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The objective of this thesis is to in-

vestigate the reflectance prediction of 

colored surfaces. Reflectance predic-

tion methods in three different cases 

were proposed. In the first case, spectra 

of mixed pigments were simulated as 

well as spectra of mixing pigments and 

their concentrations were predicted. In 

the second case, spectra in multi-angle 

measurement were predicted. In order 

to predict correct reflectance in differ-

ent viewing angles, the best viewing 

angles were determined. The proposed 

method was applied in metallic and 

pearlescent samples.  In the third case, 

highlight removal method for RGB and 

spectral images were proposed.

d
isser

tatio
n

s | N
o

 102 | P
esa

l K
o

ir
a

la | S
im

u
lation

 an
d M

easu
rem

en
t of C

olored S
u

rfaces

Pesal Koirala
Simulation and

Measurement of Colored
Surfaces



PESAL KOIRALA

Simulation and
Measurement of Colored

Surfaces

Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences

No 102

Academic Dissertation
To be presented by permission of the Faculty of Science and Forestry

for public examination in the Louhela Auditorium in Science Park, Joensuu,
on April 19, 2013 at 12 o’clock noon.

School of Computing



Kopijyvä Oy

Joensuu, 2013

Editor: Profs. Pertti Pasanen, Pekka Kilpeläinen, Kai Peiponen, and Matti

Vornanen

Distribution:

University of Eastern Finland Library / Sales of publications

P.O. Box 107, FI-80101 Joensuu, Finland

tel. +358-50-3058396

http://www.uef.fi/kirjasto

ISBN: 978-952-61-1078-3 (printed)

ISSNL: 1798-5668

ISSN: 1798-5668

ISBN: 978-952-61-1079-0 (pdf)

ISSN: 1798-5676 (pdf)



Author’s address: Norsk Elektro Optikk AS
P.O.Box 384
N-1473 Lørenskog
NORWAY
email: pesal@neo.no

Supervisors: Professor Markku Hauta-Kasari, PhD
University of Eastern Finland
School of Computing
P.O.Box 111
FI-80101 Joensuu
FINLAND
email: markku.hauta-kasari@uef.fi

Professor Jussi Parkkinen, PhD
University of Eastern Finland
School of Computing
P.O.Box 111
80101 Joensuu
FINLAND
email: jussi.parkkinen@uef.fi

Current address:

Monash University Sunway Campus
School of Engineering
Jalan Lagoon Selatan, 46150 Bandar Sunway
Selangor Darul Ehsan, Malaysia

Reviewers: Professor Jari Hannuksela, Dr. Tech
University of Oulu
Center for Machine Vision Research
Department of Computer Science and Engineering
P.O Box 4500
FI-90014 Oulu
Finland
email: jhannuks@ee.oulu.fi

Principal Researcher Antonio Robles-Kelly, PhD
NICTA
Canberra Research Laboratory
Tower A, 7 London Circuit
Locked Bag 8001
Canberra ACT 2601
Australia
email: Antonio.Robles-Kelly@nicta.com.au

Opponent: Professor Dietrich Paulus, Dr.-Ing
University of Koblenz-Landau
Universitätsstr. 1
56070 Koblenz
Germany
email: paulus@uni-koblenz.de



ABSTRACT

Spectral imaging is becoming more common for quality inspection
processes in industrial applications. Spectral imaging, generally
known as hyperspectral imaging, is widely used in remote sens-
ing. The application of spectral imaging is growing in the fields
of forestry, agriculture and computer vision. The large number of
bands in spectral imaging provides a large set of information of-
fering considerable opportunities in image analysis. The bottleneck
in spectral imaging is on the processing side, in the handling of
the large sized data sets. Nevertheless, spectral image processing is
going to be more popular proportional to the cheap memory and
processing speed .

In the thesis, three computational research topics have been cho-
sen in which to employ spectral imaging. In the first case, the
spectra of mixed pigments were simulated, and more interestingly
the spectra of mixing pigments and their concentrations were pre-
dicted. The pigments were coated on round plastic pipes. The core
principle behind this was the Kubelka-Munk method. In the second
case, spectra in multi-angle measurement were predicted. The best
viewing angles were determined to predict correct reflectance. Prin-
cipal component analysis and the Wiener estimation method were
applied on metallic and pearlescent samples to accurately predict
reflectance. In the third case, the highlight removal method for RGB
and spectral images were proposed. Principal component analysis
and histogram equalization were used to obtain a diffuse RGB im-
age from the given highlight-affected RGB image. Similarly, the
spectral unmixing method was proposed to obtain a diffuse spec-
tral image from a given highlight-affected spectral image.

Universal Decimal Classification: 004.932, 535.312, 535.33, 535.6
Keywords (INSPEC Thesaurus): imaging; spectra; spectral analysis; im-
age processing; colour; image colour analysis; colorimetry; pigments; an-
gular measurement; reflectivity; principal component analysis.
Keywords (Yleinen suomalainen asiasanasto): spektrikuvaus; spektriana-
lyysi; värit; pigmentit; heijastuminen.
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1 Introduction

Three centuries ago Sir Isaac Newton proposed the concept of dis-
persion of light, indicating that white light can be dispersed in con-
tinuous colors using prisms [1]. The color of an object is a con-
tinuous function of wavelength of electromagnetic radiation. The
radiation comes from the object due to reflection, transmission or
the object’s irradiance itself [2]. The human eye can sense elec-
tromagnetic radiation around 380 nm to 780 nm as a visible light.
Figure 1.1 shows the color spectrum of visible light in electromag-
netic radiation. Human eye interprets the elctromagnetic radiation
around wavelength 400 nm as blue color, similarly around 550 nm
and 700 nm as green and red color. The change of color in visible
light according to wavelengths have been depicted by color spec-
trum as shown in Figure 1.1. The invention of the charged cou-
pled device (CCD) detector in 1969 allowed optical image data to
be transformed into an electronic format on which one can apply
digital electronic processing techniques [1]. Most display devices
are capable of showing three channels Red, Green and Blue (RGB).
But three-dimensional color representation may not be enough for
fully understanding color and its management [3] since color is
the continuous function from 380 nm to 780 nm of wavelengths.
Just by approximating the color from three-channels, we may lose
information if the color signal has a lot of picks and discontinu-
ities, as an example in fluorescent light [4]. Similarly, in case of
metamerism, the colors may look same to the eye or sensor sys-
tem when the spectra are different [5, 6]. Metamers arise because
the number of degrees of freedom in the sensor system, three for
the cones in the normal human eye or a typical camera, is smaller
than the number of degrees of freedom needed to specify different
spectra [5, 7]. As a result, metamerism is a serious limitation of
tristimulus based representation and reproduction systems. A RGB
model does a poor job of representing the wide spectral variation
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of spectral power distribution and surface scattering properties that
exists in the real world [8]. Therefore, color should be represented
by an n-dimensional spectrum [3], here n-dimension is the number
of bands or wavelengths used to represent or capture the colors and
is assumed to be distinctly larger than three.

The use of spectral color is increasing [6]. Internet hits and
database searches of hyperspectral images (the term hyperspectral
or multi-spectral are used for spectral image in remote sensing [3]),
a subset of spectral images, have been increasing exponentially in
recent years [9]. The spectral image is a digital color image with
wavelengths’ spectrum at each pixel [10]. The spectrum is mea-
sured for a large number of narrow bands, unlike the three bands
in a RGB-image. Figure 1.2(a) shows the spectral image as a set of
band images of different wavelengths, and Figure 1.2(b) shows the
spectrum gathered from a pixel. Spectral technology was developed
long time ago, but until the early 1990s it was mainly used in astro-
physics, remote sensing and terrestrial military applications [11,12].
Its application has been widened in various fields, some of the lead-
ing fields being archeology and conservation, medicine, pharmacol-
ogy, agriculture, forestry, food engineering, environment, remote
sensing as well as many more [11, 13–17]. Spectral imaging pro-
duces a huge set of data, but the exploitation of multi-core proces-
sors and graphical processing units make spectral image processing
possible in real time [18–21].

The objective of the thesis is to perform a study of different
types of colored surfaces, ranging from the diffuse surface of a
pigment coated plastic, to highly glossy surface of metallic and
pearlescent coatings, as well as surfaces that are affected by the
highlight effect. In this thesis a method to simulate the reflectances
of diffuse plastic surfaces according to the concentrations of the
pigments has been presented. The method also predicts the con-
centrations of suitable mixed pigments and their reflectances, given
that the reflectance of the mixture is provided. This method has
been called spectral color mixing and unmixing. Similarly, a re-
flectance prediction method for the simulation of the reflectances

2 Dissertations in Forestry and Natural Sciences No 102
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Figure 1.1: The electromagnetic spectrum. Colors in visible spectrum shows the interpre-
tation of visible light as color by human eye according to wavelengths.

(a)

(b)

Figure 1.2: Spectral image representation (a) Spectral image shown in different bands. (b)
Spectrum of a pixel. The spectrum has higher values between 500nm to 550nm, so human
eye sense this spectrum as green color (please look at Figure 1.1).
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of metallic and pearlescent samples has been developed. The first
step in the method is to decide the best viewing angles, followed
by the prediction of reflectance in all viewing angles by using the
reflectance from a few best viewing angles. This method has been
called reflectance prediction in multi-angle measurement. The re-
flection from the surface of the highlight-affected image (specular-
affected image) has been separated into diffuse and highlight com-
ponents. Highlight removal has been conducted on the RGB image
and spectral image. The method is capable of simulating the color
and reflectance of diffuse components from RGB and spectral im-
ages respectively. Throughout the thesis this method is called the
highlight removal method.

In the spectral color mixing and unmixing method, the tradi-
tional Kubelka-Munk (KM) method has been used. But the KM
method is only suitable for diffuse rough surfaces and is not capa-
ble of producing a prediction model for glossy surfaces like metallic
and pearlescent samples. For glossy surfaces metallic and pearles-
cent coated surfaces have been chosen. In that part of the research,
instead of analyzing the reflectance prediction in pigment mixing,
reflectance prediction for different viewing angles has been car-
ried out. Principal component analysis and the Wiener estima-
tion method have been utilized to obtain the reflectance in dif-
ferent viewing angles. Spectral color mixing and unmixing and
reflectance prediction in multi-angle measurement have been con-
ducted by measuring the single representative reflectance at a point
on the surface. The full image has been used as the input in the
highlight removal method. Highlight and diffuse components from
the image have been separated from a single image. The method
is based on the dichromatic reflection model. For the RGB image,
PCA and histogram equalization have been used to separate the
highlight and diffuse components of the image. Similarly, for the
spectral image, the positive constrained and sum to one spectral
unmixing method have been used to separate the highlight and dif-
fuse components of the image.

In the experiments in this thesis, the spectral image has been

4 Dissertations in Forestry and Natural Sciences No 102
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exploited for the visible range within the wavelengths of 380 nm
to 780 nm. The spectra, measured by an Avamouse handheld re-
flection spectrometer with an annular measuring geometry of 45o

under circular illumination in the visible range of 380 nm to 750 nm
with 5 nm sampling [22], has been used in the spectral color mixing
and unmixing process. A Hamamatsu Photonic Multichannel An-
alyzer has been used in multi-angle measurement to measure the
spectra within 380 nm and 780 nm with sampling of 5 nm. In the
highlight removal method, the spectral image has been measured
by a liquid crystal tunable filter (LCTF) [23] and Hyspex VNIR-1600
pushbroom camera [24]. LCTF measures the reflectance within the
range 420 nm to 720 nm with a sampling of 10 nm. Similarly, a
Hyspex VNIR-1600 pushbroom camera measures from 400 nm to
1000 nm with a sampling of about 3.7 nm, producing 160 bands.
The different cameras were chosen according to the experimental
requirements. Spectral color mixing and unmixing were tested for
the pigments coated on a round shaped plastic pipe, which makes a
camera with a small aperture suitable for the purpose. Similarly, in
multi-angle measurement the camera should be rotated to capture
the spectra at different viewing angles, making a small-sized Pho-
tonic Multichannel Analyzer suitable both in handling and obscur-
ing the less illuminated direction. In the highlight removal method
from spectral image, different types of detector have been used, not
with the intention of comparing the quality of the output of the im-
age by different types of camera but to test the highlight removal
method on spectral images acquired by different sources.

The thesis has been divided into seven chapters and a collection
of articles. Following the introduction in Chapter 1, the research
problems have been mentioned in Chapter2, the basics of reflection
have been described in Chapter 3. Spectral color mixing and un-
mixing have been described in Chapter 4. Multi-angle measurement
has been presented in Chapter 5. Chapter 6 describes the highlight
removal method from a single image in both a RGB and spectral
image. The conclusions and discussion section of the thesis are pre-
sented in Chapter 7, which is followed by the supporting articles.
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2 Research Problems Ad-
dressed in this Thesis

The research problems in this thesis are as follows:

• In industrial color management, an analytical color mixing
trial process is required. The analytical base trial process is
expensive and time consuming. In analytical process, the type
of pigments and its concentrations are selected on trials and
every time after coating on the substrate, color matching veri-
fication is done. And the process is repeated until the desired
match is obtained. The research goal is to reduce the expen-
sive analytical base trial process in industrial color manage-
ment. To achieve this goal, the color mixture from a given set
of mixing pigments should be predicted, and the mixing pig-
ments and its concentrations from the given pigment should
also be predicted. The pigment color has been coated on a
round shape plastic surface.

• In the metallic sample the reflectance of the surface varies ac-
cording to the viewing directions. Furthermore, in the pearles-
cent sample the reflectance of the surface varies according to
viewing direction as well as the illumination directions. It is
always time consuming to measure reflectance in all viewing
angles and illumination angles. In this research, the goal is
to predict the reflectances in all viewing angles by using the
reflectance measured from a few best viewing angles. First,
the set of the few best viewing angles should be determined
so that the predicted versus measured error is minimized.

