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Infrared spectroscopic imaging is a 

powerful tool for chemical analysis 

at the microscopic level. The tech-

nique has been used for the charac-

terization of articular cartilage (AC). 

However, the development of data 

analysis methods has been slow. 

This thesis work aimed at developing 

novel infrared spectroscopic analy-

sis techniques to help characterize 

AC.  The novel methods included 

curve fitting, second derivative spec-

troscopy and multivariate regression 

models. The thesis work reveals that 

infrared spectra can provide detailed 

information on the composition and 

the biomechanical properties of AC 

when the spectroscopic data is ex-

ploited efficiently.
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ABSTRACT

Articular cartilage (AC) is avascular and aneural tissue that covers
the ends of long bones. The function of AC is to reduce the stresses
exposed on the subchondral bone and to minimize the friction bet-
ween the articulating bones during locomotion. Osteoarthritis (OA)
is globally the most common joint disease. In OA, cartilage dege-
neration causes pain and leads to decreased joint mobility. AC is
mainly composed of collagen, proteoglycans (PGs) and interstitial
water. The early OA changes in the composition of AC occur be-
fore there are any clinical signs of the disease. Characterization of
these changes is essential if one wishes to understand the disease.
Fourier Transform Infrared (FTIR) spectroscopic imaging is a po-
werful tool for chemical analysis at the microscopic level. In AC,
high specificity in the FTIR spectroscopic parameters for collagen
and PGs is required. This thesis work compared the FTIR spectro-
scopic analysis methods for compositional analysis of AC. Another
aim was to analyze the interrelationships between the spectroscopic
data and biomechanical properties of AC. The results show that im-
portant information about the biochemical composition of AC can
be extracted from the FTIR spectra. The biochemical specificity can
be optimized with the use of multivariate regression methods and
the results further improved with variable selection algorithms. The
biomechanical properties can also be predicted from FTIR spectra
with similar or better specificity than with the previous biochemical
methods. Due to the complex structure of AC, the average com-
position cannot fully explain its biomechanical properties. Sub-
sequently, the model may be further improved by inclusion of a
layered tissue structure with a variable composition and collagen
network orientation in the depth-wise direction.

Universal Decimal Classification: 543.42
National Library of Medicine Classification: QT 36, QU 55.3, WE 300,
WE 348, WN 180
Medical Subject Headings: Cartilage, Articular; Microscopy; Spectro-



scopy, Fourier Transform Infrared; Collagen; Biomechanics; Multivariate
Analysis; Regression Analysis; Osteoarthritis/diagnosis
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kollageenit; biomekaniikka; monimuuttujamenetelmät; regressioanalyysi;
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ABBREVIATIONS

AC articular cartilage
cm−1 unit of wavenumber
DD digital densitometry
DMMB dimethylmethylene blue
FT-IR Fourier transform infrared
GAG glycosaminoglycan
IR infrared
OA osteoarthritis
PG proteoglycan
PCR principal component regression
PLSR partial least squares regression
RMSECV root-mean-square error of cross-validation

SYMBOLS AND NOTATIONS

A absorbance or
amplitude

a radius of a sphere or
linear baseline shift

b multiplicative error
c concentration
D euclidean distance
d linear baseline error
diam. diameter
e quadratic baseline error
I intensity of light
I0 intensity of light entering the sample
Is intensity of scattered light
l path length
n number of samples or

refractive index
p statistical significance or

electric dipole moment
P loading matrix on X



q electric charge
Q efficiency factor of scattering
Q loading matrix on Y

r Pearson’s correlation coefficient or
distance of the electric charge

s sub-peak
T transmittance
T score matrix
W additional set of loadings in

partial least squares regression
X input variables (spectroscopic variables)
Y measured variables (predicted variables)
z spectrum
β regression vector
ε molecular absorption coefficient or

residual term
λ wavelength
ν̃ wavenumber
σ width of a gaussian peak
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1 Introduction

Articular cartilage is connective tissue that covers the ends of long
bones. Articular cartilage provides a nearly frictionless surface bet-
ween the articulating bones and reduces the stresses applied to the
subchondral bone. Articular cartilage is mainly composed of the
fibrillar collagen network, proteoglycans (PGs), chondrocytes and
interstitial water [1, 2]. The structure and composition of articu-
lar cartilage are inhomogeneous especially in the depthwise direc-
tion of the tissue [3–6]. The inhomogeneous distribution of the
constituents and complex structure of AC are needed to achieve
the unique biochemical properties of the tissue [7].

Osteoarthritis (OA) is globally the most common joint disease
[8]. OA causes pain and impairs the joint function, making the
daily life more difficult [8, 9]. OA is also responsible for signifi-
cant financial losses due to reduced working ability and medical
costs [8, 10]. The OA progresses slowly, and the early biochemical
changes occur before there are any clinical signs of OA [11]. The
degenerative changes include disruption of collagen network, loss
of PGs and increase in water content [3, 7, 12–14]. These changes
affect the biomechanical properties of AC [7,15,16]. In order to un-
derstand the structure-function relationships of AC, sensitive bio-
chemical characterization methods are needed.

Infrared (IR) spectroscopic imaging opens new opportunities in
AC research by combining biochemical analysis with microscopy
[17], thus enabling the investigation of the spatial distribution of
the tissue components at microscopic level [18, 19]. The first IR
spectroscopic imaging studies of AC were published over a decade
ago [20,21]. Since then, many studies have utilized IR spectroscopic
imaging [22–33]. IR spectroscopic imaging has been used for analy-
sis of collagen and PG contents and the collagen integrity. Further-
more, the orientation of the collagen fibrils can be determined using
polarized IR light. There have been advances in the spectral analy-
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sis methods, but the progress has been slow. The aim of this thesis
was to introduce new spectral analysis methods for AC research
and compare them with the previously used methods. In this the-
sis, curve fitting, second derivative spectroscopy and multivariate
regression models were utilized for the determination of the com-
position of AC. Multivariate regression models were also used for
predicting the compressive biomechanical properties of AC directly
from their IR spectra.

2 Dissertations in Forestry and Natural Sciences No 90



2 Articular Cartilage

2.1 COMPOSITION AND STRUCTURE

Articular cartilage (AC) is an aneural and avascular specialized tis-
sue which covers the ends of long bones. The function of AC is to
reduce the stresses applied to bone ends and to provide a nearly
frictionless surface for the articulating bones during locomotion.
AC is composed of two phases: a fluid phase, which consists of
water and electrolytes, and a solid phase, which is formed mainly
by collagen fibrils, PGs, glycoproteins and chondrocytes. Collagen
molecules account for 15-22% of the wet weight of AC [1, 2, 34–36].
Type II collagen forms the vast majority of collagens in AC (90-95%
of total collagen amount). Types I, III, VI, IX, X, XI, XII and XIV
are also found in AC, but they account only for 5-10% of the total
amount of collagen in AC [1, 2, 37, 38]. Collagen forms a highly or-
ganized fibrillar network which entraps other matrix components
within the tissue.

PGs are the second largest component of the solid phase of AC,
as they account for 4-10% of the wet weight of AC [1, 2, 34, 36].
PGs are composed of a protein core to which numerous glycosa-
minoglycans (GAGs) are covalently attached. Aggrecan is the most
common PG in AC. Aggrecan contains core protein (7%) and GAGs
chondroitin sulphate (87%) and keratan sulphate (6%) [39]. Aggre-
can forms large macromolecular units, i.e., aggregates in AC (Figure
2.1). Aggregates are formed when a large number of PG mono-
mer units become attached to hyaluronan chain through link pro-
teins [40–43]. The negatively charged carboxyl and sulphate groups
in GAGs attract positive Na+ ions and water molecules into the tis-
sue. The presence of the GAGs is the reason for the high water
content of AC.

Chondrocytes are round or oval cells with a mean diameter of
13 μm [44, 45]. Their size and shape vary in the different layers

Dissertations in Forestry and Natural Sciences No 90 3
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Figure 2.1: The structure of aggrecan. PG monomer is formed by a protein core
and GAG side chains. A PG aggregate is formed when PG monomers attach to
hyaluronan.

of AC. Chondrocytes occupy less than 5% of the total volume of
AC [1, 44]. The main function of chondrocytes is to synthesize and
catabolize the extracellular matrix components [45, 46].

Interstitial water is the main constituent of the fluid phase of
AC. It constitutes 60-85% of the tissue wet weight [1, 2, 35]. The
amount of water depends on the PG content and the properties
of collagen network. The negative charge of GAG side chains in
PGs attract water in the tissue while the collagen network limits
the volume. Water content is the highest in the superficial zone of
AC and decreases with the cartilage depth [5, 35]. Water plays an
important role in the functional properties of AC.

Histologically, cartilage can be divided into four zones based
on the collagen fibril orientation (Figure 2.2). The superficial zone
is a thin zone on top of the cartilage. It comprises 5-10 % of the
cartilage thickness [47]. The collagen content is usually very high in
the superficial zone, while the PG content is at its lowest [4,5,48–51].
The collagen fibrils are oriented in parallel to the cartilage surface
in the superficial zone [6,52]. Chondrocytes are small and elliptical,
and the cell density is relatively high.

The middle zone accounts for 5-20% of the cartilage thickness

4 Dissertations in Forestry and Natural Sciences No 90



Articular Cartilage

Figure 2.2: The structural layers of AC. AC is usually divided into four zones:
superficial zone, middle zone, deep zone and calcified cartilage. The collagen fibril
orientation in different layers is illustrated in the figure. The fibrils are attached to
the subchondral bone.

[47]. On average, the orientation of collagen fibrils is random as the
fibrils arch from a tangential to a radial orientation in the middle
zone [6, 52]. The PG content increases in the middle zone [48–51].
The chondrocytes are round and the cell density is lower than in
the superficial zone.

