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Abstract

Enormous amounts of both relevant and irrelevant information is available on-

line. Because of the �erce competition, business leaders need to access relevant

information in time in order to gain appropriate business intelligence before rivals

do. This research is a part of an e�ort to build Data Analysis and V isualization

aI d for Decision-making (DAVID) system for �nding, extracting, and analyz-

ing business-relevant information from large amounts of automatically collected

documents from o�-line and on-line sources. Textual information available on

the Internet is of varying quality. Hence, a system such as DAVID has to �lter

out low quality documents which are potentially useless. In order to improve the

�ltering of relevant information in DAVID, there needs to be a new �ltering com-

ponent which is applied on every new collected document. This thesis describes:

(1) Analysis of quality dimensions that can be assessed from the documents col-

lected by DAVID. (2) Comparison of existing information quality frameworks. (3)

A new information quality assessment framework and system called F ramework

and API for Quality Assessment of Documents (FAQAD) (4) Experiments

with the new quality framework. Our experimental results show that FAQAD

was able to classify as relevant 99.88% of the relevant business articles in our

data set, and on the other hand, was able to �lter out 85.59% of the e-mail spam

in our test data.

ACM Computing Classi�cation System (CCS):

H.3.1 [Information storage and retrieval]: Content Analysis and Indexing � Lin-

guistic processing;

I.2.7 [Natural Language Processing] � Text analysis;

I.7.m [Document and Text Processing] � Miscellaneous;

J.1 [Administrative data processing] � Business;

Keywords: text quality assessment, evaluation, information quality, text mining,

natural language processing, business intelligence
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Chapter 1

Introduction

Having and using right information in the right time helps to avoid making inap-

propriate and irresponsible decisions, and hence, is the key to success in everyday

life, and in particular in business. In former times, moving the information on

a piece of paper from a place A to a place B by human or by an animal was

relatively slow, and in many cases the speed was not su�cient at all. The time

of information distribution decreased and the speed of information �ow did sig-

ni�cantly improve with the discovery of electricity and electromagnetic wave in

19th century [55]. Another rapid and signi�cant change came at the turn 20th

and 21st century [21]. There was a boom in the number of the users of the in-

ternet, because most of the average households could a�ord the internet and use

it. Today, almost everybody in Western world uses a PC or a mobile device with

an internet access to communicate with others or to reach a desired information

potentially quickly and easily. On the contrary, reaching the right information,

nowadays, might take a while because of the enormous amount of information,

both relevant and irrelevant, that is available.

In addition to �nding information, anybody with an internet access can con-

tribute and publish information and their own ideas, opinions and experiences.

In contrast to the past, the distribution of information is very fast indeed. How-

ever, it is not always easy to determine whether the information that is found on

the internet is reliable. While in the past, published written texts were in most

cases written and edited by professionals, Internet and social media allows for

practically anyone to publish his or her opinions at a low cost. Obviously, the

information quality (IQ) of electronic publications lacking professional supervi-

sion vary. The IQ assessment of documents is the key to categorize and �lter the

documents according to their quality.
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IQ has more than one de�nition, e.g �The �tness for use of the information pro-

vided� or �The assurance that the information meets the needs of the consuming

business processes�[51]. In conclusion, the information of low quality is useless.

Fortunately, computers with their processing power are able to help delivering

the users only with high quality information.

Sandra Gisin, former head of Swiss Re's Group Knowledge and Records Manage-

ment unit, says[66]:

�Information Quality is a strategic approach that enables us to consis-

tently deliver highly useful products and services. We are not far away

from having a Group-wide culture where expectations for high quality

information are the daily norm. Time is money. IQ can help everyone

from employees to executive board members get better results.�

Business leaders need high quality information in order to run the business prop-

erly, and e.g. not to waste resources because of making wrong decisions. Lack of

high quality information or issues with trusting information within own company

is a characteristic of dysfunctional learning organization [25].

The aim of the current thesis is to choose the right quality dimensions and meth-

ods to measure the quality of text documents and their sources and implement a

Java Application Programming Interface (API) that enables texts to be assessed

according to the selected dimensions. Implementation of quality assessment (QA)

API will become a part of a larger business intelligence (BI) text mining (TM)

system called DAVID (Section 2.1). The system was developed in a research

project entitled �Towards e-leadership: higher pro�tability through innovative

management and leadership systems�[40]. DAVID processes large quantities of

texts and data instead of human workers. The aim of this approach is to help

business leaders in making decisions more e�ectively, i.e. right decisions made

faster than by competitors.

1.1 Motivation

Not all the information is as good and of high quality as others. No single person

can ever process all the information on the internet by himself to �nd out which

information is of high or low quality. Simply put, the amount of information is

too large. Hence, there is a need to automatically process, distinguish and �lter
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information, in order to save the decision-maker's time and allow them to base

decisions only on high quality information.

Business leaders, especially in global corporations, have to make tough decisions

on a daily basis. These decisions do not only a�ect the business leader's life

but usually, a single decision has an in�uence on the whole business and its em-

ployees. To make these decisions properly and in timely manner, it is required

to have enough background information about the issue at hand. That usually

includes documents from several sources obtained through multiple channels. Un-

fortunately, the relevant information are not always easy to �nd and access. The

information might be di�cult to locate or even split to several documents, and

again it takes time to put the pieces together. The main idea of the project is to

make the knowledge presented in text documents more clear and unambiguous by

utilizing information technology. This can potentially improve the management

of resources in an enterprise [40] .

The current thesis focuses on the quality of information in the context of BI.

Every business acquires and collects information and makes decisions upon them.

Wrong and confusing information may lead to a wrong decision. Because of the

extraordinary amount of information available in modern business environments,

business decision-makers need tools to e�ciently and accurately collect and pro-

cess the information. This enables them to access correct information at the right

time. This way, business people are more likely to reach well-informed, correct

decisions on time, i.e. before the competition does. Savings of time and resources

makes business more e�cient, and therefore the business gains advantage for

competition.

On a practical level, the aim of this thesis is to improve the existing IQ assessment

component of the DAVID system.

1.2 Research Problem

The DAVID system extracts knowledge from text based documents using various

natural language processing (NLP) and TM techniques. NLP enables computers

to acquire meaning from a human language input. TM refers to a process of

extracting relevant and high quality information from a text source. However,

NLP and TM are quite resource-consuming [56]. Moreover, the accuracy of NLP

and TM based analysis is dependent on the quality of the inputs. For these two
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main reasons, we need to handle all the input documents and their data coming

into the system di�erently, so only usable documents are further processed. For

example, data can be:

• �ltered out completely

• used only for certain type of analysis

• given more or less priority based on the reliability of the source

IQ is not just a single value assessed from a document. IQ consists from sev-

eral IQ dimensions where each dimension represents a di�erent aspect of quality.

However, not all the quality dimensions are available when checking a document.

Dimensions such as availability, believability or understandability are impossible

or at least very di�cult to measure from a text. Hence, the main research problem

in this thesis is to �gure out which quality dimensions are measurable and how

to measure them, and prioritize them to use these information properly. Even

with priorities of selected dimensions, it might not be an easy task to calculate

predicative overall quality.

1.3 Research Objectives

The IQ assessment API developed in this research will be a component of a

sophisticated TM system for BI. The API serves as a gateway for all documents

that are processed by the DAVID system. In order to design and implement the

API, the thesis seeks answers to the following two main research questions:

A) How to assess quality of documents and their sources?

Two main approaches are considered in this thesis:

Linguistic Metrics give the amount of spelling and grammar errors, and

also other information such as word-diversity. This approach does not

really consider what information is contained in the document, but

how it is written. It may give us a rough estimation about the overall

quality of the document.

User Ratings tell us what users think about the document. As this is an

evaluation done by humans, we can think of it as an accurate, although

subjective, evaluation of the quality of a document.
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The research question can be further divided into the following sub-questions:

A1) Which quality dimensions are measurable?

To �nd out which dimensions are we able to measure is a starting point.

Processing documents and measuring certain quality dimensions from

plain text might not be an easy task. With the linguistic metrics

approach we could measure readability, lexical diversity, and free-of-

errors dimensions. User ratings could give us more insight about how

people perceive the information in documents. Are there going to be

several ratings for di�erent aspects of a document? That way we could

measure certain dimensions more accurately. Or is there going to be

just single rating expressing users' satisfaction about the document? In

that case we could have a combined measurement of dimensions such

as accuracy, relevancy, timeliness, and since the sources of documents

are on-line, also accessibility.

A2) How to automatically measure each of the selected quality

dimensions?

It would take a lot of resources to implement all the tools that are

needed for assessing the selected IQ dimensions. Some tools for this

purpose are available as open source, so there is no need to reimplement

them. It is necessary to study the available tools, select the appropriate

ones and adapt them to be reused as components of FAQAD API.

A3) How much weight has the reliability of the source?

The quality of a source of documents is rated in FAQAD based quality

of documents originating in that source. The other way around, new

documents' quality will be a�ected by quality of the source. What

happens when an excellent article is published on a web site that is

not usually considered as a reliable source? And what happens when

a terrible article, even by mistake, is published on a well-rated site?

Is the article good enough? Most probably, these situations will not

occur - at least not often. However, they might occur in real life, and

hence, they need to be addressed.

B) How to utilize the de�ned IQ measures?

Once the IQ assessment measures are chosen and implemented, we need

to de�ne how to handle the assessment results. The results do not neces-

sarily lead to clear and unambiguous conclusions about IQ of the assessed
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documents. This research question consists of the following sub-questions:

B1) How to prioritize the IQ dimensions in order to best utilize

the information they provide?

Since we have to calculate overall quality, prioritizing di�erent quality

dimensions and creating a formula to process the di�erent dimensions'

scores is a must. A basic arithmetic mean is not su�cient for our

purpose. The assessment scores for each IQ dimension are not equally

important and, hence, need to have di�erent weights.

B2) Where is the line deciding whether to use the document for

certain analysis or �lter it out?

When the �nal quality score of a document is delivered, and it is

not the simple 0 or 1, how do we recognize if the document is good

enough? Research literature on existing IQ frameworks could provide

some answers. However, FAQAD is not based on exactly the same

dimensions as any of the existing frameworks as some of them are not

available in our case. Therefore, practical testing and evaluation of

FAQAD is required to answer this subsection.

1.4 Structure of the Thesis

The �rst aim of this thesis is to research existing IQ frameworks and available text

evaluation tools in Java programming language. Secondly, based on the analysis

of the collected information, we propose a new framework, FAQAD, for assessing

the quality of documents and their sources. Finally, we implement the FAQAD

framework in Java and evaluate its performance on realistic input data. The aim

of the framework is to be able to assess the quality of documents and distinguish

which are of high quality and which of low quality, hence, probably useless as

sources of business information. Filtering out low quality document saves time

for the business leaders. Being provided with information of higher quality, the

business leaders potentially make better decisions based on the information. Ad-

ditionally, preventing information systems such as DAVID from processing low

quality documents saves computational resources and enhances the quality of the

analysis results.

The thesis is organized as follows:
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• In Chapter 2, the background of this work, the DAVID system and the

role of the current work in it is described in more detail.

• In Chapter 3, a few existing IQ assessment frameworks are described and

compared. The analysis of the existing assessment frameworks forms the

basis to de�ne a new QA framework which is one of the main goals of this

thesis.

• In Chapter 4, we discuss what quality dimensions should be used and what

freely available Java tools can be reused in this work. Thus, we de�ne a

new QA framework: FAQAD

• In Chapter 5, we report experiments in which FAQAD was used as a part

of a larger software system. The aim of these experiments is to show that

FAQAD is able to provide meaningful results from real data.

• The last chapter is dedicated to the conclusions and ideas for further im-

provements.
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Chapter 2

Background

In this chapter, we provide an overview of the DAVID system and its components.

First, we introduce the �Towards e-leadership� project (Section 2.1) and clarify

the purpose of the DAVID system (Section 2.2). In Section 2.3, we outline the

structure of DAVID and shortly describe every major component of the system.

In Section 2.4, the process of fetching new documents is explained in more detail.

QA tools that have already been discovered and partially integrated into DAVID

are discussed in Section 2.5. Finally, in Section 2.6, we discuss the tools and

mechanism used for the graphical user interface (GUI).

