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Abstract
Crambe abyssinica (crambe) is a new industrial oil crop that can grow on saline soil and tolerates

salty water irrigation. Genetically engineered crambe in which the seed‐oil composition is

manipulated for more erucic acid and less polyunsaturated fatty acid (PUFA) would be highly

beneficial to industry. In this research, lysophosphatidic acid acyltransferase 2 RNA interference

(CaLPAT2‐RNAi) was introduced into the crambe genome to manipulate its oil composition. The

result showed in comparison with wild type, CaLPAT2‐RNAi could significantly reduce linoleic

and linolenic acid content, simultaneously increasing erucic acid content. Systematic metabolism

engineering was then carried out to further study CaLPAT2‐RNAi, combined with the

overexpression of Brassica napus fatty acid elongase (BnFAE), Limnanthes douglasii LPAT (LdLPAT),

and RNAi of endogenous fatty acid desaturase 2 (CaFAD2‐RNAi). Oil composition analysis on the

tranformants' seeds showed that (a) with CaFAD2‐RNAi, PUFA content could be

dramatically decreased, in comparison with BnFAE + LdLPAT + CaFAD2‐RNAi, and

BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi seeds showed lower linolenic acid content;

(b) BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi could increase the erucic acid content in

crambe seed oil from less than 66.6% to 71.6%, whereas the highest erucic acid content of

BnFAE + LdLPAT + CaFAD2‐RNAi was 79.2%; (c) although the four‐gene combination could not

increase the erucic acid content of seed oil to a higher level than the others, it led to increased

carbon resource deposited intoC22:1 andC18:1moieties and lower PUFA. Summarily, the present

research indicates that suppression of LPAT2 is a new, promising strategy for seed‐oil biosynthesis

pathway engineering, which would increase the value of crambe oil.
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1 | INTRODUCTION

The oil stored in plant seeds (mostly as triacylglycerol [TAG]) is not only

a crucial nutrition for seedling growth (Carlsson, 2009; Chapman &

Ohlrogge, 2012; Gurr et al., 1974) but also an essential renewable

resource for humans. Oil seed crop cultivation is an important part of

global agriculture. Erucic acid (omega‐9 C22:1 fatty acid) is a very

important lipid compound produced by plants. Erucic acid and its

derivatives, such as erucamide, behenic acid, or alcohol, have wide

industrial uses as, for example, surfactants, lubricants, and pour point
td. wileyonlineli
depressants (Rudloff & Wang, 2011; Vargas‐Lopez, Wiesenborn,

Tostenson, & Cihacek, 1999). Erucic acid only occurs in the seed oil

of the plant families Brassicaceae and Tropaeolaceae. The oil seed plant

Crambe abyssinica (crambe), which is of Brassicaceae family and also

known as Abyssinian mustard, Abyssinian kale, colewart, or datran, is

a new crop usually cultivated to produce high erucic acid plant oil

and other valuable chemical compounds for industry (Bruun &

Matchett, 1963; White & Higgins, 1966). Crambe is a low‐input crop

and grows well on all soil types from heavy clays to light sands and is

tolerant to salinity and several other kinds of abio‐stress (Falasca,
Land Degrad Dev. 2018;29:1096–1106.brary.com/journal/ldr
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Flores, Lamas, Carballo, & Anschau, 2010; Fowler, 1991; Vasconcelos,

Chaves, Souza, Gheyi, & Fernandes, 2015). It could be cultivated on

saline soil and tolerant to salty water irrigation. Therefore, it can be

used as an alternative crop in marginal areas near coastlines for salt

land improvement (Falasca et al., 2010). Increasing the erucic content

in crambe seed oil and decreasing the polyunsaturated fatty acids

(PUFAs) by breeding or genetic engineering could intensively elevate

the economic value of this crop (Falasca et al., 2010).

Erucic acid is produced by ketoacyl‐CoA synthase (FAE) of cytosol

fatty acid elongase complex from C18:1 CoA in the developing seed

embryo of Brassicaceae plants. Subsequently, erucic CoA is integrated

into the glycerol backbone by the acyltransferase of the Kennedy path-

way that takes place in the endoplastic reticulum (Kennedy, 1961;

Murphy & Vance, 1999). In the first two steps, glycerol‐3‐phosphate is

acylated by glycerol‐3‐phosphate acyltransferase into lysophosphatidic

acid (Murata&Tasaka, 1997; Zheng&Zou, 2001), and it is then acylated

further by lysophosphatidic acid acyltransferase (LPAT) intophosphatidic

acid (Khaik‐Cheang andHuang, 1989; Kim, Li, &Huang, 2005; Soupene,

Fyrst, & Kuypers, 2007). This is followed by dephosphorylation of

phosphatidic acid catalysed by phosphatidate phosphatase to release

diacylglycerol (DAG; Kocsis, Weselake, Eng, Furukawa‐Stoffer, &

Pomeroy, 1996). The final acylation of DAG, catalysed by diacylglycerol

acyltransferase (DGAT; Cases et al., 1998; Routaboula, Benningb,

Bechtoldc, Cabochea, & Lepinieca, 1999), generates TAG that is

transferred to oil bodies for storage (Huang, 1996; Murphy & Vance,

1999). The catalysis of C18:1CoA toPUFA (i.e., linoleic acid and linolenic

acid) by FAD is a well‐known substrate‐competition to erucic acid

biosynthesis (Cheng et al., 2013; Jadhav et al., 2005;Okuley et al., 1994).