• Highlights on the surface obscures the information and acts
as a false object. Therefore, highlights should be removed be-
fore image processing and its analysis to obtain the correct
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result. Here the goal is to remove the highlights from a single
image. The dichromatic reflection model defines each pixel’s
intensity value as a diffuse component and highlight compo-
nent. So the challenge is to remove the highlights from a sin-
gle image without knowing the illumination information. A
highlight removal methods for both RGB and spectral images
have been developed.

The research problems were addressed as follows:

• A spectrometer with a small aperture was chosen as the mea-
surement device to work together with the round shape of
the plastic surface. The reflectance of eleven different pig-
ments, with seven different concentrations of each pigment,
were procured as the training data. From these eleven differ-
ent pigments, the representative unit ratio of absorption and
scattering coefficients of each pigment were calculated. By us-
ing the single constant Kubelka-Munk method, the reflectance
of the mixture of known mixing pigments could be calculated.
The linear least square method was employed to calculate the
concentrations of mixing pigments. The best mixing pigments
are those that produce the least reflectance error calculated
against the reflectance of the mixture pigments. The method
gives the different options of mixing pigments to produce the
same mixture pigments. This flexibility helps reduce the cost
of pigment production. The method has been used for the
coating of the pigmented opaque plastic surface.

• The reflectance of different metallic and pearlescent samples
were measured as training sets. The number of best view-
ing angles was decided according to fidelity values calculated
from the training sets. First, the best viewing angles were
determined by using the suboptimal method. The reflectance
measured for a few viewing angles was used to predict the re-
flectances in all viewing angles by using principal component
analysis. Beforehand, eigenvectors were calculated from the
training data measured for all viewing angles. The dimension

8 Dissertations in Forestry and Natural Sciences No 102
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of each eigenvector is the number of possible viewing angles.
Therefore it is possible to predict the reflectance in angles that
lie in the outer bound of the few best viewing angles. The
results were improved using the higher order polynomial of
the basis function in the Wiener estimation method.

• In the lab environment, highlights can be removed using a
polarizer in front of the camera and light source during mea-
surement. However this is not suitable for an image that has
already been measured. Research has been done to remove
the highlight from a single RGB as well as a spectral image.
As a first step of highlight removal from a single RGB im-
age, the highlight-affected area in the RGB image was seg-
mented in the difference image between the given RGB image
and its highlight free image. Histogram equalized first prin-
cipal component was used in the reconstruction of the image
from principal component analysis (PCA). The second princi-
pal component was discarded in the reconstruction process, if
they were affected by the highlight. The reconstructed image
from the PCA was improved by conducting transformation on
the original part of image which was not affected by the high-
light. The method does not need the light source information.
Similarly, in the highlight removal from the spectral image,
the highlight-affected area in the spectral image was first seg-
mented using constrained energy minimization (CEM). One
spectrum with a maximum distance value was chosen from
the highlight-affected part as a endmember of the highlight.
If the spectral power distribution (SPD) of the light source
is known, SPD can be used as the endmember of the high-
light. Similarly, endmembers of the diffuse part were chosen
using an automated target generation program (ATGP). Af-
ter determining the endmembers of the diffuse and highlight
parts, the positive constrained spectral unmixing method was
applied to find the abundance values of highlight and dif-
fuse endmembers. After determining the abundance values
of the diffuse and highlight endmembers at each pixel level,
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the highlight and diffuse components were separated. The
method was tested on a spectral image measured in the lab
and on spectral images obtained from other sources.

The research problems mentioned and their solutions have been
documented in scientific publications. The summaries of the publi-
cations are as follows:

In Publication 1, color mixing and unmixing methods based on
the Kubelka-Munk method have been proposed. The method has
been applied to the color of pigments situated on a plastic pipe.
Since the plastic pipe is of a round shape, a camera device with a
small aperture (AvaMouse) has been used to measure the samples.
The proposed method is a spectral-based method, capable of pre-
dicting the reflectance of the pigments of a mixture. The novelty of
the method is the concentration prediction of the individual mixed
pigments from the mixture of pigments. The proposed method
gives multiple options of a set of separate mixed pigments from the
mixture pigments sorted according to the choice of different dif-
ference formulae. As a result, the cost effective pigments can be
selected by monitoring the color difference to produce the required
pigments. Finally, the method helps reduce the cost of pigment
production.

In Publication 2, a set of best viewing angles has been proposed
in multi-angle measurement for the set of metallic and pearlescent
samples. The primary angles have been selected by analyzing the
root-mean square error by the reconstruction process by principal
component vectors. The number of primary viewing angles was
chosen according to the number of eigenvalues that generate a cu-
mulative contribution greater than 99.9 percent. By using the prin-
cipal component vectors of the training set and the primary viewing
angles, the reflectances in all viewing angles have been predicted.

In Publication 3, a set of best viewing angles have been proposed
in multi-angle measurement for a set of metallic PVDF coating with
mica, metallic PVDF coating with polyester and a pearlescent coat-
ing. The investigation found that number of primary viewing an-
gles is three for the individual type and five for all types. The best

10 Dissertations in Forestry and Natural Sciences No 102



Research Problems Addressed in this Thesis

primary angles were determined according to the average mini-
mum reconstruction error in the training set. The suboptimal se-
quential backward selection method was used to reduce the best
primary angles to 10. Out of 10 primary angles the best primary
angles were chosen using the full search method. This publication
exploits the Wiener estimation method in the relation provided by
PCA in the reconstruction. The publication reveals that as the or-
der of polynomial of principal component increases up to the fifth
polynomial order, the reconstruction error decreases.

In Publication 4, a novel method of highlight removal from a
single RGB image has been presented. The novelty of the method
is to calculate diffuse image without knowing the information of
light source from single RGB image. The method has been tested
on different types of RGB image, with textures and without tex-
tures, and some images have been directly downloaded from the
Internet. The proposed method does not need prior information on
the light source and the expensive task of color segmentation. In
the method, the first principal component of the image has been
applied by histogram equalization. In most of cases, the second
principal component carries the highlight part of the image, but it
is not true for all cases. Therefore, the second principal component
is chosen or rejected according to a threshold value applied in the
fidelity of the second eigenvalue. The reconstruction by PCA pro-
duces the highlight-free image, but the change in color value due
to histogram equalized first principal component was noted. The
color of the reconstructed image was corrected by using a second
order polynomial transformation. The weight vector of the polyno-
mial transformation was obtained using the transformation of the
pixels of the reconstructed image to the original image correspond-
ing to the highlight-free pixels in the original image.

In Publication 5, a novel method of highlight removal from a sin-
gle spectral image has been presented. The highlight-affected part
and diffuse part of the image have been segmented by CEM. The
endmembers of the diffuse component were calculated from the dif-
fuse segmented part using ATGP. The endmembers of the specular
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part are the SPD of the light sources. The diffuse component and
specular component of the spectral images were separated using
the positive constrained spectral unmixing method. The number
of required endmembers for the diffuse component was calculated
using eigen analysis.
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3 Light Surface Interaction

The spectral property of light is defined as a function of wavelength
λ [10]. Spectrum f (λ) corresponds to the physical quantity. If the
function f (λ) is concentrated in a small neighborhood around the
mean wavelength λ◦, the wavelength is monochromatic [10]. In the
spectral capturing process, the light should be decomposed into
spectral parts using filters, prisms or gratings and finally captured
by a detector. The physical value that is measured by a radiation de-
tector is proportional to the time average of the quadratic amplitude
of the incoming radiation. It is a measure of radiation energy in a
central spectral interval reaching the detector during the integration
time and also of brightness [10]. In a line scanner camera [24] the
spectra of one line are detected each time. The spectrophotometer-
like device detects the spectra of a single point at a time.

3.1 REFLECTION MEASUREMENT

The color of the diffuse surface does not depend on the geometry of
the measurement. Therefore it is enough to measure in one viewing
angle and one illumination angle in order to characterize the sur-
face reflection of the diffuse surface. Traditionally it is measured by
diffuse◦/0◦ and 45◦/0◦ geometry. In diffuse◦/0◦ geometry, the sam-
ple is illuminated from all angles using an integrating sphere and
the detector is at an angle near the normal to the surface. Similarly,
in 45◦/0◦ geometry, the light source is at 45◦ from the normal and
the detector is at the normal to the surface. The measurement ge-
ometries have been shown in Figure 3.1. There are some materials
like metallic and pearlescent, for which the reflection characteristics
depend on the measurement geometry and required goniometric
measurement as shown in Figure 3.2. The direction of illumination
and observation have been shown by notations i and r, respectively
and the surface normal of the measured sample is shown by nota-
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tion n. The angles θi and φi are the zenith and azimuthal angles
of the illumination direction (incident direction), respectively. The
observation angle (viewing angle) is represented as in illumination
direction by replacing suffix i with r. The metallic sample can be
measured by fixing the light source but varying the viewing an-
gles. But the pearlescent samples should be measured at different
viewing angles for different illumination angles.

The reflection from the surface can be modeled by the bidirec-
tional reflectance distribution function (BRDF ) [25–27]. The BRDF
of the surface at each wavelength is the ratio of a reflected radi-
ance to the incident irradiance at each wavelength λ as shown in
Equation (3.1.1).

BRDF(λ, θi, φi, θr, φr) =
L(λ, θi, φi, θr, φr)

E(λ, θi, φi)
(3.1.1)

In Equation (3.1.1), L is the reflected radiance per unit of area, wave-
length interval and solid angle. E is the incoming irradiance per
unit of area and wavelength interval. Other notations are as de-
scribed above for Figure 3.2.

(a) (b)

Figure 3.1: Measurement geometry (a) Diffuse◦/0◦ geometry (b) 45◦/0◦ geometry.
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3.2 REFLECTANCE CALCULATION

The physical data on reflection that obtained from the device is the
radiance of the surface. The radiance of the surface is converted
into reflectance by dividing it by the radiance value of the white
reference. The reflectance of the surface Rλ at each wavelength λ

is supposed to be independent of the light source. The offset due
to dark current is compensated by subtracting the radiance of the
dark surface [25]. But in practice the radiance of dark surface is
measured by entirely closing the light source and blocking any light
from entering the lens. Equation (3.2.1) gives the reflectance of the
surface relative to white surface used. The reflectance is indepen-
dent of the illumination and sensitivity of the detector.

Rλ =
sampleλ − darkλ

whiteλ − darkλ
(3.2.1)

If the reflectance factor fλ of the available white reference surface
with respect to the perfectly diffuse lambertian white surface is

Figure 3.2: Multi-angle measurement geometry. Figure is adopted from reference [28].

Dissertations in Forestry and Natural Sciences No 102 15



Pesal Koirala : Simulation and Measurement of Colored Surfaces

known, Equation (3.2.1) is written as follows.

Rλ =
sampleλ − darkλ

whiteλ − darkλ
fλ (3.2.2)

Here sampleλ, whiteλ and darkλ are the radiance values at each
wavelength of the measured sample, white and dark reference re-
spectively. Similarly, fλ is the reflectance factor of the white refer-
ence. The reflectance factor of the white reference is the ratio of the
radiance of the white reference to the ratio of the perfectly diffuse
Lambertian white surface. Equation (3.2.2) has been extended for
multi-angle measurement as follows.

Rλ(θ) =
sampleλ(θ)− darkλ(θ)

whiteλ(θ)− darkλ(θ)
fλ(θ) (3.2.3)

The method as in Equation (3.2.3) has been used in the experiment
in multi-angle measurement. Here θ is the viewing angle. The
radiance of the white reference was measured for all viewing angles
as the samples were measured. Throughout the thesis reflectance
should be considered to have been calculated as described above.

3.3 DICHROMATIC REFLECTION MODEL

When light meets some part of the material it gets split into two.
One part is directly reflected from the surface, which is the process
of surface reflection. In surface reflection, the angle of incidence
and the angle of reflection measured against the normal of the sur-
face are equal. Another part enters the material, interacts with it,
some of it passes through and is scattered and refracted by the ma-
terial and finally exits from the surface through which it entered.
This is the process of body reflection. Metal tends to reflect about
90% of incident light at the surface and appears highly shiny but
colorless. In non-conductors such as dielectrics, a large proportion
of the incident light interacts with the material, causing the body
reflected light to have a specific color. In general terms, body reflec-
tion carries the diffuse component or color information of the sur-
face and surface reflection carries the specular component or spec-
tral distribution of the light source. Figure 3.3 shows the diffuse
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component and specular component (highlight component) due to
body reflection and highlight reflection in a dielectric material. As
in Figure 3.3, part of the light is directly reflected, resulting in the
specular component. Some remaining part of the light penetrates
the surface of the translucent object and scatters due to interaction
with the material and exits from different points at irregular an-
gles, resulting in the diffuse component, and some part of the light
is also absorbed; therefore 100% intensity of the light source cannot
be measured from reflection.

Figure 3.3: Reflection from an inhomogeneous surface with two components, specular and
diffuse [29].

3.3.1 Formulation of Dichromatic Reflection Model

Shafer [30] described a dichromatic reflection model for modeling
the reflectance of dielectric materials. Some examples of dielectric
materials include porcelain (ceramic), glass, plastic, oxides of var-
ious materials, paints, tiles, vinyl, leaves and wood [31, 32]. The
model suggests that the radiance spectra of the receptor is the lin-
ear combination of the diffuse and highlight components. Based on
this model the response of the receptor for each wavelength λ at
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geometric position (x) is defined as in Equation (3.3.1) [33].

R(x, λ) = d(x)Rd(λ, x)S(λ)q(λ) + s(x)S(λ)q(λ) (3.3.1)

Where R(x, λ) is the radiance value or response of the receptor
at geometric position (x) at wavelength λ. The camera’s sensor
sensitivity at each wavelength is represented by q(λ). d(x) and
s(x) are the weighting factors for diffuse and highlight reflections
respectively at each pixel position (x). The weighting factors are
dependent on the geometric structure of the surface. Rd(λ, x) is
the diffuse reflectance or surface albedo at pixel position (x) and
wavelength λ. S(λ) is the spectral power distribution (SPD) of the
illuminant. The specular component is the simple scaling of the
illuminant, independent of the surface albedo [33].

