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Abstract

This work contains theoretical, numerical, and experimental studies on laser beam

shaping. The basic concepts of wave optical analysis of propagation of optical fields

and the scalar theory of diffraction are discussed, and applied to the design of diffrac-

tive beam shaping elements which transform a Gaussian beam into a uniform irradi-

ance profile in the Fresnel domain or in far field. Fabrication and characterization

of these elements is also considered. Conclusions are made on the choice of design,

depending on the tolerances available.
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Chapter I

Introduction

Beam shaping started back in seventh century B.C with the use of magnifying glass

to concentrate sunlight to burn wood [1]. For about 180 years, use of Fresnel lenses

[2, 3] in light houses, traffic lights, wireless networks, and overhead projectors have

been some of the important beam shaping applications. Beam shaping has been used

for improving technologies like lithography [4], laser printing [5], some medicine and

laboratory research [5], material processing [6], micro machining, laser processing [7],

line integrator [8], camera optics [8], and holography [9].

Beam shaping methods can be divided in two groups. First, there are beam

integrators in which the input beam is split into separate components and merged

at target plane to get a desired profile [7]. The second approach to beam shaping,

to be considered in this thesis, is based on geometrical map transforms. A beam

transformer performs field mapping from input to target plane [10–12]. For example,

transformation of Gaussian beam into top-hat [13], super-Gaussian, Bessel [14],

Fermi-Dirac, or some other shape with specified irradiance [15] can be of interest.

Beam transformers can be based on refractive [16], reflective or diffractive optics [17].

This thesis mainly focuses on diffractive optics.

One of the first beam-shaping papers was published by Frieden in 1965 [18] and

a device using map-transform techniques was introduced by Han in 1983 [19]. It

converted a Gaussian beam into a uniform irradiance distribution by use of two

consecutive elements. Later, rotationally symmetric and one dimensional axicons

[20–22] and beam-shaping elements for lasers [13,23–29] were designed using a single

element.

This thesis concerns the design, tolerance analysis, fabrication, and characteri-
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zation of beam shaping elements based on geometrical map transforms. This work

is partially theoretical and partially experimental. Chapter II deals with the scope

of the thesis and chapter III deals with fundamentals of diffraction and scalar wave

theory. In chapter IV, methods for analysis of propagation of optical fields are

considered for uniform medium. The paraxial approximation case like Fresnel prop-

agation formula and the complex amplitude transmittance approach method are also

discussed. Chapter V deals with design examples and theoretical simulation results

on diffractive beam shaping elements. Design, optimization, and tolerance analysis

are discussed in chapter VI. Finally, conclusions are drawn in chapter VII and some

prospects for future work are outlined in chapter VIII.
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Chapter II

Aim and scope

Transforming a Gaussian beam to one with uniform irradiance is important for

many applications: for example laser material processing, laser scanning, and laser

radar [7] require uniform irradiance with desired shape and sharp edges. The beam

properties at a given distance z from the initial plane are completely determined by

the beam properties at the initial plane. Usually one is interested in the intensity

distribution at a given target plane. Then the question arises: how can a desired

intensity distribution in the plane z or at a some other surface be produced only by

choosing the beam properties at the initial plane?

The aim of this thesis is to use diffractive optics to convert a known input field

or beam into one with defined output distribution. In practise, the most important

example is converting a Gaussian input beam to flat top beam. The approach

adopted here is based on the geometrical map transform technique. The concept is

old, but realization of the required diffractive elements at high light efficiency has

become possible much more recently, as a result of developments in lithographic

fabrication techniques of phase-modulating elements [36].

The beam shaping diffractive elements perform a 1-to-1 mapping of the input

light to output profile, and we can control both intensity and phase of the output

beam. Designing the phase function of beam shaping element is done using map

transform method in Matlab.

Some critical factors like fabrication errors and alignment issues were considered

as they affect the performance of these beam shaping elements.

Within scalar theory the desired complex amplitude transmittance function of

the element may be calculated by propagating the field from the signal plane to the
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element plane and dividing by the incident beam. The resulting element is then

characterized by continuous amplitude and phase modulation. Usually one prefers

phase only modulation, because it is easier to produce elements that modulate only

the phase rather than the phase and amplitude. It is always possible to modulate

both phase and amplitude by separately producing them as shown in Fig. 2.1. De-

sired amplitude and phase can be obtained with help of two element system. The

first element maps the field in such a way that we get desired amplitude at second

element, which then transforms the phase to correct form. Thus we have desired am-

plitude and phase at the target plane. But this thesis deals with phase modulation

as amplitude modulation can lead to loss of laser energy and phase modulation can

remap intensity in such a way that there is no loss. Two cases using single element

Source

DE1 DE2 Target plane

Z

Two-element 

   system

Figure 2.1: Transforming input light from the source to specified complex

field distribution using two diffractive elements.

were dealt in this thesis :

1. Fresnel domain or paraxial approach

When the propagating wave travels close to z-axis or has very small divergence,

the geometry is said to be Paraxial. Paraxial geometry has been used in many ap-

plications like laser scanning and laser processing [7]. One way of achieving beam

transformation in Fresnel domain is to design a phase transform element which

transforms the input Gaussian beam to desired flat-top profile as seen in Fig. 2.2.

Here, He-Ne laser with stable mode is considered and a Gaussian beam with plane

input wave front is taken into consideration.

2. Far-field case

In case of a target plane located in the far field, we can use the paraxial approxi-
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x

DE

z

Flat-Top Profile

Figure 2.2: Map transformation of incident Gaussian beam to flat-top profile

in Fresnel domain.

mation as long as the beam divergence is small. If the required divergence angle is

large (tens of degrees), a non paraxial approach should be used like in the case of

laser line generators. One beam shaping geometry to be considered in this thesis is

illustrated in Fig. 2.3: here the laser emit a non-paraxial Gaussian and the cylin-

drical lens (CL) forms the image of the laser output face, and the distance between

this image and the element d ≫ ZR (Rayleigh length) of the beam so that the field

at the plane of the element has the radius of curvature R equals to d (far zone).

Thus, in ray picture, we can treat the image of the laser as a point source. Map

transformation between incident angle θ and fan angle Φ should convert the incident

intensity profile into a flat top profile in far field (z tends to infinity) in frequency

space. We get flat top profile over a plane surface as shown in Fig. 2.3.

In both paraxial and non-paraxial approach, a Gaussian beam is converted into

exact flat-top and super Gaussian beam profile and wave optical analysis is done

throughout.
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Figure 2.3: Map transformation of input divergence angle θ and output fan

angle Φ , which converts incident Gaussian beam to flat-top profile in far field

z → ∞ in frequency space. Flat top profile is in plane surface.
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Chapter III

Free-space propagation of optical fields

3.1 Introduction

Maxwell’s equations [31] form the basis for considering propagation of any electro-

magnetic field. When we talk about wavelength scale feature size for diffractive

element, an accurate analysis of the element requires that the light is treated as

an electromagnetic wave. Here, however it sufficient to consider scalar theory of

electromagnetic field which ignores polarization effects.