High erucic acid vegetable oil is that which contains over 55%

erucic acid, and this is a valuable feedstock for the chemical industry.

Nowadays, most high erucic acid vegetable oil supplied to the chemical

industry comes from high erucic acid rapeseed (HEAR). The cultivation

of HEAR, however, is problematic because of the risk of contaminating

food quality rapeseed (Canola) by either inadvertent mixing or cross‐

pollination. Therefore, HEAR cultivars are cultivated in Europe (about

40,000 hectares in 2006/2007) and in the USA and Canada as an iden-

tity‐preserved crop, because oil from HEAR (high erucic acid rapeseed

oil, HERO) should not enter the food chain. The upper limit of erucic

acid in food oil rapeseed has been set to 5% in the EU (Council Direc-

tive 76/621/EEC), although the risk of erucic acid consumption was

only inferred from effects on rats and in humans, no epidemiological

evidence is available that erucic acid consumption leads to an increase

in cardiovascular diseases (Hu, Sullivan‐Gilbert, Gupta, & Thompson,

2006; Schierholt, Becker, & Ecke, 2000). For infant formulas, EC Direc-

tive 2006/141/EC (2006) states a limit of 1% erucic acid of total fatty

acids. Because of the health risk, another member of the Brassicaceae

family, C. abyssinica (crambe) is considered as a candidate to substitute

HEAR for high erucic acid vegetable oil production (Bruun & Matchett,

1963; Rudloff & Wang, 2011). The main advantages of crambe, with

regards to the risk of erucic acid vegetable oil entering the food chain

are (a) identity preservation is easy as it is morphologically very distinct

from rapeseed, both as a crop and as seed; (b) it does not outcross with

rapeseed as HEAR can with Canola. Technically, crambe also has

advantages over HEAR as it has a higher erucic acid content (59–65%)

in its seed oil thanHEAR (50–55%); and (c) the oil contains relatively less
PUFAs, which could benefit the downstream process of erucic acid

isolation.

As a crop of bio‐based economic value, crambe could become

even more attractive to farmers and end users if crambe seed oil fatty

acid composition could be optimized further, for instance, increasing

erucic acid content, decreasing PUFA content, and so forth. The con-

tent of erucic acid in the seed oil of crambe can be up to 65% depend-

ing on growth conditions and cultivars and has almost reached its

maximum. Enzymatic analysis on Brassicaceae developing seeds shows

that the LPAT2 enzyme in charge of catalysing the incorporating of

fatty acids into triglycerides on the sn‐2 position cannot use erucic acid

as a substrate (Kuo & Gardner, 2002). This means erucic acid can only

be incorporated on the sn‐1 and sn‐3 positions of glycerol and not on

the sn‐2 position of triglycerides, which limits the potential erucic acid

content in Brassicaceae crop seed oil to 66.7% (2/3). Because of this,

genetic modification strategies have been developed to enable incor-

porating erucic acid on the sn‐2 position by introducing a Limnanthes

douglasii LPAT (LdLPAT) that takes erucic acid as a substrate for

lysophosphatidate sn‐2 acylation (Cao, Khaik‐Cheang, & Huang,

1990; Lassner, Levering, Davies, & Knutzon, 1995; Laurent & Huang,

1992). Previous research on Brassica napus (Han et al., 2001) and

crambe (Li et al., 2012) shows that erucic acid levels could be elevated

by introducing the LdLPAT gene, B. napus fatty acid elongase (ketoacyl‐

CoA synthase, BnFAE), which is in charge of prolonging oleic acid into

erucic acid (Mietkiewska, Brost, Giblin, Barton, & Taylor, 2007), and

the RNAi sequence targeted at native fatty acid desaturase 2

(CaFAD2‐RNAi), which is in charge of desaturating oleic acid into

linoleic acid and linolenic acid (Cheng et al., 2013). In the present study,

endogenous LPAT (CaLPAT2) suppression was engaged into the new

approach with the aim of manipulating crambe seed oil composition

by genetic modification. First, an RNA interference construct

(CaLPAT2‐RNAi; Wesley et al., 2003) was developed to target a

conserved sequence of LPAT2 of crambe as well as that of other

Brassicaceae species. CaLPAT2‐RNAi was then combined with BnFAE,

LdLPAT, and CaFAD2‐RNAi into one vector that was engaged to

regulate oil compounds in crambe seeds. Simultaneously, vectors of

BnFAE + LdLPAT and BnFAE + LdLPAT + CaFAD2‐RNAi were also

transformed into crambe for comparison.
2 | MATERIALS AND METHODS

2.1 | Vectors used in present approach

As shown in Figure 1, four binary vectors were used in this study.