The deep zone occupies 70-90% of the total cartilage thickness
[47]. The collagen fibril orientation is perpendicular to the cartilage
surface in the deep zone [6, 52]. The PG content is highest in the
deep zone [50, 51]. The chondrocytes are round and arranged in
columns.

The calcified zone is adjacent to the subchondral bone. The se-
parating line between the uncalcified and calcified cartilage is cal-
led the tidemark. Collagen fibrils are anchored to the bone by the
calcified cartilage [2, 53]. The calcified zone contains only a few
chondrocytes and they are metabolically inactive.

Dissertations in Forestry and Natural Sciences No 90 5
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2.2 BIOMECHANICAL PROPERTIES

Biomechanical properties of AC are a result of its composition and
structure [1]. PG molecules are entrapped within the collagen net-
work and compressed to a fraction of their natural volume in
aqueous solution [54]. PGs contain numerous negatively charged
GAG side chains, and therefore attract free ions and water into the
tissue. This creates a swelling pressure, which is resisted by the
surrounding collagen network [55]. PGs are thought to be mainly
responsible for the compressive stiffness of AC [1, 4], while the col-
lagen fibrils determine the tensile stiffness of AC [56–58].

AC has to withstand both static and dynamic loading condi-
tions in everyday life. When a compressive load is applied to AC,
the pressure increases and the interstitial water flows within and
out of the tissue as tissue is compressed. Due to the low permea-
bility of the tissue, the water flow is relatively slow. During static
loading, e.g., as in knee cartilage when standing, an equilibrium can
be reached after a sufficient amount of water has been squeezed out
to achieve a balance between the external loading force and the os-
motic pressure. The equilibrium modulus describes the stiffness of
AC at equilibrium. After the load is released, the tissue becomes re-
hydrated to achieve its original state. With highly dynamic loading,
e.g., during locomotion, the interstitial water does not have enough
time to flow out of the tissue. In this situation, the collagen network
controls the behaviour of AC as it resists changes in tissue volume,
creating a high hydrostatic pressure within the tissue [13, 16, 59].
The dynamic modulus describes the stiffness of AC during high-
rate loading. Typically, the dynamic modulus is approximately ten
times higher than the equilibrium modulus [60, 61].

Numerical biomechanical models may be used to understand
the biomechanical behaviour of AC. The first proposed model was
a single phasic elastic model [62]. Subsequently, a biphasic model
which took into account both solid and fluid phases, was develo-
ped [63]. The biphasic model forms the basis for most of the current
AC models. The isotropic biphasic model assumes that the solid

6 Dissertations in Forestry and Natural Sciences No 90



Articular Cartilage

matrix is isotropic, linearly elastic and incompressible, while the
fluid is assumed to be incompressible [53]. Transversely isotropic
biphasic model assumes AC to be isotropic in the planes parallel
to the cartilage surface [64]. In fibril-reinforced models, the colla-
gen fibril network is separated from other solid matrix components
(PGs), i.e., fibril-reinforced models take into account the collagen
network architecture [23, 65–68]. Triphasic model, which incorpo-
rates also ion flow, has been introduced [69, 70]. If one compares
these models, then it seems that the triphasic fibril-reinforced mo-
dels may be the most realistic [71].

2.3 OSTEOARTHRITIS

Osteoarthritis (OA) is a joint disease that causes pain and joint im-
mobility, and is a major economic burden for society [8]. While
the causes of OA are not fully understood, it seems that the most
significant risk factors of OA are aging, obesity, joint injuries and
genetic factors [72]. The main clinical signs of OA include joint
pain and limitations of joint movement [8,14]. However, these signs
usually do not occur until OA is already at an advanced phase, and
irreversible damage has already taken place.

The degenerative signs of OA in AC are loss of superficial PGs,
fibrillation of the superficial collagen network and an increase in
the water content [9,73]. Compositional and structural changes lead
to softening of the tissue [7], which makes it prone to suffer further
damage provoked by mechanical loading. A thickening of subchon-
dral bone is also associated with OA [73,74]. It has been speculated
that OA might originate from subchondral bone. However, it seems
more likely that degenerated AC distributes stresses differently to
the subchondral bone, which reacts by becoming thicker [75].

AC has a limited capability to heal any degenerative changes
caused by OA or injuries [76]. In OA, the chondrocytes are not
able to synthesize the extracellular matrix molecules at the rate to
compensate for their depletion [77]. Therefore, the cartilage dege-
neration triggered by OA can eventually lead to a complete loss of

Dissertations in Forestry and Natural Sciences No 90 7
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cartilage. Currently, there is no cure for OA. In early OA, the focus
is on pain relief and the preservation of joint mobility [72]. Surgi-
cal treatments can be used to repair more severe cartilage damage,
although the outcome of the operation varies from patient to pa-
tient [78, 79]. A total joint replacement is used when the pain can
no longer be relieved and the joint function is almost completely
lost [72].

8 Dissertations in Forestry and Natural Sciences No 90



3 Infrared spectroscopy

Infrared (IR) spectroscopy is a traditional method used in the che-
mical sciences to determine the chemical composition of samples.
It is suitable for solids, liquids as well as gases. In the traditio-
nal transmission mode, a spectrum of IR light passes through the
sample, and the energy loss at different wavelengths is recorded.

3.1 PHYSICAL BACKGROUND

3.1.1 Absorption of infrared light

IR light is electromagnetic radiation with wavelengths longer than
visible light. IR light covers wavelengths from λ = 0.75 μm to
1000 μm, but IR spectroscopy usually refers to the mid-IR region
(2.5 - 25 μm). In IR spectroscopy, the wavenumber presentation
is used instead of wavelengths. Wavenumber is the reciprocal of
wavelength:

ν̃ =
1
λ

. (3.1)

Every molecular bond has its characteristic resonance frequency.
The resonance frequency depends on the structure of the molecule,
most importantly on the type of the bond and the masses of the
atoms. Since the energy of IR light is of the same magnitude as
the resonance frequency, resonance frequencies can be studied by
investigating the IR absorption properties of molecules.

There are three classes of molecular vibrations: stretching, ben-
ding and libration vibrations. The stretching vibration occurs when
the length of a chemical bond changes. Stretching vibration can
be symmetric or asymmetric. The angle of the bond changes in
bending vibrations. There are six types of bending vibrations: de-
formation, rocking, wagging, twisting, out-of-plane bending and
in-plane bending. Libration is a repetitive motion in which the mo-
lecule rotates back and forth in a nearly fixed orientation.

Dissertations in Forestry and Natural Sciences No 90 9
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Two conditions must be fulfilled in order for a molecule to ab-
sorb IR light: 1) the energy of the IR light should be equal to the
difference between an excited state and the ground state of the mo-
lecule and 2) the vibration should lead to a change in the net electric
dipole moment:

p̄ =
n

∑
i=1

qiri, (3.2)

where qi is the electric charge and ri the distance of the electric
charge from a reference point. When both of these conditions are
fulfilled, the molecule will absorb IR energy which causes it to vi-
brate.

A simple example is a diatomic molecule constituting of atoms
with equal magnitude but opposite electrical charges. In this case,
the electric dipole moment changes as the bond stretches. There-
fore, it is an infrared active vibration. However, if the charges are
equal, the stretching does not change the electric dipole moment,
and the vibration would be infrared inactive.

The Beer-Lambert law relates the amount of transmitted (or ab-
sorbed) IR light to the properties of the absorbing material. For
transmittance (T), the Beer-Lambert law is

T =
I
I0

= e−εcl . (3.3)

where I0 is the intensity of light entering the sample, I is the in-
tensity of light transmitted through the sample, ε is the molecular
absorption coefficient which describes the absorption properties of
the molecule, c is the concentration of the absorbing molecule and
l is the optical path length (or thickness of the sample). Often the
absorbance (A) format is used in IR spectroscopy. For absorbance,
the Beer-Lambert law is

A = − ln
I
I0

= εcl. (3.4)

In IR spectroscopy, multiple wavelengths are investigated at once.
Therefore, the absorbance can be written as a function of wavenum-
ber:

A(ν̃) = ε(ν̃)cl. (3.5)

10 Dissertations in Forestry and Natural Sciences No 90
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The relation between the absorbance and the concentration of ab-
sorbing material is linear according to the Beer-Lambert law. Ho-
wever, the Beer-Lambert law is valid only under ideal conditions.
The sample needs to be homogeneous and there should not be any
scattering. Therefore, it is not directly applicable in most situations
when heterogeneous tissues are being studied.

3.1.2 Scattering of infrared light

In IR spectroscopy, the absorption is assumed to be the primary
phenomenon that occurs when IR light interacts with the sample.
However, the scattering effects are also seen in IR spectra and need
to be taken into account. Scattering is mainly seen as baseline va-
riations and as an increase in the optical path length, but also peak
shifts might occur. Scattering is dependent on the particle size of
the scatterer. This is traditionally minimized by homogenizing and
grinding the sample to achieve a small particle size. However, grin-
ding is not always an option. One particular case is IR microspec-
troscopy in which it is the heterogenic composition of the sample
which is the focus of interest.

Elastic scattering can be divided into different sub-types based
on the size of the scattering particle and wavelength of the light.
Rayleigh scattering occurs when the particle is small as compared
to wavelength of light. The intensity of Rayleigh scattered light is
strongly dependent on the wavelength:

Is ∼ I0
1

λ4 , (3.6)

where Is is the intensity of the scattered light. Rayleigh scattering is
weak due relation of the inverse fourth power with wavelength [80].

Mie scattering occurs when the size of the scatterer is about
the same size as the wavelength of light. Mie scattering has been
shown to be problematic in IR microspectroscopic studies [81–85].
Mie scattering refers to scattering of electromagnetic radiation by
spheres. Mie scattering can be approximated relatively simply by
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the equation

Q(λ) = 2 − (4/ρ) sin ρ + (4/ρ2)(1 − cos ρ), (3.7)

where Q is the efficiency factor of scattering and

ρ(λ) = 4πa(n − 1)/λ, (3.8)

where a is the radius of the sphere, n is the ratio of refractive in-
dices inside and outside of the sphere, and λ is the wavelength of
the light. This approximation is accurate to within 1% of the re-
sults predicted by the full Mie theory [86]. Scattering factor curves
calculated using equation (3.7) are shown in Figure 3.1.

