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Abstract

Business Intelligence (BI) systems provide information and assistance for business decision-

makers, aiding in increasing company revenue, reducing the costs, and lowering the risks.

Text classification (TC) is one of tasks performed by such systems. In this thesis we give

an overview of current TC methods. We focus in particular on ontology-aided methods.

This is due to the nature of the target domain in which the results of this thesis will be

applied. The term ontology-aided refers to the fact that these methods utilise informa-

tion about the target domain contained in an ontology. A method relying on information

about category hierarchy is called a hierarchical categorisation method, as opposed to

flat categorisation where no hierarchy information is used. In an extreme case a method

based on ontology may not require any training data, which is referred to as training-less

classification.

We compared the performance of different methods in the domain of business news

articles and an ontology for storing BI. The results of the research were implemented in

a TC module that was integrated into an existing BI system called Data Analysis and

Visualisation aId for Decision-making (DAVID). The ontology used in classification is

the Company, Product and Event (CoProE) ontology, developed for the DAVID system.

Both the system and the ontology are developed at the University of Eastern Finland.

We applied the classification to a set of 405 manually collected and annotated busi-

ness documents. The documents were divided into 14 categories defined by the CoProE

ontology. We found out that categorisation performed with respect to ontology hierarchy

resulted in 7% worse accuracy than in the case of flat categorisation. As for flat cate-

gorisation, the most accurate results were achieved by applying the k-Nearest Neighbour

method (k=12), which produced 73% macro accuracy, followed by Support Vector Ma-

chine and Naive Bayes algorithms, which yielded the macro accuracies of 68% and 43%,

respectively. Generating n-grams for n=8 instead of extracting words from text improved

the results by almost 8%, in agreement with the literature.
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1. Introduction

Information and communication technologies (ICT) are present in almost all aspects of

our lives. ICT is a constantly evolving domain that aims at automating and supporting

various human activities. Nowadays, not only manual human labour is being replaced

by computer systems, but also intellectual work can be simulated by computers. Current

trends in Computer Science include automating tasks requiring assessment, reasoning and

knowledge which originally could be done only by human being. Branches of Computer

Science such as artificial intelligence (AI), machine learning (ML), data mining (DM),

natural language processing (NLP), as well as semantic web (SW), provide methods which

can support carrying out intellectual tasks. Many applications of the above-mentioned

technologies exist, starting from computer games, where machines can nowadays beat

human players, through speech recognition, computer vision, understanding natural lan-

guage, and finishing on expert systems, e.g. medical diagnosis systems or credit card

transaction systems (McCarthy 2007).

Furthermore, AI, DM and related methods have been adopted for the use in business

and e-business. Their application areas include marketing, customer relationship man-

agement and fraud detection, product development, process planning and monitoring,

information extraction and risk analysis (Soares et al. 2008). Comprehensive BI systems

have emerged, called Business Intelligence (BI) systems, whose task is to assist enter-

prise executives and analysts in the decision making process. Such software can increase

profitability of a company by analysing customer data, identify the activities within the

company that have ineffective performance, determine the factors influencing employee

retention, just to mention a few examples (Ericsson 2004). In order to organise and anal-

1



yse data, BI systems make an extensive use of AI and DM methods. One of aspects of

such NLP data processing applied in BI systems is document classification, which is also

referred to as text classification or text categorisation (TC).

Sebastiani (2005) defines TC as ,,the task of automatically sorting a set of documents

into categories from a predefined set”. The documents are assigned categories based on

their content. TC has a wide range of applications, out of which the most widely known

is spam filtering. Other examples include automated scientific document indexing based

on predefined thesauri of technical terms, authorship attribution, or survey coding. In an

organisation such automated TC can bring vast benefits, freeing it from a lot of manual

work connected to organising its document bases, it can also be used as part of a BI

system.

TC methods most widely used nowadays are utilising statistical Pattern recognition

(PR) learning algorithms. These methods rely on comparing the word frequencies across

the categories. In most cases their performance is satisfactory, however there exist ap-

plication domains where more advanced approaches are needed. In the age of rapidly

evolving AI and SW, it seems natural to look for solutions which would involve utilising

text semantics for document categorisation. One of the novel approaches to solving TC

task is using information contained in ontologies. Ontology is a term related to SW and

will be described more in detail in Section 2.1.2. For now it is sufficient to describe it as

an abstract representation of knowledge about some particular domain. This can serve as

background information for classification process. Ontologies have been successfully used

to improve accuracy of the classification task Janik & Kochut (2008), Seddiqui & Aono

(2008). More detailed review of such efforts will appear in the latter part of the thesis.

1.1 Research problem and questions

DAVID system

Data Analysis and Visualisation aId for Decision-making (DAVID) system is an exam-

ple of BI software. At the time of writing this thesis (November 2012) the software
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is being developed at the University of Eastern Finland as a part of the ,,Towards e-

leadership: towards higher profitability through innovative leadership and management

systems” project that is funded by the European Regional Development Fund (European

Regional Development Fund 2005) and TEKES – the Finnish Funding Agency for Tech-

nology and Innovation (Finnish Funding Agency for Technology and Innovation 2012).

According to Kakkonen (2010), DAVID aims at supporting corporate decision making

by using ,,text mining, semantic web and natural language processing technologies for

collecting and analysing source documents”. The information about collected data is vi-

sualised and communicated to the user, which makes the system useful for tasks such as

competitor analysis, analysis of customer feedback and opinions, or education and training

of leaders, including support business decision making as the ultimate goal.

CoProE ontology

The structure for holding knowledge base in the DAVID system is the Company, Product

and Event (CoProE) ontology. This ontology has been created especially for DAVID, in

the way of reuse of existing ontologies. Quoting Kakkonen & Mufti (2011), CoProE is

based on the newsEvents ontology (Lösch & Nikitina 2009) and an RDF Schema presen-

tation of the United Nations Standard Products and Services Code (UNSPSC) (Ramakr-

ishnan 2012). The ontology was created with the intent to be capable of supporting the

business news domain knowledge needs of DAVID system. The newsEvents ontology aims

at modelling information about news and their relevance to the user, while the UNSPSC

codes classify the products and segments of industries.

Research questions

DAVID system collects business news documents automatically, from various web sources.

This data needs to be processed and analysed in order to become a valuable piece of

business knowledge. One step of processing is TC, where the input documents are the

news articles from DAVID business document database and the categories to which these
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documents are classified are the ontology classes of CoProE. The module should be able

to determine the level of relevance of a document to each category. This allows business

decision-makers to focus their reading efforts on those documents that are relevant to

their current decision-making task.

The purpose of the research described in the thesis is to find accurate and efficient

ways of performing ontology-aided TC for DAVID system. The categorisation is imple-

mented on the basis of already existing TC methods, and it utilises the domain knowledge

contained in CoProE ontology.

We formulated the following research questions:

1. What are the existing ways of performing TC and ontology-aided TC? What are

their merits and flaws?

2. Which of these methods suits the DAVID system best?

3. Can these methods be improved and how?

1.2 Research methods

The research is conducted in a number of steps. First we review what kind of TC methods

are currently used and which are yielding the best performance in what kind of applica-

tions. We pay special attention to the ones utilising ontologies. This is going to be the

answer to the first research question.

To answer the second question, we proceed with implementing a number of the existing

TC methods, comparing the results and selecting those that show the best performance.

For this step we also needed to prepare manually a set of relevant documents for the ML

based methods – we tell more about this process in Section 5.1.

The last phase of the research, corresponding to the third research question, is applying

a range of modifications to the methods that we implemented in the previous phase, and

finding the ones that yield the best accuracy for our case. Finally, the best performing

TC method is integrated into the TCModule of the DAVID system.
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1.3 Structure of the thesis

The thesis is organised as follows: in Chapter 1 we introduce the background of this

thesis, which is DAVID BI system and CoProE ontology, state the research questions and

briefly introduce the research methods used.

In the Background chapter we present the RapidMiner application which we used for

creating the training and classification processes, as well as tell more about the DAVID

system and the process of establishing of the CoProE ontology. We also describe more in

detail the concepts of SW and ontologies.

In Chapter 3 we describe the TC problem and the existing standard ways of approach-

ing it. We review the previous work in the research fields of TC and ontology-aided TC.

Chapter 4 presents the TCModule software, which was implemented as the result of

this thesis. We introduce the architecture of the module itself, as well as describe the

underlying RapidMiner classification processes.

In Chapter 5 we specify the experiment settings, the test set and the course of the

experiments. At the end of the chapter we summarise the experimental results.

Chapter 6 contains our conclusions drawn from the experiments as well as an attempt

to justify the obtained results. In the end we consider what further work should be done

on the classification module and how it can be improved in the future.
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2. Background

In this chapter we give a closer look at the DAVID system and the CoProE ontology that

were mentioned in Section 1.1. The subsequent sections give an overview of the DAVID

system architecture and the process of creation of the CoProE ontology. In second part

of the chapter we present the RapidMiner application which was the core software used

for creating the training and classification processes. We describe its basic concepts and

the way it cooperates with TCModule.

2.1 DAVID system and CoProE ontology

This section provides more information on the architecture of the DAVID BI system

(Section 2.1.1) and the process of creating the CoProE ontology (Section 2.1.2).

2.1.1 DAVID system

Based on the information published in the project website (Kakkonen 2010), DAVID per-

forms analysis on news documents related to business. It maintains an internal database

of these documents and a knowledge base (i.e. the CoProE ontology), which holds both

known and new inferred information. Before inserting new documents to the database,

the input data is filtered to assure its quality and relevance. The knowledge base is used

as semantic input in the process of latter document analysis and is constantly being up-

dated with the analysis results. In this way the system is able to evolve and learn based

on current trends in the business field that is being analysed.
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Figure 2.1: Architecture of DAVID system
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In Figure 2.1 is depicted the architecture of DAVID system, consisting of seven main

modules. The focus of this thesis is concentrated around the Document Categorisation

sub-module, which belongs to the Text Mining & Knowledge discovery part of the system.

2.1.2 CoProE ontology

In Section 1.1, we introduced the CoProE ontology which holds the knowledge base for

DAVID system. We also mentioned that the ontology has been created by reusing existing

ontologies. Below we explain the general concept of what an ontology is, and later we

explicate the ontologies constituting the CoProE ontology.

Ontologies and Semantic Web

According to Siegel (2011), SW is a concept where Web content will be made under-

standable to machines, which will therefore be able to process it automatically. It is an

,,overhaul of our information infrastructure”, based on the following principles:� information will become unambiguous,� data will be linked, it will be accessible from one place and represented in a stan-

dardised way (interoperable),� the systems will be flexible, and they will be using the real-time data available

on-line.

In order to achieve these goals, the data needs to be represented in a standardised way

on the Web. There are two ways of data representation that serve for this purpose: tax-

onomies and ontologies.

Taxonomy describes the hierarchy of concepts within some particular domain. It is

sufficient for encapsulating knowledge for specialised systems, without getting too complex

to be maintained. Ontology, on the other hand, is designed at a higher level of abstraction.

It consists of statements (triples, assertions). Each statement consists of three parts,
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which are: [subject ], [verb] and [object ] (also referred to as class-property-value). In this

way it is possible to describe any piece of knowledge, e.g. ,,[dark chocolate] [contains]

[cacao liquor]”, or ,,[chocolate] [may contain] [dark chocolate]” 1. Ontologies are capable

of expressing more complex knowledge than taxonomies, but are also more difficult to

create.

There exist numerous publicly available ontologies, that deal with various areas of

expertise, for example Gene Ontology for genomics (Consortium 2000), PRO ontology for

proteins (Natale et al. 2011), or WordNet lexical reference system (Fellbaum 1998) (which

is not in fact an ontology, but can be interpreted as one), just to name a few. Ontologies

are encoded using markup languages. The most common ones used for this purpose are

Web Ontology Language (OWL) (W3C Web Ontology Language Specifications 2012) and

Resource Description Framework (RDF) (W3C Resource Description Framework Speci-

fications 2012). RDF is XML-based and it is a World Wide Web Consortium (W3C)

specification for describing Web resources. In RDF the resources are referred to by their

Uniform Resource Identifier (URI) (RFC 2396 1998). OWL is built on top of RDF, and

is also endorsed by W3C. The purpose of the OWL language is to process information on

the web. It has stronger syntax and larger vocabulary than RDF.

The goal of publishing different ontologies is to be able to connect and use them as

one vast source of knowledge. The concept of reusing existing knowledge is crucial for the

,,vision” of Semantic Web. The CoProE ontology described in this thesis is an example

of ontology reuse, as it is composed of existing newsEvents ontology (Lösch & Nikitina

2009) and UNSPSC code taxonomy (Ramakrishnan 2012). However, since many of the

existing ontologies are created in-house by single companies and not always compatible

with each other, the interoperability between the majority of them remains a future goal.

1It is important to disambiguate between ontology classes (e.g. [chocolate] or [dark chocolate]) and

ontology instances of those classes (e.g. [Fazer chocolate]). Ontology may, but does not have to, contain

class instances.
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The newsEvents ontology

The newsEvents ontology is has been reused for creating the CoProE ontology. Quoting

the information published by Lösch & Nikitina (2009), the newsEvents ontology was

designed in the way to be capable of answering the following competency questions :

1. ,,Related to the history of an event: Is there any information about the event already

in the knowledge base? In which order and in which time frame was the information

about the event published?”

2. ,,Related to the assessment of similarity: How similar are two events? How similar

are two entities (i.e. companies, authorities, etc.)?”

3. ,,Related to relations between entities: Which products does a company produce?

Which industry does a company belong to? Where is a company located?”

