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The inherent slow data acquisition in Magnetic Resonance Imaging (MRI) ham-
pers current applications and the progress in moving target imaging. The rate
at which fast sampling strategies assemble data have nearly reached physical and
physiological limits. Current techniques attempt to reduce the scanning time by
collecting reduced amount of data without degrading the image quality. Typically
image reconstruction from highly undersampled data results in an ill-conditioned
problem. The common approach is to treat this task as an inverse problem. In
this framework, variational formulation is employed. Sparsity of natural images
in a suitable basis such as wavelets is exploited as regularization term. On the
other hand, the implementation of Total Variation (TV) regularization is particu-
larly beneficial in denoising for piecewise-constant objects such as the Shepp-Logan
phantom. This approach with two regularization terms poses a convex optimiza-
tion problem that is solved with non-linear conjugate gradients numerical opti-
mization. In this thesis work, traditional reconstruction method, inverse Fourier
transform, was compared to the proposed approach in three different undersam-
pled simulated data patterns: Cartesian, radial and spiral. It was found that in
the presence of both regularization terms, the target image was accurately recon-
structed. Noise and undersampling artefacts are removed while preserving fine
details in the reconstructed image. The method outperforms the common Nyquist
sampling limits and traditional image reconstruction methods. Scanning time is
proportional to the number of acquired samples in Cartesian and radial pattern.
Therefore based on the minimal visual impact between the reconstructed image
and the target image, the present method is of potential application in order to
save scanning time in a real case scenario.
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CT Computed Tomography
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RF Radio Frequency
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is a versatile tomography imaging method
based on Nuclear Magnetic Resonance (NMR) phenomena. Reconstructions of
images or three dimensional representation of the spatial density of the target
area or volume are achieved. Moreover, the time evolution of living tissues or
blood flow can be also obtained. MRI provides an excellent soft tissue contrast
and it is used in many types of diagnosis. On the contrary, other techniques such
as ultrasound, Proton Emission Tomography (PET) or Computed Tomography
(CT) among others, only have a particular benefit for a specific type of examina-
tion. In the present days only CT is comparable to MRI in terms of contrast and
resolutions of the resulting image. Unlike CT, MRI does not involve ionizing ra-
diation. Furthermore, the extensive variety of modifiable parameters makes MRI
a common technique to discern anatomic structures at any plane in the body.

It was not until the 1970s when the echoes of the theoretical background led
to results. Raymond Vahan Damadian is conceded as the inventor of the first
Magnetic Resonance Scanning Machine in 1969; in fact he patented the concept
of NMR for detecting cancer in 1974 [1]. Damadian’s initial work flaws were
overcome by Paul Lauterbur [2] and Sir Peter Mansfield whose studies deserved
the Nobel Prize in Medicine in 2003. In spite of that Damadian claimed that he
discovered MRI and the two Nobel-winning scientists only refined his technology.
In order to express his unrest he wrote a full page in The New York Times, The
Washington Post and Los Angeles Times headlined “The Shameful Wrong That
Must Be Righted” [3].

The sampled signal is the spatial frequency component of the image to be
reconstructed. Under a fully sampled scheme, the common Inverse Fast Fourier
Transform (IFFT) is sufficient and efficient in MR image reconstruction. Unfortu-
nately, time required to collect data is a hindrance that nowadays hampers broader
applications, for instance, in emergency diagnosis or moving targets such as heart
or lungs. During the last 30 years, MRI has improved dramatically in image qual-
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1. Introduction

ity and imaging speed. The latter has been developed mainly by acceleration
of the hardware operation. However it has nearly reached physical limits of the
hardware components and physiological limitations for safety issues, mainly nerve
stimulation and Radio Frequency (RF) heat deposition [4].

From the 1990s, two main research areas aim to reconstruct the image from
short data set. The first approach exploits the redundancy of data domain, known
as k-space. The most significant result is parallel imaging which makes use of an
array of coils, each coil associated with a short area in the subject to be imaged.
Signal is received in different channels and combined together. Image reconstruc-
tion is a combination of inverse Fourier transform and particular methods such as
SENSE [5–7] or GRAPPA [8]. The second exploits spatial redundancy of medical
images. In particular the novel sampling technique Compressed Sensing (CS) re-
constructs the image from vastly reduced incoherent measurement [9–15]. Several
sparsifying transformations have been used in MRI applications. Remarkable pub-
lications employ wavelet domain [16–19] , Discrete Cosine Transform (DCT) [18],
Singular Value Decomposition (SVD) [20] or discrete difference [18,21].

Problems arising from highly undersampled data set are typically treated in the
framework of inverse problems. In this sense, regularization is employed to alleviate
the ill-conditioned problem where the l1-norm of the sparsifying transform is the
regularization term. In this thesis work, two regularization terms are employed and
compared for the piecewise constant image the Shepp-Logan phantom: wavelets
and Total Variation (TV). This approach poses a convex optimization problem
that is solved with non-linear conjugate gradients numerical optimization.

Chapter 2 offers a brief review of the basic principles of MRI in order to gain
some fundamental insight in the signal origin. Chapter 3 surveys the mathematical
approach of the image reconstruction enclosed in a sparse image representation.
In Chapter 4 methods to achieve the final reconstruction are detailed and finally
presented in Chapter 5. Last chapter is dedicated for discussion of the results and
conclusions.

6



Chapter 2

Basics in Magnetic Resonance
Imaging

The present chapter outlines a global description of the main theoretical and
mathematical MRI background along with a brief comment about the physical
constrains that fundamental scanner components impose. In this regard the be-
havior of an individual proton up to an assemble of particles is explained. Special
attention is paid to the origin of the MRI signal, collection of raw data and tradi-
tional image reconstruction methods. It is beyond of the scope of this thesis work
any meticulous background description since it should be described in a rigorous
quantum mechanics formulation. The main principles can be described appealing
to classical mechanics. For more detailed MRI scheme, reader is referred to the
following articles and books [24–32].

2.1 Nucleus in a magnetic field

MRI is based on Nuclear Magnetic Resonance (NMR). A global description may
cover the behavior of a nucleus in the presence of an external magnetic field and the
subsequent resonance phenomena resulting from the interaction. The mentioned
magnetic field is typically generated by a superconducting magnet of strength
varying from 0.1 Tesla (T) to 3 T for clinical applications and up to 10 T magnets
for research purposes.

Up to certain scale, matter is compounded of atoms where electrons orbit
about a nucleus formed by protons and neutrons. In a classical picture protons
and neutrons are known to rotate around its own axis with a degree of freedom
termed spin. However, protons carry a positive charge and spin represents a minute
spinning charged particle with the consequent circulating electric current. It is
common to describe the magnetic field associated with the current with a vector
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2. Basics in Magnetic Resonance Imaging

quantity called magnetic moment ~µ; perpendicularly orientated with respect to the
plane of the loop and proportional to the current magnitude. In order to determine
uniquely this quantity, both direction and magnitude must be specified. The basic
postulates in quantum mechanics in Section 2.1.1 will be of help to elaborate the
concept.

In the sequel magnetic field ~B is consider to be constant and it is placed along
the z-direction

~B = B0
~k (2.1)

For a free system, protons are randomly orientated due to the thermal motion.
Upon applying an external magnetic field, off-center forces cause the system to
rotate toward a state of lower energy

E = −~µ · ~B (2.2)

From basic physics, rotation is linked to angular moment ~J . Its time derivative
characterizes the relative position between the external magnetic field and angular
magnetic moment

d ~J

dt
= ~µ× ~B (2.3)

The inner product in equation (2.2) indicates that the system lies on a lower
energy state with decreasing angle between the magnetic moment and the magnetic
field. Nevertheless a complete alignment is not feasible due to the constraints
imposed by quantum mechanics.

2.1.1 Quantum constrictions

Classical mechanics is not applicable at atomic scale and quantum mechanics is
required to explain the behavior of the system under study. In order to describe
how a proton reacts to an external magnetic field B0

~k, it is necessary to measure
the projection of the angular moment on the z-axis. The angular moment in
quantum mechanics is not a vector but a vector operator. Its three components do
not commute with each other and as a consequence of the Heisenberg uncertainty
principle they cannot be accurately and simultaneously measured [33]. The result
of a precise measurement of a component of the angular moment is one of the
eigenvalues of the operator. Along the z-direction these are found to be

Jz = 0,±~
2
,±~,±3~

2
, . . .

which means that feasible projection on z-axis of the spin angular moment are
quantized.
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2.1. Nucleus in a magnetic field

Another connection between quantum and classical physics is the relation be-
tween the magnetic moment with the spin angular moment

~µ = γ ~J (2.4)

where the proportional constant γ is the particle-dependent gyromagnetic ratio,
Table 2.1. Now the magnitude of magnetic moment for a proton is

|~µ| = γ~
√
I(I + 1)

and its z-component is
µz = γms~

where I is the spin number and ms is the co-called secondary quantum number.
A crucial consequence is that ms is restricted for a given I to the 2I + 1 values

I(I + 1) ≥ m2
s

Protons have spin I = 1/2. Hence there are two possible orientations correspond-
ing to spin-up and spin-down. Since the z-component is precisely determined,
the direction of its transverse component ~µxy remains unknown as stated by the
Heisenberg uncertainty principle.

Table 2.1: Gyromagnetic ratios and spin for different elements. 1M = 1 mole/liter. The
quoted body abundance varies from tissue to tissue. Values obtained from [25].

Nucleus Gyromagnetic ratio Spin Abundance in human body
1H 42.58 1/2 88 M

23Na 11.27 3/2 80 mM
31P 17.25 1/2 75 mM
17O 5.77 5/2 16 mM
19F 40.08 1/2 4 µM

The inability of the magnetic moment to align to the external magnetic field
is of paramount importance since it makes the proton to experience a torque that
in turn evokes a precession around the direction of the field, shown in Figure 2.1.

The last feature subtracted from quantum mechanics is that nuclei with an
even mass number and even charge number have zero spin. Thus no all of the
chemical elements are suitable for a MR signal.

2.1.2 Equation of motion

Substituting the equation relating the magnetic moment with the angular moment
or spin, equation (2.4), into (2.3), leads to the following equation of motion

d~µ

dt
= γ~µ× ~B (2.5)
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2. Basics in Magnetic Resonance Imaging

Figure 2.1: Precession of a proton about an external magnetic field. Figure taken
from [25].

