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ABSTRACT

This thesis is a study of microstructured optical elements which

are designed to change the polarization state of incident light. A

brief introduction to the electromagnetic theory of light is given,

as well as the basics of grating diffraction and traditional polariza-

tion control. A method for extending the classical Jones algebra to

diffractive configurations is presented as a novel way of numeri-

cal design. Fabrication of dielectric microstructures with electron

beam lithography is briefly discussed, with focus on the fabrication

of slanted profile gratings. Experimental results are shown about

slanted structures that produce two novel linear birefringence -type

effects. In addition, numerical results of a non-chiral diffraction

element producing strong optical activity are presented.
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REFERENCES 39 1 Introduction

Physics, and photonics as a part of it, are basically mankinds at-

tempts to understand the behavior of energy in nature. Technology

is then mankinds way to utilize their findings, either by extrapolat-

ing from or mimicking some features of nature. A couple hundred

years ago, a physicist could master the whole physics known at the

time. Since then the amount and scope of scientific knowledge has

exploded. Therefore, a current day Ph.D. thesis in physics deals

with a ridiculously small corner of a subsegment of a segment of

physics. Moreover, it is difficult to define where physics ends and

technology begins. This thesis, studying the polarization of light

and light interaction with microstructures, is somewhere on that

border.

Photonics is the study of light. It has been shaped since the

17th century by famous physicists such as Isaac Newton, Thomas

Young, James Clerk Maxwell, and also Albert Einstein [3–6]. A

significant step forward in photonics was the invention and devel-

opment of laser in the 1950s and 60s, an example of extrapolation

from physical findings [7–9].

Polarization is a fundamental property of electromagnetic waves,

such as visible light. In nature, over 100 animal species are able

to perceive the polarization direction of polarized skylight, includ-

ing birds who use it for navigation [10, 11]. When it comes to hu-

mans, the 17th century scientists discovered polarization by observ-

ing the birefringence of light passing through Calcite crystal, an

early found example of light-matter interaction [12].

The recent development of laser- and led-sources and modern

micro- and nanofabrication methods has produced whole new tech-

nologies, such as optical telecommunications and modern display

devices. Control over the polarization state of the laser- or led-light

in these applications is often needed, and many times provided

by microstructure-based polarizers and wave-plates. These form-

Dissertations in Forestry and Natural Sciences No 92 1
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birefringent microstructures can again be seen as a mimic of na-

ture, since similar effects are found not only among natural crystals

but also, for example, in the eye of a crustacean species [13]. Form-

birefringent microstructures are discussed in several theoretical and

experimental studies from recent years, mainly trying to overcome

some experimental difficulties [14–31]. In this thesis, some progress

is brought to this field of research.

Another topic discussed in this book is optical activity, a form

of light-matter interaction which is vitally important in chemistry,

biology, mineralogy, and optics [32–36]. Optical activity is a natu-

ral property of chiral or helical molecules and crystals, but it can

also be achieved with many kinds of artificial chiral meta-metarials

and microstructures [37–40]. Interestingly, optical activity can oc-

cur also among non-chiral microstructures when combined with

specific illumination arrangements [41–43]. In this thesis, a non-

chiral diffracting configuration is shown to produce optical activity

much stronger than with any previously studied meta-material.

The first two chapters of this book discuss the electromagnetic

theory of light, and basics of diffractive optics and polarization

analysis. Comprehensive treatments of theory are not included, but

rather just a brief background for the actual results of the thesis. In

chapter 4, an original method for designing polarization shaping

diffractive elements is introduced. The main results of the thesis

include fabrication of planar micro structures with electron beam

lithography, and these experimental aspects are also discussed in

chapter 4. Chapter 5 briefly introduces the results, which are pre-

sented in more detail in the attached journal papers I–IV. In chapter

6, some concluding remarks are made.

2 Dissertations in Forestry and Natural Sciences No 92

2 Electromagnetic presenta-

tion of polarized light

Electromagnetic theory treats light as propagating oscillations of

electromagnetic field. This treatment is needed for studying such

phenomena as refraction, interference and diffraction. Polarization

of light is a straight consequence of the vectorial nature of electro-

magnetic fields. Starting from the famous Maxwell’s equations, one

can draw mathematical expressions for some very complex physi-

cal optics. Here the depths of the theory are not covered, but still

we need to go through some details that are needed for the analysis

later in this thesis. This chapter is a condensed look on these parts

of the electromagnetic theory.

2.1 LIGHT IN HOMOGENOUS MEDIUM

The basis of electromagnetic theory is the four differential equa-

tions named after a 19th century physicist James Clerk Maxwell [5].

These equations link together five vector quantities: electric field,

magnetic field, electric displacement, magnetic induction, and the

current density. They describe the interaction between light and

surrounding media. Adding in also the so called constitutive rela-

tions between these quantities, one can describe the electromagnetic

field with only two quantities, usually the electric field E and the

magnetic field H.

Any time harmonic wave in a homogenous medium is a solution

of Maxwell’s equations. The simplest example is a monochromatic

plane wave, presented here with the aid of the electric field as a

function of position r and time t.

E(r, t) = ℜ{(Ex x̂ + Eyŷ + Ezẑ) exp(ik · r − iωt)} (2.1)

Dissertations in Forestry and Natural Sciences No 92 3
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where k is the wave vector, ω is the angular frequency, and Ex,

Ey, and Ez are the Cartesian complex amplitude components of

the electric field. Complex valued quantities, in the form Ej =

|Ej| exp[i arg(Ej)], are used since they posses both amplitude and

phase information. In real life, observing the time dependency is

impossible, and only a time-averaged field strength, i.e. intensity,

can be detected.

Perfect plane waves do not exist in nature but they are good

theoretical models. More complex fields can be presented as a

superposition of plane waves with different amplitudes and wave

vector components, known as the angular spectrum presentation

[44]. However in this thesis, we confine to treat light as single

plane waves. Although it is not altogether physically accurate, this

method provides sufficient information of light interaction with mi-

crostructures.

2.2 POLARIZATION

Electric field is a vector quantity. Therefore also electromagnetic vi-

brations have directions of oscillation, referred to as the polarization

direction. The term polarized light is used when the oscillation direc-

tion is constant, or if it changes deterministically as a function of

time. The former is referred to as linear polarization, and the latter

as elliptical polarization. If the time dependency is random, light is

said to be unpolarized. Partially polarized light is a combination of

polarized and unpolarized parts.