Here are a few example assertions from the newsEvents ontology:� [EmploymentChange] [affectsPosition] [Position]� [Bankruptcy] [hasBankruptCompany] [BankruptCompany]� [CompanyNameChange] [hasNewCompanyName] [CompanyNewName]� [CompanyNameChange] [hasOldCompanyName] [CompanyOldName]

10



Figure 2.2: Event hierarchy of CoProE. Top level event categories are Analyst Event,

Company Basic Information Change, Company Reporting Event, and so forth. Each of

these, with the exception of Bankruptcy is further divided into event types.

In Figure 2.2 is presented the event hierarchy of CoProE ontology. It consists of cat-

egories that form two-level hierarchy. All these categories are used for the categorisation

in this thesis.

The United Nations Standard Products and Services Code (UNSPSC) codes

The UNSPSC collection, as opposed to newsEvents, does not contain any assertions. It

is a taxonomy of products and services.
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Figure 2.3: An example part of UNSPSC taxonomy that describes types of furniture

Figure 2.3 shows an example part of UNSPSC taxonomy. It presents a part of product

and services classification: furniture classification.

Populating CoProE ontology with data

After combining the newsEvents ontology and the UNSPSC taxonomy, the CoProE on-

tology was manually filled with data about relevant companies, products and events, as

described in Mufti (2012). CoProE provides means of storing collected business informa-

tion, such as ,,business events, companies, their products and services on offer as well as

relationship with competitors companies and products” (Mufti 2012).

12



2.2 RapidMiner

2.2.1 Introduction

RapidMiner is a powerful open-source system for DM and analysis. It is developed by the

Rapid-I company, in Dortmund, Germany. It contains a number of built-in implementa-

tions of DM algorithms, ready structures for handling data and routines for collaboration

with external resources (such as disk storage or relational databases). RapidMiner allows

the user to build complex DM systems by visually composing the data flow out of a num-

ber of stand-alone components. The user can set the properties of these components and

connect them in order to create processing pipelines.

We chose RapidMiner as the platform for implementing the TC software for this re-

search due to the ease of visually creating DM processes and good availability of learning

materials on the Web. Moreover, the standard RapidMiner 5 Text Processing extension

offers additional operators for handling text documents, such as document tokenization,

word stemming, and other text transformations. In addition to that, the application pro-

vides possibilities for extending it by writing own extensions and plug-ins. Such extensi-

bility possibilities are beneficial for future development and extending of the Document

Classification module.

2.2.2 Fundamental concepts and terms

In this section, we introduce a few basic concepts and terms used across RapidMiner

that are relevant to this thesis. Attribute is the characteristics of the data which is to

be classified. The attribute value can be of several different types. For example, some

attributes may take textual values (text data type) and other may take only numerical

values (numerical data type). The distinction between attribute data types is important

for application of certain DM algorithms – the accepted data types vary between algo-

rithms. Defining the data types accepted by each algorithm as inputs reduces the risk of

generating incorrect output resulting from inappropriate data representation.
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In RapidMiner there are two kinds of attributes: regular attributes and special at-

tributes. In TC, regular attributes correspond to the features extracted from a document.

These are the ones that are used for the calculations in DM algorithms, and most com-

monly they correspond to the token frequencies in the document. Special attributes are

not used for calculations, but for identifying the data. They can adopt a role. Target

attribute is a special attribute whose role is the label role. Target attribute is used for

storing the name of the document category. Another essential role is the id role, which

denotes the attribute uniquely identifying a particular document.

In RapidMinder, an example describes a single data entity. It is defined by a set of

attributes (both special and regular) and their values. A set of examples defined by sin-

gle set of attributes is called an example set. In RapidMiner an example set is usually

visualised in a form of a grid, where the columns are values of subsequent attributes and

each row corresponds to an example from the example set. An example set that has been

assigned with predicted labels (e.g. after the classification model has been applied to it)

is referred to as a labelled example set.

The following two subsections describe the basic concepts of RapidMiner. The infor-

mation is based on RapidMider 5 User Manual (RapidMiner 5.0 User Manual 2010).

2.2.3 Operators and processes

An analysis process (or just process) can be defined as the data flow which performs a

particular DM task. Internally each process is stored in XML format. A process can be

is built and modified in the visual GUI of RapidMiner.
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Figure 2.4: Main RapidMiner window – flow design. In the central part there are the

operators that perform basic TC. The three Document operators define the content of the

training and test documents, the Process Documents operators perform feature extraction,

Train k-NN classifier trains a classifier based on the training data, and Apply model

classifies the test document with the trained classifier. On the right it is possible to see

the parameters of currently selected Process Documents operator.

Figure 2.4 shows the main window of RapidMiner with an example process. Each

process in RapidMiner owns a number of sinks (process inputs) and sources (process out-

puts), as well as a number of operators. In Figure 2.4, the main process sink is visible

on the left of the process window, marked with inp label, and the two sources are on the

right side of the process window, marked with res label. The more sinks or sources the

user connects, the more new available slots appear.
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An operator is an independent computation unit that can collaborate with other op-

erators. Each operator has a number of input and output ports, which allow it to provide

and consume data. The number of ports, the required data type arriving at the par-

ticular port, and mandatority of supplying the data depends on the particular operator.

Besides ports, each operator holds a number of parameters that can be altered by the user.

By connecting output and input ports of various operators and adjusting their proper-

ties, the user can build complex DM systems. The data that arrives at any of the sources

of the root process becomes the output of the process. To be able to deliver any results

after the process is run, at least one source should be connected to an output port of one

of the process operators. It is possible to deliver arbitrary number of output data objects.

Obviously, the most crucial for DM are the operators that perform various classifica-

tion, clustering and data transformation operations. In addition to that there is a number

of operators that provide the means to define loops and conditional branch execution. It

is also possible to group a number of operators into a single sub-process. Another group

of operators are the ones that are designed to make certain common DM tasks easier by

encapsulating their logic and exposing only placeholders for supplying the operators of

specific type. An example of such operator is the X-Validation operator, that performs

cross validation. Such operators are also called operator containers – they may contain

other operators, just as the root process contains its operators. Similarly to the root pro-

cess, such operators own their sources and sinks and can deliver the data they computed

to the upper level operators. This allows the user to create hierarchical data flows, with

multiple indent levels, and brings even more flexibility and possibilities to them.

After the process has been built and configured it is possible to run it. In RapidMiner

interface the user can watch the data travelling through the operators by defining break-

points on the operators. Whenever a breakpoint is reached the application displays the

data at all the operator’s input or output ports. This makes it easy to examine the data
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flow in greatest detail, as well as precisely locate possible anomalies or errors.

2.2.4 Connectivity

RapidMiner supports a range of file formats, to which it can write or from which it can read

the data from. These include Excel, Microsoft Access, XML and simple CSV files, just to

name a few. RapidMiner also allows to fetch the data directly from a connected database.

Usually such data retrieval is performed by defining an SQL query as a parameter of a

certain operator. The database connection has to be specified upfront. RapidMiner

supports a range of popular database systems, such as Oracle, IBM DB2, Microsoft SQL

Server, MySQL, and PostgreSQL. For the purpose of this thesis a PostgreSQL database

was used. Nevertheless, due to the variety of database systems supported by RapidMiner

it is possible to switch to a different database that will be needed by DAVID system.
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3. Text Classification

In this chapter, we review the work that has been done on the subject of TC. We focus in

particular on TC techniques that utilise ontologies. We start with the problem definition

(Section 3.2) and a short overview of the early work on TC (Section 3.1). Then we move

on to describing the standard TC methodology which consists of document indexing,

classifier training and classifier evaluation. In Section 3.3 we describe the document

indexing process, point out the problems that may arise during performing TC in certain

cases, and review the solutions proposed in the literature. Section 3.4 presents Naive

Bayes, K-nn and Support Vector Machine (SVM) classification algorithms. In Section 3.5

we inspect alternative approaches to TC, including ontology assisted solutions. Finally,

in Section 3.6, we describe ways of assessing the classification quality and performance,

as well as introduce the basic concepts and terms that will be used in the latter part of

the thesis.

3.1 Early work on text classification

As reported by Sebastiani (2005), TC dates back to 1960s. Starting as a niche research

field, until late 1980s it evolved into widely used set of methods which has proved to

be efficient and useful in the numerous real-world applications. The starting point for

tackling TC problem was ML, which was an increasingly developing research field at that

time. Because the main focus of ML was PR, the TC problem was approached with

PR methods, which in turn rely mainly on statistical analysis of pre-classified data (the

training set). The task was solved with PR methods, such as Naive Bayes or K-Nearest
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Neighbour (K-NN). A text classifier was trained on the training set, and later was used for

classifying new documents. Such solution turned out to perform with good and satisfying

results, and it is successfully and widely applied nowadays.

3.2 Problem definition

Sebastiani (2005) defines TC as ,,the task of automatically sorting a set of documents

into categories from a predefined set”. These categories are labels which are defined prior

to performing the categorisation. This kind of TC is a type of supervised learning. In

contrast to supervised learning, in unsupervised learning the categories are not defined

upfront. Such problem is usually tackled with applying clustering methods. In the case of

the TC system implemented in this thesis, the categories are defined by CoProE ontology

and constitute a predefined set. Therefore, the focus of this thesis is supervised learning.

We give the formal definition of supervised TC based on Manning et al. (2008):

Let D be the document space, d ∈ D be the description of a document, and

C = {c1, c2, ..., cj} a fixed set of categories. We are given a training set T of

labelled documents [d, c], where [d, c] ∈ D × C. We want to approximate the

mapping γ : D → C such that for each [d, c] ∈ T , γ(d) = c. The approximated

mapping γ̂ : D → C we call the classification function. In order to find the clas-

sification function, we are looking for a learning algorithm (or learning method)

Γ(T ), which will learn the classification function γ̂, Γ(T ) = γ̂.

Dozens of learning algorithms exist that can be employed for solving TC problems.

Nevertheless, these algorithms have wider application than solely TC. They can learn

functions that classify not only textual documents, but any kind of data, as long as it

is represented in the way that is suitable for the algorithm (this will be described in

more detail in Section 3.3). In this thesis, we focus on the following three commonly

used algorithms: Naive Bayes, K-Nearest Neighbour and Support Vector Machine. These
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algorithms will be will be discussed in Sections 3.4.1, 3.4.2 and 3.4.3, respectively.

3.2.1 Single-label vs multi-label classification

TC can be divided into two types of tasks, based on the relation between the categories.

According to Sebastiani (2005), we are dealing with a single-label categorisation task when

each document d belongs to exactly one category c. A special case of single-label task is

binary TC, where each document d is assigned one of two labels c or c (,,not c”) – the

document either belongs to category c or not. A multi-label task is a classification task

where each document d may be assigned to multiple categories ci (or no category). In

other words, in multi-label classification task the categories may overlap; it is also possible

that they do not cover the whole classification space. This thesis focuses on a multi-label

classification task. The business articles that DAVID system deals with can belong to

multiple categories, as they describe various events occurring in the market and actions

taken by the entrepreneurs.

Multi-label classification algorithms tend to be complex and costly. Furthermore,

they have the tendency to overfit the training data (see Section 3.3.2) (Koller & Sahami

1997). In practise it is common to take a simplified approach, which is training |C| binary
classifiers for the category set C. Each of the binary classifiers identifies data belonging

to one single category. The |C| binary classifiers act together as one multi-label classifier.

A similar technique has also been used in this thesis in the case of SVM classification.

Since the used SVM algorithm cannot operate on multi-labelled data, as many SVMs was

trained as there are categories. For each training run the document set was divided into

two subsets: the documents that belong to the category and the document that do not.

See Section 5.1 for a more detailed description.

3.2.2 Overlapping categories

It may happen that while training a single-label classifier the feature vectors for a number

of documents that belong to two different categories will have very similar values (i.e. they
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will partially overlap). Such a problem often occurs for example in character recognition,

as reported by Liu (2008). In such a case the documents will be highly probable to be

classified incorrectly, as the categories they belong to are characterised by almost identical

feature vectors. It is interesting to note that the described situation in fact corresponds

to a multi-label classification task. This shows that determining whether we are dealing

with a single or multi-label classification task is not always trivial, and our intuitive

understanding does not always correspond to the properties exposed by the extracted

features. In fact, the choice between single and multi-label classification is based on

the abstract background knowledge we have about the domain, and it only expresses our

desire for training a certain model type. Even though we may encounter category overlaps

in our single-label task, we may still prefer to perform a single-label classification, as such

may be more reasonable for our application domain.

In fact, there exist various ways of tackling this problem without applying multi-label

classification. One of them can be used when the categories form a hierarchy, i.e. each

category is either a subcategory or supercategory of another one. The classification can

then be performed separately at each category level, breaking the classification problem

into smaller chunks, and in this way utilising the hierarchy information. More about

hierarchical classification is explained in Section 3.5.1.

3.3 Document indexing

As mentioned in Section 3.2, we need a unite and unified representation of the content

of documents in order to be able to classify them. Document indexing is the process of

mapping the document content to a representation (i.e. a set of features), which can be

directly interpreted by a classification algorithm (Sebastiani 2005).

Following the Theodoridis & Koutroumbas (2008), classification algorithms operate

on data vectors, called feature vectors. Each feature vector corresponds to an example

which is to be classified, and represents a sequence of features. Each component of a
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feature vector corresponds to the level of presence of a certain feature in the example1.

The construction of the feature vector set is called document indexing in TC.

Figure 3.1: Document indexing

Figure 3.1 presents an overall document indexing process applied to an example doc-

ument. As shown in the figure, typical pre-processing pipeline in TC consists of text

pre-processing, document tokenisation, and token post-processing. This results in a bag-

of-words presentation (see Section3.3.1) and a feature vector representing the frequencies

of the tokens. The indexing method defines what the term is and how its weight is calcu-

1Note that all the feature vectors belonging to a particular training set are of the same length.
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lated. In the traditional TC approach terms are usually document words, or their stems

(morphological roots). They are obtained in the process of document tokenization, i.e.

chopping the text into smaller parts called tokens and applying a number of linguistic

routines (Manning et al. 2008, chapt. 2). Such processing may include word stemming,

letter case conversion, filtering out common, topic-neutral words – so-called stop words

(e.g. prepositions, articles), etc. Apart from utilising document words, it is also possible

to include semantically meaningful word phrases in the word set.