The vector CaLPAT‐RNAi was composed of the RNA interference

gene against CaLPAT2, which was controlled by the 35S

promoter and terminator. The BnFAE + LdLPAT and

BnFAE + LdLPAT + CaFAD2‐RNAi vectors were acquired from

the Unit of Botany, Aachen University of Technology. The

BnFAE + LdLPAT vector carries two genes, LdLPAT and BnFAE and

BnFAE + LdLPAT + CaFAD2‐RNAi contains LdLPAT, BnFAE, and

CaFAD2‐RNAi. The BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐

RNAi construct containing LdLPAT, BnFAE, CaFAD2‐RNAi, and

CaLPAT2‐RNAi was acquired after the molecular modification of



FIGURE 1 The functional genes contained by the four vectors used in the present research: Four vectors were used in this study. All have NPTII
as the selectable marker for plant transformation. In CaLPAT2‐RNAi vector (a) the CaLPAT2 RNAi was controlled by pCaMV35s promoter. In the
other vectors, genes adjusting plant seed oil composition in BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi, (b) BnFAE + LdLPAT (c), and
BnFAE + LdLPAT + CaFAD2‐RNAi (d) were ruled by Brassica napus Napin promoter (pNapin). LB = left border; RB = right border; tnos = NOS
terminator; tOCS = OCS terminator; tKCS = KCS terminator) [Colour figure can be viewed at wileyonlinelibrary.com]
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BnFAE+LdLPAT+CaFAD2‐RNAi.Functionalgenes inBnFAE+LdLPAT,

BnFAE + LdLPAT + CaFAD2‐RNAi, and BnFAE + LdLPAT + CaFAD2‐

RNAi + CaLPAT2‐RNAi were controlled by the Napin promoter. All

of those vectors contained the NPTII gene as a selectable marker. For

inoculating plants, CaLPAT‐RNAi, BnFAE + LdLPAT + CaFAD2‐

RNAi + CaLPAT2‐RNAi, and BnFAE + LdLPAT + CaFAD2‐RNAi were

transformed into agrobacterium strain AGL1,whereas BnFAE+ LdLPAT

was introduced in AGL0 (Lazo, Stein, & Ludwig, 1991).
2.2 | Construction of CaLPAT‐RNAi vector

The target coding region of CaLPAT2 was cloned from cDNA of devel-

oping seeds (20 days after pollination) of C. abyssinica cv. Galactica by

polymerase chain reaction (PCR) using specific primers (forward primer:

CACC‐GGGTAAAGAACATGCTCTTG and reverse primer: AGTTTA

GCCTCAGTAAATCG, designed according to the cDNA sequence of

crambe LPAT2 acquired from NCBI, GI: 124378834; Figure 2). The

amplicon was verified by sequencing and then ligated into donor vector

pENTR/D‐TOPO using the Gateway® BP ClonaseTM II enzyme mix

(Invitrogen) to construct entry vector pENTR/D‐TOPO::CaLPAT2. The

target fragment in the entry vector was subsequently exchanged into

Gateway destination vector pHellsgate 8 (Wesley et al., 2003) using

the Gateway LR® ClonaseTM II enzyme mix (Invitrogen). Both

constructs were transformed into Escherichia coli (strain: TOP10,

Invitrogen, Cat. no. 4040‐50) for amplification. The transformants of

pENTR/D‐TOPO::CaLPAT2were checkedby colony PCR analysis using

primers M13 forward and reverse (GTAAACGACGGCCAG and CAGG

AAACAGCTATGAC). The transformants of pHellsgate CaLPAT2‐RNAi

were checked by restrictions of XbaI and XhoI, respectively. Finally,

the accurate pHellsgate‐CaLPAT2‐RNAi construct was transformed

into Agrobacterium tumefaciens strain AGL1 by electroporation.
2.3 | Modifying BnFAE + LdLPAT + CaFAD2‐RNAi
into BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐
RNAi

As shown in Figure 1, in the DNA molecule of BnFAE + LdLPAT +

CaFAD2‐RNAi, there is only one restriction site of NotI restriction

enzyme in the connection region of CaFAD2‐RNAi palindromic

sequence to the Napin promoter; and in the DNA molecule of

pHellsgate CaLPAT‐RNAi, there are two NotI restriction sites between

which the palindromic sequence of CaLPAT‐RNAi is located.

The pHellsgate CaLPAT‐RNAi vector DNA was digested by NotI.

The digested DNA fragments were then separated by electrophoresis

with 0.8% agarose gel, by which the desired palindromic fragment

(364 BP) was separated. After reclaiming the fragment from the gel, it

was ligated with the linear BnFAE + LdLPAT + CaFAD2‐RNAi molecule

cut by NotI. From the modification, the BnFAE + LdLPAT + CaFAD2‐

RNAi + CaLPAT2‐RNAi vector was constructed. In this new

vector, there are two palindrome structures (CaFAD2‐RNAi and

CaLPAT2‐RNAi) side‐by‐side, sharing the same promoter (Napin)