Different polarization states are illustrated in figure 2.1. In el-

liptical polarization the electric field vector draws an ellipse as a

function time. An elliptical state can be defined by the polarization

angle ψ and ellipticity β, as in Fig. 2.1 (d). Linear and circular po-

larization can be seen as special cases of elliptical polarization. In a

linear state β = 0◦, and in a circular one β = 45◦.
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Figure 2.1: Illustrations of (a) unpolarized, (b) linearly, and (c) elliptically polarized elec-

tromagnetic oscillation. Red vector represents the propagation direction of the wave, the

black lines represent the oscillating electric field vector in the x, y-plane. (d) Definition of

an elliptical state by angles ψ and β.

2.2.1 Jones presentation

For a plane wave in isotropic media, Maxwell’s equations impose

that the electric E and magnetic field H are always perpendicular to

the propagation direction, defined by k, and to each other. There-

fore with a proper choice of coordinate system, we can neglect the

third complex amplitude component in Eq. (2.1). The remaining

two components are arranged in a column vector, also known as

the Jones vector. The two components are hereafter called the trans-

verse electric (TE) and transverse magnetic (TM) (the definitions for

TE and TM are given in section 3.1). The electric field can now be

expressed as

E(r) =

[

ETM

ETE

]

exp(ik · r) =

[

|ETM|
|ETE| exp(iδ)

]

exp(ik · r) (2.2)
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where δ is the relative phase difference arg(ETM)− arg(ETE). Note

that the time dependency is ignored here for simplicity. Note also

that from here on the absolute phases of the components are not

relevant and we focus only on the relative phase difference. Next,

let us define a normalized Jones vector as

J =
1

|E|

[

ETM

ETE

]

. (2.3)

Normalized Jones vectors provide a enlightening way to view dif-

ferent polarization states. For example

JTM =

[

1

0

]

, JTE =

[

0

1

]

, and Jψ =

[

cos ψ

sin ψ

]

(2.4)

for fields that are linearly polarized in TM-, TE-, and an arbitrary

direction ψ, with respect to the TM-direction. Similarly

JRCP =
1√
2

[

1

i

]

, JLCP =
1√
2

[

1

−i

]

,

and Jell =

[

cos ψ

exp(iα) sin ψ

]

(2.5)

for a right-handed (RCP) and left-handed (LCP) circular polariza-

tions, and an arbitrary elliptical polarization (ell), where α ∈ [0, 2π]

is some fixed phase difference.

Jones vectors are especially convenient in the analysis of light

propagation through a polarization-changing element. Any deter-

ministic non-scattering element can be portrayed as a two-by-two

Jones matrix M of four complex valued coefficients. Propagation

through the elements is simply presented as a multiplication

Jout = MJin =

[

M11 M12

M21 M22

] [

ETM

ETE

]

in

. (2.6)
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It is often useful to define the Jones matrix with its eigenvectors V1,

V2 and eigenvalues D1 and D2,

M = D1V1V †
1 + D2V2V †

2. ⇒ MV j = DjV j , j = 1, 2 , (2.7)

where † denotes Hermitian conjugate. The vectors V1 and V2 repre-

sent certain polarization states, called the eigenpolarizations of the el-

ement, which go through the element unchanged. Any third Jones

vector can be presented as a linear combination of the two eigen-

states, and the eigenvalues describe the scaling and phase delay of

the eigenstates passing through the element. Thus the eigenvectors

and values together describe the polarization changes inside the

element.

2.2.2 Stokes parameters and Poincare sphere

Another way for presenting the polarization state are the Stokes

parameters, defined as

S0 = |ETM|2 + |ETE|2 S1 = |ETM|2 − |ETE|2

S2 = 2ℜ{E∗
TMETE} S3 = 2ℑ{E∗

TMETE}. (2.8)

We also define the normalized Stokes parameters sj = Sj/S0, where

j = 1, 2, 3. It is evident that |sj| ≤ 1, and with a closer look one

finds also that s2
1 + s2

2 + s2
3 = 1. Therefore, by creating a Cartesian

base formed by unit vectors ŝ1, ŝ2, and ŝ3, the normalized Stokes

parameters define the surface of a sphere,

p = s1ŝ1 + s2ŝ2 + s3ŝ3. (2.9)

This so-called Poincare Sphere, depicted in Fig.2.2, provides a nice

visual insight on different polarization states. Each point on the

surface describes a certain (fully polarized) polarization state, and

thus each state is specified by spherical coordinates ϑp and ϕp,
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parameters define the surface of a sphere,
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ϑp = arccos(s3/|p|)
ϕp = arctan(s2/s1). (2.10)

The poles of the sphere correspond to circular polarizations

(ϑp = 0◦ for right-hand, and ϑp = 180◦ for left-hand). Linearly

polarized states lie on the equator (ϑp = 90◦). The rest of the sur-

face represents different elliptical states. Points inside the sphere,

i.e. when |p| < 1, represent partially polarized states.

ŝ1

ŝ2

ŝ3

ϑp

ϕps1

s2

s3 p

Figure 2.2: The Poincare sphere. Polarization state with Stokes parameters s1, s2, and s3

is presented as a point p on the surface of the sphere.
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3 Diffractive optical elements

The center of this study is in the interaction between light and pe-

riodic structures. In this chapter we will look at the theoretical

principles needed to analyze this interaction. The electric field be-

fore, after, and inside of a periodic surface relief structure is solved

using the rigorous Fourier Modal Method [45, 46]. Again, all the

depths of the method are not covered here. However, specific atten-

tion is payed to the so called S-matrices, a feature of many rigorous

methods which has been especially utilized in this work.

3.1 GRATING DIFFRACTION

Let us consider the situation illustrated in Fig. 3.1. A plane wave

is incident on a periodically modulated surface characterized by

periods dx and dy. The direction of the incidence is specified by

angles θ and φ. The term conical incidence is used when φ �= 0. The

plane defined by the wave vector k0 and surface normal ẑ is referred

to as the plane of propagation. The aforementioned polarization

components TM and TE are defined such that TM is parallel, and

TE is perpendicular to the plane of propagation.