In the case of a RGB image, the dichromatic reflection model for
the single illuminant case is shown in Equation (3.3.2).

R(x, c) = d(x)
∫

ω
Rd(λ, x)S(λ)q(λ)dλ+ s(x)

∫

ω
S(λ)q(λ)dλ (3.3.2)

Here R(x, c) is the color value of the receptor in the geometric po-
sition (x) and for color c. Here c represents either red, green or
blue color.

∫
ω represents the summation within visible range ω.

The other notations are the same as for Equation (3.3.1). In a more
general form, Equations (3.3.1) and (3.3.2) are represented in Equa-
tion (3.3.3).

R(x) = d(x)D(x) + s(x)S (3.3.3)

Here D(x) =
∫

ω Rd(λ, x)S(λ)q(λ)dλ and S =
∫

ω S(λ)q(λ)dλ are
represented for the RGB image at each color component. It should
be noted that there are three different sensor sensitivity functions
for individual red, green and blue color. The sensitivity function
q(λ) can be omitted from Equation (3.3.1) by merging it with the
illumination term S(λ), since the same sensor has been used even
if the sensitivity is not flat [33]. Therefore, S = S(λ) and D(x) =

Rd(λ, x)S(λ) have been represented for the spectral image at each
wavelength.
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3.3.2 Multiple Illuminations

The dichromatic reflection model can be extended to surfaces ex-
posed to multiple illuminations. The SPD of the resultant light Sm

is the summation of the SPD of mixed light Si as shown in Equa-
tion (3.3.4).

Sm(λ) =
L

∑
i=1

ciSi(λ) (3.3.4)

Here ci is the fraction of the SPD of mixed light. L is the number
of mixed lights. Accordingly the response of the receptor for each
wavelength λ at geometric position (x) is shown in Equation (3.3.5).

Rm(λ) =
L

∑
i=1

diDi +
L

∑
i=1

siSi (3.3.5)

In Equation (3.3.5), L represents the number of exposed light sources.
Di is the radiance value of diffuse reflectance contributed to by the
ith light source and Si is the SPD of the ith light source. Accordingly,
di and si are diffuse and highlight weighting factors correspond-
ing to the ith light source, respectively. Equation (3.3.6) represents
Equation (3.3.5) in matrix form.

Rm = Dmdm + Smsm (3.3.6)

The superscript []m is the representation of the case of multiple light
sources. Rm is the response of the receptor and column matrix of
size n× 1. Here n is the number of wavelengths. Sm = [S1S2...SL]

is the collection of SPD of L different light sources. Similarly, Dm =

[D1D2...DL] is the collection of different diffuse spectra contributed
by L different light sources. Since each radiance value at each pixel
is of size n × 1, the size of Dm and Sm is n × L. The fractions of
the diffuse component and highlight component are represented
by dm = [d1d2...dL]

T and sm = [s1s2...sL]
T respectively. Each di and

si are the scalar components resulting in a size of dm and sm to L× 1.
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3.4 DECOMPOSITION OF REFLECTION

As described in the dichromatic reflection model, the reflection
from the material is the linear combination of body reflection and
surface reflection. In the same fashion, in remote sensing the re-
flectance R(x) at position x is defined as the linear combination of
pure target signatures (endmembers) as shown in Equation (3.4.1)
and the method is called spectral mixing and its decomposition is
called spectral unmixing. Endmembers are the reflectance spectra
of the pure materials.

R(x) =
p

∑
i=1

ai(x)ei (3.4.1)

In Equation (3.4.1), reflectance R(x) is a combination of p number
of endmembers. Where ai(x) is the fractional coverage called abun-
dance of endmember ei at pixel position (x).

In color matching, reflectance R of the mixture of colorants A, B
and C in quantities a, b and c is given in reference [34].

F(R) = aF(Ra) + bF(Rb) + cF(Rc) (3.4.2)

Here Ra, Rb and Rc are the reflectance of the colorants A, B and
C respectively. Absorption coefficient and scattering coefficient are
defined as the function of reflectance in the two constant Kubelka-
Munk method and the ratio of the absorption and scattering coef-
ficient is defined as the function of reflectance in single constant
Kubelka-Munk method applicable to an opaque surface. Details of
the Kubelka-Munk method have been presented in Chapter 4. For
p number of colorants, Equation (3.4.2) can be written as in Equa-
tion (3.4.3).

F(R) =
p

∑
i=1

ai(x)F(Ri) (3.4.3)

Equations (3.4.1) and (3.4.3) are in the same mathematical form and
can be solved by the same technique. The common equation for
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both terms is written in Equation (3.4.4).

V =
p

∑
i=1

ai(x)Ei (3.4.4)

Here notation V represents the mixture reflectance, ai is the con-
centrations of each colorant in color mixing and abundance value
in spectral mixing. Ei is the representation for ei in spectral mixing
and F(Ri) in colorant mixing. The Equation (3.4.4) is represented
in matrix form in Equation (3.4.5).

V = Ea (3.4.5)

Where V is a column vector of size n × 1, here n is number of
bands. The size of matrix E is n× p and the size of the abundance
or concentration matrix a is p× 1. Here p is the number of mixing
spectra, where the term spectra represents both reflectance and a
function of reflectance. The value of a for each mixed spectra can
be calculated quite easily by using the unconstrained linear least
square estimation [35]. But the unconstrained linear least square
estimation may give a negative value of abundance [36]. To restrict
negative values and to get a percentage fraction, two constraints are
usually imposed in Equation (3.4.1). These are the abundance non
negativity constraint (ANC) and abundance sum to one constraint
(ASC) as shown below.

ai(x) ≥ 0 for all 1 ≤ i ≤ p
p

∑
i=1

ai(x) = 1

The detail derivation of positive constrained factorization can be
found in [37,38]. The positive constrained factorization was used to
separate the highlight and diffuse components in Publication 5. The
linear least square method was used to unmix the colorants from
the given mixture in Publication 1.
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4 Spectral Color Mixing and
Unmixing

It is very important to choose the correct colorants with the correct
concentrations to obtain the desired color of the surface. To get ac-
curate results needs many expensive trials. The method proposed
in Publication 1, describes a system that can be used to simulate the
color obtained using certain colorants or the colorants to produce
certain colors. Pigment mixing modeling by using full spectral cal-
culation produces the more accurate results. Color mixing based
on the Kubelka-Munk (KM) method [39] using full spectral calcu-
lation has been applied on the pigment coated plastic surface. The
method is capable of calculating the required concentrations of the
colorants to produce the desired color. The method can be used in
quality management, a user measures the color of an object and the
system tells them whether or not the color is acceptable by com-
paring the results to predefined color requirements. In addition,
the method in Publication 1 gives the choice of a set of colorants
to the operator to produce the desired colors, according to quality
requirements. This flexibility, as a whole, provides the advantage
of producing the color within quality tolerances using different sets
of colorants. It also provides the solution of color selection, with-
out carrying out repeated expensive trials. As a result, production
costs of the colorants can be reduced in the industrial process. The
work in this chapter has been accomplished as a industrial collabo-
ration with Exel. All the samples used in this experiment have been
obtained from the Exel. By using the method, as described in Publi-
cation 1 and in this chapter, we developed the software application,
that has been successfully used in Exel for color mixing to coat on
the top of curved plastic surface.
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4.1 PREVIOUS WORKS

The method has been described which is applicable to all prob-
lems of color matching and which applies over the entire ranges
of absorption [34]. In the method [34], it finds the functions of
reflections and transmittance of colorants so that function of mix-
ture colorants is the linear combination of mixing colorants. KM
method gives relation of internal reflectance to the scattering coeffi-
cient S and absorption coefficient K [39]. The scattering coefficient
and absorption coefficient of mixture have been assumed to be the
linear relationship with that of mixing colors or of pigments [40].
The KM method has been used to determine optical properties of
decorative and protective coating, paints, papers, pigmented poly-
mers, fibers and wools, thermal insulations, biological systems, and
in medical physics [41]. Saunderson correction converts the mea-
sured reflection by integrating sphere spectrophotometer includ-
ing the specular component to the internal reflection on which the
KM theory works [42]. Marcus and Pierce [43] propose the reflec-
tion correction for different measuring geometries. The revised KM
theory [44] has been used for ink, paper and dyed paper. Differ-
ent KM based methods have been used to find the optical char-
acteristics of translucent paints [45]. Some of these methods are
the black-white method [46], the inverse method [47], the infinite
method [48] and the masstone-tint method [45]. Similarly there are
a lot of work done for the color mixing using single constant KM
method. Mainly single constant method is applicable to opaque
paint surface and colored textile surface. Simplification of KM
method to single constant KM method has been described in ref-
erence [49]. Paint approach method, textile approach method and
hybrid method have been clearly described in that reference [49].
Many works have been done in color mixing by using color of three
channels. As an example, Display monitors and color printers use
RGB-based additive color mixing and CMY-based subtractive color
mixing methods respectively [50, 51]. Additive color mixing is only
appropriate for additive colorants, such as colored lights [50]. Sub-
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tractive color mixing by CMY accurately models the effect of light
transmission through the color surface. As an example, if the white
light, combination of red, green and blue, is transmitted through
the cyan filter, then the red light is subtracted or absorbed, there-
fore only the green and blue light transmits. Similarly, magenta
and yellow subtract or absorb green and blue light respectively.
This CMY-based color modeling is used in color reproduction, like
printing. RYB color space has also been proposed for paint-inspired
color mixing [51]. CMY color modeling works best for purely trans-
mitting materials, but it is insufficient for pigment modeling since
pigmented surfaces have both transmitting and reflecting charac-
teristics [50]. The most correct way of dealing with light is on a
wavelength by wavelength basis [4,50,52]. Therefore, pigment mix-
ing modeling by using full spectral calculation produces the more
accurate results. Color mixing based on the Kubelka-Munk (KM)
method [39] using full spectral calculation has been tested on the
pigment coated plastic surface.

4.2 SAMPLE PREPARATION

In the experiment, eleven set of pigments with seven different con-
centrations were used. First, the seven different concentrations
[0.2 0.5 1.0 2.0 4.0 6.0 10.0] in grams were dispersed in one liter of
filling material and painted on a plastic pipe. The plastic pipes after
coloration have been shown in 4.1. The plastic pipes were a circular
pipe with small radius of about 1.5 cm, and therefore a spectrom-
eter called AvaMouse [22] with a small aperture was chosen as the
measurement device for the training and test sets. The AvaMouse
spectrometer measures the reflection with an annular measuring
geometry of 45◦/0◦ under circular illumination in the visible range
of 380 nm to 750 nm with 5 nm resolution. The colors were ac-
curately measured, regardless of the gloss and orientation of the
texture [22]. At first the measured reflectances were converted to in-
ternal reflectances according to the formula for geometry [45◦/0◦],
as described in Section 4.4. The samples were measured with close
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contact with the spectrometer so the difference after correction is
not great. The corrected reflectances of all eleven pigments of the
seven different concentrations have been shown in 4.2. For each set
of training pigments, the unit k/s ratio was calculated beforehand
and applied as the input for the training set in the computation for
color mixing or concentration calculations.

4.3 KUBELKA-MUNK METHOD

The KM method is a two-flux approximation of the general radi-
ation transfer theory in which the upward and downward fluxes
are an average representation of all rays travelling toward the up-
per and lower directions [44]. The KM method assumes that light
should be diffused, scattered up and down and should not be po-
larized to get acceptable results. The scattering and absorption co-
efficients of the pigments are assumed to be constant over the thick-
ness. Reflectance of the pigment surface depends on its thickness,
absorption and scattering coefficients of the film’s material, and
reflection from the substrate. The KM method does not consider
reflectance in the boundary because of the difference between the
refractive index between air and the medium [53]. Such reflectance
is called internal reflectance. Some correction method is required
to convert from measured reflectance to internal reflectance, or vice
versa. Correction methods have been presented in Section 4.4. The
reflectance from the pigmented material has been shown in Fig-
ure 4.3. The simplification of reflection as a two-flux approximation

Figure 4.1: Round shape plastic pipe coated with different color pigments.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.2: Figures from a to k show the reflectance of pigments in different concentrations
and Figure l shows the legend representing all seven concentrations.
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in the KM method applied to a pigment coated over a substrate has
been depicted in Figure 4.4. In Figure 4.4, a pigmented solution is

Figure 4.3: Reflection of light from pigmented material. Reflection shown by solid line is
surface or specular reflection and reflection shown by dotted line is diffuse reflection due to
scattering from filling materials and pigments. The reflection from substrate also produces
the diffuse reflection

Figure 4.4: Schematic diagram of scattering and absorption of light energy inside a pig-
mented surface as used in the KM method [50].

coated on the substrate of reflectance Rg, the thickness of the coat-
ing is X. I and J are the intensities of the light travelling downward
and upward to and from the substrate respectively. The downward
intensities result from the scattering of the pigment and the source
of the light. Similarly, upward intensities results from the scatter-
ing of the pigment and the substrate reflectance. The KM method
simplifies the reflection model of the pigmented surface. The detail
derivation of Equation (4.3.1) has been shown in Appendix A.1.

The reflectance R of the pigmented surface according to the KM
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method is represented by the formula as shown in Equation (4.3.1).

R =
1− Rg(a− b coth(bSX))

a− Rg + b coth(bSX)
(4.3.1)

Where,

a = 1 + K
S

b =
√

a2 − 1
X = Thickness of Coating
Rg = Reflectance of substrate
K = Absorption coefficient
S = Scattering coefficient
coth = Hyperbolic cotangent

In the case of an opaque surface where the background is com-
pletely hidden, the film thickness X is assumed to be infinity (X →
∞), because of that further change in the thickness do not affect the
reflectance R [45]. So reflectance of substrate Rg has no effect on the
reflectance of the opaque film, Rg is assumed to be zero (Rg → 0).
As a result, Equation (4.3.1) is simplified to Equation (4.3.2) for an
opaque surface. Figure 4.6 shows the reflectance and its K/S value.