and terminator (tOCS). The ligation product was transformed into

E. coli competent cells (strain: TOP10 Chemical, Invitrogen) by

electroporation. Candidate colonies' plasmid DNA was isolated

and digested again by NotI. Those giving a unique band of the original

size (364 BP) were chosen for transforming agrobacterium strain

AGL1.
2.4 | Plant transformation

C. abyssinica seeds (cv. Galactica, harvested July 2009 from a seed

production field in Wageningen, The Netherlands) were germinated

to obtain cotelydonary node explants as starting material for

http://wileyonlinelibrary.com


FIGURE 2 (a) The target sequence picked up for Crambe abyssinica endogenous LPAT2 RNAi: A segment of mRNA of C. abyssinica LPAT2 and the
corresponding peptide is displayed in the chart. The orange bar marks the whole sequence (360 BP) later incorporated into the RNAi vector, and the
two green bars show two conserved regions, the NHXXXD box and FP/VEGTR box. (b) The expression level of Arabidopsis LAPT 1–5 homologous
genes of crambe in the developing seeds: The expression level of Arabidopsis LPAT1–5 homologous genes of C. abyssinica in the developing seeds
20 days after flowering was assayed by quantitative polymerase chain reaction. The results showed that LPAT2 had the strongest expression that
was 7 to 20 folds higher than the others. The expression level of Arabidopsis diacylglycerol acyltransferase 2 homologues in the same period was as
same as CaLAPT2. WT = wild type [Colour figure can be viewed at wileyonlinelibrary.com]
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transformation and regeneration. The in vitro material was

cultivated in growth chambers with a photoperiod of 16 hr with

a light intensity of 33 μmol·m2·s−1 and a temperature of 24 °C.
The transformation and selection for GM events of C. abyssinica

in this chapter were performed as we described previously (Qi

et al., 2014).

http://wileyonlinelibrary.com
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Arabidopsis thaliana plants (Accession, Columbia) were grown in

the greenhouse or in the climate chamber with the following settings:

22/19 °C with 70% relative humidity and 16/8 hr day/night periods,

respectively. If the light intensity dropped below 150 W·m−2, it was

compensated with an extra 100 W·m−2 supplemental light.

A. tumefaciens with target pHellsgate CaLPAT2‐RNAi construct was

used to transform Arabidopsis plants using the floral dip method

(Clough & Bent, 1998). Kanamycin selection of positive transformants

was performed (Harrison et al., 2006).
2.5 | Identifying transformants

2.5.1 | Southern blotting

From BnFAE + LdLPAT T0 candidate transformants genomic DNA was

isolated from the leaf material of in vitro plants with the method

described by Aldrich and Cullis (1993) but with 1% (w/v) polyvinylpyr-

rolidone‐10 in the DNA extraction buffer. For each transformant, the

DNA isolation was performed 3 times independently for each candi-

date. For each DNA isolation, 1 g fresh leaf material was used. Three

pieces of DNA samples (40 μg per piece) from each candidate

transformant were digested by EcoRI, DraI, and XbaI. TheT‐DNA region

of BnFAE + LdLPAT is shown in Figure 1. TheNPTII gene is located near

the left border. The nearest restriction sites of EcoRI, DraI, and XbaI to

the left border are alsomarked in Figure 1. For copy number determina-

tion, a probe (516 BP) was designed based on the sequence of the NPTII

gene and was labelled with [32P]ATP. The digested DNA samples were

fractionated on a 0.8% (w/v) agarose gel and transferred to Hybond

N+ membrane (Amersham Biosciences, UK) according to the

manufacturer's recommendations. The membrane was hybridized at

65 °C overnight with 20 ng of the nptII probe and washed for

2 × 30 min with 0.1 × saline‐sodium citrate buffer, 0.1% (w/v) SDS at

65 °C. The DNA gel blots were exposed to a phosphorimager screen

and subsequently scanned into a Bioimager device (Fujix BAS2000).

The primers of probe amplification were TCCAAGATGTAGCATC

AAGAATCC (forward) and TGGTTTCGATCCACTTTCTTAC (reverse).

PCR

Genomic DNA was isolated from young leaves of each candidate T0

plant with the same method as used for the Southern blotting. The
TABLE 1 The quantitative polymerase chain reaction primers for testing L
developing seeds

Target gene Primer n

AtLPAT2

Arabidopsis LPAT2 AtLPAT2

(GI:145339616) AtLPAT2

AtLPAT2

Arabidopsis β‐actin 2 (GI:20465834) AtActin2
AtActin2

Crambe LPAT2 CaLPAT

GI:124378834 CaLPAT

CaLPAT

CaLPAT

Crambe FAD2 CaFAD2

CaFAD2
NPTII primers are used to identify the transgenic nature of candidate

materials. The virG primers are used to amplify the virG gene from

the vector backbone to test for its presence in the material. If the result

of virG is positive, then the material cannot be counted as a GM candi-

date or moved into soil for seed ripening. They should remain in the

medium with cefotaxime and timentin until such time that there are

no longer positive PCR results for virG.