2.1 Towards E-leadership Project and DAVID

DAVID is developed as a part of a research project entitled �Towards e-leadership:

Higher pro�tability through innovative management and leadership systems� which

is a joint e�ort by School of Computing and Department of Business at the Uni-

versity of Eastern Finland. The research groups participating in the project focus

on the scienti�c and educational aspects. In DAVID, various TM and NLP tech-

niques are utilized in order to process text content of miscellaneous documents

[40]. The main research question of the project is:

�How to obtain, convert, and represent existing and invariably in-

creasing information used in decision making in a way that enhances

strategic leadership and reduces information over�ow?�[40]

The project was funded by Finnish Funding Agency for Technology and Innova-

tion (TEKES), European Regional Development Fund and seven partner compa-

nies that also contribute by business expertise and enable the software to be tested
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in a real enterprise environment. The participating companies are: Connexor

(provider of language analysis tools) (http://www.connexor.com/), Futuremis-
sions (a non-pro�t consultancy and management organization ) (http://www.
futuremissions.fi/), Johtamistaidon opisto (leadership and strategic manage-

ment development institute) (http://www.jto.fi/), Metalliset Group (interna-

tional contract supplier of metal parts) (http://www.metallilaite.fi/), Out-
otec Filters (leading company in designing and manufacturing industrial �lters)

(http://www.outotec.com/), Pohjois-Karjalan Osuuskauppa (retail chain) (http:
//www.s-kanava.fi/pko), and Valtra (tractor manufacturer) (http://www.valtra.
fi/) [40].

2.2 Purpose of DAVID

Developing a TM system for collecting and analyzing BI was one of the main

objectives of the project. The TM system analyzes text documents in order to

help business leaders to reach the right decisions easier. It gathers and analyzes

information from the internet, e.g. feedback, customer opinions, or BI to examine

competitors. With the obtained results, it is able to assist the business leaders

with making decisions [38].

The representation of information may vary. A basic numerical representation

might be accurate. However, it might not always be useful and usable for the

leader. Instead, a textual or a visual form can be more understandable. Addition-

ally, the working environment in modern companies is constantly changing, and

so is the information available. Thus, the data representation should dynamically

capture those changes. The existence of dynamic representation and analysis aids

to reach a proactive leadership. [40]

DAVID system is mainly used in the following manner:

• A business decision-maker de�nes a project. It has to be clear what is the

intention of the analysis. The information sources, from which documents

are gathered, need to be set.

• Once the project is running, new documents are automatically fetched

from the internet sources.

• When the fetched documents are considered as being of high enough

quality, they are further processed and several di�erent TM techniques
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(e.g. information extraction and sentiment analysis) are applied. These

TM techniques are used for processing the input texts. To save the newly

found pieces of information as well as storing the known facts, we need a

domain-dependant knowledge base (i.e. ontology).

• Finally, as a result of the analysis, DAVID system provides intelligence

reports about the business environment in textual format as well as in

visual [38].

2.3 Structure of DAVID

To develop the whole DAVID system for analyzing textual BI from scratch would

be an excessive amount of work. Creating and testing certain lower-level func-

tionality such as converting documents from various formats or indexing them is

indeed not the ultimate goal of the system. Moreover, developing such tools from

scratch would be a too ambitious goal for a single research project.

Because of the large scope of the DAVID software project, it is crucial to reuse

other software that is available. Using and integrating components that have

already been implemented, tested, and used by other developers ensures that the

components are reliable. Furthermore, system design that is based on reusing

components allows us to spend more time on development of advanced analysis

and decision-support capabilities instead of developing something that has been

previously implemented [38].

There are many components with implementations of various web mining, TM

and Semantic Web (SW) technologies freely available for Java programming lan-

guage, and many of them are, in fact, open source [38]. The structure of DAVID

system is shown in Figure 2.1. The scheme is explained in more detail below [40]:

Document Fetching

The document fetcher �nds documents on the internet within speci�ed sources

and collects them. It is essential to be able to feed the system with new infor-

mation. In Figure 2.1 on page 11, you can see it as component 1 in the top

left corner. The external sources are not only web pages, but also news feeds

and search engine queries. The fetched documents are converted to ASCII text

10



Figure 2.1: Architecture of DAVID system. Boxes with dashed lines show
the main parts of DAVID marked with numbers in circle which consist from

components shown by boxes with full lines.

11



from various �le formats, e.g. HTML, PDF, MS Word, and PowerPoint. More

information about fetching the documents can be found in Section 2.4.

An indivisible, yet important component of document fetching is the quality as-

sessor. This component ensures that the input documents are worth further

processing, either fully or partially. Processing all the fetched documents would

be too resource-consuming. And many of them would be completely useless due

to being either irrelevant or of poor quality. Developing a �ne quality assessor

framework and component to distinguish quality documents is the aim of this

thesis. The quality assessor framework has its own chapter(4).

A list of the open source Java packages used in developing this component follows:

BING API (http://www.bing.com/developers), Yahoo! Search API (http://
developer.yahoo.com/search/), Heritrix web crawler (http://crawler.archive.
org/), Web-Harvest (http://web-harvest.sourceforge.net/), YARFRAW (Yet

Another RSS Feed Reader And Writer API) (http://yarfraw.sourceforge.
net/)

Preprocessing and Feature Extraction

After a document passes the quality assurance component, which is the main

focus of this thesis, and it is saved to a database (DB), it is further processed by

components 3 & 4 in Figure 2.1. The document preprocessor examines the fetched

documents linguistically (e.g. by part-of-speech tagging, morphological analysis,

syntactic parsing) and decomposes documents into meaningful segments. The

feature extraction components extract concepts (such as companies and products)

and events (such as launching of a new product, bankruptcy of a company) by

using the background knowledge base as the basis. This process is referred to

as ontology-based information extraction (OBIE) and performed with using a

purpose-built system called BEECON (Business Events Extractor Component

based on Ontology) [17].

The preprocessing and feature extraction component uses a convenient open

source software GATE (General Architecture for Text Engineering) (http://
gate.ac.uk/). Additionally, the documents are indexed for e�cient searching

and retrieval. The name of Java component for indexing and searching is Lucene

(http://lucene.apache.org/core/index.html).
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Text Mining and Knowledge Discovery

In order to discover useful knowledge, this component, marked as component 5

in Figure 2.1, enables the extracted features to be processed in various ways, e.g.

�ltered, organized, categorized.

Knowledge Base

The knowledge base is used to store relevant background knowledge and also

the new automatically discovered pieces of information about the companies and

products included in documents that are being analyzed. The implementation of

knowledge base is applying an ontology and semantic web technologies using

Jena semantic web framework (http://incubator.apache.org/jena/). The

framework o�ers the functionality to store, access and infer over the information

contained in the knowledge base [59]. In Figure 2.1, knowledge base is marked

with number 6.

Ontology

Ontologies are SW technologies that accommodate the resources to form concepts,

properties, and relationships within a speci�c domain [38]. In the relation with

DB systems, ontology can be seen as a level of abstraction of data models, analo-

gous to hierarchical and relational models, but dedicated for modeling knowledge

about individuals, their attributes, and their relationships to other individuals.

Ontologies are considered to be at the �semantic� level. In contrast, DB schema

are data models at the �logical� or �physical� level [49].

Ontologies in the �eld of computer science can be seen as dictionaries, categoriza-

tion schemata, or modeling languages [27]. A speci�c ontology describes what is

considered to exist in reality for a speci�c purpose. The ontology developed as

component of DAVID is called Company, Product and Event (CoProE) ontology.

Thus, CoProE deals with products and events concerning a certain company.

User Interface and Information Visualization

Users can easily use the system through a GUI. It provides the user capabili-

ties to e.g. set up the system, to run analysis, and of course, to browse and
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search analysis results. The results can also be displayed in a graphical way in

forms of graphs using JUNG (Java Universal Network/Graph Framework)(http:
//jung.sourceforge.net/). In Figure 2.1 on page 11, visualization component

has number 7. The overall user interface (UI) is implemented using Eclipse RCP

(http://wiki.eclipse.org/Rich_Client_Platform); more information about

UI in Section 2.6 .

Support for Decision-making

The decision-making support module aims at using the information collected and

analyzed by the other components of the system to support business decision

making. The module combines the TM results with �traditional� competitive

intelligence analysis models (such as the Five Forces Framework shown in Figure

2.2), to help leaders to track, understand and predict competitors' activities. The

ultimate goal is to assist leaders to make smarter business decisions faster [22].

Rivalry among existing

competitors

Threat of substitutes

Bargaining power of

suppliers
Bargaining power of

users

Threat of new entrants

Figure 2.2: Five Forces Framework[64] shows the forces that determine the
competitive intensity and overall pro�tability of an industrial company

2.4 David Document Fetching Component

Fetching a document and preparing it for further processing consists of several

steps as shown in Figure 2.3. The key component is DocumentFetcher which

takes care of this process. The original fetcher component was developed by
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Tuomo Kakkonen and Shukrat Nekbaev. Juho Heinonen had integrated some IQ

assessment tools into DocumentFetcher before the current work on FAQAD was

started [59, 36].

Figure 2.3: Fetching Process

As explained above, DAVID fetches documents automatically from internet data

sources de�ned by the user. There are several types of data sources:

Web sites refer to HTML web pages. HTML pages mostly consists of text.

Therefore, it is possible to process and extract information from them. Some

web pages are made e.g. purely with Adobe Flash technology where the

source is not available and it is not possible do analyze such documents.

An example of a web page where BI can be obtained is http://www.bbc.
co.uk/news/business/. There, we can �nd launches of new technologies,

lawsuits and other information about competing companies.

News feeds refer to textual data format often used by content distributors on

the internet where the content is frequently updated. A common example

is RDF Site Summary (RSS) feed. Users can chose to subscribe to a desired

news feed, and then download the news from the feed using a news reader.

It might seem very similar to e-mail subscription. However, the news feeds

have several advantages: users are not disclosing an e-mail address or any

other personal information, therefore there is no threat of spam or viruses

that could be regularly seen in e-mail inboxes.
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http://feeds.bbci.co.uk/news/business/rss.xml is location of news

feeds concerning business provided by British Broadcasting Corporation

(BBC).

Search engine queries are the search phrases submitted to search engines by

DAVID. The engines like Google and Yahoo! give for the same keywords

di�erent results over time. Currently DAVID supports Bing and Yahoo! via

the Java API they provide.

A search query can be e.g. �valtra tractor�. In a web search it would

create an HTTP request for the server engine that you can usually see

in a browser's address bar - it could look similar to q=valtra+tractor.
The provided APIs accept the keywords as their input, so there is no need

to manually create HTTP requests. The mentioned query �nds web sites

mentioning Valtra tractors.

Once a document is fetched, the text is extracted with strippers. Strippers are

responsible for ripping ASCII text from various �le formats, such as HTML,

MS Word PDF, RTF and PowerPoint. The package uses freely available tools

such as Apache POI (http://poi.apache.org/) and Apache PDFBox (http:
//pdfbox.apache.org/).

Extracting text from HTML is not as straightforward as from other formats. The

process has 3 steps:

1. The class �rst strips the ASCII content of the whole HTML document

(stripped text).

2. Then, it iterates through all the elements of the HTML document and check,

by using certain heuristics, that each element contains �proper text� (i.e.

full sentences) rather than garbage, such as ads and menus.

3. Finally, the elements deemed to contain garbage are removed from the

stripped text.

2.4.1 Filters

Filters are applied to make sure that the input document ful�lls all the criteria

for a document that is considered valid by DAVID. Filters can be enabled or

disabled by changing project settings. The �lters need to access information
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Figure 2.4: Filters applied on input documents. Each component can �lter
the new document out. Full arrows show the possible way of documents, striped

arrows represent communication between components and the DB.

about the project settings as well as the access to previously fetched documents,

i.e. the �lters communicate with the DB. The document �ow through the �lters

is visualized in Figure 2.4.

URL blacklist enables the user to block certain web pages or domains, thus

preventing them from being processed by the system. URL blacklist �lter is

applied in the DocumentDownloader component [59]. For e�ciency reasons,

the �lter is run before the document is actually fetched because the content

of the document is not needed for this �lter to work. For simplicity, that is

not shown in Figure 2.3. Nevertheless, once the document passes the �lter,

it is downloaded, extracted to plain text using various stripper components,

and it continues to the next �lter.

Duplicate URL address �lter �lters out a new document if a document with

the same URL address already exists in the system i.e. it prevents duplicates

from being stored in the system.