R = 1 +
(

K
S

)
−
√(

K
S

)2

+ 2
(

K
S

)
(4.3.2)

The ratio between the absorption and scattering coefficient K/S is
obtained by reversing Equation (4.3.2).

K
S
=

(1− R)2

2R
(4.3.3)

4.4 REFLECTION CORRECTION

The discontinuity of refractive indices between the air and paint
film (coating film) is not considered in KM theory [45]. The re-
fractive index changes at the film/air coating interface. The change
produces a significant optical effect that influences the color and
appearance of the coating [43]. Therefore, the internal reflectance

Dissertations in Forestry and Natural Sciences No 102 29



Pesal Koirala : Simulation and Measurement of Colored Surfaces

by KM theory should be corrected to the measured reflectance, and
measured reflectance should be corrected or converted into internal
reflectance before calculating the optical characteristics of scattering
and absorption coefficients. Reflection correction applicable to the
KM method for the surface measured by integrating sphere (dif-
fuse◦/0◦) and 45◦/0◦ geometries have been presented [42, 43, 54].

The Saunderson correction is applicable to the reflectance mea-
sured by integrating sphere spectrophotometer including the spec-
ular component in the measurement [40]. The Saunderson correc-
tion [42] is used to calculate the internal reflectance as shown in
Equation (4.4.1) [43, 49].

Rλ =
rλ − K1

1− K1 − K2(1− rλ)
(4.4.1)

Where, rλ is the measured reflectance normalized between [0, 1]
in each wavelength λ, K1 is the fraction of incident light which is
reflected from the front surface of the sample [42]. Only 1− K1 of
the incident light passes through the reflecting sample. The value
of K1 can be calculated as follows from Fresnel’s law for normal
incidence for a change in refractive index from n1 to n2.

K1 =

(
n1− n2
n1 + n2

)2

(4.4.2)

The value of K1 is 0.04 for plastic, since plastic has a refractive index
of 1.5 [40,53] and air has a refractive index of about 1 [43]. Similarly,
K2 is the fraction of light incident diffusely upon the surface of the
sample from inside which is reflected, so that the fraction (1− K2)

emerges from the sample to the integrating sphere [42]. The value
of K2 should be calculated by trial and error. Generally the value
of K1 = 0.04 and K2 = 0.6 are used in the Saunderson equation for
diffuse illumination/near normal viewing spectrophotometer [43].

The internal reflectance calculated by the KM method is cor-
rected to the reflectance equivalent to measured reflectance by in-
tegrating sphere spectrophotometer, including the specular compo-
nent. The Saunderson correction has been shown in Equation (4.4.3).

30 Dissertations in Forestry and Natural Sciences No 102



Spectral Color Mixing and Unmixing

Equations (4.4.3) and (4.4.1) are the reverse of each other to convert
internal reflectance to measured reflectance and vice versa.

rλ = K1 +
(1− K1)(1− K2)Rλ

1− K2Rλ
(4.4.3)

The measured reflectance by di f f use◦/0◦ geometry is converted to
an internal reflectance by considering the gloss factor as shown in
Equation (4.4.4).

Rλ =
rλ − (K1 − G)

(1− K1)(1− K2) + K2(rλ − (K1 − G))
(4.4.4)

Here G is the gloss factor that varies from 0 to K1 from a per-
fect glossy surface to a perfect matt surface. In the case of perfect
matt surface, Equation (4.4.4) is same as Equation (4.4.1). The cor-
rected reflectance is converted to measured reflectance for geom-
etry di f f use◦/0◦ by reversing Equation (4.4.4) as shown in Equa-
tion (4.4.5).

rλ = (K1 − G) +
(1− K1)(1− K2)Rλ

1− K2Rλ
(4.4.5)

Similarly, the reflectance measured by 45◦/0◦ measuring geometry
is converted to internal reflectance as shown in Equation (4.4.6).

Rλ =
rλ

T1T2 + K2rλ
(4.4.6)

Here T1 = 0.095 and T2 = 0.43 are the transmittance across the air
film boundary for a film with a refractive index of 1.5. The inter-
nal reflectance is converted to measured reflectance for geometry
45◦/0◦ by reversing Equation (4.4.6), as shown in Equation (4.4.7).

rλ =
T1T2Rλ

1− K2Rλ
(4.4.7)

4.5 SPECTRAL COLOR MIXING

It may be assumed that K and S values for the individual pigments
are additive in the mixture in proportion to the concentration of the
pigments in the film [40], as in Equations (4.5.1) and (4.5.2).

Km = c1k1 + c2k2 + · · ·+ cnkn (4.5.1)
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Sm = c1s1 + c2s2 + · · ·+ cnsn (4.5.2)

Where ki and si are the absorption and scattering coefficients of
the ith pigments at unit concentrations (100% concentration) respec-
tively and are called unit absorption and unit scattering coefficients
respectively. ci is the concentration proportion of the ith pigment
where ∑n

i=1 ci = 1. The subscript i varies from 1 to n, here n is the
number of pigments used in mixing. Km and Sm are the absorption
and scattering coefficients of the mixture respectively. Equations
(4.5.1) and (4.5.2) lead to Equation (4.5.3).

Km

Sm
=

c1k1 + c2k2 + · · ·+ cnkn

c1s1 + c2s2 + · · ·+ cnsn
(4.5.3)

In the opaque surface, based on Equations (4.5.3) and (4.3.3), the
reflectance of the mixture can be predicted when the pigment con-
centrations and unit absorption and unit scattering coefficients are
known. The method is generally called the two constant KM method,
since both the scattering and absorption coefficients are required. If
the film is not opaque, the values of a and b in Equation (4.3.1)
should be calculated after the calculating K/S value.The K/S value
of the non-opaque film can be calculated by measuring the re-
flectance over the white substrate and black substrate [55].

In the opaque plastic surface, the scattering is mostly due to the
filling material [40]. Therefore, scattering coefficients of pigments
are replaced by the scattering coefficient sw of the filling material.
Suppose that cw = cn kw = kn and sw = sn are corresponding rep-
resentations of the filling material. The two constant KM method
in Equation (4.5.3) is reduced to the formula as shown in Equa-
tion (4.5.4).

Km

Sm
=

c1k1 + c2k2 + · · ·+ cwkw

c1sw + c2sw + · · ·+ cwsw

=
c1k1 + c2k2 + · · ·+ cwkw

sw(c1 + c2 + · · ·+ cw)

=
c1k1 + c2k2 + · · ·+ cwkw

sw

(4.5.4)
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Here c1 + c2 + · · ·+ cw = 1, as the summation of all concentration
fractions is 1. The equation is reduced as follows.

(
K
S

)

m
= c1

(
k
s

)

1
+ c2

(
k
s

)

2
+ · · ·+ cW

(
k
s

)

w
(4.5.5)

Equation (4.5.5) is called the single constant KM method since knowl-
edge of k/s of each pigments and its concentration are enough to
predict the reflectance of the film.

The first step in color mixing in the single constant KM method
is to calculate the unit k/s value of each pigment. The unit k/s
is the ratio of absorption over the scattering coefficient when the
100 percent pigment has been used. The K/S value when a single
pigment is dispersed in the filling material is given.

K
S
= C1

(
k
s

)

1
+ CW

(
k
s

)

W
(4.5.6)

Accordingly, the unit k/s of the pigments dispersed in the filling
material is calculated as shown in Equation (4.5.7).

(
k
s

)
=

(K
S

)
mix − CW

(
k
s

)
w

C1
(4.5.7)

Where,

C1 concentration of pigment.
CW concentration of filling material.

In an ideal case, the unit k/s of the pigment should be unique for
each pigment but in practical experiments it was found that unit
k/s varies as calculated from different concentrations, as shown in
Figure 4.6. The normalized unit k/s value is used to check the cor-
rectness of the measurement. The large distortion in normalized
unit k/s of the same pigments calculated from different concentra-
tions reveals the incorrect measurement. Normalized unit k/s value
can be calculated by dividing unit k/s value by its maximum value,
as shown in Figure 4.6. The linear least square method can be em-
ployed to calculate the single representative unit k/s from the set of
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unit k/s of same pigments mixed with filling materials in different
proportions. The detailed formulation of the calculation has been
shown in Publication 1. After knowing the unit k/s and concentra-
tion fraction of each mixed pigments in the mixture, the K/S value
of the mixture should be calculated according to Equation (4.5.5).
Finally the reflectance is predicted according to Equation (4.3.2).
The reflectance and its color produced by mixing three color pig-
ments have been shown in Figure 4.5. The Table 4.1 shows the
differences between the measured reflectance of training sets and
the reconstructed reflectance of training sets by setting the number
of pigments one in mixture. The errors shown in each row are the
average reconstruction error of all seven different concentrations of
each pigment in the training sets. The Lab color difference formula
was calculated by using daylight source (D65) and CIE 1931 stan-
dard observer.

Figure 4.5: Spectral color mixing result using three colorants. Concentrations are in gram
per liter.
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4.6 SPECTRAL COLOR UNMIXING

In spectral color unmixing, the given reflectance of the mixture pig-
ment is separated into the pigments that can be mixed to predict
the given mixture pigment. First the training set has been prepared.
The training set contains the unit k/s vector of each available type
of pigment. Unit k/s of each pigment is calculated as described

(a) (b)

(c) (d)

Figure 4.6: (a) Reflectance of pigments at different concentrations. (b) K/S ratio calculated
from each reflectance. (c) Unit k/s calculated from each K/S. (d) Normalized unit k/s
value, the large distortion in the shape of normalized unit k/s value reveals incorrect
measurement.
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above. In the first step, concentrations of the pigments in the mix-
ture are solved. Then the reflectance of the mixture is predicted
for all possible combinations. The combination of pigments which
gives the less difference with a given mixture pigment form the
pigments of choice.

Table 4.1: Error calculated between original samples and reconstructed samples. The re-
sults are the average values of all samples reconstructed in all seven different concentration
by single constant method.

Sample no MSE GFC CIELAB ∆E
T1 0.0001 0.9999 0.7813
T2 0.0003 0.9999 0.9052
T3 0.0002 1.0 0.81
T4 0.0006 0.9996 2.35
T5 0.0002 1.0 1.26
T6 0.0001 0.9998 1.248
T7 0.0004 1.0 0.68
T8 0.00020 0.9998 1.97
T9 0.0001 0.9999 1.52
T10 0.0001 1.0 0.72
T11 0.0023 0.9991 2.7

4.6.1 Concentration Prediction

The concentration of mixing pigments can be calculated, given that
the unit k/s of each mixing pigment and K/S of the mixture pig-
ment are known. The K/S of the mixture is directly calculated
from the reflectance of the mixture, and the candidate unit k/s of
the probable mixing pigments are selected from the training sets.
Equation (4.5.5) can be written as a simple linear equation.

Y = XC (4.6.1)

Where Y is the K/S vector of the mixture pigment. Let P be the
number of bands in K/S. Then Y is the column vector of size P× 1.
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Assume that there are n number of pigments in the mixture, that
means there are n number of unit k/s of each pigment. That makes
P× n unit k/s matrix X = [X1 X2 ... Xn], here Xi is ith unit k/s vector.
The size of Xi is P× 1. Assuming that C is the vector that contains
the concentration fractions of each mixed pigment. The size of C is
n × 1. If X is assumed to be known then the problem remains to
find C. The typical method to estimate C is the linear least square
method. The form of estimation of the least square solution is the
one that minimizes the estimation residual [35, 37].

minimize
C

(Y− XC)T(Y− XC) (4.6.2)

The least square solution can be done by using pseudo inverse cal-
culation. The pseudo inverse solution of C is the following.

C = X+ Y (4.6.3)

Here X+ is the representation of the pseudo inverse of matrix X.
The pseudo inverse of the matrix is calculated as follows [35].

X+ = (XTX)−1XT (4.6.4)

The predicted concentrations against the real concentrations have
been shown in the Figure 4.7. The mixing pigments are not consid-
ered, if the pseudo inverse calculation gives a negative value. The
Positive concentrations can be achieved by positive constrained and
sum to one matrix factorizations [37,38]. The number of mixing pig-
ments in the mixture can not be greater than number of bands of
the reflectance.

4.6.2 Pigment Selection

The selection of the best set of mixing pigments from the pigments
available in the training set to obtain the accurate pigment de-
manded is a challenging task in the painting process. The difference
between the predicted pigment and the original pigment is calcu-
lated by the difference between the reflectances of these pigments.
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Three different difference matrices have been used to calculate the
similarity or dissimilarity between the original reflectance and pre-
dicted reflectance. One is a color-based method called CIELAB ∆E.
The other two are spectral similarity measurements by using the
goodness of fit coefficient (GFC) and the root mean square error
(RMSE). GFC calculates the difference between the shape and does
not depend on the magnitude of the spectra. But RMSE is like the
Euclidean distance between two spectra. The details of the different
formulae have been presented in the Appendix. To get the best se-
lection of mixing pigments, the brute force approach has been used.
The pigment combination that gives the least error with the desired
pigment is the choice. First, concentrations of each pigment in ev-
ery combination are calculated using Equation (4.6.4), then the re-
flectance of the mixture is predicted using Equation (4.5.5) for each
combination. The work flow of the method of spectral unmixing is
shown in Algorithm 1.