The primer sequences for NPTII were forward 5′‐ TGGGCACAA

CAGACAATCGGCTGC‐3′ and reverse 5′‐TGCGAATCGGGAGCGG

CGATACCG‐3′ and for virG, forward 5′‐GCCGGGGCGAGACCAT

AGG‐3′ and reverse 5′‐CGCACGCGCAAGGCAACC‐3′.

qPCR

Two pairs of primers specific to the crambe LPAT2 genes were devel-

oped based on the cDNA sequences in C. abyssinica (GI: 124378834),

and two pairs of primers of Arabidopsis LPAT2 gene were developed

on the cDNA sequences of AtLPAT2 (GI:145339616). The gene β‐actin

2 (GI: 20465834) was used as a reference gene. These primers used in

real‐time PCR are listed in Table 1. The primers used to evaluate the

expressions of Arabidopsis LPAT1, 3, 4, 5, and DGAT2 homologous

genes in crambe were the same as previous reports (Kim et al., 2005;

Li, Yu, & Hildebrand, 2010). To develop crambe seed RNA isolation,

total RNA was extracted from bulked seeds of T0 plants (10 seeds per

plant, 20 days after flowering [DAF]) with an RNeasy Plant Mini Kits

(Qiagen, Germany) according to the manufacturer's instructions. For

the leaf RNA isolation of crambe and Arabidopsis, total RNA was

extracted form 0.5 g fresh leaf material from the greenhouse plant with

the same kit. The isolated RNA was treated with RNase‐free TURBO

DNase (Ambion, USA) to remove residual genomic DNA. First‐strand

cDNAwas synthesized in 20 μl from 1 μg of total RNA with an iScript™

cDNA Synthesis Kit (Bio‐rad, USA). The cDNA samples were 20×

diluted and used as templates for real‐time PCR. The PCR reaction con-

tains 2 μl templates, 5 μl SYBRGreen SuperMix (Bio‐rad, USA), and 1 μl

of each of the forward and reverse primers (3 μM), giving 10 μl. Cycling

conditionswere 1 cycle at 95 °C for 3min followed by 30 cycles at 95 °C

for 10 s, 60 °C for 1 min, then a final melt step from 65 °C to 95 °C ramp

with 0.5 °C increments per cycle to monitor specificity. PCR reactions

were performed in triplicate. The expression of each replicate was nor-

malized by the reference gene, β‐actin 2, which has shown to be stably
PAT2 expression levels in Arabidopsis leaf, crambe leaf, and crambe

ame Sequence

_F1 GGT GGT TGC AGA AAC CTT GT

_R1 AGC ATG TTC TTT GCC CAT T

_F2 GGT GGT TGC AGA AAC CTT GT

_R2 GAG CAT GTT CTT TGC CCA TT

_F GATGGAGACCTCGAAAACCA
_R AAAAGGACTTCTGGGCACCT

2_F1 CGC ATT GGC TGT AAT GAA GA

2_F2 CCA GTC ATA GGC TGG TCC AT

2_R1 TTC ATC CTT TGC CCA ATT TC

2_R2 CCA CAA AAA GGG CTA ACC AG

‐F1 CCGTGAACGTCTCCAGATAT

‐R1 CGTTGACTATCAGAAGCCGA

http://www.google.nl/url?sa=t&rct=j&q=bio%20rad%20cdna%20synthesis%20kit&source=web&cd=1&ved=0CDQQFjAA&url=http%3A%2F%2Fwww.bio-rad.com%2Fprd%2Fen%2FUS%2FLSR%2FPDP%2Fc681ecb2-a307-4915-a8bc-378d49bbf203%2FiScript%25E2%2584%25A2%2520cDNA%2520Synthesis%2520Kit&ei=amdDT67_BcbrOYXV5YoP&usg=AFQjCNHeyrOfE6qwLMYx93y08j2cwWwXtw
http://www.google.nl/url?sa=t&rct=j&q=bio%20rad%20cdna%20synthesis%20kit&source=web&cd=1&ved=0CDQQFjAA&url=http%3A%2F%2Fwww.bio-rad.com%2Fprd%2Fen%2FUS%2FLSR%2FPDP%2Fc681ecb2-a307-4915-a8bc-378d49bbf203%2FiScript%25E2%2584%25A2%2520cDNA%2520Synthesis%2520Kit&ei=amdDT67_BcbrOYXV5YoP&usg=AFQjCNHeyrOfE6qwLMYx93y08j2cwWwXtw
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expressed in crambe seedlings under arsenate stress and in various