The permittivity profile of the modulated layer is

ǫ(x, y, z) = ǫ(x + dx, y + dy, z). (3.1)

The periodicity of the modulated layer entails that the field in re-

gions I and III is pseudoperiodic. In other words any Cartesian

component of the field obeys the so-called Floquet–Bloch condition

U(x + dx, y + dy, z) = U(x, y, z) exp[i(k0xdx + k0ydy)] , (3.2)

where k0x and k0y are the x- and y-components of the wave vector of

the incident light. From Eq. (3.2) it follows that for the transmitted
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to as the plane of propagation. The aforementioned polarization

components TM and TE are defined such that TM is parallel, and

TE is perpendicular to the plane of propagation.

The permittivity profile of the modulated layer is

ǫ(x, y, z) = ǫ(x + dx, y + dy, z). (3.1)

The periodicity of the modulated layer entails that the field in re-

gions I and III is pseudoperiodic. In other words any Cartesian

component of the field obeys the so-called Floquet–Bloch condition

U(x + dx, y + dy, z) = U(x, y, z) exp[i(k0xdx + k0ydy)] , (3.2)

where k0x and k0y are the x- and y-components of the wave vector of

the incident light. From Eq. (3.2) it follows that for the transmitted

Dissertations in Forestry and Natural Sciences No 92 9



Kalle Ventola: Polarization state manipulation with sub-micron
structures

x

y

z

TE

TM

plane of propagation

θ

φ

dx

dy

ǫ1 ǫ2

k0

Figure 3.1: Conical incidence on a two dimensionally periodic surface.

and reflected fields kx and ky can only have discrete values. Conse-

quently, we obtain the well known grating equation, presented here

for the transversal part (kx and ky) in vector form

kmn = k0 + mgx + ngy , (3.3)

where gx = 2π/dx x̂ and gy = 2π/dy ŷ are the grating vectors. The

subscripts m, n correspond to a 2D-array of diffraction orders, as

depicted in Fig. 3.2. Each diffraction order is seen as an individual

plane wave. The total field is a discrete superposition of these plane

waves.

3.2 FOURIER MODAL METHOD

The wave vectors of the diffraction orders are analytically given

by the grating equation (3.3). The complex amplitudes, however,

can only be solved with a suitable numerical method, save for a

few special cases. Several such methods exist [47]. In this work,

a method called the Fourier Modal Method (FMM) is used. FMM

is based on presenting the field inside the grating layer, as well as

the permittivity distribution of the layer, as Fourier series [46, 48].
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n = −1

kmn

grating

Figure 3.2: A two-dimensionally periodic grating produces a grid array of diffraction

orders (m, n), with wave vectors kmn.

The field inside the grating is expressed as a sum of a finite amount

of forward and backward propagating grating modes. The modes

themselves can be presented as superpositions of plane-wave com-

ponents, which propagate inside the grating layer in different direc-

tions. The fields outside the grating region are expressed as a sum

of propagating and evanescent diffraction orders, analogous to the

plane wave components inside the grating. The complex ampli-

tudes of the diffraction orders are solved by matching them to the

field inside the grating with the boundary conditions of Maxwell’s

equations and with the so called S-matrix algorithm. [46, 49–51]

Consider a grating region that is split into n layers. In each

layer we have a set of upward and downward propagating eigen-

modes, whose complex amplitudes are arranged in column vec-

tors u (upward) and d (downward). For each two adjacent layers

0 < p < n and p + 1 we can form relations that connect the modes

up+1 and dp to up and dp+1. In other words, the modes outgoing

from, and incoming to the layer interface. The S-matrix algorithm

employs a set of recursion formulas to generate a stack S-matrix

from these individual interface relations. This stack S-matrix then

connects the fields in layer 0 (incident medium) and layer n + 1

(output medium):
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[

un+1

d0

]

= Sn

[

u0

dn+1

]

=

[

Tn
uu Rn

ud

Rn
du Tn

dd

] [

u0

dn+1

]

. (3.4)

If we assume that there are no sources after the grating (medium

n + 1) we have dn+1 = 0. Consequently we can write for the com-

plex amplitudes of the transmitted tmn and reflected rmn diffraction

orders:

tmn = un+1 = Tn
uuu0

rmn = d0 = Rn
duu0 , (3.5)

where Tn
uu and Rn

du are submatrices of the stack S-matrix. [46,49–51]

3.3 POLARIZATION STATE MANIPULATION

The basic principle of polarization state manipulation is simplified

in Fig. 3.3. Incident light, with a Jones vector Jin, interacts with

a body of anisotropic medium. Either the reflected or transmitted

light, with a changed Jones vector Jout, is observed. Three differ-

ent well-established physical principles for such polarization state

changing interaction are presented in this section. Each principle

exists also in other kinds of media, but here we present them as

related to planar microstructures, the so-called subwavelength, or

zeroth-order gratings. When the period of a diffraction grating is

below the certain threshold value dswl ≃ λ, the diffracted field con-

sists of only one propagating Fourier component. In other words,

only the zeroth diffraction order exists in the far-field.

3.3.1 Wire-grid polarizers

A wire-grid polarizer (WGP) is a periodic structure consisting of

metallic wires, so to speak. Since light is basically an oscillat-

ing electromagnetic force, incidence on a metallic surface causes

electron movement in the direction of the electric field, due to the
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Figure 3.3: The principle for polarization state manipulation.

Lorentz interaction [52]. The effect is widely used in crossed struc-

tures acting as spectral filters [53,54]. In WGP however, the electron

movement is possible only in the direction of the wires. Therefore

the induction strength is varied largely depending on the electric

field direction. Let us say we define the light polarized parallel

to the wires as TE-component, and perpendicular to the wires as

TM-component. In a perfect WGP, TM-component is transmitted

while TE-component is reflected and absorbed, due to the induc-

tion. WGP is an ancient type of a device, first tests were done al-

ready in 1888 with radio waves [55], near-infrared polarizers were

realized in the 1960s [56], and more recent fabrication techniques

have enabled WGPs for the visible spectrum [57–63]. Some re-

cently studied wire-grids utilize guided-mode or plasmon reso-

nances to get enhanced, or totally new kinds of polarization se-

lectivity [64, 65].

3.3.2 Linear birefringence

Let us next consider a transparent crystal material, with principal

axes x, y, and z. The permittivity of the material is defined sep-

arately for each crystallographic direction, as ǫx, ǫy, and ǫz. If we
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Figure 3.3: The principle for polarization state manipulation.

