 1 
     Livestock income 7.9 0.002 0.0049 1 
     Off-farm income 74 -0.0005 < 0.0001 1 
     Crop productivity 1.3 -0.003 0.2533 1 
     Tree income × Agroecology 3.9   0.5573 5 
     Crop income × Agroecology 119.6  < 0.0001 5 
     Livestock income × Agroecology 48  < 0.0001 5 
     Off-farm income × Agroecology 30  < 0.0001 5 
     Crop productivity × Agroecology 26.9  < 0.0001 5 
Eastern Savannah     
     Tree income 16 -0.5 < 0.0001 1 
     Crop income 73 0.002 < 0.0001 1 
     Livestock income 27 0.017 < 0.0001 1 
     Off-farm income 43 0.002 < 0.0001 1 
     Crop productivity 0.1 -0.001 0.7205 1 
Eastern Plateau     
     Tree income 0.7 -0.002 0.3813 1 
     Crop income 24 0.0002 < 0.0001 1 
     Livestock income 8 0.007 0.0042 1 
     Off-farm income 19 0.0003 < 0.0001 1 
     Crop productivity 1.3 0.0001 0.2472 1 
Buberuka highland      
     Tree income 4.5 -0.02 0.0339 1 
     Crop income 109 0.006 < 0.0001 1 
     Livestock income 0.029 0.007 0.8638 1 
     Off-farm income 4.9 -0.0001 0.0263 1 
     Crop productivity 3.9 -0.005 0.049 1 
Volcanic highland     
     Tree income 9.9 -0.001  0.0016 1 
     Crop income 36 0.0009 < 0.0001 1 
     Livestock income 0.04 -0.00001 0.8422 1 
     Off-farm income 12 0.0008 0.0005 1 
     Crop productivity 8.6 0.004 0.0032 1 
Central plateau     
     Tree income 19 -0.001 < 0.0001 1 
     Crop income 38 0.0009 < 0.0001 1 
     Livestock income 3.5 0.0006 0.0616 1 
     Off-farm income 6.7 -0.00007 0.0097 1 
     Crop productivity 2.8 -0.002 0.0929  
Congo Nile      
     Tree income 33 -0.002 < 0.0001 1 
     Crop income 73 0.005 < 0.0001 1 
     Livestock income 24 0.003 < 0.0001 1 
     Off-farm income 0.04 -0.001 0.8325 1 
     Crop productivity 11.4 -0.008 0.0007 1 
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Most farms were not food self-sufficient: only two out of three categories in the Eastern 

Savannah agroecology were self-sufficient (Figure 2.3). Coverage of the household caloric needs 

was significantly different between the categories of trees on-farm with more coverage coming 

from household income (58%) than own food production (35%) in general. The highest food 

insecurity was found in Congo Nile, Buberuka Highland and Volcanic highland where none the 

categories could cover all of their caloric needs (Figure 2.3). The Buberuka and Congo Nile 

agroecologies with more trees on farm also had smaller farm sizes (Table 2.2) and were more food 

insecure (Figure 2.3). When comparing farms in in the same agroecology, households in the HAP 

category were more food secure than other categories, in four out of the six agroecologies due to 

higher production of food on farm and in three out of six due to more purchased food (Figure 2.3).   
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Figure 2.3 Percentage coverage of energy needs of households in different categories of 

agroforestry practice and in different agroecologies of Rwanda.  
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Figure 2.4 Contribution of the four farm income sources to total income across farms in the survey. 

Farms without tree income were first sorted on off-farm income, followed by income from trees 

for all other farms.  

 

Farmers scored Eucalyptus spp. negatively (-0.5) regarding its interaction with crops across all 

agroecologies of Rwanda. Alnus acuminata, which thrives in the highlands, was the most 

positively ranked with a mean score of 0.77 followed by Calliandra calothyrsus (mean score of 
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0.59, but negatively ranked in the Volcanic highland), Grevillea robusta (overall mean score of 

0.42), and avocado (Persea americana) with a mean score of 0.17 (Table 2.7). 

Table 2.7 Means of farmers scores of tree-crop interaction. Negative scores signify perceived 

competition of trees with negative impacts on crops, and positive scores indicate a perceived 

facilitation of trees on crops. Score varies from -1 to +1. Standard errors are given after the sign 

‘±’. 

Tree 
species 

 Eastern 
Savannah 

Eastern 
Plateau 

Bubureka 
Highland 

Volcanic 
Highland 

Central  
Plateau 

Congo-Nile 
Crest 

Eucalyptus  -0.47 ±0.12 -0.27 ±0.16 -0.46 ±0.17 -0.77 ±0.09 -0.32 ±0.18 -0.42 ±0.18 
Alnus  - - 0.75 ±0.16 0.76 ±0.08 0.89 ±0.53 0.67 ±0.24 
Avocado  0 ±0.15 0.29 ±0.14 0.08 ±0.17 0 ±0.11 0.3 ±0.1 0.29 ±0.11 
Grevillea  0.2 ±0.11 0.67 ±0.12 0.43 ±0.3 0.12 ±0.24 0.54 ±0.11 0.26 ±0.17 
Calliandra  -0.14 ±0.34 0.67 ±0.17 0.91 ±0.11 -0.13 ±0.33 0.67 ±0.1 0.9 ±0.1 

 

2.4 Discussion 

2.4.1 Farm household food security increases with increasing number of on-farm trees but does 

not depend on tree income. 

Households in the HAP category were more food secure than those in MAP and LAP categories, 

mainly due to higher income from crops and livestock but with limited contribution of income 

from trees. Income from trees was minimal and not well related to the categories of number of 

trees on-farm in some agroecologies (Table 2.3), suggesting that trees on-farm are probably kept 

by farmers for other reasons (e.g. own consumption of firewood and fruits, and erosion control). 

Yet, for about 12% of farmers, tree products contribute more than 20% to their income, where 

food insecure farmers were more often selling tree products for income than food secure farmers. 

In this way trees may be seen as a “safety net” to meet the needs of the poorest households. In the 

eastern part of Rwanda (Eastern savannah, Eastern plateau and Central plateau) where households 

have relatively larger land, farmers in HAP had larger farms and a higher crop income than in 

MAP or LAP categories. Thus, despite the lowest income from trees as compared to the rest of the 

agroecologies, the households in the HAP category the eastern parts of Rwanda were wealthier 

(e.g. with larger farms and more overall income) and therefore more food secure. In the western 

part of the country which has a very hilly topography (Congo Nile Crest, Buberuka highland and 
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volcanic highland), farmers have small farms and grow more on-farm trees, but most households 

were food insecure. However, within each agroecology in this region, households in HAP category 

were also more food secure than those in MAP and LAP mainly due to more income from crops 

and livestock as a result of the relatively larger farm sizes. These households in HAP had a higher 

overall income than the MAP and LAP categories, suggesting that they could have absorbed the 

costs of trees more than other categories, i.e. expenses of tree planting and the potential detrimental 

effects on trees on crop yields. Though the income contribution from trees was generally small in 

absolute terms, farmers in agroecologies of the western part of the country seemed to gain a 

substantial proportion of their income from trees in contrast to their counterparts in the East. This 

may reflect the value of wood products and the hypothesized importance of the ability to sell wood 

for the food security of farm households (Ndayambaje et al. 2014) .  

 Due to different biophysical (e.g. topography, rainfall, temperature and soil types) and socio-

economic conditions in the agroecologies, farm size and food security increased from the west to 

the east of the country while the number of trees per household and tree cover decreased, as also 

reported by (Franchis 2012). However, within particular agroecology, household’s food security 

increased with increasing number of trees on-farm but not with tree income. In each agroecology, 

households in HAP category had usually higher crop and livestock income than the rest of the 

categories, suggesting that the improved food security of households with higher number of on-

farm trees is associated to their higher overall farm income while the contribution of tree income 

was small. Coulibaly et al. (2017) recently found that agroforestry adoption increased income from 

both crops and tree products and therefore positively impacted household food security in Malawi. 

Our study suggests that trees are mostly used on-farm and a higher income from crops and a 

substantial proportion of income from trees were found in households that were relatively 

wealthier with larger farms. There is a need for more detailed studies to assess the biophysical and 

socio-economic contexts where agroforestry may increase households’ income and therefore food 

security since under other circumstances agroforestry may reduce food self-sufficiency.  

2.4.2 In the same agroecology context, wealthier households adopt on-farm trees.  

This study found no relationship between asset endowment and agroforestry practice 

categories. However, farm size, crop and livestock income – which are more common wealth 

indicator for farm households in Rwanda - were related to the number of on-farm trees in most of 
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the agroecologies and positively increased the household food security (Table 2.6). Within the 

same agroecology, food security increased with increasing farm size and households with more 

trees were more food secure than those with less.  The primary goal for farmers in the same 

agroecology context is to produce food for households and therefore the privilege of growing more 

trees on-farm (which compete with crops and might reduce yields) belongs to the ones with 

relatively more land. In the same agroecology, households with more income from trees had also 

more income from crops and livestock in contrast to what was observed in Ethiopia where income 

from trees increased at the expense of income from crops (Sida et al. 2017). In general, higher 

farm size, crop and livestock income could have been the precondition for practicing agroforestry. 

This could suggest that poor farmers need assistance to be able to adopt – e.g. access quality tree 

seedlings- (Kakuru et al. 2014). Besides, on-farm trees seem profitable when farmers integrate 

crops and livestock since the income from trees increased with the increase of crop and livestock 

income (Bucagu 2013; Beedy et al. 2013).  

2.4.3 Farmers’ perceptions of tree crop interactions influence agroforestry practice levels 

across agroecologies. 

 The perception of tree-crop interactions by farmers in the Eastern province was more negative 

than in the other agroecologies, probably due to stronger competition for water between trees and 

crops in this semi-arid agroecology. As a result, the number of trees managed by households were 

the smallest in the Eastern savannah despite the largest farm size among all other agroecologies, 

and most of the households with no single tree were also found in this agroecology. Farmers in the 

Volcanic highland agroecology tended to perceive tree-crop interactions as competitive, with the 

exception on A. acuminata which they ranked as highly compatible with crop farming. A. 

acuminata is most preferred in this area since it provides stakes for climbing beans (Bucagu 2013), 

fixes nitrogen, and is less competitive with crops especially under the intense pruning regime 

applied by farmers in this region (Peden et al. 1993; Ndayambaje and Mohren 2011).  

 Eucalyptus was perceived to have a strong negative interaction with crops in all the 

agroecologies of Rwanda, explaining why many farmers prefer growing this genus in woodlots 

rather than integrating it in cropped fields (Mugunga 2016). Eucalyptus – which is frequently 

grown in woodlots in Congo Nile and Central plateau - contributed to increased household income 

in this study, agreeing with observations from Ethiopia and Kenya where Eucalyptus trees grown 
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on-farm and in woodlots were more profitable than sole crops (Jagger and Pender 2003; Kidanu 

et al. 2005; Peralta and Swinton 2009).  

2.5 Conclusion 

The present study investigated whether farmers with more trees on their farm were more food 

secure than those with less trees on their farm in the six agroecological zones of Rwanda. Large 

differences between agroecological zones were observed for both food self-sufficiency and food 

security. Households with larger farms were more food secure than those with smaller farms, while 

food security was reduced by presence of more trees on small farms but also on larger farms. 

However, the proportion of income that came from tree products was more than 20% for about 

12% of the farmers, with food insecure farm households relying more on income from tree 

products than food secure farm households. In most cases, more trees on farm did not result in  

higher tree income, suggesting that trees on-farm are mostly used to meet the households demand 

in firewood, fruits and other tree products. Better coverage of caloric needs was found in the 

category of households with more trees mainly through food purchase as they were wealthier (e.g. 

with larger farms and higher income) than the rest. The lack of significant difference in assets 

endowment between the agroforestry categories while farm size and income were different suggest 

that assets are probably not the best indicator of wealth for Rwandan farm households. Farmers in 

the Eastern savannah and Volcanic highlands reported negative effects of on-farm trees on crops 

which could explain why they have fewer trees on their farms. Introducing agroforestry 

technologies to these farmers will not be effective, unless they change their perception on tree-

crop interaction. There is therefore, a need to investigate farmers’ perceptions on tree crop 

interactions to better understand if increasing the tree density would be of benefit. Our results 

suggests that within the same agroecology, farm households with more land most probably grow 

trees on-farm to increase their self-sufficiency in fuelwood, fruits and other tree products rather 

than growing them for markets.   
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Chapter 3 
 

 

Disentangling the positive and negative effects of trees on maize 

performance in smallholdings of Northern Rwanda 
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Abstract 

In the sub-humid parts of East Africa, high population density and pressure on land have led 

farmers to integrate multipurpose trees on farm. Although mixing trees and crops generates 

numerous benefits (e.g., fuelwood, timber), it often reduces crop yields. Whereas the effects of 

mature trees on crops are well studied in semi-arid parklands, there are only few studies for the 

sub-humid environment. The effects of mature Alnus acuminata (Kunth) and Markhamia lutea 

(Seem.) on crops were studied on-farm for four seasons in the sub-humid environment of northern 

Rwanda. Five sampling points for A. acuminata and M. lutea were: (i) 1 m from tree trunk without 

maize, (ii) 3 m from tree trunk without maize, (iii) 1 m from tree trunk with maize, (iv) 3 m from 

tree trunk with maize and (v) sole maize away from any tree. Nutrient availability and uptake, soil 

water, air temperature, solar radiation, crop growth and yields were measured. The APSIM-maize 

module was used to assess the sensitivity of maize yields to changes in these variables. Nutrients 

availability was higher under A. acuminata compared with M. lutea, because of higher litter fall 

but maize nutrient uptake increased only under A. acuminata 3 m from tree trunk during a wetter 

season. None of tree species affected water availability for maize in the topsoil. Photosynthetically 

active radiation (PAR), total solar radiation and day air temperature were reduced by both tree 

species. Maize crop at 1 m and 3 m from the tree trunk was shorter in height but had the same 

number and size of leaves when compared to sole maize plots. Crop yield was generally reduced 

more at 1 m than at 3 m from the tree trunk. A positive interaction between A. acuminata and 

maize was only apparent at 3 m from the tree in one of the four seasons following higher litter fall, 

suggesting that the negative effect of shade was offset by extra N input during that season. In a 

modelled scenario under low N fertilization, larger N input from trees could compensate for yield 

loss caused by reduction in radiation and temperature in about 60% of the seasons. Our findings 

suggest that adequate pruning and high leaf litter recycling can reduce the negative effect of shade 

in low intensity farming systems.  

3.1 Introduction 

Trees play a crucial role in rural Africa providing products – such as firewood, timber, fodder, 

and fruits (Ndayambaje et al., 2013) – as well as services – such as shade, erosion control and 

maintenance of soil fertility (Buresh, 1998; Sileshi et al., 2014). The demand for tree products and 

the expansion of agricultural land in Africa has led to deforestation (Barbier, 2004) and shortage of 
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tree products in densely populated countries. In the highlands of East Africa, the dense population 

has cleared forests leading farmers to integrate trees on farms of ever decreasing size (Allen and 

Barnes, 1985; Ndayambaje and Mohren, 2011). The pressure on land availability also led farmers to 

cultivate steeply sloping areas, sometimes with grades exceeding 60%; this leads to risks of severe 

soil erosion which could be alleviated by trees. As a result, tree density decreased in forests, but 

increased on farms (Cooper and Krah, 1996; Garrity, 2012). Thus, improving knowledge on the way 

on-farm tree species affect crop productivity and designing solutions to overcome the challenges of 

below and above ground competition is highly relevant (García-Barrios and Ong, 2004).  

When trees and crops are mixed, tree competition for light, nutrients and water reduces crop 

yields, while rings of soil fertility around trees may be observed when fields are nutrient deficient 

(Buresh and Tian, 1997; Kho, 2000; Rao et al., 1997). Hundreds of different nitrogen fixing 

leguminous trees are used in agroforestry (Giller, 2001) and their N2-fixing ability can significantly 

reduce competition for this resource (García-Barrios and Ong, 2004). In East Africa, the effect of 

several different tree species such as Grevillea robusta (Lott et al., 2000) and Eucalyptus spp. 

(Mugunga, 2016; Tadele and Teketay, 2014) on crop growth has been studied. However, there is 

limited information on the effects on crops grown under Alnus acuminata (Kunth) (Muthuri et al. 

2005) or Markhamia lutea (Seem.). These two species are often present in agroforestry systems in 

East Africa (Okorio et al., 1994), and are dominant in the humid highlands of Rwanda (Mukuralinda 

et al., 2016).  

A. acuminata, a nitrogen fixing tree (Carú et al., 2000) can have beneficial effects on crop yield 

(Muthuri et al., 20005; Okorio et al., 1994; Peden et al., 1993) and soil water availability for crops 

(Siriri et al., 2013). On the other hand, M. lutea was found to reduce crop yield (Okorio et al., 1994) 

although it did not strongly compete for soil water due to its slow growth (Radersma and Ong, 2004; 

Yamoah et al., 1989). Yet, Wajja-Musukwe et al. (2008) found that A. acuminata reduced yield more 

than M. lutea despite the latter having more roots in the surface soil layers. It is commonly known 

that the competitive effects of trees tend to increase as trees mature and causing a concomitant 

decrease in the yields of the associated crops (Srinivasan et al., 1990). Nevertheless, these studies 

investigated the effects of only young trees (up to 3 years old) on crops. Although the effects of 

mature trees on crops are well studied in arid and semi-arid parklands (Ong and Leakey, 1999), 
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there are no equivalent studies in sub-humid environments where A. acuminata and M. lutea are 

commonly found (Okorio, 2000). 

This study aims to unravel the processes involved in tree-crop interactions in sub-humid 

environment to inform management and produce recommendations that minimize negative effects 

and maximize positive effects. Our specific objectives were to quantify the effects of mature A. 

acuminata and M. lutea on microclimate and resources available to maize crops grown at varying 

distances from the tree trunk, and to assess how these effects interact. It was hypothesized that the 

improvement of soil fertility by the trees could compensate the negative effects of shade in these 

farming systems where little mineral fertilizer is used.  

 

3.2 Material and Methods  

3.2.1 Study area 

The study area is located in Rubavu district, Nyakiliba sector, Gikombe cell, Kitarindwa 

village in North West of Rwanda in the Birunga agricultural zone, between 1° 40' 27'' and 1° 41' 

08'' latitude South, and 29° 21' 28'' and 29° 21' 10'' longitude East. The elevation ranges from 1,941 

to 2,024 m above sea level. The area receives annual rainfall varying between 1,300 and 1,600 mm 

(Verdoodt and Ranst, 2003), distributed over two cropping seasons: the “long rains” from mid-

February to mid-July (referred to as season B) and a “short rains” from September to January 

(referred to as season A), with largest amounts of precipitation in the months of April and 

November. The soils in this area are typically Mollic Andosols (Verdoodt and Ranst, 2003) which 

are formed on volcanic deposits and have high organic matter content. Selected sites had soil depth 

ranging from 100 to 150 cm and a gentle slope ranging from 2 to 6% at the bottom of Gishwati 

hills. 

3.2.2 Experimental design 

A total of six experimental sites – three for A. acuminata and three for M. lutea – were selected 

in farmers’ fields, based on the presence of two quasi identical trees and an open (treeless) field 

nearby. All fields were previously cropped with climbing beans and fertilized with manure, except 

for one field with A. acuminata and one field with M. lutea and maize which were intercropped 

with cabbages and onions and fertilized with inorganic fertilizers.  



