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The objective of this thesis was to 

study new spectral image acquisition 

techniques and analysis methods. 

Three different imaging systems were 

developed and tested. This thesis 

proposed the implementation of two 

statistical methods for spectral image 

analysis. Implementations were done 

using Graphical Processing Units 

(GPUs) and computational speed-

up of the analyzing algorithms was 

compared against ordinary (non-GPU) 

implementations. The imaging systems 

and software implementations have 

been used in research projects that are 

presented as case studies in the thesis.
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ABSTRACT

This thesis describes typical spectral imaging techniques and spec-
tral image analysis algorithms that are in general use. Three devel-
oped spectral imaging systems are proposed.

The first imaging system consists of two line scanning based
spectral cameras. These cameras are combined in one simultaneous
measuring process, which can be used for capturing a wide range
of spectral information that cannot be obtained by a single sensor
system. The second imaging system is proposed for heartwood de-
tection in Scots Pine (Pinus sylvestris). The detection is done using
fluorescence and this work proposes a prototype system for on-
line measurements using fluorescence imaging. The third spectral
imaging system is proposed for medical applications. This system
is small and lightweight and has been connected to a medical mi-
croscope and used for neurosurgical operations. The system was
also used to collect a database of biological tissues and the result-
ing images have been tested for correct identification of healthy and
neoplastic tissues.

This thesis proposes the implementation of two statistical meth-
ods for spectral image analysis. Implementations are done using
Graphical Processing Units (GPUs) and computational speed-up
of the analyzing algorithms was compared against ordinary (non-
GPU) implementations. The first implementation used Principal
Component Analysis (PCA), which produced about 7× speed-up
for the total computational efficiency. The second implementation
used Non-negative Tensor Factorization (NTF), which produced a
60 − 100× speed-up for the total computational efficiency. The
imaging systems and software implementations have been used in
research projects that are presented as case studies in the thesis.

Universal Decimal Classification: 535.33, 535.651, 778.3

PACS Classification: 02.70.Hm, 07.05.Pj, 42.30.-d, 42.30.Va

Keywords: spectra; color; imaging; spectral analysis; image scanners; cam-

eras; fluorescence; wood; medical image processing; biological tissues; sta-

tistical analysis; principal component analysis; tensors
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authors Adam Herout, Jiří Havel, Radovan Jošth and Pavel Zemčík
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1 Introduction

Color representation and formation are usually based on the red,
green and blue (RGB) color component system [1]. RGB color repre-
sentation is derived from the basics of the human visual system [2].
Every color which is produced on television, or digital cameras etc.,
are formed by mixing these three base colors. One problematic is-
sue with the three color component system is metamerism [3].

With metamerism, two different colors may look the same un-
der one illumination, but different under another. An example of
metamerism comes from the textile industry: a customer wants to
buy black trousers, which match a black jacket. In the shop, the
color of the trousers may look to be the same as the jacket, but un-
der outdoor illumination the color of the trousers may look dark
blue and the jacket black. The three color component system is
not accurate enough for detecting these differences under one light
source. However, the problem of metamerism can be solved by
using a spectral approach [3].

Spectral information holds the most accurate representation of
color. The color of the target material can be described by a high
number of color channels. For example, when the color of the target
is measured from 380 to 780 nm using 5 nm steps, the color infor-
mation is described by 81 different color components. This informa-
tion can be used to simulate the color under different light sources.
With the spectral approach, metameric pairs can be detected more
easily than with the normal three color component system.

Color and its accurately defined spectral information is increas-
ingly becoming an important factor in many industrial applications,
such as; the mineral industry [4], paper industry [5], wood indus-
try [6–8], food quality control [9–11], and many other important
areas [12–15]. The usage of spectral color information is also grow-
ing in the field of medical applications. Spectral information is
used for; cartilage analysis [16], retinal image analysis [17], tumor
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demarcation [18–20], and other medical fields [21,22]. Spectral mea-
surements also provide an efficient tool for old art conservation and
other analysis tasks as well [23,24]. The words multispectral and hy-

perspectral are also sometimes used in the literature in place of the
term spectral.

A spectral image differs from a normal RGB-image by each pixel
in the image holding full spectral information instead of just the
three basic colors. Because of the large number of different color
channels, the size of one spectral image can increase to several gi-
gabytes. Therefore, the analysis of spectral data can be difficult
and time-consuming. Thus, this dissertation also introduces faster
implementations of well-known computational techniques for high
dimensional data. For some target uses, especially in industry, the
image analysis should be fast, or even real-time.

There are three objectives to the thesis. The first objective is
to review the benefits and drawbacks of different spectral imaging
methods and systems and this review forms an important part of
the thesis. The second objective is to develop new spectral measur-
ing methods and systems for industrial targets. Two new measur-
ing methods for the wood industry are proposed. The first method
is related to the determination of the moisture content of the wood
boards and the second is related to measurements of the heartwood
of Scots Pine by using fluorescence imaging. The developed spec-
tral imaging system is also presented for a medical application. The
third objective is to generate a faster implementation of spectral im-
age analysis algorithms that are in general use. Implementations of
Principal Component Analysis (PCA) and Non-negative Tensor Factor-

ization (NTF) are done using Graphical Processing Units (GPUs).

In this thesis, Chapter 2 brings out the research problems ad-
dressed in this thesis. Chapter 3 describes the basics of spectral
color and fluorescence. In Chapter 4, the structure of the spectral
image and associated common methods are reviewed. Chapter 5
introduces two generally used mathematical methods: PCA and
NTF for spectral image analysis. Chapter 5 also describes fast im-
plementations for the discussed mathematical methods. Chapter 6

2 Dissertations in Forestry and Natural Sciences No 73
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describes and summarizes the main results and achievements of the
published papers. Finally, Chapter 7 concludes the results of this
thesis and discusses possible future research topics.
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2 Research problems ad-

dressed in this thesis

The research problems related to spectral image acquisition and
analysis in this thesis are as follows:

• Spectral cameras for wide spectral regions do not exist, be-
cause single sensor cameras for wide spectral ranges are not
available. The requirement for simultaneous spectral image
acquisition from visible and infrared regions came from the
wood industry, in which the humidity of wood was the prop-
erty of interest. The samples needing to be measured were
frozen and, as the samples would melt between different cam-
era measurements, simultaneous measurement was needed.

• As yet, an image acquisition system for measuring the heart-
wood content of wooden material from fresh and dried sam-
ples does not exist. The need for heartwood content mea-
surement came from the wood industry, where the heartwood
content needs to be measured as the production line is mov-
ing.

• One research problem arose in the medical field. As yet, spec-
tral image databases from neurosurgical targets are not avail-
able. Only a small number of spectral images have been taken
in [18, 19]. In this thesis we needed to design and implement
a spectral imaging system for neurosurgical targets. The spec-
tral information from healthy tissues and tumors was a region
of interest to medical experts at the university hospital, espe-
cially the enhancement of the margin between healthy and
neoplastic tissues.