One characteristic of Maxwell’s equations is that every Cartesian component

U(x, y, z) of the electric field in space-frequency domain obeys well known Helmholtz

wave Eq.(3.1).

∇2U(x, y, z) + k2U(x, y, z) = 0, (3.1)

where k = 2π/λ is the wavenumber and λ is the wavelength of light. The simplest

solution of Eq.( 3.1)is a harmonic plane wave.

U(x, y, z) = Uoe
i(kxx+kyy+kzz) (3.2)

where Uo is complex constant, ω is the angular frequency of the wave, and k =

(kx, ky, kz) is the wave vector. Here stationary fields are taken into consideration,

and hence we assume |U | is time independent.

3.2 Angular spectrum representation

The angular spectrum representation is a mathematical technique to describe how

the field propagates over a certain distance. Here we consider propagation in free
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space. The approach is to calculate the Fourier transform of the Helmholtz Eq.( 3.1)

with respect to x and y yielding

d2

dz2
Ũ(u, v, z) + 4π2β2Ũ(u, v, z) = 0, (3.3)

where

β2 =

(
k

2π

)2

− (u2 + v2) (3.4)

and the Fourier transform is defined here as

Ũ(u, v, z) =

(
1

2π

)2 ∫∫ ∞

−∞
U(x, y, z)e−i2π(ux+vy)dxdy. (3.5)

The general solution of this second order differential is

Ũ(u, v, z) = T (u, v)ei2πβz +R(u, v)e−i2πβz (3.6)

from which the solution of Eq.( 3.1) can be found by the inverse Fourier transform

U(u, v, z) =

∫∫ ∞

−∞
T (u, v)ei2π(ux+vy+βz)dudv +

∫∫ ∞

−∞
R(u, v)ei2π(ux+vy−βz)dudv.

(3.7)

The term T describes waves propagating in positive z direction and R describes

the backward propagating waves. Propagation factor β of Eq.( 3.4) can be either

real or an imaginary depending on the magnitude of u2 + v2. A real propagation

factor describes plane waves according to Eq.( 3.2) and imaginary propagation factor

denotes exponentially increasing or decreasing waves. The representation (3.7) is

called Plane Wave Decomposition of an optical field.

If we consider only half space z ≥ 0, and sources in z < 0, we can ignore

exponentially increasing and backward propagating waves by writing R(u, v) = 0.

Now Eq.( 3.6) describes an infinite number of plane waves propagating in directions

defined by u and v. Now if we consider our reference plane at z = 0, then the

propagation problem can be formulated as

U(u, v, z) =

∫∫ ∞

−∞
T (u, v)ei2π(ux+vy+βz)dudv (3.8)

where

T (u, v) =

(
1

2π

)2 ∫∫ ∞

−∞
U(x′, y′, 0)e−i2π(ux′+vy′)dx′dy′ (3.9)
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where x′ and y′ denote the position coordinates at the plane z = 0.

Equation ( 3.8) is the Angular Spectrum Representation of the field and the

quantity T (u, v) in Eq. (3.9) is called the complex angular spectrum of the field at

z = 0. Since we have not used any approximation, this propagation method is exact

in terms of scalar theory. The integrals in Eq. (3.8) and (3.9) can be evaluated

numerically using direct and inverse Fast Fourier Transforms (FFT).

The above given equations for angular spectrum representation for scalar fields

can also be extended to electromagnetic vector fields. Angular spectrum formulas

(3.8)-(3.9) can be applied to electric field components Ex and Ey independently and

then Ez can be solved.

3.3 Rayleigh-Sommerfeld propagation

The angular spectrum representation defined by Eqs. (3.8)-(3.9) can be re-written

with slightly different notation as

U(u, v, z) =

∫∫ ∞

−∞
T (p, q)eik(px+qy+mz)dpdq (3.10)

and

T (u, v) =

(
k

2π

)2 ∫∫ ∞

−∞
U(x′, y′, 0)(e−ik(px′+qy′)dx′dy′, (3.11)

where p = λu, q = λv and

m2 = 1− (p2 + q2). (3.12)

A combination of Eq.(3.10)-Eq.(3.11) yields

U(x, y, z) =

∫∫ ∞

−∞
U(x′, y′)G(x− x′, y − y′, z)dx′dy′, (3.13)

where

G(x− x′, y − y′, z)) =

(
k

2π

)2 ∫∫ ∞

−∞
eik[p(x−x′)+q(y−y′)+mz]dpdq (3.14)

is the Green function of the propagation problem [33]. Denoting r = (x, y, z) and

r′ = (x′, y′, 0) and using the Weyl representation of spherical wave [33]

eik|r−r′|

|r− r′|
=

(
ik

2π

)2 ∫∫ ∞

−∞

1

m
e−ik[p(x−x′)+q(y−y′)+mz]dpdq (3.15)
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the Green function Eq. (3.15) can be represented as

G(x− x′, y − y′, z) = − 1

2π

∂

∂z

(
1

R
eikR

)
, (3.16)

where

R =| r − r′ |=
√

(x− x′)2 + (y − y′)2 + z2. (3.17)

Thus the Green function is

G(x− x′, y − y′, z) = − 1

2π

(
ik − 1

R
eikR

)
z

R2
eikR (3.18)

and substitution into Eq. (3.13) gives

U(x, y, z) = − z

2π

∫∫ ∞

−∞
U(x′, y′, 0)

(
ik − 1

R
eikR

)
1

R2
eikRdx′dy′, (3.19)

which is known as Rayleigh-Sommerfeld Diffraction Formula. This propagation

method is exact in sense of scalar theory but has a singularity at propagation dis-

tance z = 0. Thus Rayleigh-Sommerfeld diffraction formula cannot be used for short

distances as it will lead to numerical instability.

Rayleigh-Sommerfeld diffraction formula here was derived by angular spectrum

representation but it can be derived in many other ways, like starting from Huygen’s

principle.