This expression is a rudimentary version of the Bloch equation that regulates
the system behavior. It means that d~µ

dt
is perpendicular to the plane defined by ~µ

and ~B and the magnetic moment precesses about the constant magnetic field in a
clockwise circular path described by a cone of angle θ in Figure 2.1. By substitut-
ing the external magnetic field (2.1) in the equation of motion (2.5) and solving
the homogeneous differential equation, the solution for the nuclear precession in
Cartesian components follows{

µxy(t) = µxy(0)e−iγB0t

µz(t) = µz(0)
(2.6)

with angular frequency given by

ω0 ≡ γB0 (2.7)

The angular frequency ω0 is known as Larmor frequency and ties magnetic field
with precessing frequency for a single spin. In reference to Table (2.1), particles
of different type are found to precess at particular angular velocity. The particle-
dependent frequency is an important feature in MRI because particles are excited
accordingly to their rotation frequency, Section 2.2.2. Then in the excitation pro-
cess, a certain type of particle can be activated with its particular frequency while
leaving the rest unaffected. Hence it favours the discrimination among tissues us-
ing their physical and biochemical properties as well as the application of contrast
agents and spectroscopy. It is also remarkable that calcium present in bones pro-
duce minimal signal and tissues surrounded by bone can be imaged in contrast to
CT or ultrasound. Similarly, the higher presence of hydrogen present in water and
fat in a human body (Table 2.1) is the main contribution to the signal.
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2.1. Nucleus in a magnetic field

2.1.3 Complex representation

It is particularly convenient to introduce a complex representation for those prob-
lems involving rotation. The modulus of a vector describes the distance from the
origin to a measurement point and the phase angle select the point on the trajec-
tory. The transverse magnetic moment in Bloch equation (2.5) can be solved with
the definition of a complex quantity

µ+(t) = µx(t) + iµy(t)

Then the solution of the first equation in (2.6) reads

µ+(t) = |µ+(0)|e−iφ0(t)

Previous equation illustrates the rotational movement with constant magnitude
|µ+(0)| and phase φ0(t) that absorbs the angular velocity and any arbitrary initial
phase φ0(0).

2.1.4 Bulk magnetization

MRI signal in any practical experiment stems from a large collection of nuclei.
Then the formulation must be set in a global pattern. In this section the arrange-
ment of the individual magnetic momentums is outlined.

In a homogeneous system, the bulk magnetization is the sum over the individual
magnetic moments present in the sample

~M =
1

V

Ns∑
n=1

~µn (2.8)

where Ns is a vague total number of spins in the object being imaged and V is the
volume of the sample. In view of above equation, bulk magnetization is nothing
but a summation over the individual magnetic moments. Bloch equation (2.5) is
linear in ~µ; thus it can be rewritten as a function of the bulk magnetization

d ~M

dt
= γ ~M × ~B (2.9)

In the sequel, the previous equation is referred as Bloch equation .
In a sample exacted to a magnetic field B0

~k, more spins are aligned along the
direction of the field than spins aligned against it. Even though the difference
is small, a discernible net magnetization results (see (A.6) in Appendix A.4 for
further details).

| ~M | ' γ2~2B0Ns

4KTs
(2.10)
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2. Basics in Magnetic Resonance Imaging

Therefore, the magnitude of the bulk magnetization is directly proportional to the
external magnetic field strength B0 and inversely proportional to the temperature
although it does not represent and adjustable parameter in clinical MRI. The net
magnetization origins a magnetic field of a magnitude of the order of 10−6 T. This
field is considerably small but still measurable if it is turned into the xy plane in
order to make visible against the main magnetic field of order of Tesla. That is
the role played by the excitation RF pulse, Section 2.2.2.

2.2 Radio frequency pulse

Spins of the same kind rotate at the same frequency, equation (2.7), but out of
phase. The sum over all microscopic transverse magnetizations of each spin results
in null transverse macroscopic magnetization. RF pulses are short bursts of RF
energy which set coherence among spins. Due to resonance the system of protons
of the same kind will experience an energy transition to higher level when it is
perturbed with a RF pulse tunned at the Larmor frequency of the system of spins.
The consequence is the emission of another RF wave at the same frequency. This
constitutes the basic MRI signal.

For ease of mathematical operation, rotating frame of reference is introduced
in this section along with a brief description of the excitation RF pulse. Finally
the reader will find a concise comment on non-uniformities of the main magnetic
field.

2.2.1 Rotating frame of reference

It is conceptually and mathematically easier to work in a rotating frame of reference
at the rate of the magnetization precessing frequency or Larmor frequency, (2.7).
Bloch equation (2.9) is restated into the rotating frame {x′, y′, z′} around the z-axis
in the fixed, or inertial system {x, y, z}.

One can infer directly from Figure 2.2 the trigonometric relation between both
systems 

~i′ = cos(ωt)~i− sin(ωt)~j
~j′ = sin(ωt)~i+ cos(ωt)~j
~k′ = ~k

(2.11)

where ω is the angular velocity of the rotating frame.
In the laboratory frame of reference the unit vectors are fixed whereas in the

primed or rotating frame of reference they are time-dependent due to rotation. On
the other hand, it is in order to recall that in both system ~M ′(t) and ~M(t) refer
to the same vector quantity so there is no need to distinguish them. The rate of
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2.2. Radio frequency pulse

Figure 2.2: Rotating frame {x′, y′, z′} about z- axis in the steady frame of reference
{x, y, z}

change of the bulk magnetization reads

d ~M

dt
=
dMx′

dt
~i′ +

dMy′

dt
~j′ +

dMz′

dt
~k′ +Mx′

d

dt
~i′ +My′

d

dt
~j′ +Mz′

d

dt
~k′ (2.12)

Applying the time derivative into equation (2.11) and using the identity ~A× ~B =

− ~B × ~A, the time derivative of the unit vectors reads as follows
di′/dt = ~ω × ~i′
dj′/dt = ~ω × ~j′
dk′/dt = ~ω × ~k′

Substituting into equation (2.12) the time derivative in the stationary frame of
reference is

d ~M

dt
=
d ~M ′

dt
+ ~ω × ~M ′

Finally, combining the previous equation with (2.9)

d ~M ′

dt
= µ ~M × ~Beff (2.13)

where
~Beff = ~B +

ω

γ

is the effective magnetic field in the rotation frame which gather any type of
magnetic field exciting the sample. Equation (2.13) manifests that precession will
occur around the direction of the effective magnetic field.
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2. Basics in Magnetic Resonance Imaging

2.2.2 Excitation pulse

The inclusion of another magnetic field perpendicular to z′-axis enforces a move-
ment of the bulk magnetization towards x′y′ plane. It tracks a spiral down trajec-
tory seen from the laboratory frame, Figure 2.3. The perpendicular magnetic field
is denoted by ~B1 and it is described in the following complex notation

~B1(t) = B1x(t) + iB1y(t) = B1(t)e−i(ωrf t+φ)

where B1(t) is the envelope shape, ωrf the pulse frequency and φ the initial phase.
The previous expression stands for a circularly polarized magnetic field vector in
the laboratory frame of reference. For ease of argument the previous circularly
polarized field is written as the sum of two linearly polarized fields [34], placed in
one of the axis x′

~B1(t) = B1(t)~i′

Commonly B1(t) duration is of the order of micro or milli-seconds whilst its
strength is of the order of milli-Tesla.

When the spin system has a unique frequency of ω0 = γB, and the frequency
of the rotation frame of reference is selected at the same frequency ω0, the system
is said to be on resonance. Under this condition Bloch equation has a simple
analytical solution, [27]

dMi′/dt = 0
dMj′/dt = M0

z sin
( ∫ τ

0
γB1(t)

)
dMk′/dt = M0

z cos
( ∫ τ

0
γB1(t)

)
Now the pulse shape has to be determined. A rectangular pulse applied for a

time τ will tip the magnetization of an angle

δθ = γB1τ

In Section 2.3 it is shown that the signal is higher when the magnetization lies on
the xy-plane so that a 90◦ flipped bulk magnetization is desired.

This review just drew the basic mechanism of excitation but it is oversimplified.
There is a great number of B1 pulses and special attention has to be paid to wave
envelope since it explains how and how long it excites the magnetization. For
broader description of this theme, see [35].

2.2.3 Off resonance effect

Although essentially right, the previous discussion just sketches an ideal model.
Commonly the magnetic field B0 is neither homogeneous nor constant in strength
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2.3. MRI Signal

along the area to be imaged due to imperfections in the main magnet. Inhomo-
geneities cause spins to rotate at a different frequency. It leads to a phase shift,
artefacts [36] and even loss of the signal. However there exists models [37,38] that
partially offset these non-idealities.

Complete homogeneity limitation is rarely fulfilled and typically acceptable
value of inhomogeneity is 5ppm (part per million) in a small imaging volume,
called isocenter [31]. Moreover, chemical shift effect takes into account the fact
that nuclei are attached to different chemical environment in a spin system. It
describes that those nuclei attached to molecules may be affected by the weak
magnetic field created by the spinning electrons. Chemical shift depends upon the
specific location but it is accepted that, for instance, in fat it is about 3.35 ppm
shift in Larmor frequency compared to water [27].

In despite of these effects, in this thesis work it is considered a system free of
error along the entire derivation.

2.3 MRI Signal

When the RF pulse are tunned at the resonance frequency a large number of
protons flip into the transversal plane with respect to the main magnetic field
direction. Once the pulse is turned off the individual protons start to flip over
and precess toward the magnetic field direction at the Larmor frequency of the
excited spins. On basis of Faraday’s induction law [40, 41], any coil resonating at
the same frequency can be employed as a receiver. The induced voltage in the RF
antenna collecting the magnetic flux sweeping through is named Free Induction
Decay (FID). This signal is the basic source of raw data that ultimately forms the
image. In the sought of this signal expression, it is first necessary to understand
the relaxation process after the excitation. For our purpose it is sufficient to
assume that the RF pulse is instantaneous and then consider the effect of the
main magnetic field together with the relaxation terms. Some assumptions have
been introduced to alleviate the complexity of the signal equation.

2.3.1 Relaxation

A phenomenological description of the relaxation terms arising from the interaction
of a proton with its neighboring atoms complete the elementary Bloch equation
(2.9). Once the excitation pulse is switched off the system returns to the original
state of minimum energy,i.e., spin system tends to aligned with the main magnetic
field. The distinction of two relaxation phenomena is in order. Both phenomenas
are used to enhance tissues contrast in the image.
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2. Basics in Magnetic Resonance Imaging

• Spin-Lattice interaction. Alignment of the magnetic moment with the mag-
netic field is feasible insomuch as the system can exchange energy with its
surroundings. The population of the two states along with the energy trans-
fer between protons and lattice lead to the recovery of the longitudinal mag-
netization following the next equation

dMz′

dt
= −Mz′ −M ′0

z

T1

(2.14)

where T1 is the experimental spin-lattice relaxation time. Atomic level de-
tails that lead to the decay are far beyond of the matter of the present
discussion. Interested reader is referred to [24]. It is sufficient to know that
the longitudinal recovery is characterized by the parameter T1 and is caused
by the exchange of energy from nuclei to their surrounding lattice. The rate
at which this occurs is an exponential tissue-dependent process, Table 2.2

• Spin-Spin interaction. This important decay mechanism stems from the ef-
fect of local fields from neighboring spins. The precession frequency depends
directly on magnetic field so that variations in local field lead to complicated
rotation frequency and reduction of the net magnetization. The empirical
rate of decay is gathered in the T2 relaxation time.

dMx′y′

dt
= −Mx′y′

T2

(2.15)

Table 2.2: Representative values of relaxation parameters for hydrogen components of
different human body tissues at B0 = 1.5T and 37◦C.