• Spectral images contain huge amounts of data and efficient
analysis requires fast computational methods, especially in
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real world applications. To visualize spectral image data, dif-
ferent representations can be used. Especially in medical ap-
plications, the spectral image acquisition and analysis need to
be carried out in near real-time. In this thesis, two well-known
computational methods were selected in order to study their
performance in near real-time. It is known that the NTF cal-
culation is time consuming and seeing results in near real-
time would provide new possible applications, for example,
in neurosurgical applications where the surgeon must see the
results during surgery in near real-time.

The research problems were addressed as follows:

• A spectral image acquisition system was realized using two
spectral cameras simultaneously in the visual and infrared re-
gions. The system was tested in a research project with hun-
dreds of wooden boards. Because the humidity of an object
can be seen from the infrared area, it is possible to use this
system in moisture-content related studies.

• A new measuring system for heartwood detection based on
fluorescence was designed and implemented in this thesis.
This phenomenon was confirmed by an accurate bispectral
measurement from which the optimal illumination and de-
tection wavelengths were obtained. By this method, the heart-
wood content from both fresh and dried samples can be de-
tected. The cooperative company has applied patents [25, 26]
for the measuring system.

• A spectral imaging acquisition system was designed and con-
nected to the neurosurgical microscope at Kuopio University
Hospital. The proposed system is smaller than that in Ref. [19]
and can be used during surgery without disturbing the sur-
geon. Spectral images were collected from ten different surgi-
cal procedures and a total of 38 spectral images were acquired.
Preliminary analysis for tissue separation was carried out.

6 Dissertations in Forestry and Natural Sciences No 73
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cal procedures and a total of 38 spectral images were acquired.
Preliminary analysis for tissue separation was carried out.
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Research problems addressed in this thesis

• Two fast implementations for spectral image analysis were
realized. Both of the implementations were planned for the
Graphical Processing Unit (GPU) and were realized using the
C++ language. PCA implementation produced an increase in
speed of about 7× and NTF implementation an increase of
60 − 100× when compared to CPU.
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3 Spectral color

Digital color is normally defined in some trichromatic color space like
RGB. Each color is formed by a combination of these three base
colors. Electronic devices such as computer displays and digital
cameras use the three color component system to produce colors.
Spectral color is an extension to the normal trichromatic color sys-
tem. In spectral color space each color is formed by using tens, or
even hundreds of different color components.

3.1 ELECTROMAGNETIC SPECTRUM

The color spectrum is an electromagnetic wave that can be repre-
sented as a function of wavelength or frequency [27, 28] and the
shape of this spectrum determines the color that is sensed. Visible

light for the human eye is only a small fraction of the entire elec-
tromagnetic radiation spectrum. The electromagnetic spectrum is
categorized into different wavelength regions as shown in Fig. 3.1.

Visible light

Gamma rays UV Infrared Microwaves RadiowavesX-rays

380 nm 780 nm

Figure 3.1: Electromagnetic spectrum.

The human visual system is very limited and it can only detect a
small region of the electromagnetic spectrum from 380 to 780 nm.
Therefore, the human visual system cannot detect other wavelength
regions such as ultraviolet (UV) or infrared (IR). The spectral ap-
proach makes it possible to use ultraviolet and infrared regions as
well. These unseen regions provide very important features of the
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target material. Figure 3.2 shows example measurements when the
infrared region could provide important information about an ob-
ject such as moisture content. In the infrared region, water absorp-
tion peaks at 970 nm, 1190 nm and 1450 nm and can be recognized
and used for moisture determination [29]. The visible region of the
color spectrum cannot be used to determine the moisture content,
whilst the infrared region provides good contrast between dry and
moist wood.
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Figure 3.2: Reflectance spectra of dry and moist Scots Pine sample. Black dashed lines are

the water absorption peaks.

Resolution of the measured spectra is usually between 1 to 20
nm depending of the measuring device and the usage of the infor-
mation. A single color spectrum s can be defined as a vector:

s(λ) = [s(λ1), s(λ2), . . . , s(λn)]
T , (3.1)

where λ is the wavelength and n is the number of wavelength chan-
nels in the spectrum. The optimal resolution and the sampling in-
terval for color spectra has been studied by Juha Lehtonen [30].
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3.2 FLUORESCENCE

Fluorescence is a phenomenon where a material re-emits the ab-
sorbed light at a longer wavelength and with a lower energy level.
Usually, fluorescence occurs when the target is exposed to ultravi-

olet radiation. Ultraviolet radiation can be divided into three main
categories; UV–C (100–280 nm), UV–B (280–315 nm), and UV–A
(315–400 nm) [31]. Fluorescent colors are widely used in various
areas such as security markings, the paper industry, and textile in-
dustry. For example, fluorescent whitening agents (FWA) are used in
the paper industry to produce white paper [5, 32]. The whitening
agent absorbs the ultraviolet light, and re-emits it in the blue re-
gion of the spectrum. Without the whitening agent, the raw paper
would look brownish.

Fluorescence can be measured by using a bispectrometer device
[33] where the material is illuminated by a narrow band of monochro-
matic light and the emission wavelength is measured with a spec-
trometer. The excitation wavelength region is scanned through the
whole inspected area. This method is called a double monochromator

method [34].
From bispectral measurements, a Donaldson matrix [34] can be

formed. The Donaldson matrix describes the relationship between
the excitation and emission wavelengths of the fluorescence (Fig.
3.3).

Fluorescent colors are a very good example of why the selec-
tion of illumination is critical in color perception and for the color
measurements. Figure 3.4a shows an example where a set of fluo-
rescence standards are illuminated with a visible light and with a
UV-light source 3.4b. Figure 3.5 shows the Donaldson matrix from
the blue green fluorescent standard (upper center), which is mea-
sured with the bispectrometer device. These fluorescent standards
are used for measuring device calibration and for the development
of optically brightened materials.
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Figure 3.3: Donaldson matrix.

(a) (b)

Figure 3.4: (a) Fluorescent color standards under the daylight (D65) illumination. (b)

Fluorescent color standards under UV–illumination. (Photographs by Jussi Kinnunen)
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Spectral color
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Figure 3.5: Donaldson matrix from blue green fluorescent standard (upper center).
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4 Spectral imaging

In normal color imaging each color is captured by using three pri-
mary colors. Colors in a normal digital charge-coupled device (CCD)
-cell are captured through a color filter array (CFA). The most com-
mon CFA is a three color Bayer filter (Fig. 4.1a) where each color is
formed through red, green and blue filters [35]. Sony has also in-
troduced a CCD-cell where one of the green filters is replaced with
an emerald filter (Fig. 4.1b) to achieve four-primary cameras [36].
Researchers have also introduced a six-primary HDTV-video cam-
era by combining two CCD-cells in one imaging process [37]. In
addition, there are commercial devices incorporating 3 CCD sen-
sors [38].