In the described method, different options of pigment sets are
given to predict the desired signal, sorted according to the simi-
larity between the predicted signal and desired signal. Figure 4.8

Figure 4.7: Real versus predicted concentrations in gram per liter. The solid line is the
average of all concentrations. In ideal case each line should be straight line making 45
degree from the surface.
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shows the unmixing results for first best result and tenth best result.
The method gives option to the user to choose the result according
to quality requirements. In that case the user can choose the col-
orants that have lower price and can check the quality of result. This
process may reduce the cost of colorants. In the experiment eleven
set of pigments with seven different concentrations were used. First
the reflectance of all eleven pigments of the seven different concen-
trations have been collected from the round shape plastic pipe, as
shown in Figure 4.1. The reflectances of the pigments in differ-
ent concentrations have been shown in Figure 4.2. The reflectances
were measured by an Avamouse handheld camera and corrected
according to Equation (4.4.6).

4.7 DISCUSSION

In this section, KM method has been used to predict the reflectance
of pigment mixture from given set of mixing pigments and its con-
centrations. Besides that, the method shows the capability of pre-
dicting the concentrations of mixing pigments and their reflectances.
Single constant KM method has been exploited for that purpose
and has been tested for the pigments coated on the curved plastic
surface. The coating on the plastic surface has been assumed to be
opaque. In this experiment the plastic pipe was curved, therefore
spectral measurement was done by the device that has small aper-
ture. The described method reconstructs the reflectance by using
unit k/s value with high accuracy, GFC>0.999. The results are sum-
marized in Table 4.1. The described method can not be suitable for
the translucent and transparent surface and as well as for the metal-
lic and pearlescent coatings. The method should be extended to
two constant KM-method to solve the problem for translucent and
transparent coating surfaces. However, proposed method solves the
problem of color mixing and unmixing for opaque surface and the
developed method has already been in use by Exel.
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(a)

(b)

Figure 4.8: Color separation of mixture and concentration prediction of mixing colors. Top
figure shows the first best result and bottom figure shows the tenth best result. The price of
the mixture has reduced drastically. T5, T9, T10, T3, and T8 are the name of training sets
that are selected to produce given reflectance. The reflectance in small plot in each figure
are the reflectance of selected mixing pigments in calculated concentrations.
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Algorithm 1 Computational step to predict concentrations of mix-
ing pigments.

1. Compute unit k/s ratio of each training set.
2. Convert reflectance of test set Rmix to K/S ratio using

Equation (4.3.3).
3. Choose n number of pigments in mixture.

Repeats step 4 to 8 for all combinations.

4. Predict concentrations using Equation (4.6.3) and store row
wise in matrix concentration.

5. Negative concentrations and unexpected high concentra-
tions are neglected.

6. Predict (K/S)M ratio of mixture using predicted concen-
trations and unit k/s ratio from training sets, see Equa-
tion (4.5.5).

7. Determine reflectance RM using (K/S)M, see Equa-
tion (4.3.2).

8. Calculate difference ∆E between Rmix and RM and store
∆E in array error.

9. Order the matrix concentration according to array error
sorted in ascending order for CIELAB color difference and
MSE, and descending order for GFC.
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5 Multi-Angle Measurement

Gonioapparent materials are material whose visual appearances
changes according to illumination directions and viewing direc-
tions [56]. These materials are very important to the generation
of many unique effects used in the printing of currency, the formu-
lation of cosmetics and the application of paint mobiles [57]. In the
mean time, it is necessary to determine the accurate reflectance of
painted surface for the review of paint finishes before actual paint-
ings in the exterior surface and for quality control for production
and inspection process [56]. In this experiment, accurate reflectance
prediction for gonioapparent coating in the form of metallic and
pearlescent coatings is described. Integrating sphere and 45◦/0◦ ge-
ometry as shown in Figure 3.1 have been traditionally used to mea-
sure the reflectance of diffuse surfaces, since the perceived chroma,
hue and brightness are independent of the measurement geometry.
Unlike diffuse surfaces, the perceived brightness of metallic surface
depends on the viewing angle and is independent of the illumina-
tion angles, while the perceived chroma and hue are independent of
the measurement geometry [57, 58]. In addition, the perceived hue,
chroma and brightness of pearlescent surfaces depend on both the
viewing and illumination angles, unlike diffuse and metallic sur-
face [57, 58]. Therefore, reflectance measurement in different view-
ing angles is required to characterize a metallic surface. Similarly,
different reflectance measurement in different viewing angles for
different illumination angles are required to properly characterize
the reflectance of a pearlescent surface. The optical principles of
primary (first-order) interaction between light and three types of
coated surface, diffuse, metallic and pearlescent, are summarized
in Table 5.1. The work in this chapter has been accomplished as
a industrial collaboration with Ruukki. All the samples used in
this experiment have been obtained from the Ruukki. By using the
method, described in Publication 2 and Publication 3, we proposed
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the method to find the best few viewing angles in multi-angle mea-
surement so that we can reproduce reflectance in all viewing angles
measuring only in few proposed viewing angles.

It is a time consuming and expensive process to measure the re-
flectance of gonioapparent coatings since it should be measured in
different angles. In this research reference is made to Publication 2
and Publication 3, in which the proposed method is capable of pre-
dicting reflectance in different viewing angles given the reflectance
in a few view angles for metallic and pearlescent samples. In the
experiment the illumination angle has been kept constant. First
principal component analysis has been employed to predict the re-
flectance in different viewing angles for fixed illumination angles.
The results by PCA outperforms the results by the cubic interpo-
lation method. Wiener estimation method has been employed in
the linear relation provided by PCA to get an improved result. The
better results by the Wiener estimation method were achieved as
the linear relation by PCA was extended to a higher order of poly-
nomial. The outcome of the method reduces the time consuming
experiments required in multi-angle measurement.

5.1 PREVIOUS WORKS

Different measurement angles have been proposed in the measure-
ment of the metallic and pearlescent samples [53,56,57,59,60]. Three
primary angles, one near specular at 15◦, one far from specular at
110◦ and the third in-between at 45◦ for the measurement of the
metallic surface were proposed [61]. Similarly aspecular angles of
20◦, 45◦ and 70◦ were used to find better result than the previous
geometry [59]. It was tested with both the metallic and pearlescent
samples. Both methods used a polynomial modeling approach as
the estimation method. Similarly the combination of primary an-
gles 25◦, 45◦ and 110◦ gave the highest correlation with the visual
assessment for the metallic paint films [62].

ASTM (American Society for Testing and Materials) recommends
aspecular angles of 15◦, 45◦ and 110◦ [53, 60] for metallic samples.
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Similarly, DIN (Deutsches Institut für Normung - German Insti-
tute for Standardization) recommends aspecular angles of 25◦, 45◦

and 75◦ for metallic samples [53]. Aspecular angles of 15◦, 35◦,
45◦, 70◦ and 85◦ viewing angles for an illumination direction of
15◦, 45◦ and 65◦ have been proposed for pearlescent pigments [57].
Similarly aspecular angles of 10◦, 18◦, 28◦, 40◦ and 90◦ viewing an-
gles for an illumination direction of 60◦ have been proposed for all
painted surfaces [56]. Principal component vector (PCV) was used
to determine the best viewing angles and PCA method was use to
prediction [56].

5.2 SAMPLE PREPARATION

In the first experiment, as described in Publication 2, altogether
thirty different samples were used in the training set. Out of thirty

Table 5.1: Optical principles of diffuse, metallic and pearlescent coatings.

Pigment type Diffuse Metallic Pearlescent

Optical principles of
painting (first order) Diffuse scat-

tering and
absorption

Specular re-
flection

Thin film in-
terference

Perceived bright-
ness

Independent
of geometry

Depends on
viewing an-
gles

Depends on
viewing and
illumination
angles

Perceived chroma
and hue

Independent
of geometry

Independent
of geometry

Depends on
viewing and
illumination
angles
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samples, nine samples were pearlescent and the rest were metal-
lic. In the second experiment, as described in Publication 3, alto-
gether there were forty-five different samples in the training sets.
Out of forty-five samples twelve were pearlescent, twenty-one sam-
ples were metallic coated with PVDF with flakes , and six sam-
ples were metallic coated with polyster, and the remaining samples
were metallic coated with PVDF. The reflectance of the metallic and
pearlescent samples have been shown in Figure 5.1. The change
in color in Figure 5.1 depicts the color transition according to the
viewing angle. The reflectances of the objects were measured at

(a) (b)

(c)

Figure 5.1: Reflectance of a) Metallic sample coated with PVDF with mica gray color b)
Pearlescent c) Metallic sample coated with polyester. The light source is at 45◦ from the
surface. Angles have been shown in a clockwise direction from the surface of reflection.
The color change in the figures depicts the color transition according to the viewing angles.

different viewing angles using a Hamamatsu Photenic Multichan-
nel Analyzer [63] within the visible range of 380 nm to 780 nm with
5 nm step under the light source halogen lamp with a D65 filter.
The light source was set at 45◦ from the surface. The lab measure-
ment setup has been shown in Figure 5.2. All the viewing angles
are hereafter presented as aspecular angles unless otherwise stated.
Aspecular angle is the angle measured considering the specular di-

46 Dissertations in Forestry and Natural Sciences No 102



Multi-Angle Measurement

rection as the reference point. For clarity, the aspecular angle in
specular reflection has been shown in Figure 5.3. The samples were
measured at 123 different viewing angles of 125◦ to 100◦, 80◦ to 10◦

and −10◦ to −35◦ with one degree difference. Viewing angles from
135◦ to 124◦ and −36◦ to −45◦ were excluded from the measure-
ment angles since the radiances emanating from the samples are
near to zero and produce the noise. The angles between 101◦ to 79◦

were excluded from the viewing angles because the camera posi-
tion obscures the light source. Similarly the angles between 9◦ to
−9◦ were also excluded from the viewing angles since the radiances
emanating from the samples became saturated due to specular re-
flection. The schematic diagram of the measurement setup is shown
in Figure 5.4.

(a) (b)

Figure 5.2: Multi-angle measurement setup, Light source is at 45◦, detector has been
shown in two different viewing angles.

Figure 5.3: Aspecular angle representation in specular reflection.
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5.3 MEASUREMENT ANGLES

In experimental investigation as described in Publication 2, We have
proposed the first seven best primary angles for the prediction of
reflectance of metallic and pearlescent samples for all viewing an-
gels between aspecular angels of 125◦ to −35◦, keeping light source
at 45◦ from the surface. In that case, nine pearlescent samples and
twenty one metallic samples have been used as training data. For
the samples used and its measurement process , please look at Sec-
tion 5.2 or Publicatin 2. The list of first seven best primary angles
and their corresponding prediction errors are listed in Table 5.3.
The samples were predicted by using PCA based prediction as ex-
plained in Section 5.4.1.

Similarly, In another experimental investigation as described in
Publication 3, it has been found that only three primary angles are
sufficient to predict the reflectance for all viewing angles between
aspecular angles of 125◦ to −35◦ provided the estimation functions
calculated from the training sets of similar types. Similarly five
primary angles are sufficient to predict the reflectance in all viewing
angles independent of the sample types. As described in Section
5.2, forty five samples were used as training set. All these samples
were divided in three classes a) Pearlescent with twelve samples
b) Metallic with PVDF coating with mica (Metallic 1) with twenty
one samples c) Metallic coated with Polyester and PVDF with six
samples of each (Metallic 2). In this experiment, improvement of

Figure 5.4: Schematic representation of multi-angle measurement, Light source is at 45◦,
detector has been shown in different viewing angles.
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the the prediction error than as in described in Publication 2 was
observed by using the Wiener estimation in the higher order of
polynomial in the relation provided by PCA as shown in Figure 5.6.
Table 5.5 shows the best three viewing angles for individual type of
samples and prediction errors. Similarly, Table 5.4 shows the list of
best five primary angles and prediction errors accordingly.

5.4 PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is useful to reduce the dimensionality
of a data set, consisting of a large number of interrelated variables,
while retaining as many variations as possible in the data set [64].
First the correlation matrix K of the data R is calculated. If data
R is mean subtracted then the correlation matrix becomes the co-
variance matrix. The correlation matrix K is calculated as shown in
Equation (5.4.1).

K =
1

c− 1
RRT (5.4.1)

Here []T denotes the transpose of matrix. If the size of the matrix R
is r× c, as a result the size of the correlation matrix K is r× r. Here
r and c are number of rows and columns of the matrix R. In Multi-
Angle measurement number of rows r is the number of viewing
angles considered and the number of columns c is the number of
measured items multiplied by number of wavelengths, if reflectance
of all wavelengths were stored in R. Otherwise number of columns c
is the number of measured items, if we consider different R for each
wavelength. By definition, a correlation matrix is symmetric square
matrix. From the symmetric square matrix, the basis function can
be calculated by finding its eigenvalues and eigenvectors. For the
correlation matrix K, the eigen equation Kν = σν is satisfied. ν

and σ are the eigenvectors and eigenvalues respectively of size r×
r. The eigenvalue σ is a diagonal matrix. The eigenvectors are
the orthogonal matrix. The eigenvectors corresponding to the p
largest eigenvalues are orthogonal basis function B. The size of the
basis matrix B is r× p. The proper number of eigenvectors as basis
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functions were chosen according to the information content termed
the fidelity ratio. The fidelity ratio f for the first p eigenvectors are
calculated as the percentage of the sum of first p largest eigenvalues
to the sum of total eigenvalues as shown in Equation (5.4.2).

f =

p

∑
i=1

σi

c

∑
i=1

σi

100 (5.4.2)

During the dimension reduction process, principal component P is
calculated as in Equation (5.4.3).

P = BTR (5.4.3)

For an orthogonal basis function B ,the elements of P are optimally
mutually uncorrelated. The reconstruction of the data from the
known basis function B and principal component P is calculated
from Equation (5.4.4). The reconstructed error by PCA has been
shown in Table 5.2.

R ≈ R̃ = B P (5.4.4)

5.4.1 Prediction by PCA

Reflectance for all viewing angles can be reconstructed by the lin-
ear combination of first p principal components as shown in Equa-
tion (5.4.4). But the objective is to predict the reflectance for all
viewing angles from the reflectance of the p number of primary an-
gles of the test set. There is no known principal component of the
test set, but only the basis function B (eigenvectors) is calculated
from the training set. The matrix form of basis function B using
the first p eigenvector sorted in descending order of eigenvalues is
given below.