Duplicate content �lter �lters out a new document if the content matches

an existing document in the system, i.e. it does not allow content dupli-

cates. Content �ltering is based on Lucene [1] search index. Lucene is a

full-featured text search engine library providing high-performance search

capabilities over the fetched documents [1, 59]. Lucene is used for �nding
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near matches. Once a near match is found, the two documents are com-

pared in case-insensitive manner whether or not they are the same [59]. This

prevents from duplicates located in di�erent URL addresses to be stored in

the system.

Language �lter automatically detects the language of a new fetched document

using a Java implementation of a library [5] developed for language recogni-

tion. A new document is either rejected or accepted based on the language

settings of the current project [59]. The NLP and TM components of the

DAVID system currently support only English, which means that the lan-

guage �lter is used at the moment for �ltering out documents that are

written in any other language.

FAQAD framework proposed in the thesis aims to bring these existing �lters

and new types of QA features into a uni�ed QA framework. FAQAD will

be implemented as a Java tool that allows a text document to be evaluated

with several language processing tools. The DAVID system will then decide

depending on the quality of a document, if it is �ltered out or stored in the

system for further analysis. The design and implementation of FAQAD are

described in Chapter 4.

Once a fetched document passes all �lters and is evaluated by FAQAD as of high

quality, DocumentFetcher saves the document and the assessed quality to DB.

Additionally, the document is indexed by Lucene.

2.5 Previous Quality Assessment Component

of DAVID System

Juho Heinonen, student of linguistics, worked in the e-leadership project at the

University of Eastern Finland during the year 2011 on �nding document quality

measurement tools to be used in DAVID. His work resulted in implementing a

system that is capable of performing several types of linguistic measurements of

document quality. These are listed in the following subsections.
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2.5.1 Language

FAQAD evaluates documents in English and Finnish language. Because these

two languages are from di�erent language families and have no linguistic rela-

tion whatsoever, for certain analysis, di�erent tools have to be used to evaluate

documents written in these languages.

To distinguish what language a document is written in, DAVID uses Java Text

Categorizing Library (JTCL). JTCL is a Java implementation of libTextCat which

is a library that was created mainly for guessing the language of text documents.

According to the web page [7], libTextCat performance is almost �awless in rec-

ognizing the language of text documents. JTCL was implemented at Knallgrau

New Media Solutions, and at present time, it is used by tagthe.net which is web-

service that can be used to provide tags for textual contents both on- and o�-line

[5].

2.5.2 Correctness

The frequency of misspelled words can be used as a measure of the correctness

of a document. A high frequency of spelling mistakes indicates a lack of thought

or diligent work from the author. We may argue that it is also possible that the

document contains correct information but is not in author's native language.

Nevertheless, in the context of DAVID, we do not consider a document or a web

page as a reliable source of business information if it contains multiple spelling

errors. As mentioned above, it is di�cult to perform an accurate NLP and TM

on documents that contain a high frequency of errors.

On the other hand, there are many spell checking tools available for common

people. Therefore, it might happen that we have a document with no spelling

mistakes that the common tools can discover, but the IQ is low. The spell checking

tools are, for example, not able to �nd a misspelled word that appears to be

another word spelled correctly (there 6=their). The weight and importance of spell

checking in the overall IQ assessment is evaluated in Chapter 5.

Voikko

Voikko is an NLP tool for the Finnish language [14]. In addition to spell checking,

it has ability to do other things as well: checking grammar, hyphenate words and

collect related linguistic data for Finnish language [14]. In FAQAD, the spell
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checking module uses Voikko to tokenize Finnish documents and �nd spelling

errors in it.

The Voikko libraries are programmed in C and C++ languages. FAQAD is im-

plemented in Java. Fortunately, the developers of Voikko has provided a Java

interface which makes it possible to use Voikko in Java applications. However,

it means that compiled native libraries for di�erent operation system need to be

included in FAQAD. Currently, the libraries for MacOS, Windows (32-bit JVM),

and Linux are included [36].

JMySpell

The MySpell spell checker under the LGPL license is the basis to JMySpell which

is implemented in pure Java[6]. Using JMySpell, we can use the dictionaries from

OpenO�ce.org in Java applications. It does not matter whether they are J2EE

web applications or J2SE applications. The module is able to check documents in

both English and Finnish, even though the performance for Finnish documents

is not good. It marks many composite words and in�ected forms of words as

misspelled [36]. FAQAD uses JMySpell to check spelling of English words. For

FAQAD, it was utilized in a way that the component returns the ratio of

correctly spelledwords/all words in document

To check texts in Finnish language by JMySpell, it is probably not the best choice.

However, it is used for Finnish texts as a second choice if Voikko (see above) is

not supported by the operation system [36].

2.5.3 Readability and Understandability

Readability and understandability are values indicating how pleasant a text is

to read. To obtain those values, there are several tools we can use to evaluate

text for readability and lexical diversity. Finnish texts tend to show high lexical

diversity, because of many su�xes Finnish words can gain. In order to get more

realistic values, we use the package Snowball to create stems of the words. Using

the stems instead of the in�ected words makes it possible to utilize standard

readability and lexical diversity measurement to texts written in Finnish.
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Snowball

Snowball is a string processing system that was designed for creating stemmers

used in information retrieval [11]. It supports several languages including Finnish.

Because Finnish words tend to have many di�erent su�xes in written text, to get

more realistic result about lexical diversity, Snowball is used. Otherwise, all the

forms of the same word would be considered as di�erent words. Therefore, the

test would give excellent scores for lexical diversity analysis [36].

2.5.4 Spam Detection

We consider spam as unwanted bulks messages, such as product advertisements

or phishing e-mail. These documents do not contain any reliable information and

we can think of as �trash that accidentally got on our table�. Most probably,

everybody who uses e-mail has seen some kind of spam and possibly even a spam

�lter. Because the spam has no information value whatsoever, it is required to

use a spam �lter in order to prevent DAVID from spam overload and misleading

information.

Classi�er4J

As the name suggests, Classi�er4J is a text classi�er for Java, i.e. it is imple-

mented in Java. The system uses a Bayesian classi�er [2]. A naive Bayesian

classi�er is based on Bayes' theorem. It is called naive, because it considers all

the features to be independent. The assumption of independence makes the clas-

si�cation much easier. However, it seems to work well in practice even when the

independence assumption is not genuine[12]. A more clear and understandable

term for the essential probability model could be independent feature model [9].

In a more understandable way, the naive Bayes classi�er expects that the presence

(or absence) of a certain feature is not related to the presence (or absence) of

another features. For example, a fruit could be recognized as an orange if it is

orange, round, and about 5cm in radius. Although these features are related, or

could be related to other existing features, naive Bayes classi�er assumes that all

the features are independent, and contribute separately to the probability that

the fruit is an orange[9].

Naive Bayes classi�er works in two steps to be able classify data[12]:
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1. Training - by using training samples, the probability distribution of di�erent

features is estimated.

2. Prediction - new test samples are classi�ed using the calculated probability

based on the training data. It is so called posterior probability.

Classi�er4J provides tools to save training results, and make classi�cation deci-

sions based upon the training[36]. However, Classi�er4J has two major draw-

backs:

• It is not able to add new training results to the one currently saved. All

training data have to be used at once.

• It does not give a value about how certain it is that a text matches a

category. It simply returns 0.01 or 0.99. On the other hand, it makes the

implementation of FAQAD easier.

2.6 Graphical User Interface

An inevitable part of every sophisticated software is the GUI. Today, no end-users

do really want to use command-line interface (CLI), although it might be faster

in some cases. CLI demands careful reading of some kind of manual. GUI is

easier to understand because the user visually sees what options he/she has, i.e.

GUI makes operations more intuitive.

Users can access and work with the DAVID system using a GUI. Hence, the QA

framework also needs to have its own GUI. Therefore, we review the current GUI

of DAVID and discuss the technologies and tools used for implementing it.

Nowadays, there are multiple options to choose from when selecting the platform

to implement a GUI. Web-based interface is widely used. You can easily access the

system remotely and you don't need any extra desktop client to access the system.

Since the whole DAVID system is developed in Java programming language, a

web-based GUI would need an extra framework to communicate with the system

and display the data. Again, because the whole system is developed in Java,

the easiest solution would be to implement the user interface in Java. The main

advantage of Java is that it is platform independent, unless you use any platform

speci�c components.

Java has two standard GUI tool kits:
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Abstract Windows Toolkit (AWT) is the original Java GUI tool kit. The

main advantage o AWT is that it is available in every common version of

Java Technology - that means it is also included in Java implementation

in very old or obsolete web browsers, and it is stable. That means you do

not have to install anything further, you can just rely on any Java runtime

environment, and it will support your AWT application with all the features

you expect. However as the original toolkit, the amount of AWT's GUI

components is very limited. Components, such as Tables or Trees are not

supported. In application where you need more components, you have to

implement them from scratch. That might become a problem [28].

Swing also known as a part of the Java Foundation Classes (JFC), was an

e�ort to resolve most of the AWT's drawbacks. Nevertheless at the same

time, Swing is built on parts of AWT. All the Swing components are also

AWT components. �In Swing, Sun created a very well-engineered, �exible,

powerful GUI tool kit. Unfortunately, this means Swing takes time to learn,

and it is sometimes too complex for common situations.�[28]

With these GUI toolkit, there is still lot of programming to do, especially when

you want to use components such as wizards or editors, because those components

are not implicitly available. Fortunately, Rich Client Platforms (RCP) for Java

exist, so we do not have to implement every single widget we need. For DAVID

system and the QA API, Eclipse RCP was chosen.

2.6.1 Eclipse Rich Client Platform

Eclipse platform is an open source platform that provides many components that

the developers can use and bene�t from the tested features of the framework.

Thus, they do not have to implement everything from scratch using the basic

Java GUI tool kits such as AWT or Swing. Eclipse platform is designed in a way

that using its components, we can be build simply any client application [10].

Eclipse and Eclipse applications are built using a plug-in architecture. Plug-ins

are software components, and they are the smallest deployable components of

Eclipse [72]. The essential collection of plug-ins required to build a rich client

application is commonly known as RCP[10]. Of course, rich client applications

are able to use and be extended by third party software or API to enhance their

functionality [72].
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Eclipse RCP is the basis for Eclipse - one of the most successful Java IDE. It

uses native GUI widgets to provide native look and feel as much as possible.

It allows us to relatively quickly build a professionally looking application for

multiple platforms. With its intense modularity approach, we can conveniently

design component based systems [72].

Many companies including corporations like IBM and Google use the Eclipse

platform frequently for their products. Thus they ensure, that Eclipse is fast,

�exible and continues to evolve [72]. Eclipse RCP is stable and broadly used and

allows the developers to use the Eclipse platform to create �exible and extensi-

ble desktop applications [72]. It also allows them to easily reuse and integrate

components that are already implemented.

24



Chapter 3

Quality Assessment Frameworks

Over the past few decades, several frameworks have been developed for assessing

IQ in text documents. The focus of these frameworks has been, in particular, on

the QA of web pages. According to Strong et al.[69] high quality data is data that

is �t for use by the data consumer. The quality or usefulness of data is dependent

on the individual who is going to be using it. Good quality data would therefore

meet requirements of its intended use. The concept of quality is therefore relative,

depending on the di�erent perceptions and needs of the users of the data[62].

In the following Section (3.1), we discuss the di�erent types and categories of

quality dimensions. In Section 3.2 , we compare and discuss the existing QA

frameworks.

3.1 Categorization

ISO de�nes quality as �the totality of characteristics of an entity that bear in

its ability to satisfy stated and implied needs� (ISO 8402, 1994). In context of

web pages, the de�nition implies we need two di�erent approaches and kinds of

requirements for web document quality evaluation[32]:

1. Technical requirements : These deal with the structure of web documents.

This category is concerned with technical design aspects, thus takes into

consideration criteria which indicate objective and quantitative character-

istics of the documents. That includes web page code quality, broken links,

but also structure of document in sense of clear order of information.
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2. Content requirements : These consider the extent to which the web docu-

ments meet the speci�c user needs. The evaluation criteria in this category

takes into consideration subjective and qualitative characteristics of docu-

ments. That includes, e.g., accuracy, relevance, consistency.

IQ assessment frameworks are de�ned using a series of quality dimensions. In

order to compare di�erent approaches, the quality dimensions can be grouped

into four categories. The following categorization schema was introduced byWang

and Strong [73].

Intrinsic Dimensions are independent of user's context. Intrinsic dimensions

indicate that a piece of data possesses quality in its own right, i.e. the

data have objective attributes and are not a�ected by user's needs for a

particular task. The common intrinsic sub-dimensions are brie�y explained

in Table 3.1 on page 27.