B. napus cultivars (Hu et al., 2009; Paulose, Kandasamy, & Dhankher,

2010). The relative expression level of each replicate was calculated

according to the comparative CT method (User Bulletin No. 2, ABI

PRISM 7700 Sequence Detection System, December 1997; Perkin‐

Elmer, Applied Biosystems). The mean of three replicates represents

the relative expression level of a line.
2.5.2 | Gas chromatography analysis

Gas chromatography (GC) was engaged to analyse the oil composition

of crambe seed. The wild type (WT) seeds were acquired from the

control plant through tissue culture together with the transformed

and grew in the same conditions. An individual seed was crushed in a

1.5ml Eppendorf tubewith 600μl of hexane to extract the oleic compo-

sitions (at room temperature). After centrifuging at 18,000 g for 5 min,

200 μl of the hexane supernatant was taken into the GC vial for triacyl-

glycerol analysis by the high temperature column. Subsequently, 40 μl

methanol (with 5 M KOH) was added into the Eppendorf tube, and

the closed tube was incubated at 60 °C with shaking to hydrolyse the

TAG to obtain the free fatty acids and to methylate the fatty acids to

fatty acid methyl esters (FAME). The FAME composition was deter-

mined using GC (column/DB‐23, Agilent). A 1‐μl sample was injected

into the GC with FID with a split ratio of 1:20. A temperature gradient

was used starting with 10 min at 180 °C, a temperature increase to

240 °C for 8min, and 7min at 240 °C. Identification of FAMEwas based

on retention time of standards and checked by separate GC–MS

analysis using the same column and temperature profile. The relative

amounts of different FAME were determined as the relative peak area

of the components in the total peak area of FAME. Table 2 illustrates

the quantity of seeds that were put into the GC FAME assay.
3 | RESULTS

3.1 | Cloning the conserved sequence of CaLPAT2 to
construct the RNAi vector

The conserved region encoding the NHXXXXD box, FP/VEGTR box,

and the connecting region in CaLPAT2mRNA was chosen as the target

of RNAi (Figure 2a; Murphy, 2009). The expression levels of the

homologues of Arabidopsis LPAT1‐5 in C. abyssinica (CaLPAT) were

assayed by qPCR (Figure 2b). In comparison with the other CaLPATs,
TABLE 2 The seeds used for FAME GC analysis

Generation Vector
Seed
family Nr.

Seed
Nr.

Wild type 3 60

T1 CaLPAT2‐RNAi 2 60

T1 BnFAE + LdLPAT 3 100

T1 BnFAE + LdLPAT + CaFAD2‐RNAi 5 120

T1 BnFAE + LdLPAT + CaFAD2‐
RNAi + CaLPAT2RNAi

4 120

Note. Seed family Nr = number of seed families chosen for the assay; Seed
Nr = number of seeds from those families analysed by FAME GC.
FAME = fatty acid methyl esters; GC = gas chromatography.
CaLPAT2 had the highest expression level that was 7 to 20 folds higher

than the others. The expression level of Arabidopsis diacylglycerol acyl-

transferase 2 homologues (CaDGAT2) in the same period was as same

as CaLAPT2. The sequence was cloned by PCR from the cDNA of

crambe seed 20 DAF. It was integrated into clone/entry vector

pENTR/D‐TOPO, of which the success was verified by sequencing.

Finally, the target fragment in pENTR/D‐TOPO was recombined into

the empty pHellsgate 8 vector, to build the CaLPAT‐RNAi. The desired

RNAi vectors were identified by restriction of XbaI and XhoI, respec-

tively. As shown in Supplementary Figure 1, both of the digestions

gave the bands of expected sizes, which indicated the successful con-

struction of the CaLPAT2‐RNAi vector.
3.2 | Transformation of Arabidopsis and crambe with
CaLPAT‐RNAi

Arabidopsis (Accession, Columbia) and crambe were transformed with

construct CaLPAT2‐RNAi using Agrobacterium. There were five

independent T0 crambe lines and 20 T1 Arabidopsis lines acquired

after Kanamycin selection and confirmed by PCR.

The expression of endogenous LPAT2 in the transgenic plants was

downregulated because of the RNAi, which was confirmed by the

qPCR. Among the 20 T1 lines of Arabidopsis, the most efficient RNAi

effect is shown in Figure 3a. The LPAT2 expression level in the GM

plant leaf tissue was about 20‐fold lower than the wild type (Student's

t test: p < .01). The phenotypes of shorter silique and seed abortion

were observed in parallel with the low expression level of LPAT2 in

the T1 Arabidopsis plants (Figure 4).

Compared with the WT, the T0 crambe with the lowest LPAT2

expression was around 50% decreased in leaf tissue (Student's t test:

p < .01), and 80% downregulated in developing seeds (Figure 3b).

Crambe has only one seed per pod, so abortion of a seed results in

empty pods. No difference in seed abortion or seed size between

WT plant and the CaLPAT‐RNAi transgenic plant was found in this

experiment.
3.3 | Identification of transgenic events of
BnFAE + LdLPAT, BnFAE + LdLPAT + CaFAD2‐RNAi,
and BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐
RNAi

The vectors BnFAE + LdLPAT, BnFAE + LdLPAT + CaFAD2‐RNAi, and

BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi were transformed

into C. abyssinica. After selection by Kanamycin and verification by PCR

using primers of NPTII and VirG, there were three independent T0 lines

of BnFAE + LdLPAT, eight of BnFAE + LdLPAT + CaFAD2‐RNAi, and

four of BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi obtained.

TheT‐DNA insertion number of BnFAE + LdLPAT T0 lines was verified

by Southern blotting (Figure 5). Of the BnFAE + LdLPAT independent

transformants, one had two T‐DNA inserts, one had three (or four)

T‐DNA inserts, and one had more than six T‐DNA inserts.