Tissue T1 (ms) T2 (ms)
Gray matter 950 100
White matter 600 80

Muscle 900 50
Fat 250 60

Blood 1200 100-200

Bringing together all the relevant terms for the precession equation (2.13) along
with the relaxation effects, (2.14) and (2.15), Bloch equation (2.9) takes the fol-
lowing form

d ~M

dt
= γ

(
~M ×

(
~B0 + ~B1

)
− Mx′

~i′ +My′
~j′

T2

− (Mz −M0
z )~k

T1

)
(2.16)
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2.3. MRI Signal

The equation above is the starting point for both the relaxation and excitation
equation. The latter can be obtained by dropping the relaxation factors since it is
usually accepted that the length of B1 is much shorter than the relaxation terms T1

and T2. Whereas magnetization magnitude is constant in the excitation process,
it is a spiral upwards motion for the relaxation stage, Figure 2.3.

Figure 2.3: Excitation (left) and relaxation (right) from the laboratory frame of refer-
ence. During excitation the magnitude of the bulk magnetization ~M is constant while
it decreases along the relaxation process. Image extracted from [29].

The solution of the relaxation effect is written in the complex notation for the
x′ and y′ axis following the same procedure as it was done in Section 2.1.3.

M+(t) ≡Mx(t) + iMy(t) (2.17)

Then the solution of equation (2.16) for the transversal component yields

M+(~r, t) = e
− t

T2(~r) e−iω0tM+(~r, 0) (2.18)

which is composed of a sinusoidal oscillation modified with a decay factor e−1/T2(~r).
The spatial dependence of the decay factor introduces the effects of local magnetic
field inhomogeneities due to neighboring spins and lack of coherence in the initial
longitudinal magnetization.

The longitudinal part takes the form

Mz(t) = Mz(0)e−t/T1(~r) +M0(1− e−t/T1(~r)) (2.19)

2.3.2 Signal detection

According to Faraday’s law the voltage induced in a coil is

V (t) = −∂Φ(t)

∂t
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2. Basics in Magnetic Resonance Imaging

where Φ(t) is the magnetic flux through the coil of area S

Φ(t) =

∫
coil

~B(~r, t) · d~S

where ~B(~r, t) is the magnetic field sweeping the coil. Hence either a time-dependent
magnetic flux or a coil of varying area will produce induced voltage in the coil. The
induced voltage can also be expressed as a function of the magnetic field per unit
of current ~Br originated by the detection coil and the bulk magnetization ~M(~r, t).

The field ~Br(~r) is known as received field and the spatial dependence refers to
the fact that in general the receiver coils may carry non-uniformities. Detailed
derivation of the following equation can be found in Appendix A.

V (t) = − ∂

∂t

∫
coil

~M(~r, t) · ~Br(~r)d~r (2.20)

where the components of the bulk magnetization are given by equations (2.18) and
(2.19).

Let S(t) denote the signal. The fundamental MR signal is known to be pro-
portional to the detected induced voltage [27] so that from (2.20) it results

S(t) ∝ − ∂

∂t

∫
[Brx(~r)Mx(~r, t) +Bry(~r)My(~r, t) +Brz(~r)Mz(~r, t)] d~r

Mz is considered to vary slowly compared to transversal magnetic moment as
can be inferred from equations (2.18), (2.19) and Table 2.2. Using the complex
representation (2.17) and taking the time derivative inside the integrand, the signal
yields

S(t) ∝
∫
−
(

1

T2(~r)
+ iω0

)
e−t/T2(~r)

[
Brx(~r)Re

(
M+ (~r, 0) e−iω0

)
+Bry(~r)Im

(
M+ (~r, 0) e−iω0

) ]
d~r

For static fields at the scale of Tesla the Larmor frequency is typically four orders-
of-magnitude higher than values of 1/T2 and the term derived from the decay
factor can be neglected

S(t) ∝ ω0

∫
e−t/T2(~r)

[
Brx(~r)Re

(
iM+ (~r, 0) e−iω0

)
+Bry(~r)Im

(
iM+ (~r, 0) e−iω0

) ]
d~r

The previous expression can be further simplified by writing the cartesian com-
ponents of the received magnetic field in the following polar parametrization

Brx(~r) ≡ B⊥(~r) cos θB Bry(~r) ≡ B⊥(~r) sin θB
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2.3. MRI Signal

where B⊥ is the magnitude B⊥ =
√
B2
rx +B2

ry. The same notation is also applied
for the components of the bulk magnetization. In addition, the following trigono-
metric identity sin(α + β) = sinα cos β + cosα sin β leads to the following signal
equation

S(t) ∝ ω0

∫
e−t/T2(~r)M⊥(~r, 0)B⊥(~r) sin

(
ω0t+ θB)

)
d~r

The rapid oscillation at Larmor frequency ω0 in the previous signal equation
is generally not supported by the common electronic devices and demodulation
is required in order to suppress this dependency. During this process signal is
multiplied by a sine and cosine of frequency close to Larmor frequency, Ω = ω0+δω
and lowpass-filtered [42], [43]. Signal is then divided into two channels: real and
imaginary [26].

A further assumption is in order. The received magnetic field is assumed to be
spatial independent. It means that coils are considered homogeneous and uniform.
Furthermore, inhomogeneities at atomic level are neglected; hence the decay factor
e−t/T2 is spatially independent. The latter assumption is of minor consequence and
it lightens the mathematical model considerably. Taking these terms outside the
integral, the complex signal reads

S(t) ∝ ω0e−t/T2B⊥e−iθB
∫
M⊥(~r, 0)eiδωtd~r

Finally, enclose all terms before the integral in a constant κ.

S(t) = κ

∫
M⊥(~r, 0)eiδωtd~r

This is the so-called Free Induction Decay (FID) signal, basic signal in MRI and
mother of many imaging strategies.

2.3.3 Gradients

In order to differentiate the distinct constituents of a target plane, the spin density
distribution has to be encoded into the MRI signal. From this capability, images
with excellent contrast for soft tissue are achieved. For this idea to be accomplished
the signal has to be spatially dependent, i.e., nuclei have to precess at different
frequency at different spatial location. Here gradients ~G(t) come into play.

Let ~B(~r, t) be a explicit time and spatial-varying magnetic field, both depen-
dencies coming from the gradient G(t).

~B(~r, t) = xG(t)x~i+ yG(t)y~j + (B0 + zG(t)z)~k

19



2. Basics in Magnetic Resonance Imaging

According to Larmor frequency, equation (2.7), the angular frequency becomes
time and spatial dependent with the inclusion of gradients and the subsequent
frequency term derived from them ωG(~r, t)

ω(~r, t) = ω0 + ωG(~r, t)

The spatial information can be encoded in two different ways: frequency and
phase encoding. Both can be used simultaneously or individually in the same
sequence. The first modality modifies the frequency switching a gradient for a

Figure 2.4: Phase and frequency encoding. The presence of spatially varying magnetic
field for a determined time will affect the phase or frequency of the signal. Image selected
from [27].

determined time while the second affects the phase by a short life gradient, Figure
2.4.

φfr(~r, t) =
∫ t

0
γ(B0 + ~r · ~G(t′))dt′

φph(~r) = γ(~G · ~r)Tpe
The combined effect of frequency φfr(~r, t) and phase encoding φph(~r) shift is gath-
ered under a unique term φ(~r) in the FID signal (2.3.2)

S(t) = κ

∫
M⊥(~r, 0)ei(δω t+φ(~r,t))d~r (2.21)

At this point it is important to notice that the term M⊥ is related to the total
number of available spins to contribute to the signal, Ns in equation (2.10). This
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2.4. Spin Echo sequence

feature suggests that signal can be written as a function of the spin density ρ(~r).
Further assume that demodulation is performed at Larmor frequency, δω = 0 in
the equation (2.3.2).The final signal equation takes the following form

S(t) = κ

∫
ρ(~r)eiφ(~r,t)d~r (2.22)

Gradient devices

Gradients are physically constrained and not any sampling trajectory is feasible.
A concise characterization covers just two of their main properties

• Maximum gradient strength. It is the maximum change of field strength per
meter along the scanner table. This factor determines the maximum achiev-
able resolution because thin slice selection requires high gradients. Some
sampling schemes may also demand high gradient.

• Rise time. It is the time required to reach the maximum amplitude. Fast
changes are desirable but they are also restricted by regulation due to danger
of nerve stimulation [4].

Faults in the gradients can result in geometric distortions in the MR image.
Fast scan requires powerful motor to move the gradients and generally more ex-
pensive material in addition to high power consumptions. Then sampling density
is limited by scanner gradient switching speed and precision properties.

Yet another limiting factor comes from basic circuit analysis

U = L
dI

dt
+RI (2.23)

where U is the voltage, I is the current, R is the resistance and L the auto
inductance. Voltage and current are limited by design which in turn restraint the
rise time and feasibility of k-space patterns.

2.4 Spin Echo sequence

In the present section an explanatory scheme of the microscopic origin of the FID
signal is displayed along with an introduction of the way that data is obtained.

A signal is generated and sampled in a pulse sequence, a series of RF pulses and
gradients synchronized in time. Among all possible sequences the earliest imaging
method, this is, Spin Echo is introduced [39]. For a complete coverage of this and
others imaging schemes any MRI book is of help, see [24–32,35].
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2. Basics in Magnetic Resonance Imaging

Shortly, Spin Echo sequence extends the utility for acquiring information of
the FID signal partially overcoming the destructive phase caused by the diversity
in rotation frequency of the individual spins. As it was expounded, frequency
is directly proportional to the experienced magnetic field causing the precession,
equation (2.7). Field inhomogeneities fan out the precessing frequencies at a rate
of T ∗2 , Figure 2.5. This decay gathers effects due to internal and external changes
in the magnetic field. The read-out gradient is a frequency encoding gradient
applied during the period when the echo is active to sample data.

Figure 2.5: Train Spin Echo sequence. Echoes appear as consequence of π-pulses. FID
decays at T2 rate while individual echos faint out at T ∗2 . Image obtained from [29]

.

Spin Echo is based on the application of an excitation or π/2-pulse tilting
the magnetization into the transversal plane followed by a π-pulse at time TE,
Figure 2.6 that will refocus the spins. After the first instantaneous signal, spins
are spread out with the help of the dephasing gradient. The π-pulse will advance
the “slow” proton ahead of the “faster” in such a way that right after the π-
pulse the proton lagging behind will be the “fast” and both will meet at time
t = 2TE. The ensuing signal, known as echo, is ready to be sampled once again.
Subsequent π-pulse will produce new echoes of decreasing strength since local field
inhomogeneities associated to spin-spin interaction cannot be mitigated and the
signal will eventually faint out at a decay rate of T2.

2.5 Sampling trajectories and k-space

In this section it is made explicit the relation between the image and the Fourier
transform in the sense of MRI. Three sampling trajectories in the data domain or
k-space are showed.
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2.5. Sampling trajectories and k-space

Figure 2.6: Spin Echo. Effect of the gradients on a group of individual spins. Sketch
obtained from [31].