Another approach is to use so-called n-gram language model which treats strings of

arbitrary length n as tokens (Ifrim et al. 2008, Peng et al. 2003, Tenenboim et al. 2008).

Peng et al. (2003) presents a language-independent text classification by using n-grams

at a character level. Another author, Ifrim et al. (2008), notices that performing TC on

a word level is determined historically, due to efficiency issues, which today are in fact

solved to some degree. If a n-gram model was applied to the document presented in

Figure 3.1 instead of word tokenisation, the feature set would contain strings like: htc ,

tc n, ews:, ws: , s: s, : sh, sha, ..., where of n = 4 and denotes the space.

3.3.1 Terms and term weighting

Document indexing methods that are used in TC are usually borrowed from IR. According

to Sebastiani (2005), the features are the terms that occur in the document. A document

dj is represented as a vector of term weights ~dj =< ω1j, ω2j, ..., ω|τ |j >. τ = (t1, t2, ..., t|τ |)

is the set of all the terms occurring in at least k training documents and is called the dic-

tionary. 0 < ωkj < 1 corresponds to the importance of dictionary term tk in characterising

the semantics of document dj.

There exist a number of ways to calculate term weights. A binary, or Boolean approach

assigns to the weight ωkj value either 0 or 1, depending on whether term tk appeared in

document dj or not. The more sophisticated methods operate on so-called bag-of-words

(BOW) model (aka. unigram model (Ifrim et al. 2008)), which contains a set of document

terms together with the number of their occurrences (Manning et al. 2008, sec. 6.2). In

TC, the most frequently used term weighting method is the tf ∗ idf function. It measures
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the statistical frequency of the terms appearing in the document by combining term

frequency (TF) measure and inverse document frequency (IDF) measure components.

Term frequency tells about how often the term appears in a particular document, and

inverse document frequency is inversely proportional to how often a term appears in all

the documents. The values of tf ∗idf are normalised in order to acknowledge the difference

between document lengths.

3.3.2 Feature extraction and selection

The terms (features) are extracted collectively for the whole training set, in order for the

feature vector components to correspond to the same terms across all the documents. As

pointed out by Sebastiani (2005), this generates huge number of features, as not only each

document contains many words, but also the words vary between the documents. Training

a classifier on a data with numerous features carries the risk of overfitting, which will be

described in Section 3.3.2. Another issue connected with large feature set is the lower

classification efficiency. For the non-linear classifier training algorithms the computational

cost of such task can be prohibitive.

These problems lead to the need of reducing the feature set size, which is also re-

ferred to as dimensionality reduction. Sebastiani (2005) mentions two ways of reducing

the dimensionality of a feature set. One way is to apply a scoring function, which assigns

each feature a score, depending on how much it is correlated with each category, and

then choose only the features with highest scores. This is referred to as feature selec-

tion. Another method is feature extraction, which is constructing a smaller feature set

by generating ,,artificial” terms based on the initial feature set. Both feature selection

and feature extraction can limit the feature set size from thousands to hundreds elements.

Overfitting and overtraining

As explained by Theodoridis & Koutroumbas (2008), generalisation is the ability of a

classifier to classify correctly new unseen data based on the information that it has learnt
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from the training data set. Training data overfitting happens when the classifier tries to

adapt to particular details of the training data set instead of increasing its generalisation

ability. As a result, the classifier has high tendency to perform better on training data

set than on previously unseen data.

Overfitting may occur as a result of overtraining. Supplying a training set that has

too little data is going to produce classifiers with very low accuracy - simply because there

was not enough data to perform the correct generalisation. However, when training data

set is too large, and the opposite problem may occur, which is known as overtraining the

classifier. If the training set supplied is too numerous, the classifier learns to perfectly

classify the training data, but fails on new data.

Similarly as in case of data set size, another reason for overfitting is too large set of

features. In order to avoid overfitting, both the training data set and the feature set

should be kept not too small but also not too large. The optimal numbers can be found

empirically for a particular classification case, by testing different data sizes and evaluat-

ing corresponding classifiers. In this thesis such testing has been performed in order to

find the optimal token frequency thresholds. The tokens occurring less frequently than

the lower threshold and more often than the upper threshold were removed from the fea-

ture set.

In this section, we have described the standard process of preparing text documents

to be interpreted by a classification algorithm. The same routine applies both to training

set documents and the documents which should be classified (i.e. the test set). In the

following sections we describe the basic classification algorithms that are used in TC.

3.4 Training the classifier

In this section we present a number of classification algorithms that can be applied to

TC. We chose the following commonly used methods for this research:
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� Naive Bayes (Section 3.4.1) represents family of Bayesian classifiers, which rely on

probability calculations. In the same section we provide a concrete example of Naive

Bayes algorithm application.� K-nn rule (Section 3.4.2) is a straight-forward algorithm which performs learning

and document classification at the same time.� SVM algorithm (Section 3.4.3) is a member of the family of linear algorithms, which

by making a naive assumption produce yet low classification error rate.

Finally, in Section 3.5, we outline a number of improvements that can be applied

to traditional TC by including category hierarchy information, or even more complex

information about category structure, which can be described by an ontology.

3.4.1 Naive Bayes

Naive Bayes classification algorithm is one of the simplest but yet efficient ones. The fact

that it has linear time complexity has made it a popular classification method (Manning

et al. 2008). The basis for Naive Bayes algorithm is the Bayes’ theorem defining the

elementary statistics formula about conditional probability, explicated in Everitt (2002,

p. 33):

Let P (X) denote the probability of event X, and P (X|Y ) denote the proba-

bility of event X occurring under the condition that event Y has occurred. Then

the following is true:

P (Bj|A) =
P (A|Bj)P (Bj)

∑k

i=1 P (A|Bi)P (Bi)
(3.1)

provided events Bi are mutually exclusive (∀Bi,Bj
P (Bi∩Bj) = 0) and exhaustive

(
⋃

iBi = σ, where σ is any σ-algebra on Ω).

The term P (Bj) in Equation (3.1) is referred to as prior probability of the event Bj

occurring. In TC, the A event corresponds to the document being described by the

feature vector a, and the Bj events correspond to the document belonging to the category
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bj . The unknown P (Bj|A) is called the posterior probability of event Bj occurring given

the information that event A occurred. The P (A|Bj) term is often referred to as the

likelihood, which can be described as the probability of event A occurring under the

condition that event Bj has occurred. The
∑k

i=1 P (A|Bi)P (Bi) in our case is equal to

P (A) and it corresponds the overall probability of event A occurring.

Bayes formula lets us utilise additional information we have about an event while

calculating its probability. When we know the conditions under which the event occurred,

and the probability of such event occurring under such conditions, we can approximate

the probability of the event better.

Naive Bayes in TC

As described by Manning et al. (2008, sec. 13.2), in case of TC we start with document

d which is represented by feature vector t =< t1, t2, ..., tdim(t) >. Based on our training

data set, we want to calculate the probability that document d belongs to category c. The

basic rule used by naive Bayes classifier is derived from the Bayes formula:

P (c|d) = P (c)P (t|c)
P (t)

∝ P (c)P (t|c) = P (c)
∏

i

P (ti|c) (3.2)

P (c|d) ∝ P (c)
∏

i

P (ti|c) (3.3)

where P (c|d) stands for posterior probability of document d belonging to category c,

P (c) is the prior probability any document belonging to this category and P (t|c) is the

likelihood of a document represented by a feature vector t occurring in category c.

Components P (c) and P (t|c) are calculated based on the feature vectors of the train-

ing documents. Component P (t), which is the probability of any document being charac-

terised by vector t, can be omitted as it does not depend on the category. Another simpli-

fication of the initial formula is achieved by replacing the P (t|c) element with
∏

i P (ti|c).
P (ti|c) denotes the likelihood of a term ti occurring in a document of category c.

It is important to note that d acts here as a multivariate random variable and is
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represented by a sequence of single random variables, and each of them is corresponding to

one of terms ti that occur in the document. Therefore, the substitution defined in Equation

(3.2), we assume that the multivariate random variable components are independent2,

which implies that the probability of a word occurring in a document is independent of

its context and position in the text (Næss 2007). This assumption is obviously not true

for text data, and is the reason of the algorithm to be called ,,naive”. However, naive

Bayes classifiers perform surprisingly well in practice despite this simplifying assumption.

Determining the category

The simplest method to determine the category c of document d is to choose the one for

which we obtain the highest posterior probability (so-called maximum a posteriori (MAP)

category). In order to do so, we compare the P (c|d) values obtained for each category c.

This can be expressed as (Manning et al. 2008, sec. 13.2):

cmap = argmax
c

P (c|d) = argmax
c

P (c)
∏

i

P (ti|c) (3.4)

Because all the probability values calculated in Naive Bayes formulae are in range

< 0, 1 >, the important issue to take into account while multiplying them is the risk of

floating point underflow 3. To address the problem a logarithm function log() is usually

applied to both sides of the (3.3) equation4, resulting in:

log(P (c|d)) ∝ log(P (c)
∏

i

P (ti|c)) = log(P (c)) +
∑

i

log(P (ti|c)) (3.5)

log(P (c|d)) ∝ log(P (c)) +
∑

i

log(P (ti|c)) (3.6)

2Two random variables A,B are independent iff P (A ∩B) = P (A)P (B).
3Underflow occurs when a very small number fails to be represented in computer memory; this can

occur when performing calculations on numbers that are very close to 0 – in such case the result may be

falsely 0.
4According to the logarithm function property log(ab) = log(a) + log(b).
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The proportional relation has been preserved as logarithm function is monotonically

increasing5 (Manning et al. 2008, sec. 13.3), therefore we can write:

cmap = argmax
c

log(P (c|d)) = argmax
c

log(P (c)) +
∑

i

log(P (ti|c)) (3.7)

cmap = argmax
c

log(P (c)) +
∑

i

log(P (ti|c)) (3.8)

, which is the final formula used by a basic naive Bayes classifier for finding the cmap

category of a document represented by t =< t1, t2, ..., tdim(t) > feature vector. The prob-

abilities are calculated based on the training set. The interpretation of Equation (3.8)

can be intuitively described in the following simple way. Each of the P (ti|c) components

express the relative occurrence frequency of each term in other documents of a particular

category. The more frequent the terms are in that category, the more likely it is that the

document belongs there. Similarly, for the P (c) component, the more often the category

occurs in the training set, the more probable the document will be to be assigned to that

category.

It is quite possible that while classifying a new document one of its terms will not occur

in the training set at all. In such a case the P (ti|c) result will be 0, which together with

applying the Equation (3.4) will result in the posterior probability equal to 0, regardless

of other term frequencies (as we multiply the conditional probabilities for all terms).

Such situation is, of course, undesirable. The solution that is usually applied is Laplace

smoothing, which adds one to every count:

P (ti|c) =
Nti,c + 1

∑

ti
(Nti,c + 1)

=
Nti,c + 1

∑

ti
Nti,c + dim(t)

(3.9)

Let us consider an example of applying the Naive Bayes algorithm in its simplest form.

Let’s assume that we are given the following set of categories and amounts of training

5It is such function f which for any x1 < x2 satisfies the inequality f(x1) < f(x2).
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documents belonging to them:

1. Cooking (C1) – four documents (d1, d2, d3, d4)

2. Gardening (C2) – three documents (d5, d6, d7)

3. Arts (C3) – two documents (d8, d9)

At this point, we are able to calculate the probabilities of each category in the data

set (the more documents there are in a category, the more probable it is to occur):

1. P (C1) =
4

9

2. P (C2) =
3

9

3. P (C3) =
2

9

We have also stored a list of all the frequent tokens appearing across the training set,

as well as for each of the training documents we have stored the corresponding feature

vector representing occurrences of each word from the list. Table 3.1 shows the resulting

BOW model.

Table 3.1: BOW model of the training data set

word
Occurences

d1 d2 d3 d4 C1 d5 d6 d7 C2 d8 d9 C3

cook (t1) 3 2 4 5 14 1 1 1 3 2 1 3

house (t2) 2 3 1 1 7 3 2 1 6 1 1 2

garden (t3) 1 1 1 1 4 3 5 4 12 1 2 3
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Imagine we have a new document dn that needs to be classified to one of these cate-

gories. We tokenize this document and store the intersection of the list of its tokens and

the training BOW list. The word list of the new document is presented in Table 3.2.

Table 3.2: BOW model of the training data set

word

cook (t1)

garden (t3)

To classify the probabilities of document d belonging to each of the categories C1, C2,

and C3, we calculate the following:

1. P (C1|d) ∝ P (C1)
∏

i P (ti|C1) = P (C1)P (t1|C1)P (t2|C1)P (t3|C1) =
4

9
· 14
24

· 7

24
· 4

24
=

1456

124416
= 0, 0117

2. P (C2|d) ∝ P (C2)
∏

i P (ti|C2) = P (C2)P (t1|C2)P (t2|C2)P (t3|C2) =
3

9
· 3

21
· 6

21
· 12
21

=

648

83349
= 0, 008

3. P (C3|d) ∝ P (C3)
∏

i P (ti|C3) = P (C3)P (t1|C3)P (t2|C3)P (t3|C3) =
2

9
· 3
8
· 2
8
· 3
8

=

36

4608
= 0, 009

Because the probability P (C1|d) scored the highest value, we can assume that the

document d belongs to category C1. Even though document contains words from both C1

and C3, C1 appeared more frequently in training document set. This is the reason why

this category is chosen as the most probable one for the document d.