The expression of CaFAD2 and CaLPAT2 was assayed by qPCR

in developing seeds (20 DAF) of WT, a T0 line of

BnFAE + LdLPAT + CaFAD2‐RNAi and two T0 lines of

BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi. In comparison



FIGURE 3 Quantitative polymerase chain reaction (qPCR) tests on CaLPAT2‐RNAi GM plant materials of Arabidopsis (a) and crambe (b):
Endogenous LPAT2 expression levels of the leaf materials from T1 Arabidopsis and T0 crambe plants and developing T1 crambe seeds were
analysed by qPCR. The GM lines indicating the highest decrease levels are shown in the charts. The column is the average of repeats, and the
bar is standard deviation. The qPCR result of transgene Arabidopsis and crambe with the most efficient RNAi effect is demonstrated in the
charts. In comparison with the wild type, the LPAT2 expression of transgene Arabidopsis and crambe was suppressed into significantly lower
levels in different tissues (according to Student's t test analysis) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 The phenotype of LPAT2 knockdown in Arabidopsis by RNAi: TheT1 plant of Arabidopsis CaLPAT2‐RNAi transformed showed shorter
silique (a) than that of the wild type (b). Inside the developing silique, a fraction of the developing seeds were aborted (c, marked by arrows) [Colour
figure can be viewed at wileyonlinelibrary.com]
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to theWT, the expression ofCaFAD2 in the transgenic developing seeds

of BnFAE + LdLPAT + CaFAD2‐RNAi and BnFAE + LdLPAT + CaFAD2‐

RNAi + CaLPAT2‐RNAi was about fourfold to fivefold downregulated
(Figure 6a). The expression of CaLPAT2 was only around fourfold

decreased in the developing seeds from BnFAE + LdLPAT + CaFAD2‐

RNAi + CaLPAT2‐RNAi (Figure 6b).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 5 Southern blotting analysis of T0 crambe plant of
BnFAE + LdLPAT transformation: The probe was designed according
to NPTII gene, and three restriction enzymes (DraI, XbaI, and EcoRI)
were used for DNA digestion. The southern blotting result
demonstrated that one line (ID: 9.04) had more than six T‐DNA
insertions, line 7.23 had two T‐DNA insertions, and theT‐DNA
insertion number of 7.14 was two or three. WT = wild type [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Quantitative polymerase chain reaction analysis of the
developing GM seeds of BnFAE + LdLPAT + CaFAD2‐RNAi and
BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi transformations:
TheT1 developing seeds of 20 days after flowering were used for this
assay. Two T0 BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi
plants (4G‐1 and 4G‐2) and oneT0 BnFAE + LdLPAT + CaFAD2‐RNAi
plant (3G) were selected for the test. The wild type (WT) seeds were
acquired from the control plant through tissue culture together with
the transformed. Panel (a) shows the expression level of CaFAD2;
Panel (b) shows the expression level of CaLPAT2 [Colour figure can be
viewed at wileyonlinelibrary.com]
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3.4 | Variation of PUFA content of the T1 seed oil

According to the crambe seed oil fatty‐acid composition, its PUFA con-

sists mainly of linoleic fatty acid (C18:2) and linolenic fatty acid (C18:3).

In the WT seed oil, the C18:2 content varied from 6.7% to 11.2%. The

CaLPAT2‐RNAi and the CaFAD2‐RNAi contained vectors that could

downregulate linoleic acid content in seed oil significantly, but the

transgenic of BnFAE + LdLPAT had the same C18:2 content as the

WT, as showed in Figure 7a. Meanwhile, the linolenic acid content of

the transgenic seed was generally significantly decreased. The four‐

gene combination had the most severe effect, and the linolenic acid

content was less than half of the WT. The CaLPAT‐RNAi downregu-

lated the C18:3 content to a significantly lower level, similar to

BnFAE + LdLPAT + CaFAD2‐RNAi.
3.5 | The variation of erucic acids in theT1 seed oil of
transformants

Based on the qPCR results, seeds from the pHellsgate CaLPAT2‐RNAi

T0 plant with the most significant CaLPAT2 suppression were selected

for GC analysis. Compared with wild type, the T1 seed oil had a

generally stable and significantly higher level of erucic acid content:

64.5% on average and ranging from 63.1% to 66.3%. There were four

T1 seed families of BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐

RNAi assayed. Erucic acid content in single seed oil varied on a large

scale. Single seeds with more than 70% erucic acid in its oil were

found in three families; the highest value of single seed was 71.6%.

However, the highest erucic acid content, as much as 79.2%, was

found in the transgene seeds of BnFAE + LdLPAT + CaFAD2‐RNAi.
Meanwhile, among the transgene seeds of BnFAE + LdLPAT, none

showed erucic acid content higher than 66.4%. One‐way analysis of

variance showed that the erucic acid content in the seeds of

CaLPAT2‐RNAi and the four‐gene and three‐gene constructs were

significantly higher than those of the WT and two‐gene vector.

The erucic acid content distribution is shown by the box‐blot in

Figure 7c.

Previous research showed that introducing BnFAE into the

crambe genome might cause a possible cosuppression phenotype of

which the oleic content became ultra‐high but the erucic acid low (Li

et al., 2012). A similar phenomenon was also discovered in present

research. To avoid the unexpected influence of evaluating the trait

associated with CaLPAT2‐RNAi, the data of seeds with suppressed

erucic acid content lower than the wild type were excluded and not

shown here.

http://wileyonlinelibrary.com
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FIGURE 7 Linoleic, linolenic, and erucic acid content of T1 seeds: In
crambe seed oil, the main composition of PUFA were linoleic and
linolenic acid. They were acknowledged as the major competitors of
erucic acid in the fatty acid biosynthesis and accumulation pathways.
Linoleic, linolenic, and erucic acid content of T1 seeds are
demonstrated in Panels (a), (b), and (c). In Panels (a) and (b), the column
is the mean, and the bars are standard deviation; (c) is a boxplot: The
letters on the top of bars indicate the significant differences (analysis
of variance: Tukey). All of the transgene seeds had lower PUFA
accumulated than the wild type (WT). 2G: BnFAE + LdLPAT; 3G:
BnFAE + LdLPAT + CaFAD2‐RNAi; 4G: BnFAE + LdLPAT + CaFAD2‐
RNAi + CaLPAT2‐RNAi [Colour figure can be viewed at
wileyonlinelibrary.com]
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4 | DISCUSSION