Let be ~k(t) the following three-dimensional time-dependent vector

~k(t) =
γ

2π

∫ t

0

~G(t′)dt′ (2.24)

whose components depend linearly on the gradient value ~G(t). Substituting the
previous definition in equation (2.22), the signal equation reads

S(~k) =

∫ ∞
−∞

ρ(~r)e−i2π
~k·~rd~r (2.25)

The relation between the acquired signal and the image can be emphasized.
Given a three-dimensional object, a two-dimensional image can be thought of as
a projection of the object into a plane

I(x, y) =

∫ ∞
−∞

ρ(x, y, z)dz

where limits in the integral must be set at the area of nonzero spin density. Writing
explicitly the two-dimensional k-vector in (2.25) the signal equation remains

S(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

I(x, y)e−i2π(kxx+kyy)dxdy
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This equation highlights that the relation between the k-space data and image
is the Fourier transformation. From definition (2.24), the k-space can be charted
through any direction by modifying the gradients with respect to the time. Hence
there is great flexibility to design a sampling trajectory with the unique constraint
that any trajectory must departure from the origin of the k-space since at t = 0
we have k(0) = 0 in (2.24). Inverse Fast Fourier Transfer (IFFT) is traditionally
used to reconstruct the image. However a large number of frequencies have to
be sampled in order to meet condition imposed by the reconstruction transform.
Shannon-Nyquist sampling rate (sampling rate must be at least twice the maxi-
mum frequency present in the signal) constitutes the traditional bounding factor.
Chapter 3 explains the proposed approach to overcomer this limit.

From the k-space definition it can be seen that it has units of inverse of distance
m−1 or spatial frequency. Low frequency at the central area represents rough
details in the image. Moving away from the center, fine details or resolution are
found [44]. However, most of the information lie on the center and sampling
strategies are inclined to sample more densely this area. In addition, applications
in which time is a crucial factor such as moving target imaging, high frequencies
cannot be visited by the sampling strategy and consequently this images typically
suffer from low resolution. Generally speaking sampling trajectory is usually a
trade-off between speed and image quality.

Advantages of three k-space sweeping strategies, namely, cartesian, radial and
spiral are explored. They will be set in the spin echo technique although other
signal method such as gradient echo would lead to similar results.

2.5.1 Cartesian sampling

This is the most common technique because a simple inverse Fourier transform of
raw data is sufficient to reconstruct the image. This technique collect data with
equal density along the entire k-space.

Figure 2.7 shows a multiple line scanning strategy where solid lines indicate
the current scanned line and dotted lines represent the subsequent lines, achieved
after a certain repetition time long enough to let the longitudinal magnetization to
recover. After that a new cycle starts over. Gradient in the z-axis is responsible of
the slice selection. Gradient in the y-axis is a phase encoding gradient and it is in
charge of moving the vector in the k-space vertically, Figure 2.7. Finally gradient
in x-direction is the read-out gradient . It is constant throughout the sequence.

The line selection (point A in Figure 2.7) can be written mathematically as
follows

kx = γ
2π
Gx(t− t0)

ky = γ
2π
nGy(t− t0)

}
t0 < t < Tacq/2 + t0
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Figure 2.7: Spin Echo in cartesian sequence and k-space line sweeping. Image obtained
from [27]

where t0 is the time at which gradients are switched on and n is a multiplicative
factor for the amplitude of the gradient in the vertical direction on the basis that
all the lines are equally spaced. At time TE/2 a π RF pulse maps the vector to the
left side of the k-space. Subsequently a horizontal line travels from left to right
sampling the signal. This second part can be described as follows

kx = γ
2π
Gx(t− TE)

ky = γ
2π
nGy(t− TE)

}
|t− TE| <

Tacq
2

2.5.2 Radial sampling

Historically, radial sampling was one of the first to be implemented in clinical prac-
tice. Due to the radially decreasing coverage this technique sacrifices resolution.

Let{G cos(φ0), G sin(φ0)} be the values of the gradients magnitudes. It is
straightforward to visualize the k-space trajectory as polar coordinates of the
spokes of a circle, Figure 2.8. Mathematically

kx = γ
2π
G cos(φ0)(t− t0)

ky = γ
2π
G sin(φ0)(t− t0)

}
t0 < t <

Tacq
2

+ t0

The π-pulse mirrors the vector ~k through the origin as indicated in Figure 2.8
and sampling follows with the same k-space values. For the radial strategy both
gradients are read-out gradients.

2.5.3 Spiral sampling

Spiral sampling is considered as an ultrafast method because it collects data in a
single excitation, Figure 2.9. It has the advantage that rapid values acquired in
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2. Basics in Magnetic Resonance Imaging

Figure 2.8: Spin Echo in radial sequence (left) and one single spoke sampling k-space
(right). From [27]

the center of the k-space have minor T ∗2 effect, Figure 2.5. This strategy reduces
remarkably the sampling time and allows the gradients to move in a more natural
way avoiding the rapid changes. As in radial sampling this technique is expected
to have low resolution due to the scant sampling in the outer k-space where high
frequencies lie. It is also more versatile because different types of spirals can be
designed although constraints of the gradients limit the freedom.

A spiral scheme in the k-space is described by:

kx(t) = ω(t) cosω(t)

ky(t) = ω(t) sinω(t)

where ω(t) is to be determined in the sequence design. One approach is a linear
function of time ω(t) = ω0t. From (2.24) it follows that gradient expression is

found from the time derivative of the ~k values. Then the required gradient yields

Gx(t) = A cosω0t− Atω0 sinω0t

Gy(t) = A sinω0t+ Atω0 cosω0t

One of the limitations on the gradients can be found here. It is known that cur-
rent supplied to the gradient coil and the gradient magnitude are related through
the sensitivity C [31]

I =
G

C
=

2π

γ
C−1d|~k(t)|

dt

and turning to equation (2.23) without taking into account the resistance, leads
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Figure 2.9: Spiral sequence and k-space charting. Scheme got from [27]

to the following voltage

U = L
dI

dt
= C−1L

dG(t)

dt
=

2π

γ
C−1L

d2|~k(t)|
dt2

These two equations point out that the outermost region may be restricted because
it requires high intensity values and acceleration is limited by the voltage. In
addition, the idea of sampling a T ∗2 decay rate signal before it dies out is ambitious
in the sense that it requires high speed and acceleration.

2.5.4 Rapid imaging techniques

Common approaches to save time in real MRI scanner exploit the redundancy
in Fourier domain. The half-Fourier approach only samples half k-space on the
basis of the conjugate symmetry property of the Fourier transform of real-valued
functions

F (−k) = F ∗(k)

where F ∗(k) is the complex conjugate of F (k). Intuitively this method offers a half-
time scanner but its main assumption is not met in the presence of non-idealities
such as phase shifted originated from motion artefacts. Moreover noise breaks the
Fourier symmetry.

Yet another already implemented method is parallel MR imaging. An array
of coils is placed along the scanner and reduced data set in the phase encoding
direction is acquired in every coil. Later data from the array of coils is combined.
A weighting factor according to the position of the coil related to the imaged body
is necessary to reconstruct the image via inverse Fourier transform. In cartesian
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sampling the gain in speed is directly proportional to the reduction of phase-
encoding steps.

2.6 Discrete sampling

It was shown that signal and image are Fourier pairs, meaning that the image is
reconstructed through a simple inverse Fourier Transform (2.25)

I(x, y) =

∫ ∞
−∞

∫ ∞
−∞

s(kx, ky)e
i2π(kxx+kyy)dkxdky

Sampling is of discrete nature and the previous equation needs to be modified.
When only a set of point sd(kx, ky) are available, an approximate image Î(x, y)
rather than the target image is obtained. Any type of discrepancy between I(x, y)
and Î(x, y) is called artefact. Assume that 2n points of the signal are sampled in
a cartesian grid for time Tacq along 2m horizontal lines, Figure 2.7.
Sampling a continuous signal is equivalent to multiply it by a series of delta spikes
function, i.e, a completely localized function of unit value at certain equispaced set
of points and zero elsewhere. According to this idea the previous equation reads

Î(x, y) =

∫ ∞
−∞

∫ ∞
−∞

n−1∑
p=−n

m−1∑
q=−m

s(kx, ky)δ(kx− p∆kx)δ(ky − q∆ky)ei2π(kxx+kyy)dkxdky

Under this approach the integrals are just evaluated at point where deltas are
non-zero

Î(x, y) =
n−1∑
p=−n

n−1∑
q=−n

sd(p∆kx, q∆ky)e
+i2π(p∆kxx+q∆kyy)

This equation is known as the Inverse Discrete Fourier Transform (IDFT).
Although a complex image has little physical meaning it is worth notice that

Î(x, y) is not necessary real. Errors in data acquisition, demodulation or signal
processing will lead to a phase shifted k-space. Phase in the reconstructed im-
age will arise from the mentioned situation. Then, commonly MR images are
magnitude images, i.e, absolute value of the output function.

It is necessary to introduce a discrete version of the Fourier transform (2.25) in
order to move from a mathematical model to the actual numerical implementation.
For a NxN digital image Id, it is straightforward from previous relation that the
direct DFT is written as

sd(kx, ky) =
N−1∑
p=−N

N−1∑
q=−N

Id(p∆x, q∆y)e−i2π(p∆xkx+q∆yky)
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where the summation cover all the pixels in the image.
From the above discussion one can discern that the reconstructed image is

spatially periodic due to sine function periodicity

Î(x, y) = Î(x+ 1/∆kx, y + 1/∆ky)

Thus periodicity is given by the reciprocal of the spacing of the delta functions. It
is the well-known Nyquist sampling conditions and violation results in wraparound
artefact. Space between adjacent samples depends on the sampling scheme and
therefore Nyquist condition is sampling dependent. As it will become evident in
Chapter 5, undersampling will result in this type of frequency misleading.
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Chapter 3

Problem setting

The k-space sampling strategies introduced in Section 2.5 and the relation of the
signal with the image through the Fourier transform, suggest that collected data
is equivalent to selecting a subset of frequencies in the Fourier domain. From such
data set, the image reconstruction is aimed. Fourier transform is a linear operator,
hence data acquisition is represented by matrix multiplication. The N ×N image
is stacked as a column-wise array x ∈ CN2×1. It is the array of unknowns. Likewise
the measurement vector remains: y ∈ Cm×1. Then the measurements are linearly
obtained from Fourier domain of x through the measurement matrix Fs =MF ∈
Cm×N2

, where F ∈ CN2×N2
is the fully sampled DFT matrix operator and M is

the undersampling matrix which can be thought as a binary matrix that select
only certain frequencies from the whole k-space. The measurement vector yields

y = Fsx (3.1)

Typically the undersampling matrix M is chosen to meet the Nyquist sam-
pling limit and the image is reconstructed through the common IFFT algorithm.
However, time required to collect data in MRI is very slow and there exists high
motivation in the medical sector to reduce the scanning time. In the cartesian
sampling shown in Section 2.5.1, scanning time is proportional to the number of
acquired lines in the read-out direction. Similarly, it is proportional to the number
of sampled spokes in the radial sampling, Section 2.5.2. An obvious strategy then
to reduce scanning time is to reduce the number of samples. However when data
domain is highly undersampled, IFFT results in a image suffering from artefacts.

Reconstructing the image x from a short data set y in (3.1) is an ill-conditioned
task. Traditionally, regularization is employed to overcome this situation. In the
recent years the novel sampling technique Compressed Sensing (CS) has arrived
with significant contributions in many fields. This technique is built upon the fact
that natural images can be represented by few non-zero coefficients in a suitable
basis such as wavelets. Then it is possible to find these coefficients sampling the
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image in another basis; sinusoid basis or Fourier transform in the case of MRI.
Both techniques exploit the spatial redundancy of the natural images in diverse
transformations such as wavelets [16–18] , DCT [18], Singular Value Decomposition
(SVD) [20] or discrete difference [18,21].