(a) (b)

Figure 4.1: (a) 3-color filter. (b) 4-color filter.

In the case of spectral imaging, each pixel contains a color spec-
trum with tens, or hundreds of color channels. As with normal
digital images, the spectral image can contain information from the
visible part of the spectrum, but also it can be extended to unseen
wavelength regions such as ultraviolet and infrared.

Dissertations in Forestry and Natural Sciences No 73 15



Jukka Antikainen: New Techniques for Spectral Image Acquisition and
Analysis

450 500 550 600 650 700
0

20

40

60

80

100

Wavelength [nm]
R

ef
le

ct
an

ce
 [%

]

A
B
C

(a) (b)

Figure 4.2: (a) Spectral image converted to RGB space and three selected points. (b)

Reflectance spectra of the selected points.

4.1 STRUCTURE OF SPECTRAL IMAGE

The RGB image contains three gray scale channel images (Fig. 4.3(a))
which are acquired through 3 filters, as illustrated in Figure 4.3(b).
The spectral image can contain multiple gray scale channel images
(Fig. 4.4(a)), which can be acquired through narrow band filters
shown in Figure 4.4b). When the spectral image is captured by us-
ing the 400 to 700 nm region by 10 nm steps, the image consists of 31
different gray scale channel images. Each channel image contains
information about one narrow spectral channel band. The spectral
image can be converted to other color spaces such as RGB using
common conversion algorithms [1, 27].

16 Dissertations in Forestry and Natural Sciences No 73



Jukka Antikainen: New Techniques for Spectral Image Acquisition and
Analysis

450 500 550 600 650 700
0

20

40

60

80

100

Wavelength [nm]

R
ef

le
ct

an
ce

 [%
]

A
B
C

(a) (b)

Figure 4.2: (a) Spectral image converted to RGB space and three selected points. (b)

Reflectance spectra of the selected points.

4.1 STRUCTURE OF SPECTRAL IMAGE

The RGB image contains three gray scale channel images (Fig. 4.3(a))
which are acquired through 3 filters, as illustrated in Figure 4.3(b).
The spectral image can contain multiple gray scale channel images
(Fig. 4.4(a)), which can be acquired through narrow band filters
shown in Figure 4.4b). When the spectral image is captured by us-
ing the 400 to 700 nm region by 10 nm steps, the image consists of 31
different gray scale channel images. Each channel image contains
information about one narrow spectral channel band. The spectral
image can be converted to other color spaces such as RGB using
common conversion algorithms [1, 27].

16 Dissertations in Forestry and Natural Sciences No 73

Spectral imaging

(a)

400 450 500 550 600 650 700

0.2

0.4

0.6

0.8

1

Wavelength [nm]

R
el

at
iv

e 
se

ns
iti

vi
ty

R
G
B

(b)

Figure 4.3: (a) Structure of RGB image. (b) Spectral sensitivities of one RGB camera.
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Figure 4.4: (a) Structure of spectral image. (b) The spectral transmittances of filters

corresponding the wavelengths in a).
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Figure 4.4: (a) Structure of spectral image. (b) The spectral transmittances of filters

corresponding the wavelengths in a).
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Because of the large amount of color information, the storage
size of a spectral image can rise to hundreds of megabytes, or even
to gigabytes. Usually, these images are saved to user specific binary
formats [39]. In some case, compression methods like PCA are used
to reduce data dimensionality [40]. However, currently there is no
standard file format available for saving spectral images.

4.2 IMAGING TECHNIQUES

Spectral image acquisition can be done using three different ap-
proaches. In the first approach, the spectral image is captured line
by line [12]. Each pixel on each single line contains the full spec-
tral information of the target. The spatial domain can be captured
by moving the target or the camera. In the second method, the
spectral image is captured by using a filter, for example, a Liquid
Crystal Tunable Filter (LCTF) [41]. Each channel image is captured
with a different filter transmittance. This approach captures x and
y spatial domains at once for each wavelength channel. In the third
approach, the spectral image is formed by capturing the spectral
and spatial domains at the same time [42]. The measured image
is divided into multiple sub images by using optical elements. A
different wavelength region with full spatial information goes to
different places on the CCD-cell. The spectral image can be recon-
structed from the divided sub images.

Each method has its own benefits. The first approach is much
better for industrial line applications where targets cannot be stopped
and where the imaging has to be done in real time, as in a conveyor
belt production. The second approach provides quite fast image
capture, but the spectral resolution is not as good as in the first
approach and it is not so convenient for moving targets. However,
the scanning of the camera or the object is not needed. The third
approach is the fastest, but usually the spatial or the spectral reso-
lution is poor.
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4.2.1 Line scanning

Line scanning based spectral cameras mainly consist of ImSpector

direct sight spectrographs [12, 43]. The structure of the spectral cam-
era is described in Figure 4.5. The main technique of the direct
sight spectrograph is based on a single prism-grating-prism (PGP)
element. The incident light is controlled through a narrow slit to
the PGP element. The PGP element disperses the light to a matrix
detector like a CCD–cell. The spatial information from the mea-
sured line is drawn to the x-axis and spectral information to the
y-axis on the detector. To capture the full spatial information of the
target, the position of the line must be changed either by moving
the camera or the target. Scanning can be also done by using a
rotation mirror.

Figure 4.5: Structure of direct sight spectrograph (drawn by Jouni Hiltunen).

Line scanning based on a direct sight spectrograph provides
high spectral resolution and it can be also used for capturing high
quality spatial information. One drawback of the imaging system
for laboratory use is the measuring speed. Moving the target or the
camera can take some time and if high spatial resolution is needed,
the measuring time can increase to several tens of minutes. How-
ever, the imaging system is very applicable to industrial lines where
measured targets are constantly moving and the level of illumina-
tion can be high. The exposure time is directly proportional to the
level of light. If a smaller exposure times can be used, the total
imaging time will be greatly decreased. Figure 4.6 shows a spectral
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imaging system [44], which has been developed and used at the
University of Eastern Finland for scientific purposes.

Figure 4.6: Line scanning based spectral imaging system. A is the light source, B is the

sample table and C is the camera.
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4.2.2 Spectral channel based

The spectral image can be captured in the spectral domain by using
various filters and optical systems, such as; a Liquid Crystal Tunable

Filter (LCTF) [41], an Acousto-Optic Tunable Filter (AOTF) [45], an
interference filter [1], and an interferometric spectral imaging system
[42, 46].

In the Lyot type of LCTF, the spectral band selection is done by
tuning the liquid crystals in the filter with an electric field. The Lyot
filter is a pack of liquid crystal plates and linear polarizers. Differ-
ent wavelength transmittances of the filter are achieved by tuning
the position and the angle of the liquid crystals and polarizers [47].