3.4.2 K-Nearest Neighbour

A straight-forward and simple K-nn rule has been proven to yield fairly good results when

applied to TC. Let us assume that we have a set of N training vectors extracted from the
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document set. Then, according to Theodoridis & Koutroumbas (2008), we perform the

following steps. Given feature vector x and distance measure d(xi, xj):

1. From the training vector set, choose k vectors that are closest to the vector x in

respect to the distance measure d. K should be odd for two class problem, and in

case of multi-class problem it should not be a multiplier of the number of classes

M .

2. Assign the vector x to a category to which the majority of chosen k vectors belong

to.

The most frequently used distance metrics in K-nn are the Euclidean and Mahalanobis

distance. Because in TC our feature vectors consist of numbers denoting the term fre-

quencies, it is possible to treat them as numeric vectors.

Figure 3.2: K-Nearest Neighbour
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Figure 3.2 depicts the algorithm at the stage when a new element (the green circle) is

to be classified. If k = 3, the element would be classified as a red triangle. In contrast, if

k = 5 was chosen, the new element would be classified as a blue square.

Error estimation

Despite it simplicity, the K-nn algorithm exhibits good practical performance. In fact, it

can be proved that its classification error probability in case of a two class problem:

PB ≤ PkNN ≤ 1√
ke

when N → ∞. PB is the optimal error of Naive Bayes classifier. For small Bayesian

errors the following approximations hold:

PNN ≈ 2PB

P3NN ≈ PB + 3P 2
B

which is reflected by the fact that k-NN classifier tends to Bayes optimal classifier when

k increases (Theodoridis & Koutroumbas 2008).

According to Theodoridis & Koutroumbas (2008), K-nn algorithm performs relatively

well especially if a large number of training vectors is available. However, in case of a small

training data set its performance can drop dramatically. Another drawback is the need

of calculating the distance between vectors, which can be computationally demanding in

case of high vector space dimensionality (which is exactly the case of TC).

3.4.3 Support Vector Machine

So far we have been focusing on utilising probability theory in design of the classifier.

Now we introduce one of the algorithms belonging to the family of linear classifiers.

SVMs are among the most commonly used methods in TC and in ML in general. As

explained by Theodoridis & Koutroumbas (2008), linear classifiers are a subgroup of
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classifiers where the discriminant functions (see Section 3.4.3) are linear, and therefore

their decision surfaces are hyperplanes. A hyperplane a plane in 3-dimensional space

generalised into n dimensions, where one coordinate is fixed. Discriminant functions used

by a number of Naive Bayes classifiers could also be linear, however, in case of linear

classifiers the linearity is the basic classifier property on which deriving the classifier

building algorithm is based. The main advantage of linear classifiers is their simplicity

and computational attractiveness. The SVM algorithm has been originally proposed by

Cortes & Vapnik (1995). Its key feature among other linear classifiers is that it attempts

to find the hyperplane which has the greatest generalisation potential, i.e. the one that

is the most probable to classify future data correctly.

Discriminant functions and decision surfaces

Let us recall the transformations we made in Section 3.4.1, when describing the Naive

Bayes algorithm. In Equations (3.5) and (3.6) of we replaced the P (c|d) function by

log(P (c|d)) function. We call the log(P (c|d)) function a discriminant function. In fact,

according to Theodoridis & Koutroumbas (2008), any function g(d) = f(P (c|d)) where
f is a monotonically increasing function is a discriminant function. Discriminant func-

tions are often used instead of working on the probabilities directly, as they can be more

convenient to use from mathematical point of view.

Each discriminant function describes a decision surface. We expressed in Equation

(3.4) the statement that the category should be determined by choosing the one that

has the maximum value of P (c|d). If we interpret a category as s sub-region of the

multidimensional feature space, then for each two contiguous sub-regions ci and cj there

exists a decision surface gij that separates these two regions.

The surface is defined by the following equation: P (ci|d)−P (cj |d) = 0. For documents

belonging to one of the regions the expression P (ci|d)− P (cj|d) will be negative and for

the other region it will be positive. If we apply a discriminant function g to our probability

measures, the decision surface can be expressed as: gij(d) = gi(d)− gj(d) = 0. In case of

linear classifiers the decision surfaces are hyperplanes. Because of that, we can write the
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equation of gij(d) as:

gij(x) = ωTx+ ω0 = 0 (3.10)

where ω = [ω1, ω2, ..., ωt]
T is called weight vector, and ω0 is known as threshold. Note

that the weight vector is orthogonal to the decision hyperplane, and |g(x)| defines the dis-
tance of point x from the hyperplane. For a number of examples g(x) will be positive, and

for others negative – this provides a way of classifying the examples into two category sets.

Because the decision surface is a hyperplane, we need to assume that the data is

linearly separable. We will design the classifier for this simple case, and then extend its

capabilities for the more general case, by finding an optimal classifier.

Linearly separable classes

For a linearly separable data set there exist a number of hyperplanes, each of which define

a different classifier that will classify the data correctly. A geometrical illustration of this

fact can be seen in Figure 3.3.

Figure 3.3: An example of two class categorisation problem and two possible classifiers

(Theodoridis & Koutroumbas 2008)
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As mentioned in the introduction of Section 3.4.3, the SVM algorithm attempts to

find the hyperplane of the greatest generalisation potential. Looking at the simple two

dimensional case illustration in Figure 3.3, it can be noticed that full line will be a better

classifier than the dotted line. The most suitable hyperplane corresponds to a line that

lies exactly in the middle of the gap between two point groups.

The distance between the hyperplane and the closest point from the point group

representing a category is called the margin between the hyperplane and the category.

SVM algorithm finds such a hyperplane that maximises the margin between it and both

categories. Applying the general formula for distance between a point and a hyperplane,

the margin between the category ω and the hyperplane g(x) can be defined as:

z =
|g(x)|
||ω||

We also define the class indicators, denoted by yi:

yi =







1, xi ∈ ω1

−1, xi ∈ ω2

If we now apply a number of optimisation theory and convex programming methods

we end up with the following equation describing components of the optimal ω of the

separating hyperplane:

ω =

Ns
∑

i=1

λiyixi (3.11)

The Equation (3.11) describes support vectors, which are training vectors that are crit-

ical for finding the optimal hyperplane. The hyperplane can be found by constructing any
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linear combination of Ns ≤ N support vectors where all λi 6= 0. The optimal hyperplane

is called the support vector machine.

λ = [λ1, λ2, ..., λN ] in the Equation (3.11) is the vector of Lagrangian multipliers λi,

which are found by maximising the following function:

max
λ

(

N
∑

i=1

λi −
1

2

∑

ij

λiλjyix
T
i xj

)

subject to
N
∑

i=1

λiyi = 0

λ ≥ 0

The ω0 coefficient can be obtained implicitly from the following condition:

λi[yi(ω
Txi + ω0)− 1] = 0, i = 1, 2, ..., N

There can be several possible λi combinations satisfying the above equations, however

all of them will represent the same hyperplane g(x).

Nonseparable classes

When data is not linearly separable it is not possible to find a hyperplane that will

correctly divide the space into two distinct category data sets. Each hyperplane will

classify a number of points incorrectly. We express this number of incorrectly classified

points by introducing additional factors in our equation. Let us note that for x being a

support vector, the following condition holds:

g(x) = ωTx+ ω0 = ±1

Therefore, for all the vectors lying inside the band the following is true:
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−1 < yi[ω
Tx+ ω0] < 1

We now introduce slack variables ξi in the following way.

yi[ω
Tx+ ω0] ≤ 1− ξi

For ξ values that are> 1 the equation describes the misclassified vectors. For 0 < ξ ≤ 1

it describes the vectors that are classified correctly. ξ = 0 corresponds to correctly clas-

sified vectors that lie outside the band.

In case of nonseparable classes, our goal is not only to maximise the margin but also to

minimise the number of ξi < 0. After a number of transformations (refer to Theodoridis

& Koutroumbas (2008)), we obtain the following set of equations, differing from the

separable case ones only by the C coefficient.

max
λ

(

N
∑

i=1

λi −
1

2

∑

ij

λiλjyix
T
i xj

)

subject to
N
∑

i=1

λiyi = 0

0 ≤ λ ≤ C

where C is a constant that controls the relative influence of these two factors (maximising

the margin and minimising the number of vectors inside the band). The linearly separable

case corresponds to C → ∞.

Multiclass case

The above equations can be applied in case of two class classification problem. What

happens when we deal with multiple classes at the same time? According to Theodoridis

& Koutroumbas (2008), there is a number of approaches which constitute a workaround

to that problem.
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� one-against-all: M binary classifiers are trained; for each of such classifiers we con-

sider one category as one set, and all other categories as second set; the problem in

the case of this approach may be that the categories are not balanced, especially in

case of big data sets� one-against-one: M(M − 1)/2 binary classifiers are trained, one per every category

pair; the disadvantage is the big amount of classifiers that needs to be trained

The main disadvantage of SVM classification algorithm is its computational complex-

ity (both at training and test stage), which reaches O(n3) in case of naive implementation.

Various attempts at optimising this number have been made, however they did not make

the maximum complexity drop below O(n2) (Theodoridis & Koutroumbas 2008).

3.5 Utilising category structure

In this section, we present information about how category structure information can

be utilised in the process of TC. We describe hierarchical classification that uses category

hierarchy, and then move on to more complex ontology-assisted solutions.

3.5.1 Hierarchical classification

As opposed to flat categorisation, we are dealing with hierarchical categorisation when

the categorisation utilises some particular category hierarchy. Sun & Lim (2001) gives

good overview of different variants of hierarchical TC. According to these authors, the

two main types of hierarchical category structure is category tree and virtual category tree.

The difference between these two is that in the first case we assign the documents to one

of all the categories occurring in the tree, while in the latter case every document can

only be assigned to one of leaf nodes of the category tree.

As illustrated by Sun & Lim (2001), Tenenboim et al. (2008), Koller & Sahami (1997),

in case of hierarchical classification a separate classifier is trained at each level of the

category hierarchy. Later, while classifying a document we start from the category tree

39



root and move deeper in the direction determined by the category assigned at each level.

Depending on whether we use category trees, or virtual category trees, we return the

last certain category before the classification confidence drops below certain threshold, or

continue until one of the leaf categories is reached.

Figure 3.4: Example of a category tree for hierarchical classification

Figure 3.4 presents an example category tree. The green nodes are the leaf nodes, to

which the document to be classified is going to be assigned. Each yellow node corresponds

to a classifier that distinguishes between its child categories. We would therefore have to

train four different classifiers in order to perform classification for the category hierarchy

presented in Figure 3.4. Depending on whether the inner nodes can also be considered as

final categories, the tree could serve as either category tree or virtual category tree.

Using such an approach breaks down the classification problem into smaller chunks,

which means that at each level a different set of features may be considered. This is

potentially beneficial for the classification, as for different sub-categories different features
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may prove to be relevant. A flat classifier, in contrast, tries to extract features collectively

for all the categories, which may limit its capabilities (Sun & Lim 2001). The reduction

of the feature space dimensionality at each level potentially improves the accuracy of

hierarchical classification and reduces the risk of overfitting (Koller & Sahami 1997).

Hierarchical classification has another advantage over the other methods, namely that

reducing the feature space size decreases the time needed for training and applying a

classifier. Moreover, at least in theory, this can further increase the accuracy, as due to

reduced feature space we can afford using more costly and more accurate classification

algorithms (Koller & Sahami 1997).

This method also has its flaws, however. Multiple classifiers require larger amount

of training data for accomplishing results that could be achieved in flat classification

with less training data. Also the lower-level category assignment options depend on

the of the top-level assignment. Moreover, a misclassification at an upper level implies

incorrect assignment to at the lower level, therefore the accuracy may drop significantly

if inadequate amount of training data is available (Sun & Lim 2001).

3.5.2 Ontology-aided Text Classification

In Section 2.1.2 we explained the concept of ontologies and we described an existing

ontology. Ontologies contain information about the target domain. In TC this information

can be used as a context for categorisation. The complexity of ontologies makes it difficult

to design such a TC method based on them that would utilise an arbitrary ontology as a

whole. Hence, when applying ontologies in TC, a subset of the ontology structure and/or

some part of the informaton stored in the ontology is considered. In most cases, the

ontology as a whole would be too complex and would contain too much information for

being practical for TC.

If we establish a relation between ontology classes and TC category set, we can extract

the information that describes the structure of the categories. In the simplest case such

a structure forms a hierarchy, in more complex cases we can represent it as a graph. In
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hierarchy case, we can extract the category taxonomy directly from the ontology. Such

an approach has been presented by Tenenboim et al. (2008), where the authors used

news taxonomy for applying hierarchical classification of news documents arriving to the

ePaper mobile news reading service. Seddiqui & Aono (2008) also made use of ontology

class taxonomy, but in a slightly more sophisticated way. Their task was to classify patent

document abstracts using the International Patent Classification (IPC) ontology. Besides

extracting the category taxonomy from the ontology, they generate a taxonomy of BOW

for the training set in the following way:

1. For each training document its BOW is extracted, and then the relevance of each

word in respect to each category is captured.

2. Each word is placed in the node of the category hierarchy that contains the category

the word was the most relevant to. In this way a word hierarchy is being formed.

3. Finally, a BOW taxonomy is created, with topology reflecting the topology of the

hierarchy of categories.

For a new document to be classified, its BOW presentation is matched with the BOW

taxonomy. The aim is to find the most suitable place for it. Because the nodes in the

BOW taxonomy correspond to category hierarchy nodes, such assignment determines a

category to which the new document belongs to. In this approach it is important to note

the application domain of the method. Patent documents often contain new terms and

their authors try to use attractive and novel vocabulary. Therefore, traditional methods

based on BOW only may not be the most favourable choice.
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Figure 3.5: Extracting BOW taxonomy from category taxonomy and document BOW

An illustration of this three-step process can be viewed in Figure 3.5. Each word of the

BOW model is mapped to a category and then placed in an appropriate place in the BOW

taxonomy. Note that relation between the words in the BOW taxonomy is not based on

the word meaning but the relevance to a category in the category taxonomy. All these

small taxonomies were then combined into one BOW taxonomy using statistical methods.