Contextual Dimensions are based on user's context and subjective prefer-

ences. The quality of data is considered within the context of the task

user needs to accomplish. Because the context and tasks are changing over

the time, it is quite a challenge for researchers to measure the contextual

quality dimensions accurately with �xed assessment methods[70]. User's

subjective preferences indicate what makes an information of high quality,

i.e. which quality dimensions are the most signi�cant for the particular user

and the user's task at hand. The frequently used contextual sub-dimensions

are brie�y described in Table 3.2.

Representational Dimensions are concerned with representation of informa-

tion within information systems (IS). Representational dimensions consider

aspects regarding the format of the data as well as the meaning of the data.

Thus, the IS must present the data in consistent, interpretable and easy to

understand manner. Sub-dimensions of this category are brie�y explained

in Table 3.3.

Accessibility Dimensions consider aspects involved in accessing information.

This category emphasizes the role of IS, i.e. the IS must be accessible

and at the same time secure. Nowadays, users mostly access the internet

for their information needs and are not looking for a hard-copy version

so often anymore. Thus, accessibility dimensions need to be considered

as inseparable part of IQ. The common accessibility sub-dimensions are

described in Table 3.4.
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Each of the quality dimensions listed above can be further divided into sub-

dimensions [19]. The di�erent quality sub-dimensions are brie�y explained in the

tables underneath:

Table 3.1: Intrinsic Dimensions

Sub-dimensions Description

Accuracy

Is the degree to which the information content of a
web page is correct and reliable[62]. In fact, many
people consider accuracy to be the same as quality.
Nevertheless, accuracy is only a single component of
quality[71]. Information, whether electronic or on
paper, is a representation of real world objects or
events. Data elements hold values that are facts
representing some attribute of a real world object or
event. Therefore, accuracy is the extent to which
data properly matches the actual object or event
being explained [24].

Consistency

Indicates that values in a document do not con�ict
with each other. Information on web-sites might be
perceived as inconsistent, since they have been
created by multiple authors that might have
di�erent level of knowledge and di�erent perception
of reality [19].

Objectivity

Is the extent to which the information is unbiased,
not prejudiced and is fair so no missing fact would
signi�cantly change the meaning of the information
[63]. The objectivity of certain types of information,
such as product description, could be a�ected by
the information provider's interests or goals [19].
Objectivity is closely related to the accuracy
sub-dimension.

Timeliness

Is the degree to which information is up-to-date for
the activity intended [37]. Timeliness can be
recognized in an objective fashion, meaning that
information re�ects the current state of the real
world [57]. At the same time, timeliness can also be
recognized as task-dependent, meaning that the
information is timely enough to be used for a
speci�c task [63].
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Table 3.2: Contextual Dimensions

Sub-dimensions Description

Believability
Degree to which is the content on a web page true
and trustworthy [63].

Completeness

Degree to which are information in the content not
missing, and the depth of information is adequate
[63]. Because we are talking about contextual
dimensions, the perception of completeness of a
certain information may di�er between users. For
example, list of students might be complete for a
professor giving lectures, while the list is incomplete
for the head of the department.

Understandability

Degree to which is the data smoothly apprehended
by the end user [19]. Understandability is somewhat
related to interpretability. However, interpretability
refers to technical aspects, such as usage of
appropriate notations, while understandability
refers to the subjective capability of the user to
perceive the information.

Relevancy

Degree to which information is appropriate and
bene�cial for the task at hand [63]. It is an essential
IQ dimension in the context of web-based systems
and search engines, as end-users are frequently
challenged with large amounts of possibly relevant
information [19]. Search engines assess relevance in
order to sort results accordingly.

Reputation

Quality sub-dimension that measures
trustworthiness and signi�cance of a source. The
content of a web page gets user's attention because
of information the user gathered previously from
that web page [62].

Veri�ability
Is the degree and comfort to which the information
on a web page can be easily veri�ed for correctness
[57].

Amount of Data

In the context of task at hand, �amount of data� is
the degree to which the quantity of information is
suitable and the user does not get astonished by too
detailed information [19].
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Table 3.3: Representational Dimensions

Sub-dimensions Description

Interpretability

Is the degree to which information in a document is
presented in appropriate language, using relevant
units and symbols. Of course, also the de�nitions
need to be clear [63]. The availability of key
material to endorse correct interpretation, such as
summaries, �gures, guides, etc., are crucial.
Interpretability is an essential component of quality
as it allows the information to be appropriately
utilized and understood.

Representation

Is the degree to which information is represented in
the same format [63]. In general, the representation
of information on the web is not very consistent,
because there are not any restrictions for the
representation [34]. An example of inconsistency in
representation is to use di�erent document formats,
such as HTML, PDF, and Microsoft Word, within a
single web page [19].

Table 3.4: Accessibility Dimensions

Sub-dimensions Description

Accessibility

Refers to availability of the information or how
quickly and simply it is to fetch the document [63].
The main factor of the success of World Wide Web
is the possibility to supply numerous information
sources with an on-line access. Enhancing
accessibility of the information on-line is the
primary motivation behind the technologies
standardization of the web [19].

Response Time

Measures the time interval between a user's request
sent to the server and the response obtained from
server. The response time might be a�ected by
various factors, such as complexity of the request,
network tra�c, or the server's workload [19].

Security
Is the degree to which access to information is
adequately limited to keep it protected [63].

3.2 Comparison

Comparison of IQ frameworks is shown in 3.5[62].
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Table 3.5: Comparison of IQ frameworks[62]
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The analysis of the information quality frameworks in Table 3.5 reveals common

dimensions between the existing IQ frameworks. The most frequent quality di-

mensions used in those frameworks are: accessibility, accuracy, relevancy and

timeliness. The reason for this is that di�erent researchers considered them to be
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most useful and relevant ones.

Accessibility dimension addresses technical accessibility, and the problem with

accessibility is realized quickly by every user. Unlike other quality dimensions,

users are able to notice that accessibility is poor even before they start reading the

document. Additionally, when a user knows a document with certain information

exist, but it is not possible to access it at the moment[62], it might be even

more agitating for the user than spending lot of time time by looking for the

information. Consequently, poor accessibility may lead to bad reputation of the

web page.

Accuracy is probably one of the most important quality dimensions for the ma-

jority of users when searching information, because inaccurate data are mostly

useless and potentially misleading. Lack of accuracy may, again, lead to poor rep-

utation and also to believability problems[62]. Ultimately, inaccurate information

is useless or harmful and should not be used as a basis for decision-making.

Relevance is a task-speci�c quality dimension. When users seek information, they

usually use search engines in order to locate the information on the web. Because

of the enormous quantity of documents on the internet, search engines sort the

search result according to relevance or popularity[34]. In this sense, relevance is

the resemblance between the search key words and the text in the documents that

were returned. If the search engine does not �nd relevant documents for user's

task, the user has to try to search with di�erent or more speci�c keywords. In

many cases, the user does not eventually �nd what he was looking for. In contrast

to the dimensions mentioned above, not-�nding relevant documents usually does

not lead to poor reputation of web pages, but rather the search engine.

IQ is commonly perceived as the �tness for usage of the information[19]. Accord-

ing to this de�nition, the IQ is task-dependent and subjective. Although, the

intrinsic dimensions indicate that data posses quality of objective nature, it is

hardly enough for any user to evaluate documents without any context. IQ is a

concept of multiple dimensions. Which dimensions are important and which qual-

ity levels are needed is resolved by the task at hand and the subjective preferences

of the user.
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Chapter 4

Developing FAQAD � New

Framework for Quality Assessment

In the following section (4.1), we discuss the measurement of some of the men-

tioned IQ assessment dimensions introduced in Chapter 3. Our focus is on the

dimensions that are important in the context of a BI system such as DAVID, how-

ever at the same time, it is very di�cult to assess their quality within our settings.

In Section 4.2, new QA tools and components are introduced. Implemetation de-

tails, such as the DB structure (4.3.3) or tools used for development, are described

in Section 4.3.

4.1 Measurement

The assessment of contextual dimensions, as mentioned before, is based on the

user's context and subjective preferences. FAQAD does not have a straightfor-

ward way to communicate with a user to �nd out his or her preferences, thus, it

cannot really work with contextual quality dimensions.

For example, relevance is one of the contextual dimensions. Relevance ranking

is used by search engines to estimated what is user is looking for. The average

size of a web search query is two terms[54]. Obviously, such a short query cannot

specify precisely the information search of web users, and as a result, the response

set is large and therefore potentially useless (imagine getting a list of a million

documents from a web search engine in random order). One may argue that

users have to make their queries speci�c enough to get a small set of all relevant

documents, but this is impractical. The solution is to rank documents in the
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response set by relevance to the query and present to the user an ordered list with

the top-ranking documents �rst. Therefore, additional information about terms

is needed, such as counts, positions, and other context information[54]. DAVID

is able to access data via search engine queries which return result sets ordered

by relevance ranking. Therefore, FAQAD obtains documents that are, according

to the search engine, the most relevant for the used keywords. However, FAQAD

does not have access to the actual ranking values of the search engine. That

implies that relevance, as in user context, cannot be directly used by FAQAD for

assessing the overall quality of documents.

Accessibility could be measured using criteria such as amount of broken links,

orphan pages, code quality, or navigation on a web page, i.e. visual structure of

the document. FAQAD obtains the documents from DAVID's DocumentFetcher

component as plain text along with the URL address from which the document

was obtained; an internet connection is needed to be able to measure accessibility.

Nevertheless, in case a web server has a long response time, and FAQAD needs

to process large amount of documents from that web server, time consumption

would increase enormously. Additionally, at the moment, FAQAD itself does not

use direct internet connections, as these services are provided by DAVID. There-

fore, the current system design does not provide means for measuring accessibility.

Instead, DAVID skips a document after a preset time has elapsed from the mo-

ment the attempt to access the document started. This prevents the document

downloader from getting into a deadlock.

Accuracy, in the sense of correctness and reliability of the texts that have been

fetched is the main focus of the FAQAD framework. Reliability is obtained by

ranking each document source based on the quality of the documents that have

been previously retrieved from it. More information about this technique is pro-

vided in Subsection 4.2.3.

4.2 Designing FAQAD

In addition to the QA tools introduced in Section 2.5, FAQAD includes ones for

measuring the readability of document (4.2.1), the quality of data sources (4.2.3),

user rating mechanism (4.2.4), and a spam �lter (4.2.2).
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4.2.1 Readability

Lexical diversity and readability give an approximate value about the overall

linguistic quality of a document. Lexical diversity measures the size of vocabulary

used in a document. Lexically diverse text, i.e. one with a richer collection of

di�erent words, is usually considered to be more convincing about its content than

an low diverse equivalent of the same text; more commonly used words tend to be

shorter than the words that are used, for instance, in science or by specialists in

some speci�c �eld[39]. Readability implies how easy the text is to read. Length

of words is a signi�cant factor in evaluating readability[36].

We use two packages, TexComp and Fathom, to evaluate readability and under-

standability.

TexComp

TexComp is a component that analyzes texts and calculates readability and lexical

diversity values. TexComp can be adjusted to better suit for the analysis of

di�erent languages. In Tuomo Kakkonen's article[39], it is stated that TexComp

was tested on two di�erent corpora:

1. English speaker students in the Department of English, Uppsala University,

Sweden [74]

2. Native English speaker students from Oxford Brookes, Reading and War-

wick University [33]

The evaluation results by Kakkonen indicated that the system can be reliably

used for assessing the readability and lexical diversity of the texts in the two test

sets. Native English speakers were given higher scores for lexical diversity and

readability on average than non-native speakers.

Fathom Package

Fathom package includes three reading level algorithms that can be helpful in

determining the readability of the content [47]. George Klare (1963) de�nes

readability as �the ease of understanding or comprehension due to the style of

writing.�[44] However, we cannot assume that good readability of a content al-

ways means it is easy to understand. As explained above, documents that contain
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a relatively high number of long words are potentially more exact, speci�c and

reliable. On the other hand, they tend to be di�cult to read for common people.

Reading level algorithms only provide a rough guide to measure readability, as

they tend to reward short sentences made up of short words. Fathom package

works only with English texts, and it is basically a Java implementation of two

Perl packages [61]: Lingua::EN::Fathom by Kim Ryan and Lingua::EN::Syllable

by Greg Fast [3].