There are five known LPAT isoforms (LPAT1, 2, 3, 4, and 5) of

Arabidopsis (Kim et al., 2005). All except LPAT1 are located on the

endoplasmic reticulum. Among the genes encoding LPAT isoforms,

LPAT2 always has much higher expression levels in various tissues

(callus, inflorescence, leaf, root, and silique) than the others. The

present research showed that, in the developing seeds, the LPAT2

homologous gene also had a higher expression level than the others.

The present research also indicated that the LPAT2 expression of

Arabidopsis and crambe could be suppressed efficiently by the RNAi

targeting of the encoding sequence of NHXXXXD box, FP/VEGTR
box, and the connecting region in between (Frentzen & Wolter,

1998). The CaLPAT2‐RNAi transformed A. thaliana had an efficiently

suppressed LPAT2 expression in leaves and the expected phenotype

(shorter pods and a high proportion of seed abortion) was extremely

similar to theT‐DNA insert mutant (Kim et al., 2005). The transformed

C. abyssinica also showed a significantly reduced LPAT2 expression

both in leaves and developing seeds but no seed abortion or difference

in seed size.

By inserting the palindrome sequence from the CaLPAT2‐

RNAi into the BnFAE + LdLPAT + CaFAD2‐RNAi vector, the

BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi vector was

constructed. The qPCR analysis on endogenous CaFAD2 and CaLPAT2

gene expression demonstrated that the double‐RNAi was functional.

The GC analysis also indicated that theT1 seed oil had enhanced erucic

acid accumulation (highest value: 71.6%) and a suppressed PUFA level.

We expected the BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi

transformant seedwould have higher erucic acid content than the seeds

of all the other transformants. However, the highest value (79.2%) in the

present research was from the BnFAE + LdLPAT + CaFAD2‐RNAi

transformant. However, a report from Li et al. (2012) showed that

transformation of BnFAE + LdLPAT could also result in ultra‐high erucic

acid content of more than 70%. Considering the results of the present

research, the suppression of endogenous LPAT2 may not improve

erucic acid content any further in crambe seed oil than the former strat-

egy. Furthermore, Guan, Lager, Li, Stymne, and Zhu (2013) showed that

in the developing crambe embryos of BnFAE + LdLPAT transgene, the

erucic acid moiety was mainly locked in the phosphate choline (PC)

fraction. Hence, the bottleneck was likely between PC and TAG.

The four‐gene combination vector did not work as well as

expected, despite the extra RNAi targeting on endogenous LPAT2.

However, we did find that there were some remarkable traits

concerned with CaLPAT2‐RNAi. First, it was totally unexpected that

CaLPAT2‐RNAi alone could optimize the crambe oil composition. It is

clear that downregulation of endogenous LPAT2 expression allowed

increased carbon flux to go to erucic acid, and less to PUFA, even

though the highest erucic acid content of the transgene seeds was

66.4%. It is not clear why this occurred. A hypothesis is that in the

developing seed, when the LPAT2 was suppressed by RNAi, other

functional LPATs were put in charge of TAG biosynthesis, and their

substrate affinities being different to that of LPAT2 led to this fatty‐

acid modulation. Furthermore, the existence of CaLPAT2‐RNAi

together with BnFAE + LaLPAT + FAD2‐RNAi also indicated some

special trait in seed oil composition. In comparison with the three‐gene

combination, the four‐gene vector had significantly restrained linolenic

fatty acid accumulation. Previously, it has been reported that FAD3‐

RNAi could inhibit linolenic acid deposition in Arabidopsis and crambe

seed oil (Li et al., 2015). But, there has been no research ever showing

or implying the relationship between PUFA content and LPAT2. In

present research, it was significant indeed that the four‐gene transfor-

mation resulted in more carbon resource deposited into the C22:1 and

C18:1 moieties (Figure 8) and lower PUFA, than the WT and the other

vectors. This result demonstrates that suppression of endogenous

LPAT2 is a new and promising strategy for seed‐oil biosynthesis path-

way engineering alternatively for improving crambe seed‐oil quality

and economical value of crambe cultivation.

http://wileyonlinelibrary.com


FIGURE 8 The distribution of oleic and erucic acid content: The oleic
and erucic acid formed the majority of fatty acids deposited in crambe
seed oil. The boxplot shows the influence from the transgene on oleic
and erucic acid content in T1 seeds. The letters on the top of bars
indicate the significant differences (analysis of variance: Tukey). All of
the transgene seeds had lower PUFA accumulated than the wild type
(WT). 2G: BnFAE + LdLPAT; 3G: BnFAE + LdLPAT + CaFAD2‐RNAi;
4G: BnFAE + LdLPAT + CaFAD2‐RNAi + CaLPAT2‐RNAi
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