35 

At each experimental site three plots were established: a plot with tree and maize, a plot with 

sole maize, and a plot with sole tree. Each plot was 10 m by 10 m in size. In the tree-maize plot, 

maize phenology, morphology, biomass and yield were recorded at distances of 1 m and 3 m from 

the trunk. The same measurements were done in the sole maize plot, located at least 40 m away 

from any tree. Thus, the experiment included the following five sampling points for A. acuminata 

(Al) and M. lutea (Ma):  

 Al-1m and Ma-1m: 1 m from the tree trunk of sole trees 

 Al-3m and Ma-3m: 3 m from the tree trunk of sole trees 

 AlM-1m and MaM-1m: 1 m from the tree trunk in plots of trees associated with maize 

 AlM-3m and MaM-3m: 3 m from the tree trunk in plots of trees associated with maize 

 AlM-40m and MaM-40m: sole maize, at least 40 m away from any tree 

The experiment ran from September 2013 to July 2015, and included two short rainy seasons 

(2014 A, 2015 A) and two long rainy seasons (2014 B, 2015 B). The maize variety PAN691 was 

used at a spacing of 0.43 m within rows and 0.9 m between rows with two plants per hill and 

planted on raised beds. Recommended fertilizer rates were used: 100 kg ha-1 of diammonium 

phosphate applied as basal fertilizer at planting and 100 kg ha-1 of urea applied as topdressing 5 

weeks after emergence. Trees were managed to produce single stems and lower branches were 

pruned annually to maintain a canopy of 3.5 m above the ground, according to common local 

practices (Figure 3.1). 
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Figure 3.1 Experimental design with treatments in 10 by 10 m plots and illustration of concentric 

measurement at 1, 3 and 40 m distance from the tree trunk. 

3.2.3 Measurements  

For each plot, composite soil samples were systematically taken at the on-set of the experiment 

in 12 quadrats starting from the centre of the plot at three depths (0-20, 20-40, and 40-60 cm). 

Each plot sample was a combination of 12 cores, including cores taken at 1 m, 2 m and 3 m from 

the tree trunk in 4 directions from the tree. Cores from the same depth in the plot were then pooled 

together, resulting in three samples representing three depths per plot. Soil samples were air dried 

at 40 °C and analysed in the laboratory. Soil pH was measured in a 2.5:1 water to soil suspension 

(Rhoades, 1982), soil organic carbon (SOC) was measured using the Walkley and Black (1934) 

method. Total N was determined by semi-micro Kjeldahl digestion and distillation. Available P 

was estimated using molybdenum blue method on a Bray-P extract (Bray and Kurtz, 1945). 

Particle size distribution was determined by the hydrometer method (Bouyoucos, 1962). 

Daily rainfall, air temperature and total incoming solar radiation were measured using an 

automatic weather station (Vantage Pro2TM, Davis Instruments Corp, USA) located within 1 km 

of all plots. Air temperature under tree canopy was recorded for AlM and MaM plots at 1 m 

distance from the trunk and at 40 m with four automated temperature loggers (Tinytag), mounted 

on 1 m poles and roofed with a plastic tile to avoid sensor heating by direct sunlight. The logger 

recorded air temperature every 30 minutes from the onset of the trial up to the last harvest.  

Sole Tree  Tree-maize Sole Maize 

ON-FARM TRIAL 

: Access tube for soil 
probe : Temperature logger 

Sole 
Maize 40 m 

3m 

1m 
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Soil water was measured using a dielectric method (microwave probe). A profile probe (PR2-

UM-3.0, Delta-T Devices, Cambridge, UK) was used to measure the soil water content at depths 

of 10, 20, 30, 40, 60 and 100 cm from the soil surface within pre-installed access tubes, at a 

temporal interval of about 15 days throughout the maize growing seasons. Two access tubes of 1 

m depth were permanently installed at 1 m and 3 m from tree trunk of each plot containing a tree. 

A single access tube was permanently installed at the centre of the sole maize plots.  

Incident photosynthetically active radiation (PAR) was measured in all plots including maize 

at anthesis in the 2015 A season, using a Sunfleck Ceptometer (Delta-T Devices, Cambridge, UK). 

PAR was measured in transects spaced by 0.5 m starting from the tree trunk in east, west, north 

and south directions. PAR measurements took place on sunny days around noon, above the maize 

canopy under and away from tree canopy. Since the Birunga agricultural zone is usually very 

cloudy throughout the season, diurnal solar radiation was also recorded every 5 minutes for three 

days at 1 m and 40 m from the trunk in AlM and MaM plots with radiation sensors placed at 1.5 

m above the ground and connected to a logger (Vantage Pro2TM, Davis Instruments Corp, USA).  

Litter was collected in two litter boxes (0.81 m2 each) at a distance of 1 m and 3 m from A. 

acuminata and M. lutea trunks. Litter was collected on a weekly basis and air dried before being 

weighted. A subsample was oven-dried at 60ºC until constant weight to determine dry matter 

content. Total dry weight of litter per tree was determined for each season by summing up all in-

season dry litter that was collected. Subsamples of 500 g of the litter collected in the seasons 2014 

B and 2015 A from A. acuminata and M. lutea were collected and milled for laboratory analyses. 

Total nitrogen and phosphorus were analysed in a single digestion of dried plant sample with 

hydrogen peroxide, sulphuric acid, selenium and salicylic acid. Total nitrogen was then determined 

by distillation and titration and total phosphorus by the molybdenum blue method (Okalebo et al., 

1993; Thomas et al., 1967).  

Weekly non-destructive phenological measurements were made from 30 days after sowing 

until the end of the vegetative growth stage. Two plants for AlM-1m, AlM-3m, MaM-1m and 

MaM-3m sampling locations were labelled to enable repeated measurements, providing a total of 

4 plants per plot with a tree. In the AlM-40m and MaM-40m plots, four maize plants were labelled 

at the centre of each plot. The phenological characteristics recorded for maize plants included the 

number of visible leaves, the number of fully expanded leaves and the sheath length of fully 
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expanded leaves. The duration of the vegetative, reproductive and grain-filling phases, was 

determined when 50% of the plants in the plot reached that stage. At harvest, fresh and dry weights 

of maize residues and grains were measured. Eight plants - covering east, west, north and south 

sides of the trees - were sampled in AlM-1m, AlM-3m, MaM-1m and MaM-3m. Similarly, eight 

plants were sampled from AlM-40m and MaM-40 m in four directions starting from the centre of 

the plots. Means of grain, residues and total aboveground biomass per plant (kg/plant) were 

converted to ton per hectare by multiplication with the number of counted plants (plants per plot 

of 100 m2) for each plot. The number of plants per plot was determined before cutting the plants 

at ground level. Subsamples from maize grain and residues were taken from the 2014 B and 2015 

A harvests and were analysed for total N and P content in a single digestion as described above for 

litter analysis (Okalebo et al., 1993; Thomas et al., 1967).  

3.2.4 Statistical analysis 

Tree characteristic parameters were tested for normality using Shapiro-Wilk tests. Means of 

normally distributed variables, including tree height, diameter ad breast height (DBH), diameter 

at stump height (DSH) and canopy radius means were compared through analysed with an 

Analysis of Variance (ANOVA) using Fisher’s F-test. For variables that were not normally 

distributed – including tree age and distance to the lowest branch from ground - median values 

were compared using the non-parametric Kruskal-Wallis test.  

The variability of nutrient uptake, number of visible leaves, plant height, and yield was 

analysed using linear mixed effect models. The fixed effects in the model included the distance 

from tree and seasons, while random effects included were directions from the plot centre nested 

within distances from the tree per plot centre and distances nested within sites. ANOVA for the 

model gave differences between groups, i.e. distances from tree, season and their interaction. For 

this described model and all the following models, pairwise comparisons between distances from 

trees for each season were done using Tukey’s test in the PredictMeans R package (Welham et al., 

2004). 

Soil water data were also analysed using a linear mixed model in which fixed effects were 

treatments (sole tree, sole maize and tree with maize and seasons). Random effects were Treatment 

nested within Site. Pairwise comparison for soil water was performed and the average least 

significant difference (LSD) is presented to allow comparison between treatments. 
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The variability in total solar radiation was analysed in a mixed model with tree species as fixed 

effect and logging time as a random effect. The variability in photosynthetically active radiation 

(PAR) was also analysed with a mixed model with tree species and distance from tree considered 

as fixed factors while directions nested in sites were considered as random effects. Pairwise 

comparisons were done and the average least significant difference (LSD) value was presented to 

allow comparison between tree species. 

Air temperature data were divided into day (from 6:00 am to 5:30 pm) and night (from 5:30 

pm to 6:00 am) for each plot. Cumulative frequency of temperature differences between under 

trees and sole maize plots for day and night-time were calculated for Alnus and Markhamia. A 

linear mixed model, with Treatment as fixed effect and logging date and time as random effects, 

was used to analyse differences in air temperature and pairwise comparisons between treatments 

was again established. R software (R Development Core Team, 2014) was used for all statistical 

analyses.  

3.2.5 Sensitivity analysis using APSIM maize module 

APSIM version 7.8.2 was calibrated using data from AlM-40m and MaM-40m. Measured 

values of soil water contents were used to set soil drainage parameters - lower and upper drained 

limits - and measured soil pH and organic carbon content values were imputed. The phenology 

and morphology parameters for variety SC501 were selected from APSIM-Maize and adapted to 

best match the PAN691 cultivar that was used in the experiment. The parameter determining the 

cumulative temperature until the end of the juvenile period was set to 200 ºC days to better match 

the observed phenology. The maximum number of grain kernels per ear was also reduced to 450 

to match the potential to the observed number of grains for the variety PAN691. After calibration, 

model predicted (P) yields and soil water estimates were compared to observed (O) values of 

seasonal yield (2014 A, 2014 B, 2015 A, and 2015 B) and soil water contents at 10, 20, 60, and 

100 cm depth during 7 times in 2015 A and 8 times in 2015 B. The Nash-Sutcliffe modelling 

efficiency (NSE), and the Root Mean Square Error to Standard Deviation Ratio (RSR) were used 

to evaluate model performance.  

NSE = 1 −
∑ (𝑃𝑃𝑃𝑃 − 𝑂𝑂𝑃𝑃)2𝑛𝑛

𝑖𝑖=1
∑ (𝑂𝑂𝑃𝑃 − �̅�𝑂)2𝑛𝑛

𝑖𝑖=1
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RSR =
√∑ (𝑂𝑂𝑂𝑂 − 𝑃𝑃𝑂𝑂)2𝑛𝑛

𝑖𝑖=1

√∑ (𝑂𝑂𝑂𝑂 − �̅�𝑂)2𝑛𝑛
𝑖𝑖=1

 

Where NSE represents the Nash-Sutcliffe modelling efficiency, RSR is the Root Mean Square 

Error to Standard Deviation Ratio, Pi is the ith observation of maize grain yield, Oi is the ith 

simulated value of maize grain yield, Ō is the mean of observed maize grain yield, and n is the 

total number of observations.  

Based on criteria from Moriasi et al. (2007), model calibration resulted was ‘satisfactory’ for 

yield (NSE of 0.63 and RSR of 0.61; Fig. S1) and ‘good’ for soil water (NSE of 0.72 and RSR of 

0.52; Fig. S2). The calibrated model was subsequently used to study scenarios with reduced daily 

radiation (-10%) and lowered maximum temperature (-2 ºC), combined with nitrogen inputs of 64 

and 114 kg N ha-1. This scenario reflects a situation of recommended rates of N (64 kg N ha-1) 

without trees and a situation under a tree with reduced radiation and 50 kg N ha-1 extra N input 

from e.g. A. acuminata litter. The situation described above occurred in one of 4 years in this study. 

Graphs showing scenario with average N inputs from tree litter and the scenario with higher 

fertilization system of 150 kg N ha-1 without trees and situation with reduced radiation and 

temperature and 200 kg N ha-1 - including an extra 50 kg N ha-1 from tree litter - are presented in 

the supplemental materials (Fig. S3). Simulations included the years 2006 to 2016 - with two 

seasons in each year - for which complete weather data was available. Simulations for three 

seasons did not produce any yield due to drought, therefore only 19 simulated yields are presented 

for each scenario. Cumulative distribution functions were utilized to get insights into how yields 

varied in different microclimate and N inputs scenarios.  

 

3.3 Results  

3.3.1 Local climate and tree dimensions  

Unusually low (286 mm) and high (758 mm) seasonal rainfalls were experienced in seasons B 

as compared with the long-term average of 538 mm. Seasons A received average (664 mm and 

420 mm) rainfall as compared to the long-term seasonal average of 692 mm (Figure 3.2). Season 



41 

A tended to have higher radiation than season B which was also observed in the long-term averages 

where season A received a total of 434 kW m-2 while season B received 390 kW m-2 (Figure 3.2).  

 

Figure 3.2 Cumulated daily rainfall (a) and daily total radiation (b) during maize growing period. 

VE–V8: from emergence to 8th leaf stage (seedling stage); V9–V18: from 9th leaf stage to 18th leaf 

stage (jointing stage); VT–R1: from tasselling to silking; R2–R6: from blister stage to 

physiological maturity.   

The A. acuminata trees were taller and had larger diameter at breast height (DBH), diameter 

at stump height (DSH) and canopy radius than M. lutea trees although the latter were reported by 

farmers to be much older. The lowest branch of M. lutea trees was at a similar height from the 

ground as with A. acuminata (Table 3.1).  
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Table 3.1 Characteristics of A. acuminata and M. lutea trees used in the experiment at the on-

set of the trial (beginning of season 2014 A). Standard deviations are given after the signs ‘±’ 

and P values are given for means comparison between tree species.   

Measurement   A. acuminata   M. lutea   P-value 

Height (m)  9 ± 1.3  7 ± 0.7  0.0002 

Diameter at breast height (DBH, cm)  31 ± 2.8  19 ± 3.7  <0.0001 

Diameter at stump height (DSH, cm)  46 ± 6.3  29 ± 8.1  <0.0001 

Canopy radius (m)  3.3 ± 0.3 2.3 ± 0.5  <0.0001 

Distance of lowest branches from 

ground (m)* 
 3.4 ± 0.5  3.7 ± 0.8 

 0.2279 

Tree age by farmer recall (years)*   7 ± 0.0   22 ± 5.7  <0.0001 

* data analysed with a non-parametric Kruskal-Wallis test.  

 

3.3.2 Nutrient availability and uptake  

Table 3.2 describes the soil properties for the different treatments for A. acuminata and M. 

lutea. The soils at the experimental site had a favourable pH, and good soil organic carbon but 

medium to low contents of phosphorus and nitrogen. Soil texture shows more sand (or volcanic 

ash) which could favour nutrient leaching. Results of soil analysis indicate that samples from the 

three depths were not significantly different for all the soil characteristics, reflecting the soil 

mixing effect of the bed-furrow tillage practice used by farmers in the area, where raised beds that 

are formed every season attain 0.7 m in height. Soil characteristics from different treatments were 

not different with the exception of pH in the A. acuminata system and for phosphorus in the M. 

lutea system which could have resulted from the different fertilization history of the fields. Indeed, 

one site of sole A. acuminata and one site of M. lutea and maize were located in the farmer’s 

cooperative land and were cropped with vegetables in rotation with potatoes under heavy 

fertilization rates of around 300 kg of DAP ha-1. The residual nutrients from these previous 

fertilizers could be the source of high P measured in these plots at the start of the experiment. 
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Table 3.2 Soil characteristics in the study area at the beginning of the experiment. Data are means of 

three composite samples per depth and for three depths (0-20 cm; 20-40 cm and 40-60 cm). Values at 

the three sampling depths were not significantly different for any of the soil characteristics and these 

values were thus averaged. Standard deviations are given after the sign ‘±’ and reflect the variation 

between sites  

Treatments   
pH 

(H2O) 
  

SOC  

(%) 
  

Total N 

(%) 
  

Avail. P 

(ppm) 
  

Clay 

 (%) 
  

Silt  

(%) 
  

Sand 

(%) 

A. acuminata  
             

AlM-40m  6.2 ±0.1  2.3 ±0.3  0.4 ±0.1  17 ±19.1  11 ±2  25 ±4  65 ±4 

Al(1&3m)  6.0 ±0.1  2.1 ±0.5  0.4 ±0.1  28.7 ±21.2  12 ±3  24 ±3  64 ±4 

AlM(1&3m) 6.1 ±0.1  2.3 ±0.2  0.4 ±0.1  18.1 ±18.7  11 ±2  23 ±3  66 ±3 

P  <0.0001  0.621  0.383  0.1255  0.0397  0.5262  0.3503 

M. lutea 
             

Ma-40m  6.0 ±0.1  3.1 ±0.5  0.5 ±0.2  11.8 ±8.6  9 ±2  22 ±6  69 ±7 

Ma(1&3m)  6.0 ±0.1  3.2 ±0.5  0.6 ±0.2  10.1 ±3.4  8 ±1  22 ±6  69 ±6 

MaM(1&3m) 6.0 ±0.2  3.2 ±0.3  0.6 ±0.1  32.6 ±10.7  9 ±1  21 ±6  70 ±7 

P   0.4961   0.5351   0.1268   <0.0001   0.08   0.9341   0.9499 

 

The long dry spell period during the season 2014 B induced a higher litter fall especially for 

A. acuminata, resulting in a significantly larger input of nutrients during that season: around 50 kg 

of N and 5.6 kg of P per hectare (Table 3.3). On the other hand, M. lutea, a species with low 

primary productivity added less nutrients in litter than A. acuminata and its input was not 

significantly different among different seasons. 
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Table 3.3 Dry matter (DM), and N and P amounts in per ha equivalents (± standard deviations) 

from tree litter fall collected in 0.81 m2 boxes at 1 m and 3 m from the trunk of the tree  

Season  A. acuminata litter   M. lutea litter   

    
DM 

(t ha-1) 

Total N 

(kg ha-1) 

Total P (kg 

ha-1) 
 

DM 

(t ha-1) 

Total N  

(kg ha-1) 

Total P  

(kg ha-1) 

2014 A  0.53 ±0.2 10.9 ±3 1.22 ±0.3  0.24 ±0.0 4.2 ±0.4 1.12 ±0.1 

2014 B  2.43 ±0.7 49.8 ±14 5.58 ±1.6  0.39 ±0.1 7.0 ±0.9 1.86 ±0.2 

2015 A  0.87 ±0.0 17.9 ±0 2.01 ±0.0  0.35 ±0.1 6.3 ±2.0 1.66 ±0.5 

2015 B  0.52 ±0.1 10.6 ±3 1.18 ±0.3  0.23 ±0.0 4.1 ±0.3 1.09 ±0.1 

LSD   1.03 * 21.1 * 2.36 *  0.17 3.1 0.83 

*: Means for seasons are significantly different at p (0.05)  

In both season 2014 B (relatively dry) and 2015 A (relatively wet), maize at 3 m from A. 

acuminata (AlM-3m) accumulated more N than at 1 m (AlM-1m) and 40 m (AlM-40m) from tree 

trunk while there was no significant difference in maize nitrogen uptake for maize at different 

distances from M. lutea (Table 3.4). P uptake was higher in AlM-3m than in AlM-1m and AlM-

40m in the relatively wet season but P uptake of maize in AlM-40m was higher than AlM-1m but 

not different to AlM-3m during the relatively dry season. There was no significant difference in P 

uptake by maize at different distances from M. lutea. The P and N uptake were significantly greater 

during the relatively wet season at all distances (Table 3.4). 
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Table 3.4 Amounts of nutrients in above-ground plant organs of maize growing at 1, 3 and 40 m 

from the trunks of A. acuminata (AlM) and M. lutea (MaM) tree species. Means followed by the 

same letter in the same season do not differ significantly at α= 0.05. 

 

3.3.3 Soil water 

Soil water contents and changes in soil water between 10 and 40 cm (height of raised bed) 

were similar and these depths were therefore grouped and are referred to as ‘topsoil’. Similarly, 

soil water contents and changes in soil water were similar between 40 and 100 cm (below furrow 

height) and these depths were therefore grouped and are referred to as ‘subsoil’. Plots with maize 

under A. acuminata had more soil water than plots with sole A. acuminata (average of Al-1m & 

Al-3m) but was not significantly different to sole maize (AlM-40m) in the top soil while there was 

no significant difference between the treatments in the subsoil (Figure 3.3).  