3.4 Fresnel diffraction

When the propagating wave travels close to z-axis or has very small divergence, the

geometry is said to be paraxial. Then MacLaurin expansion of R,

R ≈ z +
1

2z

[
(x− x′)2 + (y − y′)2

]
(3.20)

can be used in the exponential term of Rayleigh-Sommerfeld diffraction formula

(3.19) and one can write R ≈ z in the denominator. The resulting approximate

propagation formula is

U(x, y, z) = − ik

2πz
eikz

∫∫ ∞

−∞
U(x′, y′, 0)eik[(x−x′)2+(y−y′)2]/2zdx′dy′ (3.21)

is called Fresnel diffraction formula. It can also be derived directly from the an-

gular spectrum representation Eq. (3.10)-(3.11) without using Rayleigh Sommerfeld
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diffraction formula. The Fresnel propagation integral is a widely used formula for

beam-like wave propagation. With this diffraction formula, several analytical results

can be achieved in closed form unlike from the Rayleigh-Sommerfeld diffraction for-

mula. This advantage could be seen in cases like propagation conditions for Gaus-

sian beams where distance between the source and element is greater than Rayleigh

length

d >> zr

and plane of the element has radius curvature R equal to d in far zone. When the

square in the exponential is expanded, the phase factor

(x′2 + y′2)

appears and if it is small it can be ignored. And resulting equation is Fraunhofer

propagation formula which is a good approximation in far-field.

3.5 Fast Fourier Transformation algorithm (FFT)

The FFT algorithm can be used for all three above mentioned propagation meth-

ods: angular spectrum representation, Rayleigh-Sommerfield diffraction and Fresnel

diffraction formula. It reduces the numerical computational time. Equations (3.13)

and (3.21) are actually convolutions of two functions

(U ∗G)(x, y) =

∫∫ ∞

−∞
U(x′, y′)G(x− x′, y − y′, z)dx′dy′, (3.22)

each of them having different Green Function G. Thus, from the property of convo-

lutions,

F {U ∗G} = F {U}F {G} . (3.23)

The Fourier transform of the final field U(x, y, z) is the product of the Fourier

transforms of the initial field U(x′, y′, 0) and the Green function G(x− x′, y − y′, z)

associated with the propagation problem. Due to inherent periodicity of FFT al-

gorithm, it is very useful for analyzing periodic fields. For non-periodic fields zero

padding should be done in element plane.
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3.6 Complex amplitude transmittance approach (CATA)

This approach treats the diffractive element as a thin screen that modulates the

amplitude, phase, and sometimes also the polarization properties of the incident

field. We can use this method, when the thickness of the grating profile is of the

order of wavelength and minimum feature size is larger than 10λ, otherwise rigorous

grating analysis methods such as the Fourier Modal Method (FMM) [34,35] should

be used. CATA can also be used for the analysis of non-periodic structures.

Complex amplitude transmittance approach states that the scalar incident field

Ui(x, 0) and the transmitted field Ut(x, t) are related to each other as

Ut(x, t) = t(x)Ui(x, 0), (3.24)

where t(x) is the complex amplitude transmission function and t is the thickness of

the element. The complex refractive index is defined as

n̂(x, z) = n(x, z) + iκ(x, z), (3.25)

where n(x, z) is the real refractive index and κ(x, z) is the absorbtion coefficient. If

the thickness t is small, it can be said that the propagating wave is affected only

by point wise amplitude and phase change. If the area is fully transparent or non

conductive, i.e., κ = 0, the element only affects the phase of the incident field (phase

only element). The function t(x) can then be determined by calculating optical path

at each point of the element:

t(x) = exp

[
ik

∫ t

0

n̂(x, z)dz

]
. (3.26)

In this thesis only phase only diffractive elementss are considered. For a periodic

structure the complex amplitude transmission function can be expressed in Fourier

expansion as

t(x) =
∞∑

m=−∞

Tm exp

(
i2πmx

d

)
, (3.27)

where the Fourier coefficients Tm are obtained from

T (m) =
1

d

∫ d

0

t(x) exp

(
−i2πmx

d

)
dx, (3.28)
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where d is the grating period and m is the diffraction order. Diffraction efficiency

of mth diffraction orders is given by

ηm = |Tm|2 (3.29)

if we ignore Fresnel reflection losses.

3.7 Gaussian beams

This thesis deals with input Gaussian beam, so before starting with the design part

a brief overview on Gaussian beams and their parameter [32] is given here. A field

propagating as a modulated plane wave in z direction can be expressed as,

U(r) = A(r) exp(ikz), (3.30)

where A(r) modulating plane wave, k is propagation constant along z direction.

Helmholtz equation and slowly varying approximation gives,

d2A(r)

d2x
+

d2A(r)

d2y
− 2ik

d

dz
A(r) = 0. (3.31)

Gaussian beams are the one of solution of the paraxial wave equation,

A(r) =
A1

q(z)
exp

(
ik

ρ2

2q(z)

)
, (3.32)

where ρ2 = x2 + y2, A1 is constant and the parameter q(z) can be expressed in the

form
1

q(z)
=

1

R(z)
− i

λ

πw(z)2
. (3.33)

Here R(z) is radius of curvature of phase and w(z) is the width of the Gaussian

function. On inserting the Eq. (3.32) into Eq. (3.30) gives full wave equation,

U(r) = A0
w

w(z)
exp

(
ρ2

w(z)2

)
exp

(
ikz − ik

ρ2

2R(z)
− iς(z)

)
, (3.34)

where

w(z) = w0

√
1 + (z/zR)

2, (3.35)

R(z) = z
(
1 + (z/zR)

2
)
, (3.36)
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ς(z) = tan−1 z

zR
, (3.37)

w0 =

√
λzR
π

, (3.38)

and

A0 =
A1

izR
. (3.39)

w0 is beam width which is defines as the width of beam at z = 0, zR is Rayleigh

range and ς(z) is phase delay.

   r
Gaussian intensity 
profile

ω

   r

Wavefronts

Propogation 
lines

√ 2ω0

ω0

Rayleigh length

√ 2ω0

Figure 3.1: A Gaussian beam radial intensity profile and its spherical wavefronts.
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Chapter IV

Optical map transform

The principle of optical map transform was first given by Kurtz et al. [12] and was

further discussed in [1,7,10]. A schematic of one dimensional map transform is given

in Fig. 4.1. Element phase Φ(x) is found from map transform such that when applied

to incident intensity distribution I1(x
′, 0), it gives the desired intensity distributions

I2(x, z). From energy conservation law, total energy in incident and desired intensity

distribution should be same i.e.,∫ ∞

−∞
I1(x)dx =

∫ ∞

−∞
I2(u)dx. (4.1)

Both the intensity distributions are divided into N pieces such that each piece

contains the same amount of energy. Optical mapping is done x −→ x such that

it finds the phase Φ(x) which deflects light incident on point xn to point un, where

n = 1, 2, 3, .....N . The direction of propagation of plane wave or ray connecting xn

and un can be considered as the direction of the diffraction order m = −1 of local

grating given by

sinΘ−1(u) = − λ

d(u)

u

z
, (4.2)

where d(u) is local period, defined by

1

d(u)
=

1

2π

dΦ(u)

du
(4.3)

when N → ∞. Thus in paraxial geometry, we get

dΦ(x) =
2π

λz
(u− x)dx (4.4)
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The mapping x −→ u can be found by integration∫ x

x0

I1(ξ
′)dξ′ =

∫ u

u0

I2(ξ)dξ (4.5)

The optical map transform is a good approach for paraxial design but if the geometry

x u

   1

  2

 3

N

N

z

z

   1

  2

 3

z = 0

Figure 4.1: Principle of optical map transform

is not paraxial then one has to do it numerically, and elements designed by it are

sensitive to fabrication and alignment errors.