The AOTF is controlled by the acoustic waves of radio frequen-
cies. The AOTF is built from a crystal element, which is vibrated
with different sonication frequencies. Varying the sonication fre-
quency gives control of the desired wavelength of transmittance of
the crystal [45, 48].

In an interference filter based imaging system, a mechanical fil-
ter wheel with several separate filters is rotated in front of the CCD
camera. Each filter has a different wavelength transmittance and the
spectral information is obtained sequentially by capturing images
through the different filters [1].

The interferometric spectral imaging system can obtain multi-
ple spectral images at the same time. Wavelength information with
spatial information of the whole area is divided into the matrix de-
tector by using various optical components [42, 46, 49, 50]. Spectral
resolution of the interferometric imaging system is a trade-off of
the spatial resolution. If the spectral resolution increases, the spa-
tial resolution decreases, and vice versa. Examples of the technical
details for the typical spectral imaging techniques are presented in
Table 4.1.
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4.2.3 Properties of the imaging system

An industrial environment has specific requirements of a spectral
imaging system. The environment might be dusty, or the system
might be affected by heavy vibration. In some cases, the level of
light might be the problem. A total response of the imaging system
is formed from the different factors and these need to be considered
individually for each application. These factors are; the sensor sen-
sitivity, the light source, possible filters, and optics, etc. The total
response S(λ) for the imaging system can be formulated as follows:

S(λ) =
∫ λmax

λmin

L(λ)R(λ)F(λ)s′(λ)o(λ) + n, (4.1)

Above L(λ) is the light source, R(λ) is the reflectance r(λ) or the
transmittance t(λ) of the target, F(λ) is the transmittance of the
filter, s′(λ) is sensitivity of the detector, o(λ) is the transmittance
of the optics and n is an additional noise of the system. Table 4.2
shows advantages and disadvantages of common PGP and LCTF
imaging systems.

Table 4.2: Advantages and disadvantages for PGP and LCTF imaging systems.

PGP LCTF

L(λ) Line illumination can be used Homogeneous light preferred to
whole area

t(λ) Very good Poor/Acceptable
r(λ) Surface curvature causes problems Good for non-flat objects
s′(λ) Good Poor
o(λ) Good Good
n Not a problem Poor filter transmittance on blue re-

gion cause noise

There is no use for a UV sensitive sensor if the optics or the filters
do not transmit UV-radiation, and vice versa. The amount of UV-
radiation might be a problem in fluorescence imaging applications.
If the light source used does not produce enough UV-radiation,
then the intensity level of the fluorescence may be too low to be
detected. In low level light applications, Intensified CCD (ICCD)
cameras, or Electron Multiplying CCD (EMCCD) cameras [54] can
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be used. Similar problems can also be detected in the case of in-
frared imaging.

Different filters and sensors have their own spectral responses
at specific wavelength regions. For example, the visible area LCTF
component has very poor transmittance levels in the purple and
blue region (400 < λ < 470nm) of the spectrum (Fig. 4.7).
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Figure 4.7: Measured spectral transmittances of VariSpecVis LCTF component.

Different light sources produce different spectral power distri-
butions (Fig. 4.8). If an LCTF component is used with a tung-

sten light source (A), the blue region of the spectrum cannot be ef-
ficiently detected. The combination of the filter and the tungsten
light source works better in the red region of the spectrum. The
daylight source (D65) provides a daylight illumination and this is
more useful in the blue region than the tungsten light source. The
fluorescent light source (F11) is very peaky and it is not commonly
used for reflectance measurements.
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Figure 4.8: Normalized spectral power distributions for A, D65 and F11 light sources.
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Figure 4.8: Normalized spectral power distributions for A, D65 and F11 light sources.
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5 Spectral image analysis

A spectral image can contain large amounts of information and
therefore spectral image analysis is usually very time-consuming.
Some of the potential industrial applications related to spectral
imaging cannot practically be done because of the slow process-
ing times. Therefore, it is necessary to speed up the commonly
used analysis algorithms. Because of the slow processing times of
a general Central Processing Unit (CPU), the implementation of a
Graphical Processing Unit (GPU) for the algorithms has been stud-
ied. This chapter describes two well-known spectral image analysis
algorithms and how they can be implemented with a GPU.

5.1 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a widely used statistical
method used to reduce the dimensionality of a dataset [55]. For
spectral image analysis, PCA can be used for compression by re-
ducing the dimensionality of the wavelength channels of the image
and it can also be used for extracting interesting features from the
images. Use of PCA for spectral image analysis has been stud-
ied in various papers [23, 40, 56–60]. The PCA computation can
be undertaken using covariance or correlation matrices [61]. In the
sense of spectral image analysis, centering the data is not commonly
used. The formation of the PCA for spectral image analysis is as
follows: the spectral image is converted to a two-dimensional ma-
trix S where each column contains the spectrum of a single pixel of
the spectral image

S =







s1(λ1) . . . sm(λ1)
...

. . .
...

s1(λn) . . . sm(λn)






. (5.1)

Here, m is the number of pixels in the spectral image and n is num-
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ber of wavelength channels. A correlation matrix R can be com-
puted by using equation

R =
1
m

SST. (5.2)

The eigenvectors Φi and eigenvalues σi for matrix R are from equa-
tion

RΦi = σiΦi (5.3)

Eigenvalues σi and eigenvectors Φi are ordered such that the eigen-
values are in descending order. A new matrix B is defined by taking
the k first eigenvectors as

B = (Φ1, ..., Φk) (5.4)

Inner product images P are calculated by using the selected base
vectors B and the previously defined 2D matrix S by

P = BTS. (5.5)

Now the spectral image can be reconstructed using the inner prod-
uct images and the corresponding eigenvectors. Reconstruction of
the spectral image is calculated with an equation

S̃ = BP, (5.6)

where S̃ is a reconstructed spectral image of the same size as S, but
it is represented by using a fewer number of principal components.
Many algorithms can be formulated to operate on the B and P ma-
trices, which are smaller than the original image S. This can result
in a speed-up of the image processing time.

5.2 NON–NEGATIVE TENSOR FACTORIZATION

Non-Negative Tensor Factorization (NTF) is another commonly used
spectral image analysis method. It has been used in many differ-
ent areas such as; global climate analysis, neuroscience, and image
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processing [62–66]. For spectral image analysis, NTF is used for
compression [58], optimal filter selection [13,67] and feature extrac-
tion [68]. The NTF produces positive base vectors which can be
used as filters. These filters can be manufactured and used in real
optical systems [13].

Let G be a size of x × y × z nonnegative third order tensor. The
non-negative tensor factorization of G can be solved by using non-
linear minimization problem

min
Ĝ≥0

�G − Ĝ�2
F (5.7)

where Ĝ is a reconstructed data and �A�2
F is the square Frobenius

norm. The rank-K reconstruction is defined as a sum of tensor
products

Ĝ =
K

∑
k=1

uk ⊗ vk ⊗ wk, (5.8)

where uk, vk and wk are basis vectors of non-negative values. This
reconstruction process for third order tensor factorization is illus-
trated in Figure 5.1.