Figure 3.1: Mie scattering factors simulated with three different scatterer sizes.
A refractive index of 1.3 and scatterer sizes of 4, 6 and 8 μm were used in the
calculations.
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Mie scattering is a particular problem in microspectroscopic stu-
dies of histological sections. The dimensions of cells and cell com-
ponents are of the appropriate size that Mie scattering can occur
when IR light interacts with them. In particular, chondrocytes or
chondrocyte organelles may be significant sources of Mie scatte-
ring in IR microspectroscopic studies of AC. The mean diameter of
chondrocytes is 13 μm [44, 45], which is within the range of Mie
scattering when mid-IR light is considered.

3.2 INSTRUMENTATION

The first commercial IR spectrometers became available in the 1940s.
The early systems were dispersive, i.e., the broadband light was dis-
persed into separate wavelengths by using a prism or a diffraction
grating. These systems were slow and had a poor signal-to-noise
ratio. A major improvement was seen when the Fourier Trans-
form spectrometers were introduced in the late 1960s [87]. Prac-
tically all modern IR spectrometers are Fourier Transform Infrared
(FT-IR) spectrometers. Significant improvements in signal-to-noise
ratio and the measurement time emerged with the use of the in-
terferometer, which allowed simultaneous collection of all wave-
lengths [88].

The main components of a modern FT-IR spectrometer are sche-
matically shown in Figure 3.2. IR radiation is produced by heating
a radiation source. Nowadays the most common type of radiation
source is Globar. This is constructed out of silicon carbide (SiC),
and it acts approximately like a Planck radiator. Globar is typically
heated to over 1,000 ◦C [87]. The generated radiation is passed
through a semi-reflecting film called a beamsplitter at an 45 ◦ angle
of incidence. Beamsplitters are typically made of potassium bro-
mide (KBr) that has been coated with germanium (Ge) [87]. The
beamsplitter reflects 50% of the radiation into a static mirror while
the other 50% passes through the beamsplitter to a moving mirror.
Both mirrors reflect the radiation back to the beamsplitter where
they undergo interference. This interference can be constructive or
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destructive depending on the position of the moving mirror and the
phase difference of the interfering waves. The united beam is then
passed through the sample. The signal collected by the detector is
called an interferogram (Figure 3.3A). An IR absorption spectrum
(Figure 3.3B) is obtained by calculating Fourier transformation of
the interferogram.

Figure 3.2: Schematic presentation of an FTIR spectrometer. Radiation is passed
from the source to the beamsplitter. The radiation is reflected back from the mir-
rors and combined again. Interference occurs due to the pathlength difference.
The radiation is then passed through the sample to the detector.

IR microspectroscopy is an extension of traditional IR spectro-
scopy. This combines an IR spectrometer with a microscope, thus
enabling the study of samples at a spatial resolution of a few mi-
crometers. The IR microscopes work also with visible light. Visible
light image is used when the region of interest is defined. Single
points or a larger region of interest can be selected and measured
automatically [17, 89].
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Figure 3.3: A) An interferogram and B) the corresponding IR spectrum of bovine
AC.

3.3 SPECTRAL PREPROCESSING

The need for spectral pre-processing arises from the scattering ef-
fects, improper background correction and instrumental drift. The
instrumental drift might originate from the shifts of the detector or
the source, the changes in source temperature or functional errors
in the interferometer [90]. These factors induce errors in the spectra
that can be seen as baseline variations. The basic types of baseline
errors are constant, linear and quadratic errors.

The constant error is removed simply by subtracting the mini-
mum value of the spectrum from all wavenumber channels. The
linear error can be removed by fitting a line between two points
of the spectrum with no expected absorbance and subtracting the
fitted line from the spectrum. In addition, polynomial baseline fits
are used, but the proper choice of baseline points is not straightfor-
ward.

Model-based pre-processing, especially Extended Multiplicative
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Signal Correction (EMSC), has become more popular in recent years
[91–94]. This technique can be used to correct the typical baseline
errors (constant, linear and quadratic) as well as other interference
effects of which one has a priori knowledge, such as Mie scattering
[81–84, 95, 96]. EMSC model is built around a reference spectrum
m(ν̃). The reference spectrum can be an error free spectrum chosen
from the sample set or the average spectrum of the data set. Any
spectrum can then be written as

z(ν̃) = a + b · m(ν̃) + d · ν̃ + e · ν̃2 + εr(ν̃), (3.9)

where the spectrum z(ν̃) is a linear combination of a baseline shift
a, a multiplicative effect b times a reference spectrum m(ν̃), linear
and quadratic wavenumber-dependent effects d · ν̃ and e · ν̃2. The
term εr(ν̃) is the residual [90,97]. The parameters a, b, d and e can be
estimated by the least-squares method, and the corrected spectrum
can then be calculated with the following equation:

zcorr(ν̃) = (s − a − d · ν̃ − e · ν̃2)/b. (3.10)

3.4 ANALYSIS TECHNIQUES

3.4.1 Univariate analysis

Univariate analysis is the simplest spectral analysis method. A
single variable at time is investigated in a univariate analysis [88].
The variable can be height, width or integrated area of an absorp-
tion peak (Figure 3.4). In addition, a ratio of the heights or areas of
two different absorption peaks can be calculated. Univariate analy-
sis methods offer a fast and straightforward way to visualize large
IR imaging data sets. The univariate analysis assumes that an ab-
sorption peak can be linked to a single chemical component. Un-
fortunately, this is most often not the case in biological samples be-
cause of significant spectral overlap between different tissue consti-
tuents. Therefore, univariate analysis is not always an appropriate
option.
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Figure 3.4: Univariate analysis can be carried out, e.g., by calculating the integra-
ted area of an absorption peak.

3.4.2 Curve fitting

Curve fitting is a technique that can be used to decode the over-
lapping absorption peaks into sub-peaks that might contain more
detailed information about the composition of the sample (Figure
3.5). The sub-peak shape is usually approximated by a Gaussian,
Lorentzian or a Gaussian-Lorentzian mixture peak shape. The lo-
cations of the sub-peaks can be found by locating the local minima
in the second derivative spectrum. The other parameters of the
sub-peaks (width and height) are optimized to minimize the root-
mean-square difference between the measured spectrum and the
sum of the fitted sub-peaks [88]:

min

⎛
⎜⎝
√√√√(z(ν̃)−

n

∑
i=1

si(ν̃)

)2
⎞
⎟⎠ , (3.11)

where z is the measured spectrum and si are the fitted sub-peaks.
This technique has been utilized in different experiments, e.g., in
secondary structure analysis of proteins [98–101], for determining
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biochemical changes in tumors [102], for determining collagen type
[103, 104] and in collagen cross-link analysis [105–110].

Figure 3.5: An illustration of curve fitting of three overlapping peaks. The fitted
peaks can be analyzed separately to obtain more detailed information.

3.4.3 Second derivative spectroscopy

Derivative spectra are routinely used in IR spectroscopy [91,92,111–
114]. In particular, second derivative spectra have been found to be
useful since the second derivative can resolve adjacent overlapping
absorption peaks. The peaks of the original absorption spectrum
are seen as local minima in the second derivative spectrum (Figure
3.6). The use of second derivative spectra also reduces the need
for baseline correction as the differentiation removes some of the
baseline errors. Differentiation can be thought as a pre-processing
method rather than as an actual analysis method. Second derivative
spectra can be analyzed using the same methods as the absorption
spectra.

One major drawback in the use of derivative spectra is that the
noise is amplified in the differentiation process [115]. Because of
this the derivatives are practically always calculated using Savitzky-
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Figure 3.6: Second derivative spectrum of that shown in Figure 3.4. The negative
peaks correspond with the positive peaks in the original spectrum. Peaks are
narrower and better separated from each other in the second derivative spectrum.

Golay algorithm in order to reduce noise. The Savitzky-Golay al-
gorithm performs a least-squares fit of a polynomial of degree k
over at least k + 1 data points around each point in the spectrum
to smooth the data. The value of derivative at the respective point
is then found by differentiating the fitted polynomial at each point
[116, 117]. The smallest sub-peaks might be lost if an excessively
wide fitting window is used. Therefore, the parameters have to be
chosen carefully.

3.4.4 Multivariate regression

Multivariate analysis methods utilize more than one variable of the
spectra. The simplest multivariate regression method is Multiple
Linear Regression (MLR), which can be expressed as

yi = β0 + β1 · xi1 + · · ·+ βm · xim + ε i, (3.12)

where β are the regression coefficients, x are the input variables and
y is the measured variable. This can also be written using matrix
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presentation:
y = Xβ + ε. (3.13)

MLR is an effective regression method, but there is a risk of mul-
ticollinearity, i.e., two or more of the chosen variables are highly
correlated. This might lead to overfitting, making the model in-
stable.

Principal Component Regression (PCR) is similar to MLR, but
instead of using the measured variables directly, it uses so called
principal components (PCs). PCR is a bilinear model. A bilinear
calibration can be described with two matrix equations:

X = TP′ + E

Y = TQ′ + F,
(3.14)

where T is the score matrix, loading matrices P and Q represent the
regression coefficients of X and Y on T, and E and F are the resi-
duals. A linear transformation is performed in principal component
analysis so that a new set of uncorrelated variables (PCs) are found.
These uncorrelated variables are used in the regression model and
the multicollinearity problem is avoided. The PCs are construc-
ted to explain variance in measured data, and they are ordered so
that the first PC explains the most of the variance, the second PC
the second most and so on. A consequence of this arrangement
is that usually only a couple of the first PCs can be considered to
contain actual information while the rest can be considered to be
noise [118].