Season  

Above ground N uptake (kg ha-1) 
 

Above ground P uptake (kg ha-1) 

1 m 3 m 40 m   1 m 3 m 40 m 

 A. acuminata 

2014 B 61a  

±18 

83b   

±18 

53c   

±8 
 

18a 

±7 

25b 

±6 

28b 

±3 

2015 A 83a   

±31 

149b   

±52 

109a 

±24 
  

17a 

±2 

32b   

±7 

21c 

±2 

Season (p) <.0001  0.8531 

Distance (p)  0.0117  0.0295 

SeasonXdistance (p)  0.0202  <.0001 

 
M. lutea 

2014 B 38a   

±20 

55b   

±25 

51b 

±14 
 

10a 

±6 

15b 

±7 

16b   

±4 

2015 A 62a   

±41 

81a   

±50 

70a 

±24 
 

15a 

±8 

20b 

±9 

26b 

±14 

Season (p) 0.0008  0.0003 

Distance (p) 0.1965  0.1522 

Season×distance (p) 0.8851  0.5016 
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Plots with maize under M. lutea had less soil water than plots with sole M. lutea but no 

difference was found with sole maize in the top soil throughout the study period. There was no 

difference in the sub-soil water between treatments (Figure 3.3). 

 

Figure 3.3 Soil water in the top soil (0-40 cm) and sub-soil (40-100 cm) in sole maize plots (AlM-

40m and MaM-40m), sole tree plots (average of Al-1m & Al-3m), and tree-maize plots (average 

of AlM-1 and AlM-3m; average of MaM-1m and MaM-3m) for four cropping seasons. Error bars 

are standard error of the mean.   

3.3.4 Maize yield and sensitivity to microclimate and N inputs 

During the 2014 A and 2014 B seasons (with low rainfall), maize grain yield, stover yield, and 

total biomass at 1 m and at 3 m from tree trunk were all smaller than in the sole maize treatment, 

for both A. acuminata and M. lutea (Table 3.5). Maize grain yields were about 45% and 19% less 

than in sole maize at 1 m and 3 m from A. acuminata respectively. During the 2015 A and 2015 B 
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seasons (with higher rainfall), grain yield, stover yield, and total biomass were smaller at 1 m from 

A. acuminata trunk but equal or increased at 3 m from the tree trunk when compared to sole maize. 

Maize grain yields during these seasons were about 23% smaller at 1 m but around 3 to 38% greater 

at 3 m from A. acuminata trunk relative to sole maize. A consistent yield reduction was observed 

at 1 m and 3 m from M. lutea trunk relative to sole maize. During the relatively drier season of 

2014 B, maize grain yield was 44% and 21% lower at 1 m and 3 m from M. lutea trunk compared 

to sole maize. During the relatively wetter season of 2015 B, grain yield was 35% and 8% lower 

at 1 m and 3 m from M. lutea than in sole maize. The interaction between season and distance from 

the tree trunks were significant for A. acuminata but not for M. lutea (Table 3.5).  
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Table 3.5 Comparison of maize grain yield, stover yield and total biomass at different distances 

from two tree species – A. acuminata and M. lutea - and during four consecutive seasons in the 

experimental plots. Standard deviations are given after the sign ‘±’. P values are given for 

differences in seasons, distance from trees and the interaction of both. Means followed by the same 

letter in the same season do not differ significantly at α= 0.05. 

 

Season  

Maize grain yield (t ha-1) 
 

Maize Residues (t ha-1) 
 

Maize total biomass (t ha-1) 

1 m 3 m 40 m   1 m 3 m 40 m   1 m 3 m 40 m 

A. acuminata 

2014 A 1.86a 

±0.2 

2.93b   

±0.2 

4.26c  

±1 

 
3.19a  

±0.7 

4.94b  

±0.9 

4.57b 

±1.1 

 
5.05a  

±0.8 

7.87b   

±1.0 

8.83b   

±1.8 

2014 B 2.76a 

 ±1.4 

3.97 b 

±1.5 

4.22b   

±1.4 

 
4.06a  

±0.6 

5.43b  

±1.2 

6.18b   

±1.2 

 
6.81a  

±1.9 

9.39b   

±2.0 

10.4b   

±1.2 

2015 A 3.9a   

±0.7 

7.2b 

±1.6 

4.5a   

±1.9 

 
3.68a  

±0.5 

6.76b  

±1.6 

5.17c  

±1.6 

 
7.57a   

±1 

13.96b   

±2.9 

9.67c   

±1.4 

2015 B 3.42a   

±1.1 

5.27b    

±0.7 

5.12b  

±1.1 

  4.16a  

±1.4 

5.61b   

±1 

4.55a  

±1.2 

  7.58a  

±2.2  

10.88b    

±1.6 

9.67b   

±1.2 

Season (p) <.0001  <.0001  <.0001 

Distance (p)  0.006  0.0008  0.0016 

Season×distance (p)  <.0001  0.0002  <.0001 

M. lutea 

2014 A 3.53a   

±1.3 

4.87b   

±2.0 

5.35b  

±0.5 
 

3.6a  

±0.8 

4.37b  

±1.2 

5.7c   

±0.9 
 

7.13a  

±2.1 

9.24b   

±3.2 

11.05c  

±1.3 

2014 B 1.32a   

±0.6 

1.95a   

±0.6 

2.88b  

±0.8 
 

2.48a  

±1.4 

3.53b  

±1.6 

2.95ab  

±0.8 
 

3.8a  

±1.9 

5.48b   

±2.2 

5.83b   

±1.5 

2015 A 4.19a   

±2.3 

5.6b   

±2.8 

6.49b   

±2 
 

3.44a  

±2.4 

4.44b  

±2.8 

4.53b  

±1.8 
 

7.63a  

±4.6 

10.04b   

±5.6 

11.02b  

±3.7 

2015 B 2.88a   

±1 

4.32b   

±1.6 

4.38b  

±1.3 
 

3.37a   

±1 

5.37b  

±1.9 

5.18b  

±1.8 
 

6.25a   

±2 

9.68b   

±3.4 

9.56b   

±3.1 

Season (p) <.0001  <.0001  <.0001 

Distance (p) <.0001  <.0001  <.0001 

Season×distance (p) 0.856  0.2734  0.8426 
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In the APSIM model simulations, the scenario presented (Figure 3.4) reflects the under A. 

acuminata tree situation with 50 kg ha-1 of extra N input, a 10% reduction in radiation and 2 degree 

lower maximum temperatures that occurred in 2015 A season. This scenario of under tree situation 

shows a higher maize yield for about 60% of the seasons (from 2006 to 2016) when compared to 

the sole maize (Fig. 4). For seasons like 2014 A, 2014 B and 2015 B with around 10 kg N ha-1 

inputs from tree litter, a yield reduction of about 300 to 400 kg DM ha-1 can be expected (Figure 

S1). Under higher N fertilization scenarios, negative effects of radiation and temperature were not 

compensated by additional N from litter (Figure S1).  
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Figure 3.4 Cumulative distribution function (CDF) of maize grain yield (kg DM ha-1) under 

observed (Obs) radiation (Rad) and maximum temperatures (Tmax) compared with scenarios with 

reduced solar radiation and/or maximum temperature with N fertilization set to 64 kg ha-1 and 114 

kg ha-1. Simulations included the years 2006 to 2016 with two season per year (3 seasons showed 

no yields due to drought).   

 

3.3.5 Light and air temperature  

PAR under A. acuminata was reduced by 67 % at 1 m distance from the tree trunk (AlM-1m) 

and by 17 % at 3 m distance from the tree trunk (AlM-3m) while reduced PAR under M. lutea was 
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reduced by 47 % at 1 m distance from the tree trunk and by 14 % at 3 m distance from the tree 

trunk. The diurnal reduction of total solar radiation at 1 m from the tree trunk was 44% under A. 

acuminata and 25% under M. lutea (Figure 3.5a).  

  

 

 

Figure 3.5 Relative reduction in total solar radiation (TSR) under A. acuminata and M. lutea (a). 

For each tree species, data are averages of 3 days measurements on identical weather stations 

simultaneously logging every 5 minutes under and away from a tree. Relative reduction in PAR 

under A. acuminata and M. lutea (b) with distance from tree trunk. Vertical bars show standard 

error of the mean. Cumulative relative frequencies of temperature differences under and away from 

canopies of A. acuminata and M. lutea trees (c).   

 

A. acuminata reduced temperature during the day, with half of the observations showing a 

reduction of more than 1ºC due to shading. During the night, the temperature was higher under the 

A. acuminata canopy, with half of the nights having a temperature of more than 0.2 ºC higher than 

in the sole maize plots due to the insulation or ‘blanket’ effect. The M. lutea canopy reduced 
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temperature during the day, with half of the observations showing a reduction of more than 0.28 

ºC and temperatures were reduced by more than 0.3ºC on half of the nights.  

3.3.6 Maize phenology 

It took around 38 degree days for a maize leaf to appear and there was no significant difference 

between sole maize and maize under A. acuminata and M. lutea trees (Figure 3.6). In contrast to 

the leaf number and appearance rates, maize height was reduced at 1 m and 3 m from the tree 

trunks starting from two months after sowing until physiological maturity.  

  

Figure 3.6 Leaf appearance rates for maize plants in the sole maize compared to plants under A. 

acuminata (a) and M. lutea (b), and maize height difference under A. acuminata relative to sole 

maize (c) and under M. lutea relative to sole maize (d) as function of cumulative degree days in 

the study site. Displayed values are means of the four seasons (2014 A, 2014 B, 2015 A and 2015 

B). Bars represent standard errors.  
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3.4 Discussion 

3.4.1 Effects of trees on maize yield and sensitivity to varied microclimate and N inputs 

Maize yields were smaller at 1 m and 3 m from M. lutea trunk than in sole maize plots in all 

seasons, whilst strong season-dependent effects were found for A. acuminata. For both tree 

species, maize yielded least close to the tree trunks (at 1 m) compared with at the canopy edges (3 

m). Others also report that the competitive effect of trees decreases with distance from the trunk 

(Muchiri et al., 2002). Reduced maize yields with A. acuminata during seasons with relatively 

lower rainfall concurs with Muthuri et al. (2005) who reported a similar negative effect. 

Furthermore, the smaller maize and stover yields under M. lutea relative to sole maize 

demonstrates the strong competitiveness of this tree species (Okorio et al., 1994). 

Whereas crops consistently underperformed in M. lutea system, the competitive effect of A. 

acuminata for light was to some extent compensated by extra N input in the wetter seasons (2015 

A and 2015 B) at 3 m but not at 1 m from the tree trunk. For instance, in 2015 A season, the maize 

crop under A. acuminata received average rainfall (664 mm) and higher radiation than during the 

other seasons. The average rainfall and higher radiation, in combination with greater nitrogen input 

from tree litter received during the previous season, may have been responsible for the larger maize 

yield at 3 m from A. acuminata trunks than in both sole maize and maize at 1 m away from the 

trunk. Besides, A. acuminata as a nitrogen fixing tree species could have had an added fertility 

advantage over M. lutea though only few nodules were found during root excavation (work not 

reported in this study).  

Previous studies have found yield benefits close to young (2 to 3 years) A. acuminata trees of 

2 to 3 m heights (Muthuri et al., 2005; Okorio et al., 1994; Peden et al., 1993) and attributed it to 

the tree’s ability to fix atmospheric nitrogen but authors expressed the needs to further study how 

tree-crop interactions change as the trees mature. However, Okorio (2000) found that maize yield 

reduction by A. acuminata could extend to 4.5 m from the tree trunk in the 3rd year of tree 

establishment.  

Our results suggest that as trees mature, crop yields decline under canopy, but the decline is 

moderated under A. acuminata as compared to M. lutea, following seasons receiving a higher litter 

input. Other researchers in Rwanda (Bucagu, 2013; Mugunga, 2016) argued that yield decline in 
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agroforestry could be compensated for by the value of tree products. While yield benefits are a 

good starting point for an economic evaluation (Cannell et al., 1996), agroforestry might give 

greater economic benefits than sole-crop or sole-tree systems (Price, 1995) especially in highly 

populated areas where the demand for forest products is not met (Ndayambaje and Mohren, 2011) 

and alternative food sources are available on local markets.  

Simulated maize grain yield for the scenario of tree adding around 50 kg N ha-1 to the 

recommended fertilizer rates observed in one out of the four seasons under observation, suggested 

that A. acuminata could compensate yield loss caused by reduction in radiation and temperature 

in about 60% of the seasons. However, for the other three out of four seasons, the N input from 

litter ranged from 10.6 to 17.9 kg ha-1 and simulated yields were reduced. In the simulations 

without extra N input from tree litter, a yield reduction of about 300-400 kg DM ha-1 can be 

expected for all seasons due to shade. The scenario of a system with higher fertilization rates (e.g. 

150 kg N ha-1 where trees could contribute to extra 50 kg N ha-1) showed that shade would reduce 

yields more than in low fertilization scenario, in the range of 500 kg to 700 kg DM ha-1 in all 

seasons. Thus as trees mature, it is vital to control shade while taking advantage of tree litter for 

soil fertility improvement (Schroth et al., 2001). Nevertheless, the APSIM-maize module 

simulated observed maize yield under trees canopy but did not take tree productivity into account. 

Further, the APSIM-maize model uses the air temperature –sensors protected from direct sunlight- 

and not crop temperature to simulate crop yields while the latter may be more appropriate 

(Luedeling et al., 2016), potentially over-estimating impacts of trees on crop yields.  

3.4.2  A. acuminata recycles more nutrients than M. lutea 

The tree species studied here exhibited different litter production and hence different nutrient-

cycling rates. The measured A. acuminata leaf litter and its N and P content were comparable to 

the reported figures on A. nepalensis in agroforestry systems of India (Sharma et al., 1996). On the 

other hand, M. lutea litter fall was less than that reported by Muzoora et al. (2011) in Uganda 

probably due to the larger tree canopies left by the Ugandan livestock farmers. Their reported N 

and P content in litter were comparable to the values measured in this study. As expected, A. 

acuminata – a semi-deciduous species – contributed more litter and nutrients than M. lutea – an 

evergreen species – in all seasons. Nutrient turnover in semi-deciduous species is much higher 

than in evergreen species that retain a full canopy throughout the year (Eamus, 1999).  
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A significant effect of distance from tree trunk was observed for N uptake by crop grown in 

combination with A. acuminata, with relatively more uptake at 3 m than at 1 m and 40 m from tree 

trunk. These results suggest that though A. acuminata increased the available N through litter fall, 

the shading effect reduced uptake at 1 m from the tree trunk. P uptake was small at 1 m and at 3 m 

from the trunk of the tree in the drier 2014 B season probably due to the combination of the effects 

of soil-drying-induced P-deficiency (Radersma et al., 2005) and the negative effect of shade on 

biomass production. These findings could be supported by the fact that, in the following 2015 A 

season with enough rainfall, P uptake at 3 m from the tree trunk increased but not at 1 m from the 

tree trunk. For M. lutea, there was no significant distance effect from the tree trunk for N and P 

uptake by crop. The dry spell period during the season 2014 B induced a higher litter fall especially 

for A. acuminata, resulting in a significantly larger input of nutrients during that season: around 

50 kg of N ha-1 and 5.6 kg of P ha-1. These N and P inputs from litter represent a respective increase 

of 78 % and 28 % as compared to the applied inputs through mineral fertilizers. Thus in systems 

with few fertilizer inputs, the beneficial effects of A. acuminata on soil fertility can compensate 

for the negative effect of tree shade if trees are intensively pruned at the beginning of the season 

and the leaves used as organic amendment.  

3.4.3 A. acuminata and M. lutea did not influence water availability of maize in the topsoil  

Soil water content in topsoil did not differ between treatments with sole maize and maize 

associated with A. acuminata or with M. lutea. There was an offset in the initial soil water between 

these treatments involving maize and the sole A. acuminata or sole M. lutea. This difference was 

maintained throughout the four seasons under observation with no difference in the patterns of 

water use among treatments. These differences may be due to site differences in soil depth. In 

addition, the soil water content was always above the permanent wilting point (from pedo-transfer 

functions at 12.6 volume % soil water) in both topsoil and subsoil. Thus, our study suggests that 

the presence of the trees did not influence water availability for maize in this sub-humid high 

rainfall environment. This neutral effect was assisted by seasonal tree root disturbance in the 

topsoil caused by the deep bed-furrow tillage (Verdoodt and Ranst, 2003), thus giving chances for 

maize roots to establish in the surface soil horizons with less active tree roots. Other workers (Rao 

et al., 1997; Siriri et al., 2013), found little or no competition for soil water between trees and the 

associated crops in wet environments.  
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3.4.5 Both A. acuminata and M. lutea reduce incident light and day air temperature 

reducing maize height and yield 

Results from this study show that A. acuminata reduced total solar radiation and PAR more 

strongly than M. lutea. PAR was only measured near mid-day on a clear day and was more strongly 

reduced by trees than diurnal total solar radiation which was measured on dominantly hazy days. 

Both A. acuminata and M. lutea similarly reduced day air temperature. A. acuminata slightly 

increased night air temperature through blanket effect while M. lutea reduced it; suggesting that 

the thinner M. lutea canopy caused no blanket effect. Tree canopy reduces light intensity (Bayala 

et al., 2002) and moderates temperature under trees (García-Barrios and Ong, 2004; Rao et al., 

1997).  

The microclimate of both A. acuminata and M. lutea did not significantly affect the leaf 

appearance rate, number of leaves and leaf area (Figure S4 and Figure S5) but did reduce plant 

height and yield. The observed reduction of maize yield (Ong et al., 2000) calls for intensive 

pruning to reduce competition for light when crop production is the primary objective of the 

farmer, although less intensive pruning may be acceptable in agroforestry systems where tree 

production is a primary objective (Bai et al., 2016). It is essential for farmers to understand that 

there is a need to manage trees to maintain the balance between tree and annual crop products (Ong 

et al., 2015; Wilson et al., 1998).  

3.5 Conclusions 

This study investigated the effects of A. acuminata and M. lutea trees - the most abundant trees 

in farmers’ fields in the highlands of Northern Rwanda - on maize microclimate and resources 

available to maize. Both tree species reduced total incident solar radiation and PAR, as well as day 

temperature with A. acuminata having a stronger shading effect than M. lutea. A. acuminata 

contributed more nutrients than M. lutea through litter fall. Neither tree species affected water 

availability for maize in the topsoil.  

The presence of trees significantly reduced the growth and yield of the associated maize with 

the effect varying depending on tree species and distance from tree trunk. M. lutea reduced maize 

productivity in all seasons whilst the effect of A. acuminata was season dependent. A positive 

interaction between A. acuminata and maize was only apparent at 3 m from tree trunk in one of 
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the four seasons and following higher litter fall, suggesting that the negative effect of shade was 

occasionally offset by extra N input. Simulations indicate that an increase in yield can only be 

expected in 30% of the years, and only under low to moderate N fertilization scenarios. In all other 

situations, a net negative effect of trees on yield can be expected. 