= + + ... 

Figure 5.1: Illustration of third order tensor factorization by using sums of rank-1 tensors.

The main approach to non-negative tensor factorization is based on
the Block Gauss-Seidel (BGS) method [69]. Hazan et al. [67] derived
a gradient descent method by combining Gauss-Seidel and Jacobi
iterative update schemes where: uk, vk, and wk are calculated using
iterative steps (5.9)–(5.11)

uk
i ←

uk
i ∑y,z Gi,y,zvk

ywk
z

∑
K
m=1 um

i �v
m, vk��wm, wk�

, (5.9)
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vk
i ←

vk
i ∑x,z Gx,i,zuk

xwk
z

∑
K
m=1 vm

i �u
m, uk��wm, wk�

, (5.10)

wk
i ←

wk
i ∑x,y Gx,y,iu

k
xvk

y

∑
K
m=1 wm

i �u
m, uk��vm, vk�

, (5.11)

where G is the dataset and �, � denotes the inner product. Iteration
steps are repeated hundreds, or even hundreds of thousands times
for convergence to the correct solution depending on the complex-
ity of the dataset. Therefore, the iterative NTF computation is quite
time-consuming and a method by which to speed it up would be
useful.

5.3 FAST IMPLEMENTATIONS

GPUs offer a fast parallel computation platform. At first the GPU
was developed for gaming purposes, but nowadays the efficiency
of the GPU is used for scientific purposes as well. GPU architec-
ture offers a highly parallel and multithreaded platform with high
memory bandwidth [70]. The GPU is well suited for tasks where
the same code can be executed simultaneously for multiple parts of
the dataset such as image processing tasks.

Figure 5.2: Structures of the CPU and GPU architectures. [70]

The differences between CPU and GPU architectures are shown
in the Figure 5.2. A normal CPU contains only four to eight arith-

metic logic units (ALU) whereas the GPU can contain hundreds or
even thousands. This is one of the reasons why the computational
efficiency of the GPU is higher than CPU.
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Each GPU contains multiple processors and each of those has
their own individual registry and cache. Because of the different
architecture, the GPU uses a different programming model than a
normal CPU. The data is divided into a grid of blocks and each
block contains up to 256 multiple threads (Fig. 5.3). Each thread
executes the same code with different indexes. Each thread has its
own private memory and each block has a memory which every
thread can access. All the threads in a block can access the global
memory of the GPU device. [70]

Figure 5.3: Principle of the programming architecture. [70]

Some parts of the PCA and NTF algorithms can be implemented
very efficiently on a GPU. An algorithm and the time complexity of
the PCA computation is described in Algorithm 1.

For the PCA computation, the most time-consuming parts are
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Algorithm 1 An algorithm and the time complexity for the PCA.
Require: the input spectral image S, wavelength count n, pixel

count m, component count k

1: S ← ConvertTo2D(S) O(nm)

2: R ← (1/m)SST O(n2m)

3: [Φi, σi] ← SolveEig(R) O(n3)

4: B ← Φ(1 : k) O(kn)

5: P ← BTS O(knm)

the computation of the correlation matrix R and the inner prod-
uct images P. Time complexity for the matrix multiplication of two
n×m matrices is O(n2m). The pixel count m determines the column
count in matrix S and therefore the matrix column count might rise
to hundreds of thousands and it is the main factor of the total com-
putation speed. Time complexity for solving the eigenvalues and
eigenvectors is O(n3) for most of the algorithms [71]. Computation
time for solving the eigenvalues and eigenvectors is dependent on
the count of spectral channels which is usually between 31 and 121.
Therefore, this does not play such a big role in the total computa-
tion time. The GPU implementation is described with more details
in the Paper IV.

Time complexity for a single NTF updating step can be derived
from the iterative process. Let us consider equation 5.9, where the
denominator is defined as ∑

K
m=1 um

i �v
m, vk��wm, wk�. Time com-

plexity for the inner product of v is O(y) and respectively for w

the time complexity is O(z). The scalar product and the summa-
tion are done K times, and therefore the time complexity for the
computation of the denominator is O(yK + zK). In the numerator
part uk

i ∑y,t Gi,y,zvk
s wk

t , each value in the matrix layer Gi is multi-
plied with a scalar value, therefore the time complexity is O(yz).
The total time complexity for update step is then O(yK + zK + yz).
Time complexities for v and w are analogous to the complexity of
u. For low rank-K tensors, it can be seen that the computation of
the nominator is the most time-consuming part in the single update
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step. The update step mainly consists of the repeated summations
of large arrays, so basically it requires more memory bandwidth
than computational efficiency.

Algorithm 2 An algorithm and the time complexity for the NTF.
Require: the input G (size x × y × z), the method rank K, and the

iteration count I

Ensure: the output vectors u, v and w

1: Init u, v and w

2: for i ∈ {0, . . . , I − 1} do

3: u ← Updateu(G, u, v, w) O(yK + zK + yz)

4: v ← Updatev(G, u, v, w) O(xK + zK + xz)

5: w ← Updatew(G, u, v, w) O(xK + yK + xy)

6: end for

7: return u, v and w

Algorithm 2 shows the structure of the iterative NTF computa-
tion. At first, the tensors u, v and w are initialized with random
numbers between 0 and 1. Function Updatej corresponds the up-
date steps 5.9 - 5.11. The described algorithm does not ensure the
convergence of the problem. The GPU implementation of the algo-
rithm is described with more details in the Paper V.

Dissertations in Forestry and Natural Sciences No 73 33



Jukka Antikainen: New Techniques for Spectral Image Acquisition and
Analysis

34 Dissertations in Forestry and Natural Sciences No 73



Jukka Antikainen: New Techniques for Spectral Image Acquisition and
Analysis

34 Dissertations in Forestry and Natural Sciences No 73

6 Experimental cases

This chapter examines the experimental cases that were studied in
this thesis. The first three sections describe three different measure-
ment setups that were used in papers P1 – P3 and the fourth section
shows the results of the GPU implementations that were studied in
papers P4 – P5.

6.1 WIDE SPECTRAL RANGE IMAGING

Sometimes, spectral information is needed from a wider wavelength
region than one sensor or the optical system can provide. The mea-
surements could be repeated with two different spectral cameras, or
two spectral cameras could be combined in one measurement pro-
cess. This way the measuring time will decrease and the measure-
ment accuracy will be higher. The dual spectral camera measuring
system is shown in Figure 6.1.

Figure 6.1: Measuring setup for two camera system. Spectral camera (V10E) A measures

on 400–1000 nm region. Spectral camera (N17E) B measures on 950–1700 nm region. C

is a daylight simulator. D is a xy-sample table.