In the sequel the Shepp-Logan Phantom, Figure 3.1, is used as the target
image. It is a piece-wise image with several ellipses meant to represent different
areas with distinguishable spin density. It was used first as a standard head in CT
simulation.

Figure 3.1: Shepp-Logan Phantom

In the present chapter it is showed the idea of sparsity for the Shepp-Logan
phantom as well as the proposed solution to reconstruct the target image from
reduced data set withot degrading image quality. In Chapter 5 the benefits of using
the l1-norm of the sparsifying transform as the regularization term are presented.
In this thesis work two regularization terms are employed and compared: wavelets
and total variation.

3.1 Sparse representation

Let Ψ be an orthonormal basis decomposition Ψ = {Ψ1,Ψ2, . . . ,ΨN2} such as
Discrete Wavelet Transform (DWT), Sections 3.1.1, or DCT . Then from linear
algebra, an image or signal x̄ can be expanded as follows

x̄ =
N2∑
i=1

αiΨi (3.2)
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3.1. Sparse representation

where α is the vector of coefficients of x̄ in the basis Ψ

αj = 〈x̄,Ψj〉

An image x̄ of length N2 is said to be sparse in a convenient basis Ψ when it can
be represented only by significant fewer s terms, with s << N2. Mathematically,
sparsity assures that x̄ is s-sparse when at most s terms of the vector coefficient
α are nonzeros, i.e, ||α||0 ≤ s where

||α||0 ≡ |supp(α)|

The support is defined as the set of points where the vector entries are nonzero:
supp(α) = {j : 〈x̄,Ψj〉 6= 0}. However barely any real-world image is sparse in a
strict sense and more flexible definition is in order. It is said that x̄ is compressible
in a given basis Ψ when it is well-approximated with s non-zero coefficient.

Intuitively an image is compressible when reconstruction with just the largest
set of coefficients αs = {α1, α2, . . . , αs, 0, . . . , 0} results in a minor perceptual loss.
For an orthonormal basis it is possible to quantify the compressibility through the
error committed when just the s largest terms are taken into account:

||x̄− ˆ̄x||2 = ||α−αs||2

Figure 3.2 shows decreasing error versus increasing amount of coefficients in a
DWT basis and Discrete Cosine Transform for the Shepp-Logan Phantom, Figure
3.1.

3.1.1 Wavelets

The wavelet transform is a multi-scale representation of an image, i.e., wavelet
basis provides a frame to represent signals or images with any desirable resolution.
Whilst Fourier Transform or DCT have only sine and cosine functions as the basis
set, wavelets basis use functions localized in space. It is a desirable feature for sharp
signal representation and in particular for the Shepp-Logan phantom because it
is a piecewise constant function with steep jumps, especially for the peripheral
ellipse, Figure 3.1.

The image x̄(x, y) can be written as a linear combination of the expansion
function ψm,n(x, y):

x̄(x, y) =
∑
m

∑
n

αm,nψm,n(x, y)

A detailed description on mathematical basis of wavelet function is beyond the
purpose of this thesis. Reader is referred to [45] for detailed coverage of this
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Figure 3.2: Error in image representation in D4 Daubechies DWT (black) and DCT
(red) with increasing percentage of coefficients of the 512x512 phantom image, Figure
3.1.

theme. It is sufficient for our purposes, however, to know that a wavelet expansion
is written as the sum of the so-called mother and father wavelets

φj,m,n(x, y) = 2j/2φ(2jx−m, 2jy − n)

ψij,m,n(x, y) = 2j/2ψi(2jx−m, 2jy − n)

where i = {H,V,D} stands for the horizontal, vertical and diagonal directional
wavelets that maintain the detail in that directions, j is the dilatation coefficient
and m and n the translation coefficients of the basis function. Further, the discrete
wavelet transform of an image x̄(x, y) of size N x M is a decomposition opera-
tion that produces four output images: approximation, horizontal, vertical, and
diagonal detail images. A five-scale phantom image is found in Figure 3.3.

For a discrete function x̄(x, y) the DWT is

Wφ(j0,m, n) =
1√
MN

M−1∑
x=0

N−1∑
y=0

x̄(x, y)φj0,m,n(x, y)

W i
ψ(j,m, n) =

1√
MN

M−1∑
x=0

N−1∑
y=0

x̄(x, y)ψij0,m,n(x, y)
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3.1. Sparse representation

and the series expansion of the function x̄(x, y) yields

x̄(x, y) =
1√
MN

∑
m

∑
n

Wφ(j0,m, n)φj0,m,n(x, y)+

+
1√
MN

∑
i=H,V,D

∞∑
j=j0

∑
m

∑
n

W i
ψ(j,m, n)ψij0,m,n(x, y)

The original function can be written as a linear combination of the wavelet
functions. Setting a threshold in the vector of coefficients one controls the details
of the image when it is transformed back into the pixel domain. Hence wavelet
transformation is a versatile tool in denoising images corrupted by high detailed
noise just dropping off high resolution coefficients.

There exists certain freedom in the basis choice and selecting a particular
wavelet is mainly an application-dependent problem. From the time being, the
wavelet basis employed is the Daubechies D4 although non significant differences
in the sparsity were found compared to other orthogonal wavelet basis such as
symmlet and Coiflet. All wavelet operations were performed with the WaveLab
softwave from Stanford University [46].

Figure 3.3: Five-scale Wavelet representation. Horizontal, vertical and diagonal details
of the Sheppan-Logan phantom.
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3. Problem setting

3.1.2 Discrete Difference

As stated above, Shepp-Logan phantom is a piecewise constant image so just a
simple discrete finite difference can work as sparse transformation. In this sense it
is related to edge detection in digital image processing [44]. The discrete difference
is operated over the set of 4-neighbors pixels denoted by Nj for pixel xj, Figure
3.4.

Figure 3.4: Scheme of the N4 neighboring pixels of xj pixel.

3.2 Image reconstruction via l1 regularization

For highly undersampling levels, solving the linear system (3.1) for x is an under-
determined problem in which more unknowns than equations are present. This
problem has either no classical solution if y is not in the span of the columns
of the matrix Fs or infinitely many solutions whenever y ∈ R(Fs) . On the
other hand the existence of a nontrivial null space, N (Fs) 6= {0}, implies non-
uniqueness of the solution. In this sense there are infinite number of solutions that
fit the data because solutions lying on the null space have no effect in data fit(
Fs (x0 + x1) = Fs (x0) = y with x0 ∈ N (F s) and x1 ∈ N (Fs)

⊥). The problem is
said to be ill-conditioned. The process employed to obtain a particular solution is
called regularization. In this scheme the inversion is carried-out by imposing addi-
tional constraints that bias the solution. Constraints are based on prior available
information about the system, the image x in the present task. Then an approxi-
mate solution in some sense of (3.1) is sought. One way to write regularization is
as follows

minimize J (x) subject to y = Fsx (3.3)

where J (x) gathers the prior information.
In the recent years significant academic research activity has been exploiting

the benefits of the sparsity of the signal or image to be reconstructed in a certain
basis Ψ. In particular the l1-norm of the mentioned sparsifying transformation is
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3.2. Image reconstruction via l1 regularization

employed as regularization term J (x). In the remaining of the present section,
the l1-norm choice is argued.

3.2.1 l1 norm of the wavelet transform

Definition: lp-norm for p > 1 is defined as

||x||p =

(∑
i

|xi|p
) 1

p

For 0 < p < 1, norms are known as pseudo-norms because they fail to meet norm
properties, namely

• Zero vector: ||x|| = 0 if and only if x = 0

• Absolute homogeneity: ∀ t 6= 0, ||tv|| = |t|||v||

• Triangle inequality: ||u + v|| ≤ ||u||+ ||v||

Definition: The ball of lp-norm is the subset

B(r) = {x ∈ R2N2

:
2N2∑
i=1

|xi|p < rp}

Within the regularization scheme (3.3) the objective function J (x) is a function
in lp-norm and possible solutions are restricted to be in the ball of lp-norm. The
linear set of equations y = Fsx forming the constraints in (3.3) determines a
feasible set of solutions. It defines a hyperplane where solution is sought. It is
equivalent geometrically to grow the lp ball until it intersects the feasible set. The
intersection is the solution.

Let us consider a simple illustrative example in Figure 3.5. Let x̄ ∈ R2 be a 1-
sparse vector, i.e, just one of their entries is nonzero x̄ = {x1, 0} which means that
x̄ is sparse itself and no further sparsity transform is required. Let A ∈ R1×2 be
the measurement matrix that takes 1 measurement ȳ ∈ R1. Then the set ȳ = Ax̄
defines a line. Accordingly to the sparse idea from Section 3.1, the desired solution
x should have the minimum number of coefficients or minimum l0-norm. However,
l0-minimization problem is NP-hard [47,48], this is, solution of problem (3.3) can
be found but standard convex analysis fail yet to assure uniqueness. Further,
the candidate solution cannot be guaranteed to be a global minimizer because
comparison throughout all possible sparse subset is computationally intractable.
Another lp-norm suitable for sparse solutions is sought.
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3. Problem setting

Figure 3.5: Geometrical visualization of sparsity of lp balls with p = 1, 2,∞ and 1
2

Figure 3.5 shows that norms in the range 0 < p ≤ 1 are appropriated to find
a sparse solution while for larger norms the solution is spread more evenly be-
tween the two components. Subset formed by balls of smaller p are geometrically
sharper; hence they promote sparsity. However, the problem is expected to be
solved by means of numerical optimization. In this sense convexity is a desirable
characteristic since strict convex functions has a unique solution and with a well-
designed algorithm the global minimum can be reached. For non-convex functions,
solutions are still possible but optimization becomes daunting.

Definition: A set Ω is convex if ∀x1,x2 ∈ Ω and ∀ t ∈ [0, 1], the convex
combination x = tx1 + (1− t)x2 is also in Ω.

Definition: A function J (x) : Ω −→ R is convex if ∀x1,x2 ∈ Ω and ∀ t ∈
[0, 1], the convex combination x = tx1 + (1− t)x2 satisfies

J (tx1 + (1− t)x2) ≤ tJ (x1) + (1− t)J (x2)

Unfortunately pseudo-norms 0 < p < 1 with good properties for sparsity lead
to a non-convex optimization problem. Therefore in order to work in a convex set
with mild properties for sparsity, the only feasible option is the norm p = 1. In
the regularization scheme (3.3), the solution reads as follows: among all possible
images consistent with the data, select that whose representative coefficients in a
basis Ψ has minimum ||α||1

minimize ||α||1 subject to y = Fsx (3.4)

This problem is known as basis pursuit [49]. This constrained optimization offers
great results in denoising. Minimization of (3.4) is a convex optimization problem
and it can be posed as a linear programming for real-valued entries and be solved
by using using interior-point methods [15] or simplex method. For complex-valued
it is equivalent to a second order cone program (SOCP) [50].
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3.2. Image reconstruction via l1 regularization

In the presence of noise the data fidelity term must be relaxed. Commonly the
equality constraint is replaced by a quadratic discrepancy measure between y and
Fsx

minimize ||α||1 subject to ||Fsx− y||22 < ε (3.5)

where ε is the expected noise level. Accordingly to the literature in MRI models,
Gaussian noise is commonly accepted [52] although Rician distribution has been
also proposed [53]. A traditional way to measure the misfit between data and
forward model is the square of the l2 norm although it can also be written as a
function of the l1 norm.