A more sophisticated solution was presented by Janik & Kochut (2008). The au-

thors describe a novel fully ontology-based TC method, which does not require a training

set. They utilise ontology class structure as an arbitrary graph that describes category

relations. Then, for each document a semantic graph is created. The semantic graph

represents the entities referenced the document: names, places and objects, and the rela-

tionships between them. Next, the semantic graph is compared with the graph describing

the category structure extracted from the ontology. By finding the best fit for the graph

inside the category structure they locate the most suitable category for a document. This

approach was tested on a RDF ontology constructed from the full English version of

Wikipedia (Wikipedia website 2012). The test documents consisted of CNN news articles,

which were mapped to Wikipedia articles. The method showed good accuracy of 80%,

43



which was 7% better than the Naive Bayes classifier trained on Wikipedia articles, and

14% worse than NB classifier trained on CNN articles.

It is arguable whether ontologies can in fact provide means of TC that will overperform

the traditional TC. Nevertheless, the advantage in utilising an ontology is that the it can

serve as an user-adjusted input to the classifier training process. This is in particular rel-

evant for interactive information systems, as the user can modify the category hierarchy,

adjusting it to the current data structure and information needs, as presented by Seddiqui

& Aono (2008). A drawback resulting from the same fact as the above advantage is that

in case the ontology does not reflect the document structure well, classification accuracy

will be significantly decreased.

A method for answering the opposite question, namely how well does the ontology

match the described data, is presented by Netzer et al. (2009). There, similar approach is

taken in order to evaluate the accuracy of the ontology structure. First, a set of documents

is classified in a traditional way and then by the same documents are categorised using

the taxonomy. Comparing the convergence of both result sets delivers an ontology quality

measure.

3.6 Classifier evaluation

According to Sebastiani (2005), there are three factors that constitute the classifier qual-

ity. The training efficiency corresponds to the average time that is needed to build the

classifier. Classification efficiency is the average time used for classifying the document.

Finally, the classification effectiveness is the accuracy of classification results. We will

describe these measures more in detail in the following sections.
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3.6.1 Effectiveness

When talking about classifier effectiveness, or in other words classification accuracy, we

need to introduce some standard terminology. The training set is the set of pre-classfied

documents on which the learner builds the classifier. Each document from this set has

the correct category assigned, and this information is used by the learner. The test set is

the set of documents which the classifier will classify in order to evaluate the classification

accuracy (Sebastiani 2005). The test documents also have correct categories assigned but

this information is not visible to the classifier. By comparing the categories assigned by

the classifier and the categories that the test documents in fact belong to it is possible to

draw conclusions about classification accuracy.

For a category ci we say that a classified document is a:� true positive (TP) if it has been correctly classified as belonging to a category it in

fact belongs to� true negative (TN) if that has been correctly classified as not belonging to a category� false positive (FP) if it has been incorrectly assigned to a category to which is does

not belong to� false negative (FN) if it has not been recognised as belonging to the category that

it in fact belongs to

We also define precision and recall accuracy measures. According to Sebastiani (2005),

precision is ,,the percentage of documents deemed to belong to ci that in fact belong to

it”:

πi =
TPi

TPi + FPi
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In other words, precision is the percentage of classified documents that are relevant to

category. Recall is ,,the percentage of documents belonging to ci that are in fact deemed

to belong to it”:

ρi =
TPi

TPi + FNi

Recall is the percentage of documents relevant to a category that were in fact classified

as belonging to it.

Figure 3.6: Precision and recall

Figure 3.6 shows graphical interpretation of precision and recall measures. Red regions

represent incorrectly classified examples. On the left they are FNs and on the right they

are FPs. Precision is the proportion of the left green area to the area of the whole oval

(horizontal arrow), and recall is the proportion of the left green area to the whole left

region (diagonal arrow).

In case of multi-label TC, precision and recall values are calculated for each of the cate-

gories separately. In order to provide an overall accuracy result, a certain way of averaging

these values must be adopted. In TC there are two main types of accuracy averaging, as

stated by Sebastiani (2005):� microaveraging - when ,,categories count proportionally to the number of their pos-

itive training examples”, so the focus is on the examples
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� macroaveraging - when ,,all categories count the same”, so the focus is on categories

Table 3.3: Formulae for calculating macro- and microaverages (Sebastiani 2005)

Microaveraging Macroaveraging

Precision (π) π =
∑

i TPi∑
i TPi+FPi

π =
∑

i πi

|C|
=

∑
i

TPi
TPi+FPi

|C|

Recall (ρ) ρ =
∑

i TPi∑
i TPi+FNi

ρ =
∑

i ρi
|C|

=
∑

i

TPi
TPi+FNi

|C|

Table 3.3 presents the exact formulae for calculating macro- and microaverages for

precision and recall values. The first accuracy measure favours classifiers that perform well

mainly on heavily populated categories, while the second measure emphasises classifiers

that perform well also on categories that have less documents. The choice between the

two measures depends on the concrete evaluation case. Macroaveraging, however, is often

considered as the more informative measure.

We introduced above the ways of calculating the overall precision and recall, which is

needed in case of multi-label classification. It makes sense to ask what should be the

single accuracy measure that characterises a classifier. Because it is possible to tune

many classifiers to perform with better precision at the cost of recall effectiveness, and

vice versa, both of these measures need to be taken into account. According to Sebastiani

(2005), the most common way of calculating the overall accuracy measure is using the

following formula: Fβ = (β2+1)πρ
β2π+ρ

, 0 ≤ β ≤ ∞. Usually β = 1, and then the formula

becomes the harmonic mean of π and ρ values: F1 = 2πρ
π+ρ

. Making the β coefficient

bigger than 1 would emphasise the importance of recall, while taking 0 ≤ β < 1 would

correspond to paying more attention to precision. It is therefore possible to adjust the

accuracy measure to the particular classification case we are dealing with, depending on

which behaviour of the classifier is more desirable.

3.6.2 Efficiency

According to Sebastiani (2005), we can speak of two kinds of classifier efficiency. Train-

ing efficiency of a classification method is the average time required to build a classifier.

47



Classification efficiency is the average time needed for classifying a new document. The

importance of these measures depends on the area of application. For example in case

when the application should maintain a real-time interaction with the user, long classifi-

cation times are not acceptable. On the other hand, if the training document database is

not going to be updated frequently, training efficiency is usually not an important factor.

For example, even though SVM has a much lower training efficiency than Naive Bayes

or K-nn (Manning et al. 2008, Sec. 13.6), it is used more often than the faster but less

accurate Naive Bayes algorithm – because in most applications training time does not

play such a big role.

Efficiency is an important measure of the quality of a particular classifier. Efficiency

of a classifier depends on a number of volatile parameters, such as software platform

and hardware configuration of a particular machine. That is why it is not very reliable

for evaluation and comparison between different classification methods run on different

machines. It can however give some indications. Nevertheless, currently the hardware

capabilities are constantly increasing, which results in classifier efficiency being more and

more satisfactory for nowadays classification software.

3.7 Summary

ML-based TC methods that are widely employed nowadays seem to have many limitations.

Preparing the training set, based on which the text classifier will be trained upfront, is

a significant amount of work. Moreover, in some application domains such a training

set is not available, for example in case of patent classification (Seddiqui & Aono 2008).

Another shortcoming of the traditional TC approach is the fact that the document content

is analysed in a BOW manner, which means that there is no actual understanding of the

meaning of the document content. In fact, the feature extraction step becomes crucial

for the final classification accuracy. Once good features are selected, any reasonable

classification algorithm will display a reasonable effectiveness (Peng et al. 2003, Scott &

Matwin 1999).
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Despite all these shortcomings, today’s TC methods display high robustness and are

successfully and broadly applied across different domains. There have been many at-

tempts made to perform the classification in more semantics-aware manner, e.g. based

on relations between words or using ontologies (Tenenboim et al. 2008, Janik & Kochut

2008, Seddiqui & Aono 2008), however they perform better than traditional TC only in

a number of specific domains.

One of the reasons of such superiority of traditional TC methods could be the note

made by Janik & Kochut (2008), who suggested that the objective document category

resulting purely from its text semantics does not always correspond to the subjective

category that an average reader would assign to the document. The authors give as an

example an article about ,,cardiovascular health problems of a certain politician”. Ac-

cording to the content of the article it would be classified as belonging to health category,

but in the news website it would more likely appear under politics category. That could

be the main reason why classifying methods that use a training set are performing better

than semantically based methods in real-life domains. The conclusion about document

category is drawn not by reasoning, but just by analysing the previous results.
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4. TCModule

In this chapter we present the overview of the GUI and the implementation of TCModule.

The data model used by the module is described in Section 4.3. In Section 4.4 we describe

the design and development of the underlying RapidMiner processes, which form the core

of classifier training and evaluation in TCModule. Next, we talk about the user interface

and present a brief code overview (Section 4.5). Finally, in Section 4.8 we present the

document parser, a tool that parses a file structure and automatically fills the database

with the documents and information about their category.

4.1 Introduction

Text Classification Module (TCModule) is a stand-alone application that is able to train

a text classifier on a set of documents and then classify new documents. It is designed to

work with a database which is the document source. At the same time the module can

be easily integrated into the DAVID system. In the following sections we describe the

tools and libraries used, the data model represented by the database, the user interface,

the connection to RapidMiner and the implementation details.

4.2 Tools and libraries used

TCModule is written in Java and is compiled using version 1.6 of JDK. It uses the standard

Java Swing library for graphical user interface (GUI). The tools used for development

were:
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� NetBeans IDE1 - an open source Java development environment that includes a

visual GUI builder,� PostgreSQL Admin Tools2 - PostgreSQL visual database management software,� Protégé3 - an open source ontology editor and knowledge-base framework.

Figure 4.1: The overall architecture of TCModule

TCModule utilizes a relational database introduced in Section 4.3 for storing training

and test documents. TCModule is built on top of RapidMiner 5 Java API (RapidMiner 5

API Documentation 2009) that was introduced in Section 2.2. The database system used

for testing the application was PostgreSQL (PostreSQL offical web site 2012). PostgreSQL

is an open-source, object-relational database management system. Figure 4.1 shows the

overall architecture of the system.

1www.netbeans.org
2www.postgresql.org
3http://protege.stanford.edu/
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Figure 4.2: Document fetching done by the parser

Apart from the code responsible for training the model and classifying the data, TC-

Module comes with a parser which automatically reads files that contain text documents,

as well as the csv files that contain the document-category relation information. The

process of document fetching is presented in Figure 4.2.

4.3 Data model

The database model is presented in Figure 4.3. Each document has a property content,

which stores the document raw text, and an id, which is unique for each document. The

category ’s name property is unique for each category. The name_alias property stores an

abbreviated version of category name.

Because not only one category can contain many documents, but also one document

can belong to more than one category, we defined the document_to_category table.

This table stores ids of corresponding documents and categories. The <document_id,

category_id> pairs must be unique in the table.

There are three special columns in the document_to_category relation: numeric at-
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Figure 4.3: Database schema for storing the documents and their categories

tributes weight and weight_count, as well as the boolean attribute max_weight. The

weight column defines the level of relevance of a document to the relevant category. Next,

max_count specifies how many document-category relationships there are with the same

weight. Finally, the max_weight attribute determines whether the given record defines

the category with the highest weight for the document, i.e. it defines if the current cate-

gory is considered as the most probable category for the document that is being classified.

The max_weight attribute is true only for the records whose max_count value is equal to

one. The information stored in these three attributes can be used for constructing SQL

queries for retrieving the documents. See Section 4.8 for more information about the logic

that was applied in TCModule.

4.4 Underlying RapidMiner processes

TCModule is a wrapper for RapidMiner processes that were developed by using the Rapid-

Miner GUI. TCModule is needed in order to be able to utilize the RapidMiner TC pipeline

from the DAVID system. The RapidMiner processes perform the actual model training

and document classification. They were created in RapidMiner and exported to an xml

file. They can also be run in RapidMiner, independently from TCModule.
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Figure 4.4: TCModule use cases

In the Figure 4.4 are presented the three use cases corresponding to the following three

processes:� Train model, for training the model,� Apply model, for applying the model to a single document entered manually by the

user,� Apply model multiple, for applying the model to a batch of documents fetched from

database.

RapidMiner’smacro mechanism is utilised in order to provide means of communication

between the processes and the wrapping Java application. In each RapidMiner process it

is possible to define a macro together with its corresponding value, and later refer to this

value only the name of the macro. All of the RapidMiner processes included in TCModule

contain a Set Parameters operator, which allows to define a number of macros and their

values. The remaining operators refer to these values.

54



In each of the processes, the Set Parameters operator is disabled by default. This is

done because the macro values will be input from TCModule at run-time. However, if

the user wishes to run the processes directly from RapidMiner, this operator should be

enabled and appropriate macro values supplied manually.

We will now describe in detail each of the three processes that train the model and

classify the documents. The following operator naming convention is used throughout

the processes: the operators whose names start with ’>’ character contain nested sub-

processes.

4.4.1 Train model process

This process trains a TC model based on documents fetched from the database. Apart

from training the model, it performs a number of additional computations, which is

predicting expected model accuracy and extracting information about categories with

respect to the number of documents that they contain.

Figure 4.5: Overall view of Train model process
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The Train model process is depicted in Figure 4.5. Let us describe the data flow. As

it can be seen in the figure, the first operator is Set Parameters operator, which allows

to specify the classification parameters 4.

Figure 4.6: Setting the properties for Train model process

In Figure 4.6 is depicted the parameters setting view for the Set Parameters operator.

As explained in Section 4.5, parameter output_filepath specifies the file path where the

model files will be saved, and input_query_filepath specifies the file from which the

SQL query that fetches the training documents will be read. The other parameters will

be introduced as needed.� >Get Documents operator is responsible for fetching the documents from the database

and for extracting the features from the input documents. It also prunes the doc-

uments and words that do not satisfy threshold criteria defined by Set Parameters

operator.