Dissertations in Forestry and Natural Sciences No 73 35



Jukka Antikainen: New Techniques for Spectral Image Acquisition and
Analysis

The spectral cameras are placed vertically so that the camera for
the visible range is attached on top of the infrared camera. Both
spectral cameras are focused onto the same line on the surface of
the target. The line is measured sequentially by both cameras. The
difference between the measurements is only a couple of millisec-
onds. After the measurements, the sample is moved slightly to the
next measuring position and the measurements are repeated until
the whole spatial region is covered.

Spectral information has been used for moisture detection in
wood. Most of the studies use reflectance spectroscopy measure-
ments for determining the moisture content of the target. In the
case of reflectance measurements, the moisture content of the wood
sample can be detected only from the surface of the target. Paper
P1 proposed a dual spectral camera system for wood transmittance
measurements in a laboratory environment (Fig. 6.2), which could
be used for moisture detection.

The target application for the measuring system was a saw line.
The main idea was to develop a system for spectral transmittance
measurements for wooden boards. Initially the Scots Pine boards
were frozen to simulate real winter circumstances on the saw line
production. After the measurements were done for the frozen sam-
ples the measurements were repeated on thawed samples. In this
way, the effect of the ice can be measured and quantified.

One problematic issue for the measurement process was heat.
The hot light source started to thaw the samples almost immedi-
ately after the sample was placed in the sample holder. This prob-
lem was solved by performing the transmittance measurements si-
multaneously with both spectral cameras. If the measurements
were done sequentially, the intensity level and the shape of the
spectrum might have changed between the measurements, which
would produce incorrect results.

The spectral imaging system reported in Paper P1 has been used
in many research projects. One of those projects studied the spec-
tral analysis of old icons [23]. Spectral images were used to detect
defects and hidden features of the icons. Because of the large size
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Figure 6.2: Setup for wood transmittance measurements where A is V10E spectral camera,

B is N17E spectral camera, C is Acclaim halogen lamp and D is a wooden board sample.

of the icons, the acquisition time for a high resolution spectral im-
age was long. The dual spectral camera system was used to speed
up the measuring process. Spectral information for the icons was
captured from 400 to 1700 nm by using both spectral cameras at the
same time. For large icons, spectral measurements were done with
multiple column images to achieve a good spatial resolution (Fig.
6.3).
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Figure 6.3: Converted RGB slice images from large icon.
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6.2 HEARTWOOD DETECTION FOR SCOTS PINE

Machine vision systems have an enormous role in the wood indus-
try and they have been studied and used for detecting defects such
as; knots, decay, blue stain etc., as well as log, sawn timber, and ve-
neer sawing quality control [8, 72–77]. The heartwood detection of
Scots Pine (Pinus sylvestris) has been studied with various methods
like X-ray imaging [78] and thermal imaging [79, 80]. In addition,
statistical approaches have been studied for estimating the heart-
wood content of the logs [81]. X-ray imaging offers accurate results
for heartwood content, but usually the price for the system is high.
X-ray scanning is mainly used for logs, but not for the final sawn
products like boards.

Researchers have studied thermal imaging for heartwood detec-
tion [79, 80]. The idea of heartwood detection with a thermal cam-
era is to compare temperature differences between the heartwood
and the sapwood. Sapwood contains more water than heartwood
and therefore the detection of the heartwood can be done. Con-
sequently, the thermal imaging method cannot be used for dried
samples [80].

Paper P2 proposed a measuring method and system which can
be used for fresh and dried samples. The measuring system is also
low cost compared with an X-ray system. The proposed system
is viable with logs and final sawn products. The main idea of the
method is based on the fluorescence of stilbenes pinosylvin and its
monomethyl ether [82]. These compounds are formed in the trans-
formation of sapwood to heartwood [83] and they exist mainly in
the heartwood with only very small quantities in the sapwood [84].
Therefore, the difference between the heartwood and sapwood can
be detected by using the information given by the fluorescence. The
amount of pinosylvin and its monomethyl ether correlates highly
with decay resistance [82, 83, 85–89]. Therefore, the method could
also be used for estimating the decay resistance of the final sawn
products.

The accurate fluorescence measurements are described in the
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Paper P2. It was seen that the heartwood (Fig. 6.4a) produced a
fluorescence emission between 370 to 500 nm when 250 to 350 nm
excitation wavelengths were used. The measurements show that
the sapwood (Fig. 6.4b) does not produce such fluorescence in the
same wavelength region.
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Figure 6.4: (a) Donaldson matrix from the heartwood fluorescence. (b) Donaldson matrix

from the sapwood fluorescence.

From the fluorescence measurements, one narrow band interfer-
ence filter (center WL = 420 nm, FWHM = 10 nm) was selected to
enhance the differences between the heartwood and the sapwood.
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Figure 6.4: (a) Donaldson matrix from the heartwood fluorescence. (b) Donaldson matrix

from the sapwood fluorescence.

From the fluorescence measurements, one narrow band interfer-
ence filter (center WL = 420 nm, FWHM = 10 nm) was selected to
enhance the differences between the heartwood and the sapwood.
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Figure 6.5 shows the difference between the RGB image and the
filtered fluorescent image.

(a)

(b)

Figure 6.5: (a) RGB image of a sample. (b) Filtered fluorescence image of the sample

(heartwood is shown as bright region).

The filtered fluorescence image can be used for determining the
heartwood content of the sample. The actual image analysis is done
using binary images. The original gray scale image is binarized by
using two different threshold values. The first value is used for
separating the board from the background and the second is used
to separate the heartwood from the board. The relative amount of
the heartwood can be calculated by comparing the areas of these
binary images. A more detailed description of the algorithm is
presented in Paper P2.

The Paper P2 describes an online measuring system that is used
in a manufacturing line. The measuring system is built in a Rittal
rack. The system consists of a Retiga 4000DC monochrome camera
(QImaging) with Nikkor lens (50mm, f=1.4). Fluorescence is excited
by ten 11W UV-B light tubes. Reflected and emitted light is filtered
with a narrow band interference filter (Oriel) to enhance the dif-
ference between the heartwood and the sapwood. The measuring
point for each board is determined using a light sensor E3S-C (Om-
ron) with an External Trigger Reference Design Kit (QImaging). The
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whole measuring process is controlled by an industrial computer,
which is connected to the logistics of the factory. Controlling and
analysis software is written in C++. Figure 6.6 shows the measur-
ing setup and Figure 6.7 shows the developed user interface and
the measuring view inside the system.

Figure 6.6: Developed measuring prototype. A is camera, B is industrial computer, C is

control electronics and D is UV-light tubes and E is moving direction for the industrial

line.
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(a) (b)

Figure 6.7: (a) User interface for the measuring system. (b) Measuring view inside the

rack.
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6.3 SPECTRAL IMAGING IN NEUROSURGERY

The benefits of spectral imaging and spectroscopy in medical appli-
cations has been studied in several fields such as; tumor demarca-
tion [18–20,90–92], the degeneration of cartilage [16], the early stage
detection of the diabetes from retinal images [17], and so on.