As trees mature, their effects on solar radiation, air temperature, water and nutrients become 

important, influencing the balance of competitive and facilitative effects on crops. While these 

trees provide a number of essential products (e.g., fuelwood, timber and stakes) in the rural sub-

humid environment, it is clear that without proper pruning and high extra N inputs from leaf litter, 

a yield reduction can always be expected due to shade. The farmers’ priorities will ultimately 

determine the balance of crop and tree products on farm.  
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Chapter 4 
 

Do open pollinated maize varieties perform better than hybrids in 

agroforestry systems? 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is submitted as: 

Ndoli, A., Baudron F., Sida T.S., Schut A.G.T., van Heerwaarden J., & Giller, K. E. (2017). Do open 

pollinated maize varieties perform better than hybrids in agroforestry systems? Experimental 

Agriculture  



58 

Abstract 

A large body of evidence demonstrates the agronomic superiority of maize hybrids over open 

pollinated varieties (OPVs) in intensive agriculture. However, comparisons of the performance of 

hybrids and OPVs in agroforestry systems of resource poor farmers are scarce. In this study, 

performance of four maize hybrids and four OPVs was compared in sole crop and under mature 

Grevillea robusta, Senna spectabilis or Acacia tortilis trees. A total of six on-farm experiments 

were conducted during four consecutive seasons in Bugesera, Rwanda and three on farm 

experiments during two seasons in Meki, Ethiopia. In Bugusera, grain yields of hybrids (2 t ha-1) 

was significantly better than OPVs (1.5 t ha-1). Further, the presence of trees significantly reduced 

maize grain yield and total biomass in both hybrids and OPVs in the same manner. However, trees 

reduced harvest index significantly more in OPVs (from 0.35 to 0.19) than in hybrids (from 0.32 

to 0.23), suggesting that competition had a greater impact on grain yield of OPVs than on biomass 

production. In Bugesera, the estimated reduction in grain yield was 0.9 and 1.1 t ha-1 in hybrids 

and OPVs, respectively, while estimated reduction in biomass was 1.5 and 1.7 t ha-1. In the 

experiments in Meki, the grain yield of OPVs (2.08 t ha-1) and hybrids (2.04 t ha-1) did not 

significantly differ and the presence of trees reduced their grain yields in the same manner by 0.4 

t ha-1. Trees reduced leaf area index (LAI) more in OPVs than in hybrids in Bugesera but not in 

the Meki experiment. The presence of trees also reduced plant height more in OPVs than in hybrids 

in Bugesera but had no significant effect in Meki. Our results showed that hybrids yielded more 

than OPVs under G. robusta and S. spectabilis in Bugesera but performed equally well under A. 

tortilis in Meki. We conclude that agroforestry farmers could benefit from growing hybrids in the 

equatorial savannahs of Rwanda, but not in the equatorial savannahs of Ethiopia.  

4.1. Introduction 

Maize is the most important cereal food crop in sub-Saharan Africa and its demand is predicted 

to double by 2050 (Anley et al. 2013). In Rwanda, maize has larger production volumes than any 

other grain crops, including pulses (NISR 2014a). In rural Ethiopia, maize is the most important 

staple food in terms of calorie intake (Abate et al. 2015). Maize is genetically diverse, with 

germplasm adapted to a wide range of growing conditions (Anley et al. 2013). However, while 

maize breeding has had great impact in sub-Saharan Africa (Smale and Jayne 2003), little attention 

has been paid to developing germplasm specifically suited to complex environments such as 
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agroforestry systems (Tiwari et al. 2009). Almost all of the maize varieties have been bred and 

tested in open fields and may not be well adapted to agroforestry conditions (Desclaux et al. 2016).  

Due to the effect of heterosis (i.e., hybrid vigour), maize hybrids are generally expected to 

yield more and to provide greater quality – e.g. uniform grain colour and size –  than OPVs in open 

field conditions (van Heerwaarden et al. 2009). In the United States of America, 50% of the yield 

gain since the 1930s is attributed to the introduction of hybrid maize and improved genetics 

(Duvick 1999). In sub-Saharan Africa, improvement in maize yield as a result of adoption of 

hybrid maize was also reported (Byerlee and Eicher 1997; Smale and Mason 2014). However, seed 

of maize hybrids is expensive for resource-poor farmers and cannot be recycled without severe 

yield penalty (Lyimo et al. 2014; Macharia et al. 2010).  

In developing countries where agroforestry is a common practice, farmers claim that local 

landraces are better adapted to shade than genotypes bred on experimental stations (Tiwari et al. 

2012). Some smallholder farmers believe that hybrid maize can perform well, but only under high 

input management practices which poor farmers seldom achieve (Macharia et al. 2010). There is 

a need to advise farmers whether hybrids have an advantage over OPVs in agroforestry systems, 

characterized by reduced light intensity due to shade and competition for water and nutrients.  

The objective of this study is to fill this knowledge gap and compare the performance of OPVs 

and hybrids in two agroforestry systems in East Africa. We hypothesize that OPVs outperform 

hybrids under trees. We assessed the effects of trees (Grevillea robusta and Senna spectabilis in 

Rwanda and Acacia tortilis in Ethiopia) on the performance of commonly-used maize hybrids and 

OPVs.  

4.2. Material and methods 

Experiments were conducted in two agroecological zones to evaluate the effect of trees on the 

performance of maize varieties (hybrids vs. open pollinated varieties): Bugesera, Rwanda, and 

Meki, Ethiopia. Both zones are classified as semi-arid in the national systems and are classified as 

equatorial savannah with dry winter in the Köppen-Geiger system (Kottek et al. 2006).  
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4.2.1 Experimental sites in Bugesera, Rwanda  

In Rwanda, six farms were selected to host trials in Bugesera, located at a latitude of 2° 21’ S, 

a longitude of 30° 15'E, and an elevation of 1,397 m above sea level (a.s.l). The climate is 

characterized by a bimodal rainfall pattern with a major peak in April and a secondary peak in 

November. The ‘long rains’ (also known as ‘season B’) usually start around mid-February and 

lasts up to mid-July and the ‘short rains’ (also known as ‘season A’) start in September and last 

until January. The rainfall varies between 850 and 1,000 mm per year with an average annual 

temperature of about 21 °C (Verdoot and van Ranst, 2003). Soils in the Bugesera experiments are 

humic Ferralsols at lower elevations and haplic Ferralsols at higher elevations with depths of about 

100-200 cm. The selected plots were cropped with maize or sorghum in rotation with bush beans 

in the previous seasons. The experiments in Bugesera were conducted in the 2014 B, 2015 A, 2015 

B and 2016 A seasons. 

4.2.2 Experimental sites in Meki, Ethiopia  

In Ethiopia, three farms were selected to host trials in the lowlands of the Central Rift Valley 

in Meki, located at a latitude of 8° 11' N, a longitude of 38° 51' E, and an elevation of 1,500 m 

a.s.l. The climate is characterized by a unimodal rainfall pattern peaking around July-August. The 

rainy season or “Kiremt” normally runs from June to September with the annual total rainfall 

ranging from 281 to 1,131 mm with a long-term average of 729 mm per year (Getachew and 

Tesfaye 2015). The average annual temperature is 19.3ºC. Soils in Meki are deep Andosols with 

high organic matter and good water holding capacity. The selected plots for the experiments were 

cropped with maize in the preceding seasons. The experiments in Meki were conducted in 2014 

and 2015. 

4.2.3 Experimental layout 

Three tree species were used in the experiments: two in Bugesera and one in Meki. For each 

tree species, three farms were selected, each including two plots with almost identical trees in their 

centre and one open plot (without tree). This resulted in six on-farm experiments (with two tree 

species) in Bugesera and three experiments (with one tree species) in Meki. The size of plots with 

trees was 10 x 10 m while the size of open plots was 10 x 20 m. The plots with trees were divided 

into four subplots while the open plots were divided into eight subplots (Figure 4.1).  
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Two main factors were studied (i) presence or absence of tree and (ii) vigour (hybrids vs. OPVs 

as proxy). In Bugesera, Rwanda, the selected tree species were G. robusta and S. spectabilis since 

they are dominant in the landscape. The four selected hybrid cultivars were among the most 

popular cultivars in the area, and included PAN4M21, PAN67, SC403 and SC513 and the four 

selected OPVs were ISARM081, ISARM101, Pool32 and ZM607. In Meki, Ethiopia, the selected 

tree species was A. tortilis – the most frequent tree on farms in the area - and the four maize hybrids 

included MH138Q, MH140, BH540 and MH130 while OPVs were Melkassa-6Q, Gibe-2, 

Melkassa-4 and Melkassa-2. For each tree species, the eight varieties selected for the site (four 

hybrids and four OPVs) were randomly assigned each season to one of the eight subplots under 

one of the two trees and to one of the eight subplots of the open plot (Figure 4.1).  

In each season, fertilization rates followed general recommendations for both areas, that is  100 

kg di-ammonium phosphate per hectare (18 kg N ha-1 and 20 kg P ha-1) applied at planting, top-

dressed with 100 kg urea per hectare (46 kg N ha-1) applied as top-dressing six weeks after plant 

emergence. Maize was planted at a spacing of 0.4 m within rows and 0.8 m between rows with 

two plants per hole in Bugesera. In Meki, maize was planted at a spacing of 0.3 m within rows and 

0.7 m between rows with 1 plant per hole left after thinning.  

 

 

Figure 4.1 Layout of the experiments in Bugesera, Rwanda and in Meki, Ethiopia.  
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4.2.4 Measurements 

Tree characteristics measured included tree height, diameter at breast height (DBH), diameter at 

stump height (DSH), canopy radius and tree age. In both Bugesera and Meki, daily rainfall and air 

temperature were measured using automatic weather stations (Vantage Pro2™, Davis Instruments 

Corp, USA) positioned at a maximum distance of 1 km of all plots. Weekly phenological 

measurements were taken from 20 days after sowing (DAS) to the end of the vegetative growing 

period, in all plots of the experiments in Rwanda. In Meki, phenological measurements were taken 

twice a month from 20 DAS but only in the 2014 season. The phenological parameters measured 

included the number of fully expanded leaves, the length and the width of the last fully expanded 

leaf, and the plant height. Leaf area index (LAI) values were calculated using the following 

formula: 

LAI = (0.75 × L × B) × NL × D  

where L represents the length from the leaf base to the tip of a leaf, B represents the maximum 

width of the leaf, NL represents the total number of leaves per plant and D represents the plant 

density (plants/m2). The value of 0.75 (Maddonni and Otegui 1996) reflects the shape of the leaf 

in-between values for a triangle and a square. Stover and grain yields were measured and dry 

weights of maize grain and stover were determined gravimetrically. Subsamples were oven-dried 

at 60ºC for one week. 

4.2.5 Statistical analysis 

Means of tree characteristics were compared through an Analysis of Variance (ANOVA) using 

Fisher’s F-test. Maize grain dry matter yield, total dry matter biomass, harvest index, LAI and 

plant height data were analysed with a linear mixed-effect model (LMM) with vigour – OPVs or 

hybrids - and tree presence/absence as fixed effects and farm and plot (with each tree and sole 

maize being separate plots) as random effects. A separate random season effect was modelled for 

each farm, with successive seasons coded as an ordered factor. For analyses within a single 

country, season was also included as a fixed effect while this term was replaced by a country term 

in analyses across the two countries.  Adding a random genotype (i.e. different cultivars) term did 

not result in a better model fit (based on Akaike's Information criterion): this factor was thus not 
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included. Differences in genotypes were assessed using a similar model but with vigour – OPVs 

and hybrids - replaced by genotypes.  

The significance of fixed effects was tested using a type-III ANOVA with Satterthwaite 

approximation for the denominator degrees of freedom. Predictmeans functions (Welham et al. 

2004) from the lme4 library were used to test tree presence/absence, vigour and interaction effects 

on maize LAI, height and yields in each country separately. All analyses were carried out using R 

software (R Development Core Team 2014). 

4.3 Results  

4.3.1  Local climate and tree characteristics 

 In Bugesera, rainfall was higher in the 2015 A season (350 mm) followed by 2014 B (325 mm) 

and 2015 B (250 mm) and lastly 2016 A (211 mm) (Figure 4.2a). Seasonal rainfall was very 

variable in Meki during the seasons under observation, with 536 mm rainfall received in the season 

of 2014, more than double the amount received in 2015 (230 mm) (Figure 4.2b). In Bugesera, air 

temperature was higher than in Meki with a maximum and a minimum of 26.7 °C and 19.6 °C 

respectively and an overall mean of 22.3 °C in Bugesera compared with a maximum temperature 

of 21.5 °C, a minimum temperature of 16.5 °C and an overall mean of 19.5 °C in Meki.  

  

 

Figure 4.2 Cumulated rainfall and average daily air temperature during growing seasons under 

observation at Bugesera, Rwanda (a) and Meki, Ethiopia (b). 
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G. robusta and A. tortilis trees had about the same heights but were taller than S. spectabilis 

trees (Table 4.1). The latter had the largest DSH but the smallest DBH for individual shoots. S. 

spectabilis was the only tree species in the study to have many stems. S. spectabilis and A. tortilis 

had similar canopy radius, which was larger than the canopy radius of G. robusta. S. spectabilis 

trees had about the same age as G. robusta based on farmer recall.  

Table 4.1 Characteristics of G. robusta, S. spectabilis and A. tortilus trees used in the experiment 

at the on-set of the trial (beginning of 2014). Standard deviations are given after the signs ‘±’. 

Means followed by the same letter in the same row do not differ significantly at α= 0.05. 

Measurement   G. robusta  S. spectabilis  A. tortilis 
Height (m)  8.3a ± 1.1  5.9b ± 1.1  8.3a ± 1.2 

Diameter at breast height (DBH, cm)  24.3b ± 4  10.8c ± 3  27.2a ± 2.3 

Diameter at stump height (DSH, cm)  37.8b ± 11  55.7a ± 11  - 

Canopy radius (m)  2.30b ± 0.2  4.25a ± 0.5  4.31a ± 0.5 

Tree age by farmer recall (years)   16.3a ± 1    18.5a ± 5.2  - 

Number of shoots  1a ± 0  5.1b ± 1.7  1a ± 0 

-: are characteristics not measured 

 

4.3.2  Grain yield, above-ground biomass and harvest index 

The observed grain yield was 2.06 t ha-1 in Meki and 1.76 t ha-1 in Bugesera, mean total 

biomass was 9.1 t ha-1 in Meki and 5.5 t ha-1 in Bugesera and mean harvest index was 0.22 in Meki 

and 0.27 in Bugesera (Table 4.2). These differences were not significant. In Bugesera, grain yields 

and total biomass differed significantly between hybrids and OPVs but harvest index was similar 

(Table 4.4, and Table 4.5). In Meki, grain yield, total biomass and harvest index of hybrids did not 

differ from OPVs and there was no season effect (Table 4.4, and Table 4.5). In Bugesera, drought 

in seasons 2015 B and 2016 A affected both grain yield and total biomass but did not affect the 

harvest index. The presence of trees significantly reduced maize grain yield, total biomass and 

harvest index in Bugesera but only affected grain yield in Meki (Table 4.2, Table 4.4 and Table 

4.5).  
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There was no evidence of significant differences between genotypes within vigour class, but 

in Bugesera, larger grain yields in both sole crop and under trees were observed for the hybrid 

genotypes SC403 (2.7 t/ha in sole crop vs 1.7 t/ha under tree) and SC513 (2.4 t/ha in sole crop vs 

1.8 t/ha under tree), while the smallest grain yield was observed for the OPV genotype ISARM081 

(2 t/ha in sole crop vs 0.9 t/ha under tree) (Table 4.3). The genotypes SC403 and SC513 had the 

highest observed total biomass under trees while ISARM081 had the least.  

The presence of trees affected grain yield and total biomass of hybrids and OPVs in the same 

manner in both Bugesera and Meki. However, trees strongly decreased the harvest index of OPVs 

more than hybrids in Bugesera. In the latter site, estimated reduction in grain yield was 0.9 and 1.1 

t ha-1 in hybrids and OPVs, respectively, while reduction in biomass was 1.5 and 1.7 t ha-1. In Meki 

grain yield reduction was 0.5 t ha-1 for both vigour classes and the corresponding reduction in 

biomass was 1.1 and 0.6 for hybrids and OPVs, respectively. Across the two sites there was no 

significant interaction between the presence of trees and vigour class although in Bugesera, 

reduction in harvest index was stronger in OPVs than in hybrids (Table 4.4, and Table 4.5). Harvest 

index decreased from 0.32 to 0.23 in hybrids and from 0.35 to 0.19 in OPVs for example. 

Interaction of season and presence/absence of trees was only observed in Bugesera and was 

significant for grain yield (P=0.05) and total biomass (P=0.055).  
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Table 4.2 Comparison of observed maize grain yield, total biomass and harvest index of hybrids and 

OPVs in sole crop and under G. robusta and S. spectabilis trees in Bugesera, Rwanda and under A. 

tortilis trees in Meki, Ethiopia. Standard deviations are given after the sign ‘±’. 

        Grain yield (t/ha)   Total Biomass (t/ha)   Harvest Index 

Tree sp. Season Treatment  Hybrid Opv  Hybrid Opv  Hybrid Opv 

G. robusta 2014 B Sole   
3.08 ±1.5 2.94 ±1.5  8.51 ±3.1 7.81 ±3.7  0.34 ±0.1 0.39 ±0.1 

  Under  
1.8 ±2 0.93 ±1  6.51 ±3.9 5.64 ±1.8  0.2 ±0.2 0.16 ±0.2 

 2015 A Sole  
4.41 ±1 4.22 ±1.3  10.73 ±1.3 9.32 ±2.2  0.41 ±0.1 0.45 ±0.1 

  Under  
3.24 ±1.6 2.23 ±1.1  9.87 ±4.1 6.67 ±2.5  0.33 ±0.1 0.32 ±0.1 

 2015 B Sole  
2.2 ±2.1 1.19 ±1.1  4.4 ±3 2.68 ±1.9  0.38 ±0.2 0.37 ±0.2 

  Under  
0.86 ±0.7 0.36 ±0.3  2.67 ±1.3 1.71 ±0.8  0.29 ±0.1 0.2 ±0.1 

 2016 A Sole  
1.08 ±0.8 0.84 ±0.6  4.27 ±1.1 3.48 ±1.7  0.25 ±0.2 0.23 ±0.1 

  Under  
0.65 ±0.5 0.5 ±0.3  3.4 ±1.1 2.98 ±1  0.19 ±0.1 0.16 ±0.1 

S. 
spectabilis 2014 B Sole  

2.58 ±1.7 2.16 ±1.6  8.13 ±3.7 6.4 ±2.1  0.32 ±0.2 0.3 ±0.2 

  Under  
1.75 ±0.9 1.35 ±1.5  5.93 ±2.2 5.52 ±3.1  0.29 ±0.2 0.18 ±0.2 

 2015 A Sole  
3.44 ±1.5 2.79 ±1.2  9.82 ±2.5 8.37 ±2.5  0.34 ±0.1 0.33 ±0.1 

  Under  
2.93 ±1.3 1.44 ±1.1  7.24 ±1.7 5.01 ±2.3  0.4 ±0.1 0.25 ±0.2 

 2015 B Sole  
0.52 ±0.7 0.75 ±0.6  2.21 ±1.5 2.39 ±1.5  0.19 ±0.2 0.34 ±0.2 

  Under  
0.19 ±0.4 0.08 ±0.1  2.18 ±1.6 1.55 ±0.8  0.05 ±0.1 0.05 ±0.1 

 2016 A Sole  
1.91 ±0.8 1.73 ±0.7  6.29 ±2.4 5.07 ±1.1  0.31 ±0.1 0.34 ±0.1 

  Under  
0.8 ±1 0.66 ±0.6  4.36 ±1.5 2.93 ±1.6  0.16 ±0.2 0.18 ±0.1 

A. tortilis 2014 Sole  
2.24 ±1  2.54 ±1  9.12 ±4.1 10.91 ±4.2  0.25 ±0.1 0.24 ±0 

  Under  
1.95 ±0.6 1.82 ±0.7  9.02  ±3.1 8.15 ±3.1  0.22 ±0 0.23 ±0 

 2015 Sole  
2.27 ±1 2.05 ±1  9.26 ±1.3 8.46 ±2.2  0.24 ±0.1 0.24 ±0.1 

  Under  
1.66 ±1.2 1.85 ±1.1  7.22 ±4.6 9.94 ±2.9  0.17 ±0.1 0.19 ±0.1 
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Table 4.3 Comparison of mean grain yields, total biomass and harvest index (HI) of genotypes in 

sole crop and under trees in Bugesera, Rwanda and Meki, Ethiopia. Standard deviations are given 

after the sign ‘±’.  