Partial Least Squares Regression (PLSR) is another bilinear cali-
bration model. Unlike in PCR, also Y variables are used when the
decomposition is performed. In PLSR, the variables T are construc-
ted to explain co-variance between the independent data (spec-
tra) and the dependent data (information predicted from the spec-
tra) [118, 119]. Consequently, PLSR tolerates a measurement error
in Y better than PCR.

Different methods have been developed to decompose the ma-
trices X and Y into the form of equations (3.14). In the following
section, an algorithm in case of one y variable (PLS1) is described.
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The matrix Y is now replaced by the vector y. First, X and y are
mean-centered. For the first PLS component, j = 1, X1 = X and
y1 = y. The following algorithm is run for the desired number (g)
of PLS components:

1)wj = X′
jyj/‖X′

jyj‖
2)tj = Xjwj

3)qj = y′
jtj/(t′jtj)

4)pj = X′
jtj/(t′jtj)

5)Xj+1 = Xj − tjp
′
j and yj+1 = yj − tjqj.

6)Stop if j = g; otherwise j = j + 1, return to 1.

(3.15)

Matrices W (an additional set of loadings), P and T are then formed
by the calculated vectors wj, pj and tj, and vector Q is formed by
qj. The regression vector can now be calculated:

β = W(P′W)−1Q. (3.16)

3.4.5 Genetic algorithm

Genetic algorithms are variable selection methods inspired by the
theory of evolution. Genetic algorithms can be used with multi-
variate regression methods. The genetic algorithm tries to find
the most useful variables for the regression problem instead of
using the full spectral window. The genetic algorithm begins with
an initial population consisting of multiple possible solutions to
the variable selection problem. These solutions are called chromo-
somes. Chromosomes are binary vectors consisting of ones and
zeros, where 1 means that the corresponding variable is selected.
Each one or zero is called a gene. The population size is typically
between 20-500 and this stays constant during calculations. Each
chromosome is evaluated mathematically, e.g., by calculating the
root-mean-square error of the prediction for the regression model
made using the variables of the chromosome. The initial population
produces an offspring by recombining the initial chromosomes. The
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recombination is made so that the best chromosomes have a better
chance of being copied. In recombination, cross-over of chromo-
somes and mutation are used to produce new chromosomes. In the
cross-over, randomly selected parts of two chromosomes are inter-
changed. A mutation is a change in a single gene. If elitism is used,
the best solution of each generation is passed on to the next gene-
ration without any changes. The genetic algorithm is usually run
for a pre-defined number of generations or until some other stop
criterion is fulfilled [120–122].

3.4.6 Cluster analysis

Cluster analysis techniques can be used to reveal qualitative dif-
ferences between the spectra. Cluster analysis divides data into
groups so that the samples inside a group are as similar as possible
while the data between the groups differ from each other. K-means,
Fuzzy c-means and Hierarchical Cluster Analysis are some of the
most popular clustering methods in use in IR spectroscopic stu-
dies [123,124]. For example, cluster analysis can be used to separate
healthy and diseased specimens [125–127], or to reveal tissue mor-
phology in IR microspectroscopic studies [128–130] solely based on
the spectral information.

3.5 INFRARED SPECTROSCOPY IN CARTILAGE RESEARCH

IR microspectroscopic study of AC began in 2001 when two pio-
neering studies were published by Camacho et al and Potter et
al [20, 21]. The first study presented univariate parameters with
which to quantify collagen and PG contents in AC. The amide I
(1584 - 1720 cm−1) was shown to correlate with the collagen content
and the carbohydrate region (984-1140 cm−1) correlated with the PG
content in pure compound mixtures of collagen and aggrecan [20].
A subsequent study suggested that PG quantification could be im-
proved by normalizing the carbohydrate region by amide I in or-
der to reduce the thickness variation in the prepared cartilage sec-
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tions [29]. That study used tissue engineered cartilage and pre-
sented correlations with optical density of Alcian blue staining and
dimethylmethylene blue (DMMB) staining. A statistically signifi-
cant correlation was found with Alcian blue staining but not with
DMMB [29]. Later, a statistically significant correlation was found
between the DMMB staining method and the integrated area of the
carbohydrate region [131]. Since their introduction, the univariate
methods have been applied in several AC studies. Depletion of PGs
and decreased integrity of collagen has been seen in OA studies
using univariate parameters [22, 25, 26, 132]. Decreased integrity in
arthritic human AC was revealed also by an intra-articular fiber op-
tic probe [133]. Furthermore, the clinical outcome of autologous
chondrocyte implantation in human AC was shown to correlate
with the PG content and the collagen integrity [134]. The speci-
ficity of the univariate parameters in human AC has been recently
questioned [135]. In an attempt to increase the specificity for colla-
gen, enzymatic removal of PGs can be used before conducting the
measurements [30, 136, 137].

The second pioneering approach used pure compound spectra
of collagen and PGs (chondroitin sulphate or aggrecan) to decom-
pose measured IR spectra of AC. The first method used the eucli-
dean distance between a cartilage spectrum and pure compound
spectra to obtain relative concentration of collagen and PGs. The
spectra are normalized before the calculations. In general, eucli-
dean distance between spectra z1 and z2 is calculated as follows

D(z1, z2) =

√√√√ ν̃n

∑
i=ν̃1

[z1(i)− z2(i)]2, (3.17)

where [ν̃1, ν̃n] is the wavenumber range in use. Euclidean distance
is small when the spectra are similar to each other [21].

The second multivariate method uses the linear combination of
chosen pure compound spectra to decompose cartilage spectrum
(zcartilage). When two pure compounds, zcollagen and zPG, are used,
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the equation is

zcartilage = ccollagen · zcollagen + cPG · zPG + ε, (3.18)

where ccollagen and cPG are the concentrations of corresponding pure
compounds, and ε is the unmodelled residual.

In two studies, type II collagen (scollagen) and chondroitin sul-
phate (sCS) were used as pure compounds in the linear combination
model [21,27]. The tissue-engineered cartilage was found to contain
more collagen and less PGs than the native cartilage [21] and focal
degenerative lesions in human osteoarthritic AC contained less PGs
than the surrounding healthy tissue [27].

Polarized IR light can be used to detect orientation of molecular
bonds. The polarized IR light studies of AC have revealed that the
intensities of amide I, amide II and amide III regions vary strongly
when polarization plane is altered [20, 24, 31, 32, 138], whereas the
sugar region shows only weak anisotropy in the radial zone of AC
[32,139]. It is known that the transition moments of the amide I and
II bonds are qualitatively perpendicular to each other [24,140]. This
has been utilized to assess the orientation of the collagen fibrils by
calculating the ratio of amide I to amide II peaks under polarized
IR light. The collagen fibril orientation was seen to be abnormal in
equine repair cartilage after a full-thickness chondral defect, as the
orientation of the collagen fibrils was random in all regions except
in the superficial layer [26].

The relative collagen and PG contents in bovine nasal cartilage
were predicted by building a PCR model using mixtures of collagen
and chondroitin sulphate. Biochemical analysis was also performed
for cartilage samples in order to confirm these results [33]. Later the
same PCR model was applied to AC to examine depth-dependent
concentration profiles of collagen and PGs in AC [141]. A PLSR
model was used in an intra-articular fiber optic probe study when
early-stage degradation of human AC was evaluated. A strong cor-
relation between the PLSR model and the histological OA grading
was revealed [142]. A PLSR model was also created to monitor the
OA progression in a rabbit model after ligament transection and
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medial menisectomy [25].
The peak height ratio of 1660/1690 cm−1 has been used for ana-

lyzing collagen maturity in bone [19, 105–110]. Recently, the peak
height ratio was used to evaluate the maturity of cross-links in re-
pair tissue in rabbit AC following healing of full-thickness osteo-
chondral defects [143]. The maturity was initially greater in the
repair tissue before reaching the levels present in control tissue.
However, the result was inconsistent with biochemically determi-
ned cross-link levels. Later, the peak height ratio was also used
for characterization of a cartilage-like engineered biomass in an at-
tempt to identify calcification of the tissue by comparing this ratio
with the values from normal cortical bone [144].

Cluster analysis was recently used to reveal histological layers
of AC based on IR microspectroscopic data. The fuzzy C-means
algorithm was applied to the IR spectra of bovine and rabbit AC
samples. The results were similar to the structural layers found
using polarized light microscopy. It was speculated that the clus-
tering was mainly a result of varying collagen-to-PG ratio in the
different layers of AC [145].

The origins of IR absorption peaks have been characterized for
biological tissues. Some uncertainty and overlap exist in cases where
there are many peaks. Therefore, the peak assignments should only
be regarded as suggestive. A list of possible peak assignments in
AC is shown in Table 3.1.
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Table 3.1: Assignment of second derivative IR peaks in AC.

Wavenumber Assignment of second derivative peaks

(cm−1)

1700-1600 Amide I region (C-O stretch)
1600-1500 Amide II region (C-N stretch + N-H bend)
1448 CH3 asymmetric bending vibrations [91, 146]
1400 COO− stretch of amino side chains [146]
1374 CH3 symmetric bending vibration of GAGs [147]
1336 CH2 side chain vibrations of collagen [146]
1280 Collagen amide III vibration with significant

mixing with CH2 wagging vibration from the
glycine backbone and proline sidechain [146]

1228 SO−
3 asymmetric stretching vibration of

sulphated GAGs [35]
1200 Collagen amide III vibration with significant

mixing with CH2 wagging vibration from the
glycine backbone and proline sidechain [146]

1120 C-O-S asymmetric stretching [148]
1080 C-O stretching vibrations of the carbohydrate

residues in collagen and PGs [91, 146]
1062 C-O stretching vibrations of the carbohydrate

residues in PGs [91, 146] / SO−
3 symmetric

stretching vibration of sulphated GAGs [148]
1032 C-O stretching vibrations of the carbohydrate

residues in collagen and PGs [91, 146]
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4 Aims of the study

IR microspectroscopic studies of AC have been performed for over
10 years and this technique has been taken into routine use in some
laboratories. This thesis work evaluates the quality of the spectral
analysis techniques and introduces new methods to enhance the
possibilities for using IR microspectroscopy in AC research.