Lorentz interaction [52]. The effect is widely used in crossed struc-

tures acting as spectral filters [53,54]. In WGP however, the electron

movement is possible only in the direction of the wires. Therefore

the induction strength is varied largely depending on the electric

field direction. Let us say we define the light polarized parallel

to the wires as TE-component, and perpendicular to the wires as

TM-component. In a perfect WGP, TM-component is transmitted

while TE-component is reflected and absorbed, due to the induc-

tion. WGP is an ancient type of a device, first tests were done al-

ready in 1888 with radio waves [55], near-infrared polarizers were

realized in the 1960s [56], and more recent fabrication techniques

have enabled WGPs for the visible spectrum [57–63]. Some re-

cently studied wire-grids utilize guided-mode or plasmon reso-

nances to get enhanced, or totally new kinds of polarization se-

lectivity [64, 65].

3.3.2 Linear birefringence

Let us next consider a transparent crystal material, with principal

axes x, y, and z. The permittivity of the material is defined sep-

arately for each crystallographic direction, as ǫx, ǫy, and ǫz. If we
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have, for example, ǫx �= ǫy = ǫz the material is said to be uniaxially

anisotropic, and refractive index depends on the electric field direc-

tion [52]. There are two distinct polarization states, the eigenpolariza-

tions of the material, which go through the element unchanged, but

experience different amplitude and phase modulation. These differ-

ences are known as dichroism (amplitude) and birefringence (phase).

Since any other polarization state can be decomposed into a com-

bination of the eigenstates, the optical behavior of the element can

be described with the eigenstates and their corresponding complex

amplitude coefficients.

Subwavelength grating structures can be used for mimicking

the anisotropicity of natural crystals (such as calcite). Figure 3.4

presents a linear (one-dimensionally periodic) subwavelength grat-

ing, and normally incident light. The structure has obvious reflec-

tion symmetry in the (x,y)-plane. Symmetry axes are shown in the

figure with dashed lines. The eigenstates of such structure are lin-

ear polarizations in x- and y-directions, i.e. parallel and perpendic-

ular to the symmetry axes [66]. When put in the Jones formalism

(see section 2.2.1), the grating is represented by a Jones Matrix M

with normalized eigenvectors V1 and V2, and eigenvalues d1 and

d2:

V1 =

[

1

0

]

, V2 =

[

0

1

]

, d1 = Axeiαx , and d2 = Ayeiαy , (3.6)

where Ax and Ay define the amplitude modulation, and αx and αy

represent the phase delays of the eigenstates. If we have Ax �= Ay,

the element is said to be linearly dichroic, and if αx �= αy, lin-

early form-birefringent. By designing an element with Ax = Ay,

and ∆α = αx − αy = π, or ∆α = π/2, we obtain a first-order half-

wave, or quarter-wave plate, with fast- and slow-axis parallel and

perpendicular to the grating vector, respectively. Half-wave plate

flips the incoming linear polarization around the slow-axis, while

a quarter-wave plate (in correct azimuthal orientation) turns it into

circular polarization.
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Figure 3.4: A form-birefringent grating element, with grating thickness designed for half-

wave retardation.

The problem with waveplates made of natural crystals is the

few-millimeter thickness of the elements, which prevents their in-

tegration into micro-optical systems. Therefore, form-birefringent

wave plates have inspired some research in the last decade. Studied

elements include both metallic and dielectric structures, used either

in direct transmission [20], or in reflection [22,23,67]. More detailed

survey of these studies is presented in the introduction of paper I.

Shortly, the problem with (lossless) dielectric half-wave plates has

been the high aspect ratios (grating thickness-to-period ratio) re-

quired for the half-wave retardation. Studies of quarter-wave plates

have often reached achromatic behaviour [24–26]. In most recent

studies, phase retardation has been produced or enhanced also with

plasmonic and waveguide resonances [21, 28, 68, 69].

3.3.3 Circular birefringence

Circular birefringence is a principle associated with chiral materials

or structures. In general, a single molecule or the unit cell of a crys-

tal material is chiral when it possesses no reflection symmetry [33].

Same principle can be applied also to periodic microstructures.

Figure 3.5 presents a crossed (two-dimensionally periodic) grating

structure, where the unit cell consists of a gammadion shape relief.

The unit cell has no reflection symmetry, but instead a four-fold
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Figure 3.5: Example of a chiral grating structure. Input linear polarization ψin is rotated

to ψout in the output, due to circular birefringence.

rotational symmetry. The eigenstates of such structures are always

right- and left-handed circular polarizations [66]. In circular bire-

fringence, similarly to linear birefringence, the refractive indices for

the two eigenstates are different.

Any linear polarization J can be decomposed into a combination

of RCP and LCP (see eq. (2.5))

J = |A|eiαrcp

[

1

i

]

+ |B|eiαlcp

[

1

−i

]

(3.7)

such that |A| = |B|, and αrcp − αlcp = 2ψ defines the polarization an-

gle ψ. Propagation through a circularly birefringent element causes

additional phase difference ∆α, and the polarization direction is ro-

tated by ∆ψ = ∆α/2. In other words, the rotation is the same for all

input polarizations, unlike in a half-wave plate where the rotation

depends on the angle difference between the input polarization and

16 Dissertations in Forestry and Natural Sciences No 92

Diffractive optical elements

the eigenstates. The rotation in chiral media is often referred to as

optical activity. Difference in the transmission of the RCP and LCP

eigenstates is called circular dichroism [33, 70–72]

The physical explanation of the rotation is said to be cross-

excitation of electric and magnetic dipoles by the incident electric

and magnetic oscillations [73,74]. Optical activity of artificial chiral

structures has been extensively studied in the recent past, includ-

ing bi-layer split rings and crosses [75–78], planar metallic [79–82]

and dielectric structures [38,40,83–85]. Another heap of articles has

been published about artificial circular dichroism [86–88].

Most of the studied structures are intrinsically chiral, meaning

that the chirality comes directly from the unit cell shape (as in Fig.