Gunning-Fog Index roughly indicates how many years of schooling it would

take somebody to conceive the text content [31]. The larger the index score

is, the more sophisticated the text is. Gunning-Fog Index was developed

by Robert Gunning to help the writers and newspaper editors to write to

their audience by removing the �fog� - unnecessary complexity that most

common people do not understand. The algorithm uses the average quantity

of words per sentence and the ratio of complex words in the text to calculate

the score:

(Words per sentence + Percentage of complexwords) ∗ 0.4

In this algorithm, the complex words are considered to be words with more

than two syllables.

Flesch Reading Ease outputs an index score that evaluates the text on a 100-

point scale [29]. The higher the score, the easier the document is to under-

stand. The best score range is considered to be approximately from 60 to

70. The author, Rudolph Flesch, proposed his formula to improve writing

styles. Several US institutions use the Flesch Reading Ease test as a stan-

dard tool to validate readability of forms and documents [30, 65]. Similar to

Gunning-Fog Index, this algorithm uses the average quantity of words per

sentence and the average amount of syllables per word for the calculation:

206.835− (1.015 ∗Words per sentence)− (84.6 ∗ Syllables per word)

Flesch-Kincaid grade level is based on Flesch Reading Ease but gives a dif-

ferent score. Flesch-Kincaid grade level is similar to Gunning-Fog index in

a sense it is a rough measure of how many years of schooling it would take

someone to understand the text content. It was developed by J. Peter Kin-

caid and his team for the US Navy [43]. Later, it was used by the US army,
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for example, to assess readability of technical manuals. For the calculation,

the algorithm uses the already mentioned statistics about the text:

(11.8 ∗ Syllables per word) + (0.39 ∗Words per sentence)− 15.59

4.2.2 Spam Filter

Most people consider spam to be electronic junk mail [35]. It arguably is the most

widely used form of spam. Spam mostly consist of product advertisements that

seem to most persons suspicions, to say the very least. For example, it could be

one of the get-rich-quickly-and-easily scheme, or it could be drugs, e.g., to enlarge

di�erent parts of the body or to loose weight e�ortlessly. Unfortunately, spam is

not used only in e-mails, but also in other media, such as on-line forums, blogs,

classi�ed advertisements, Wikipedia and web search engine results.

The ultimate goal of spam is to get money from the users. If the advertisement

is not directly asking the user to buy something or �make deposit�, it asks for

more contact information, so the user can be bothered more then just by e-mail.

However, not all the spam is used to rob users of money. Instead, some spam

infects posts with ideas and opinions such as religion views.

It is quite obvious that spam does not o�er valuable BI, and it appears when

user is looking for something else, i.e. usually, there is not any relevance between

the spam and the user needs. Spam only consumes user's precious time and does

not give any bene�t in return. In the DAVID system, spam has a similar impact:

consumes time for nothing in return. In the worst case, introducing spam into

the analysis processes of the system causes erroneous analysis. Therefore, spam

needs to be �ltered out.

ABCV API

Anti-social behavior, con�ict and violence (ABCV) is an ontology and tagging

tool for detecting various types of misbehavior and con�icts from text. It is

developed by Dr. Tuomo Kakkonen in the context of the �Detecting and visu-

alizing changes in emotions in texts� project (http://cs.joensuu.fi/~mmunez/
emotion_detection/index.html) that is funded by the Academy of Finland.

Among other things, the Java tool that is based on the ontology is able to detect

swearing words and profanations. ABCV API outputs only values 1 or 0 to de-

termine whether or not the text contains socially inappropriate content, and if it
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Figure 4.1: Quality of Data Sources

should be rejected. We assume that a document including swearing words does

not contain reliable business information. On the other hand, swearing words

in a user feedback indicate anger and disagreement, especially from users with

extrovert personalities [53]. Those contributions should not be ignored, because

it points out a potential negative attitude towards a product or company. If

the DAVID system is applied on customer feedback data, ABCV-based �ltering

should be disabled by using the appropriate parameter setting.

4.2.3 Quality of Data Sources

Evaluating the content of single documents is not the only way how to distin-

guish high and low quality of documents. We can also assess the quality of the

source from where the document was downloaded. Quality of data source can be

estimated based on the average of the quality of documents that were previously

fetched from that source. The process is shown on Figure 4.1.

1. Once we have documents saved in the DB with the assessed quality, we can

calculate quality of the documents' data source.
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2. When a new document is fetched by DocumentFetcher, it is evaluated by

FAQAD.

3. Additionally, we can use the quality of the source where the new document

is fetched from to decide if we want to accept the document or not.

4.2.4 User Rating

Evaluating documents by automated tools makes life easier for the user and can

provide a wealth of useful QA data. Nevertheless, including a human opinion is

very important. We may assume that an evaluation done by human is correct in

most of the cases. At least, it is correct in more cases than the automated tools

are able to be. Similar to quality of data source used to partially evaluate newly

fetched documents, user rating can also be used for this purpose.

Therefore, users are given the option to evaluate a document by themselves.

User ratings are values that indicate how useful the document is in the users'

perspective. Mainly, there are two ways in which the users could report their

opinion on how good a document is to the system:

Star Rating is a widely used method e.g. on web pages. Users are o�ered the

possibility to select stars to indicate, for example, how much they liked the

document or how useful it was. In case the user considers the extremely

useful, he selects the maximum number of stars. When the document is

not useful at all, the user selects no star. Using this approach, it might

be di�cult to establish the mean value. If the user thinks the document is

neither good or bad, what value does he/she select? It could get even more

complicated when there are more users evaluating the documents, and each

of them has a di�erent idea about neutral value.

Scale is an alternative to the star rating approach that alleviates some of the

issues related to start ratings. Scale is usually implemented by widget called

scale or slider which has a minimal and a maximal value. The minimal value

on the left side of the scale is for very bad documents, and the maximum

value is for very good documents. The mean value is simply in the middle.

The star rating seems to be more popular than the scale rating [16]. This is mainly

due to the fact that users have gotten used to it since it has been used on many

on-line services, such as on-line auction sites and pools. As mentioned before, the
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main advantage of the scale compared to the star rating is that we know exactly

where the neutral value is. That is the major attribute of the scale that guided

us to choose it as the user rating method to be used in FAQAD. However, the

rating scale is a replaceable GUI component, hence it could be easily exchanged

for another type of rating component in the future.

4.3 Implementation Details

4.3.1 Java

The entire DAVID system, with the exception of a few external libraries, is devel-

oped in Java programming language [59, 36]. In the following text, we discuss a

few features of Java that makes Java di�erent from other programming languages

such as C/C++.

Java Virtual Machine

The major advantage of Java is that we write one code and the application works

and has the same functionality on any supported platform. Compiling a Java

source code results in having a so called �byte code�. To be able to run the

byte code (Java application), we need Java Virtual Machine (VM) present in an

operation system. Java VM interprets the byte code and runs it on the system.

Unlike C and C++, in which the code is compiled for the target platform, Java

byte code can be run on any system for which a Java VM is available. [68].

Another fact about C and C++ is, that the primitive data types, such as integer

or �oat, have di�erent sizes on di�erent systems[68]. Having enough space for

computing is crucial in large calculations or simulations. Therefore, the C/C++

source code has to be changed for di�erent platforms. Java does not face this

problem. However, the Java VM is continuously updated, and it could face other

problems with each update such as a security breach [60].

FAQAD uses multiple external packages and libraries. Using only one program-

ming language for implementing a relatively complex software system has many

bene�ts: it makes the system development simpler and allows for any member of

the project team that knows Java to participate in implementing any part of the

system. Additionally, using Java for FAQAD and also DAVID makes migrating
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to another operating system easier, because there is no need to rewrite the source

code or recompile it for the target platform.

Java Exceptions

Java implemented a convenient way to handle errors. In older programming

languages, we have to check what every method or function returns in order to

discover an error (for example, trying to open �le that does not exist). In Java

environment, methods are able to throw exceptions. �An exception is an event,

which occurs during the execution of a program, that disrupts the normal �ow

of the program's instructions.�[13] When an error takes place within a method,

the method creates an exception object (EO) and hands it over to the run-time

environment. The EO contains various information, such as type of the error and

state of the program when the error occurred. After the run-time environment

retrieves an EO, it tries to �nd a block of code to handle the exception which

might be located in another part of the program. Using this approach, it is easy

to separate the program and error-handling logics. The following pseudo-code

demonstrates how error-handling works in Java [13]:

readFile {
try {//any of the methods within try clause

//may throw exception
open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

//catch clauses handle exceptions
} catch ( fileOpenFailed ) {

handleException ;
} catch ( sizeDeterminationFailed ) {

handleException ;
} catch ( memoryAllocationFailed ) {

handleException ;
} catch ( readFailed ) {

handleException ;
} catch ( fileCloseFailed ) {

handleException ;
}

}

It is important to note, however, that exceptions do not, in any way, free one of
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detecting and handling errors. It does, however, help to organize the code in a

more e�ective way.

For example, FAQAD uses a DB connection to save or update certain data.

Exception handling makes the programming easier, because it allows us to write

a code that makes sure that everything runs smoothly even if an error occurs.

In order to make sure that FAQAD does not crash due to DB errors, the code

that uses the DB connection is placed inside a try-catch block. We do not need

to check the return values of methods that are called within the try block for

a possible DB error. In case an error occurs, e.g. the DB is not available, an

exception is thrown, and we can handle that exception in a catch block. This

way, the error handling is separate from the normal run-time code. That helps

to keep the source code clear and more organized.

Garbage Collector

Garbage collector (GC) is a form of automatic memory manager within the Java

run-time environment. Once an object in a Java program is no longer used, the

GC �nds it and frees the unused memory space by destroying and removing the

object from the memory. From the programmer's point of view, it makes work

much easier since the programmer does not have to remove all the unused objects

manually1.

The main argument and drawback of the traditional GC is that it consumes

computing resources in order �nd out what is considered �garbage� and needs to

be removed. The program must pause for the GC to reclaim any unused memory.

Users usually do not notice the pause since it is often just a fraction of a second,

however, it is unacceptable for real-time systems[18].

FAQAD also takes advantage of the GC. FAQAD is processing a fetched document

and creates object containing information about the document and its various QA

scores. Those information are processed and saved to a DB. From that moment,

the created object is not needed anymore nor used by FAQAD in any way. GC

destroys the object to ensure there is enough memory for new documents going

to be fetched.
1In C/C++, manual memory management was often source of the hardest-to-�nd bugs[68].

Nowadays, there are implementations of GC for C/C++ programs as well[20]. However, not all
the C/C++ programmers actually use it.
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4.3.2 Eclipse IDE

Eclipse Integrated Development Environment (IDE)[4] was chosen to develop

DAVID. Java code can be written in a basic text editor, however, Eclipse IDE has

many features that makes the programming easier especially for large projects.

These features include:

Syntax highlighting to recognize e.g. what are variables and what Java lan-

guage keywords. That helps read and manipulate the code easier and faster.

Code assistance comes in handy when a developer does not remember an ex-

act name of a certain method or parameters it accepts. Eclipse is able to

o�er a list of methods for a certain object type. That list usually includes

documentation for those methods. Therefore, you do not necessarily have

check the manual every time you are not sure about a method. Also, when

you need to check the code of a method used in your code, Eclipse allows

you to display implementation of that method by a simple click.

Code validation on-the-�y helps to detect common mistakes and typograph-

ical errors. That way, one can easily correct the code before you try to

compile the code. In most cases, Eclipse also o�ers a list of possible solu-

tions.

Concurrent Versions System (CVS) support is very convenient to use es-

pecially in projects with more participants. Programmers save their code to

a CVS server with relevant comments about the changes that were made,

and others can easily download the code, see the changes, and possibly

change or extend the code. In case there are any errors accidentally saved

to the CVS server, we can retrieve an older version of the code. CVS sup-

port is integrated in Eclipse, so there is no need to have another external

application. And because there are several participants working on DAVID

project, CVS is a good choice how to make programming easier for everyone.

JUnit is quite a simple Java open source framework originally written by Erich

Gamma and Kent Beck based on the xUnit architecture for unit testing

[42]. JUnit is designed to create and execute a set of tests in order to make

sure that the developed Java application works as expected. Additionally,

JUnit can be used as a tool to manipulate testing data, such as import or

export them from DB. Nevertheless, the main features of JUnit include:

42



• Automated Execution of a set of tests

• Assertions to test expected results

• Test Fixtures to share and possibly slightly modify testing data for

each test

• Test Runners to be able to run the tests in various ways such as from

IDE or CLI

FAQAD uses JUnit in order to verify that QA tools are working and not

failing. Additionally, JUnit is used by FAQAD to automatically process and

evaluate large amounts of documents and save the assessment scores into a

DB.