Throughout this thesis we have talked about transforming the Gaussian beam

into exact flat-top and super-Gaussian. This is because field emitted by lasers typi-

cally have Gaussian profile and we often want to transform them to uniform intensity

profile. Before starting with the design part, let us give an overview what exact flat-

top and super-Gaussian means. When we are talking about exact flat-top we mean

intensity or field distribution with sharp edges but super-Gaussian has rounded edges

and it becomes sharper with the increase in order N .

I(x) = exp

(
−x

w

)N

(4.6)
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And N = 2 is a Gaussian and when N → ∞ it becomes exact flat-top. Fig. 4.2

shows the super-Gaussian profile with different order N .

−300 −200 −100 0 100 200 300

0

0.2

0.4

0.6

0.8

1

x

I(
x)

 

 N=2
N=4
N=16
N=64

Figure 4.2: Super-Gaussian function with different order N .

4.1 Design examples

4.1.1 Paraxial beam shaping case

The task is to convert a plane wave with Gaussian intensity distribution to a flat

top or super-Gaussian intensity profile for rotationally symmetric and y-invariant

geometries. The distance of propagation is of the order of 100 mm. In this thesis

geometrical beam shaping is done analytically and numerically. The design of one

dimensional beam shaping element is discussed first, where the light along one axis of

an incoming Gaussian beam is turned into flat top profile and the design parameters

are given in table 4.1.

Gaussian to flat-top

The incident field Ui(x, y, zi) and the signal field Us(x, y, zs) are normalized such

that their energies are equal to unity. For rotationally symmetric geometry the field

are normalized as

2π

∫ ∞

0

| Ui(r, zi) |2 rdr = 1 (4.7)
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Table 4.1: Table of specification

Parameter Value

Wavelength(nm) 633

Input beam shape Axial Symmetrical Guassian beam

Input beam waist 555 µm

Output beam shape Flat top

Propagation distance 30-100 mm

and

2π

∫ ∞

0

| Us(ρ, zs) |2 ρdρ = 1, (4.8)

where r =
√
(x2 + y2) and ρ =

√
(u2 + v2). The energy balance condition is∫ r

0

| Ui(r
′, zi) |2 r′dr′ =

∫ ρ

0

| Us(ρ
′, zs) |2 ρ′dρ′ (4.9)

The normalization of the Gaussian incident field

2π

∫ ∞

−∞
Ui(r

′)exp

(
−2r2

w2

)
rdr = 1, (4.10)

leads to

Ui = −ω2π

2
. (4.11)

The flat-top field is

Us(ρ
′, zs) =

{
Us if |ρ| ≤ a2

0 otherwise
(4.12)

and its normalization gives

|Us|2 =
π

a4
. (4.13)

In accordance with the map-transform principle, we divide the incident intensity

Ii(x) and the signal intensity Is(u) into N parts each containing equal amount of

energy. The DE then redirects the incident ray in such a way that light from each

part in the x-plane is directed towards corresponding part in u-plane. Now, we

consider y-invariant element geometry and energy balance condition or mapping

condition x → u(x) given in Eq. (4.14) and in Fig. 4.3:∫ x

0

| Ui(x
′, zi) |2 dx′ =

∫ u(x)

0

| Us(u
′, zs) |2 du′ (4.14)
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or ∫ x

0

Ii(x
′, zi)dx

′ =

∫ u(x)

0

Is(u
′, zs)du

′ (4.15)

x u

DE target(a)

(b)

λ

z

w a
I(x’,zi) I(u,zs)

Figure 4.3: Principle of optical map-transform. (a) Optical function: Gaus-

sian to flat-top transformation. (b) Model for numerical construction of the

phase function.

The DE converts the normally incident ray at each point x into a ray that

propagates at an angle θ given by

tan θ =
u(x)− x

△z
. (4.16)

The input field has constant phase and Φ(x) is the phase function of DE. The local
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ray direction is normal to the constant phase of the field just after the DE. We have

sin θ =
1

k

dΦ(x)

dx
(4.17)

and by integrating

Φ(x) =
k

△z

∫ x

0

[u(x′)− x]dx′. (4.18)

Equation (4.18) is the phase function of the element for the first non-paraxial ge-

ometry. Phase function of the element generated by map transform is shown in

Fig. 4.4(a). Here the minimum feature size is more than 5 microns, which is re-

alizable for fabrication. After propagation the flat-top profile generated is shown

in Fig. 4.4(b)and for smoother flat top super-Gaussian profile phase is shown in

Fig. 4.4(c) and flat-top is shown in Fig. 4.4(d).
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Intensity After fresnel propogation

Target Intensity

Incident Intensity

(d)

Figure 4.4: Gaussian to flat-top transformation (a) Phase function of one

dimensional diffractive element generated by map-transform and incident field

intensity profile for exact flat-top transformation. (b) The intensity profile

at the target plane obtained by Fresnel propagation integral. (c) Phase func-

tion of one dimensional diffractive element generated by map-transform and

incident field intensity profile for Super-Gaussian transformation for N = 64.

(d) The intensity profile at the target plane obtained by Fresnel propaga-

tion integral numerically by transforming Gaussian to Super-Gaussian. The

horizontal axis x is taken in µm.

The phase function of Eq. (4.18) is in general calculated numerically and target

field can be exact flat top, super-Gaussian or anything. The analytical Φ(x) is easy

to obtain for exact flat-top. For super-Gaussian a numerical procedure needs to be

used [20]. Numerical phase function calculation is easier for super-Gaussian profile

of any power N . Fig. 4.4(a) is the analytical phase of DE for exact flat top profile.
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Here target distribution is I(u) = 1
2a

, 0 < u < a, where a is chosen to be 500 µm

and z is propagation distance. The analytical phase for Gaussian to exact flat-top

conversion is

ϕ(x) =
2π

λz

(
aω

−1 + exp(−2x2/ω2)√
2π

− x2

2
+ axerf

√
2x

ω

)
. (4.19)

Now, with the same parameters of 1D solution, it can be crossed to get rectan-

gular flat-top profiles. For two dimensional rectangular case phase function is

Φ(x, y) = Φ(x)Φ(y) (4.20)

where both Φ(x) andΦ(y) are of the form of Eq.( 4.19). Three propagation method

namely angular spectrum representation, Rayleigh Sommerfeld diffraction and Fres-

nel diffraction were used to evaluate the quality of the flat top profile in target plane.