It is known from constrained optimization theory that the minimization prob-
lem (3.5) can be restated in the so-called augmented Lagrangian method [54]. With
this reformulation, constraints are added to the objective function and the approx-
imation of problem (3.5) becomes

minimize
x

{
||Fsx− y||22 + λ1||Ψx||1

}
(3.6)

Note that the dependency of the image x with respect to the vector coefficients
α through equaiton 3.1 has been made explicit in the previous equation. For
a certain choice of parameter λ1 this optimization problem will yield the same
result as the constrained version [55]. Nevertheless, it is employed a more intuitive
approach in which equation (3.6) can be also seen as regularization problem where
increasing values of λ1 penalize constraint violation more severely. Equation (3.7)
poses an unconstrained optimization problem that can be solved with the common
optimization algorithms. In Section 4.2 we present the chosen non-linear conjugate
gradient.

||Fsx− y||22 + λ1||Ψx||1 (3.7)

3.2.2 Total Variation

Closely related to our problem setting is the well-known Total Variation (TV)
denoising. The approach known as ROF model is particularly suitable in the
presence of Guassian additive noise [59].

The TV is defined as follows. Given a function f : Ω → R, where Ω is a
bounded open subset of R

TV(f) =

∫
Ω

||∇f(x)||pdx

where ||∇f(x)||p is the lp-norm of the gradient of f at x. If Ω is a discrete space
and for p = 1 the continuous definition leads to

TV(x) =
2N2∑
k

∑
j∼Nk

|xk − xj|
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3. Problem setting

which means that discrete TV is the absolute value of the difference between the
N4 neighboring pixels, Figure 3.2.2 .

For piece-wise constant image as the Shepp-Logan phantom, total variation
measures the sum of the magnitudes of the jumps between pixels of the image.

TV is included in (3.7) as the second regularization term. The discrete differ-
ence defined in Section 3.1.2 is the sparsifying transform. Finally gathering the
data fidelity term, wavelet transform and TV, the following optimization problem
results

||Fsx− y||22 + λ1||Ψx||1 + λ2TV (x) (3.8)

A note on Compressed Sensing

Compressive Sensing (CS) is intimate related to problem (3.4). Ultimately CS
leads to the same optimization problem but the difference lies on the way that
data is sampled. In a nutshell, this technique assures that number of samples
can be drastically reduced when the image to be reconstructed is sparse in a
basis Ψ other than basis where data is sampled Φ and the mutual coherence is
low, i.e., basis are dissimilar. For instance Fourier basis and a series of deltas
have maximal incoherence. Random matrices are also largely incoherent with any
other sparsifying matrix Ψ. It leads to a surprisingly result at the first sight:
a sparse image in Ψ domain can be recovered by acquiring random sampled in
another domain Φ. The level of coherence indicates the number of samples required
to recover the image. In MRI, sampling randomly the k-space has little sense
because most of the information lies in the center. However this technique is
still applicable in MRI. In practice, it has been found that the number of k-space
samples should be roughly two to five times the number of sparse coefficients [51].
Previously published papers to this thesis in compressed sensing in the context of
MRI are [18,19,21–23] among others. For an introductory review in CS, reader is
referred to [14] and a more detailed description is offered in [58].

CS is robust in the presence of noise but a higher number of samples is usually
required in order to have a solid reconstruct. Note that CS is based on probability
theory and reconstruction can be compromised when the undersampling limit is
exceeded.
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Chapter 4

Methods

The present chapter is devoted to outline how data was obtained accordingly to
basics in MRI theory in Chapter 2 and to detail the reconstruction algorithm in
the sense regularization discussed in Section 3.2.

4.1 Forward problem, simulated data

The forward problem is straightforward in the problem under study. It was shown
in Section 2.5 that under certain assumptions, MRI data can be modeled as the
frequency components of the target image. Hence, initial data is obtained from
a subset of frequencies in the Fourier domain, Fs. In Section 2.5 three sampling
strategies were introduced. Accordingly, three binary k-space masks have been
designed to acquire a given percentage of samples. In other words, the mask is
placed over the frequency components of the Shepp-Logan phantom; frequencies
lying beneath a zero are dropped whilst values beneath a one (black lines in Figure
4.1) are collected. The undersampling level is controlled by increasing the number
of zeros in the mask. The three masks have in common a denser sampling in the
center area. In particular the rectangular grid sweeps a central square with higher
priority and later the mask will also contain equispaced vertical and horizontal
lines up to the undersampling level in the external area. Radial mask calculates the
number of spokes to sample as a function of the given undersampling level. Finally
the square spiral, like the previous masks, starts from the center and it samples
the k-space outward with different densities consistent with the undersampling
number. The higher presence in the center is based on the fact that most of the
information in the Fourier domain is located there, especially for an image with
low detail level as the employed phantom, Figure 3.1. This feature is presented
in Figure 4.2. For the central column in the k-space, in Figure 4.2 normalized
absolute value of the frequencies along the central row are shown in the vertical
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4. Methods

axis while horizontal axis represents the relative position with respect to the center
of the matrix.

Figure 4.1: Cartesian, radial and spiral mask with 85% undersampling level

Figure 4.2: Transverse section of the absolute value of the frequency matrix for the
central column of the frequency components of 512 × 512 Shepp-Logan phantom.

A further comment is in order. Square spirals are of scant benefit in time-
saving regards and physically demanding for the hardware components since square
corners would require high rising times, Section 2.5. However they are used here
with the aim to compare the proposed method to the traditional IFFT. Strategies
regarding different sampling than traditional along uniformly sampled rectilinear
k-space trajectory requires extra care rather than an straight IFFT. In radial
and spiral imaging the k-space trajectories are nonuniform. In a process called
regridding, the data is resampled or interpolated onto a uniform rectilinear grid
before the application of IFFT. In addition data is corrected for the nonuniform
sampling density by an appropriate weighting factor [56,57].
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4.2. Reconstruction algorithm. Non-linear conjugate gradients

4.2 Reconstruction algorithm. Non-linear con-

jugate gradients

Non-linear conjugate gradients (nlcg) is a numerical optimization method whose
strategy is to find a sequence of n iterations {x}ni=1 in the sense of decreasing
an objective function f(x). The proposed algorithm terminates for a determined
number of iterations or when the approximation is good enough under certain
criteria, for instance certain error threshold.

Minimization is carried-out from an initial guess, selecting the next element
in the iteration accordingly to the previous one and moving along a minimizing
direction pk. Parameter tk stands for the distance to advance in that direction,
(4.1) and (4.2). Ideally tk should be selected to minimize f(xk + tkpk). Instead
the inexact line search is employed. Two methods were tested: backtracking and
second order fitting with the objective function. Backtracking ensures that tk is
short enough but not too short to meet Armijo condition, i.e., algorithm always
moves in a descent direction

while
(
f(xk + tkpk) > f(xk) + αtk(∇f(xk) · pk)

)
(4.1a)

tk = βtk (4.1b)

end(while)

for any α, β ∈ (0, 1). It is however a loose way to choose tk because it just decreases
the step length until decrease in the objective function is found. It may get stuck
when the function is far from a minimum or it would require significant number
of iterations to find the proper step length when the algorithm is close to the
minimum. On the other hand it does not prevent steps that are too long relative
to the decrease in f . Therefore a proper tuning is needed for β and α.

Second order fitting for the selection of the step length improves the numerical
performance. In this approach a small constant initial step length is given. If the
step length is found to offer a decreasing value of the objective function, algorithm
keeps moving along that direction until the objective function increases. If on the
other hand, the initial step length is poor, algorithm decreases the step length
until it finds a lower value for the objective function. In both cases three points
result: the original, a lower and a higher one. Under the assumption that the
objective function between these points can be well approximated as a quadratic
function, one can fit a second order function within these three points and finally
select the step length that makes the objective function hit the minimum. This
strategy obtains more accurate step length but it may require considerable number
of calls to the objective function which in turn is more expensive time routine than
backtracking.
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4. Methods

The characteristic properties of the conjugate direction suggest to select the
minimization line as a linear combination of the gradient of the objective func-
tion: pk+1 = −∇fk+1 + βk+1pk [54]. This property make conjugate gradients
suitable for large scale problems since it just requires the calculation of the gra-
dient for the objective function and the cumbersome second order derivations are
not needed. Further, it only requires of little storage at each iteration since al-
gorithm parameters are overwritten at every new iteration. Algorithm requires
the initial minimization direction which is given by the steepest decent direction:
p0 = −∇(f0)

Several variants are proposed in the literature for scaling factor βk in minimiza-
tion line, (4.3). In this thesis work, two methods were tested: Fletcher-Reeves with
backtracking and Polak-Ribière with a second order curve fitting. For an objective
function strongly convex these two methods are identical but for general non-linear
functions the latter method is found to be more robust. Comparison of the nu-
merical performance is illustrated in the Figure 4.3. Polak-Ribière with a second
order curve fitting is found to be more robust and offers larger minimization of the
objective function for smaller number of iterations. This is the strategy employed
in the rest of simulations.

Figure 4.3: Non-linear conjugate gradient minimization. Objective function value
(ordinate) vs the number of iterations (abscissa). Polak-Ribière (red) and Fletcher-
Reeves method (black). Experiment performed over a 85% sparse rectangular mask
with λ1 = 0.005, λ2 = 0.002 and α = 0.3 and β = 0.6 for backtracking, (4.1)

Finally, the implemented algorithm is showed in Table 4.1. Notice that l1-
norm is a non-smooth function, hence it is non-differentiable near the minimum.
In general algorithms have an unpredictable behavior in the proximity of a non-
smooth point. It can be overcome adding a small smoothing parameter µ.
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4.2. Reconstruction algorithm. Non-linear conjugate gradients

Table 4.1: Details of the parameters used in the optimization algorithm

NON-LINEAR CONJUGATE GRADIENTS. POLAK-RIBIÈRE METHOD

f(x) = ||Fsx− y||22 + λ1||α||1 + λ2TV (x)
Input
Number of iterations: nItr = [40-110]
Sparsity transform: Ψ: Daubechies D4 wavelet basis
Undersampled Fourier transform: rectangular, radial or spiral mask

Data: y ∈ R2m2×1 = Fsx + η
l1 norm smoothing: µ = 10−6

Wavelet term weight: λ1 = [0− 0.1]
TV- weight: λ2 = [0− 0.1]
Output
Numerical approximation x
Initialization:

g0 = ∇f
Set :

p0 = −g0

k = 0;
Iterations:

while(k < nItr)
tk = line search(x,p, f(xk))
xk+1 = xk + tkpk (4.2)
gk+1 = ∇f(xk+1)

β = gk+1
T (gk+1−gk)

||gk||22
β = max([β, 0])
pk+1 = −gk+1 + βpk (4.3)
k = k + 1

end(while)
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The gradient equation is specified in the Appendix B.
The nlcg is an numerical optimization algorithm for real-valued functions. In

order to meet this property every vector is written as a real vector. Hereafter
we cope with real-valued functions moving from CN2×1 to R2N2×1 through the
mapping φ

φ : x ∈ CN2×1 −→ x ∈ R2N2×1 (4.4)


x1

x2
...