B =




ν1(θ1) .. .. νp(θ1)

: .. .. :
: .. .. :

ν1(θn) .. .. νp(θn)
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First, principal component Pt is calculated using the basis function
B and given reflectance of p number of primary angles. The princi-
pal component Pt is calculated as shown in Equation (5.4.5) [65].

Pt = bTr (5.4.5)

Here b is the matrix selected from basis function B according to the
primary angles. r is the matrix of reflectance of the primary angles.
The matrix forms of b and r are shown below.

b =




ν1(α1) .. νp(α1)

: .. :
: .. :

ν1(αp) .. νp(αp)




r =




r1(α1)

:
:

rp(αp)




Here, the primary angles are defined as α = (α1, ......, αp) where
the set of primary angles α should be the subset of total view-
ing angles θ = (θ1, ......, θp). After calculating the principal com-
ponent, the reflectance in all viewing angles will be reconstructed
using the basis function and principal component Pt. Here ri(αj)

is
[
r380

i (αj)−−− r780
i (αj)

]
, if the prediction is done using the ba-

sis function calculated from the training set matrix R using all the
wavelengths together. Otherwise ri(αj) is the reflectance value for
each wavelength and Pt should be calculated for each wavelength.
The calculation was done using all wavelengths together. i and j
indicate the index of the principal component and primary angles
respectively. The prediction of reflectance of the test sample for all
viewing angles is achieved as shown in Equation (5.4.6).

R ≈ R̃ = B Pt (5.4.6)

Figure 5.5 illustrates root mean square error (RMSE) due to PCA
based prediction as described above and cubic interpolation. Seven
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best primary angles have been used in prediction process. The re-
sults show that PCA based prediction clearly outperforms the cubic
interpolation. Table 5.3 (on page 56) shows the prediction error by
PCA using different viewing angles.

Figure 5.5: RMSE comparision of PCA based prediction and cubic interpolation. Here
viewing angles in X-axis are measured from surface.

5.5 WIENER ESTIMATION

The Wiener estimation method is traditionally used to estimate data
sets in larger dimensional space from lower dimensional space.
In this study, this method has been employed to estimate the re-
flectance for all viewing angles from the reflectance for a few se-
lected primary viewing angles. The Wiener estimation method is
quite simple and provides accurate estimations [56].

The Wiener estimation rule to estimate the reflectance R for all
viewing angles from reflectance r for a few primary angles with
mapping function G is shown in Equation (5.5.1).

R = GP (5.5.1)

Here P is the principal component calculated for reflectance r as
shown in Equation (5.4.6). In Equation (5.5.1) the size of R is n×m,
size of G is n× p and size of P is p×m. Here n is number of total
viewing angles, m is the number of samples, and p is the number of
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primary angles. If a single calculation was done for all wavelengths,
then the new m is a product of the number of samples m and num-
ber of wavelengths k, m = m ∗ k. The first order of the polynomial
Equation (5.5.1) is exactly the same as Equation (5.4.4). The num-
ber of primary angles were selected according to the fidelity value
calculated from PCA. The fidelity value chosen was ≥ 99.9 percent.
The purpose of the estimation matrix G is to minimize the square
error between the original R and estimated R̃ [66].

e =| R− R̃ |−→ min

The estimation matrix G is explicitly represented in Equation (5.5.2)
[66].

G = CRPC−1
PP (5.5.2)

The notation []−1 indicates the inverse of the matrix. Matrix CRP

is the cross correlation between matrices R and P. Matrix CPP is
the auto correlation of matrix P. The CRP and CPP are calculated as
shown in Equation (5.5.3).

CRP = RPT

m−1 , CPP = PPT

m−1 (5.5.3)

Here notation []T denotes the transpose of the matrix. As men-
tioned above, m is number of samples if individual calculations
were done for each wavelength. Otherwise, it is the product of
number of samples and number of wavelengths, if all the wave-
lengths were considered in single calculation. After calculating CRP

and CPP, the estimation matrix G is calculated from Equation (5.5.2).
After calculating estimation function G from the training set, the es-
timation of reflectance R̃ for all viewing angles from the principal
components P of the reflectance for particular primary angles are
achieved from Equation (5.5.1).

In this experiment, the results were calculated using the first
order polynomial to the fifth order polynomial of principal compo-
nents. The predicted results improved considerably as the order of
polynomial increased. The first order polynomial of principal com-
ponent P of reflectance r for the three primary angles α1, α2 and α3
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is arranged as P1 = [Pα1 Pα2 Pα3]. In the second order polynomial
for the three primary angles the new term P2 = [Pα1 ∗ Pα1 Pα1 ∗
Pα2 Pα1 ∗ Pα3 Pα2 ∗ Pα2 Pα2 ∗ Pα3 Pα3 ∗ Pα3] is appended. Simi-
larly the third order polynomial consists of the term P3 = [Pα1 ∗
Pα1 ∗ Pα1 Pα1 ∗ Pα1 ∗ Pα2 Pα1 ∗ Pα1 ∗ Pα3 Pα1 ∗ Pα2 ∗ Pα2 Pα1 ∗ Pα2 ∗
Pα3 Pα1 ∗ Pα3 ∗ Pα3 Pα2 ∗ Pα2 ∗ Pα2 Pα2 ∗ Pα2 ∗ Pα3 Pα2 ∗ Pα3 ∗ Pα3

Pα3 ∗ Pα3 ∗ Pα3]. So the second order polynomial P = [P1 P2] and for
the third order polynomial P = [P1 P2 P3] are used to calculate the
estimation function. Similarly P can be arranged to a higher order
of polynomials for a greater number of primary angles. From Equa-
tion (5.5.2) the estimation function G is derived. As the order of
polynomial increases, the size of the estimation function increases
accordingly. The prediction results up to the fifth order polynomial
significantly improves. The results are shown in Figure 5.6.

Figure 5.6: Prediction error by the Wiener estimation method using first to fifth order of
polynomial using the five primary angles.

5.6 DISCUSSION

This section describes the PCA and wiener estimation based re-
flectance prediction in multi-angle measurement for metallic and
pearlescent samples. In Publication 2, PCA based prediction method
has been used. In PCA based method, thirty samples were used
as training sets, Out of thirty samples, nine samples were pearles-
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cent rest were metallic. Reconstruction from seven principal com-
ponents contribute the fidelity ratio grater than 99.9. By checking
fidelity ratio of training set, we proposed that seven best viewing
angles are sufficient for the prediction process. Best viewing an-
gles were selected depending on the minimum reconstruction error
of training set. The results by proposed method outperformed the
prediction of reflectance by cubic interpolation as shown in Fig-
ure 5.5. Similarly, reconstruction and prediction error by PCA are
almost the same as shown in Table 5.2 and Table 5.3. Here recon-
struction means the samples were reconstructed by PCA where we
have reflectance of samples in all viewing angles but in Prediction
we have reflectance of samples only in best viewing angles and PCV
from the training sets. In Publication 3 the wiener estimation based
reflectance prediction in multi-angle measurement for metallic and
pearlescent samples has been proposed. The wiener estimation was
applied to the linear relationship provided by principal component
analysis. The wiener estimation method up to the fifth order of
polynomial of principal components has improved prediction re-
sults significantly as shown in Figure 5.6. The experiment shows
that five best primary angles are sufficient to predict reflectance
in all viewing angles independent of the types of samples. Addi-
tionally it has been found that only three best primary angles are
sufficient to predict reflectance for all viewing angles using the es-
timation function calculated from the similar type of samples. The
presented method takes into account only the single illumination
direction at 45 degree from surface. Further test is required for
choosing the best primary illumination directions and correspond-
ing best primary viewing angles. The number of samples used for
the training sets can not be enough for the samples that consists
of the different types of color and glossiness. The number of sam-
ples used in training set may influence the required number of best
viewing angles since the fidelity value may change but this does
not matter so much since the presented method gives the set of best
viewing angles combined from one best viewing angles to required
number of best viewing angles.
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Table 5.2: Reconstruction result by PCA: Principal component vectors (PCV), total con-
tributions (TC), mean values (µ) and maximum values (m) of CIELAB color differences
(CIELAB ∆E), and Root mean square errors (RMSE) are shown.

PCV TC
Lab∆E RMSE

µ m µ m
1st 73.980 11.660 24.860 0.110 0.180
1st-2nd 90.99 5.620 14.044 0.054 0.130
1st-3rd 97.60 3.871 11.682 0.031 0.080
1st-4th 98.90 2.284 11.516 0.021 0.079
1st-5th 99.56 1.190 2.368 0.013 0.037
1st-6th 99.84 0.738 1.777 0.007 0.017
1st-7th 99.92 0.667 1.814 0.006 0.012

Table 5.3: Prediction from first seven best primary angles using PCA: Mean values
(µ) and maximum values (m) of CIELAB color differences (CIELAB ∆E) and the Root
mean square errors (RMSE) are shown according to best angles.

Best angles
CIELAB ∆E RMSE
µ m µ m

100◦ 9.350 18.970 0.101 0.171
50◦ −30◦ 6.005 13.810 0.063 0.242
55◦ 25◦ −20◦ 2.726 14.043 0.029 0.132
65◦ 25◦ 15◦ −20◦ 1.968 13.406 0.019 0.092
125◦ 55◦ 30◦ 15◦ −20◦ 1.074 3.633 0.013 0.082
125◦ 70◦ 40◦ 10◦ −15◦ −35◦ 0.733 2.530 0.008 0.051
125◦ 70◦ 40◦ 15◦ −10◦ −20◦

−35◦
0.603 2.501 0.006 0.021
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Table 5.4: Prediction from five best primary angles using wiener estimation with
fifth order of polynomials of PC: Mean values (µ) and maximum values (m) of color
difference (∆E CMC(2 : 1)) and the Root mean square errors (RMSE) are shown accord-
ing to best angles for all type of samples.

Best angles
∆E CMC(2 : 1) RMSE

µ m µ m
40◦ 6.863 12.287 0.133 0.442
70◦20◦ 3.089 10.688 0.040 0.212
70◦25◦ − 20◦ 1.425 5.262 0.020 0.116
70◦30◦15◦ − 20◦ 0.762 3.587 0.009 0.045
120◦70◦35◦10◦ − 25◦ 0.309 1.177 0.004 0.022

Table 5.5: Prediction from three best primary angles using wiener estimation with
fifth order of polynomials of PC: Mean values (µ) and maximum values (m) of color
difference (∆E CMC(2 : 1)), and Root mean square errors (RMSE) are shown according
to the best three primary angles for each type of sample.

Sample type Primary angles
∆E CMC(2 : 1) RMSE

µ m µ m
Metallic 1 115◦ 25◦ −30◦ 0.458 1.515 0.008 0.038
Metallic 2 75◦ 20◦ −10◦ 0.384 1.263 0.005 0.012

Pearlescent 70◦ 20◦ −15◦ 0.498 2.902 0.007 0.023
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6 Highlight Removal from
Single Image

Highlight should be removed from the image to achieve the correct
image processing results. If highlight is not removed it obscures
the real feature and may give the impression of a required feature
in the image, resulting in the incorrect image processing output.
In fact, highlight is the artifact produced by the effect of the light
source based on the viewing position. This chapter is about the
highlight detection and highlight removal method from a single
image, in both RGB and spectral images. Highlight detection is
the method to find the part of area that is suffered from highlight
and the highlight removal method removes the highlight from the
image and produces the diffuse image. There may be the highlight
free image (specular free image) without highlight but shifted color
information. Here in this chapter, highlight removal method not
only removes the highlight but also preservers the correct color or
spectral information.

The highlight-affected image may produce a false result in stereo
matching, segmentation, registration and detection in computer vi-
sion applications. In this chapter the goal is to provide the highlight
removal method from a single image. The principal component-
based technique for RGB images has been proposed in Publication
4, and the constrained spectral unmixing method for spectral im-
ages has been proposed in Publication 5. Some of spectral images
with or without cross polarizer settings have been measured in the
facility of Norsk Elektro Optikk As, Norway. Some test spectral
images were obtained from Vladimir Bochko [67].
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6.1 PREVIOUS WORKS

The starting point of the highlight removal method is the dichro-
matic reflection model as proposed by Shafer [30]. The dichromatic
reflection model separates reflection into a diffuse component and
specular (highlight) component when light meets the surface that
is optically inhomogeneous. The dichromatic reflection model has
been illustrated in Figure 3.3. Highlight can be removed from the
image by using the cross setting of a polarizing filter in front of the
camera sensor and light source during image acquisition. This is
based on the idea that highlight or specular components are polar-
ized and diffuse components are not polarized [68]. This polarizing
filter method is not suitable for images that are already measured
and it may not always be feasible to put a polarizing filter in front
of the camera and light source. However the method can be used
to test the quality of the measurements of the highlight removal
algorithm.

Klinker et al [69] showed a T-shaped color distribution contain-
ing illumination and reflectance color vectors, but it may be difficult
to get a T-shape in an image due to noise in the image. Tan and
Ikeuchi [70] proposed a highlight removal method without color
segmentation. The method first produces the specular free (SF) im-
age. The specular free image is devoid of the highlight effect but
saves the geometrical shape of the image. The highlight-free pixels
are successfully detected by using the logarithmic differentiation
between the SF image and input image. Then the specular com-
ponent of each pixel was locally removed, involving the maximum
of two pixels. Similarly, Shen et al [71] proposed a highlight re-
moval method for a RGB image. The method does not need local
interaction between two neighboring pixels and does not need color
segmentation. The method solves the dichromatic reflection model
on each pixel by solving the least square problem. Illumination-
constrained inpainting method for highlight removal has been de-
scribed in [72]. The method assumes that the illumination color is
uniform throughout the highlight area. A fast highlight removal

60 Dissertations in Forestry and Natural Sciences No 102



Highlight Removal from Single Image

method using iterative bilateral filtering method has been applied
in RGB image by Yang et al [73].