4The Set Parameters operator in the Figure 4.13 is disabled. This is because the process is prepared

to be run by the TCModule application.
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� Multiply operator copies the data, so that the same data can be further used in

multiple places. The data is copied by reference, which makes the operation cheaper

and more robust 5.� Write wordlist operator saves the extracted features as a word list, in an XML file 6.

The word list that specifies the feature set of the training data that has been used

to train the model is needed when applying the model to new unseen data. This is

due to the fact that the training and new document data should have identical set

of attributes.� >Get data statistics operator aggregates information about documents and their

categories, creating a list of category-number of document entries. This list is then

delivered both to the process output source and saved in the file

output_filepath\statistics.xml.� >Train and evaluate the model operator performs the main goal of the process. It

trains the classification model and calculates expected model accuracy. The results

are then delivered both to the process output source and saved on disk in zipped

XML format, in the files output_filepath\model.zip

and output_filepath\performance.zip.

Get Documents and Train and evaluate the model operators

We will now take a closer look at the two key operators: >Get Documents and >Train

and evaluate the model.

5At the same time, however, the data should not be modified in more than one place, as the modifi-

cations of one copy influence all the other copies.
6The file is saved under output_filepath\wordlist.xml file path.
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Figure 4.7: The sub-process of >Get Documents operator

Figure 4.7 shows the inner sub-process of >Get Documents operator. It consists of

the following elements:� Read documents fetches the data from database by executing the query from file

specified by the input_query_filepath macro parameter.� Prune below threshold removes the documents that belong to categories that have

number of documents less that the value defined by min_cat_count macro param-

eter.� Set Id & Label operator defines the id and label roles for id and category attributes,

respectively.� Clone data performs deep copy of example set, so that later it can be safely used

both for training the model and model cross validation.� >Extract features operator performs the actual feature extraction. Figure 4.8 illus-

trates the sub-process of this operator.
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Figure 4.8: The sub-process of >Extract features operator

In Figure 4.8 is presented the sub-process of >Extract features operator. Nominal to

Text is a compulsory operator which specifies the data type of the content attribute as

text. This is needed for the consecutive >Process Documents from Data operator, in

order to determine the attributes it should extract the tokens from. Filter out missing

values removes the attributes which have no value specified. This is performed as a safety

check; it should not occur in our case.

Figure 4.9: The sub-process of >Process documents from data operator

Going deeper into nested operator hierarchy we will now look into operator >Process

Documents from Data. Its inner operators are depicted in Figure 4.9. This operator

creates the word vector out of training documents. For each document it performs text
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tokenization and applies certain token processing routines. In the end it calculates the

frequencies of tokens for the whole example set collectively.

As described in Section 3.3.1, various term weighting schemes can be applied in TC.

One of them is the idf measure, which is exactly the measure used by >Process Documents

from Data operator here. Besides extracting the tokens and their frequencies the operator

removes tokens appearing in less than prune_below_percent percent of all documents, as

well as tokens appearing in more than prune_above_percent percent of all documents.

The content of the Process Document sub-process is presented in Figure 4.9. The

sub-process is run for each document in the example set (i.e. training set). The role of

each component of the sub-process is described in Table 4.1.
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Table 4.1: Text pre-processing operators

Operator Purpose

Transform Cases Transforms the document’s text into lowercase. This is done

in order to avoid differentiating between words that vary only

by letter case.

Replace Tokens Defines a mapping which is then used for replacing certain

phrases with another ones. This is done in order to normalize

phrases that have the same meaning. Another reason for using

the mapping is preventing filtering out currency symbols, or

other one-letter symbols that can be relevant to the article

content. The replacement list used in the current version of

TCModule is presented in Table 4.2.

Tokenize Cuts the text into tokens, based on a specified separator. Cur-

rently the separator is any character that is not a letter. Fil-

ter Stopwords operator filters out so-called stop words, which

are prepositions, articles, and other commonly used English

words that are not relevant for classification.

Stem Stems the words, so that different forms of the same word

would be treated equally. For example, all the words: ’fish’,

’fisher’ and ’fishing’ would be reduced to the root word ’fish’.

Filter out single letters Removes single letter tokens, as they are not relevant to the

classification.
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Table 4.2: Word replacements of Replace tokens operator

word replacement

labor labour

joint venture jv

initial public offering ipo$ dollar

¤ euro£ pound¥ yen§ paragraph

We have just described in detail the process of feature extraction. Let us now move

to the >Train and evaluate the model operator. Its sub-process is presented in Figure

4.10. This operator performs two parallel computations, each of which is performed on

separate copy of the training data set.

The first operation trains the model on all the available training examples, and it is

performed by >Polynominal by Binomial Classification operator, visible in the very top

row of the process view in Figure 4.10. >Polynominal by Binomial Classification is a

wrapper for an operator that executes the SVM classification algorithm. This operator

is needed because SVM requires the input data to have binomial labels 7. >Polynominal

by Binomial Classification simulates such behaviour by running the SVM algorithm mul-

tiple times, each time dividing the training set into two subsets: examples having label

of certain value and not having label of this particular value. After training a number of

models for each of such divisions, they can be applied collectively as one model. In fact,

the model returned by >Polynominal by Binomial Classification operator is just a single

7That is caused by the fact that the SVM algorithm divides the feature space into two separate subsets.

Because of that the training data arriving at the input of such operator should always have only two kind

of labels (binomial labels).
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Figure 4.10: The sub-process of >Train and evaluate the model operator

model instance.

The second operation performed by the >Train and evaluate the model operator is

calculating the expected accuracy of the model:� Split to Test and Training operator divides the input data into two subsets: test

and training data sets. Splitting the data is done ratio 1:4, respectively.� Unset id removes the label role from the label attribute, so that the splitting does

not take it into account.� Set id sets back the label role on the label attribute.

After the data has been divided into two sets, feature extraction is performed on each

of these subsets separately. This part is important, because extracting the features prior

to data division would lead to the training data carrying some information extracted from

test data. This should never be the case, because the training and the set data have to

be kept independent for the evaluation to be reliable. The word list that was generated

by training data is the used as one of the inputs for feature extraction from the test
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data. This is to make sure that the tokens not occurring in the test data will still be

present in feature set, with term weights set to 0. It is also important to note that the

term weighting in test documents is performed not by using idf but only tf measure (the

distribution of tokens across test documents should not affect the classification of each of

them separately). Moreover, in order to ensure that no relevant tokens will be skipped,

no token pruning is done while extracting features from the test set.

Training the model for evaluation is performed in an identical way as in the case of

training the actual model. The only difference is that only a part of available data is used.

In the end the trained model is applied to the test data by the Apply model operator,

and the performance is calculated by the Performance operator. The result of applying

the model is a set of new special attributes added to each example. The attribute we are

interested in is the prediction(category) attribute, that holds the name of the category

that has been predicted for the document. The performance is then calculated based on

conformity between the label and prediction(category) attributes.

4.4.2 Estimated evaluation accuracy

We have just gone through the process of training the model and calculating its expected

accuracy, as well as extracting the statistics about document distribution across categories.

While viewing the model output will not give much readable information, the two other

results can be viewed and are delivered to the output source of the Train model process.

Figure 4.11 shows the classification results. The accuracymeasure displays the overall

percentage of the documents that were correctly classified in respect to the total number of

documents. The overall accuracy measure in respect to category ci is calculated with the

following formula: accuracy =
∑

i
TPi

TPi+FPi+FNi
, and corresponds to overall Fβ accuracy

measure for β = 1 (see Section 3.6.1).

The table appearing below the accuracy measure is called the confusion matrix and

presents more detailed view of how many documents were assigned to each category

correctly (i.e. TPs), as well as the number of FPs and FNs. The bottom row of the
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Figure 4.11: Result view of expected model performance

table and the right-most column show the recall and precision, for each category. Macro-

and microaverage values can be calculated based on the confusion matrix. This process

is performed later by TCModule wrapper application.

Figure 4.12: Result view of document distribution across categories

Figure 4.12 depicts the resulting document distribution of documents across categories.

The purpose of this view is only informative.
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4.4.3 Apply model process

Apply model process applies previously saved model to an arbitrary document entered by

the user.

Figure 4.13: Overall view of Apply model process

Figure 4.13 shows the overall process view. There are only two parameters to be set for

the Set parameters operator, input_filepath, and input_document8. Below we describe

the remaining operators and their function:� Read document reads the content of a document from the specified input_document

path.� Documents to Data converts the document content to a RapidMiner Document.

I.e. together with Read document it acts like the database reading operator of

Train model process (Section 4.4.1).� Generate Attributes generates an id attribute for the document.

8Similarly to the case of Train model process (Figure 4.5), the Set parameters operator is disabled, to

collaborate with TCModule application which will set the parameters itself. If the process is to be run

inside RapidMiner this operator should be enabled first.
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� Set Id assigns the id role to the id attribute.� Read wordlist reads the stored word list.� Read model reads the stored classification model.� >Feature extraction extracts the features from document. The process is identical

to the test data extraction used by Train model (tf measure instead of itf measure

used for term weighting, and no token pruning). Also, analogically to Train model

process, the word list generated based on the training data is used as an additional

input for test data feature extraction (in order to make sure that the tokens that

did not occur in the test data will still be present in the final feature set).� Apply model applies the classification morel model to the test document.

The output of the classification is a classified example. It contains the original

attributes of the test document and a number of additional special attributes, gener-

ated by Apply model operator. The most important is the prediction(category) at-

tribute which tells which category has been assigned to the document. A number of

confidence(<category_name>) attributes stores numerical values which correspond to

the level of certainty that the document would belong to each of the categories.

4.4.4 Apply model multiple process

Apply model multiple process works analogically to the Apply model process, with the

only difference that instead of single document read from file, it classifies a number of

documents fetched by an SQL query. Figure 4.14 presents the process view.
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Figure 4.14: Overall view of Apply model multiple process

>Read Documents fetches the documents from database, in exactly the same manner

as the operator with the same name in Train model process (described in Section 4.4.1).

The file path for reading the SQL query is specified by input_query_filepath macro

parameter.

The Figure 4.15 illustrates the result view of the process, which is labelled example set

that contains multiple examples. Each of them has an additional set of special attributes:

prediction(category) and a number of confidence(<category>)9 . For instance, Row

340 in Figure 4.15 shows the results for the document with id TK7. The correct category

of the document is Acquisition. The model has predicted correctly for it to belong to

the same category. The confidence values for the document belonging to the categories

Product recall and Product release are 0.69 and 0.77, respectively. The confidence value

for Acquisition category was the highest and that is why the document has been assigned

to it. On the other hand, the correct category of the document with id TK41 (Row 333)

should be Company investment, while it was assigned to the Product release category.

9Compare with the description of Apply model process in Section 4.4.3.
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Figure 4.15: The result of Apply model multiple process

This misclassification occurred because the confidence value for Product release category

was higher than the confidence for the Company investment category.

4.5 User interface

TCModule provides means for modifying, running and fetching results of the process

through a GUI. Internally, RapidMiner process interface is separated from the graphical

interface, to ensure enough portability of the software.

The main application window consists of four tabs:

1. Apply model – here the user can apply a model that has been previously stored on

the hard drive.

The user selects the directory where the model has been saved. In order to pro-

vide the data to be classified, the user can either copy-paste the content of a single
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Figure 4.16: Apply model tab of TCModule

document, or specify an SQL query that will fetch a batch of documents from the

database. The Apply model tab is depicted in Figure 4.16.

Figure 4.17: Model application results
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As a result of model application, the user is displayed a dialog with information

about the confidence values for each of the categories in the model, as well as the

category name that is most probable for given document. If more than one document

was fetched for classification, the software will only show a list of document id values

and the most probable categories for each document. The document classification

result dialog is shown in Figure 4.17.

2. Train model – here the user can re-train the model by specifying an SQL query that

will fetch the documents.

Figure 4.18: Train model tab of TCModule

The user can adjust three threshold parameter values:

– min_cat_count – specifies the minimum number of documents per category. If

a category has less documents than specified by this parameter, the category will

not be included in the model. Categories with very few training documents are not

likely to be recognised correctly for new data.

– prune_below_percent – specifies how many percent of least frequent words should

be ignored. The words that occur in only one or two documents are probably not

meaningful to any of the categories.
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– prune_above_percent – specifies how many percent of most frequent words should

be ignored. Words that appear in all or most documents are not useful for distin-

guishing between the categories. The Figure 4.18 shows the Train model tab.

Figure 4.19: Model training results

After the model has been learnt, the user is shown the expected accuracy of the

model. This accuracy is based on training another model with the same routine on

a part of the data and then testing it on the remaining part (test data). This results

is not the precise accuracy of the trained model, but rather an estimate that can

be used for adjusting the threshold parameters. Besides the model accuracy, the

software displays the categories and the number of documents per category. Figure

4.19 presents the training model results dialog.

3. Settings – here the user can alter the settings of TCModule. These include database

connection settings and file paths from which the application looks for the model

files and stores temporary files by default. After pressing the ,,Save” button, the

settings are saved to a file, and will be loaded with the next launch of the application.
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Figure 4.20: Settings tab of TCModule

The Settings tab is depicted in Figure 4.20. Below we present an overview of the

settings options and their meanings:� db_url is the URL of the database� db_username is the database user name� db_password is the database user password� model_open_dir is the path with the classification model and the word list� model_save_dir is the path where the model and the word list will be stored

after running the training process� process_path_apply_model is the path to the Apply model process file� process_path_apply_model_on_sql is the path to the Apply model multiple

process file� process_path_train_model is the path to the Train model process file� tmp_sql_filepath_training is the path relative to the process file, where the

temporary text file containing the query for fetching training documents will

be stored
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� tmp_sql_filepath_test is the path relative to the process file, where the

temporary text file containing the query for fetching test documents will be

stored� tmp_input_document_dir is the path relative to the process file, where the

temporary text file containing the single document for classification will be

stored

4. Info – a simple panel with basic information about the software.

4.6 Communication between TCModule and Rapid-

Miner

4.6.1 Process input

The RapidMiner processes need to receive input from the Java application they are

wrapped in. Such communication is accomplished by using RapidMiner macro mech-

anism. Macros are also referred to as parameters in TCModule. As mentioned in Section

4.4, each of the underlying RapidMiner processes expects a set of macros being defined

before running it. In this way the SQL queries, the file paths, and the threshold values

are passed to the processes.