xN2

 −→



Re(x1)
Re(x2)
...
Re(xN2)
Im(x1)
Im(x2)
...
Im(xN2)


This mapping does not dis-

card the imaginary part of the signal but only rearranges it. While magnitude in
the Fourier domain carries intensity, phase dominates intelligibility of the image
by placing the discernible objects in the image; translation of position has no effect
on the magnitude but it does on phase adding a phase term [60]. Therefore the
role of the phase cannot be neglected and previous mapping is of crucial relevance.
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Chapter 5

Simulations

In this section the results of the optimization problem described in Section 4.2 are
presented. Cartesian, radial and spiral masks were designed to collect a representa-
tive percentage of frequencies obeying its characteristic pattern. In the sense frame
of compressed sensing a pseudo-random mask with lines scanned only along the
read-out direction was examined. For every grid we compare the undersampling
level to the relative error

Relative Error =
||x− x̂||2
||x||2

(5.1)

5.1 Cartesian

Results are plotted in Figure 5.1. The used parameters are detailed in Table 5.1 :

Table 5.1: Cartesian reconstruction. Figure 5.1

Number of iterations: 70
Data: y = Fsx + η with η ∼ N (0, 0.01)
Sparsity transform: Ψ: Daubechies D4 wavelet basis
Wavelet weight: λ1 = 0.001
TV- weight: λ2 = 0.01

Cartesian grid offered very competitive properties. Increasing undersampling
level leads to blurring the IFFT image with an increasing presence of ringing
artefacts. However noise-like artefacts are totally removed, right column in Figure
5.1 with the proposed method.
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5. Simulations

CARTESIAN GRID
Undersampling level (%) Relative Error

65 0.00464
75 0.00993
85 0.01916
95 0.06866

5.2 Radial

From the center of the k-space different number of spokes were traced accordingly
to the desired undersampling level . It simulated the way data is collected in real
radial sampling, Figure 2.8.

Table 5.2: Radial reconstruction. Figure 5.2

Number of iterations: 70
Data: y = Fsx + η with η ∼ N (0, 0.01)
Sparsity transform: Ψ: Daubechies D4 wavelet basis
Wavelet term weight: λ1 = 0.001
TV- weight: λ2 = 0.01

RADIAL GRID
Undersampling level (%) Relative Error

80 0.00466
85 0.00695
90 0.02348
95 0.21380

Radial undersampling outcomes in “honeycomb” artefacts. It is shown in Fig-
ure 5.2 that the proposed regularization recovers with an acceptable low visual
impact compared to the original phantom up to 90% undersampling level. How-
ever at 95% undersampling level one can infer that data set is excessively small
and useless image results. This results can be associated with the minimum sam-
pling in the center area since as it was already stated, most of the information lie
in this area. Further it was experienced that proposed method is robust in these
two previous sampling cases and not fine tuning for the algorithm parameters was
needed.
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5.3. Spiral

5.3 Spiral

Spiral mask represents a non-uniform sampling strategy. For the introduced un-
dersampling level, spiral mask will return loops sampled with decreasing density.

Table 5.3: Spiral reconstruction. Figure 5.3

Number of iterations: 110
Data: y = Fsx + η with η ∼ N (0, 0.01)
Sparsity transform: Ψ: Daubechies D4 wavelet basis
Wavelet term weight: λ1 = 0.001
TV- weight: λ2 = 0.008

SPIRAL GRID
Undersampling level (%) Relative Error

65 0.06152
75 0.06168
85 0.06173
95 0.27698

Spiral sampling employed suffers from artefacts at the image detail level. For a
low number of iterations recovery is adequate only until 65% undersampling level
although proposed approach was able to recover the target image fairly accurately.
Throughly inspection detects that the effect of total variation have smoothed arte-
fact into a constant areas with “stain” appearance, Figure 5.4.
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5.4 Pseudo-Random Sampling

In a real cartesian sampling scheme lines would be acquire just in the read-out
direction. The saving time is proportional to the number of non-sampled lines,
Section 2.5.1.

Table 5.4: Pseudo-random reconstruction. Figure 5.5

Number of iterations: 50
Data: y = Fsx + η with η ∼ N (0, 0.05)
Sparsity transform: Ψ: Daubechies D4 wavelet basis
Wavelet term weight: λ1 = 0.05
TV- weight: λ2 = 0.02

PSEUDO-RANDOM SAMPLING
Undersampling level (%) Relative Error

65 0.043792

Pseudo-random cartesian scheme evidence the versatility of this method and
offers a new sampling strategy that meets the principles of compressed sensing.
Reconstruction in this case required a higher TV penalization to promote denoising
and higher wavelet term weight to preserve edges. Fine details are still distinguish-
able, Figure 5.5.

5.5 High noise condition

Robustness of this methods was experienced at higher noise conditions in 97%
sparse Cartesian scheme, only a small central square is sampled. Choice of pa-
rameters λ1 and λ2 is based on the minimum relative error at certain number of
iterations, Figure 5.6. Penalization on TV and wavelet is higher than in the rest
of simulations. Coarse regions are recovered but fine details are lost. The reason
is that high frequencies were not sampled. In addition data in the external area of
the small sampled square is buried in noise. Nevertheless artefacts were reasonably
well removed in the coarse areas and borders are still distinguishable but jagged.
In these regard the effect of wavelets smooth slightly the borders (left-most image
versus central image) in Figure 5.7. On the contrary wavelets without total vari-
ation is not able to flatten the artefacts (right image).
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Table 5.5: High noise reconstruction. Figure 5.7

Number of iterations: 60
Data: y = Fsx+ η with η ∼ N (0, 0.1) 97% undersampling level in Cartesian grid
Sparsity transform: Ψ: Daubechies D4 wavelet basis
Wavelet term weight: λ1 = {0; 0.01}
TV- weight: λ2 = {0; 0.1}

HIGH NOISE CONDITIONS. Cartesian sampling
Undersampling level (%) TV weight Wavelet Relative Error

97 0.035 0.01 0.08272
97 0.035 0 0.08135
97 0 0.01 0.08618
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5. Simulations

Mask IFFT Reconstructed

Figure 5.1: Cartesian grid simulation. Undersampling levels from the top to the bottom
: 65%, 75%, 85% and 95%
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Frequency Mask IFFT Reconstruction

Figure 5.2: Radial grid simulations. Undersampling levels: 80%, 85%, 90% and 95%
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5. Simulations

Frequency Mask IFFT Reconstruction

Figure 5.3: Spiral grid simulation. Undersampling levels: 65%, 75%, 85% and 95%
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5.5. High noise condition

Figure 5.4: Increased detail image of the spiral reconstruction for an undersampling
level of 85%

Figure 5.5: Pseudo-random grid (top). Initial and reconstructed image (bottom row)
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5. Simulations

Figure 5.6: Relative error versus weight of TV.

Figure 5.7: Top image: Inverse FFT. Bottom row: Detailed reconstructed image. Left:
both total variation and wavelet were used. Middle: only TV weight. Right: Only
wavelet weight
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Chapter 6

Discussion and conclusions

In this thesis we have discussed a method to reduce the number of samples in the
MRI data acquisition stage without degrading the image quality. The proposed
method was based in wavelet and TV regularization, exploiting in this way the
spatial redundancy of the target image, the Shepp-Logan phantom. Data was
obtained from three characteristic sampling strategies in MRI, namely, cartesian,
radial and square spiral with diverse undersampling level. Reconstructions of this
method were compared to the traditional IFFT. It was found that, up to certain
undersampling level, target image was recovered with less visual degradation than
IFFT whose reconstructions suffered from undersampled artefact such as aliasing
and Gibbs ringing. Relative errors between the reconstructed and target image,
Tables 5.1, 5.2 and 5.3, indicate that degradation increases with the undersam-
pling level but discrepancy is moderate in the three sampling schemes up to 85%
undersampling level. In the same way, visual inspection in Figures 5.1, 5.2 and 5.3
uphold this conclusion.

It is important to recall that the Shepp-Logan phantom consists only of ten
ellipses of different sizes, location and contrast. Therefore it is a simple image of
little detail and not high frequencies are expected in Fourier domain, Figure 4.2.
Then the omission of large areas in the external region of the k-space appears as
slight blurring artefact. However, real medical images have in general higher detail
level. In addition reliable diagnosis are based on high contrast and resolution to
discern between diverse anatomical structures. This method is still exportable to
real case although extra care has to be taken into account. Sampling patterns
should be then adapted to particular imaged region, physiological characteristics
and specific diagnosis. For instance brain image may require less contrast that
an abdominal slice due to the higher concentration of organs and fine details. In
general, high detailed image and scanning time is a trade-off decision. In particular
the discussed technique is likely to have successful implementation in brain imaging
where spatial redundancy is relatively high. In the same way more relevant role of
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6. Discussion and conclusions

sparsifying transform term is expected for more elaborated images.
The quality of an image is commonly quantified in MRI with the Signal-to-

Noise Ratio (SNR). It depends on a great deal of factors which were beyond the
theme of this thesis. However further studies may include data modeling and
hence asses whether reconstructed images meet quality standards in relation to
the undersampling factor.

Time saving in cartesian is proportional to the number of omitted horizontal
lines or read-out direction in the k-space, Figure 2.7, and proportional to the
number of omitted spokes in the radial case, Figure 2.8. Therefore radial mask is
closer to saving-time real scenario whilst employed cartesian mask would require
longer sampling time in order to acquire data in the central square. In this sense
the pseudo-random mask is more realistic. Nevertheless it is necessary to have
an objective parameter to estimate the quality of the image with respect to saved
time. Likewise scanning time depends also on the hardware components of the
particular scanner. Therefore it is not possible to estimate a concrete saved time
factor in the present study because more realistic model and hardware features are
required.
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Appendix A

Basic Electromagnetism

A.1 Potential Vector

Let ~B be the magnetic field evaluated at certain point determined by the position
vector ~r (unprimed coordinates) with respect to an arbitrary center 0 due to a line

current element I ′d~l′ (primed coordinates), Figure A.1. The integral expression
for the magnetic field is computed from the Ampere’s force law and it reads

~B(~r) =
µ0

4π

∮
loop

I ′d~l′ × ~R

R3

where µ0 is the vacuum permeability. The previous equation is named Biot-Savat’s
law. These line currents arise from the individual precessing proton.