The results presented in Fig. 4.5(a)-Fig. 4.5(c) all three methods give essentially sim-

ilar results.

(a) (c) (b)

Figure 4.5: Diffraction patterns produced by the map-transform element in

Fig. ?? evaluated by three different methods: (a) Angular spectrum represen-

tation, (b) Rayleigh–Sommerfeld diffraction formula, and (c) Fresnel diffrac-

tion formula.

Fig.4.5 shows the exact flat-top profile as the target, but also illustrates intensity

variations within the target profile revealed by the wave-optical analysis. In order

to get smoother flat top incident Gaussian beam was transformed to super Gaussian

profile in target as seen in Fig.4.6. Here in Fig. 4.6(a), the super-Gaussian order N

is chosen to be 16 and in Fig. 4.6(b) it is chosen to be 32.
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(a) (b)

Figure 4.6: Diffraction patterns produced by the map-transform element

evaluated for super Gaussian target profile (a) of order N=16, (b) and of

order N=32.

4.1.2 Far-field beam shaping case

In far-field, if we are dealing with non-paraxial case, we assume that the laser emits

a non-paraxial Gaussian beam and we can treat this laser or its image as a point

source. We assume that the cylindrical lens is used to collimate the field in y-

direction. Map transform between input angle θ and output divergence angle θ′ in

far field should convert incident intensity profile into flat top profile in the far field,

i.e, in kx space as illustrated in Fig. 4.8. And input parameter are given in table. 4.2.
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S

z

x

DE CL

d + ∆z

S

z

y

DE CL

F

θ′ θ

adjustment

Figure 4.7: Light incident from point source to the DE and ∆z is a longi-

tudinal position error, where d is distance between the source and DE. CL is

cylindrical lens which collimates the beam in y and gives flat-top profile in x

direction.

Here incident ray at angle θ′ is transformed to into a ray at angle θ, for our far

field kx = k sin θ and maximum divergence angle Φ with kx = k sinΦ.

Table 4.2: Table of specification

Parameter Value

Wavelength(nm) 633

Distance between source and element(d) 3000 µm

Input divergence angle 100

Output divergence angle 100

Propagation distance Far field
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Gaussian to exact Flat top transformation

Gaussian to exact Flat top: Target intensity distribution is given below, where Φ is

the divergence angle:

Is(kx) =

{
Is if |kx| ≤ |k sinΦ|
0 otherwise

(4.21)

So that we have a flat-top profile over an angular range −Φ ≤ θ ≤ +Φ where Φ is

chosen to be 10o.

θw

w

z
d

laser

Figure 4.8: Light incident from point source to the DE, where d is distance

between the source and DE which is larger than the emitting area of the source.

where d is distance between the source and DE which is larger than the emitting

area of the source. w = d tan θw and θw = 10o.
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DE

S’

S

dx

dz

θ

θ

θ’

x

k

z

x = d tan θ′

Figure 4.9: Gaussian to flat-top transformation in far zone or kx space.

Here S is point source and S′ is displaced source position and dx is lateral

displacement and dz is longitudinal displacement of the source.

Incident field is a diverging spherical wave with radius of curvature R = d.

Incident intensity profile is given below and in principle we have a non-paraxial

Gaussian input beam :

Ii(x) = Ii exp

(
−2x2

ω2

)
. (4.22)

We deal with one dimensional symmetry as we consider that it is collimated in

y axis. We normalize our incident field Ii(x) and the signal field Is(kx) as follows .∫ ∞

−∞
Ii(x)dx = 1. (4.23)

Thus,we get

Ii =

√
2

π

1

ω
. (4.24)

Normalizing the target field by ∫ ∞

−∞
Is(kx)dkx = 1 (4.25)

we get

Is =
1

2kΦ
. (4.26)

.
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From map-transform relation we get following relation, i.e., the energy balance

condition is given by ∫ x

0

Ii(x
′)dx′ =

∫ kθ′

0

Is(kx′)dkx′ . (4.27)

Integrating this we get

erf

(√
2x

ω2

)
=

θ′

Φ
. (4.28)

Phase function of the element can be found using non paraxial form of grating

equation. We have,

sin θ′ = sin θ +
1

k

d

dx
Φ(x) (4.29)

and using paraxial form

θ′ = θ +
1

k

d

dx
Φ(x), (4.30)

where Φ(x) is element phase function, such that θ ≈ tan θ = x
d
and θ′ ≈ sin θ′ = kx

k
.

And we consider unit refractive index on both side of the DE.

kx =
k

d
x+

d

dx
Φ(x), (4.31)

which gives

Φ(x) =

∫ x

0

(
kx −

k

d
x′
)
dx′ (4.32)

and thus can be solved analytically. We get

Φ(x) = k

{
Φw√
2π

[
exp

(
−2x2

w2

)
− 1

]
− x2

2d
+ Φxerf

(√
2x

w

)}
. (4.33)

Numerical simulation of map-transform is given below
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Figure 4.10: (a) Phase function of one dimensional diffractive element gen-

erated from map-transform. (b) Intensity distribution of exact flat top profile

with Φ(x) generated analytically, here blue curve shows the far-field profile

without an element.

Gaussian to super Gaussian

Map transform has been done numerically here. Parameters are same as used in

table. 4.2. Incident field is also same as in Eq. (4.22), and the target field is a

super-Gaussian with power N = 64:.

Is(x) = Is exp

(
−2x2

w2
o

)64

. (4.34)
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Figure 4.11: (a) Phase function of one dimensional diffractive element gener-

ated from map-transform numerically, which is almost identical to analytical

phase profile shown in Fig.4.10(a). (b) Intensity distribution of super-Gaussian

profile generated numerically, with N = 64.

Now the phase function is more complicated than in the Fresnel case, hence

feature size is smaller. Small ripples appear in the flat-top region.
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Chapter V

Tolerance analysis

Tolerance analysis is very important as the map transform elements are very sen-

sitive to lateral and longitudinal misalignment. As these elements are designed to

redistribute intensity a small fraction of deviation in source intensity distribution

from designed shape has noticeable effect on obtained target intensity distribution.

The fabricated flat-top elements suffer from sensitivity to fabrication errors such as

profile shape and height errors. The effect of these error is so big that it introduces

the zeroth diffraction order and hence produces an unwanted central intensity peak

and intensity ripple.