4.3.3 Extending DAVID Database

The storage component of the DAVID system is responsible for saving information

allowing to gather and analyze BI from speci�c data sources on the internet. All

the settings needed for such a process are encapsulated within a project. Users

can de�ne several projects for di�erent purposes. The DB structure is shown in

Figure 4.2.

When user sets up a project, it is necessary to save the following data in order to

be able to gather and analyze information from the internet:

Information needs determine what types of competitive intelligence is DAVID

going to gather and analyze[59]. They could be: customer opinions, suppli-

ers, subcontractors, or competitors.

Data Source is a source of input documents de�ned by the user (see Section

2.4). There are three types of data sources: web sites, RSS news feeds, and

search engine query. A data source contains required parameters, such as

URL of the source.

Once the project is set up and running, the systems starts to fetch new documents

from the data sources speci�ed in the project. In the DB, there are two tables

for storing documents:
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Figure 4.2: Part of the DAVID DB scheme relevant to document fetching. The
arrows indicate parent-child relationship where parent can have zero or more

children, and each child has exactly one parent.

Fetched Document contains documents that have been fetched from the inter-

net and saved to the document storage after �lters have been applied; i.e.

have not been �ltered out.

Extracted Document contains documents that were previously fetched, and

selected for further processing.

The DAVID data storage consists of a MySQL DB [8] which holds all the saved

data and Lucene search index[1] for e�cient search capabilities over the fetched

and extracted documents[59].

To ensure that the DAVID system is working with documents that are worth

processing, FAQAD extends the DB to be able to store information about data
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sources and quality of the fetched documents. At the moment, the only addi-

tional information about the sources which FAQAD uses is which data sources

are blocked and are avoided when fetching new documents. Once new documents

are fetched, FAQAD evaluates the documents' quality and saves those scores into

DB for later usage.

4.3.3.1 Blocked Sources

A blocked source de�nes a data source from which DAVID must not fetch any

documents. It is convenient to de�ne such a source in order to prevent fetching

and overwhelming the system with large amounts of potentially useless docu-

ments. To specify which sources are blocked within a project is optional. An

example of a blocked source in the BI context would be an on-line auction site.

While these pages contain numerous mentions of brand and product names, they

typically do not o�er any valuable information for business decision making.

As you can see on Figure4.2, there could be more than one way how to save

the information about which sources are blocked. We could, for example, extend

the table data_source, and indicate which source is blocked. This table holds

much more information about the sources. However, information such as fetching

details are useless when the source becomes blocked.

The other solution could be to create a new table indicating which sources are

blocked within the project. This way the DB storage is used e�ciently.

project

id
name

1 >

blocked_datasource

id int unsigned[10]

url varchar[45]

project_id int unsigned[10]

is_domain bit[0]

< 1 0 >

Figure 4.3: Blocked Sources within a project.

4.3.3.2 Blocked Sources Presets

Adding blocked sources to project settings could mean a lot of typing for the

user. To avoid such an unnecessary time consumption, DAVID provides the users
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presets of blocked sources they can use. Various sources are grouped to di�erent

categories to make the manipulation easier. The groups can be, for example,

auction sites or companies selling a certain type of products. The presets are

not directly related to any data shown in the DAVID DB (Figure 4.2). At the

moment, the blocked sources presets are stored in a separate DB shown on Figure

4.4. Naturally, it could be moved to the DAVID DB to make the DB schema more

compact and easier to maintain.

sources

id
src
group

groups

groupid
groupname

Figure 4.4: Database of blocked sources presets. The arrows indicate parent-
child relationship where parent can have zero or more children, and each child

has exactly one parent.

Each source in the DB belongs to a certain group and is speci�ed by an URL.

The user can choose items or the entire groups from the blocked sources presets

through the implemented GUI dialog. A snapshot of the dialog is shown in Figure

4.7. Additionally, users can add or modify the existing presets of blocked sources

using a GUI dialog shown in Figure 4.8.

4.3.3.3 FAQAD

Once a document passes all the �lters (2.4.1), it is saved into the fetched_doc
DB table. At the same time, QA scores of the document are saved to the DB by

FAQAD. The original DAVID DB did not have a way of storing information on

the quality of fetched documents. As a part of developing FAQAD, such a table,

fetched_doc_scores, was added (Figure 4.5). The table is able to store all the

QA scores for each document.
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Figure 4.5: DB table for saving the assessment scores. Each combination of
fetched_doc_id and measurement_type is unique.

Based on the multiple quality scores provided by its components, FAQAD has

to provide a single QA score and make a decision whether or not to allow the

document to be stored for further processing.

FAQAD has to make a single decision. The decision-making process is demon-

strated in Figure 4.6 as FAQAD needs to determine whether the document qual-

i�es for further processing or it should be �ltered out.

Figure 4.6: Make a single �ltering decision upon various quality dimensions.

If all the QA results indicate that a document quali�es, there is no con�ict, and

we can assume that a document is of high quality. However, if the various scores

contradict with each other, we need to designate a formula to calculate the �nal

decision. Although the easiest method to combine numeric values is arithmetic

mean, some tools are more reliable than others, which means their scores are
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more important than the scores from the less reliable tools. For this purpose, we

can use weighted mean where each score has a designated weight. The formula

(4.1) is shown below.

s̄ =
s1w1 + s2w2 + · · ·+ snwn

w1 + w2 + · · ·+ wn

(4.1)

Each weight (w1 . . . wn) is assigned to a score (s1 . . . sn). We can simplify the

formula by normalizing the weights, so that the fraction denominator is equal to

one, i.e.
∑n

i=1wi = 1. The simpli�ed formula (4.2) is shown below. We will pair

speci�c weights with scores in the following chapter.

s̄ = s1w1 + s2w2 + · · ·+ snwn (4.2)

4.3.4 User Interface

FAQAD uses Eclipse RCP to relatively easily build a robust GUI, thus enable

the user to set certain project options.

Selecting Sources to Be Blocked

User is able to select sources which will be ignored when the DAVID system is

fetching new documents, i.e. documents from the selected sources will not be

fetched. The preset of the blocked sources is saved in the DAVID DB. The GUI

dialog that users can use is shown in Figure 4.7.

Editing Blocked Sources Presets

In order to use the blocked sources presets e�ectively, we need the possibility to

modify them according to users' needs. Again, this is implemented through a

GUI dialog. The GUI dialog is demonstrated in a snapshot in Figure 4.8. In the

dialog, the user is able to:

• Add new items

• Edit items

• Filter the items in case there are too many of them

• Delete multiple items at once
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Figure 4.7: Dialog for selection of blocked sources from the presets.

Figure 4.8: Dialog to edit the blocked sources presets.
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Chapter 5

Experiments

As described in Chapter 4, we have gathered numerous tools to evaluate text

content of documents. In order to decide which tools to use in the QA component

and how to weigh them in the overall QA, we need to analyze their performance

on realistic data. The assessment tools that have been chosen for the evaluation,

output varying types of values that re�ect certain properties of the quality of

the document. The returned values vary both in type and usage. For instance,

a value 27 returned from the Flesch-Kincaid tool in Fathom package has a very

di�erent meaning than e.g. accuracy in percentage from JMySpell. The value can

be a decimal number, a number between 0 and 100 or even a number in a totally

di�erent and unusual range. We need to evaluate and analyze the outputs of each

of the tools separately in order to make a decision whether or not to include it in

the FAQAD toolbox.

In order to get meaningful results, we need to feed the QA tools with real-world

data. We have four major data sets that are further described in the following

section (5.1). In order to gain a better understanding of how each of the tools

work, we ran the tests multiple times after modifying the data sets. In Section

5.2, we describe the approach for running the series of tests and analyzing the

results. The results of the experiments are shown and analyzed in Section 5.3.

5.1 Test Data Collections

Here, we describe the four data collections that are used to run all the information

QA tools in order to evaluate the scores they return. A summary of the test data

collections is located in Table 5.1.
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Business Articles were originally gathered for testing other components devel-

oped in the e-leader project. The dataset has been previously used for de-

veloping and testing the BEECON tool (Arendarenko and Kakkonen, 2012

[17]) and the text categorization component (Machunik, 2012 [52]). The ar-

ticles were gathered manually by �ve participants of the e-leadership project

from the news portals on the internet. These news portals include popu-

lar news services, such as REUTERS (http://www.reuters.com/), The
New York Times (http://www.nytimes.com/), YAHOO! Finance (http:
//finance.yahoo.com/news). The articles were manually cleaned from

advertisements and other irrelevant information. The total amount of the

business articles in the dataset is 840.

Flames is a collection of short texts containing vulgarities and profanations.

One part of this collection was provided by Dr. Tuomo Kakkonen. The

other part was manually collected from various web sites and forums on the

internet by the author of this thesis, Radim Svoboda. The main purpose of

this collection is to test the ABCV API (Subsection 4.2.2). The collection

contains 106 entries.

Leipzig Corpora Collection presents monolingual dictionaries [46]. The main

idea is to use the dictionaries for testing the language recognition tool.

The text collections downloaded from the Leipzig Corpora Collection web

site (http://corpora.informatik.uni-leipzig.de/download.html) are
gathered mostly from newspapers and random web sites in various lan-

guages. All the collections are in a same format and similar in size and

content. The texts are divided into single sentences; the non-sentences and

parts of texts containing foreign language were removed. The size of the

collections vary from thousand sentences up to hundreds of thousands. In

these experiments, we used a subset of the collection that consisted of 10,000

sentences per language.

Spam data set was downloaded from a spam archive (http://untroubled.org/
spam/). The author of the site has been collecting spam e-mails since 1998.

Due to the large volume of the spam data, we used only a small portion

of the spam archive. The e-mails contain e-mail headers which indicate

where had the e-mail traveled from in more detail. For our purpose, we

removed the headers from the emails in the collection and only used the

message bodies in the evaluation. After excluding the duplicate entries, the

collection contains 1834 spam messages.
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Table 5.1: Summary of test data collections.

Collection Quantity Description

Business Articles 804 articles from news portals on the internet
Flames 106 texts containing vulgarities and profanations

Leipzig Corpora 70,000 monolingual dictionaries - single sentences
Spam 1,834 portion of online e-mail spam archive

5.2 Test Settings

Running the test data manually through the QA tools would take considerable

e�ort and a lot of time. Nevertheless, the tools are implemented in Java and while

being integrated, they were tested by JUnit [42] to check if they are working as

expected. The JUnit tests that were used for checking the tools were also used

for automatically running the experiments. Large amounts of test data might

aggravate the ability to browse and to view the input data and the QA results.

In order to enhance the ability to analyze the outputs, we saved all the data and

the evaluation results into a new MySQL DB that was set up exclusively for the

evaluation purposes. Storing all the data in a DB has several advantages: easier

manipulation in sense of showing e.g. minimal, maximal and average values of

the scores or the text length, batch altering or generating new data based on the

previous, etc.. Additionally, we can generate graphs for visualizing the results and

possibly their correlation with any programming language or tool that is able to

access the MySQL DB.

In our case, we chose the programming language PHP: Hypertext Preprocessor

(PHP) for handling the evaluation results. With PHP we can easily manipulate

and load the values, and are able to generate and preview generated Scalable

Vector Graphics (SVG) images1.

5.3 Results

In the following subsections, we give and discuss the evaluation scores for each

QA tool. All of the QA tools are designed for evaluating speci�c languages - in

1SVG de�nes the displayed objects in a similar manner as in analytic geometry, i.e. objects
have position, size, and orientation. Unlike bitmap graphics, SVG can be easily resized without
any visible corruption of the image. This is very handy especially when we generate the images
or �gures for electronic publications where the readers often zoom in or out.
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our case English. In order to be able to use the tools, we need to test the language

recognition component (JTCL) �rst.

5.3.1 Language Recognition

We used the Leipzig Corpora Collection for testing the language recognition com-

ponent introduced in Subsection 2.5.1. In the �rst test, each sentence was eval-

uated separately. This method of evaluation is, in fact, more demanding than

the use case in which the tool is used as part of DAVID. In DAVID, language

recognition is always done at the level of whole documents. The longer the text,

the easier it is to correctly recognize the language. JTCL was tested on the major

world languages that use Latin alphabet, and the results are shown in Figure 5.1.