This mechanism is transparent for the GUI user. The user simply enters the text and

the application will automatically store it in a corresponding temporary file. The paths

to the temporary files can be modified in the Settings tab.

The input that deserves special attention is the SLR queries input. As described in

the previous paragraph, the value of the macro providing an SQL query is the path of

the file where the SQL query is stored in text format. The query itself needs to conform

to certain criteria: it should return fields id and content. Id is the unique document

identifier, and content is the document text, which later will be tokenized and processed.

74



In case of a query that is defining training documents, also a category field should be

returned. It stores the category of a document. Furthermore, it is required that each row

returned by the query has unique id value.

The database connection settings need to be defined upfront. In RapidMiner con-

nection settings are specified as parameters of the Read Database operator, which does

the actual data fetching. As an exception from macro-based input, TCModule modifies

those operator parameters directly, according to the DB settings entered by the user in

the Settings tab.

4.6.2 Fetching the process output

All the RapidMiner processes utilized by TCModule deliver an output of particular type

to its source at a particular index. The specific number of output objects and their type

depends on the process. Depending on the process it is running, TCModule fetches the

relevant output and presents it in its GUI.

4.7 Implementation details

In this section, we present very brief overview of the code of TCModule.

Figure 4.21 depicts the UML class diagram of the TCModule. The system consists of

three packages:� commons - contains helper and general purpose classes. AppSettings reads, stores

and writes application settings, and DBConnection encapsulates a method for cre-

ating a java.sql.Connection with appropriate connection settings.� ui - contains the Swing component and related classes, as well as the main entry

point to the application.
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Figure 4.21: UML class diagram of TCModule

� rminterface - the interface to the RapidMiner API. It contains the following classes:

TCModuleCore - the main class for training and applying the classification model.

It contains methods for running each of the three RapidMiner processes. All these

methods take as the input the file path of the process and a set of macro values.

They return either a TrainModelResults → or ApplyModelResults → Object

mapping. The type of mapped value is assumed based on the mapping key. The

methods of the TCModuleCore class are the following:

– Map<TrainModelResults,Object> trainModel() trains a classifer on a set of

documents retrieved from database. It returns a set of TrainModelResults-

Object pairs, and each pair is a piece of information about the trained model:* MODEL_ACCURACY is the expected model performance, presented as a float-

ing point number from the [0, 1] interval,* DOCUMENTS_TOTAL defines the total number of training documents,
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* DOCUMENT_DISTRIBUTION is the category distribution across training doc-

uments. It maps the category name to the number of documents belonging

to it.

– Map<ApplyModelResults,Object> applyModelOnFile() applies the previously

trained model on a single file. It returns the same information as the

applyModelOnSQL() method, except that only one document is included in the

results.

– Map<ApplyModelResults,Object> applyModelOnSQL() applies the previously

trained model on a set of documents retrieved from database. It returns the

following information:* CONFIDENCE_MAPPING hash table that maps each document id into another

hash table, which maps category names to their confidence values,* CLASSIFICATION_MAPPING hash table that maps document id to its pre-

dicted category name.

RMProcessWrapper is the wrapper for a RapidMiner process.

– runs the xml process with a set of predefined macros. The run() method

expects the following input variables:* Map<String,String> macros - set of macros to be set the process before

running it. The set of macros depends on the process, and each such set

was described in Sections 4.4.1, 4.4.3 and 4.4.4.* Map<Operator, Map<String,String>> operatorProperties - a table that

maps an operator to set of properties to be set on it before running the

process. For example, this allows defining the database settings on the

DatabaseDataReader operator.

– retrieves the results at the port of the given index.
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4.8 Input document parser

As mentioned in Section 4.2, TCModule is accompanied by a parser which automatically

fetches the documents and categories into the database from a predefined file structure.

The parser is located in the dbparser package. The main class is the ParserMain

class. It contains four constants:� String documentsPath points to the input document files,� String csvDocumentToCategoryPath points to the csv file containing information

about files and categories,� boolean replaceOld defines whether the previous data in the database should be

replaced before inserting the new one,� boolean skipAmbigious defines if during setting the max_weight field of

document_to_category relation, the program should skip documents which have

equal maximum weight in regards to more than one category;

Figure 4.22 presents the UML class diagram of the document parser. The parser can

be run by launching the static void main method of ParserMain class.

4.8.1 Expected file structure

The parser expects the input files to be in plain text format and have the txt extension.

The csv file contains information about each document-category relation. Expected file

structure is as follows:

document_id;category_name;classifying_sentence;

document_id;category_name;classifying_sentence;

document_id;category_name;classifying_sentence;

document_id;category_name;classifying_sentence;
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Figure 4.22: Document parser UML class diagram

document_id is the unique document identifier, and it corresponds to document file

name 10. Category_name is the name of the category the document has been assigned

to. Due to the properties of the training data used in the experiments in this thesis, each

document may appear in the list more than once and hence can be assigned to multiple

categories.

As described in Section 5.1, we assumed that a document is related to a category if

it contains a sentence that is relevant to this category. The classifying_sentence field

contains that related sentence, though the presence of this field in csv file is optional. In

10If the file name contains an underscore, the file name part after the last underscore will be skipped.

This allows to add version flags to the document names without changing their document_id in the csv

input file.
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the end, nothing prevents the user from using the tool on data in which no classifying

sentences are specified.

4.8.2 Execution logic

Figure 4.23: Document parser UML sequence diagram

In Figure 4.23 is presented the UML sequence diagram of the document parser. The

program parses the csv file, looking for valid input in the documentsPath directory. The

documents that are present in the csv file but not found in the input folder are skipped

and a warning is displayed. The same action is taken if any of the compulsory csv fields

is missing from a record. The document table is populated with the valid document_id

and content values. Simultaneously, the category table is filled with all the category

names that are found in the csv file.

The parser also counts the number of sentences in the document that were relevant

to a category, and stores it under the weight property. If certain document-category
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relation does not exist in the document_to_category table, a new one with weight= 1

is inserted. Otherwise the weight property of existing record is increased by 1.

The following method is employed to make sure that each document is assigned to ex-

actly one category: the document_to_category records that received the highest weight

score in regards to a particular category are going to have their max_weight property

set to true. However, if the class constant skipAmbigious is set to true, and there is

more than one document-category entity that got the same highest score for particular

document, all of such document-category entities will have their max_weight property set

to false. This is done in order to prevent ambiguous documents from being marked as

belonging to more than one category. Such weight-based approach makes it possible to

easily query the documents together with their most relevant categories, and be ensured

that each document has only one category assigned.
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5. Experiments

The current chapter describes the data set used in experimenting with the system and its

collection process (Section 5.1), as well as the experiment settings (Section 5.2). It also

describes the experiments performed on the collected data. In Section 5.3 we present and

compare the results achieved by various classification routines.

5.1 Experiment data

5.1.1 Data collection

The documents used as the training and test data have been collected manually by five

partcipants of the e-leadership project. The data collection group consisted of two doctoral

researchers, one PhD student and the author of the current thesis. The data was collected

from various news resources on the web, such as REUTERS 1, The New York Times

2, YAHOO! Finance 3, as well as press releases and news concerning some particular

companies, such as VALTRA 4, John Deere 5, Microsoft 6, Apple 7 and Samsung 8. We

skipped the articles containing news summaries, as they potentially combine data from

various sources. The articles have been cleaned from advertisements or other irrelevant

1http://www.reuters.com/
2http://www.nytimes.com/
3http://finance.yahoo.com/news
4http://www.valtra.com/news/25.asp
5http://search.deere.com/DDC/en US/News/
6http://www.microsoft.com/presspass/press/NewsArchive.mspx?cmbContentType=PressRelease
7http://www.apple.com/hotnews/
8http://www.samsung.com/us/news/newsList.do?gltype=globalnews
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information. Only the sentences belonging to the actual news article or report were taken

into account, i.e. adverts, links, copyright notices and other such text fragments were

removed.

Figure 5.1: Usage of document to category relevance weights

Each document in the data set was annotated as follows: Each sentence containing

an event type defined in the CoProE ontology was tagged with the corresponding event

type. For each document-category pair, a category relevance weight was specified based

on the number of sentences appearing in the article that are relevant to that category.

I.e. the category relevance weight for each category equals to the frequency of sentences

that contain an event described by that event type category. Figure 5.1 presents how the

document-category mapping is represented by using the relevance weights.
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5.1.2 Document database

At the time of writing the thesis (November 2012), the data set contained 840 documents,

out of which 679 are not ambiguous as to which category they belong to (their highest

weight score favours one category). Out of the total of 42 categories, 38 contain at least one

unambiguous document. There are 14 categories that contain more than 20 unambiguous

documents, and there are 405 unambiguous documents belonging to those 14 categories.

The Table 5.1 shows the document-category distribution for these 405 documents.

Table 5.1: Document-category distribution for unambiguous documents

Category Number of documents

Acquisition 51

Company earnings announcement 50

Product release 32

Credit tating 29

Dividend 29

Company layoffs 28

Merger 26

Joint venture 25

IPO 25

Bankruptcy 24

Company force majeure 22

Company expansion 22

Buybacks 21

Product recall 21

5.2 Test settings

We compared the classification accuracies and efficiencies of a number of different classifi-

cation approaches on our data set of business documents described in Section 5.1, using a
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number of different approaches. The experiments were run by using the processes imple-

mented as part of TCModule. In order to generate comparable evaluation data, the same

classification and evaluation routine was used for each TC method. The classification

described in the thesis was performed on data set with two-level hierarchical category

structure. This structure information was, however, utilised only in the hierarchical cat-

egorisation method.

For classification we used a subset of the documents that are not ambiguous and belong

to a category that contains more than 20 documents. Moreover, for categories that have

more than 22 documents we excluded the excess of documents with the lowest weights.

These threshold numbers were chosen experimentally, in a way that there is as many

documents included as possible without drastically decreasing the classification accuracies.

Removing extra documents was done in order to compensate for number of documents

that vary significantly across categories. Unbalanced data set would affect the evaluation:

a majority of documents would belong to one category, assigning every documents to

that category would be a good classifier. Moreover, different classification algorithms

have varying tolerance to unbalanced data set. Therefore balancing the data helps in

establishing an uniform classification routine, which would not favour one algorithm over

the other. Such upper limit reduces both the training set size and overall classification

accuracy, therefore it was applied only for running the comparison tests and is not going

to be used in TCModule training process.

The data was further divided into test and training sets with the ratio 1:4, respectively.

Ratios 1:9 and 1:4 are the ones that are the most often used in the relevant research

literature. The 1:9 ratio was not suitable in this case, due to the relatively small size of

the data set. The random seed was hard-coded to ensure that the differences between

method performances are caused by the differences between algorithms, not the division

of the data set.

The text pre-processing method included lowercase conversion, text tokenization, stop-

words removal, word stemming, and filtering out tokens shorter than two letters. This

routine is identical as the one applied in TCModule.
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The baseline method used for comparison was SVM algorithm with one-vs-many cat-

egory division strategy. The reason for choosing SVM as the baseline was that it is

currently one of the best performing TC methods in means of the classification accuracy.

5.3 Results

In order to determine which methods perform the best on the document set we collected,

the DAVID document database, we compared a number of TC models trained with dif-

ferent approaches and algorithms. We also attempted at introducing improvements and

modifications in order to increase the classification accuracy.

Below we present comparison of the evaluated methods, their accuracies and average

time of execution on a single machine. If not stated otherwise, the precision and recall

measures are macro averages, which were described in Section 3.6.1. The macro accuracy

is the harmonic average of precision and recall. The execution time is the time needed

to perform feature extraction and run all the before mentioned cross-validation rounds.

Execution time includes both the training and classification efficiencies.

5.3.1 Comparison of classification algorithms

In the this section we compare the performance of the three classification algorithms:

k-NN, Naive Bayes and SVM, as well as their modifications.

Table 5.2: Comparison between the three classification algorithms

Method Recall(%) Precision(%) Macro(%) Exec.time(s)

SVM 67.46 67.97 67.71 8.0

Naive Bayes 39.37 47.45 43.04 0.8

K-NN (k=12) 72.90 73.60 73.25 1.0

The Table 5.2 summarizes the accuracy and efficiency of the three classification algo-

rithms: SVM, Naive Bayes, and k-NN. The algorithms used are the standard ones that are
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implemented in RapidMiner. The best overall accuracy was presented by k-NN algorithm

for k = 12, which scored 73.25% macro accuracy.

Naive Bayes yielded relatively low accuracy, which may be caused by not having

enough training data. Because there was not enough documents in the training set, many

words appeared only in few of them, and feature vectors contained a lot of zero values.

Due to its nature, Naive Bayes is sensitive to such sparse featured data.

SVM yielded the best accuracy. It also performed the slowest, which is mainly because

the classifier used by it is a binary classifier. It had to be adopted for a multi-category

case by dividing the training data set into number of binary subclasses and training a

separate classifier for each of these divisions.