The specific aims of this thesis were:

• to evaluate the specificity of current univariate IR spectral
analysis methods in the compositional analysis of AC,

• to investigate the IR spectroscopic changes caused by PG de-
pletion in AC,

• to improve the IR spectroscopic analysis of AC composition
through the use of curve fitting, second derivative spectro-
scopy and multivariate models,

• to determine whether it is possible to predict the compressive
biomechanical properties of AC samples based solely on their
IR spectra.
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5 Materials and methods

This thesis consists of four independent studies (I - IV), with the
focus on the development of analysis techniques for IR microspec-
troscopic data of AC. Digital densitometry (DD), biomechanical tes-
ting and biochemical analysis are used as reference techniques. All
samples, with the exception of the cryosectioned samples in study
II, have been extracted from earlier studies [4,15,60]. A summary of
the methods used in the independent studies is presented in Table
5.1.

Table 5.1: Materials and methods used in the studies I-IV. All AC samples were
prepared from bovine patellae.

Study Samples n Methods Parameters

I Intact 8 IR Univariate analysis
Enzymatically DD Curve fitting
degraded 8 Pure compound fitting

II Fixed sections 8 IR Univariate analysis
Cryosections 6 2nd derivative spectroscopy

III Intact 8 IR Univariate analysis
Enzymatically DD 2nd derivative spectroscopy
degraded 8 Multivariate analysis

IV Spontaneously IR Multivariate analysis
degraded 32 Biomechanical testing

Biochemical analysis

5.1 SAMPLE PREPARATION

Bovine patellar cartilage of 1–3-year-old specimen obtained from
a local slaughterhouse (Atria Oyj, Kuopio, Finland) was used in all
studies. Knee joints were opened within a few hours post mortem. IR
microspectroscopy was conducted in all studies. DD was conduc-
ted in studies I and III and biomechanical testing was conducted in
study IV.
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Studies I and III: Osteochondral plugs (diam. = 13 mm, n = 16)
were prepared from the lateral upper quadrant of the patellae. The
samples were kept moist with physiological saline during the
sample preparation. Control samples (n = 8) were subjected to no
additional processing. The other samples (n = 8) were subjected to
an enzymatic degradation of PGs. The samples were incubated at
37◦C for 44 h in 5% CO2 atmosphere in a cell culture medium with
antibiotics. Chondroitinase ABC enzyme was added to the medium
to degrade the superficial PGs [149]. An osteochondral plug (diam.
= 6 mm) was punched out from the center of the original sample
after incubation to ensure that the enzyme degrades the PGs only
from the superficial AC. Samples were fixed with 10% formalin,
decalcified, dehydrated in an increasing series of ethanol solutions
and embedded in paraffin (Paraplast Plus, Lance Division of Sher-
wood medical, Kildare, Ireland). Multiple 5-μm-thick sections were
cut perpendicular to the cartilage surface with a microtome (LKB
2218 HistoRange microtome, LKB produkter AB, Bromma, Swe-
den). Sections were placed on standard microscope slides and im-
mersed in xylene to remove the paraffin. Xylene was washed out
by using a descending series of ethanol and distilled water. One
section from each sample was placed on 2-mm-thick ZnSe window,
while another section from each sample was first treated with hya-
luronidase (type IV, H-3884, Sigma, St. Louis, MO, USA) for 18 h
to remove the PGs [150, 151] before it was placed on ZnSe window
for IR microscopic measurements.

Study II: Control samples in studies I and III were also used in
this study. Additional samples (n = 6) from bovine patellae were
prepared for cryosectioning in order to evaluate whether formalin-
fixation affects the enzymatic removal of PGs. Samples were kept
moist with physiological saline during the sample preparation. Car-
tilage samples were detached from the underlying subchondral bone
with a razorblade. Subsequently, the samples were embedded into
Tissue Tek Optimal Cutting Temperature (OCT) embedding me-
dium (Sakura Finetek, Torrence, CA, USA). Five μm thick cryosec-
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tions were cut (Reichert-Jung Frigocut 2800, Nussloch, Germany)
and OCT was removed with water from the sections before trans-
ferring them onto 2-mm-thick ZnSe windows for the IR micros-
pectroscopic measurements. After the measurements were conduc-
ted for both cryosections and formalin-fixed sections, all sections
were placed back on microscope slides for the enzymatic removal
of PGs. The sections were treated with hyaluronidase (type IV, H-
3884, Sigma) enzyme for 18h to remove PGs [150, 151]. After the
enzymatic treatment, the sections were rinsed with distilled water
and transferred back on ZnSe windows. The measurements were
repeated using identical measurement parameters.

Study IV: Knee joints obtained from a slaughterhouse were ope-
ned within 5 h of post mortem and thereafter the lateral facets of
patellar cartilage surfaces were visually classified by two experts to
four different degenerative grades: grade 0=intact cartilage surface
(n = 13), grade 1=slightly discoloured but otherwise smooth (n =
5), grade 2=superficial defect in cartilage (n = 6) and grade 3=deep
defect in cartilage (n = 8). Subsequently, a cylindrical osteochondral
sample (diam. = 19 mm) was drilled from each patella and split into
two halves. The first block was used for biomechanical reference
measurements whereas the second block was fixed with 10% for-
malin, decalcified, dehydrated and embedded in paraffin. Five μm
thick sections were cut perpendicular to the cartilage surface with
a microtome from each sample and placed on the 2-mm-thick ZnSe
window.

5.2 IR MICROSPECTROSCOPY

Measurements were conducted with a Perkin Elmer Spotlight 300
FT-IR imaging system (Perkin Elmer, Shelton, CO, USA). A CO2-
free dry air purge system (FT-IR purge gas generator, Parker Han-
nifin Corporation, Haverhill, MA, USA) was used during all mea-
surements to standardize the experimental conditions.

Pure compound spectra of type II collagen, chondroitin sulphate
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and aggrecan were measured and used in multivariate analyses in
study I and as qualitative references in studies II-IV. The purified
compound (1 mg) was mixed together with KBr powder (200 mg)
and homogenized manually. The homogenized mixture was com-
pressed with a manual press. Spectra were measured using a Perkin
Elmer Spotlight 300 FT-IR imaging system in the point mode, using
4 cm−1 spectral resolution, 100 μm aperture and 128 repeated scans.

In study I, the cartilage sections were measured using 6.25 μm
pixel size and 4 cm−1 spectral resolution and 4 scans per pixel. The
small pixel size was used in order to image the thin superficial layer
of AC accurately. In other studies (II-IV), the pixel size of 25 μm and
8 scans per pixels were used to achieve a good signal-to-noise ratio.

Pre-processing

In study I, the adjacent spectra from the 200 μm wide region-
of-interest were averaged to obtain only one spectrum for every
6.25 μm thick layer in the depth-wise direction of AC. The baseline
offsets of the spectra were then corrected so that the minimum value
of the spectra were set to zero.

In study II, spectra of each measured section were averaged
since only average changes were studied.

In study III, a data set consisting of 294 data points was as-
sembled so that PG concentration levels according to the safranin
O reference information were evenly presented. Second derivative
spectra were calculated using the Savitzky-Golay algorithm with 7
smoothing points.

In study IV, the spectra of each measured section were averaged.
Second derivative spectra were calculated with Savitzky-Golay al-
gorithm with 7 smoothing points and EMSC correction was applied
using equations (3.9) and (3.10).

Curve fitting

Curve fitting was performed point-by-point using a custom-made
Matlab (Ver. R2007b, MathWorks Inc., Sherborn, MA, USA) soft-
ware. Sub-peaks were modeled using a Gaussian peak shape:
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G(ν̃) = A · exp
(
− (ν̃ − ν̃0)2

2 · σ2

)
(5.1)

where A is the amplitude of the peak, ν̃0 is the location of the peak
and σ is the width of the peak. The locations of the sub-peaks
were found from the local minima in second derivative spectra.
The other parameters were obtained by minimizing the root-mean-
squared difference of the measured spectrum and the sum of the
fitted peaks. The number of sub-peaks was assumed to be the same
for all spectra, but the locations of the peaks were allowed to change
(± 8 cm−1) from the initial values provided that the second deriva-
tive spectrum indicated a peak shift. The spectral region of 1300
- 900 cm −1 was used for curve fitting. The integrated absorption
of each sub-peak was plotted from the superficial cartilage to the
cartilage-bone junction and compared to the safranin O distribu-
tion profiles.

Univariate methods

In studies I, II and III, the integrated absorbances of amide I (1720-
1585 cm−1) and carbohydrate region (1140-984 cm−1) were calcula-
ted to quantify collagen and PG content, respectively, in AC (Figure
5.1A). In study I, the amide I absorbance was calculated also after
enzymatic removal of PGs to serve as a reference for collagen dis-
tribution in AC. In study II, both amide I and carbohydrate region
absorbances were calculated also after enzymatic removal of PGs.

Pure compound methods

In study I, two pure compound-based multivariate methods, the
euclidean distance and linear combination, were used for collagen
and PG analysis. Type II collagen and either aggrecan or chondroi-
tin sulphate were used as pure compounds.

Second derivative spectroscopy

In study II, the changes caused by enzymatic removal of PGs were
evaluated by calculating the relative changes in second derivative
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peak heights in both formalin-fixed and cryosectioned sample
groups. The peaks that showed the most significant changes were
assumed to be PG-related peaks, whereas the peaks that showed
only minimal or no changes were considered as collagen-related
peaks (Figure 5.1B). The depth-wise distribution profiles of the most
interesting peaks were plotted as group means of formalin-fixed
sections. For comparison, a difference spectrum was calculated by
subtracting the mean absorption spectrum after the removal of PGs
from the mean spectrum of the same samples before the treatment
to show the changes seen in the absorption spectrum.