5.1 Near-Field: Lateral and longitudinal displacement

We assume that the source is displaced laterally by ∆x and longitudinally by ∆z

from its original position and our incident field has planar phase front. Then the

incident field has the expression

U(x) = exp

[
− (x−∆x)2

w2
o(1− ∆z

d
)2

]
. (5.1)

.
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ω=555

ω=500

ω=600

Figure 5.1: Near-field beam shaping for exact Flat top (a) Target diffraction

pattern when the element is in correct longitudinal and lateral position. In-

tensity profile when the source is (b) too close to the element by an amount

∆z = 100 µm, (c) too far from the element by an amount ∆z = 100 µm, (d) at

correct longitudinal position but laterally displaced by an amount∆x = 25 µm,

(e) The lateral displacement is ∆z = 100 µm and longitudinal displacement is

∆x = 25 µm, (f) for different beam waist, correct beam waist w is 555 µm.

31



0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

In
te

n
si

ty

 

 

Intensity After fresnel propogation

Target Intensity

Incident Intensity

(a)

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

I(
x)

 

 

Intensity After fresnel propogation

Target Intensity

Incident Intensity

(b)

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

I(
x)

 

 

Intensity After fresnel propogation

Target Intensity

Incident Intensity

(c)

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

I(
x)

 

 

Intensity After fresnel propogation

Target Intensity

Incident Intensity

(d)

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

I(
x)

 

 

Intensity After fresnel propogation

Target Intensity

Incident Intensity

(e)

−800 −600 −400 −200 0 200 400 600 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

u

I(
u

)

(f)

 

 

ω=555

ω=500

ω=600

Figure 5.2: Near-field beam shaping done numerically for super-Gaussian

(a) Target diffraction pattern when the element is in correct longitudinal and

lateral position. Intensity profile when the source is (b) too close to the element

by an amount ∆z = 100 µm, (c) too far from the element by an amount

∆z = 100 µm, (d) at correct longitudinal position but laterally displaced by

an amount∆x = 25 µm, (e) The lateral displacement is ∆z = 100 µm and

longitudinal displacement is ∆x = 25 µm, (f) for different beam waist, correct

beam waist w is 555 µm.

From the figures we can see that the small misalignment makes the intensity
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profile asymmetric. It was seen that positive values ∆z > 0 (distance between S

and DE too large) and an increase in w above its design value both lead to edge

enhancement in the shaped profile. Correspondingly, negative values of ∆z and a

decrease in w gave rise to rounding of the desired flat-top profile. Therefore we

can compensate for variations in w simply by adjusting ∆z slightly in the assembly

phase of the setup in order to get a nice flat-top profile in the Fresnel domain. The

acceptable variation in w is +/−10 µm from the actual w.

5.2 Far-field: Lateral and longitudinal displacement

We assume that the source is displaced laterally by ∆x and longitudinally by ∆z from

its original position. The transmitted field depends upon incident field and complex

amplitude transmittance of the element, which is fixed. So only the incident field

contains the lateral and longitudinal displacement factor, which can be written as

U(x) = exp

[
− (x−∆x)2

ω2
o(1− ∆z

d
)2

]
exp

[
i
k0(x−∆x)2

2(d−∆z)

]
. (5.2)

.
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Figure 5.3: Far field beam shaping (a) Target diffraction pattern when the

element is in correct longitudinal and lateral position. Intensity profile when

the source is (b) too close to the element by an amount ∆z = 100 µm, (c) too

far from the element by an amount ∆z = 100 µm, (d) at correct longitudinal

position but laterally displaced by an amount∆x = 25 µm, (e) The lateral

displacement is ∆z = 100 µm and longitudinal displacement is ∆x = 25 µm.

In(a)-(e) the blue curves show the far field profile without element and red

curve show far field profile with element. (f) Input Divergence angle change

by −1◦ i.e 9◦ .(g) Input Divergence angle change by +1◦ i.e 11◦.

34



−10 −5 0 5 10

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

7

Angle

I(
k

x
)

(a)

−15 −10 −5 0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
7

Angle

I(
k

x
)

(b)

−10 −5 0 5 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
7

Angle

I(
k

x
)

(c)

−15 −10 −5 0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
7

Angle

I(
k

x
)

(d)

−15 −10 −5 0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
7

Angle

I(
k

x
)

(e)

−10 −5 0 5 10

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
7

Angle

I(
k

x
)

(f)

35



−10 −5 0 5 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
7

Angle

I(
k

x
)

(g)

Figure 5.4: Far field beam shaping done numerically giving Super-Gaussian

in far field (a) Target diffraction pattern when the element is in correct lon-

gitudinal and lateral position. Intensity profile when the source is (b) too

close to the element by an amount ∆z = 100µm, (c) too far from the ele-

ment by an amount ∆z = 100µm, (d) at correct longitudinal position but

laterally displaced by an amount∆x = 25µm, (e) The lateral displacement is

∆z = 100µm and longitudinal displacement is ∆x = 25µm. (f) Input diver-

gence angle change by −1◦ i.e 9◦. (g) Input Divergence angle change by +1◦

i.e 11◦.

From the figures we can see that the small misalignment makes the intensity

profile asymmetric. It was seen an increase in θ above its design value both lead

to edge enhancement in the shaped profile. Correspondingly, a decrease in θ gave

rise to rounding of the desired flat-top profile. Therefore we can compensate for

variations in θ simply by adjusting ∆z slightly in the assembly phase of the setup

in order to get a nice flat-top profile in the far field without a significant effect in

the final fan angle Φ.
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Chapter VI

Characterization and fabrication errors

The key to a successful design is correct simulation, realization of simulated function

by fabrication, characterization of the element to check if the element gives the

desired output and the final step is the possibility of redesign if the desired output

is not obtained. All the steps are discussed in detail in this chapter.

6.1 Simulation

All the designs were simulated in MATLAB and was discussed in chapter IV and

there tolerances in chapter V. In order to verify that the codes were generated

properly, analytical map transform phase functions were simulated numerically and

analytically. And they were matched. For example in Fig. 6.1 Gaussian to Gaussian

transformation is done using map transform method analytically and numerically.
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Figure 6.1: Gaussian to Gaussian transformation using map transform

method. Field was propagated using Fresnel diffraction formula.

It can be seen from the Fig. 6.1 that analytical transformation and numerical

transformation give the same result. Thus, simulated design can be considered

correct.

6.2 Fabrication

Based on the design and simulation results for the flat-top, diffractive phase ele-

ments for this work was fabricated by Janne Laukkanen using electron beam lithog-

raphy. Electron beam lithography also known as e-beam lithography is direct write

technique used for nanometer scale resolution [36]. The fabrication procedure is

explained in Fig. 6.2.

38



Substrate

Resist

(a)

(b)

eee ee e

(d)

(e)

SiO2

Figure 6.2: Fabrication steps of analog grating profile with proportional reac-

tive ion etching. (a) Substrate preparation with resist coating. (b) Exposure.

(c) Development. (d) Reactive ion etching.