    Grain yield (t/ha)   Total Biomass (t/ha) HI 

Genotypes Vigour Sole Under   Sole Under   Sole Under 

Bugesera, Rwanda        
PAN 4M21 Hybrid 2.5 ± 1.8 1.4 ± 1.5  7.3 ± 4.3 4.8 ± 3.3  0.3 ± 0.2 0.24 ± 0.2 

PAN 67 Hybrid 2 ± 1.4 1.2 ± 1.4  6.2 ± 3.4 5.1 ± 3.6  0.28 ± 0.2 0.2 ± 0.2 

SC403 Hybrid 2.7 ± 1.9 1.7 ± 1.4  7 ± 3.2 5.4 ± 3.1  0.35 ± 0.2 0.27 ± 0.1 

SC513 Hybrid 2.4 ± 1.8 1.8 ± 1.8  6.7 ± 3.8 5.7 ± 3.7  0.33 ± 0.1 0.24 ± 0.2 

ISARM081 OPV 2 ± 1.4 0.9 ± 1  5.2 ± 2.5 3.9 ± 2.5  0.37 ± 0.1 0.19 ± 0.2 

ISARM101 OPV 2.3 ± 1.8 0.9 ± 1  6.8 ± 4 4.3 ± 2.4  0.3 ± 0.2 0.18 ± 0.1 

Pool32 OPV 2.2 ± 1.3 1.1 ± 1.3  5.4 ± 3.3 4.2 ± 3.1  0.42 ± 0.1 0.22 ± 0.2 

ZM607 OPV 2.1 ± 1.8 1 ± 1.2  5.7 ± 3.4 3.9 ± 2.7  0.32 ± 0.2 0.18 ± 0.2 

Meki, Ethiopia        
BH540 Hybrid 2.1 ± 0.6 2.2 ± 0.7  8.6 ± 2.5 10.4 ± 3.1  0.25 ± 0.1 0.22 ± 0.1 

MH130 Hybrid 1.9 ± 1.1 1.3 ± 0.9  8.6 ± 4.3 5.4 ± 3.7  0.22 ± 0.1 0.19 ± 0.1 

MH138Q Hybrid 2.6 ± 1 2.1 ± 0.7  9.7 ± 2.8 9.6 ± 1.9  0.27 ± 0.1 0.21 ± 0.1 

MH140 Hybrid 2.4 ± 1.2 1.7 ± 1  9.7 ± 4 7.8 ± 4.8  0.25 ± 0.1 0.18 ± 0.1 

Gibe-2 OPV 2.1 ± 1 2.1 ± 1.2  10.3 ± 4.1 8.2 ± 3.2  0.2 ± 0.1 0.26 ± 0.1 

Melkasa-2 OPV 2.6 ± 1.2 1.9 ± 0.9  10.6 ± 4.9 10.6 ± 4.5  0.26 ± 0.1 0.2 ± 0.1 

Melkasa-4 OPV 2.6 ± 1.1 1.6 ± 0.6  11.2 ± 3.1 8.4 ± 1.9  0.22 ± 0.1 0.19 ± 0.1 
Melkasa-6Q OPV 2 ± 0.9 1.7 ± 0.9 

 
7.7 ± 2.4 8.3 ± 2.5 

 
0.26 ± 0.1 0.2 ± 0.1 
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Table 4.4 Comparison of the model predicted means for maize grain yield, total biomass and harvest 

index of hybrids and OPVs in sole crop and under G. robusta and S. spectabilis trees in Rwanda, 

under A. tortilis trees in Ethiopia and the overall predicted means for both countries.  

 

  Grain yield 
(t ha-1) 

Total Biomass (t 
ha-1) 

Hi LAI Plant height 
(cm) 

Country treatment hybrid OPV hybrid OPV hybrid OPV hybrid OPV hybrid OPV 
Rwanda Under 1.49 0.98 5.24 4.02 0.23 0.19 2.02 1.60 75 64.9 

 Sole 2.38 2.10 6.77 5.72 0.32 0.35 2.23 2.06 89.2 89.3 
 LSD vigour 0.526  0.569   0.096  0.044  1.99  

 LSD tree presence/ 
absence 0.237  0.547  0.033  0.267  12.85  

Ethiopia Under 1.89 1.92 8.72 9.64 0.20 0.21 1.21 1.08 120.7 115.7 
 Sole 2.34 2.38 9.79 10.29 0.24 0.23 1.53 1.35 134.1 126.9 
 LSD vigour 0.538  1.712  0.058  0.051  2.50  

 LSD tree 
presence/absence 0.538  1.712  0.041  0.276  14.37  

Overall Under 1.58 1.31 6.41 6.07 0.23 0.21 1.56 1.28 95.4 87.9 
 Sole 2.25 2.16 7.60 7.46 0.29 0.30 1.82 1.64 109.2 105.6 

 LSD vigour 0.462  0.723  0.078  0.105  4.81  

 LSD tree 
presence/absence 0.283  0.719  0.036  0.195  9.31  

 

4.3.3  Crop leaf area index and stem height 

  Leaf area index (LAI) was significantly larger and stem height significantly shorter in 

Bugesera. In Bugesera and Meki, LAI and stem height were significantly higher in hybrids than in 

OPVs (Figure 4.3, Figure 4.4, and Table 4.5). In Bugesera, hybrids had an estimated LAI of 2.1 

while it was 1.8 for OPVs. In Meki, estimated LAI for hybrids was 1.4 as compared with 1.2 for 

OPVs.  

 Overall, the presence of trees decreased LAI and stem height in Meki but only plant height was 

reduced in Bugesera (Figure 4.3, Figure 4.4, and Table 4.5). In Bugesera, reduction in LAI was 

marginal (P=0.07) but higher reduction was observed in OPVs than in hybrids (Table 4.4, and 

Table 4.5). In this site, stem height reduction under trees was also stronger with OPVs than in 

hybrids. In Meki, there was no interaction between vigour and tree presence for both LAI and plant 

height.  Hybrids in Bugesera had an average LAI of 2.2 in sole crop and 2.0 under trees while the 

corresponding values of LAI for OPVs were 2.1 and 1.6. These differences were already present 

shortly after emergence (Figure 4.3). 
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Figure 4.3 Time-courses for leaf area index and height of maize hybrids and OPVs growing under 

trees (AF: Agroforestry) or as sole maize during four consecutive seasons (2014 B, 2015 A, 2015 

B and 2016 A) in the genotype experiment in Bugesera, Rwanda. Standard errors of the mean are 

shown. 
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Figure 4.4 Time-courses for leaf area index and height of maize hybrids and OPVs growing under 

trees (UT) or as sole maize during the 2014 season in the genotype experiment in Meki, Ethiopia. 

Standard errors of the mean are shown.  
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Table 4.5 P-values results of the LMM model for the effects of fixed factors - vigour, tree species, 

presence/absence of tree and their interactions - on maize grain yield, total biomass, harvest index 

(HI), leaf area index (LAI) and plant height in the on-farm trials. Significant effects (P<0.05) are 

shown in boldface.  

Factors Grain yield  Total Biomass HI LAI  Stem height 
Bugesera, Rwanda (G. robusta & S. spectabilis)     
Season 0.013 0.001 0.085 0.151 0.157 
Vigour  < 0.001 < 0.001 0.784 < 0.001 < 0.001 
Presence/absence of tree  0.002 < 0.001 0.025 0.070 0.045 
Vigour x presence/absence of tree 0.185 0.675 0.003 < 0.001 < 0.001 
Season x presence/absence of tree 0.050 0.055 0.006 0.095 0.037 
Season x vigour 0.297 0.188 0.695 < 0.001 < 0.001 
Meki, Ethiopia (A. tortilis)      

Season 0.811 0.275 0.094 - - 

Vigour  0.857 0.247 0.937 < 0.001 < 0.001 
Presence/absence of tree  0.019 0.163 0.210 0.002 0.031 
Vigour x presence/absence of tree 0.978 0.728 0.453 0.344 0.552 
Season x presence/absence of tree 0.782 0.347 0.263 - - 

Season x vigour 0.791 0.682 0.758 - - 

Both countries      
Country 0.410  0.051  0.216 0.005 < 0.001 
Vigour  0.078  0.359  0.919 < 0.001 < 0.001 
Presence/absence of tree 0.002  <0.001  0.060 0.014 0.013 
Vigour x presence/absence of tree  0.391 0.708  0.331 0.051 0.074 
Country x presence/absence of tree 0.236  0.224  0.250 0.766 0.488 
Country x vigour 0.028  <0.001  0.904 0.031 0.368 

-: Measurements were only taken for one season.   

4.4 Discussion  

4.4.1 Hybrids outperformed OPVs in agroforestry systems of Bugesera, but not Meki 

 Maize hybrids performed significantly better than OPVs under trees in Bugesera but this was 

not observed in Meki. Presence of trees reduced yields of maize hybrids and OPVs in the same 

manner, but hybrids yielded significantly more than OPVs under trees in Bugesera. The interaction 

of season and the presence of trees in Bugesera was about significant for grain yield (P = 0.050) 

and for total biomass (P = 0.055) but highly significant for harvest index. Thus, the larger yields 
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of hybrids even in drier seasons suggest that they withstand water stress better than OPVs in 

Bugesera. This contrasts with Kamara et al. (2003) who reported that maize hybrids are more 

susceptible to drought than OPVs.  

 In Meki, hybrid yields did not significantly differ from OPV yields under trees, probably OPVs 

used in the experiment were genotypes produced after significant breeding efforts from CIMMYT 

(the International Maize and Wheat Improvement Center) and the Ethiopian Institute of 

Agricultural Research to include traits of stress resistance (e.g., drought resistance) (Melkassa-ns 

varieties) (Beshir 2011). There was severe early water stress in Meki during the 2014 season and 

terminal water stress during the 2015 season. The early water stress in 2014 season reduced maize 

emergence rate and negatively affected the yields despite the season’s higher total rains when 

compared to the region’s average annual rainfall. OPVs available in Ethiopia (e.g. Melkassa-2, 

Melkassa-4 and Melkassa-6Q) are higher yielding and likely better adapted to drought than OPVs 

available in Rwanda (Gebre and Mohammed 2015; Kidane et al. 2016). This better adaptation to 

water stress, a frequent constraint in agroforestry systems of equatorial savannahs (Ong and 

Leakey 1999), may explain why these OPV cultivars  yielded equally to hybrids.  

 In Bugesera, the ‘SEEDCO’ hybrids SC403 and SC513 performed better than the ‘PANNAR’ 

hybrids (PAN4M21 and PAN67) at P=0.08, and much better than all the OPVs under trees. The 

selection of traits under optimal growing conditions may also improve performance under sub-

optimal conditions (Russel 1984). This appears to have been the case under agroforestry conditions 

in the equatorial savannahs of Rwanda where best performing hybrids in sole crop also performed 

better under trees. All the varieties that were used in both Bugesera and Meki were officially 

released and among the most popular varieties in the region, but the presence of trees strongly 

reduced their grain yields. Tiwari et al. (2009) and Desclaux et al. (2016) proposed participatory 

plant breeding methods to breed for agroforestry conditions targeting traits influencing 

agroecological structure and function rather than the classical breeding that targets higher yields 

in optimum conditions,  and this is supported by our findings.   

 Our results showed that hybrids yielded more than OPVs in both sole crops and under trees in 

Bugesera. In Meki, the yields of hybrids and OPVs were reduced in the same manner under trees 

when compared to open fields. In contrast to farmers in Meki, Ethiopia where dryland OPVs 

development is advanced (Georgis et al. 2009; Abate et al. 2015), farmers in equatorial savannahs 
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of Rwanda could benefit from cropping hybrids (e.g. SC403 and SC513) in agroforestry systems 

since their current OPVs are highly sensitive to agroforestry conditions. 

4.4.2  LAI and plant height are reduced by tree presence for OPVs, but not for hybrids  

Tree presence reduced leaf area index (LAI) and maize stem height, more so for OPVs than 

for hybrids. This reduction explained lower maize grain yield and above ground biomass under 

trees as compared to open fields in Bugesera (Lott et al. 2000; Dilla et al. 2017). Desclaux et al. 

(2016) suggest that it is crucial to consider plant, leaf shape and phenology while breeding for 

shade tolerance in agroforestry. We find that hybrids produce more total biomass than OPVs which 

could provide more feed for livestock (Tiwari et al. 2004). Based on the higher cost of hybrid seeds 

when compared to OPVs (Efa et al. 2005), and the comparable yield and biomass production for 

OPVs and hybrids we recommend farmers in Meki to grow OPVs rather than the more expensive 

hybrids in the stressed conditions (Alemu et al. 2008).  

4.5 Conclusion 

We hypothesized that maize OPVs outperform hybrids under trees.  The presence of trees 

consistently reduced yields of both OPVs and hybrids. However, despite significant differences 

for vegetative traits in Bugesera, Rwanda, the hypothesis was rejected for grain yield, since 

reduction in yield and biomass was similar in both Bugesera, Rwanda and Meki, Ethiopia. We 

conclude that in tropical savannah regions of Rwanda agroforestry farmers could benefit from 

cropping hybrids, both under trees and in the open field. In contrast, farmers practicing 

agroforestry in tropical savannah regions of Ethiopia are better off using the current OPVs instead 

of more expensive hybrid seeds. It appears that the relevance of using either hybrids or OPVs in 

agroforestry systems depends on local conditions and the comparative advantages in seed costs.  
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Chapter 5 
 

 

Conservation agriculture with trees amplifies negative effects of 

reduced tillage on maize crops in East Africa 
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Abstract 

Conservation agriculture (CA) is widely promoted in sub-Saharan Africa both in open fields and 

in agroforestry where the practice is known as ‘conservation agriculture with trees’ (CAWT). The 

performance of open pollinated maize varieties under CA, CAWT, sole maize under conventional 

tillage (CT) and conventional tillage with trees (CTWT) was compared on-farm in semi-arid areas 

over four consecutive seasons in Rwanda and two seasons in Ethiopia. The tree species considered 

in the study were mature Grevillea robusta and Senna spectabilis in Rwanda and mature Acacia 

tortilis in Ethiopia. Both conservation agriculture and the presence of trees consistently reduced 

maize emergence, leaf area (LA) and leaf area index (LAI), plant height, and maize yields. Crop 

emergence was significantly reduced under CAWT compared with CTWT. Maize emergence rates 

in CAWT and CTWT were respectively 46.9% and 70.1%, compared with 74.7% and 79.8% in 

sole maize under CA and CT. Grain yield in CAWT and CTWT were respectively 0.37 t dry matter 

(DM) ha-1 and 1.18 t DM ha-1 as compared with 1.65 t DM ha-1 and 1.95 t DM ha-1 in CA and CT. 

We conclude that CAWT strongly reduces crop yield in semi-arid areas of East Africa, most likely 

due to maximising below-ground competition between crops and trees. Conservation agriculture 

is incompatible with agroforestry under the conditions of our study. There is an urgent need for 

rigorous research to revisit if, when and where CAWT can provide benefits for farmers. 

 

5.1 Introduction 

Agroforestry, the association of annual crops and trees , is an option advocated to increase crop 

production sustainably in sub-Saharan Africa where the use of external inputs is low (Pretty et al. 

2011; Robert and Peter 1987). However, competition for light (Rao et al. 1997) and below-ground 

competition between crops and trees are important aspects concerning yield reduction in semi-arid 

tropics where water and nutrients are the major factor limiting crop growth (Ong et al. 1991; 

Radersma and Ong 2004). This can be addressed by shoot and root pruning of the trees to limit 

below- and above-ground competition between trees and crops (Rao et al. 1997; Mugunga et al. 

2017). Most published work has focused on above-ground tree management, such as pruning 

regimes, while below-ground management of tree roots was seldom considered. Recent studies 

recommended pruning of tree roots to limit nutrients and water competition between trees and 

crops in semi-arid areas (Bayala et al. 2015; Muthuri et al. 2005). Beyond tree pruning, improved 
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soil management options could be explored to optimize crop productivity in agroforestry systems 

(Hulugalle and Ndi 1993; Guto et al. 2012).  

Conservation agriculture (CA) is a set of principles for resource-efficient agricultural crop 

production based on three principles: (1) minimum soil disturbance; (2) permanent organic soil 

cover (consisting of a growing crop or a dead mulch of crop residues); and (3) diversified crop 

rotations (www.fao.org/ag/ca). CA has been reported to increase and stabilize maize yields, 

conserve soil moisture, increase soil carbon stocks, and improve soil physical and chemical 

properties in many countries in sub-Saharan Africa (Rosenstock et al. 2014; Rockström et al. 

2009).  

Kassam et al. (2009) reported that CA and agroforestry practices have many features in 

common, such as increased ground cover and incorporation of legumes in the system. Combining 

CA with agroforestry was recommended as a sustainable approach to the production of food, 

fodder, fuel, fibre and income from intercropped trees while restoring exhausted soils (Garrity et 

al. 2010). A fresh approach - conservation agriculture with trees (CAWT) - was coined by 

combining conservation agriculture with agroforestry and adding a fourth principle to the three 

CA principles - that of tree-crop integration (Ngrsquo et al. 2013). 

Although advantages and disadvantages of CA are well documented in field crops under sole 

cropping (Giller et al. 2009; Chivenge et al. 2007; Rockström et al. 2009), less is known about its 

impact in agroforestry systems despite the intense promotion of CAWT in many developing 

countries (Mutua et al. 2014). We hypothesize that CAWT will exacerbate below-ground 

competition for water and nutrients by trees and therefore reduce crop yields. We assessed the 

performance of sole maize under conventional tillage (CT) and CA, as well as maize with trees 

under conventional tillage (CTWT) and CA (CAWT) in two semi-arid regions of East Africa. 

Common open pollinated maize varieties were used. The tree species considered were Grevillea 

robusta (A. Cunn.) and Senna spectabilis (DC.) in Rwanda and Acacia tortilis (Forssk.) in 

Ethiopia. The experiment was conducted on-farm during four consecutive seasons in Rwanda, and 

two consecutive seasons in Ethiopia. 
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5.2 Material and methods 

5.2.1 Site characteristics  

Experiments were conducted in two locations: Bugesera in Rwanda and Meki in Ethiopia. Both 

are classified as semi-arid in the national systems with a Köppen-Geiger classification “equatorial 

savannah with a dry winter” (Kottek et al. 2006). Bugesera is located at 2° 21’ S, 30° 15’E, at an 

elevation of about 1400 m above sea level (a.s.l). The climate is characterized by a bimodal rainfall 

pattern with primary and secondary peaks in April and November, respectively. The first harvest 

is in January/February, after the “short rains” from September to January (season A), and the 

second harvest is in August, after the “long rains” (season B) from mid-February to mid-July. 

Annual rainfall varies between 850 and 1,000 mm per year with an average annual temperature of 

about 21 °C (Verdoot and van Ranst, 2003). Soils are humic Ferralsols at lower and haplic 

Ferralsols at higher landscape positions with soil depths of about 100-200 cm. This region is 

characterized by large densities of termites which accelerate turnover of crop residues and 

consume tree bark (Musebe et al. 2017; Balasubramanian and Sekayange 1991). The selected plots 

were cropped with maize or sorghum in rotation with bush beans in previous seasons. 