Figure 5.1: A) IR absorption spectrum and B) second derivative spectrum of bo-
vine AC. The peaks used in the analyses are marked in the spectra.

Multivariate regression

In studies III and IV, multivariate regression models were used to
predict PG content and biomechanical properties of AC from IR
spectra. In study III, the optical density of safranin O was used
as reference data. In study IV, the equilibrium modulus and dy-
namic modulus obtained from biomechanical testing were used as
reference data.

In study III, spectral regions of 1000-1440 cm−1 and 1480-1700
cm−1 were used in multivariate models, whereas in study IV, spec-
tral regions of 900-1440 cm−1 and 1480-1800 cm−1 were used in
multivariate models. The region of 1440-1480 cm−1 was omitted
since the absorption bands of paraffin residues are present in this
region.
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The optimal number of variables for the regression models was
chosen based on the root-mean-square error of the cross-validation
(RMSECV):

RMSECV =

√
∑n

i=1(ŷi − yi)2

n
(5.2)

where ŷi is the predicted value and yi is the observed value and n is
the number of samples [118,152]. In leave-one-out cross-validation,
each sample in turn is removed from the data to be used as a valida-
tion data. The number of variables is optimal when increasing the
number of variables no longer significantly decreases the RMSECV.
The performance of final models was evaluated by RMSECV and
Pearson’s correlation coefficient. In study III, both PCR and PLSR
models were used. In study IV, PLSR model was used. In addition,
the genetic algorithm was used for the variable selection.

Genetic algorithm

In study IV, a genetic algorithm was used for variable selection
when the multivariate models were built. The parameters used
in the genetic algorithm were as follows; the population size: 100,
gene initialization probability: 5%, cross-over method: one-point,
cross-over probability: 80%, mutation probability: 1%, number of
generations: 100, response to be minimized: RMSECV of the pre-
diction of the multivariate model.

The number of PCR or PLSR components for equilibrium modu-
lus was chosen based on the full spectrum model. In the dynamic
modulus, the full spectrum model used a relatively high number of
components. A simpler model was preferred when the genetic al-
gorithm was used. Therefore, the same number of components was
used for both the equilibrium modulus and the dynamic modulus
when the genetic algorithm was used.

There is a risk of overfitting when variables/objects ratio is too
large. As a rule of thumb, the performance of genetic algorithm
decreases when more than 200 variables are used [121]. Originally,
the spectra contained 450 variables and there was 32 samples. To
avoid the problem with overfitting, the spectra were averaged with
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a window size of 5, which resulted in 90 variables. The genetic
algorithm was run for 100 times and the selection frequencies of the
variables were calculated. When the final model was built, variables
were added to the model according to their selection frequencies.
The variable combination that resulted in the minimum RMSECV
was chosen as the final model.

5.3 DIGITAL DENSITOMETRY

In studies I and III, DD of Safranin O -stained AC sections was used
to assess the spatial distribution profiles of PGs. Multiple three-μm-
thick sections were cut from each sample. The sections were stained
with 0.5% safranin O as described in our earlier study [151]. Safra-
nin O is a cationic dye that binds stoichiometrically to the negati-
vely charged GAGs in aggrecan [49, 153]. Therefore, the safranin
O staining is an indirect estimate of the PG content in AC. The in-
tensity of safranin O staining was measured using monochromatic
light (492±5 nm), a microscope (Leitz Ortholux-II, Leitz, Wetzlar,
Germany) and a 12-bit CCD camera (CH250, Photometrics, Tucson,
AZ, USA). The system was calibrated using neutral density filters
(Schott, Mainz, Germany). Three sections per sample were mea-
sured to reduce the sample thickness variation. The rows of the
measured image were averaged to obtain a depth-dependent sa-
franin O distribution profile for each measured section. Then all
profiles of the same sample were averaged.

5.4 BIOMECHANICAL TESTING

In study IV, a custom-made material testing instrument (with re-
solutions of 5 mN and 0.1 μm for the force and position, respecti-
vely) was used for biomechanical reference measurements. Testing
was performed using a stress-relaxation (10% prestrain followed by
10% strain with 2 mm/s ramp speed and relaxation time of 2400
s) protocol in unconfined compression geometry. Young’s modulus
at equilibrium and dynamic modulus were calculated as a stress-
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strain ratio after the relaxation and instantaneously after a 10% step,
respectively [15].

5.5 BIOCHEMICAL ANALYSIS

In study IV, uronic acid (PG content) [154] and hydroxyproline
contents (collagen content) [155] were determined using biochemi-
cal reference methods.

5.6 STATISTICAL ANALYSIS

In study I, Pearson’s correlation coefficient was calculated between
the IR spectroscopy-derived parameters and the optical density of
Safranin O for each sample pair to compare the shape of the PG
distribution profiles. The non-parametric Wilcoxon signed-rank test
was used to test the significance of the differences in the correlation
coefficients between the different parameters.

In study II, the non-parametric Wilcoxon signed-rank test was
used when the statistical significance in the observed changes cau-
sed by the removal of PGs was evaluated. The non-parametric
Mann-Whitney U-test was used when the statistical significance in
differences between formalin-fixed sections and cryosections was
evaluated.

In study III, Pearson’s correlation coefficients were calculated
between the observed values and different IR spectroscopic parame-
ters. The statistical difference between the correlation coefficients
was tested by using a test described by Steiger [156]. Bonferroni cor-
rection was applied because of multiple comparisons (n = 7 compa-
risons). Therefore, the level of significance was p < 0.05/7 = 0.007.

In study IV, Pearson’s correlation coefficients were calculated
between the observed values and values predicted by the multiva-
riate models.

In all studies, SPSS 14.0 (SPSS Inc., Chicago, IL, USA) or Matlab
2010b (Mathworks Inc., Natick, MA, USA) software was used for
statistical analyses.
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6 Results

6.1 UNIVARIATE METHODS

The difference spectrum revealed that the most significant changes
occur in the carbohydrate region when the PGs were enzymatically
removed (II). The carbohydrate region changed 35.9% (p < 0.01)
and 31.0% (p < 0.05) in formalin-fixed sections and cryosections,
respectively. However, the depth-wise distributions of the integra-
ted absorbance of the carbohydrate region did not agree closely
with the safranin O distributions (I). The mean (± standard de-
viation) correlation for depthwise data of individual samples was
0.69 ± 0.11 and 0.55 ± 0.18 for chondroitinase ABC-treated samples
and control samples, respectively (I). The deviation from the re-
ference distributions (Figure 6.1A) was most evident in the deep
region of AC (Figure 6.2A). The overall correlation with the optical
density of safranin O was r = 0.605 (p < 0.001) (Figure 6.3A) (III).
Correlation analysis showed that some of the largest PG concen-
trations were extensively overestimated by the carbohydrate region
absorbance.

When the PGs were removed, the amide I region, traditionally
used for collagen analysis, changed by 8.2% (p < 0.01) and 11.2%
(p < 0.05) in formalin-fixed sections and cryosections, respectively
(II). The depth-wise distributions of amide I after the removal of
PGs are shown in Figure 6.1. When the carbohydrate region was
normalized with the amide I, overestimation of high PG concen-
tration values was not present, but the smallest PG concentrations
were overestimated (Figure 6.2B). The mean correlation of indivi-
dual samples was 0.65 ± 0.24 and 0.37 ± 0.19 for chondroitinase
ABC-treated samples and control samples, respectively (I). The ove-
rall correlation with the optical density of safranin O was r = 0.379
(p < 0.001) (Figure 6.3B) (III).
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Figure 6.1: A) Safranin O distributions of control and enzymatically modified car-
tilage samples. B) Amide I absorbance after enzymatic removal of PGs of control
and enzymatically modified samples.

Figure 6.2: Depth-wise distributions of different IR spectroscopic PG parameters
and mean correlation (± standard deviation) with the reference safranin O distri-
butions in chondroitinase ABC-treated samples and control samples, respectively.
A) Carbohydrate region (r = 0.69 ± 0.11 and r = 0.55 ± 0.18), B) carbohydrate
region normalized with amide I (r = 0.65 ± 0.24 and r = 0.37 ± 0.19), C) least-
squares fit using pure compound spectra of chondroitin sulphate (r = 0.69 ± 0.09
and r = 0.55 ± 0.31) and type II collagen and D) curve fitting (r = 0.91 ± 0.06 and
r = 0.76 ± 0.13).
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6.2 PURE COMPOUND METHODS

The euclidean distance of aggrecan or chondroitin sulphate and AC
spectra was used to estimate the relative amount of PGs in AC (I).
Both spectra failed to show the complete loss of PGs in the super-
ficial layers of chondroitinase ABC-treated samples, provided that
the off-set corrected spectra were used. However, when a polyno-
mial baseline correction was applied to the spectrum of chondroitin
sulphate, the loss of PGs was revealed. Otherwise, all spectra pro-
duced similar results. No correlation analysis was performed since
only the relative amount of PGs was investigated.

The linear combination of offset-corrected collagen and aggre-
can or chondroitin sulphate spectra provided no meaningful results
for PGs since the coefficient for PGs was systematically zero. When
the polynomial baseline correction was applied to the spectrum of
chondroitin sulphate, the loss of superficial PGs was revealed with
the linear combination method (Figure 6.2C). However, the amount
of PGs in the deep layers of AC was overestimated. The mean cor-
relation of individual samples was 0.69 ± 0.09 and 0.55 ± 0.31 for
chondroitinase ABC-treated samples and control samples, respecti-
vely.