First substrate is spin coated with resist layer. After spinning of resist layer, it is

exposed with negative resist (gray scale-ARN 7720). Different dose is applied, during

development stage that part which have maximum dose dissolves less compared to

less exposed part. Reactive ion etching(RIE) is used to etch the profile so long that

the resist is gone and we are left with analog profile. RIE is a good technique for

high precision anisotropic etching, but however a small isotropy remains which can

lead to loss of dimensions.

The fabrication procedure can produce different kinds of errors like substrate fig-

ure error, pattern distortion error, duty-cycle error, etching depth error and surface

roughness error [37]. Surface roughness error is of no concern here as we consider

that amplitude is unity and we have only phase. In this work etching depth error is

of concern as design height t was not similar to fabricated height t′. Fig. 6.3 shows

the triangular grating with parameters period dp, design height t and etch height t′.
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Figure 6.3: Triangular grating profile.

Figure 6.4 shows a small portion of the simulated and measured phase profile.

From the figure we can see that simulated profile has sharp edges and the profile

height is 1.3 µm. However, the fabricated profile have rounded edges, non-uniform

etch height and profile curved in wrong direction. From the analysis of fabricated

phase profile, it was found that the average etch height in the central area is 0.808

µm and in the corners it was 0.7 µm showing standard deviation of 0.07. Images of

the phase profile were taken using 3-D optical profiler. Far-field phase profiles were

comparatively better than Fresnel-domain elements phase profile. Reason behind

the difference in far-field and Fresnel-domain element phase profile was the improper

sampling points and maybe the fabrication process was not well calibrated in these

experiments. Fig. 6.5 shows the improper sampling points in Fresnel domain and

far-field phase, it can be seen that sampling point error affect the near-field phase

more compared to far field element.

40



(a)

(b)

−100 −50 0 50 100

0

2

4

6

8

10

12

14

x 10
−4

−400 −300 −200 −100 0 100 200 300 400

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c)

(d)

Figure 6.4: Phase profile:(a) measured. (b) simulated. (c) measured.

(d) simulated. (a-b) are far field element and (c-d) are near field element.
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Figure 6.5: Improper sampling point in phase:(a) far-field.(b) Fresnel-

domain. It can be seen that the effect of improper sampling is severe in

Fresnel domain compared to far-field. Phase profile is no more continuous.
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(a)

(b)

(c)

(d)

Figure 6.6: Phase profile:(a) 3-D image taken by optical profiler. (b) Top-

view image take by SEM. (c) 3-D image taken by optical profiler.(d) Top-view

image take by SEM. (a-b) are far field element and (c-d) are near field element.
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6.2.1 Effect of etch depth error

Let us assume that we have an ideal phase function Φ(x). And this element has

maximum height of the surface relief structure as t′ instead of the design value t

because of error in etch depth. Then we can define our transmission function as

tx(x) = exp[iαΦ(x)] (6.1)

where α is the ratio of fabricated height t′ and designed height t and it doesn’t change

the periodicity of ideal phase function. Transmittance function can be elaborated

by a generalized Fourier series expansion as [?]alpha)

tx(x) =
∞∑

m=−∞

Gm exp[imΦ(x)], (6.2)

where m is the diffraction order and coefficient Gm is

Gm =
1

2π

∫ 2π

0

exp[i(α−m)Φ(x)]dΦ(x). (6.3)

which gives

Gm = sinc(α−m) exp[iπ(α−m)]. (6.4)

If α = 1, then we can say that the wave is generated perfectly as generalized Fourier

series contains only the first order term m = 1. But if α ̸= 1 then, there would

be more of interference caused by generated noise fields and it would lead to loss of

signal quality, and reduced diffraction efficiency.

There is another method for fabrication etch depth error analysis. The direct

scaling technique can be described elegantly and generally as follows. If the ideal

phase function of the DE is ϕ(x), we can generate its modulo 2π quantized version

in the interval [−π, π] using

ϕmod(x) = arg {exp [iϕ(x)]} . (6.5)

In case of scaling error described by a factor α, the phase function scaled to an

internal [−απ, απ] is αϕmod(x) and the transmission function of the element is

t(x) = exp [iαϕmod(x)] . (6.6)

This transmission function can be multiplied by the incident field the result can

be used directly to propagate the output field into the target plane. The result is
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then same as that given by the generalized order method when the number of orders

included in the analysis is sufficiently large.

In order to explain it more explicitly, would apply the above mentioned analysis

to triangular grating first as phase function of the elements designed in this thesis

are similar to triangular grating and then to actual phase functions of the elements

designed for this thesis. Phase function triangular grating is given in Eq.(6.7).

Vm(x, y) = exp[−i2πmx/d] (6.7)

The generalized orders are obtained by inserting the phase function into

V (x, y) =
∞∑

m=−∞

GmVm(x, y). (6.8)

Here V (x, y) is the field immediately after the element. Thus, different terms in

Eq. (6.8) represent so-called generalized diffraction orders of the element, which

have diffraction efficiencies as

ηm = ηm = |Gm|2 . (6.9)

Figure 6.7 shows the efficiency for diffraction orders -3 to 3 for different etch depth

error (α).
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Figure 6.7: Efficiency of triangular grating for diffraction order -3 to 3 and

α =1 is the case where wave is generated perfectly and as α decreases the

interference increases as with simultaneously noise produced by other orders.
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Now, inserting the phase function of far-field case , given by Eq. (??), we can

use either of the above-described methods to analyze the effect of scaling errors in

the quality of the flat-top profile. We can calculate the propagated field with actual

fabrication etch depth error α= 0.7. It can be seen from Fig. 6.8(a)-Fig. 6.8(b) the

results given by both methods are virtually similar.
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Figure 6.8: Far-field propagation:(a) Two π modulo method (b) Generalized-

order approach

When α = 1 there are no interference from the other diffraction orders but for

case where α ̸= 1, there is many simultaneously generated noise fields . As the field

from other orders overlap with m = 1, superposition of these fields is coherent which

leads to reduced diffraction efficiency and non-uniform signal quality. Figures6.9

show the propagated field and the contribution of diffraction orders -2 to 2. Here

zeroth order is similar to incident Gaussian beam and thus has a sharp central peak.

The effect of −1st, 2nd and −2nd orders is smaller compared to 0th order.
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Figure 6.9: Propagated field(a) Fresnel domain element for exact flat

top.(b) Fresnel domain element for super-Gaussian. (c) Far-field element

for exact flat-top.(d) Far-field element for super-Gaussian. In (a)-(b)The etch

depth error is α00.7 and is calculated for -3 to 3 diffraction orders

Effect of etch depth error is shown in Fig. 6.10. It can be seen from the figure

that even small etch depth error produces a noisy field. Thus, all the phase function

elements discussed in this thesis are very critical to phase depth error. To obtain

high-quality flat-tops, only phase errors of a few per cent are allowed.
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Figure 6.10: Transmitted far field beam for order -2 to 2 with different α.