In Ethiopia, experiments were carried out in Meki, in the lowlands of the Central Rift Valley 

located at 8° 11' N, 38° 51' E and an elevation of about 1,500 m a.s.l. The agroecology is classified 

as equatorial savannah with a dry winter (Kottek et al. 2006) characterized by a unimodal rainfall 

pattern peaking in July-August. The rainy season or “Kiremt” normally runs from June to 

September with the annual total rainfall ranging from 281 to 1131 mm with a long-term average 

of 729 mm per year (Getachew and Tesfaye 2015). The average annual temperature is about 19.3 

ºC. Soils are predominantly deep Andosols. The selected plots were previously cropped with 

maize.  

5.2.2 Experimental layout 

Experiments compared maize crops under CT, CA, CTWT and CAWT during the 2015 A, 

2015 B, 2016 A and 2016 B seasons in Rwanda and during the 2014 and 2015 seasons in Ethiopia. 

Mature G. robusta and S. spectabilis trees were selected in Rwanda and mature A. tortilis trees in 

Ethiopia. Tree height, diameter at breast height (DBH), diameter at stump height (DSH; i.e. at 10 

cm from the ground), canopy radius were measured and tree age was assessed from farmer recall. 

Three farms were selected per tree species. In Rwanda, for each farm included in the experiment, 
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one plot with a tree in the centre and one plot in an adjacent open field were selected. The plot size 

was 10 × 10 m, and each plot was split into two subplots of 5 × 10 m; one managed with CT and 

the other with CA (Figure 5.1a). In Ethiopia, there were four plots per selected farm: two plots 

were located under almost identical trees and two control plots in an open field: one plot with tree 

and one control plot in open field were managed under CA while the other plot with tree and the 

other control plot in open field were managed under CT. The plot size was 10 × 10 m, but here 

plots were split into four subplots to accommodate four open pollinated maize varieties (OPVs) 

(Figure 5.1b). Unfortunately, one replicate in the Ethiopian experiment was damaged by livestock 

and was excluded from the analysis.  

 

Figure 5.1 Layout of the experiments in Bugesera, Rwanda (a) and in Meki, Ethiopia (b) comparing 

conventional tillage in sole maize (CT), conservation agriculture in sole maize (CA), conservation 

agriculture with trees (CAWT) and conventional tillage with trees (CTWT) for four open 

pollinated maize cultivars.   

In Rwanda, the most frequently used OPV cultivar i.e., ZM607 was used in all plots (Fig. 1a). 

In Ethiopia, the selected OPVs were Gibe-2, Melkasa-4, Melkasa-6Q and Melkasa-2 and these 

were randomly assigned to the four subplots per treatment each season, controlling for differences 

between the subplots (Figure 4.1b). Maize was sown with a spacing of 0.4 m within rows and 0.8 

m between rows with two seeds per station in Rwanda. In Ethiopia, maize was sown at a spacing 

of 0.3 m within rows and 0.7 m between rows with 1 plant per station left after thinning.  

In the CA and CAWT treatments, seeds were sown after slashing weeds with a sickle, without 

prior land preparation. Planting stations were opened with a hand-hoe to a depth of about 10 cm at 

the onset of the rainy season. Fertilization included the application of 18 kg of N ha-1 and 20 kg of 

CAWT 

: Tree 

(a) ON-FARM TRIAL IN RWANDA 

: Melkasa-4 : Gibe-2  : Melkasa-6Q : Melkasa-2 : Tree 

(b) ON-FARM TRIAL IN ETHIOPIA 

CT  CA  CTWT CT CA CAWT CTWT 
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P ha-1 as di-ammonium phosphate at sowing and 46 kg of N ha-1 as urea as top-dressing six weeks 

after plant emergence, following general recommendations for the area. Fertilizers mixed with 

soils were placed in the hole before sowing seeds and covered by 2-3 cm of soil. Glyphosate was 

applied to control weeds in Ethiopia, but not in Rwanda. Weeding was done manually twice a 

month in all treatments. Crop residues were kept in situ in the CA and the CAWT plots but amounts 

produced and maintained were too small to cover the soil and were rapidly consumed by termites 

within one month after each harvest. In CT and CTWT treatments, crop residues were removed as 

commonly practiced in the area.   

 

5.2.3 Maize growth measurements 

In Rwanda, the number of fully expanded leaves, the length and the width of the last fully 

expanded leaf, and the plant height were recorded weekly from 20 days after sowing (DAS) to the 

end of the vegetative growth. In Ethiopia, these measurements were only recorded at anthesis. Leaf 

area (LA) and leaf area index (LAI) were calculated using the following formula: 

LA = 0.75 × L × B 

LAI = LA x NL x D 

where L indicates the length from the leaf base to the tip of a leaf, B indicates the maximum width 

of the leaf, NL indicates the total number of leaves per plant and D indicates the plant density. The 

value of 0.75 (Maddonni and Otegui 1996) reflects the shape of the leaf in-between values for a 

triangle and a square. Emergence rates were measured 12 days after sowing. Fresh stover and grain 

weights were recorded in the field and dry weights of maize grain and stover were determined after 

oven-drying a sub-sample at 60 ºC for one week.  

5.2.4 Statistical analysis 

Means of tree characteristics were compared with an Analysis of Variance (ANOVA), the 

significance of differences was tested using Fisher’s F-test. Maize grain dry matter yields, total 

biomass, harvest index, LA, LAI and plant height data were averaged per plot, which in the case 

of Ethiopia meant averaging over varieties. All variables were analysed with the following linear 

mixed-effect model (LMM) in R software: 
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𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝐶𝐶𝑖𝑖 +   𝛾𝛾𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛿𝛿𝑇𝑇𝑇𝑇𝑖𝑖 +  𝜀𝜀𝑆𝑆𝑖𝑖(𝐹𝐹𝑖𝑖 ) +  𝜁𝜁𝐶𝐶𝑖𝑖 x 𝑇𝑇𝑇𝑇𝑖𝑖 +   ɳ𝐶𝐶𝑖𝑖 x 𝑇𝑇𝑇𝑇𝑖𝑖 +  𝜃𝜃𝑇𝑇𝑇𝑇𝑖𝑖 x 𝑇𝑇𝑇𝑇𝑖𝑖

+  𝜅𝜅𝐶𝐶𝑖𝑖 x 𝑇𝑇𝑇𝑇𝑖𝑖 x 𝑇𝑇𝑇𝑇𝑖𝑖 + 𝑅𝑅 

where Yijklm represents the response variable, Ci is the ith country, TLj is the jth tillage intensity, 

TPk represents the presence or absence of tree, Sl is the lth season, Fm is the mth farm and R is the 

residual, and where α, β, γ, δ, ε, ζ, ɳ, θ, and κ represent fixed and random effects values.  

Country, tillage (CA or CT) and tree presence/absence were included as fixed effects and 

whole plot, subplot and farm were random effects. The sub-plot factor was defined as tillage type 

nested within a treatment within a farm. The whole plot factor was defined as treatment within a 

farm for Rwanda but was equal to the sub plot factor in Ethiopia as the four sub plots under one 

tree included only one tillage type. Season was accounted for as a farm specific random effect. A 

tree type specific treatment interaction effect was modelled for each farm, with successive seasons 

coded as an ordered factor. For LA and plant height, means per plot were calculated and used as 

response variables. Significance of fixed effects was tested using a type-III ANOVA with 

Satterthwaite approximation for the denominator degrees of freedom. R software (R Development 

Core Team 2014) was used for all statistical analyses. 

 

5.3 Results  

5.3.1 Tree characteristics 

The G. robusta and A. tortilis had about the same heights but were taller than S. spectabilis 

trees. The latter had the largest diameter at shoot height but with smaller diameter at breast height 

for the individual shoots. S. spectabilis and A. tortilis had a similar but larger canopy radius than 

G. robusta (Table 5.1).   
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Table 5.1 Characteristics of G. robusta, S. spectabilis and A. tortilus trees at the on-set of the 

trials (beginning of 2014). Standard deviations are given after the signs ‘±’. Means followed by 

the same letter in the same row do not differ significantly at α = 0.05. 

Measurement G. robusta S. spectabilis A. tortilis 

Height (m) 9.1a ± 0.3 6.8b ± 0.5 8.3a ± 1.2 

Diameter at breast height (DBH, cm) 23.5b ± 0.7 11.4c ± 2.7 27.2a ± 2.3 

Diameter at stump height (DSH, cm) 29.4b ± 0.9 63.3a ± 7.0 - 

Canopy radius (m) 2.9c ± 0.1 4.7a ± 0.2 4.31b ± 0.5 

Tree age by farmer recall (years) 18.3a ± 0.6  21.9a ± 3.5 - 

Number of stems 1a ± 0 5b ± 0.5 1a ± 0 

-: are characteristics not measured 

5.3.2 Maize emergence rates  

 Emergence rates were generally lower in Ethiopia (58.0%) than in Rwanda (77.8%) probably 

due to the El Niño induced drought in 2015. Overall, maize emergence rates were smaller for CA 

than for CT, and even less for CTWT than CAWT in both Rwanda and Ethiopia. The average 

emergence rates in CAWT and CTWT were respectively 46.9% and 70.1%, compared with 74.7% 

and 79.8% in CA and CT. The lowest emergence rates were observed in Ethiopia under A. tortilis 

in the CAWT treatment, the highest emergence rates were observed in the CT treatment in Rwanda 

(Figure 5.2). The effects of country, tillage management, and presence/absence of trees on the 

emergence rate were significant. The maize emergence rates differed between the combinations of 

tillage and tree presence as evidenced by the significant interaction terms (Table 5.2).  
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Figure 5.2 Means of maize emergence rates for conventional tillage in sole maize (CT), 

conservation agriculture in sole maize (CA), conservation agriculture with trees (CAWT) and 

conventional tillage with trees (CTWT). Trees are G. robusta, S. spectabilis in Rwanda and A. 

tortilis in Ethiopia. Data are from 4 seasons in Rwanda and 2 seasons in Ethiopia. Error bars indicate 

standard error of the means over seasons and varieties. 

5.3.3 Maize leaf area, leaf area index and plant height 

Maize LA of the 7th to the 16th leaf from the ground was lower in the presence of trees (CTWT 

and CAWT) than in the absence of trees (CT and CA) (Figure 5.3). This trend was observed in 

both Rwanda and Ethiopia. LA was lower in the treatments without tillage than in the treatment 

with tillage, more so in the presence of trees. The maize LA of the 7th to the 16th leaf was smaller 

in CAWT when compared with CTWT or CT (Figure 5.3).  

Plants were shorter in treatments with trees as compared with sole maize treatments, with a 

larger difference in Rwanda than in Ethiopia. Observed mean plant height at harvest was 143 and 

163 cm in CAWT and CTWT, respectively, and 170 and 191 cm in CA and CT respectively 

(Figure 5.3). The statistical predicted means of plant height were 91 and 106 cm in CAWT and 

CTWT, respectively as compared to 113 cm in CA and 125 cm in CT. LAI was smaller in CAWT 

as compared to CTWT and highest in CT treatments (Figure 5.4). The effect of tillage intensity 
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and of the presence or absence of trees were significant for LA, LAI and plant height while only 

the interaction of country and tree presence or absence was significant for plant height (Table 5.2). 

 

Figure 5.3 Mean plant height and mean area per leaf of maize (from 7th to 16th leaf) in conventional 

tillage in sole maize (CT), conservation agriculture in sole maize (CA), conservation agriculture 

with trees (CAWT) and conventional tillage with trees (CTWT) for the tree species G. robusta (a), 

S. spectabilis (b) in Rwanda and A. tortilis (c) in Ethiopia. In (a) and (b) the mean area of fully 

expanded leaves for four seasons is presented while in (c) the mean leaf area measured at maize 

anthesis for two seasons is presented. Maize leaf area is represented by horizontal bars including 

the standard error of the mean.  
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Figure 5.4 Maize leaf area index in conventional tillage in sole maize (CT), conservation agriculture 

in sole maize (CA), conservation agriculture with trees (CAWT) and conventional tillage with trees 

(CTWT) under G. robusta, S. spectabilis in Rwanda and A. tortilis in Ethiopia. Data are means of 

4 seasons in Rwanda and of 2 seasons in Ethiopia. Error bars represent the standard errors of the 

means. 

Table 5.2 P-values for fixed factors in the LMM model, corresponding to effects of tree species, 

tillage intensity, and presence/absence of trees on maize emergence rate, leaf area (LA), leaf area 

index (LAI) and plant height in the on-farm trials. Significant effects (P < 0.05) are shown in 

boldface.  

 Factors Emergence  Leaf area  LAI Plant height 

Country <0.001  0.690 0.289 0.045 

Tillage <0.001  <0.001 <0.001 <0.001 

Tree presence/absence  <0.001  <0.001 <0.001 <0.001 

Tillage x tree presence/absence <0.001  0.342 0.857 0.725 

Tillage x Country  <0.001  0.867 0.648 0.230 

Country x tree presence/absence  <0.001  0.691 0.286 0.011 

Tillage x tree presence/absence x country  0.898  0.968 0.127 0.920 
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5.3.4 Above-ground biomass, grain yield and harvest index 

Grain yield, total biomass and harvest index were smaller in CA than in CT and smaller in 

CAWT than in CTWT, but with a much larger difference between CAWT and CTWT (Table 5.3). 

Mean estimated grain yields in CA and CAWT were respectively 2.38 t DM ha-1 and 0.91 t DM 

ha-1, compared with mean grain yields values in CT and CTWT of 2.58 t DM ha-1 and 1.72 t DM 

ha-1. Mean total biomass in CA and CAWT were respectively 7.55 t DM ha-1 and 4.5 t DM ha-1, 

compared with mean total biomass values in CT and CTWT of 8.61 t DM ha-1 and 6.53 t DM ha-

1. The mean harvest index in CA and CAWT were respectively 0.32 and 0.2, compared with mean 

harvest index values of 0.33 and 0.27 in CT and CTWT. The effects of tillage intensity (CA or 

CT) and presence/absence of trees were significant for grain yield and total biomass. Country and 

treatment effects were significant for harvest index. The interaction between tillage intensity and 

tree presence or absence was only significant for harvest index whereas the interaction between 

tree presence or absence and country was significant for grain yield and harvest index (Table 5.4).  
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Table 5.3 Comparison of maize grain dry matter (DM) yield, total biomass and harvest index of 

maize as sole crop under conventional tillage (CT), sole crop under conservation agriculture (CA), 

conventional tillage with trees (CTWT) and conservation agriculture with trees (CAWT), with the 

tree species G. robusta and S. spectabilis in Rwanda and A. tortilis in Ethiopia. Standard deviations 

for the observed and standard error for the model estimated means are given after the sign ‘±’.  

   G. robusta (Rwanda)   S. spectabilis (Rwanda)   A. tortilis (Ethiopia) 

Treatment 

Grain 
yield (t 
DM ha-1) 

Total 
biomass (t 
DM ha-1) 

Harvest 
Index   

Grain 
yield (t 
DM ha-1) 

Total 
biomass (t 
DM ha-1) 

Harvest 
Index   

Grain 
yield (t 
DM ha-1) 

Total 
biomass (t 
DM ha-1) 

Harvest 
Index 

 2015A        2014   
CA 3.91 ±1.7 7.02 ±2.7 0.55 ±0  3.94 ±0.2 6.97 ±0.5 0.57 ±0  2.42 ±1.7 9.32 ±6.7 0.23 ±0.1 

CT 4.45 ±1.8 9.21 ±4.5 0.5 ±0.1  4.51 ±0.9 8.13 ±1.2 0.55 ±0  2.54 ±1 10.91 ±4.2 0.24 ±0 

CAWT 1.82 ±1.4 3.81 ±2.3 0.47 ±0.1  1.03 ±0.2 1.96 ±0.2 0.52 ±0.1  1.7 ±1 7.62 ±4.9 0.24 ±0 

CTWT 3.25 ±2 4.85 ±4.6 0.51 ±0  2.36 ±0.9 4.42 ±1.6 0.54 ±0  1.82 ±0.7 8.15 ±3.1 0.23 ±0 

 2015B        2015   
CA 2.15 ±1.2 3.56 ±1.8 0.58 ±0.1  2.42 ±0.5 4.41 ±0.7 0.55 ±0  1.51 ±0.7 7.58 ±1.3 0.2 ±0.1 

CT 2.42 ±1.2 3.78 ±1.8 0.63 ±0.1  2.47 ±0.5 4.31 ±1.3 0.59 ±0.1  1.82 ±1.2 8.31 ±2.1 0.21 ±0.1 

CAWT 0.64 ±0.7 1.54 ±0.9 0.34 ±0.2  0.04 ±0.1 0.88 ±0.4 0.05 ±0  0.73 ±1 5.02 ±4.9 0.1 ±0.1 

CTWT 1.67 ±1.3 2.8 ±1.6 0.54 ±0.1  0.53 ±0.5 1.75 ±0.7 0.27 ±0.1  2.08 ±0.9 8.71 ±2.3 0.23 ±0 

 2016A           
CA 0.36 ±0.4 2.19 ±2.7 0.16 ±0.2  0.6 ±0.4 5.38 ±2.2 0.1 ±0  

- - - 

CT 0.52 ±0.3 2.15 ±2.2 0.34 ±0.1  0.68 ±0.4 6.35 ±1.2 0.1 ±0  
- - - 

CAWT 0.1 ±0.2 3.65 ±1.9 0.02 ±0  0.24 ±0 2.84 ±0.7 0.09 ±0  
- - - 

CTWT 0.23 ±0.1 3.87 ±1.6 0.06 ±0  0.42 ±0.1 3.91 ±0.6 0.11 ±0  
- - - 

 2016B        
- - - 

CA 3.94 ±0.4 14.12 ±1.3 0.28 ±0  3.85 ±0.1 11.95 ±1 0.33 ±0  
- - - 

CT 3.67 ±0.5 13.57 ±0.6 0.27 ±0  4.04 ±0.1 13.05 ±1.7 0.31 ±0  
- - - 

CAWT 1.26 ±0.8 7.62 ±3.3 0.15 ±0  0.38 ±0.4 4.37 ±0.3 0.08 ±0.1  
- - - 

CTWT 2.41 ±1.6 9.98 ±4 0.22 ±0.1   1.53 ±1 8.38 ±3 0.17 ±0.1   - - - 

 Means (model estimates) in Rwanda Means (model estimates) in Ethiopia 

CA 1.79 ±0.2 5.75 ±0.6 0.55 ±0      1.52 ±0.6 8.2  ±1.3 0.23 ±0 

CT 1.99 ±0.2 6.36 ±0.6 0.57 ±0      1.92 ±0.6 10.32 ±1.3 0.23 ±0 

CAWT 0.17 ±0.2 2.13 ±0.6  0.37 ±0      0.91 ±0.6 6.69 ±1.3 0.18 ±0 

CTWT 0.69 ±0.2 3.79 ±0.6 0.46 ±0      1.68 ±0.6 9.07 ±1.3 0.22 ±0 
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Table 5.4 P-values for fixed factors in the LMM model, corresponding to effects of country, tillage 

intensity, and presence or absence of trees on maize yield, total maize biomass and maize harvest 

index in the on-farm trials. Significant effects (P < 0.05) are highlighted in bold.  