6.3 CURVE FITTING

Curve fitting was used to decompose measured AC spectra (I). One
peak, located at 1060 cm−1, produced similar depth-wise distribu-
tions to that of safranin O staining (Figure 6.2D). The mean cor-
relation of individual samples was 0.91 ± 0.06 and 0.76 ± 0.13 for
chondroitinase ABC-treated samples and control samples, respecti-
vely. The other peaks in the investigated spectral region (1300-900
cm−1) were strongly affected by collagen and were not considered
as suitable peaks for PG analysis.
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6.4 SECOND DERIVATIVE SPECTROSCOPY

The enzymatic removal of PGs was used to locate the PG-related
and collagen-related second derivative peaks in AC (II). Only two
peaks, located at 1062 cm−1 and 1374 cm−1, were seen to change ex-
tensively. The peak 1062 cm−1 changed 49.9% and 58.0% in formalin-
fixed sections and cryosections, respectively, while the peak 1374
cm−1 changed 61.0% and 83.7%. The PG-related second derivative
peaks were correlated with safranin O-staining of parallel sections.
The correlation coefficients were r = 0.701 (p < 0.01) and r = 0.766
(p < 0.01) between safranin O staining density and the peaks at
1062 cm−1 and 1374 cm−1, respectively (Figures 6.3C and 6.3D) (III).

Several peaks showed only minimal changes when PGs were re-
moved, and therefore were regarded as collagen-related peaks (II).
These peaks were located at 1638 cm−1, 1514 cm−1, 1448 cm−1, 1336
cm−1, 1202 cm−1. The observed changes in these peaks were not
statistically significant except for the peak at 1202 cm−1 in formalin-
fixed sections, which increased by 4.7% (p < 0.01).

6.5 MULTIVARIATE REGRESSION

Two multivariate models, PCR and PLSR, were built to predict PG
content of AC (III). RMSECV was used to select the optimal number
of components for the models. Seven components were considered
to be optimal as RMSECV did not decrease significantly any longer
when more components were added to the model. PCR model
showed a high linear correlation with the optical density of safranin
O (r = 0.903, p < 0.001) (Figure 6.3E). PLSR model even improved
the correlation with the reference information (r = 0.943, p < 0.001)
(Figure 6.3F).

PLSR models were built to predict equilibrium modulus and
dynamic modulus of AC samples (IV). First, the models were built
using the full spectrum. The best model for the equilibrium mo-
dulus was achieved with three PLS components. The correlation
coefficient of the predicted values with the reference values was
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Figure 6.3: Scatter plots between the reference PG information and different IR
spectroscopic parameters: A) the carbohydrate region, B) the carbohydrate region
normalized with the amide I, C) derivative peak 1062 cm−1, D) derivative peak
1374 cm−1 E) PCR model and F) PLSR model.
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r = 0.828 (p < 0.001). The best model for the dynamic modu-
lus required six PLS components. The correlation coefficient bet-
ween the predicted values and the reference values was r = 0.893
(p < 0.001). However, eight of the samples were significantly stiffer
than the others which increased the correlation coefficient. When
the small and high values were separated from each other, the cor-
relations were lower (r = 0.63 and r = 0.55 for lower and higher
value clusters, respectively). Another model was built for a sample
set from which the stiffest samples were omitted. This model pre-
dicted the dynamic moduli better (r = 0.725, p < 0.001) than the
earlier model in the range of 0 - 2.5 MPa.

In order to improve the results, a genetic algorithm was used to
select the variables for PLSR models. Four PLS components were
used for both equilibrium modulus and dynamic modulus. A total
of 16 variables (Figure 6.4A) resulted in the best prediction of equi-
librium modulus (r = 0.866, p < 0.001) (Figure 6.5A). This result is
slightly better than that which was obtained with the full spectrum
model. In the case of the dynamic modulus (with stiffest samples
removed from the data) 17 variables (Figure 6.4B) were used. A
more significant improvement was revealed in the prediction of the
dynamic modulus, i.e., the correlation coefficient between the pre-
dicted values and the reference values was r = 0.898 (p < 0.001)
(Figure 6.5B).

PLSR models were built to predict bulk composition (collagen
and PGs) of bovine AC samples (unpublished). The models were
first built using the full spectra and then using the genetic algo-
rithm to select optimal variables. Four PLS components were opti-
mal for the prediction of the PG content in the full spectral model
(r = 0.836, p < 0.001). The genetic algorithm selected 11 out of 90
(Figure 6.4C) possible spectral variables to achieve the best model
(r = 0.875, p < 0.001) (Figure 6.5C). The collagen content was best
predicted when three PLS components were used in the full spec-
tral model (r = 0.765, p < 0.001). The genetic algorithm selected
13 out of 90 (Figure 6.4D) possible 10-wavenumber-wide spectral
variables for the best model (r = 0.876, p < 0.001) (Figure 6.5D).
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Figure 6.4: The wavenumbers selected by genetic algorithm for PLSR models to
predict A) Young’s modulus, B) dynamic modulus, C) PG content and D) collagen
content.
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Figure 6.5: Scatter plots between the PLSR models utilizing the variables selected
by the genetic algorithm and A) Young’s modulus, B) dynamic modulus, C) PG
content and D) collagen content.
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7 Discussion

7.1 UNIVARIATE METHODS

Univariate methods are easy to implement and can be used for fast
visualization of spectroscopic data sets. However, they do not uti-
lize the measured spectral data as efficiently as would be possible.
This was demonstrated in studies I, II and III. The problems ori-
ginate from the significant overlap of collagen and PG vibrations
as seen from their pure compound spectra. In earlier studies, the
amide I correlated with the collagen content and the carbohydrate
region with the PG content in pure compound preparates [20]. La-
ter, the carbohydrate content normalized with amide I has been
shown to correlate with the optical density of Alcian blue [29]. Ho-
wever, in study II, it was shown experimentally that the amide I
absorbance contains a significant contribution from PGs, i.e., amide
I is not a pure measure of collagen. Similarly, although the car-
bohydrate region is the best option for PG quantification from the
absorbance spectrum, it is still not fully specific for PGs in all si-
tuations (I, III). Instead, the depth-wise distributions of the carbo-
hydrate region (with or without amide I normalization) differed
markedly from those of safranin O, a well validated method for
the determination of PG content [49,153]. One possible explanation
for this discrepancy is that this study I utilized bovine AC whereas
the earlier study used tissue engineered cartilage. Nonetheless, one
must conclude that the univariate methods do not provide the most
effective analysis of multivariate data.

7.2 PURE COMPOUND METHODS

Two methods based on the use of pure compound spectra were
investigated in study I. The euclidean distance measure is suitable
mainly for qualitative analyses as it evaluates the similarity between
two spectra. The linear combination of pure compound spectra can
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be used for quantitative analysis. However, the results were poor
unless a polynomial baseline correction was applied to the chon-
droitin sulphate spectrum. There are two explanations for the diffi-
culties encountered with the linear combination methods. First, the
dry matrix of AC was assumed to be composed of only collagen and
PGs. This is not strictly correct. Second, it was assumed that the
isolated pure compounds would be spectroscopically equal to the
compounds in the tissue. The isolation of pure compounds requires
multiple purification steps with different chemicals which might
alter their original structure. In addition, interactions between dif-
ferent compounds in the tissue might introduce spectroscopical dif-
ferences compared to the isolated compounds. For these reasons
the direct use of pure compound spectra might not always be ap-
propriate. The need for a strong baseline correction supports the
belief that the isolated pure compounds are not spectroscopically
equivalent to the compounds in the tissue. The pure compound
spectra offer a starting point for the model, but because of the afo-
rementioned reasons, they do not always represent the compounds
in the tissue perfectly. Possibly, a better result could be achieved
if pure compound spectra would be treated only as initial approxi-
mations. For example, this can be done by using a chemometric
method called Multivariate curve resolution (MCR), which adjusts
the initial spectral approximations to solve the problem more effi-
ciently [157, 158].

7.3 CURVE FITTING

In study I, curve fitting was used to decompose the overlapping ab-
sorption peaks in the carbohydrate region into separate sub-peaks
in order to improve the specificity for PGs. Interestingly, only one
peak in this region was seen to be strongly related to PGs. The sub-
peak located at 1060 cm−1 correlated with the safranin O staining
better than the earlier univariate or pure compound methods. This
peak has been assigned to both C-O stretching vibrations of the car-
bohydrate residues in PGs [91, 146] and SO−

3 symmetric stretching
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vibration of sulphated GAGs [148]. As safranin O attaches to the
negatively charged GAGs, and the sub-peak correlated with the sa-
franin O reference information, it appears that the sub-peak 1060
cm−1 is more strongly related to sulphate vibrations than to C-O
vibrations.

Although curve fitting improved the accuracy of PG analysis,
the technique has some major limitations, especially in imaging stu-
dies. First, the second derivative spectra are typically used to locate
the sub-peaks. This poses demands on the high signal-to-noise ratio
as the differentiation amplifies also the noise. Noise introduces ad-
ditional local minima to second derivative spectra that can be inter-
preted as locations of actual peaks. However, a high signal-to-noise
ratio is not so critical if pre-defined peak locations are used. Second,
the optimization process for obtaining height and width parameters
of sub-peaks is computationally demanding. Even though the time
that the optimization requires to handle one spectrum might only
take one second or even less, the total time for a single sample can
quickly be transformed to minutes or even hours as one IR spec-
troscopic image can contain thousands of spectra. Finally, the opti-
mized curve fitting solution of experimental spectrum is probably
never unique, but slightly different results will be obtained depen-
ding on which optimization algorithm is being used as well as the
number of peaks to be fitted and the peak shape. Curve fitting is
an effective spectral analysis method, but it requires care and ex-
perience when it is applied, and is not a feasible method for the
analysis of large data sets because of the long analysis time.