There are fewer studies done on highlight removal from spectral
images than from RGB images. Bochko and Parkkinen [67] propose
a highlight removal method in spectral images using PCA. In the
method, probabilistic PCA was used to detect the highlight-affected
part and diffuse part in the image. Finally the highlight-affected
part was mapped across the first eigenvector of the diffuse part.
The method does not need prior information on the light source.
However the quality of the diffuse image depends on the informa-
tion that the first principal component carries. Similarly, there is a
method to obtain a highlight-free image using the OSP method [33].
In the OSP method the radiance spectra should be projected on the
subspace orthogonal to the spectra of illumination. Therefore, the
OSP projector [33,74,75] rejects the uninteresting signature (spectra
of illumination) from the input spectra and as a result a highlight-
free spectra is achieved.

6.2 HIGHLIGHT DETECTION

The highlight-affected part and diffuse part in the spectral image
were segmented using clustering in the first two principal com-
ponent vectors [67]. A pixel clustering algorithm was presented
to segment the diffuse and highlight parts [69], the results were
demonstrated to work well for a set of plastic objects. The seg-
mentation between diffuse and highlight parts were obtained by
conducting clustering in two-dimensional histograms in spherical
coordinates [31]. Here highlight detection methods for a RGB im-
age as well as a spectral image have been presented. In the RGB
image, the difference between the specular-free image and original
image were first calculated, then the highlight and diffuse parts in
the image were detected. For the spectral image, CEM-based high-
light detection has been proposed.
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6.2.1 Highlight detection in difference image

The highlight-affected area in the given RGB image is detected
on a single pixel level, based on the difference between the orig-
inal image and the modified specular-free image (MSF) [71]. The
MSF is calculated by adding the mean of the minimum of the RGB
color values in the original image to the specular-free image (SF)
as shown in Equation (6.2.2). The SF is calculated by subtracting
the minimum of RGB color value in each pixel level as shown in
Equation (6.2.1).

SFi(x) = Ii(x)−min(I1(x), I2(x), I3(x)) (6.2.1)

MSFi(x) = SFi(x) + Imin (6.2.2)

In Equations (6.2.1) and (6.2.2), SF and MSF are the specular-free
image and modified specular-free image. Similarly Ii(x) is the value
of ith color channel at pixel (x) in original image I. The subscript i
ranges from 1 to 3 corresponding to the Red, Green and Blue chan-
nel. Imin is the mean of minimum of the RGB color values in the
original image. The threshold value should be set to the differ-
ence between the original and MSF image to classify each pixel in
the group of highlight and highlight-free parts as shown in Equa-
tion (6.2.3). The difference between original and MSF image at each
pixel is shown in Equation (6.2.4).

pixel(x) =

{
highlight if di(x) > th for all i
diffuse otherwise

(6.2.3)

di(x) = Ii(x)−MSFi(x) (6.2.4)

The average value of the minimum of the color channel has been
used as the threshold [71]. However it is always a difficult task to
set an accurate threshold value. The threshold value has been set
after a visual assessment of the classification results of each image.
The threshold value 0.1 has been set to detect highlight in the pear
surface as shown in Figure 6.1. Instead of using a threshold, a
simple K-means clustering [76] algorithm can be applied but it may
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(a) (b)

Figure 6.1: Highlight detection (a) Original Image (b) Black is diffuse part and white is
highlight part.

compromise the speed of the processing. Similarly the SF image
provided by other methods, like by Tan and Ikeuchi [70], can be
used to calculate the difference image.

6.2.2 Highlight detection by CEM

CEM in an FIR filter [74] has been presented in Publication 5 to
detect the highlight in a spectral image. The method provides the
optimal weight vector W, as shown in Equation (6.2.5) as derived
by Frost [77].

WT =

(
K−1D

DTK−1D

)T

(6.2.5)

Where K is the autocorrelation matrix of the given image. D is
the desired signature representing the specular component i.e. the
spectra of the light source. The CEM filter, after applying an opti-
mal weight vector W, is WTR. The CEM filter is the fraction value
of the desired signature at each pixel position, and as a result a
one dimensional image is obtained. If R is the desired signature,
then WTR = 1. By applying the K-means clustering algorithm in
the CEM filter, the highlight-affected part and diffuse part in the
spectral image is detected as shown in Figure 6.2. Similarly, the
highlight can be detected by performing clustering in the dataset
plotted against the first principal component against second princi-
pal component [67].
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(a)

(b)

Figure 6.2: Highlight detection by CEM (a) Original Image (b) Black is diffuse part and
white is highlight part.

6.3 DIFFUSE IMAGE FROM RGB IMAGE

The section describes the highlight removal method from a single
image without knowing the information about illumination. The
method applies principal component analysis (PCA); histogram equal-
ization in first principal component (PC). Analyzing the eigenvalue
corresponding to the second PC, it decides whether the second PC
contains the specular component. The method, as described in Pub-
lication 4, assumes that most of the highlight may be contained in
the second PC. The second PC is selected or removed by determin-
ing whether or not it contains the highlight. The described method
assumes that the highlight is not completely separated between dif-
ferent PC, still that there may be a highlight effect in the first PC.
Histogram equalization was applied in the first PC to reduce the
highlight effect.

The highlight-free image was obtained by reconstructing the im-
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age by PCA. But the reconstructed result may have color difference
with the original image. The new basis function was calculated by
using second order polynomial transformation between the diffuse
part of the reconstructed highlight-free image and diffuse part of
original image. Finally, the calculated basis function was applied to
the whole of the reconstructed highlight image by PCA to get the
correct diffuse image. The second order polynomial transformation
recovers the original color. The workflow of the method has been
illustrated in Figure 6.4. Diffuse images simulated by using this
method has been shown in Figure 6.3.

6.4 DIFFUSE IMAGE FROM SPECTRAL IMAGE

The diffuse image of a spectral image can be obtained by using
the positive constrained spectral unmixing method, as described in
Publication 5. In that method each pixel of the spectral image is de-
fined as the combination of endmembers of different components.
The known spectra of the light source can be the endmember of
the highlight part, otherwise the spectra with large distance can be
approximated as the endmember of the highlight part. Other end-
members for the diffuse part can be selected from the diffuse area
by using the ATGP method. The required number of endmembers
in the diffuse part can be selected by using eigen analysis. After
obtaining all the endmembers, the positive constrained and sum
to one spectral unmixing method is applied to calculate the abun-
dances of each endmember corresponding to each pixel’s position.
Finally, the image should be reconstructed by using all endmem-
bers, except the endmembers of the highlight component, to get the
diffuse image. The benefit of this method over the OSP method
is that the resultant spectra is always positive and preservers the
shape of the spectra, and there is less color difference in the dif-
fuse image. The results of the diffuse image has been presented in
a three band image, as shown in Figure 6.5(d). The results of the
spectra of the image from the highlight part have been shown in
Figure 6.6.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.3: Highlight removal from RGB image (a,c,e,g,i,k) Original images (b,d,f,h,j,l)
Diffuse images. The name of this images are called hat, fish, face, yellow ball, pear and
green ball respectively.

66 Dissertations in Forestry and Natural Sciences No 102



Highlight Removal from Single Image

Figure 6.4: Highlight removal method applied in RGB image.

6.5 QUALITY MEASURE OF DIFFUSE IMAGE

There is in fact no exact ground truth diffuse image for the same
illumination and viewing angles. Nevertheless, in the experiments
on highlight removal from spectral images it has been assumed that
the diffuse image obtained using a diffuse polarizer is the ground
truth image. The diffuse image by polarizer can also be used as the
ground truth image for the RGB image. But the ground truth object
and test object should be measured at the same time under same
conditions of measurement. The average S-CIELAB [78] difference
image between the diffuse detected part of the test RGB image and
the same part of diffuse image was used to analyze the quality of
the results in Publication 4. Detailed implementation of S-CIELAB
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has been presented in Appendix A.2.2. The less average error indi-
cates a low color difference is obtained between the diffuse image
and test image, and as a result the quality is better. The S-CIELAB
color difference for some tested samples has been listed in Table 6.1.

Table 6.1: Average S-CIELAB color difference ∆ E between the diffuse detected part of
original image and final image after polynomial transformation. D is the standard devia-
tion of S-CIELAB color difference. The original images and corresponding diffuse images
are at Figure 6.3

Pear Face Yellow ball Green ball Hat Fish
∆ E 0.954 0.354 2.802 4.036 0.415 0.445
D 2.877 0.801 5.526 4.529 1.275 1.673

6.6 DISCUSSION

Highlight removal methods from RGB and spectral images have
been proposed. In the proposed method for RGB image, histogram
equalization was applied to first principal component of the images.
In this experiment, second principal component was found carrying
the large portion of informations of the highlight. However it can
not be guaranteed for all the cases. So second principal component
was included only if the fidelity ratio of second largest eigen vector
is greater than threshold value otherwise rejected . The color of the
reconstructed image gets shifted due to histogram equalization in
first principal component. But reconstructed image is free of high-
light. The color of the reconstructed image was corrected by using
second order polynomial transformation. The weight vector of the
polynomial transformation was obtained by using the transforma-
tion of the pixels of reconstructed image to the original image cor-
responding to highlight free pixels in original image. The accuracy
of the result was evaluated by using S-CIELAB color difference for-
mula in highlight free area. The diffuse image from diffuse polar-
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izer can be used as the ground truth image for the the better quality
evaluation. In another experiment for highlight removal from spec-
tral image, calculated diffuse image was evaluated against the dif-
fuse image by polarizer. The positive constrained spectral unmixing
method has been proposed to remove the highlight from spectral
image. At first, the highlight detection was done using K-means
clustering in the one dimensional image produced by CEM and the
endmembers of diffuse components were selected only from the
diffuse part. The selected endmembers form diffuse part of im-
age have been used to reconstruct diffuse image. The endmember
of specular component should be selected at first, the best result
will be achieved, if we know the SPD of used light source. Other-
wise, the spectra as endmember of specular component that has the
higher distance value can be used. The proposed method for spec-
tral image has given promising result against the OSP method [33]
and mixture model of probabilistic PCA method [67]. The com-
parisons between methods have bee shown in Figure 6.5 and Fig-
ure 6.6. The proposed highlight removal method for spectral un-
mixing depends the quality of endmember of specular and diffuse
component. Nevertheless, the diffuse image by spectral unmixing
may also suffer from black spots in some parts of the image. A
dark spot may occur in pixels that have spectra similar to the SPD
of the light source because the spectrum that is similar to that of
the light source has a fraction of diffuse component near to zero.
The resultant spectra produced by this method always guarantee
the positive spectra, which is not always the case in OSP method
and probabilistic PCA method.
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(a) (b)

(c) (d)

Figure 6.5: Constrained spectral unmixing method compared to polarizer method and OSP
method: (a) Original spectral image (The radiance spectra of the selected part have been
shown in Figure 6.6). (b) Highlight removed image by polarizer. (c) Highlight removed
image by constrained spectral unmixing. (d) Highlight removed image by OSP method.
All images are rendered in three bands [420 550 700] nm.
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Highlight Removal from Single Image

(a) (b)

(c) (d)

Figure 6.6: Comparison of radiance spectra obtained by polarizer, constrained spectral un-
mixing method and OSP method: (a) Radiance spectra from original image. (b) Radiance
spectra from highlight removed image by polarizer. (c) Radiance spectra from highlight
removed image by constrained spectral unmixing method. (d) Radiance spectra from high-
light removed image by OSP. The radiance spectra are from the selected part of images
shown in Figure 6.5.
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7 Discussion

In recent years, due to technological developments in optics and
detectors and the storage capacity in computers and computational
power, the use of spectral imaging has increased in industrial ap-
plications and many research fields. Due to the high accuracy and
voluminous information in a large number of bands, spectral imag-
ing is becoming more popular in the measurement of the quality
factors of objects.

In this thesis, spectral imaging has been exploited in analyz-
ing a diffuse coated surface, highly glossy metallic and pearlescent
coated surface and an image that suffers from highlight. The spec-
tral image within the visible range of 380 nm to 780 nm has been
used. For the pigment coated plastic surface the methods capable
of finding the set of pigments to produce given pigments and pre-
dicting the required pigments from a set of given pigments have
been proposed. The method employs the color spectra within the
visible range, so it is called the spectral color mixing and unmix-
ing method. The spectral color mixing and unmixing method have
direct implications in industrial color management. The method re-
duces the expensive analytical base color mixing trial process. The
metallic and pearlescent coated surface require reflectance measure-
ment in different geometries for the accurate characterization of its
reflectance, as their appearance depends on the measurement ge-
ometry. In this thesis a PCA and Wiener estimation-based method
has been proposed to predict all the reflectances for all viewing
angles just by using the reflectances measured in five angles. The
method gives a feasible solution for industrial processes to deter-
mine the reflectances in desired viewing angles. Similarly, for the
highlight affected surface, PCA and histogram equalization based
method have been proposed to separate the diffuse and highlight
component of the image. Positive constrained spectral unmixing
method has been performed to separate diffuse and highlight com-
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ponent in spectral image.

Publication 1 describes the spectral color mixing and unmixing
method based on the KM method. Spectral color mixing produces
the reflectance of a mixture from known reflectances of mixed pig-
ments. In spectral unmixing the reflectances of the mixed pigments
are predicted. In this technique the set of candidate unit k/s of
the mixed pigments are selected from the set of unit k/s calcu-
lated from the training set provided. Concentrations of the mixed
pigments are calculated using linear least square techniques. The
method was tested on pigments coated on a plastic surface. The
surface was considered an opaque surface. The method gives the
set of mixed pigments sorted according to the spectral color differ-
ence calculated between given and predicted reflectance of the mix-
ture. The main benefit of the method is the flexibility to the user to
choose the set of mixed pigments according to quality requirements
and price requirements. The method has direct implications in in-
dustrial processes. As future work, this method should be modified
for transparent and semitransparent paints. A positive constrained
linear least square technique can be tested instead of LLS.