Additionally, the English text collections are divided based on the region they

come from, e.g. Australia, United Kingdom, USA, etc.

Figure 5.1: Accuracy of language recognition for seven languages (in percent-
ages).

One can observe from Figure 5.1 that the tool had the worst accuracy in recog-

nizing Finnish. It is because it is a di�cult language, and Finnish words tend

to change based on their usage, e.g. with su�xes. To recognize a language with

such properties is not an easy task. On the other hand, English words change

minimally. However, somewhat surprisingly, English texts do not have the best

results.

Looking beyond recognition accuracy percentages, one may pose the question:

what happens if a sentence is not correctly categorized? Is JTCL not able to

associate the text with any language? Or is the text associated with a wrong
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language? Actually, both cases have occured in our experiments. The statistics

in Table 5.2 indicate that the ability of JTCL is strongly a�ected by the amount

of words that are being evaluated.

Language Correctly
Recognized
(%)/AWC*

Wrongly
Recognized
(%)/AWC*

Not
Recognized
(%)/AWC*

German 89.0/15.4 0.1/5.5 11.0/11.2
English 83.5/20.8 0.2/6.5 16.3/15.7

Australian English 84.6/19.5 0.5/7.3 14.9/12.4
British English 82.5/20.0 0.5/7.0 17.0/13.7

Finnish 48.3/13.1 0.0/� 51.7/11.4
French 92.3/20.6 0.2/8.1 7.5/13.4
Spanish 88.3/18.5 0.5/5.6 11.2/7.8

Table 5.2: Analysis of errors per language. *AWC stands for average amount
of words per sentence being evaluated.

In Table 5.2, we can see that the absence of high enough number of words often

results in wrong language recognition. This is indicated by the fact that the

average amount of words per sentence where the language was not recognized is

always less than the average amount of words in correctly categorized texts. In

less then 0.6% cases, JTCL failed and associated text with incorrect language.

These cases are outlined in Figure 5.2.

Figure 5.2: Incorrectly categorized languages and which languages were the
texts associated with (in percentages).

As indicated by the results reported above, an incorrect identi�cation of language
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appeared rarely. Nevertheless, we must not ignore them, and it would be worth

to �gure out the reason why they occurred. Let's look at some examples. The

following sentences were categorized as English texts:

�Le grand public est invité.�

�IT wird nie permanent funktionieren!�

At the �rst sight, we can see that these languages are not English - they are

French and German. However, these sentences are quite short, and they contain

words that can be easily found in an English dictionary - words such as �grand�,

�public�, �it� or �permanent�. In a similar manner, the following English sentence

was categorized as French:

�Contact us on 3290 7600.�

All three words can be found in a French dictionary. Paradoxically, an English

dictionary might not contain the word �us�, because it is just another form of the

word �we�. The sentences where the language was not recognized have a related

issue. More speci�cally, some words are just not found in any language dictionary.

The sentences usually contain names, abbreviations, or quite a few non-alphabetic

characters such as stars, brackets, colons or numbers. For example:

�ALIA Core values statement (ALIA website)�

�Posted by Pomerz on March 21, 2003 at 16:14:11�

�EXO-3C GXO-U100 GXO-U101 GXO-U102 GXO-U103 GXO-U105

XO1 XO1H XO1HV XO1L XO1V denotes our 'Key Products', espe-

cially selected for value & availability.�

All the sentences above are quite short, and JTCL most probably did not �nd

enough key words to match the correct language. It makes sense that the right

words could possibly be found easier in longer sentences. Figure 5.3 con�rms this

assumption. To make the �gure more clear, all the regional types of English are

combined together.
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Figure 5.3: Percentage of correctly classi�ed sentences for each language.

To make sure that the hypothesis about the e�ects of the length of input sentences

is valid, we conducted an experiment. Let's create paragraphs only from sentences

that were not correctly categorized and evaluate them. Previously, JTCL was not

able to correctly recognize any of them. The sentences were chosen randomly, and

they were concatenated in order to form paragraphs of at least 50 words.

Figure 5.4: Percentage of correctly classi�ed sentences for each language. Only
the sentences previously not correctly classi�ed were used. The mean averages
of successful recognition are: German: 97.3%, English: 82.7%, Finish: 97.9%,

French: 92.0%, Spanish: 49.1%.

As we can see in Figure 5.4, there is a signi�cant improvement. The improvement

of Finnish language recognition is outstanding. If we could ensure that the JTCL

component is fed only with blocks of text that are long enough and possibly

contain just few non-alphabetic characters, we would posses a remarkable and

powerful tool for language recognition.
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Business Articles

To con�rm our conclusion, we tested JTCL using the business articles. Unlike

the test items in Leipzig Corpora Collection, the business articles consist of more

than one sentence. The articles contain higher amount of words from 24 up to

1899 with the average of 333.71 words per article. JTCL was able to assess that

838 out of 840 (99.76%) articles are in English. The two unrecognized business

articles contain quite a few dashes, slashes and abbreviations with the word count

of 24 and 53. Based on these results, we can conclude that JTCL is an accurate

enough tool for detecting the language in the target domain.

5.3.2 JMySpell

JMySpell, introduced in Subsection 2.5.2, is used to check the spelling of English

words using an English dictionary. If a word is misspelled, but at the same time it

exists in the dictionary, JMySpell or any other standard spell-checking component

is not able to recognize that as a mistake (e.g. two6=too), i.e. spell-checkers are

not capable of recognizing grammatical errors. JMySpell checks each and every

word, and according to the dictionary, it records how many words are correct and

how many are misspelled. To get an overall result about the document, JMySpell

was utilized in order to return a ratio of correct words/all words.

In the previous experiment (Subsection 5.3.1), the results indicated in the �gures

were grouped by the amount of words that were contained in the tested texts.

It was very useful, as we could see signi�cant di�erences in short and long texts

results. We use the same grouping in the �gures below.
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Figure 5.5: Spell-checking of business articles. Showing the minimal, maximal,
and average values of the test results.

The average accuracy of misspellings in the business articles data set is 94,86%.

At the same time, the worst result was 82,05%. After analyzing the worst results,

it was obvious that the problem was usage of abbreviations, money amounts,

and proper names, but also spelling variations, such as online instead of on-line,

which are not recognized by JMySpell using OpenO�ce dictionary. For example:

�Inter-Alliance in four-for-one bonus

By Reuters

Last updated at 12:00 AM on 19th September 2000

Independent �nancial adviser Inter-Alliance said it was proposing a

four-for-one bonus issue. Shares in the AIM-listed group closed at

1875p on Monday.�

Although the example above looks just �ne for a human, it had the worst score

in the business articles collection. One may observe quite a few occurrences of

words merged by a dash (e.g. �four-for-one�) or a letter appended to a number

(e.g. �19th� or �1875p�). All of these occurrences were marked as misspelled words

by JMySpell. Additionally, the shortness of the document contributed to its low

recognition accuracy.
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Figure 5.6: Spell-checking of spam. Showing the minimal, maximal, and average
values of the test results. Note, that the minimal values on the left side are missing

- the values are way under 75%.

Surprisingly, the average results for spam are slightly better than for the busi-

ness articles: 96.60%. After all, the spamers might be smart enough to use a

spellchecker which is, nowadays, integrated in most of the text editing tools.

However unlike the business articles, spam has the minimal values much lower.

5.3.3 Readability

5.3.3.1 TexComp

TexComp, introduced in Subsection 4.2.1, evaluates a document for readability

and lexical diversity, and returns numerical values representing those measures.

Lower lexical diversity value indicates better diversity. On the contrary, higher

readability value means a better result. Based on Juho Heinonen' experiments

and notes, the thresholds indicating a high quality document are presented in

Table 5.3.

Measure Minimum Maximum

Readability 40 80
Lex. Diversity 150 250

Table 5.3: TexComp thresholds for a high quality document.

We evaluated all the documents in the business article and spam collection. In

Figure 5.7 showing the readability measures, we can see that most of the business
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articles really are within the mentioned thresholds, and most of the spam has

slightly lower values. However, if we considered all the business articles of high

quality, it would enable a lot of spam to be considered of high quality as well.

Figure 5.7: TexComp readability evaluation. Percentage quantity value equals
to a proportion of the total number of articles.

The measurements of lexical diversity are presented in Figure 5.8. We can see that

the values are more dispersed than for the assessment of readability. Yet again,

most of the business articles scores are located within the mentioned thresholds.

Figure 5.8: TexComp lexical diversity evaluation. Percentage quantity value
equals to a portion from the total amount of articles.

Note that the presented �gures did not include all the values. There were a few

documents, both business articles and spam, with assessment values higher than

1000 or even negative values for lexical diversity. Those values were ignored and

not displayed in the �gures. The results are summarized in Table 5.4.
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Collection Readability Lex. Diversity Both None

Business articles 86.43% 70.95% 63.10% 5.60%
Spam 23.83% 49.84% 12.88% 39.08%

Table 5.4: TexComp results summary. The values indicate how many documents
passed each measurement considering thresholds given in Table 5.3. The column
�Both� and �None� indicate how many documents passed both and none of the

two measurements.

In Table 5.3, we introduced the thresholds used to distinguish high quality doc-

uments. Although it is mentioned that higher readability assessment scores and

lower lexical diversity scores mean higher quality of a document, we keep the

threshold boundaries in order to indicate if a document is of high quality or not.

The main reason is that in some cases, TexComp returns excessive assessment

scores, such as 731 for readability of spam and -446 for lexical diversity of spam.

The threshold boundaries protect us from documents that obtained an assessment

score which is too good to be true.

The business articles are written by professionals, and it would be safe to assume

that all those articles are of high quality. Unfortunately, we can see that not all

the articles passed the TexComp measurements. A few of the business articles

did not pass either readability or lexical diversity assessment. There are two

main approaches that we can use to improve the results. However, both of these

approaches have their drawbacks:

1. Change the thresholds. It is probably the easiest thing to do. On the other

hand, it would allow a lot of spam to pass this assessment tool as well (see

Figure 5.7 and Figure 5.8)

2. Improve TexComp. Changing the implementation of TexComp might not

be an easy task. Additionally, we cannot be sure that all the high quality

documents that passed the test now will be able to pass it again after the

evaluation rules become stricter and implementation changes are applied.

The results have more or less met our expectations: business articles have overall

better results than spam. In order to get the best possible results, a compromise

has to be made. We could either �lter out some of the business articles in order to

keep a lot of spam �ltered as well. Or on the contrary, if we want all the business

articles to pass, it would allow a large amount of spam to pass as well.
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5.3.3.2 Fathom

Fathom package, used to measure readability in relation to US education system,

was introduced in Subsection 4.2.1. The Fathom package contains three read-

ability assessment algorithms, and the results for the business articles and spam

collection are shown below: Gunning-Fog Index (Figure 5.9), Flesch Reading Ease

(Figure 5.10), Flesh-Kincaid grade level (Figure 5.11).

Figure 5.9: Gunning-Fog Index Assessment

Gunning-Fog Index indicates how many years of education need one to understand

a text. As we can see in the �gure above (5.9), the majority of both, business

articles and spam, have a similar score: 14 and 16. Unfortunately, as we might

think, not all the remaining spam has a lower score - quite the opposite. This

could make our analysis to distinguish spam and high quality documents fairly

di�cult based on the Gunning-Fox Index scores. However, it could be used similar

to TexComp, and the documents with excessive assessment scores, for instance

50, can be �ltered out.

Figure 5.10: Flesch Reading Ease Assessment
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Flesch Reading Ease algorithm evaluates a document with a score on 100-point

scale. The documents having scores between 60 and 70 are supposed to be the

easiest to read [29], understandable for people with 9 years of education. The

lower the scores gets, the more di�cult it might be to read. As we can see in

Figure 5.10, the majority of spam has a score 55 or 61. The business articles are

slightly more di�cult to read. However, the same applies also to a signi�cant

part of spam collection. The fact that 5% of spam messages scored extremely

high indicates that Flesch Reading Ease assessment could be used for �ltering

out some case of spam.

Figure 5.11: Flesh-Kincaid Grade Level Assessment

Flesh-Kincaid Grade Level algorithm uses the same attributes of a document as

the Fleash Reading Ease algorithm, and translates the score to indicate how many

years of education one needs to understand the text. The results of this algorithm

are shown in Figure 5.11. This results do not satisfy our needs at all because the

majority of both collections have the same score: 11. Hence, it is not possible to

clearly distinguish spam and a high quality document. Nevertheless, the results

can be used to �lter out documents with very high scores.