The study of the identification of neoplastic tissues is important
for improving the recovery process of a patient. In tumor resection,
it is important to determine the tumor margins accurately, which
is a difficult task. Ideally resection is made by removing the entire
tumor without damaging the healthy tissue, but, as any tumorous
tissue not removed can cause regrowth of the tumor, resection is
usually made by removing some healthy tissue from around the
tumor as well as a safety procedure.

Paper P3 proposes an LCTF based spectral imaging system for
a neurosurgical microscope. The microscope is used for neurosur-
gical operations such as brain surgeries and spine surgeries. Be-
cause the target operations have to be done accurately the spectral
camera must not disturb the surgeon. If the spectral camera is too
large, it may disturb the surgeon, or if the camera is too heavy the
microscope cannot be stabilized. Therefore, a small, lightweight
spectral camera is required. The spectral camera is constructed
from a Varispec LCTF component [53], Basler monochrome cam-
era and various optics. The measuring region for the system ranges
from 420 to 720 nm. The LCTF component used provided a 10 nm
spectral resolution, so the full resolution spectral image contains 31
wavelength channels. A connection setup for the spectral camera is
shown in a Figure 6.8.
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Figure 6.8: The spectral imaging system connected to Zeiss OPMI Pentero neurosurgery

microscope. A is the camera, B is the LCTF component, C is optics and D is the microscope.

The spectral camera was tested in several different surgeries. It
was used for collecting a database of different tissues. The collected
tissue database can be used for future studies. Figure 6.9 shows an
example of a human cortex and measured spectra.
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Figure 6.9: (a) Converted RGB-image of a cortex. (b) Reflectance spectra from selected

regions.

PCA was used for tissue separation in Paper P3. Use of PCA
was studied to determine a margin between neoplastic and healthy
tissue (Fig. 6.10). First three inner product images are shown in
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Fig. 6.10(b–d). First and second inner product images can be used
for good margin estimation between the healthy and neoplastic tis-
sues. The test results for the tissue separation were based on a vi-
sual judgment of an expert. Thus, further studies with pathological
reports are needed.

(a) (b)

(c) (d)

Figure 6.10: (a) Converted RGB-image of resected tumor tissue. First three inner product

images (b) 1. inner product (c) 2. inner product and (d) 3. inner product.
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6.4 COMPUTATIONAL TECHNIQUES

Two computational techniques for spectral image analysis were im-
plemented and tested. The PCA computation was tested with sev-
eral spectral images of different spatial and spectral resolutions.
Figure 6.11 shows an example of a measured spectral image of a
printed leaflet and the first six calculated eigenvectors. The first
eigenvector is positive and it holds the mean data of the spectral
image. It describes most of the variation inside the image. The sec-
ond eigenvector produces the second largest variation of the image,
and so on. Each eigenvector is uncorrelated and orthogonal to each
other. Corresponding inner product images are shown in Figure
6.12. These inner product images and their combinations can be
used for feature extraction. One example of PCA feature extraction
was demonstrated in the previous section (Fig. 6.10). For future
applications, it is necessary to increase the efficiency of the compu-
tation. Therefore, a faster implementation of the PCA is proposed
and tested (Paper P4).
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Figure 6.11: (a) Converted RGB image from the spectral image. (b) First 6 principal

components.
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1. PC 2. PC 3. PC

4. PC 5. PC 6. PC

Figure 6.12: First 6 inner product images.
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Computation of the PCA analysis was undertaken by use of a
GPU (P4). The implementation was made in the NVIDIA CUDA
programming environment [70]. The implementation was done in
the C++ language using Microsoft Visual Studio. The PCA imple-
mentation was tested with two separate systems. Both of the sys-
tems contained Quad-core Xeon 3 GHz CPUs with 3 GB of DDR2
memory. One of the computers had an NVIDIA Quadro FX 3700
graphics card with 120 parallel processors with 512 MB of GDDR3
memory. The second computer was equipped with a GeForce GTX
280 graphics card with 240 parallel processors with 1 GB of GDDR3
memory. Comparison between the computation times of the graph-
ics cards is not precise due the different main computers, but the
results will give a good general view of the efficiency of the graph-
ics cards.

Computation times were tested with square N × N spectral im-
ages with varying number of spectral channels. Different spectral
images were generated from one spectral image by resizing the spa-
tial domain and interpolating the spectral domain. Nevertheless,
the computation time is related only to the actual size of the spec-
tral data and not to the contents.

The GPU implementation increased the computational efficiency
close to 7× with the GTX 280 graphics card at the highest input size
N = 800 (Fig. 6.13). Average differences between the computers
and the graphics cards was around 35%. The computational effi-
ciency did not rise significantly above the input size N = 250 in
either of the setups. The copying time of the data from the CPU to
GPU is relatively high compared with the total computation time.
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Figure 6.13: Computational times and speed-ups for the PCA calculation for spectral

images with different spatial sizes and wavelength channels.
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The second computational method tested was NTF. For spectral
image analysis, this method can be used for compression, feature
extraction and enhancing the color differences of the image. One
of the applications of NTF is optimal filter calculation. Optimal
filters can be used for enhancing the color differences in the image
[93, 94]. Figure 6.14 shows one illustrative example where an arm
was imaged from 420 to 720 nm in 10 nm steps. By using NTF,
optimal filters for different features can be computed (Fig. 6.14b).
After the original spectral image is filtered by the method presented
in [93], discrimination between the blood vessels and the skin is
increased (Fig. 6.14c).
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Figure 6.14: (a) Original RGB image from the spectral image. [93] (b) Calculated filters.

c) Filtered RGB image.
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The NTF computation of large data sets is normally very time-
consuming and the computation time can rise from tens of minutes
to hours. Some studies have proposed different methods to speed
up the NTF computation [62,68], but the gained efficiencies of these
implementations were not great. The Paper P5 proposes a GPU im-
plementation to speed up the computation process. Computational
efficiency was tested for spectral images with different spatial sizes
and different wavelength counts. Different spectral images for the
testing were generated by resizing the spatial domain and interpo-
lating the wavelength channels of one spectral image. Computation
times were tested with fixed iterations, therefore the content of the
data does not have any effect on the computational times.