The potential vector is defined as

~B(~r) = ~∇× ~A(~r) (A.1)

The integral equation for the potential vector is obtained from (A.1) and the

following vector identities: ∇ ×
(
λ~C
)

= (∇λ) × ~C + λ
(
∇× ~C

)
and ∇

(
1
R

)
=

−∇′
(

1
R

)
= − ~R

R3 where ~R = ~r − ~r′ from Figure A.1. The integrand in equation
(A.1) yields

d~l′ × ~R

R3
= −d~l′ ×∇

(
1

R

)
= ∇×

(
d~l′

R

)
−

(
∇× d~l′
R

)
= ∇×

(
d~l′

R

)

since ∇× d~l′ = 0. Back into equation (A.1), the magnetic field remains

~B(~r) = ∇×

(
µ0

4π

∮
loop

I ′d~l′

R

)
(A.2)
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A. Basic Electromagnetism

Figure A.1: Vectors relation for the magnetic field at a certain point given by the vector
position ~r due to an element current Id~l

By comparison of (A.1) and (A.2), the integral expression of the potential vector
follows

~A(~r) =
µ0

4π

∮
loop

I ′d~l′

R
(A.3)

The collective arrangement of individual protons in a macroscopic sample results
in a volume density current, ~J ′(~r′). The integral expression including the volume
density current is straightforward. From (A.3), the line current I ′ is replaced by
~J ′(~r′) and the integral has to be evaluated for the sample volume V′

~A(~r) =
µ0

4π

∫
V′

~J ′(~r′)

R
d~r′

The bulk magnetization defined in (2.8) is related to the volume density current
~J ′(~r′) as follows [40]

~J ′(~r′) = ∇× ~M(~r′)

Then the potential vector can be written as

~A(~r) =
µ0

4π

∫
V′

∇× ~M(~r′)

R
d~r′ (A.4)

A.2 Principle of reciprocity

Let us suppose two loops Cj and Ck carrying with two currents Ij and Ik respec-
tively. Due to Faraday’s induction law, both currents induce another current in

60



A.3. MRI signal

the opposite loop. Let Φkj denote the flux of current k in loop j. The potential
vector produced by the circuit Ck at rj in loop Cj is

Φkj =

∮
Cj

~Ak(~rj) · d~lj =
µ0

4π

∮
Cj

∮
Ck

Ikd~lk · d~lj
Rjk

From the previous equation it can be inferred that the flux through Cj is propor-
tional to Ik. The proportional term Kjk is purely geometric-dependent

Kjk =
µ0

4π

∮
Cj

∮
Ck

d~lk · d~lj
Rjk

Since d~lk · d~lj = d~lj · d~lk and Rjk = Rkj it then follows that Kjk = Kkj. Then the
flux through Cj due to a current I0 in loop Ck equals to the flux through Ck due
to the same current in Cj. It is known as the reciprocity principle.

A.3 MRI signal

The net effect of individual currents due to spinning protons is gathered under
the vector quantity magnetization, ~M . Typically flux is referred to a known coil
due to a magnetization source. Thanks to reciprocity principle, that flux can be
also obtained from the magnetization generated in a coil and going through the
sample. This flux is denoted by ΦM . Recall that in the following derivation the
primed vectors indicating the magnetization source now refer to the coil while
the unprimed coordinates refer to the sample. We also have to take into account
that magnetization is time-dependent because it arise from the relaxation, Section
2.3.1,

ΦM(t) =

∮
d~l ·

(
µ0

4π

∫ ~∇′ × ~M(~r′, t)

R

)
d~r′ =

=
µ0

4π

∫
d~r′
∮
d~l ·
(
− ~∇′

(
1

~R

)
× ~M(~r′, t)

)
=

=

∫
d~r′ ~M(~r′, t) ·

(
~∇′ × µ0

4π

(∮
d~l

~R

))

From equation (A.1) and (A.3), the term in parentheses reminds to the magnetic

field per unit of current ~Br(~r′) = ~B(~r′)/I = ~∇′ × µ0
4π

(∮
d~l
~R

)
. Finally the flux can

be written as

ΦM(t) =

∫
d~r′ ~Br(~r′) · ~M(~r′, t)
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A. Basic Electromagnetism

This is equation (2.20) where the prime has been removed to alliavate notation
although it has to take into account that integration and vector are referred to the
coil.

A.4 Magnetization

In the presence of an external magnetic field B0
~k, the stored magnetic energy (2.2)

is given by
E = −~µ · ~B0 = −µzB0 = −γ~msB0

Protons have two spin states ms = ±1/2 which implies two different energy states.
The energy level splitting in the presence of a noticeable magnetic field is called
Zeeman splitting phenomena

4E = E↑ − E↓ = γ~B0

The number of protons in either of both states, spin population, is related to
their energy difference in the sense that physical systems tend to be in the minimum
energy state. In this regard the spin-up state is less energetic and consequently
more populated even for small energy gap. Just to picture a number it is estimated
that at body temperature in a 1.5 T scanner, for every million protons in the spin-
down direction there are a million-and-four in the spin-up direction [27].

Population of states obeys the Boltzmann distribution

N↑
N↓

= exp
(4E
KTs

)
where Ts is the absolute temperature. Since 4E � KTs, the exponential can be
approximated as the following Taylor series

exp
(4E
KTs

)
' 1 +

γ~B0

KTs

and the ratio of the population yields

N↑
N↓
' 1 +

γ~B0

KTs
(A.5)

Taking into account the population in both states, equation (2.8) for bulk magne-
tization can be reformulated as follows

~M =
1

V

( N↑∑
n=1

1

2
γ~−

N↓∑
n=1

1

2
γ~
)
~k =

1

2V

(
N↑ −N↓

)
γ~~k
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A.4. Magnetization

With equation (A.5), its magnitude becomes

| ~M | ' γ2~2B0Ns

4KTs
(A.6)

This is roughly the measurable magnetization, 2.1.4
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Appendix B

Gradient of the objective function

In this appendix the expression of the gradient of the objective function (3.8) in
Section 4.2 is presented.

B.1 Basics in complex numbers

Let z ∈ CN be a complex vector.

• Absolute value: The absolute value of a complex vector z ∈ CN is the fol-
lowing real vector

|z| =
√

z∗ · z =
√(

Re (z1)2 + Im (z1)2) , . . . , (Re (zN)2 + Re (zN)2) ∈ RN

(B.1)
where z∗ is the conjugate of z.

• l2-norm: The l2-norm is computed adding the square of the real and imaginay
part of the entries of the complex vector z. It is then equivalent to sum the
square of the 2N entries of a real vector x ∈ R2N2

formed stacking the real
and imaginary part of z as it was indicated in (4.4)

||z||2 =
√(

Re (z1)2 + Im (z1)2)+ · · ·+
(
Re (zN)2 + Re (zN)2) =

(
2N∑
i=1

x2
i

)1/2

(B.2)

• l1-norm: The l1-norm is the sum of the absolute value of the vector entries.

||z||1 =
N∑
i=1

|zi| =
N∑
i=1

√(
Re (zi)

2 + Im (zi)
2) (B.3)

65



B. Gradient of the objective function

• Gradient : The gradient of a scalar function f ∈ RN2
is denoted ∇ f where

∇ is the differential operator.

∇ f =


∂f
∂x1
∂f
∂x2
...
∂f
∂xN2


Minimization of the objective function (3.8) is performed over the vector
of unknowns and consequently, the derivative of the objective function is
evaluated with respect to x. Further, the mapping (4.4) transforms the
complex quantity x ∈ CN2

into a real-valued vector x ∈ R2N2
. As it was

stated earlier this is a common strategy to meet conditions for optimization
algorithm developed for real functions. Nevertheless it must be clear that x
should be treated as a complex entity in the computation of the norms and
derivatives, hence indexes in the following summation are over N2 rather
than 2N2.

Along the next three sections we detail the computation of the three elements
of the objective function (3.8) in index notation.

B.2 Gradient of data fidelity term

The data fidelity term in equation (3.8) is the square of the l2-norm

||Fsx− y||22

The jth element of the m entries of the matrix multiplication Fsx− y is

(Fsx− y)j =
N2∑
i=1

Fsjixi − yj

The l2-norm of the previous complex number can be written accordingly to
equation (B.2) as the sum of the square of the real and imaginary part

||Fsx− y||22 =
2m∑
j=1

(
N2∑
i=1

Fsjixi − yj

)2

where the index j of the first summation now extends to 2m because the complex
number Fsjixi − yj has been split into real and imaginary components.
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B.3. Gradient wavelet transformation

The gradient of the of the norm remains

∇
(
||Fsx− y||22

)
=



∂
∂x1

(∑2m
j=1

(∑N2

i=1 Fsjixi − yj
)2
)

∂
∂x2

(∑2m
j=1

(∑N2

i=1 Fsjixi − yj
)2
)

...

∂
∂x2N2

(∑2m
j=1

(∑N2

i=1 Fsjixi − yj
)2
)


The lth element of the gradient yields

∂

∂xl

 2m∑
j=1

(
N2∑
i=1

Fsjixi − yj

)2
 =

=
2m∑
j=1

∂

∂xl

(
N2∑
i=1

Fsjixi − yj

)2

=

= 2
2m∑
j=1

(
N2∑
i=1

Fsjixi − yj

)
Fsjl

B.3 Gradient wavelet transformation

Let us consider next the gradient of the sparsifying transform ||α||1 = ||Ψx||1.
The jth element of the matrix multiplication is

(Ψx)j =
N2∑
i=1

Ψjixi

From (B.3), the l1-norm of the wavelet transform results

||Ψx||1 =
N2∑
k=1

∣∣∣∣∣
N2∑
i=1

Ψkixi

∣∣∣∣∣ =
N2∑
k=1

N2∑
i=1

(
Re (Ψkixi)

2 + Im (Ψkixi)
2)1/2
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B. Gradient of the objective function

The lth element of the gradient is

∂

∂xl
||Ψx||1 ∼

∂

∂xl

N2∑
k=1

(
N2∑
i=1

(Ψkixi)
∗ (Ψkixi) + µ

) 1
2

=

=
N2∑
k=1

∂

∂xl

(
N2∑
i=1

(Ψkixi)
∗ (Ψkixi) + µ

) 1
2

=
N2∑
k=1

∑N2

i=1 (Ψkixi) Ψ∗kl(∑N2

i=1 (Ψkixi)
∗ (Ψkixi) + µ

) 1
2

where it was used the derivative of the square root. Notice the approximation
in the derivative above. The square root in the denominator can go to infinity
where the function inside the square root is near to zero. In order to avoid this
issue, approximation of the square root is commonly used with a small smoothing
parameter µ of the order of 10−6.

B.4 Gradient total variation

Following the same idea, the gradient of total variation is computed. From the
definition of discrete total variation (3.2.2) and the absolute value (B.1) it yields

N2∑
k=1

∑
j∼Nj

√
(Re (xk − xj))2 + (Im (xk − xj))2 + µ

Once again for the lth element of the gradient

∂

∂xl

N2∑
k=1

∑
j∼Nj

√
(Re (xk − xj))2 + (Im (xk − xj))2 (B.4)

In the equation above, the index k sweeps the entire matrix while the index j
stands for the 4-neighboring pixels of pixel xk. Recall from Figure 3.4 that at
any pixel xl, the previous derivative is zero everywhere except for k = l and
k = {l−N, l− 1, l+ 1, l+N} because pixel xl belongs to the 4-neighboring of the
pixels in the latter group. For k = l (B.4) yields∑

j∼Nj

Re (xk − xj) + Im (xk − xj)√
(Re (xk − xj))2 + (Im (xk − xj))2 + µ

(B.5)

This equation is formed by 4 sums. The gradients for the other four pixels at
position k = {l−N, l− 1, l+ 1, l+N} has only one summand because the other 3
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B.4. Gradient total variation

pixels have null derivative with respect to xl. Since the index k visit the N2 pixels
in the matrix, the derivative for k = l and the other 4 derivatives add up. Finally
the TV derivative is

2
∑
j∼Nj

Re (xk − xj) + Im (xk − xj)√
(Re (xk − xj))2 + (Im (xk − xj))2 + µ
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