 Factors Grain yield  Total Biomass Harvest Index 

Country 0.387 < 0.016 <0.001 

Tillage 0.007 0.008 0.100 

Tree presence/absence  < 0.001 0.003 0.002 

Tillage x tree presence/absence  0.202 0.594 0.241 

Tillage x country  0.901 0.367 0.493 

Country x tree presence/absence  0.006 0.215 0.011 

Tillage x tree presence/absence x country  0.699 0.751 0.795 

 

5.4 Discussion  

5.4.1 CAWT maximizes tree-crop competition and reduces crop yields  

 CAWT decreased grain yield and total biomass when compared with CTWT in semi-arid areas 

of East Africa. In Rwanda, the presence of a tree caused a much stronger reduction in yield and 

harvest index for CAWT compared to CTWT, suggesting that competition had a greater impact 

on grain yield than on biomass production (Muthuri et al. 2005). The greater yield difference 

between CA vs CT compared with CAWT vs. CTWT was due to lower emergence rates (Hulugalle 

and Ndi 1993) and lower maize LAI. Maize yield was larger in CTWT compared with CAWT, 

most likely because of reduced below-ground competition due to tillage pruning superficial tree 

roots. The importance of root pruning to limit water and nutrient competition in agroforestry was 

highlighted elsewhere by experiments that either physically separated the root systems of trees and 

crops using barriers (Singh et al. 1989) or pruned the tree roots (Bayala et al. 2013). Practicing 

CAWT over many seasons would lead to more tree root establishment in the top soil, likely 

exacerbating below-ground competition between trees and crops. We found no evidence for the 

anticipated benefits of CAWT claimed by (Kassam et al. 2009) who suggested that less soil 

disturbance would benefit both the trees and the associated crops.  
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 Quantities of biomass produced and retained as surface mulch in CA and CAWT were small 

and rapidly - around one month - consumed by the abundant termites in these semi-arid regions, 

especially in Rwanda (Musebe et al. 2017) hence leaving soils prone to crusting and compaction. 

Chassot et al. (2001) found that minimum tillage reduced maize yield as it increased topsoil 

compaction which restricted the growth of roots and shoots of maize seedlings. Although cases 

can be found where trees improve soil structure (Silva et al. 2011), others report that soil 

compaction increased due to the weight of trees and wind pressure (Greacen and Sands 1980; 

Godefroid and Koedam 2010). Therefore, combining CA and agroforestry could have increased 

crusting and top-soil compaction in this study and eventually contributed to the observed lowest 

maize yields in CAWT compared with the three other treatments (CT, CA, and CTWT).  

 Literature on the effect of CAWT on crop yields is very limited despite the current active 

promotion of the practice in Eastern and Southern Africa (Muriuki et al. 2012), and in the Sahel 

(Bayala et al. 2011). Our results provide empirical evidence that CAWT strongly reduces crop 

yields in the semi-arid areas of East Africa. These findings are similar to those from Hulugalle and 

Ndi (1993) who also observed strong yield penalties when CA was combined with S. spectabilis 

trees. The positive impact of CAWT on crop yield reported when the tree species Faidherbia 

albida is used (Garrity et al. 2010)  may be an exception, due to the unusual reverse phenology of 

the tree species (as well as its nitrogen-fixing ability).  

5.4.2 CAWT reduces emergence rate, LA, LAI and plant height 

 CAWT reduced maize emergence rates as compared with CTWT. This could be due to the 

increased crusting and soil compaction often found with CA when amounts of mulch retained are 

small (Baudron et al. 2012). One of the critical factors in maize production is an evenly distributed 

plant population where emergence is the most important factor (Weaich et al. 1996). Regular plant 

stands become even harder to obtain in agroforestry systems, where soil recharge by the first rains 

after the dry season could take longer than in open fields due to interception of rain by the tree 

canopies (Samba et al. 2001; Jackson 2000). In addition, available soil water at the beginning of 

the cropping season tends to be lower in agroforestry systems since the trees continue to deplete 

available soil water even during the dry season (Chirwa et al. 2007b). This study shows that CTWT 

favours maize emergence and early growth in the semi-arid areas when compared with CAWT 
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since it helps break crusts and could favour rapid soil water recharge at the beginning of the rainy 

season.  

 LAI was lower in CAWT than in CTWT due to a combination of low LA and poor plant 

emergence rates. While maize LA was not affected by the presence of trees in sub-humid region 

(Ndoli et al. 2017), it was strongly reduced in semi-arid region, more so under CAWT than under 

CTWT in this study. This appears to be a sign of water competition that could have prevailed in 

CAWT when compared to CTWT in the semi-arid areas. Maize LAI is an important determinant 

of productivity (Prasad and Brook 2005), particularly under tree canopies where solar radiation is 

limited (Tiwari et al. 2012). In this study, LAI was reduced in CAWT, which may have contributed 

to low maize productivity. The stronger reduction in maize plant height under CAWT when 

compared to CTWT suggests that plants grew more slowly, pointing at stronger nutrient and water 

competition between the tree and the crop, as reported by Namirembe (1999).  

5.5 Conclusion 

We conclude that CAWT is not a viable alternative to sole cropping under conventional tillage 

in the semi-arid areas of East Africa, given its detrimental effects on maize performance. The 

presence of trees consistently reduced maize emergence rate, LA, LAI, plant height and maize 

yields, but more so in CAWT than in CTWT. Poorer maize yield under CAWT as compared with 

CTWT was attributed to the observed poor emergence rate, lower LAI and lower harvest index 

values. CAWT likely exacerbates tree-crop competition for water and nutrients and consequently 

reduces crop yields. Thus, CAWT should be strongly discouraged in semi-arid areas of Eastern 

Africa. There is a crucial need for detailed research to investigate where and in which conditions 

CAWT can provide benefits for farmers. 
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6.1 Introduction 

Comprehensive discussions on the research findings have been presented in Chapters 2, 3, 4 and 

5. The main purpose of this chapter is to synthesize and discuss some of the most important points 

concerning the effects of trees on crop growth and yield resulting from their impact on the 

microclimate and soil fertility. This includes assessing the combined effect of conservation 

agriculture and the presence of trees on maize productivity, as well as the effect of better genotypes 

in agroforestry systems. Finally, the overall contribution of agroforestry to household food security 

is discussed. The tree effect on maize crop productivity is discussed in Sections 6.2, 6.3, and 6.4. 

Section 6.5 presents an evaluation of the contribution of agroforestry to household food security. 

Section 6.6 elaborates on the policy implications and the recommendations for further scientific 

study, while the last part of the chapter, Section 6.7, gives a summary of the main conclusions 

reached, based on the results of the study.   

6.2 Microclimate and fertility effects of trees on crop 

I have demonstrated that crop growth and yields in close proximity to mature trees are 

significantly reduced. This result suggests that there are no microclimate benefits for yields of 

maize associated with trees. Indeed, the presence of trees reduced the incident solar radiation 

reaching maize crops in this study (Figure 6.1). In the system of scattered trees on-farm, the tree 

and maize canopies are separated vertically in space. Since the maize is shorter, it is permanently 

shaded by the tree. The fraction of photosynthetically active radiation reaching the under-storey 

maize is, therefore, reduced by the presence of the trees.  This reduces the net photosynthesis of 

the shaded maize plants, and therewith plant growth and maize yields (Chapter 3). The results on 

competition for light between the tree species and maize in this study are in agreement with 

findings of Tiwari et al. (2012) and Okorio (2000). 

 The incorporation of trees into farming systems may have either beneficial or detrimental 

effects on crop production. Generally, above and below ground competition have a negative effect 

on crop performance, but are unavoidable in simultaneous agroforestry systems such as scattered 

on-farm trees. The above-ground competition is related to microclimate modification which 

involves changes in light, temperature, relative humidity, and rain interception (Jonsson et al. 



91 

1999; Kater et al. 1992; Sanou et al. 2012), while the below-ground competition is about water 

and nutrients (Schroth 1995). The competition for light reduces yields of C4 crops more than those 

of C3 crops (Sanou et al. 2012; Bayala et al. 2015). In contrast to microclimate benefits, soil 

fertility improvement seems to be an accepted evidence in agroforestry systems. However, 

controversy still exists as to whether trees really contribute to nutrients, recycle them, or just 

‘harvest’ them and concentrate them from within their laterally extensive root zone (Bayala et al. 

2006). 

 
Figure 6.1 Daily global solar radiation, 1 m northward from the trunk and 20 m northward from 

the trunk under Alnus acuminata (a) and Markhamia lutea (b) in the sub-humid region of Rwanda, 

and under Grevillea robusta (c) and from Senna spectabilis (d) in the equatorial savannah of 

Rwanda. Data are averages of three days’ measurements on identical weather stations 

simultaneously logging every five minutes. 
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arid regions. By reducing the evapotranspiration from the soil and the associated crops underneath, 

trees can increase soil water content (Bayala et al. 2015). Another process leading to increased soil 

water content under trees is the hydraulic lift or water redistribution, which is the passive 

movement of water through the roots of trees, from deeper and wetter soil layers to shallower and 

drier layers, along a gradient of soil water potential (Richards and Caldwell 1987). However, the 

effects of these processes were not observed in this study.  

In this study, Alnus acuminata, a nitrogen-fixing tree with high litter biomass, was the only 

species that appeared to increase crop yields at the canopy edges in some seasons following 

substantial litter fall. It therefore appeared to improve soil fertility in the low intensity farming 

systems. These results are in agreement with findings from Peden et al. (1993) and Okorio et al. 

(1994). When trees and crops are mixed, rings of higher soil fertility around trees may be observed 

when fields are nutrient-deficient (Buresh and Tian 1997; Bayala et al. 2015). Many different 

nitrogen-fixing leguminous trees are used in agroforestry (Giller 2001) and their ability to fix N2 

can significantly reduce competition for this resource (García-Barrios and Ong 2004).  

A. acuminata modified the microclimate by reducing air temperature towards mid-day and 

slightly increasing air temperature in the night due to the blanket effect (Figure 6.2). This buffered 

the effect of the tree on the growth degree days through effects on the maximum and minimum air 

temperatures. Similarly, the relative humidity under this tree was higher than in the open field 

around mid-day, but it was lower in the night time (Figure 6.2). Except for the reduction of the 

incident solar radiation under A. acuminata (Figure 6.1), the modification of air temperature and 

relative humidity by the tree did not influence crop performance in this study. While the 

microclimate modification of the trees might be beneficial to crops in hot climates like in the Sahel 

region (Bayala et al. 2015), it was not so in this study. I conclude that crops growing under these 

trees may benefit from the improved soil fertility, but shade provided by the trees will prevent 

crops from fully benefiting from it until the trees are harvested or intensively pruned (e.g. 

pollarded). This implies that canopy management should be much emphasized to limit the negative 

effects of shade on the associated crops, if shade-tolerant crop varieties are not yet developed or 

available. The optimizing of crop production in agroforestry will require specific tree management 

(e.g. pruning) and crop management practices (the use of adapted varieties and adequate tillage).  
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Figure 6.2 Air temperature and relative humidity under Alnus acuminata and in open fields during 

season 2015 B in the sub-humid agroecology (Gishwati) of Rwanda. Vertical bars are standard 

errors of the means.  

In this study, trees reduced day air temperature but did not delay the phenology of maize in 

either sub-humid or semi-arid regions. The microclimate modification under trees in the sub-humid 

climate of Rwanda did not affect the leaf area index, but it did reduce plant height and yield. In 

the semi-arid regions of Rwanda and Ethiopia (see Chapter 3 and Chapter 4), the microclimate 

modification by trees shade contributed to the reduction in leaf area index, plant height and yields. 

The tree canopy moderates temperature underneath (García-Barrios and Ong 2004; Rao et al. 

1997), and potentially increases resource use efficiency, for example by reducing 

evapotranspiration from the soil and the associated crops or by preventing supra-optimal 

temperatures (Sanou et al. 2012). The lower temperature under trees can delay crop phenology and 

elongate the grain filling stage, which can improve crop yield (Craufurd and Wheeler 2009; Sida 

et al. 2018) when water and nutrients are sufficiently available (Anwar et al. 2015), but this effect 

was not observed in this study.  

A thorough understanding of how agroforestry system components utilize available resources 

is crucial for determining species combinations, planting arrangements, tree spatial densities and 

management strategies suitable for different locations and different farmer objectives and for the 

long-term sustainability of the system (Ong and Huxley 1996). In this study, the trees and the crops 

generally competed for growth resources. Management of the trees in the studied agroforestry 
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systems could minimize this competition and hence improve the yield of the associated crops. In 

recent studies, tree canopy and tree root pruning were tested to improve light availability and 

resource use efficiency (Bayala et al. 2015), but studies that deal with improved agronomic 

practices in the agroforestry systems are rare. Two such practices tested in this study, and discussed 

below, are tillage options and the selection of crop varieties that are better adapted to agroforestry 

conditions. 

6.3 Conservation agriculture with trees exacerbates tree-crop competition 

Conservation agriculture (CA) is defined as the simultaneous application of minimal soil 

disturbance, permanent soil cover through a mulch of crop residues or living plants, and crop 

rotation (www.fao.org/ca). CA has been reported to increase and stabilize maize yields, conserve 

soil moisture, increase soil carbon stocks, and improve soil physical and chemical properties in 

many countries in sub-Saharan Africa (Rosenstock et al. 2014), but the uptake in this region is still 

restricted, mainly because of the limited availability of crop residues (Giller et al. 2009). Kassam 

et al. (2009) highlighted the common features of CA and agroforestry, such as increased ground 

cover and the incorporation of legumes in the system. Ngrsquo et al. (2013) suggested that one 

way to solve the problem of mulch scarcity and increase CA uptake would be to incorporate of 

agroforestry into CA practices, creating a fresh approach – conservation agriculture with trees 

(CAWT). It is claimed that combining CA with agroforestry will help to increase food production 

in Africa (Garrity et al. 2010). However, this study found that conservation agriculture with trees 

(CAWT) decreased crop growth and yields in the semi-arid regions of East Africa when compared 

to conventional tillage with trees (CTWT). 

The study conducted in the semi-arid regions of Rwanda – Bugesera – and Ethiopia – Meki – 

(Chapter 5) led us to conclude that CAWT is not a viable alternative to sole cropping under 

conventional tillage or to CTWT, given its detrimental effects on maize performance. CAWT 

reduced maize emergence rates, leaf area index, plant height and yields, when compared to CTWT. 

Minimum tillage under trees highly reduced the maize emergence rates when compared to 

conventional tillage under trees. When the roots of trees are left undisturbed by tillage, they will 

grow densely in the topsoil and strongly compete with crops for water and nutrients. Tilling prunes 

the tree roots in the top soil and reduces below-ground competition between trees and crops. The 
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importance of root pruning to limit below-ground competition in agroforestry was also highlighted 

by Singh et al. (1989) and Bayala et al. (2013).  

 Van Noordwijk and Ong (1999) hypothesize that land-use systems that mimic patterns of 

resource use in natural systems are most likely to achieve long-term sustainability. One of the 

farming systems that closely approach natural systems is the combination of CA and agroforestry. 

Indeed, this system has been recommended as a sustainable approach which allows the production 

of food, fodder, fuel, fibre and income from intercropped trees while restoring exhausted soils 

(Garrity et al. 2010). However, despite the separate theoretical potential of both CA and 

agroforestry practices to halt land degradation and improve the sustainability of farming systems 

in East Africa, it appears that the combination of these two practices increases tree-crop 

competition and leads to poor crop performance in semi-arid areas. It is therefore crucial to provide 

convincing evidence on the basis of on-farm demonstration trials before such practices are 

recommended to farmers. Farmers are concerned with meeting their immediate needs, and are 

therefore easily deterred from adopting technologies that entail no yield benefits in the short term 

(Giller et al. 2009). 

 

6.4  Better maize genotypes in agroforestry systems can increase crop productivity 

The 20th century Green Revolution, which dramatically increased crop yields in Latin America 

and Asia, never gained a foothold in sub-Saharan Africa, because of the daunting ecological, and 

farm inputs challenges (Blaustein 2008). In sub-Saharan Africa, maize is the most important cereal 

food crop and its consumption demand is predicted to double by 2050 (Anley et al. 2013). 

Although maize breeding has had great impact in sub-Saharan Africa (Smale and Jayne 2003), few 

attempts have been made to develop germplasms specifically adapted to complex environments as 

found in agroforestry systems (Tiwari et al. 2009), which are key crop production systems in sub-

Saharan Africa (FAO 2007). In Chapter 4, we compared the performance of open-pollinated 

varieties of maize (OPVs) and maize hybrids in two agroforestry systems in East Africa – in 

Rwanda and Ethiopia. It was concluded that farmers in the semi-arid regions of Rwanda could 

benefit from using hybrids, in contrast to farmers in the semi-arid regions of Ethiopia, where 

hybrids were not significantly better than OPVs in agroforestry systems. 
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 Maize is the principal staple food in East Africa. Yet this study has shown that the use of the 

presently available maize germplasm in agroforestry systems leads to significant yield reduction. 

An implication for food security is that, because of the sub-optimal environment agroforestry 

systems offer for maize production, it is necessary to breed specially adapted and robust varieties 

of maize. The current varieties proposed to farmers were bred for full sun and optimum soil 

moisture conditions, and therefore are not optimally adapted to agroforestry conditions. Tiwari et 

al. (2009) and Desclaux et al. (2016) proposed participatory plant breeding methods to breed for 

agroforestry conditions targeting traits influencing agroecological structure and function rather 

than the classical breeding that targets yield and quality. The selection of traits under optimum 

growing conditions may also improve performance under sub-optimal conditions (Russel 1984). 

This appears to have been the case in the semi-arid region of Rwanda, where the best-performing 

hybrids in sole crop also performed better under trees. 

 In light of recurring food shortages, projected climate change, and rising prices of fossil fuel-

based agricultural inputs, agroforestry has recently experienced a surge of interest among the 

research and development communities. It is considered to be a cost-effective and sustainable 

method to enhance food security, which at the same time contributes to climate change adaptation 

and mitigation (Mbow et al. 2014). A substantial increase of trees on croplands, is an inevitable 

phenomenon in the future (Garrity 2012). This increase has to be achieved together with the goal 

to double food production to feed the world’s ever-growing population.  

 In the past decades, agroforestry research has only focused on tree management to limit 

competition with crops; but little was done to improve the capacity of the associated crops to 

withstand competition with trees. More than 22000 articles (published from 1970 to 2015), 

referenced in Web of Science Thomson Reuters contained the two keywords ‘Agroforestry’ and 

‘Crop’. However, when adding the keyword ‘Breeding’, the number of articles falls to less than 

1700 (Figure 6.3), and these articles almost exclusively bear on the breeding of trees (Desclaux et 

al. 2016). If nothing is done on the side of crop breeding to fit in with the agroforestry system 

which is potentially the future in global land use (Garrity 2012), crop yields in this system could 

continuously decrease or stagnate, with direct consequences for food security and at the expense 

of ‘sustainability’.  
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Figure 6.3 Number of agroforestry publications in the Web of Science [figure from Desclaux et al. 

(2016)]   

 

6.5  Can growing on-farm trees improve food security?  

Often the planting and keeping of on-farm trees is the result of a deliberate decision by farmers, 

taken in order to satisfy multiple needs, and depending on available resources and knowledge 

systems. In view of rapidly increasing population pressures and the depletion of natural resources, 

the adoption of agroforestry has been advocated as a potentially productive and environmentally-

friendly solution for farming systems, which can improve food and nutritional security (Leakey 

2014). Even smallholder farmers who endure crop yield losses due to tree-crop competition often 

still keep trees on their small farms due to the value they attribute to them. Trees provide products 

that are used directly by households (food, fuel, and construction materials) or that are used as 

inputs to agriculture (fodder, green manure and mulches). Trees also provide income and service 

functions (erosion control, shade for people and livestock, and demarcation of land to ensure land 

tenure). In the survey conducted in Rwanda (Chapter 2), households’ food security was reduced 
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by the presence of more trees on small farms as well as on larger farms. In general, households 

with low food security relied more on tree income than households with a higher food-security 

status, indicating that tree income serves as a ‘safety net’ for the poorest households. 