7.4 SECOND DERIVATIVE SPECTROSCOPY

Second derivative spectroscopy was used for resolving nearby lying
bands (II and III). It improved the separation of absorption peaks.
The enzymatic removal of PGs revealed that multiple peaks were
strongly linked to collagen vibrations as they showed only minor
or no changes in the experiment (II). The changes reached no le-
vel of statistical significance in three of these peaks (except for 1202
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cm−1 in formalin-fixed sections): 1202 cm−1 (amide III vibration of
collagen), 1336 cm−1 (CH2 side chain vibrations of collagen) and
1448 cm−1 (asymmetric bending of CH3). Therefore, they provi-
ded the best peaks for collagen analysis. Depth-wise distribution
patterns of the collagen-related peaks were similar before and af-
ter the enzyme treatment, which further indicates that these peaks
originate from the collagen vibrations and not from PGs.

Many peaks have been assigned to GAGs in the earlier litera-
ture (Table 3.1). However, only two of the peaks (1062 cm−1 and
1374 cm−1) displayed an extensive reduction in their intensity when
PGs were removed. The peak located at 1374 cm−1, which is assi-
gned to CH3 stretching vibrations of GAGs, displayed the most
extensive change in the experiment. The other peak with extensive
changes, 1062 cm−1, has been assigned to both C-O stretching and
SO3− stretching vibrations. Interestingly, these two peaks produ-
ced slightly different depth-wise distribution patterns. Despite the
fact that for the first 60% of the cartilage thickness the patterns were
very similar, they differed in the deep cartilage. A strong increase
was seen in the intensity of the peak 1374 cm−1 while the intensity
of the peak 1062 cm−1 slightly decreased. Non-sulphated glycopro-
teins could explain the difference. It has been suggested that the
deep cartilage contains significant amounts of non-sulphated gly-
coproteins, which would explain the increase in CH3 vibration in
the deep tissue [159]. The CH3 vibration does not differentiate sul-
phated PGs and non-sulphated glycoproteins from each other, whe-
reas SO3− stretching vibration is able to distinguish between these
forms. Therefore, it can be speculated that the peak at 1374cm−1 is
related to all GAGs and glycoproteins while the peak at 1062 cm−1

is related directly to GAGs.

Second derivative spectroscopy offers one way to increase the
specificity for collagen and PGs as compared to earlier univariate
methods. However, this requires a high signal-to-noise ratio as the
noise is amplified in the differentiation of the spectra. The problem
becomes more significant if the analyzed peak is weak, as is the case
with the sulphate peak at 1062 cm−1. The signal-to-noise ratio can

50 Dissertations in Forestry and Natural Sciences No 90



Discussion

be increased by collecting more scans per pixel, increasing the pixel
size or reducing the spectral resolution in use. However, some of
the smaller peaks will be lost if the spectral resolution is reduced.
Further, sometimes a small pixel size is needed if highly spatial
compositional changes are studied. The number of scans per pixel
can be increased, but since this increases the measurement time,
there has to be a compromise between the quality of spectra and
measurement time. When the large sample pools are considered,
the total measurement time might become excessive if one attempts
to analyse weak peaks with a small pixel size.

7.5 MULTIVARIATE REGRESSION

Multivariate models (PCR and PLSR) were found as the most useful
methods for exploiting the spectroscopic data efficiently (III, IV). In
the simplest multivariate method, MLR, a major problem encoun-
tered is the multicollinearity of measured variables. This is avoided
by transferring the original variables into new orthogonal variables.
This enables the building of multivariate models without the mul-
ticollinearity problem. On average, a fairly low number of new
variables (4-7) were needed to predict the biochemical composition
or biomechanical function of AC. It can be assumed that the multi-
variate models utilize the spectroscopic data efficiently and that the
IR absorption spectra of AC contain very detailed information on
AC composition. Therefore, the composition can be predicted with
high specificity using IR spectra. However, in the case of biomecha-
nical properties, a good result based on the average spectrum of the
sample is not necessarily expected. The biomechanical properties of
AC are determined by its heterogeneous composition and structure.
The equilibrium modulus of AC was predicted with good accuracy
by a relatively simple model in the sample set used (3 components).
It was more difficult to predict the dynamic modulus from IR spec-
tra. Some of the samples were shown to be significantly stiffer than
the others. Ideally, a multivariate model should be trained by using
a sample set with evenly distributed reference values. This was not
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the case with the dynamic modulus, and the model was not feasible
when all samples were used. This is because of the uneven distri-
bution of dynamic modulus values, and furthermore, the dynamic
moduli of the stiffest samples are most likely strongly influenced
by the collagen network architecture. IR spectra mainly contain in-
formation on the biochemical composition of the sample. Although
some structural information can be achieved by IR spectroscopy, the
present spectra were average spectra of the samples. Therefore, in-
formation on the collagen network structure is not included in the
spectra. When the stiffest samples were omitted, the accuracy of
the model was significantly improved.

In study IV, a genetic algorithm was used to further improve the
PLSR models for prediction of the biomechanical properties of AC.
The genetic algorithm is an iterative algorithm that preselects the
most useful variables from the measured spectra to build the most
optimal multivariate model for the problem. The variables were
averaged (window size of 5 variables) before the genetic algorithm
in order to avoid overfitting. Nonetheless, a relatively low num-
ber of original variables was needed to predict the equilibrium (16
variables) and dynamic modulus (17 variables) to achieve the best
model. One reason for this might be the low number of samples.

Equilibrium modulus is known to be strongly linked to PG
content, while the collagen network plays an important role in dy-
namic loading. This might explain why the models did not use
identical spectral regions. Water is also an important factor in the
biomechanical behaviour of AC. Information on water was not in-
cluded in the IR spectra of AC, as the measurements were conduc-
ted using dry sections. However, the amount of water in AC is
dependent on the PG content, since PGs attract water in the tissue,
and the collagen content, as the collagen network limits the volume
that water can take. Therefore, the volume of water can be approxi-
mated if the amounts PG and collagen contents are known. This
might explain the obtained good correlations with the biomechani-
cal reference measurements, even though the IR spectra contained
direct information only on the dry matrix content of AC.
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Discussion

In the future, the multivariate models for the prediction of bio-
mechanical properties could be enhanced in two ways. First, the
spatial variation in composition could be taken into account. For
example, this could be achieved by utilizing ten evenly divided
layers of the cartilage to produce ten different spectra for each
sample and to use so-called multi-block multivariate methods [160].
The second important thing is to include the collagen network ar-
chitecture into the model. This could be measured by using pola-
rized light microscopy [52] or polarized IR spectroscopy [20, 24, 31,
32, 138] and taken into account by including the depth-wise colla-
gen orientation in the same multi-block model as the IR spectra.
In principle, this kind of model should explain very accurately the
specific biomechanical parameters of AC.

7.6 COMPARISON OF ANALYSIS METHODS

The results of this thesis show that while the univariate methods
are straightforward in use, they do not exploit the full potential
present in IR spectroscopic imaging. Univariate methods typically
represent the first step when new data sets are investigated. They
are suitable for visualizing the data and in some cases they do
produce sufficiently specific information about the composition of
the samples. However, this is usually not the case with biological
samples, because absorption peaks overlap with each other and it
is difficult to identify specific peaks.

Curve fitting or second derivative spectroscopy can be used to
increase the separation between overlapping absorption peaks. The
results show that this is beneficial when the composition of AC is
analyzed. However, they do not resolve the problem completely.
In addition, both methods have their own inherent weaknesses es-
pecially when imaging studies are concerned, as curve fitting is
computationally demanding, and second derivative spectroscopy
requires a high signal-to-noise ratio. The use of pure compound
spectra is intended to decompose the measured spectrum into com-
ponent spectra instead of resolving all separate absorption peaks.
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In principle, this approach is feasible, but the results of this study
were not as good as expected. This is most likely related to the dif-
ficulty of obtaining a proper pure compound spectra from which to
model the compounds in the tissue.

Multivariate regression methods offer a means to achieve very
good results in both prediction of composition and functional pro-
perties of AC. PCR and PLSR form new uncorrelated variables that
can be used to predict the desired properties of the samples. By
adopting this approach, the problems associated with multicolli-
nearity can be avoided. Very good results can be obtained in many
cases by directly using either full spectra or certain spectral regions.
Variable selection techniques, such as genetic algorithm, can be uti-
lized to select the most relevant spectral regions and to improve
the results even further. Multivariate regression methods require
the collection of a representative sample pool and the calibration of
the IR spectra using the reference information obtained from other
measurements. Computational techniques are then used to find the
corresponding information from the IR spectra. Accurate qualita-
tive and quantitative analyses can be conducted in this way from IR
spectra.
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8 Conclusions

IR microspectroscopy represents a powerful tool for biochemical
characterization of AC at microscopic level. However, the results
are strongly dependent on the spectral analysis methods. In order
to utilize the spectroscopic data effectively, one must be aware of
the potential and limitations of these analysis methods.

The most important findings of this thesis may be summarized as
follows:

• The specificity of the previously used univariate parameters
for collagen and PGs is limited.

• The separation of overlapping peaks can be increased by curve
fitting or second derivative spectroscopy. This also improves
the biochemical specificity of the peaks.

• Multivariate regression models provided the most effective
analysis of biochemical composition of AC.

• Multivariate regression models can be further enhanced with
the variable selection algorithms, such as the genetic algo-
rithm.

• Prediction with high accuracy of the specific biomechanical
parameters of AC is possible solely from IR spectra by ap-
plying multivariate regression models.
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Lassi Rieppo

Infrared Spectroscopic 
Characterization of 
Articular Cartilage

Infrared spectroscopic imaging is a 

powerful tool for chemical analysis 

at the microscopic level. The tech-

nique has been used for the charac-

terization of articular cartilage (AC). 

However, the development of data 

analysis methods has been slow. 

This thesis work aimed at developing 

novel infrared spectroscopic analy-

sis techniques to help characterize 

AC.  The novel methods included 

curve fitting, second derivative spec-

troscopy and multivariate regression 

models. The thesis work reveals that 

infrared spectra can provide detailed 

information on the composition and 

the biomechanical properties of AC 

when the spectroscopic data is ex-

ploited efficiently.
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