3.5). However, it has been shown that optical activity occurs also

with structures where non-chiral unit cells are arranged in a chiral

lattice. This form has been labeled structural chirality [89]. In ad-

dition, some studies with metallic structures have displayed a third

form, labeled extrinsic chirality. Here, both the unit cell and the lat-

tice are non-chiral, but the illumination setup is chiral, in the sense

that the input and output wave vectors and the so called polarity

vector of the structure define a three vector system with a certain

handedness [41–43, 90].
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4 Grating design and fabrica-

tion

In this chapter we shall look at various methods and processes that

are needed to change a polarization manipulating element from an

idea into an actual piece of glass. The first section presents the

method for simple analysis of polarization state changes in non-

zeroth diffraction orders. The method is presented in more detail in

paper IV. A short description of the used lithographical fabrication

methods, with special attention on slanted etching, is found in the

following section.

4.1 EIGENPOLARIZATION-ANALYSIS FOR DIFFRACTING

ELEMENTS

As mentioned above, polarization conversions in light-matter inter-

actions can be analyzed with the Jones algebra (section 2.2.1), taken

that we know the eigenstates and their complex amplitude coeffi-

cients. In principle, this simple method applies to any polarization

element, be it natural or artificial, linear or circular, and dichroic or

birefringent.

There are comprehensive studies about the eigenpolarization-

analysis of bulk anisotropic media [91, 92]. Recently, also peri-

odic metamaterials have been studied, but only the case of direct

transmission with normal incidence was tackled [66]. It has also

been found that with special incidence mountings, also geometri-

cally non-chiral structures can exhibit circular eigenstates [41–43].

Hence, there is need for a method of eigenpolarization-analysis of

periodic (also diffracting) structures in arbitrary incidence mount-

ing, and also including any non-zeroth diffraction order as the out-

put.

Our goal in paper IV was to construct a numerical method for
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defining the eigenpolarizations and their eigenvalues for an arbi-

trary diffraction order from any crossed grating using oblique inci-

dence. The logic of the method is simple. Three separate Cartesian

coordinate bases are created: a global system C0 = (x, y, z) where x-

and y-axes are aligned with the grating vectors, and two local sys-

tems Cin = (θ, φ, k)in and Cout = (θ, φ, k)out, related to the incident

and the diffracted wave-vectors as illustrated in figure 4.1.

Incident Jones vector is presented in Cin and a coordinate trans-

form Tin : Cin → C0 is performed to present the input field in

(x, y, z)-basis (requirement of Fourier modal method). With FMM

we obtain the submatrices Tn
uu and Rn

du of the structure S-matrix

with the designed number of Fourier components [see eq. (3.5)].

The coefficients in Tn
uu and Rn

du are related to x- and y-components

of the field for each plane-wave component. We are interested in the

coefficients that connect the fields of the input component (0, 0) and

the transmitted or reflected output components (m, n). We arrange

these coefficients into matrices S
(t)
mn and S

(r)
mn.

S
(t)
mn =

[

s
(t)
xx s

(t)
xy

s
(t)
yx s

(t)
yy

]

S
(r)
mn =

[

s
(r)
xx s

(r)
xy

s
(r)
yx s

(r)
yy

]

, (4.1)

If for example the transmitted (−1, 0)th order is observed, we

use the matrix S
(t)
−1,0 to obtain the output field in global coordinates.

Then, a second coordinate transform Tout : C0 → Cout is performed,

to present the output field in the local system of the (−1, 0)th order.

The coordinate transforms are needed if we wish to compare

the Jones vectors of the input and output beams. Now, we can

define a Jones matrix Mmn that describes the possible polarization

conversion in the interaction as

[

ETM

ETE

](t,r)

mn

= M
(t,r)
mn

[

ETM

ETE

]

in

, where (4.2)

M
(t,r)
mn = ToutS

(t,r)
mn Tin . (4.3)
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The eigenvectors of Mmn are Jones vectors representing the eigen-

polarizations of this particular interaction. It must be emphasized

that the eigenpolarizations may depend also on the geometry formed

by kin and kout, and not only the symmetry of the grating, as it

is demonstrated in paper IV. The eigenvalues of Mmn describe the

possible dichroism and birefringence-like effects between the eigen-

polarizations. Therefore, we can easily optimize the grating profile

parameters for polarizer-, waveplate-, or rotator-type effects, with a

merit function consisting only of the eigenvectors and eigenvalues

of Mmn.

x
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φ̂
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input plane
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φ2
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Figure 4.1: Illustration of the local coordinate systems of the input (red) and output (green)

beams.

4.2 FABRICATION OF SLANTED GRATINGS

There are many types of optical structures that are collectively re-

ferred to as gratings, and many ways for their categorization. The
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elements to be discussed later in this thesis belong to the class

of surface-relief structures, where separate families are formed by

metallic and dielectric structures, in which different species can be

separated by their profile type (single- or multilayer; binary or con-

tinuous). In this thesis, special attention is paid to a species called

slanted gratings.

Figure 4.2 illustrates the simple difference between a standard

binary, and a slanted binary grating profile. A slanted grating is

basically a binary grating with its vertical axis skewed to an angle

Θ. Since slanted gratings hold an asymmetrical quality, they have

been used for asymmetrical optical functions such as unidirectional

surface plasmon excitation and waveguide in-coupling [93–96]. The

numerical modeling of a slanted structure is carried out using FMM

with the modification of arbitrarily oriented coordinate axes, pre-

sented in [51].

z
z′

h h′
Θ

d d
c c

slanted binarystandard binary

Figure 4.2: The profile shapes of a standard binary surface relief grating, and a slanted

counterpart.

The fabrication of surface relief gratings in general is a large col-

lection of different lithographic processes and techniques. In this

section the processes used in the experimental work of papers II

and III are introduced. The key-process in this line of work is elec-

tron beam lithography (EBL) which enables us to realize the rather

small lateral dimensions of subwavelength structures. In the pro-

cess steps following EBL, the created lateral pattern is only trans-

ferred from one material to another. Figure 4.3 illustrates the flow

of processes. Two separate roads that lead to similar final results

were used in this study.
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4.2.1 Electron beam lithography

In the electron beam lithography system, a focused beam of accel-

erated thermal electrons is inflicted upon a sensitive material, resist,

where changes in the polymeric structure are triggered by absorbed

electrons. The beam draws the desired pattern into the resist layer

(few tens to few hundred nanometers thick) in very high resolution.

Depending on the type of resist, the exposed areas become either

more soluble (positive resist) or insoluble (negative) in a specific de-

veloper solution. Therefore, after the development we have a relief

resist structure on the substrate.