In all three algorithms, we could see that the scores for both collections were

often overlapping. Additionally, some documents had excessive scores, thus were

not displayed in the �gures. Table 5.5 shows how many documents from each

collection obtained an excessive score, thus were not displayed in the �gures.

Flesh Reading Ease algorithm did not perform the tests very well. More than 3%

of business articles and 11% of spam obtained an assessment score that, according

to the algorithm description, does not have a clear meaning. This fact linked with

Fathom assessment scores makes the Gunning-Fog Index the only component from

Fathom package that is considered as potentially usable for FAQAD.
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Algorithm Business Articles Spam

Gunning-Fog Index 0.12% 4.31%
Flesch Reading Ease 3.21% 11.45%

Flesh-Kincaid Grade Level 0.12% 6.92%
Average 1.15% 7.56%

Table 5.5: Excessive assessment values of Fathom package.

5.3.4 Classi�er4J

Juho Heinonen who discovered Classi�er4J (Subsection 2.5.4) as a potential asset

for FAQAD, trained the tool in order to discover spam. He used a couple of

documents containing news and business announcements in order to classify high

quality documents. We tested the classi�er with our test data and got the results

shown in Table 5.6.

Data Classi�ed as Spam

Business Articles 7.88%
Spam 83.48%

Table 5.6: Results of Classi�er4J trained by Juho Heinonen.

More than 80% of spam was recognized. That is quite a promising result. How-

ever, almost 8% of business articles were also categorized as spam. Statistically

speaking, Classi�er4J did the job relatively well. In order to improve the results,

we trained Classi�er4J with our testing data: both business articles and spam.

One hundred documents from each category were randomly chosen and used for

the training. The results of newly trained Classi�er4J are shown in Table 5.7.

Data Classi�ed as Spam

Business Articles 9.18%
Spam 88.66%

Table 5.7: Results of Classi�er4J trained by some of the testing data.

It is clear that after a domain-speci�c training, the component recognizes more

documents as spam. Unfortunately, it applies for both categories, business articles

and spam, so we cannot really say that there is an overall improvement. Actually

in the �rst test, more business articles passed the Classi�er4J component. Because

of this reason, we stick with the original training data model created by Juho

Heinonen.
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5.3.5 ABCV API

ABCV API, earlier introduced in Subsection 4.2.2, is a tool able to detect certain

types of anti-social behavior and con�icts from text. To test the ABCV API,

we used the �ames collection and the business articles. The results are shown in

Table 5.8.

Data Passed Rejected Ratio

Flames 19 87 17.92%
Business Articles 831 9 98.93%

Table 5.8: Results of ABCV API

The ABCV tool rejected about 82% of the �ames collection and about 11% of

the business articles. After inspecting the rejected business articles, it seems

that they did not pass because of elaborating crimes, business failures or simply

quoting somebody with a bad language. On the other hand, some of the articles

that passed talked about business failures as well.

Compared to the other assessment tools, ABCV API consumes quite a lot pro-

cessing power. That might not be suitable when evaluating large amount of

documents.

5.4 Assigning Overall Quality Scores

Based on the shown results, we can see that the most reliable and re�ective

assessment tools are TexComp and Classi�er4J. In order to combine the results

and make a �nal decision on which tools to include in the FAQAD toolbox, we

need to assign weights to the scores of every assessment tool. After extensive

experimenting, the weights chosen for FAQAD's assessment tools are presented

in Table 5.9.

Combining the scores gives us a result which is used to make a �nal decision about

the quality of a document. The result is actually a value between 0 and 1, but

for simplicity it is shown on a 100-point scale (Figure 5.12) where the score 100

implies that the document passed all the assessment tools, thus the document is

of a very high quality.
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Tool Weight Acceptable Scores

ABCV API 17 0
Classi�er4J 18 0 - 0.5

Gunning-Fog Index 13 15 - 30
JMySpell 4 92.5 - 100

TexComp - Readability 22 40 - 80
TexComp - Lexical Div. 26 150 - 320

Table 5.9: Score weights of assessment tools. The sum of weights in the table is
equal to 100. In the actual implementation, the weights are normalized, and the

sum of weights equals to 1.
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Figure 5.12: Aggregated scores based on the results obtained from each assess-
ment tool.

Figure 5.12 clearly illustrates that FAQAD is able to detect the quality of doc-

uments. Business articles have higher scores on the right side, and spam with

lower score is on the left side. The �nal task in designing the FAQAD overall

quality scoring mechanism is to set a threshold that indicates the level of su�-

cient quality. Setting the threshold at value 50 allows 97% of business articles to

pass FAQAD and 79% of spam to be �ltered out. The threshold could, naturally,

be modi�ed depending on the situation. As a consequence, it would allow more

documents, from both collections, either to pass FAQAD or to be �ltered out.

5.4.1 Quality of Data Sources

The mechanism of using the quality of a data source to a�ect the score of a

document originating from that source was introduced in 4.2.3. The quality of

a data source is calculated as an average of the documents' scores previously

obtained from that source. Unfortunately in our test data, we do not have the
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information which exact source was each document obtained from. We could,

however, assume that all the business articles are from a single source and spam

from another one in order to demonstrate the e�ect of applying the quality of

data source.

Collection Passed FAQAD Average Score
Passed FAQAD

A�ected by Average
Score

Business Art. 96.55% 82.82 99.88%
Spam 20.96% 36.13 14.41%

Table 5.10: Demonstrating how many documents are of a high quality either
with or without applying the average score. The average score had a weight of

40% in the overall quality score.

In Table 5.10, we can see that the average document score is convenient for our

purpose. The average score a�ected the scores in both collection the way it is

supposed to. Figure 5.13 demonstrates how is the quality of data source a�ecting

the documents' scores. In contrast to Figure 5.12, the new �gure (5.13) looks

�cleaner� because documents from each collection are grouped on one side of the

�gure. This indicates a clear separation between the business articles and spam.

Figure 5.13: Aggregated scores a�ected by the average score of each collection.

Applying the average score to a�ect the score of a current document might not

always have a positive e�ect, especially if we have just a little amount of docu-

ments from that one source. FAQAD should only use the source-based scoring

for documents fetched from sources from which a certain number of documents,

for instance 50, have been fetched.
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5.5 Discussion

JMySpell was the most accurate tool in the evaluation in which each tool was

assessed separately. However, the results of JMySpell for business articles and

spam are very close, and mostly the spam results were even better. As an out-

come, JMySpell cannot really be used to distinguish high quality data from spam.

However, it could be used to �lter out documents that are complete trash or doc-

uments in which the language was recognized incorrectly.

The accuracy of other tools is close to 90%. Problems that were common to all

the tools were as follows:

Text length. The longer the text is, the better options for evaluation the as-

sessment tool has. Text length can severely a�ect the assessment results.

Abbreviations sometimes confuse the assessment tools as they do not recognize

the abbreviation as a correct word.

Technical terms and long words bear the same problem as abbreviations.

That means that the words are not recognized as valid words, and are

having negative impact on the assessment result.

Quotes are usually taken from another context. Although they are commonly

used to give the reader more insight, the assessment tools might get confused

as the quotations may contain bad language or even words that do not exist

in any common dictionary.

Punctuation which determines, for example, where a sentence begins and where

it ends. Some assessment tools, e.g. Fathom package, use the sentence

length as one of the criteria to evaluate a document. When there are no

periods in the document, the whole text is considered as one large sentence.

In conclusion, the assessment tool returns absurd results that are not usable.

In order to improve the evaluation, we could:

Ensure that we consider only documents that are long enough. Based on the

results above, we can see that the proper amount of words varies from tool

to tool. JTCL had signi�cantly better results with texts with 50 or more

words. Other tools, such as TexComp for measuring lexical diversity, need

at least 100 words.
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Extend dictionaries that we are matching against with new words and possibly

abbreviations.

Normalize abbreviations. Replace abbreviations in the input documents with

the full words or phrases before processing them with the QA tools.

Train the spam �lter with a larger collection of appropriate data, so the �lter

can easier distinguish which document are of high or low quality.

Improve ontology and scoring mechanism of ABCV API.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we created a prototype of Framework and API for Quality Assess-

ment of Documents (FAQAD) which is a part of a large text mining system -

Data Analysis and Visualization aId for Decision-making (DAVID). FAQAD is a

quality assessment (QA) component that evaluates the information quality (IQ)

of text documents in order to �lter out low quality documents and prevent the

DAVID system to process them further.

We started by reviewing the relevant previous research on QA frameworks. The

results of the literature review indicated that in our setting, we are able to use

automated QA tools to measure only intrinsic quality dimensions. We continued

reviewing the documentation of the DAVID system, so we could follow up and

extend the system in an e�ective way. In order, to build a QA component, we

gathered a set of open source tools and tools developed in our research team that

could be potentially used for QA in the FAQAD framework. Finally, we tested

those QA tools on real-world data and experimented with ways of combining the

scores returned by the tools in order to make a �nal overall QA. The majority

of our test data consists of two collections: business articles and e-mail spam.

With the optimal parameter settings for our test set, FAQAD was able to accept

99.88% of business articles and �lter 85.59% of the spam. The expected values

for su�cient accuracy were about 90%. Hence, the obtained levels of accuracy

can be considered as good.

The �rst objective was to �gure out how to assess quality of documents and

their sources. We gathered numerous QA tools which are able to process fetched
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documents and save the quality scores to a database. Each QA tool measures

the quality of documents using a di�erent algorithm, i.e. evaluating a document

from a di�erent point of view. However, strictly speaking, we do not assess the

exact dimensions mentioned in the previous researches on QA frameworks. We

are forced to use the values returned by each QA tool.

The quality of a data source is calculated as an average score of documents that

are retrieved from that source. In our experiments, we set the weight of a data

source to 40%, i.e. for each new assessed document, the actual document score

has the weight 60% and it is combined with the average score of documents from

the same source with the weight of 40%. The results of combining the actual score

with the average score had a positive e�ect, and they are illustrated in Section

5.4.

In our setting, there was not a straightforward way to test user rating as another

aspect of the document's quality due to the lack of relevant business data with

user ratings. However, we were able to combine the document's score with other

scores, i.e. the quality of a data source, thus adding the average user score into

the model is going to be relatively easy.

The second objective was to �nd a way �How to utilize the de�ned IQ measures�.

For each measure, we de�ned what value indicated a high-enough quality, and

we assigned a weight to that measure. Using this mechanism, we were able to

easily prioritize the various QA measures. Additionally, we utilized the assigned

weights to calculate a �nal score using a weighted mean. The �nal scores are in

a range from 0 to 1. Our experiments indicated that 0.5, i.e. in the middle of the

range, was an appropriate threshold for deciding whether a document is of high

quality or should be �ltered out.

6.2 Future Work

The results of experimenting with our test data collections can be considered

successful. There are quite a few shortcomings of the QA tools which were dis-

cussed in Section 5.5. In order to improve our results, we should consider those

shortcomings.

The user rating for assessing a document was not tested. However, the idea is

that a user can evaluate each document in his own perception and assign a score

to it. This can be very overwhelming for the user if there is a large amount of
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documents. In order to make this process more e�cient, we could consider use

the user rating to assess directly a data source and not every single document.

At the moment, we only allow this feature via the blacklist mechanism.

Documents are fetched from data sources, and the user has the ability to ban

a speci�c data source by adding it to a blacklist in the DAVID system. We

could consider creating a white list of data sources from which the documents are

fetched without the need to be processed by FAQAD.
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List of Abbreviations

ABCV Anti-social Behaviour, Con�ict and Violence

API Application Programming Interface

ASCII American Standard Code for Information Interchange; i.e. the basic

standard of text representation on digital systems

AWT Abstract Windows Toolkit

BI Business Intelligence

CLI Command Line Interface

CoProE Company, Product and Event

CVS Concurrent Versions System

DAVID Data Analysis and Visualization aId for Decision-making

DB Database

EO Exception Object

FAQAD Framework and API for Quality Assessment of Documents

GC Garbage Collector

GUI Graphical User Interface

IDE Integrated Development Environment

IQ Information quality

IS Information Systems

ISO International Organization for Standardization

NLP Natural language processing

OBIE Ontology-Based Information Extraction

PHP PHP: Hypertext Preprocessor, originally Personal Home Page

QA Quality Assessment

RCP Rich Client Platform

RSS RDF Site Summary

SVG Scalable Vector Graphics

SW Semantic Web

TM Text Mining
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UI User Interface

VM Virtual Machine
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