The research on reflectance reconstruction and reflectance pre-
diction in multi-angle measurement has been presented in Publica-
tion 2 and Publication 3. The research provides the method to pre-
dict reflectance for a large number of viewing angles using the re-
flectance from a few viewing angles. Principal component analysis
has been used to predict the reflectance in Publication 2. The meth-
ods were tested on metallic and pearlescent samples. Publication
3 shows that the Wiener estimation method significantly improves
the result if the polynomial order increases to the fifth order. In
the method, the principal component vector should be calculated
from the training set. The method can predict the reflectance for
viewing angles which are outside the bounds of the given primary
viewing angles but which are within the angles from where the re-
flectance of training sets were measured. The best viewing angles
were selected using a full search among the angles that provide the
local maxima and minima of the difference curve. The difference
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curve was calculated as the root mean square error of the training
set and its reconstruction. The required number of best viewing an-
gles were determined according to the fidelity ratio calculated from
the training set. In the future an optimal method, like orthogonal
subspace projection, can be used to find the best primary angles.

Highlight removal method from the single image has been pre-
sented in Publication 4 and Publication 5. In Publication 4 a highlight
removal method using histogram equalization and PCA in RGB im-
age has been presented. The method was applied in the image with-
out knowing the light source and detector type. The results look
promising. In Publication 5 a novel method in highlight removal
from single spectral image using a positive constrained spectral un-
mixing method has been presented. The methods were compared
against the existing method by orthogonal subspace projection by
Fu et al [33] and principal component-based method by Bochko and
Parkkinen [67]. Highlight removal from existing image is quite im-
portant to know the content of proper information. This method
can be applied as a preprocessing step in the highlight-affected im-
age, before applying further image processing. Real-time highlight
detection and highlight removal from a single image will be the
future direction. Real-time application has the great advantage of
using as a preprocessing tool in real-time image analysis and image
processing.

All the methods, performed in this thesis, have a direct implica-
tion in industrial applications. The method for spectral color mix-
ing and unmixing was developed in collabration with Exel. The
developed application is in use in Exel to select the colorants. Simi-
larly, the method of selection of best viewing angles and prediction
of spectra in all viewing angles were developed as a part of indus-
trial cooperation with Ruukki. Highlight removal method has the
direct implication in the image processing and analysis. Highlight
must be removed or reduced before the detection process, other-
wise there is always chance of getting false result. The reflectance
of mixed and mixture pigments, the reflectance of metallic and
pearlescent coated samples in multi-angle measurement could be

Dissertations in Forestry and Natural Sciences No 102 75



Pesal Koirala : Simulation and Measurement of Colored Surfaces

successfully simulated and finally the spectra of a diffuse compo-
nent from a highlight-affected image were simulated.
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A Appendix: Supporting
Equations

A.1 KUBELKA-MUNK METHOD FORMULATION

The Kubelka-Munk equation shown in Equation (4.3.1) is derived
in this section. The pigmented solution is a paint applied with the
uniform thickness X over a substrate of reflectance of Rg. Let I
be the incident light which is transmitted down through the paint,
either directly from the source or by the scattering of light from pig-
ment particles. Let J be the light which is returning to the source,
either by the reflection from the substrate or scattering of pigment
particles. Consider a very thin sublayer of paint of thickness dx.
The amount of light that is lost from I and J through the layer are
shown in following equations.

(K + S) I dx (A.1.1)

(K + S) J dx (A.1.2)

Where K and S are the absorption and scattering coefficients re-
spectively.

dI = (K + S)I dx− SJ dx (A.1.3)

−dJ = (K + S) J dx− SI dx (A.1.4)

As the light representing I and J travels in opposite directions, the
change in their signs through the film are opposing. Equations
(A.1.5) and (A.1.6) are written assuming a = 1 + K

S .

dI
S dx

= aI − J (A.1.5)

− dJ
S dx

= aJ − I (A.1.6)
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Adding and rearranging Equations (A.1.5) and (A.1.6) lead to

I dJ− J dI
I2S dx

= −2a
J
I
+

J2

I2 + 1 (A.1.7)

From the quotient rule

d(J/I)
S dx

= −2a
J
I
+

J2

I2 + 1 (A.1.8)

Setting r = J/I then it is

dr
S dx

= r2 − 2ar + 1 (A.1.9)

Taking integration leads to.
∫ dr

r2 − 2ar + 1
= S

∫
dx (A.1.10)

When the thickness of the layer is zero, the reflectance is Rg by the
substrate and at the thickness X the reflectance is R.

R∫

Rg

dr
r2 − 2ar + 1

=
1
2b

R∫

Rg

dr
r− (a + b)

− 1
2b

R∫

Rg

dr
r− (a− b)

=
1
2b

log
(R− a− b)(Rg − a + b)
(R− a− b)(Rg − a− b)

(A.1.11)
Where b =

√
a2 − 1 , now Equation (A.1.10) is written as:

1
2b

log
(R− a− b) (Rg − a + b)
(R− a− b)(Rg − a− b)

= SX (A.1.12)

(R− a− b)(Rg − a + b)
(R− a + b)(Rg − a− b)

= e2bSX (A.1.13)

Now separating R from the other parts.

R =

1− Rg

(
a− b

e2bSX + 1
e2bSX − 1

)

a− Rg + b
e2bSX + 1
e2bSX − 1

=
1− Rg (a− b coth (bSX))

a− Rg + b coth (bSX)

(A.1.14)
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A.2 COLOR DIFFERENCE

The color difference formula is used to find the discrimination be-
tween two samples of colors. Here the CIELAB color difference,
S-CIELAB color difference and CMC(l:c) color difference formulae
have been presented. As a first step in the method, CIE tristimulus
values should be calculated. In the second step, L∗a∗b∗ is calcu-
lated from the tristimulus values. Here L∗ is the representation of
luminance and a∗ and b∗ are the chrominance values. For the given
illumination, sensitivity function and reflectance of the sample, the
CIE tristimulus values are calculated as follows. For the given RGB,
its CIE tristimulus is calculated by linear transformation according
to the RGB type [79].

X = K
λmax∫

λmin

RλSλxλdλ

Y = K
λmax∫

λmin

RλSλyλdλ

Z = K
λmax∫

λmin

RλSλzλdλ

(A.2.1)

Where X, Y and Z are CIE tristimulus values. Rλ is the reflectance
of the reflective object. Sλ is the spectral density of the illuminating
light. xλ, yλ and zλ are the color matching functions of the CIE
standard colorimetric observer. The multiplier K is chosen so that Y
has the value 100 for a perfect white matt surface. A perfect white
matt surface is an ideal non-fluorescent, isotropic diffuser with a
reflectance equal to 1 (Rλ = 1) across the visible spectrum [53, 80].

K =
100

λmax∫

λmin

Sλyλdλ

(A.2.2)
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A.2.1 CIELAB color difference

The spacing of the colors in the XYZ space is not perceptually uni-
form [81]. The CIE X, Y, Z space can be converted to a more percep-
tually uniform CIE1976 L∗a∗b∗ (CIELAB) color space as follows.

L∗ = 116 f
(

Y
Yw

)
− 16

a∗ = 500
[

f
(

X
Xw

)
− f

(
Y

Yw

)]

b∗ = 200
[

f
(

Y
Yw

)
− f

(
Z

Zw

)]
(A.2.3)

Where,

f (t) = t1/3 if t>0.008856

f (t) = 7.787 t+
16
116

Otherwise

Here, Xw, Yw and Zw are the tristimulus values calculated from
a perfect white matt surface (Rλ = 1 and Yw = 100). The color
difference formula for two color samples in CIELAB color space is
as follows. The subscript indicates sample1 and sample2.

∆Elab =
√
(L∗1 − L∗2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2 (A.2.4)

A.2.2 S-CIELAB color difference

S-CIELAB is the extension of the CIELAB color metric applied to
measure the color reproduction errors between images [78]. The
notation “S” stands for spatial. The S-CIELAB difference measure
reflects both spatial and color sensitivity, and it equals the color
CIELAB over the uniform regions of the image [78]. The step by
step implementation of the S-CIELAB calculation has been illus-
trated in Figure A.1. There is a linear transformation from a given
RGB image to device independent CIE XYZ tristimulus values [79].
The device independent CIE XYZ value is transformed linearly to
opponent color space AC1C2 as shown in Equation (A.2.5). Here,
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A represents the achromatic representation that is luminance. Sim-
ilarly, C1 and C2 are chromatic representations that are red-green
and blue-yellow respectively.

Figure A.1: Step by step calculation of S-CIELAB [78, 82].




A
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C2


 =




0.279 0.72 −0.107
−0.449 0.29 −0.077
0.086 −0.59 0.501







X
Y
Z


 (A.2.5)

Spatial filtering is applied in each channel of the image represented
by opponent color space. The two-dimensional spatial kernels used
for filtering are shown in Equations (A.2.6) and (A.2.7) [78].

f = k ∑
i

wiEi (A.2.6)

Ei = kie−(x2+y2)/σ2
i (A.2.7)

The parameter ki is chosen so that Ei sums to 1 and the parameter
k is chosen so that for each color plane, its two-dimensional kernel
f sums to one [78]. As a result, it preserves the mean color values
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for uniform areas [82]. The parameters wi and σi represent the
weight and spread (in degrees of visual angle) and the Gaussian
functions respectively [82]. The filtered image is converted to device
independent CIE XYZ tristimulus space. And finally CIE XYZ
is converted to CIELAB, which is called S-CIELAB. The difference
between the original image and the reproduced image calculated by
Euclidean distance in S-CIELAB color space is called the S-CIELAB
error.

A.2.3 CMC (l:c) color difference

CIELAB is a uniform color space, but different practical applica-
tions have shown better color differences by the setting of weight-
ing factors [83,84]. CMC, CIE 94 and CIEDE 2000 each employ such
weighting factors to adjust the inaccuracies [85]. In reference [85]
it was found that CMC most closely represented the judgments of
an average observer. The color difference formula ∆E proposed by
the Society of Dyers and Colourists Color Measurement Committee
CMC(l : c) as follows.

∆ECMC(l : c) =

√
(L∗1 − L∗2)2

lSL
+

(C∗ab,1 − C∗ab,2)
2

CSc
+

(hab,1 + hab,2)2

Sh
(A.2.8)

In Equation (A.2.8), the subscripts 1 and 2 are the notation for the
samples to be compared. L∗ is the luminance as in CIELAB and
C∗ab and hab is the notation of the chroma and hue of the samples.
Chroma and hue is calculated from CIELAB chrominance a∗ and
b∗. Chroma and hue is the radial and angular component in coor-
dinates representing the X and Y axes by a∗ and b∗ respectively as
shown in Figure A.2.

C∗ab =
√

a∗2 + b∗2 (A.2.9)

hab = tan−1
(

b∗

a∗

)
(A.2.10)
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Here,

0◦ < hab < 90◦ if a∗, b∗ > 0
90◦ < hab < 180◦ if a∗ < 0, b∗ > 0
180◦ < hab < 270◦ if a∗, b∗ < 0
270◦ < hab < 360◦ if a∗ > 0, b∗ < 0

In Equation (A.2.8), SL, Sc and Sh are the relative attributes differ-
ence for the luminance, chroma and hue calculated from the stan-
dard observer [86].

SL =
0.040975 L∗

1 + 0.01765 L∗
for L∗ > 16

SL = 0.511 for L∗ < 16

Sc =
0.0638 c∗

1 + 0.0131 c∗
+ 0.0638

Sh = (F T + 1− F) Sc

Figure A.2: Chroma and hue representation in CIELAB.
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Where,

F =

√
c∗

4

c∗4 + 1900

T = 0.36 + |0.4 cos(35 + h)| for h = 164◦ or h > 345◦

T = 0.56 + |0.2 cos(168 + h)| for 164◦ < h < 345◦

A.3 SPECTRAL DIFFERENCE

Spectral difference between two spectra , like radiance or reflectance
should be calculated by considering all wavelengths.

A.3.1 Root Mean Square Error

Root mean square error (RMSE) between two spectra R1 and R2 is
euclidean distance between two spectra divided by square root of
total number of bands.

RMSE =

√√√√√
n

∑
i=1

(R1(i)− R2(i))2

n
(A.3.1)

In Equation (A.3.1), i represents the index of wavelengths and varies
from 1 to n, since n is the number of wavelengths.

A.3.2 Spectral angle mapper

Spectral angle mapper calculates the angular distance between spec-
tra [87]. It measures the similarity between two spectra looking the
shape of the objects rather than its magnitude. The cosine value of
the angle is also called the GFC (goodness of fit coefficient).

cos(θ) =

n

∑
i=1

R1(i)R2(i)
√

n

∑
i=1

R1(i)2

√
n

∑
i=1

R2(i)2

(A.3.2)
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In Equation (A.3.2), cos(θ) is the cosine of the angular distance θ

between two spectra. R1(i) and R2(i) are the spectra value at i, here
i is index of wavelength. The value of i varies 1 to n, when total
number of wavelengths is n.
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Measurement of Colored
Surfaces

The objective of this thesis is to in-

vestigate the reflectance prediction of 

colored surfaces. Reflectance predic-

tion methods in three different cases 

were proposed. In the first case, spectra 

of mixed pigments were simulated as 

well as spectra of mixing pigments and 

their concentrations were predicted. In 

the second case, spectra in multi-angle 

measurement were predicted. In order 

to predict correct reflectance in differ-

ent viewing angles, the best viewing 

angles were determined. The proposed 

method was applied in metallic and 

pearlescent samples.  In the third case, 

highlight removal method for RGB and 

spectral images were proposed.
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