From a variety of different e-beam resists, two different positive

resists have been used for this study: AR-P 661 (Allresist GmbH)

and ZEP 7000-22 (Zeon Corporation). The exposures were carried

out with Vistec EBPG 5000+ES HR e-beam system, which has a

100 kV acceleration voltage and a minimum spot size less than 2.5

nanometers.

4.2.2 Chromium mask fabrication

The resist grating is rarely the final structure, and in most cases

the goal is to etch the grating structure into the substrate. Reac-

tive ion etching (RIE) is a process in which bombardment of ions or

free radicals removes material from the sample surface. The sam-

ple is placed in a low-pressure chamber, between two electrodes.

Process-specific etching gases are used for creating a chamber at-

mosphere with accurately controllable gas pressure, and chemical

composition.

The gas is brought to plasma phase with an electric field oscillat-

ing in a radio frequency (RF) between the electrodes. The electrons

stripped from the gas atoms build up a negative charge on the sam-

ple surface, which causes the positive ions to accelerate towards it.

The ions react with the surface, resulting in physical (anisotropic)

and chemical etching (isotropic) of the material. Various process pa-

rameters can be adjusted to control the process, most significantly

the RF-generator power and chamber pressure. [97, 98]
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Figure 4.2: The profile shapes of a standard binary surface relief grating, and a slanted

counterpart.
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Figure 4.3: Two fabrications schemes for slanted structures, (a) used in paper III, and (b)

used in paper IV.

Any relief structure on top of the sample acts as an etching mask

for the layer below it, exposing only certain areas for erosion. There-

fore, the lateral pattern of the mask is transferred to the layer below.
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Small deformations of the ideal straight-wall profile occur due to

various physical and chemical effects inside the chamber [99, 100].

The erosion speeds of different materials under the same process

gases are unequal, and metals such as chromium are great mask

materials for the etching of dielectrics such as fused silica (SiO2)

and titanium dioxide (TiO2). Chromium mask itself can be etched

with a chlorine-based process using the resist pattern as a mask.

This method was used in paper III.

Another way for obtaining the chromium mask, called lift-off,

was used in paper II. Lift-off is a process where a layer of metal is

deposited on top of (and in the grooves of) a resist grating, followed

by a chemical removal of the resist, leaving only the metal in the

grooves attached to the substrate (see Fig. 4.3). A good choice for a

lift-off resist is a Polymethyl metacrylate (PMMA), such as the AR-P

661 used in this study. PMMA is removed by soaking in acetone. It

must be noted, that RIE is generally the superior method compared

to lift-off.

4.2.3 Slanted etching

After obtaining the chromium mask with above mentioned meth-

ods, the next step is the actual slanted dry etching of the substrate.

A suitable method for this is reactive ion beam etching (RIBE). In

RIBE, the ions are created in a separate source and then acceler-

ated onto the sample surface. The sample can be tilted to change

the angle of incidence of the ion bombardment. Compared to RIE,

this is an advantage that enables proper slanted etching. The SiO2

structures in paper III were etched with Oxford Plasma Technology

Ionfab 300 Plus RIBE machine, using an Ar/ChF3 atmosphere.

However, also RIE is capable of slanted etching, at least to some

extent. For the slanted TiO2 structures in paper II, we used a

SF6/Ar RIE process with low gas pressure (20 mTorr) and high

RF-generator power (300 W). These settings emphasize the physi-

cal etching over the chemical one and, therefore, it is possible to

achieve a small tilt in the etching direction. In our case, tilting the
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sample to approximately 60 degrees produced a slanted etching di-

rection of around 30 degrees.
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5 Main results

This chapter introduces the theoretical and experimental results in

papers I–III. The contents of paper IV were discussed already in

the previous chapter. In addition, an unpublished theoretical re-

sult concerning optical activity is presented in section 5.4. In all

presented results, dielectric microstructures are used for efficient

polarization state manipulation for monochromatic light.

5.1 POLARIZATION CONVERSION IN TOTAL INTERNAL RE-

FLECTION

The main idea of paper I is a thorough theoretical examination of

the half-wave retardation, or in other words, TE to TM -polarization

conversion, occurring in the reflected zeroth order in a total internal

reflection arrangement. Both metallic and dielectric gratings were

studied. We noted that studies on the same subject had already

been published [22, 23, 67]. The novelty we intended to bring was

the use of FMM with conical incidence, and careful optimization

of the structures for the best possible fabrication feasibility. With

this type of elements the best fabrication feasibility usually follows

from the lowest possible grating thickness. The studied elements

were linear, rectangular profile binary gratings made of gold, silver,

aluminium, and titanium dioxide, on top of a fused silica substrate.

The grating period was fixed to 250 nm, and the angle of incidence

to 45 degrees. Refractive index data for the metals was taken from

[101]. In all cases, HeNe light with λ = 633 nm was used.

The outcome of the material comparison was that, from the

three metals, a gold grating would produce the half-wave effect

with the highest reflectance (82.23%). The thickness of the gold

structure would be 283 nm. However, dielectrics proved to be

much more interesting. A dielectric grating with refractive index

2.0 would require 630 nm thickness for the half-wave retardation,
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while a refractive index of 2.3 would reduce the requirement to 405

nm. The refractive index of vacuum deposited titanium dioxide is

usually between these two values. It is clear that due to the to-

tal internal reflection setup and the absence of absorption, a 100%

reflectance is associated with the dielectric element. Based on the

design results, a titanium dioxide grating was lithographically fab-

ricated and measured, and the outcome was published in [2].

5.2 PHASE SHIFT BY WAVEGUIDING

In paper II, we intended to overcome the difficulties related to

half-wave retardation in direct transmission. A traditional form-

birefringent element made with high-refractive-index material re-

quires large grating thicknesses that are not suitable for reasonable

fabrication [20].

Our invention is based on a linear slanted structure in which

the behavior of TM- and TE-polarized input light is fundamentally

different. Figure 5.1 presents the principle. In general, the structure

with a period small enough acts as true effective medium. Then

again, with periods in the order of the wavelength, the structure

may act as an array of slanted pillar waveguides. We found that

with a certain period between these regions, TE-polarized light ex-

periences the “waveguide-structure” while TM-polarized light still

sees an uniform layer.