The International Food Policy Research Institute in Washington has indicated that the world 

population will rise from the current 7.6 billion to approximately 10 billion by 2050, and that to 

support all these people, food production will have to increase by at least 70%. This target might 

not be reached if the food production has to take place in the current agroforestry systems, where 

yields are generally depressed by the sub-optimal growing conditions. The global effort to bring 

150 million hectares of degraded and deforested land into restoration by 2020, and 350 million 

hectares by 2030, has created an unprecedented momentum, with 40 governments, companies and 

organizations already having allotted over 148 million hectares to this restoration ambition. There 

is strong voluntary commitment of the part of African countries, even beyond the ‘negotiated’ 

commitments. In East Africa, some countries have pledged to restore up to 100% of their national 

arable land. Rwanda has pledged to restore 2 million hectares of land, Ethiopia 15 million ha, 

Kenya 5.1 million hectares, Uganda 2.5 million hectares, and Burundi 2 million hectares 

(http://www.bonnchallenge.org).  This ambitious political plan to scale up land restoration, mainly 

with agroforestry, could affect negatively crop yields and food security.    

Agroforestry for improved crop yields? 

A major tenet of agroforestry, that trees increase crop yields, is based primarily on the improved 

soil fertility measured near trees or where trees were previously grown. Tree litter and prunings 

provide nutrients which can meet crop demands, but the amounts provided are determined by the 

production rate and nutrient concentrations, both depending on climate, soil type, tree species, 

plant parts, tree densities and tree pruning regimes (Palm 1995). In this study trees generally 

depressed crop yields in both sub-humid and semi-arid regions of East Africa. Among five tree 

species evaluated in this study only one, Alnus acuminata, a nitrogen-fixing tree with high litter, 

showed signs of crop yield improvement at the canopy edges in some seasons. Although crops 

under trees may benefit from the improved soil fertility, light and water competition provided by 

the trees usually prevent them from benefiting.  
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The hypotheses that led many to have high expectations of agroforestry systems in the 1980s were 

mostly based on the assumption that trees have the potential to improve soil fertility. The 

hypotheses were that (i) trees would be able to supply nitrogen to the system by biological nitrogen 

fixation (BNF) from the air, and pump other nutrients from the depth and recycle them to the 

surface soil through litter; (ii) trees would minimize nutrient losses by erosion and leaching 

because of their always-present root systems, and (iii) trees would restore soil organic matter 

content and temper microclimate (Young 1989). From the 1980s, agroforestry research evolved: 

descriptive studies made way for studies based on a more scientific approach. The latter confirmed 

some tree advantages, but (disappointingly) also found disadvantages due to competition for 

resources between trees and crops which largely off-set the tree advantages (Ong 1995). The total 

primary production of trees and crops could still be larger than that of the crop alone, but the crop 

yield itself was often lower. This meant that only a high value of trees and a valid marketing 

infrastructure could make the system economically viable and attractive for farmers  (Radersma 

2002). Indeed, crop yields in the agroforestry systems with high-value trees were sometimes 

considered as a bonus to farmers (Bai et al. 2016).  

 Rao et al. (1997) argue that in spite of substantial crop yield decreases under scattered trees, 

the overall effect of the trees on crop yields could still be small, since only a small proportion of 

the area is subjected to tree-crop interactions. For instance, in Ethiopia farmers usually grow 

between 1 to 20 trees of a selected species per hectare and minimize the impact on the companion 

crops by occasional lopping and pollarding the trees (Poschen 1986; Iiyama et al. 2017). In such a 

system of 20 scattered trees ha-1 with each tree reducing the crop yield by 50% over a 100 m2 area, 

the crop yields in the field would be only 10% lower than it had been without the trees. We should 

also realize that on-farm trees have a value for farmers that compensates for the reduction in crop 

yields. The survey done in this study (Chapter 2) did not find any significant difference in crop 

productivity at the farm level between farmers mixing trees with crops and those applying sole 

cropping. This shows that the negative effects of trees on crops at the plot level could fade out at 

the farm level, since farmers adjust the tree density to balance crop and tree products. Strangely 

enough, farmers perceiving high competition between trees and crops were mostly found in the 

agroecologies of Rwanda with the least numbers of on-farm trees. Thus, research should be done 
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to investigate the rationale behind the negative perception of trees before policies pushing for the 

adoption of agroforestry are made.   

Agroforestry for woody products and income 

In Africa as a whole, 90 % of the total wood removal consists of fuelwood (Ridder 2007), and in 

sub-Saharan Africa, 90 % of the households use fuelwood for cooking (Maiangwa 2010). Woody 

biomass is the primary source of energy in East Africa, and this situation is expected to remain 

unchanged for at least the two coming decades (Iiyama et al. 2017; Drigo et al. 2013). Agroforestry 

supplies large amounts of fuelwood and contributes to reducing deforestation (Ndayambaje and 

Mohren 2011). In Rwanda, the forest area was estimated at 29.6% in 2015, with only 0.6% of the 

country remaining to reach the 30% maximum forest area target. The annual shortage in wood 

biomass is projected to reach 2.1 million tons by 2020 in a business-as-usual scenario, while there 

will be no space for new forests. Doubling the tree cover in agroforestry systems (from 5.2 to 

10.4%) can close this gap by half (Drigo et al. 2013).    

Over 50% of the surveyed households across six agroecologies in Rwanda referred to fuelwood 

as the major utility derived from tree species planted or regenerated on farms (Mukuralinda et al. 

2016). In this study (Chapter 2), it was found that woody products (e.g. firewood, poles and stakes 

for climbing beans) harvested on-farm contributed only a small part of the household income 

compared to the crop and livestock income; nevertheless a fair proportion of farmers depended on 

three income. Farm households with lower food security depended more on tree income than 

farmers with a higher food-security status, suggesting that tree income could be more important 

for the poorest farm households. It was apparent that on-farm tree numbers were usually not 

proportional to the income they generate, indicating that farmers might be producing trees on-farm 

mainly for household use rather than for income generation. Though I did not quantify the 

fuelwood produced for household consumption, it is evident that farmers producing their own 

fuelwood are able to save money they would have otherwise needed for purchasing it.  

Although trees in agroforestry may compete with the corresponding crops for growth resources 

such as water and nutrients, farmers still choose to grow on-farm trees to meet their households’ 

fuelwood needs. Indeed, Rwandans have a proverb which says ‘People with firewood eat cooked 

food’, meaning that good things happen to self-sufficient people. To a Rwandan farm household, 
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a bag of maize flour without firewood is less useful than half of the bag that comes with enough 

firewood to prepare it. In Chapter 2 we found that in the  more densely-populated areas in the west 

of Rwanda, farmers tend to have more on-farm trees to meet their fuelwood need right on their 

small plots, as a strategy to cope with the limited access to the rare forests in the region.  

6.6  Implications for management and policy 

Unsustainable farming systems are partly responsible for the severe food shortage in East Africa. 

Agroforestry has the potential to provide a more resilient system that combines food and energy 

production and that provides extra income, thus helping rural households to improve food security 

and to absorb and cope with shocks. Considering the low potential for expanding afforestation in 

most agroecologies in East Africa (Ndayambaje 2013), the need to limit land degradation on 

cropland, and the desperate need for fuelwood and other tree products, agroforestry could be the 

system best suited to region’s conditions.   

Trees might be good and ecologically beneficial for the whole landscape but not for an 

individual farmer, because of the lower crop yield under trees. In this case, two options could 

provide a remedy: (i) growing high-value trees that can easily compensate for the yield loss, or (ii) 

the governments providing incentives or compensation to such farmers holding the lungs of the 

landscape. In all cases, in order to improve the food security situation by introducing more 

sustainable farming systems, a supportive policy environment is needed. Most of the tree products 

produced on-farm are cheaply sold or not sold at all, mainly due to the lack of good market value 

chains and of policies supporting their establishment. For instance, most fuelwood originates from 

agricultural land in Rwanda (Ndayambaje 2013), but no policies or planning for its production and 

commercialization exist at present. Better market access and the ownership of the means of 

transport could be the economic drivers and enabling conditions for the adoption of commercially 

valuable tree products (Mukuralinda et al. 2016).  

 Despite the potential of agroforestry to generate income, and despite the recent strong political 

will to scale it up, often it is still unclear to which ministry agroforestry belongs in East African 

countries. This creates confusion among institutions when it comes to the elaboration of 

agroforestry policies and to scaling-up efforts. For instance, in Rwanda the Ministry of Agriculture 
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and Animal Resources is in charge of crop production while the Ministry of Land and Forestry is 

in charge of all tree planting. Extensionists (agronomist and forest officers) are under the Ministry 

of Local Government. Coordination among these ministries was ranked second among the 

weaknesses concerning agroforestry adoption (Mukuralinda et al. 2016). The scaling up of 

agroforestry will require cross-sectoral coordination and goodwill, with an ‘all-in’ spirit of 

collaboration of all stakeholders concerned.  

6.7  Future research directions 

The food security and income situation of farmers adopting agroforestry may depend on the value 

of tree products rather than on increased food production, as the latter is rare in agroforestry 

(Quinion et al. 2010). However, agroforestry can help to meet the needs of smallholder households, 

and improve their food security. It can also contribute to the ability of farmers to purchase food, 

provided that the market value of tree products remains stable or increases and enough food is 

available on markets. It is important to investigate how the adoption of agroforestry on a larger 

scale will impact the food-security situation of farmers. The production of more on-farm tree 

products at the expense of crop yields might lead to an unbalanced supply of food and tree 

products, with a potential negative impact on food security.  

 In the densely-populated areas of East Africa, land degradation, food insecurity and scarcity 

of firewood are serious problems, but agroforestry is taking root and can spread rapidly among 

smallholders. It will require further research to identify drivers and preconditions for the scaling 

up valuable tree species and better techniques of tree management (e.g. adequate pruning), crop 

management (e.g. the use of genotypes adapted to agroforestry conditions) and soil management 

(e.g. deep tillage to prune tree roots) that can help minimize tree-crop competition. The 

productivity of different on-farm tree species will need to be investigated, in order to allow a real 

value estimation of the on-farm trees. Also, the breeding for agroforestry is an area to be explored; 

in the breeding process shade-tolerance traits and traits influencing agroecological structure and 

function (e.g. the increase of arbuscular mycorrhizal fungi increased by crops only when associated 

with trees) ought to be targeted. Research to improve the market value chains for on-farm tree 

products will need to be conducted in different agroecologies of East Africa in order to increase 

the proportion of income farmers get from trees on-farm.  
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6.8  Concluding remarks 

The central hypothesis of this study was: ‘the benefits of on-farm trees outweigh their competition 

with crops for resources, as the trees provide valuable products and increase soil fertility’. My 

findings were that food security decreased with increasing tree income, and that households with 

lower food security depended more on tree income than households with a higher food-security 

status (Chapter 2); that trees on farm generally reduced crop yields in the sub-humid region of 

Rwanda (Chapter 3) and in the tropical savannah of both Rwanda and Ethiopia (Chapter 4 and 5). 

Compared to conventional tillage with trees (CTWT), conservation agriculture with trees (CAWT) 

likely exacerbates tree-crop competition for water and nutrients and consequently reduces crop 

yields in the tropical savannah of East Africa (Chapter 5). My hypothesis was partly supported:  

trees increased the household income of poor farmers, but crops mostly did not benefit from the 

fertility effects of trees because of their negative shade effects.  

My study further showed that the presence of trees significantly reduced the incident solar 

radiation and air temperature, negatively affecting growth and yield of the associated maize crops, 

with the effect varying depending on the tree species and the distance from the tree trunk. Among 

five tree species evaluated in this study, only A. acuminata showed a positive interaction with maize 

at 3 m from tree trunk in seasons following higher litter fall. This suggests that the negative effect of 

shade was occasionally offset by extra N input from litter under low input conditions. This means 

that adequate pruning and high leaf litter recycling might help reduce the negative effect of shade in 

low-intensity farming systems.  

While tree management has been exhaustively investigated in agroforestry systems, crop 

management studies have lagged behind. In my study, I investigated seeds and tillage options that 

minimize tree-crop competition. I found that maize hybrids yielded more than open-pollinated 

varieties (OPVs) under G. robusta and S. spectabilis in Bugesera, Rwanda but equally performed 

under A. tortilis in Meki, Ethiopia. In tropical savannah regions of Rwanda, farmers using 

agroforestry could benefit from cropping hybrids. In contrast, farmers practicing agroforestry in 

tropical savannah regions of Ethiopia would probably be better off using the current OPVs instead 

of expensive hybrid seeds that need to be purchased every year. I found that onservation agriculture 

with trees (CAWT) reduced maize emergence rate, LA, LAI, plant height and maize yields when 
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compared to conventional tillage with trees (CTWT) in the tropical savannah areas of East Africa. 

Thus policies intending to scale up CAWT should be cautious.   

My analysis provided evidence that mixing trees and crops produces a worthwhile, if somewhat 

reduced, crop yield, and that on-farm trees can provide substantial income for the poorest 

households of Rwanda. Better varieties and deep tillage to disturb tree roots will be necessary to 

optimize crop production in agroforestry systems. Detailed studies need to be carried out to assess 

the impact on food security of a large-scale adoption of agroforestry by farmers, taking into 

account the effects of the production of more on-farm tree products at the expense of crop yields. 

Furthermore, the market for on-farm tree products will need to be developed in order to provide 

substantial benefits to agroforestry farmers and thus help them cope with their yield losses.   
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The East Africa region is confronted with a large and increasing population, low agriculture 

productivity and land degradation due to continuous cropping with little return of nutrients and 

soil erosion. Deforestation continues at a large scale due to the expansion of agriculture land. 

Achieving food security while preventing further expansion of agriculture is a major issue on the 

agenda of governments in East Africa. One option to alleviate the effects of deforestation and land 

degradation in Africa is agroforestry, combining crops and trees in the field. There is a current 

ambitious policy plan to scale up agroforestry in Africa: some East African countries have pledged 

to restore up to 100% of their arable land by the year 2020, mainly through agroforestry. It is 

therefore crucial to investigate the impact that on-farm trees would have on food security of farm 

households. The objective of this thesis was to understand the effect of trees in cropped fields on 

crop productivity and food security in East Africa through detailed studies in Rwanda and Ethiopia. 

Chapter 2 details the value of on-farm trees in relation to food security and farm income in the 

six agroecologies of Rwanda. Data from a survey including 465 farmers that were selected across 

the six agroecologies was used. Farm size, crop and livestock income were related to the number 

of on-farm trees in most of the agroecologies and positively increased the household food security. 

Within the same agroecology, food security increased with increasing farm size. Overall, trees 

contributed the least proportion of income as compared to crop and livestock. In many 

agroecologies, on-farm tree numbers were not proportional to the tree income that the households 

get, suggesting that most trees are probably kept by farmers for other reasons (e.g. own fuel and 

fruit consumption) than for income. Households in agroecologies with less trees reported high tree-

crop competition, suggesting that introducing agroforestry technologies to these farmers will not 

be effective, unless their perceptions on tree-crop interactions change. In general, households with 

low food security relied more on tree income than households with higher food security status, 

indicating that tree income can be seen as a ‘safety net” for the poorest households.  

In Chapter 3, the effects of mature Alnus acuminata and Markhamia lutea on crops are 

investigated at different distances from tree trunk in the sub-humid environment of Rwanda. 

Nutrient availability was higher under A. acuminata compared with M. lutea, because of higher 

litter fall but maize nutrient uptake increased only under A. acuminata three meters from tree trunk 

during a wetter season. None of tree species affected water availability for maize in the topsoil. 

Both tree species reduced the amount of solar radiation that reached the associated maize crop. 

Maize plants were shorter under trees but had a similar number of leaves and leaf sizes when 
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compared with plants in sole maize plots. Crop yield was in general more strongly reduced at 1 m 

than at 3 m from the tree trunk. A positive interaction in crop yield between A. acuminata and 

maize was only apparent at 3 m from the tree in one of the four seasons following higher litter fall. 

In a scenario modelled using the Agricultural Production Systems sIMulator (APSIM) crop model 

a larger N input from trees could compensate for yield loss caused by reduction in radiation and 

temperature in about 60% of the seasons, but only when N fertilization was limited. Yield losses 

were not compensated in a scenario with a high N fertilization rate. The findings of this study 

suggest that adequate pruning can reduce the negative effect of shade, and leaf litter recycling can 

compensate yield loss in some years but only in low intensity farming systems. 

Chapter 4 presents the comparisons of the effects of trees on the performance of hybrids and 

open pollinated maize varieties (OPVs) in agroforestry systems of equatorial savannah of Rwanda 

and Ethiopia. In this study, performance of four maize hybrids and four OPVs was compared in 

sole crop and under mature Grevillea robusta and Senna spectabilis in Bugesera, Rwanda and 

under Acacia tortilis in Meki, Ethiopia. In Bugesera, the grain dry matter (DM) yield of hybrid 

maize (2 t DM ha-1) was significantly better than OPVs (1.5 t DM ha-1). Further, the presence of 

trees significantly reduced maize grain yield and total biomass in both hybrids and OPV crops. 

However, trees reduced the maize harvest index significantly more in OPVs than in hybrids, 

suggesting that competition had a larger impact on grain yield for OPVs. In the experiments in 

Meki, the grain yield of OPVs (2.08 t DM ha-1) and hybrids (2.04 t DM ha-1) did not significantly 

differ in the open field and the presence of trees also reduced their grain yields in a similar manner. 

It was concluded that in tropical savannah regions of Rwanda agroforestry farmers could benefit 

from cropping hybrids, both under trees and in the open field. In contrast, agroforestry farmers in 

tropical savannah regions of Ethiopia are better off using the current OPV varieties for which they 

can retain seed instead of purchasing more expensive hybrid seeds. 

Chapter 5 presents the effect of conservation agriculture (CA) with trees (CAWT) on crop 

productivity as compared to conventional tillage (CT) with trees (CTWT) in the equatorial 

savannah of Rwanda and Ethiopia. The tree species considered in the study were mature Grevillea 

robusta and Senna spectabilis in Rwanda and mature Acacia tortilis in Ethiopia. Crop emergence 

was significantly reduced under CAWT compared with CTWT. Maize emergence rates in CAWT 

and CTWT were respectively 46.9 % and 70.1 %, compared with 74.7 % and 79.8 % in sole maize 

under CA and CT. Grain yields in CAWT and CTWT plots were respectively 0.37 t DM ha-1 and 
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1.18 t DM ha-1 as compared with 1.65 t DM ha-1 and 1.95 t DM ha-1 in CA and CT plots. It was 

concluded that CAWT is not a viable alternative to CTWT and that CA is not a viable alternative 

for CT in the equatorial savannah regions of East Africa. CAWT likely exacerbates tree-crop 

competition for water and nutrients and consequently reduces crop yields. Thus, CAWT should be 

strongly discouraged in the equatorial savannah of East Africa.  

Chapter 6 presents discussion and some conclusions based on results detailed in Chapters 2 to 

5. In this Chapter, the specific research objectives are revisited to offer key results and the 

implications for future research directions. Overall, the thesis provides substantial information on 

the effects of trees on crop productivity and possible crop management and tillage options that 

could improve crop productivity in the agroforestry systems of Rwanda and Ethiopia. It also 

provides information on the contribution of trees on household income and food security in 

Rwanda. Mixing trees and crops most often reduced crop yield. Agroforestry systems were both 

economically and ecologically worth retaining and scaling out to meet household needs and 

potentially improve food security through food purchase but may reduce food self-sufficiency. 

Nevertheless, tree management, better crop seeds and conventional tillage will be necessary to 

limit crop yield reductions in the studied agroforestry systems.  

Future research should focus on assessing the impact of agroforestry adoption at larger scales 

(e.g. regional scales) on food security and food self-sufficiency of farm households, since the 

production of more on-farm tree products at the expense of crop yields could lead to unbalanced 

supply of food and tree products with the possible negative impact on food security in a wider 

area. The productivity of different on-farm tree species (e.g. tree growth and tree products in a 

given period) will need to be investigated to allow the evaluation and prediction of trade-offs 

involved in growing trees on-farm. It is suggestable that breeding crops for agroforestry conditions 

be explored for more shade tolerance and other traits.  
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