The computer used for the tests contained an Intel i7-920 proces-
sor with 6 GB of DDR3 memory and an NVIDIA GeForce GTX280
graphics card with 1 GB of GDDR3 memory. Figure 6.15 shows
computation times for NTF with 500 iterations calculated with the
CPU (Fig. 6.15a) and the GPU (Fig. 6.15b). The speed-up factor
(Fig. 6.15c) in the efficiency of the GPU implementation increased
from 60× to 100×. The result for the implementation efficiency is
good and it significantly decreases the image analysis time from
tens of minutes to seconds. This implementation provides faster
applications for industry and for medical applications as well.
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Figure 6.15: (a) Computational times for the NTF with different input sizes using the

CPU. (b) Computational times for the NTF with different input sizes using the GPU. (c)

Speedups for NTF calculation.
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7 Discussion and conclusions

Selected spectral image acquisition techniques were analyzed for
their benefits, weaknesses and prerequisites for industrial and med-
ical applications. Three imaging systems were tested and proposed.
The first was a line-scanning-based spectral imaging system with
two spectral cameras. The proposed spectral imaging system has
been used in several scientific projects and it has enabled measure-
ment processes that were not possible before, especially in cases
where the sample might be quickly contaminated. The developed
system has been used for the determination of the moisture content
of wooden boards.

Heartwood is an important feature and quality factor of wood.
If the heartwood content can be detected, it may help to optimize
the wood drying process. Heartwood contains less water than the
sapwood; therefore, boards with a large amount of heartwood do
not require as much drying time as boards with larger sapwood
content. Information on the amount and the position of the heart-
wood in the logs can be used to determine optimal sawing param-
eters.

This thesis proposed a fluorescence imaging-based system for
heartwood detection. Several studies related to heartwood detec-
tion using infrared imaging have been made [79, 80] with promis-
ing results. Infrared imaging can only be used for fresh and not
for dried samples. Also, studies for heartwood detection using X-
ray have been undertaken [78]. X-ray scanning is expensive and
it is mainly used for logs. The proposed fluorescence method in
this thesis can be used for both cases. Usage of the system can
be easily expanded for log measurements. In addition, use of the
fluorescence imaging method for classifying highly decay-resistant
samples should be studied. Moreover, the cooperative company
has applied for patents (Finnish Patent Application 20096322 [26],
European Patent Application EP2345887 [25]), which are still under
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review, for the fluorescence imaging method and the measuring
prototype.

The usage of spectral imaging has expanded to the field of neu-
rosurgery. The third spectral imaging system proposed was de-
veloped for a medical surgical microscope and the imaging was
based on a small LCTF component. Previous studies [18, 19] have
tested LCTF based cameras for brain tissue and tumor demarcation.
However, the proposed system in this thesis is smaller and it can
be used during surgery without disturbing the surgeon. This imag-
ing system has been used in vivo for capturing 38 different spectral
images during ten different surgical procedures. A spectral image
database, from different biological tissues, has been collected and
more is needed for future applications. Also, the imaging wave-
length region should be increased to cover the near infrared region.
In this study, the wavelength region was limited to the visible re-
gion, because the operation microscope used an infrared filter to
block the infrared region due to the heat issue. The study of neuro-
surgical image capturing is progressing to real-time spectral imag-
ing. Preliminary tests with tissue separation show good results but
more comprehensive study is needed.

One main goal of this thesis was to increase the speed of the
implementation of commonly used spectral image analysis algo-
rithms. This thesis presented two implementations, the PCA and
the NTF, through use of a GPU.

The implementation of the PCA did not produce such a marked
benefit in the computational speed (about 7×). Most of the increase
was achieved in the computation of the correlation matrix. Calcula-
tion of the eigen vectors and eigen values did not result in a remark-
able increase. For a comparison, one parallel iterative PCA GPU
implementation with about a 12× increase in speed for high di-
mensional data has been introduced by M. Andercut [95]. The pro-
posed approach in [95] is based on an iterative algorithm whereas
this thesis proposes a non-iterative method. Iterative algorithms are
mainly used for datasets that cannot be calculated through a corre-
lation matrix, whereas the proposed method in this thesis assumes
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benefit in the computational speed (about 7×). Most of the increase
was achieved in the computation of the correlation matrix. Calcula-
tion of the eigen vectors and eigen values did not result in a remark-
able increase. For a comparison, one parallel iterative PCA GPU
implementation with about a 12× increase in speed for high di-
mensional data has been introduced by M. Andercut [95]. The pro-
posed approach in [95] is based on an iterative algorithm whereas
this thesis proposes a non-iterative method. Iterative algorithms are
mainly used for datasets that cannot be calculated through a corre-
lation matrix, whereas the proposed method in this thesis assumes
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that the correlation matrix can be calculated in the memory. Al-
though the results between the iterative and non-iterative methods
cannot be compared directly because of the different initial algo-
rithms, nevertheless, the gained increase in speed for the PCA may
enable some real-time analysis application, for example, fast tumor
margin detection.

The GPU implementation of the NTF algorithm reduced the
computational time remarkably (60− 100×) compared with the nor-
mal CPU implementation, depending on the size of the spectral im-
age. For a comparison, only one parallel implementation for NTF
was introduced by Zhang et al. [62]. They used a Sun Fire X4600
M2 server for the computation task and they reported around a
7× increase in speed. At the time, no GPU implementations were
available for the NTF computation.

The selection of the spectral camera is dependent on the tar-
get application. If the application is an industrial line, the line-
scanning-based imaging system can be used. It is more suitable for
monitoring tasks than a spectral based system. Spectral based sys-
tems are better for non-moving targets and especially for natural
outdoor scenes where the line-scanning-based system cannot be so
easily used.

Usually, spectral imaging is only needed in preliminary mea-
surements. From these measurements, an application specific wave-
length channel can be selected. These wavelength channels can be
filtered and monitored with a monochrome camera. The proposed
fluorescence imaging system is one good example of how the pre-
liminary spectral measurements were used to select the correct illu-
mination and the detection wavelength for the target features. Nev-
ertheless, if the detection of the target features requires multiple
wavelength channels, the use of a spectral camera is necessary.

Development of imaging systems should go forward. The main
restriction in the field of application for spectral imaging systems is
the speed. The imaging speed needs to be increased whilst keeping
the spatial and spectral resolutions high. When the imaging times
decrease, the analysis efficiency of the images must be improved.
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For example, during brain surgery, the surgeon cannot wait several
minutes between measurement and the production of the analyzed
image. The resultant image should be displayed as quickly as pos-
sible. Therefore, a study of GPU implementations should be made
in the future. Taking advantage of GPUs, in the sense of spectral
image analysis, offers a huge potential for new applications, which
have been postponed for years due to the restriction of slow com-
putational times. Nowadays those problems might be solved in a
reasonable time.
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The objective of this thesis was to 

study new spectral image acquisition 

techniques and analysis methods. 

Three different imaging systems were 

developed and tested. This thesis 

proposed the implementation of two 

statistical methods for spectral image 

analysis. Implementations were done 

using Graphical Processing Units 

(GPUs) and computational speed-

up of the analyzing algorithms was 

compared against ordinary (non-GPU) 

implementations. The imaging systems 

and software implementations have 

been used in research projects that are 

presented as case studies in the thesis.