When light is coupled along the pillars, the optical path and,

TE
TETE TMTM TM

Θ

d = 200 nm d = 386 nm d = 420 nm

Figure 5.1: A simplified schematic of selective coupling in a linear slanted grating. A large

phase difference between TM- and TM-polarizations arise with a correctly adjusted period

(d = 386 nm in this example design for λ = 633 nm).
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consequently, also the phase delay are increased. The increase may

be further affected by resonance effects, which are common inside

structures with period in the order of the wavelength. The situation

where the orthogonal polarizations behave differently (d = 386 nm

for λ = 633 nm wavelength) can be used to obtain large phase

retardation. This effect can not be called form-birefringence, but

instead a new phenomenon of its own.

The phase retardation occurring in the slanted structure can

be adjusted to an exactly half-wave shift between TE- and TM-

components. In Table 1 of paper II, four different designs based

on this type of structure are presented. The most significant design

is the one on the second row, where the grating thickness is merely

262 nm with a 400 nm period. The design on the third row is for

an experimental test piece, with a smaller slant angle Θ = 33◦ but

higher thickness h = 648 nm. An element based on this design

was fabricated and optically tested. The resulting structure was not

totally in agreement with the design, but it still produced a 177

degrees (designed value 180◦) phase shift measured with a HeNe

laser and the so called quarter-wave plate method [29]. The agree-

ment between numerical calculations and experiments was verified

by re-running the calculations with the actual grating profile shape.

Figure 5.2 presents a cross section scanning electron microscope im-

age of the element. The slanted profile was divided into 32 binary

layers, and the layered profile was used in the numerical verifica-

tion with FMM.

The refractive indices of our in-house thermally deposited TiO2

layers are varied slightly around n ≈ 1.99 (for λ = 633 nm) between

experiments, according to ellipsometer measurements. The varia-

tion of both the exact value of the refractive index and the error

margin of the grating thickness measurement from the SEM image

must be taken into account in the comparison of numerical and ex-

perimental data. With these variations, the numerical calculation

with the layered profile (Fig. 5.2) resulted in a phase shift similar

to the measured 177 degrees, and the transmittances of TE- and

TM-polarizations were nearly equal.
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Figure 5.2: A cross section SEM image of the fabricated prototype from paper II.

5.3 HALF-WAVE EFFECT IN DIFFRACTED LIGHT

The design method presented in Section 4.1 enables optimization of

complex 3-D structures for polarization effects in any given diffrac-

tion order. Two results found with this method are presented in

this section and in the next one. Both effects occur with oblique

incidence on a linear grating made of anisotropic material, with

specifically rotated anisotropy axes, as presented in Fig. 5.3 (a). In

practise, such structure can be mimicked with a two dimensionally

periodic slanted profile grating. In both of the following results, the

mutual geometry of the grating and input and output wave-vectors

produces an interaction with a rather unexpected Jones matrix op-

erator.

The first result is presented in paper III. Let us consider that

guided light, inside a slab lightguide, is incident on a crossed grat-

ing on top of the lightguide. The grating geometry is as depicted

in Fig. 5.3 (b). The period in the x-direction is fixed to the 2nd

order Littrow condition, i.e. the −2nd reflected order propagates

exactly in the opposite direction as the incident wave. The grating

profile in the y-direction is slanted with an angle Θ, and the grating

period dy is well below the wavelength. Therefore, the structure is

basically a linear grating in the x-direction consisting of stripes of

air and anisotropic uniaxial material with crystal axes x, y′, and z′,
and permittivity tensor ǫ̃:
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Let us next look at the field inside the grating layer. With care-

ful optimization, we obtain a structure in which the field consists

practically of only two orthogonally polarized plane wave compo-

nents: The 0th order component, propagating roughly parallel to

the incident wave, and the −2nd order components, which propa-

gates roughly opposite to the incident wave. The amplitudes and

polarizations of the plane-wave components can be excerpted from

FMM calculations.

As is presented in Fig. 3 of paper III, it is found that, imme-
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Figure 5.3: (a) The Littrow-half-wave plate in paper III is basically a linear grating made

of anisotropic material with rotated anisotropy ǫ̃. (b) Same physical behaviour is obtained

with a crossed slanted structure made in (isotropic) high-refractive index dielectric, such

as TiO2. Wave vectors of the incident and diffracted light lie in the x, z-plane.
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Figure 5.2: A cross section SEM image of the fabricated prototype from paper II.
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as TiO2. Wave vectors of the incident and diffracted light lie in the x, z-plane.
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diately behind the substrate-grating interface, the 0th component

propagating upwards (away from the interface) is in the same po-

larization P1 as the incident light. Also it is found that the −2nd

component propagating downwards (towards the interface) has a

new polarization state P2. The relation between P1 and P2 is a

half-wave retardation with ψ = ±45◦ as the wave-plate axes.

In other words, the field inside the grating layer consists of

two dominating plane-wave components with polarization states

P1 and P2, propagating in opposite directions. During propaga-

tion back and forth inside the grating layer the energy is coupled

between the components. At the substrate-grating interface, the

downwards-propagating −2nd component is significantly stronger

than the 0th, and is coupled out into the substrate. Hence, we get

output light with polarization state P2 propagating oppositely to

the incident light.

The behavior is similar to the classical case of two-wave cou-

pling inside volume gratings [102]. Here, the coupling between

the differently polarized plane wave components is only possible

with the rotated anisotropy, i.e. the slanted grating profile in the y-

direction. In paper III we present numerical analysis of this effect,

and a fabricated prototype element. Figure 5.4 presents a SEM-

image of the fabricated element, and a summary of measurement

results.

5.4 ACHIRAL OPTICAL ACTIVITY

As mentioned in section 3.3.3 some recent studies have reported

optical activity occurring with microstructures with neither intrin-

sic nor structural chirality [41–43]. In [41] polarization rotation is

observed when light is obliquely incident on a two-dimensionally

periodic metallic split ring array. In this experiment it was required

that the incident wave vector and the orientation of the split ring

cells form a chiral three-vector system. This effect has been labeled

extrinsic chirality.

As the last section of this thesis we present a theoretical result
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Figure 5.4: On the left, a cross-section SEM-image of the fabricated Littrow-half-wave

plate. On the right, measured polarization ellipses of the input (red) and output (blue)

beams. Measured with four different input polarizations (a) TM, (b) TE, (c) 45◦-linear,

and (d) 25◦-linear.

about a very strong polarization rotation occurring in a specific

diffractive setup. The result has not been achieved experimentally,

but numerical analysis has been verified with two different versions

of FMM. Furthermore, fabricated gratings with similar shapes were

optically measured, SEM-photographed, and re-analyzed numeri-

cally. They showed congruence between the numerical method and

actual measured data.