6.3 Characterization

From Fig. 6.6 we can see that the phase profile of the elements is not perfect in

these preliminary experiments. Thus, we cannot expect very good quality flat-tops

or good results. Since there were so many different kinds of error it was difficult to

calculate an accurate value of α. Thus, in experimental setup elements were adjusted

so that best focus is obtained and then from simulation α was calculated such that

the target intensity profile matched to that of experimental intensity profile.
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6.3.1 Fresnel domain

He-Ne

633 nm
Mirror (M1)

Mirror (M2)

CCD

Fresnel  diffractive 

      elemnt

Horizontal translation

          stage (x)

Translazion stage 

  in z-dirction

Figure 6.11: The setup employed in the experiment of Fresnel domain beam

shaping.

Beam profiles were taken using beam profiler (WinCamD series). Input beam was

He-Ne laser of 12 mW. Simulated and measured beam profile are shown below.
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Fresnel domain:exact flat-top
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Figure 6.12: Target intensity profile (a) measured using beam profiler. Hor-

izontal axis shows flat-top direction and vertical axis shows Gaussian beam

direction. (b) simulated intensity profile with α=0.7.

From the figure we can see that the simulated result and the measured result are

approximately similar. We could assume that if our element was perfect or had

smaller error then it would have worked perfectly.
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Fresnel domain:super-Gaussian
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Figure 6.13: Target intensity profile (a) simulated intensity profile with

α=0.84. (b) measured beam profile and correct position(longitudinally and

laterally). (c) away from the correct position by 2 cm. (d) away from the

correct position by 5 cm. (e) laterally displaced from correct position. In(b)-

(e) target intensity is measured using beam profiler. Horizontal axis shows

flat-top direction and vertical axis shows Gaussian beam direction.

For this element α is closer to 1 compared to other elements. Thus, we can see

smoother flat-top and even the effect of lateral and longitudinal displacement is

clearly visible. We can say that this element would have worked properly if error

was in range of 5-10 percent.
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6.3.2 Far-field

He-Ne

633 nm
Mirror (M1)

Mirror (M2)

CCD

Far-field  diffractive 

      element

Horizontal translation

          stage (x)

Translazion stage 

  in z-dirction

CL

∆z

Figure 6.14: The setup employed in the experiment of Far-field beam shap-

ing. Here CL is cylindrical lens.

Beam profiles were taken using beam profiler (WinCamD series). Again the beam

was He-Ne laser of 12 mW. Simulated and measured beam profile are shown below.
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Far field:exact
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Figure 6.15: Target intensity profile (a) measured using beam profiler. Hor-

izontal axis shows Gaussian beam direction and vertical axis shows flat-top

direction. (b) measured using beam profiler. Horizontal axis shows flat-top

direction and vertical axis shows Gaussian beam direction. (c) simulated in-

tensity profile with α=0.7.

From the figure we can see that there is strong central peak with ripples through out

the intensity profile and it is same for simulated and measured intensity distribution.
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Far field:super-Gaussian
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Figure 6.16: Target intensity profile (a) measured using beam profiler. Hor-

izontal axis shows flat-top direction and vertical axis shows Gaussian beam

direction. (b) simulated intensity profile with α=0.7.

From the measured figure we can see that the noise is comparatively higher than in

the simulated intensity profile. The peaks in both corners of measured intensity pro-

file are similar to that of simulated result. Central peak is strong in both measured

and simulated results but the peak in measured result is much wider compared to

that of simulation result.
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Chapter VII

Conclusion

The diffractive beam shaping element is thin single element which can be installed

easily in any optical setup. The beam shaping elements in this thesis are designed

for Fresnel domain and far-field. Simulated results show that it possible to generate

smooth flat-top with high efficiency and uniform intensity. Fresnel domain elements

are critical about beam diameter, sometimes measured beam waist by CCD camera

is not actual or real beam diameter as sometimes CCD camera are nonlinear. Then,

we can let the laser beam propagate until the distance where the laser waist becomes

accurate to design beam waist. For far-field case divergence angle is a critical issue

we can compensate for variations in the divergence of the laser beam simply by

adjusting the distance between the source and the element.

For both Fresnel and far-field case it was seen that positioning of the element was

critical theoretically and experimentally. Transverse positioning errors were found to

give non-symmetric profiles, it appeared that errors of beam waist w, longitudinal

displacement(∆z), and divergence angle (Φ) lead to qualitatively similar effects:

positive values ∆z > 0 (distance between S and DE too large), an increase of Φ and

w above there design values both lead to edge enhancement in the shaped profile.

Correspondingly, negative values of ∆z, as well as decrease in Φ and w give rise to

rounding of the desired flat-top profile. Therefore we can compensate for variations

in Φ and w simply by adjusting ∆z slightly in the assembly phase of the setup

in order to get a nice flat-top profile and use of high-order super-Gaussian target

profiles.

The beam shaping element of present type had minimum local periods of ∼ 5λ,

and it was very difficult to fabricate highly efficient DEs. Thus, they suffered from
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etch depth errors of 30 percent, which led to scattering of light into higher generalized

orders of the DE. It was seen theoretically from simulated results and experimentally

that the DE is very critical to profile height. As a result a wrong profile height led

to generalized order producing high interference and reduced efficiency, thus leading

asymmetry in the output profile. Use of diode pumped laser of wavelength ∼ 457

nm resulted in reduction of etch depth error by 5 percent. From simulated results

it was found that the allowed error range was 2 percent but still this range can vary

depending on application. Thus all output profiles showed a sharp central peak and

it reduced with reduction in error.

At the time of writing this thesis, only few critical parameters were considered

but many improvements and analysis are possible in future, as will be explained in

chapter VIII.
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Chapter VIII

Future-work

Beam shaping elements of present type have triangular local profile which have

etch depth error and the triangular edges are rounded, which leads to scattering of

light into higher generalized orders of the DE. Thus, in future more trial rounds in

fabrication should be done to get the error in profile height small enough. Grating

profiles with step or staircase form should be designed to reduce fabrication errors.

Carrier grating in x direction should be used for designs with small divergence angle

and carrier grating in y direction should be used for large angles to separate different

diffraction orders, which will help in reducing interference caused by generalized

orders and thus improving flat-top quality of our design.

Complex amplitude transmission approach was used to calculate the efficiency of

different orders but in future rigorous diffraction theory like Fourier modal method

(FMM) should be used in the analysis and design. FMM is a good approach for non

paraxial cases like our case of focusing a laser beam on the grating with a cylindrical

lens as it helps us to get refined structural parameters and accurate efficiency. One

future goal is to design DE element for flat-top profile with supercontinum beams

as the most of the spectral components experience a totally wrong phase delay like

our present elements.
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