Table 5.3: K-NN classification algorithm for different k values

Method Recall(%) Precision(%) Macro(%) Exec.time(s)

k=1 58.18 57.25 57.71 1.0

k=3 59.65 61.69 60.65 1.0

k=5 65.63 66.92 66.27 1.0

k=7 66.26 65.23 65.74 1.0

k=8 69.16 68.18 68.67 1.0

k=9 69.43 69.67 69.55 1.0

k=10 70.99 71.55 71.27 1.0

k=11 71.36 71.85 71.6 1.0

k=12 72.90 73.60 73.25 1.0

In Table 5.3 we can see comparison between the results scored by k-NN classifiers for

various k values. The higher the k value was the more accurate result we achieved. Also

longer execution time was expected for higher k values, however the k-NN appeared to

be very roboust, despite the high space dimensionality and regardless of the number of

neighbours. The highest accuracy was scored for k = 12. Please note that k = 7 is not

valid as it is a divisor of number of classes (which is 14) yet still gives good results.
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Figure 5.2: K-NN classification algorithm for different k

Figure 5.2 presents the accuracies for different k. The recall overperformed the preci-

sion for k = 1, and then from k = 6 until k = 9.

Table 5.4: SVM classification algorithm for different category set division strategy

Method Recall(%) Precision(%) Macro(%) Exec.time(s)

one-against-all 67.46 67.97 67.71 8.0

one-against-one 44.26 46.37 45.29 8.0

As it can be observed from Table 5.4, one-against-all strategy performed significantly

worse for SVM classification. This has happened due to the limited training data size

(one-to-one strategy divides training data into larger number of subsets). The execution

times were similar, as in this case there was more data sets but less documents in each

set.
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Table 5.5: Flat vs. hierarchical classification results

Method Recall(%) Precision(%) Overall(%) Exec.time(s)

Macro

Flat categorisation 67.46 67.97 67.71 8.0

Hierarchical categorisation 59.29 61.64 60.44 7.8

Top category categorisation 35.29 36.54 35.90 8.3

Micro

Flat categorisation 81.92 79.18 67.41

Hierarchical categorisation 73.91 74.80 59.18

Top category categorisation 83.03 83.33 71.20

5.3.2 Flat vs. hierarchical classification

Table 5.5 presents comparison between the flat and hierarchical categorisation methods.

For both classification methods we used our baseline algorithm, SVM. It can be seen that

hierarchical categorisation performed worse than the simple flat approach. Lower accuracy

may have been caused by the limited training data set size, which is important factor in

hierarchical categorisation. The execution time was expected to be longer, as a number of

different classifiers were involved. The execution times are, however comparable. This can

be explained by the fact that by applying a number of classifiers to two hierarchy levels

we limited the data set on each level, which increased the speed of feature extraction and

document classification.

The third and the last row of the Table 5.5 present the accuracy measures only for the

top level of the category hierarchy, which was depicted in Figure 2.2. It is interesting to

note that while macro and micro measures for the flat and full hierarchical categorisation

are similar, the micro accuracy for the top category level is much higher than its macro

accuracy. This reflects the fact that micro averaging focuses on the classified documents,

while macro accuracy focuses on the categories. This is why micro averaging is strongly

influenced by the difference in category sizes. Such difference must have occurred at the
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top level, because hierarchical categorisation we balanced the category sizes only at the

lowest category level.

5.3.3 Comparison of text pre-processing routines

In this section we present a number of pre-processing techniques that we applied in an

attempt to improve the classification accuracy and efficiency. One of them was the n-

gram approach, mentioned in Section 3.3, as an alternative to dividing the document into

tokens by words.

Table 5.6: N-gram classification for different n values

Method Recall(%) Precision(%) Macro(%) Exec.time(s)

n = 2 43.91 41.95 42.91 2.1

n = 3 67.33 68.58 67.95 20.7

n = 4 74.85 75.87 75.36 53.6

n = 5 75.41 75.25 75.33 51.9

Table 5.6 shows results for n-gram classification for different n values. N-grams were

generated from text that has had stop-words removed upfront. The best overall result was

achieved for n = 4, however the recall was slightly lower than for n = 5. It is interesting

to note that processing time started to decrease after n = 4. This may be due to the fact

that for relatively small n, the ,,grams” were shorter and therefore more likely to repeat,

on the other hand for high n, the number of ,,grams” was smaller.

As suggested by Ifrim et al. (2008), using n-grams instead of words did not decrease

the classification accuracy. Moreover, the effectiveness is slightly better than the results

of the so-far winning k-NN algorithm. The efficiency is, on the other hand, much lower.

Figure 5.3 shows the accuracies for different n values in form of a chart. The precision

was smaller than recall for n = 2, to exceed it at n = 3 and n = 4, and become very close

for n = 5.

90



Figure 5.3: Accuracy of different classification routines

Table 5.7: Different text pre-processing routines comparison

Method Recall(%) Precision(%) Macro(%) Exec.time(s)

Full text pre-processing 67.46 67.97 67.71 8.0

Tf instead of tf*idf 63.95 65.53 64.73 6.4

Without stemming 66.31 67.02 66.66 7.6

N-gram n = 5 75.41 75.25 75.33 51.9

In Table 5.7 we can see a summary of different text pre-processing routines. As

expected, using term frequency weighting decreased the classification accuracy. This is

due to the fact that in that case term popularity across the document set is not taken into

account, as explained in Section 3.3.1. As expected, skipping word stemming decreased

(and speeded-up) the classification. The difference is not that big, however. This can

be explained by the fact that keywords determining categories containing words such

as ,,announcement” or ,,earning” after stemming become ”announc” and ”earn”, which

occur quite often in any business related article. N-gram accuracy is higher than the one

of the word-based approach. However, the efficiency is significantly worse.

91



5.4 Discussion

Section 5.4.1 summarises the results of the accuracy evaluation. In Section 5.4.2 we briefly

describe the obtained results in regards to the efficiency of the evaluated classification

methods. The overall evaluation is presented in Section 5.4.3.

5.4.1 Accuracy

Figure 5.4: Accuracy of different classification routines

Figure 5.4 presents an overview of the accuracies of the evaluated classification algorithms.

The list below presents the comparison between the accuracies of the evaluated methods:� Hierarchical categorisation did not yield satisfactory results on our test data; it

performed slightly worse than the simple flat categorisation. This could be due to

the fact that our training data set is of a relatively limited size. As we explained in

Section 3.5.1, hierarchical categorisation methods need a large number of training

examples to perform accurately.� Naive Bayes performed with very low accuracy. This can be explained by the spar-

sity of data in case of TC, which was even intensified by the fact of using small
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amount of training data. As mentioned before, many words appeared only in few

documents, and the variances of corresponding feature vector components were close

to zero.

The Naive Bayes yielded the largest difference between precision and recall measures.

The precision tended to be higher than recall which means the algorithm did not

perform well in finding all the documents that belongs to a category, but did not

make that many wrong guesses.� The highest accuracy was achieved by the k-NN algorithm when n was set to 12.

These results differ from the results presented by Manning et al. (2008, Sec.13.6)

(Table 5.8), where the SVM and k-NN algorithms showed similar macro accuracies.

The difference is, however, small, which is understandable as we were using different

data set.� One-to-one SVM strategy performed with significantly worse accuracy than one-to-

many. This was probably caused by the limited size of the training data set.� Full text pre-processing resulted in the highest accuracy. Not using word stemming

decreased the accuracy slightly. Using tf instead of idf lowered the accuracy, which

was expected, as term frequency does not take into consideration the difference

between the length of documents (i.e. the term frequencies are not normalized).

Generating n-grams from word tokens yielded the best results for n = 4, and they

outperformed the SVM classification.

It is interesting to compare achieved results with the ones reported in research liter-

ature. Manning et al. (2008, Sec.13.6) presented the effectiveness comparison between

Naive Bayes, k-NN and SVM. The classification was done for 90 classes classification of

ModApte split of Reuters-21578 (Reuters-21578 Test Collection, 2012), the widely used

test collection for TC research.

Table 5.8 presents comparison between the three TC methods that were analysed in

this thesis. According to the results reported by Manning et al. (2008, Sec.13.6), SVM
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Table 5.8: Comparison of NB, k-NN and SVM classification accuracies for Reuters-21578

data set, according to Manning et al. (2008)

Accuracy measure NB (%) k-NN (%) SVM (%)

Micro accuracy 80 86 89

Macro accuracy 47 60 60

method achieved results comparable to k-NN. This does not correspond to our results,

where k-NN yielded significantly higher accuracy than SVM. However, the macro accuracy

for Naive Bayes was much lower than for the other two methods in both cases.

5.4.2 Efficiency

Figure 5.5: Efficiency comparison

In addition to the changes in classification accuracy we observed the efficiencies of the

evaluated classification methods. Figure 5.5 shows the comparison between execution

times of each of them. Below we describe the findings:� Hierarchical categorisation took similar amount of time as the regular one (7.8–8.0

seconds). Even though more classifiers had to be trained, the number of documents

classified by each of them was lower, therefore the training and classification time

was not longer.
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� The efficiencies of both Naive Bayes and K-nn methods (0.8 and 1.0 seconds, re-

spectively) was much better than the efficiency of SVM (8.0 seconds). The reason

for that is the fact that for SVM the data had to be converted to data with binomial

labels (only two categories), which means running the algorithm several times for

each category.� Extracting n-grams for different n values slows down the classification significantly.

The time of execution of training and classification phase for the n of the best

accuracy took 53.6 seconds, which is almost seven times as long as the classification

with using words as tokens.� Using words that are not stemmed improved the efficiency by only 0.4 seconds. This

is caused by the fact that the stemming takes slightly more time than the time that

is saved by limiting the size of feature vectors. Also using tf measure for token

weighting speeded up the process by 1.6 seconds, however it decreased the accuracy.� Applying one-to-one SVM strategy took the same amount of time as one-to-many

approach. We explained it by the fact that dividing the category sets into bigger

number of subsets increased number of training and classification rounds, but also

decreased number of documents per training and classification.

5.4.3 Overall evaluation

Figure 5.6 presents the overview of all the evaluated methods, comparing their accura-

cies and execution times. The k-NN algorithm performed best, both in terms of efficiency

and effectiveness. The n-gram approach showed slightly better accuracy, however the

efficiency was much worse than the k-NN algorithm. Different SVM approaches yielded

similar results, while Naive Bayes performed with shortest execution time, however also

the worst accuracy.
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Figure 5.6: The overview of the evaluated methods
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6. Conclusions

6.1 Summary

In this thesis we have described the current state of TC research, as well as introduced

the innovative ontology-aided approach and training-less TC, i.e. the one for which we

do not need to provide a training set. We performed comparison of three basic TC

methods: Naive Bayes, K-nn and SVM. The results of the research were combined into a

software system called TCModule, which is targeted at business documents. The system

is able to train a classification model and then apply it to a set of documents. TCModule

uses a relational database from where it retrieves the documents. The implementation

of TCModule is based on classification processes that were developed using RapidMiner

GUI.

We sought answers to the following research questions (introduced in Section 1.1):

1. What are the existing ways of performing TC and ontology-aided TC? What are

their merits and flaws?

2. Which of these methods suits the DAVID system best?

3. Can these methods be improved and how?

We gave the answer to the first research question in Chapter 3. We presented and

analysed Naive Bayes, K-nn and SVM algorithms. We found out that these traditional

TC methods are widely employed and they yield good results. The feature extraction

step, however, is crucial for high classification accuracy. We also introduced hierarchical
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classification, which allows to use information about category structure in process of

classification. Nevertheless, its main drawback is the fact that it requires more training

data than categorisation with flat category structure. Another type of TC we reviewed

were ontology-aided solutions. This is due to the fact that the DAVID system relies heavily

on a purpose-built ontology for storing and processing business information. In one of

the approaches a taxonomy of tokens was created from the BOW model of a document

and compared with the category structure. Such method was expected to perform well

in the domain of patent documents, which contain a lot of novel vocabulary. Another

ontology-aided solution – the train-less TC yielded results comparable to traditional TC,

but it did not require any training documents.

In Section 5.3 we answered the second and the third research questions. We evaluated

how well each of the TC methods performs on the data prepared for the DAVID system

by running experiments with each of the selected TC methods. We discovered that hier-

archical categorisation did not perform well in our application domain and test set. We

speculated that this was caused by the limited training set. The K-nn and SVM algo-

rithms showed similar accuracies, while Naive Bayes performed significantly worse. The

execution times of Naive Bayes and K-nn were similar (around 1 second), while training a

classifier with SVM algorithm and running it on test data took much longer (8 seconds).

In the latter part of the Section 5.3, we compared the accuracy and efficiency of

different classification methods, which provided answers to the third research question.

We observed that using n-grams of the length of eight words instead of single words

improved the accuracy by more than 7%. Removing word stemming step from feature

extraction process resulted in decreasing the accuracy by more than 1%.

6.2 Limitations and future work

Thesis leaves a lot of room for future modifications and improvements. Firstly, more

training data is going to be available in the future for the DAVID system, and therefore

for TCModule. With the new data, it will be possible to revisit hierarchical classification
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methods, as well as re-evaluate the other methods covered in this thesis. Currently our

database contains only 14 categories than include more than 20 documents, which is too

few to perform TC for all the events present in the test set and in the CoProE ontology.

Moreover, there is still a potential in hierarchical classification, which performed poorly

due to limited training data set.

An interesting question is how the classification accuracy would be influenced by ap-

plying classification based entirely on an ontology, in the manner presented by Janik &

Kochut (2008) (see Section 3.5.2).

Possible improvements could also be gained by applying more advanced pre-processing

routines. One of them could be adding more domain-specific words to the replacement list

presented in Table 4.2 in the TCModule chapter. This would prevent the classifier from

differentiating between terms that have the same meaning but are sometimes referred e.g.

by an abbreviation. In the future, new words can be determined by manually analysing the

content of incoming training documents. In addition, the data about particular companies

could be extracted from the ontology and used as extra input for the replacement list (for

example replacing name of each company with the word ’company’). This would enable

the classifier to treat all references to companies in an uniform way, not differentiating

between single companies.
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