The structure (illustrated in Fig. 5.5) is similar to the one in

previous section. A slanted pillar grating is made of high refrac-

tive index dielectric, such as atomic layer deposited (ALD) titanium

dioxide (n = 2.37 in our in-house ellipsometric measurements). The

grating lies in (x, y)-plane, with grating vectors dx = 640 nm, and

dy = 410 nm. The pillar dimensions are cx = 220 nm, cy = 275 nm,

and h = 395 nm, and the slant angle is Θ = 44.2◦. The angle of

incidence is θin = 21.3◦. The used wavelength is again λ = 633 nm.

The −1st transmitted diffraction order is observed. Both the in-

cident and diffracted wave vectors lie in the (x, z)-plane, since there

is no conical rotation in this mounting. Therefore, it is straigth-

forward to define the coordinate shifts between the local coordinate

systems of the incident and diffracted waves. The eigenpolarization

method reveals that the Jones matrix for the −1st order with these
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of the strucure.

exact grating parameters is

M−1 =

[

−0.044 − 0.038i −0.919 − 0.500i

0.880 + 0.470i −0.0490 − 0.0270i

]

, (5.2)

which is quite close to the form of a perfect polarization rotator

Mrot =

[

a + bi c + di

−c − di a + bi

]

. (5.3)

The eigenvectors of M−1 are

V1 =

[

1

0.003 + 0.971i

]

, and V2 =

[

1

−0.003 − 0.983i

]

,

(5.4)
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which are close to right and left handed circular polarizations. The

phase difference for V1 and V2 is ∆α = −186.3◦.

The fact that the eigenpolarizations are RCP and LCP is extraor-

dinary for a clearly non-chiral structure as this. Further analysis

shows that this extrinsic chirality arises from the slanted profile

shape. Figure 5.6 illustrates how the eigenpolarizations gradually

change from linear to circular as the slant angle is increased. The

slanted profile gives the structure a certain polar direction (vector

p in Fig. 5.5). The polarity breaks the two-fold rotation symmetry

of a non-slanted counterpart. For the extrinsic chirality to appear,

(1) the polar direction must be orthogonal to the plane of propa-

gation, (2) oblique incidence must be used, and (3) the observed

output must be a non-zeroth diffraction order. This can be seen

analogous to the case of metallic split ring structures in [41]. How-

ever, the same physical explanation does not apply to any dielectric

element.

Figure 5.7 shows the actual polarization rotation and elliptic-

ity as functions of the grating depth for four different linear input

s1

s2

Θ = 0◦

Θ = 0◦

Θ = 44.2◦

Θ = 44.2◦

Figure 5.6: Poincare’s sphere. Eigenpolarizations (red and blue) of the −1st transmitted

order are plotted as the slant angle Θ is varied from 0◦ to 44.2◦ . Figure shows how the

eigenstates travel, on the surface of the sphere, from TE and TM polarizations to right-

and left-handed circular polarizations. Other grating parameters are as listed above.
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Figure 5.7: Polarization rotation, ellipticity, and efficiency as a function of the grating

depth. Plotted for four different incident polarizations: ψ = 0◦ (blue), ψ = 30◦ (red),

ψ = 60◦ (black), and ψ = 90◦ (green).

polarizations. The optimal depth h = 395 nm is marked with a

dashed line. We see how the grating indeed works like a true op-

tically active media, since the rotation increases steadily and is ap-

proximately equal for all input polarizations. The rotation strength

is giant, approximately (140◦/λ).
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6 Conclusions

Microstructured elements that provide polarization state manipu-

lation for monochromatic illumination have been the topic of dis-

cussion in this thesis. The intention of this work was to find new

type of elements to accompany the traditional form-birefringent

subwavelength grating.

The subject was approached with the aid of the traditional Jones

algebra, rigorous numerical calculations using Fourier modal method,

and electron beam lithography. The theory and background of

these methods were briefly introduced. The first actual original

work came across in section 4.1. Several recent studies around

the world have discussed optical activity in obliquely illuminated

and/or diffractive setups. Therefore there is a need for ways to

determine the eigenpolarizations in such configurations, since the

classical method, based solely on structure symmetries, is inade-

quate. The method presented in this thesis and in paper IV com-

bines rigorous grating analysis with FMM and traditional Jones al-

gebra.

A numerical investigation was conducted concerning half-wave

retardation for light propagating inside a slab waveguide [I]. It was

shown that using numerically optimized conical incidence geome-

try, the required aspect ratios needed for such effect can be reason-

able for fabrication.

Then, two grating designs that surpass the possibilities of tra-

ditional form-birefringence were presented. Both results are based

on using a slanted grating profile, which gives rise to unexpected

physical mechanisms. Half-wave retardation in direct transmission

was demonstrated experimentally with a significantly shallow grat-

ing structure [II]. A crossed slanted grating producing half-wave

retardation in back-reflected −2nd diffraction order was also ex-

perimentally tested [III]. For both of these experimental studies,

SEM images and optical measurement results were presented.
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The eigenpolarization analysis [IV] was used for optimizing

diffractive configurations for optical activity-like effects in non-chiral

structures. It was found that giant polarization rotation strength

occurs in the −1st transmitted diffraction order in a certain slanted

grating geometry. The result has been verified with different nu-

merical methods, which have been cross-checked with optical mea-

surements from similar structures. The main task in the future is

to produce an experimental example of this effect, which is feasible

yet challenging. If achieved experimentally, this result would have

a huge impact on the popular field of artificial optical activity.
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Kalle Ventola

Polarization state
manipulation with
sub-micron structures

This thesis considers polarization 

state control using optical structures 

with sub-micron features. A novel 

numerical method for optimizing 

grating structures for polarization 

effects is presented.  Optimization 

of traditional form-birefingent half-

wave retardation in reflection mode 

is presented. Two novel linear bire-

fringence-like effects with slanted 

profile gratings are explained and 

demonstrated experimentally.  Large 

optical activity occuring in a specific 

mounting of a slanted grating is re-

ported with numerical calculations. 
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