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ABSTRACT

Unverricht-Lundborg disease (EPM1), caused by mutations in the cystatin B gene (CSTB), is
an autosomal recessively inherited disorder. It is the most common form of progressive
myoclonus epilepsy. The prevalence of EPM1 is increased particularly in Finland where it is
4:100 000, offering a unique opportunity to study a large patient population. EPM1 is
characterized by stimulus-sensitive and action-activated myoclonus, tonic-clonic seizures
and ataxia. During the first 5-10 years, the symptoms progress and stabilize thereafter.
About one-third of the patients become severely incapacitated.

At the time of diagnosis, magnetic resonance imaging (MRI) of the brain is usually
normal. Cerebral and cerebellar atrophy may develop subsequently. No large scale imaging
studies of EPM1 have been reported thus far. The aim of this study was to explore whether
advanced imaging techniques could reveal previously undetected morphological changes
in the brains of patients with EPM1. The brains of altogether 62 patients with EPM1 were
imaged with MRI and their findings were compared with those of healthy controls.

Voxel-based morphometry (VBM) revealed regional bilateral gray matter volume loss in
the motor cortex and thalamus of patients with EPM1, consistent with the motor symptoms
of the disease. In addition, thinning of the sensorimotor, visual and auditory cortices was
found by applying cortical thickness analysis. Cortical thickness correlated negatively with
age, the duration of EPMI, and the severity of myoclonus. The findings parallel the
stimulus-sensitive nature of the symptoms in EPM1. Diffusion tensor imaging with tract-
based spatial statistics revealed widespread changes both in the supratentorial and
infratentorial white matter (WM) of patients with EPM1, consistent with chronic WM
degeneration. Directional diffusivity parameters indicate that the WM changes may reflect
axonal and myelin loss. When comparing the clinical and imaging findings of patients who
are compound heterozygous for the dodecamer repeat expansion and the c.202C>T
mutation in the CSTB gene with those of patients who are homozygous for the dodecamer
repeat expansion, the age at onset of symptoms seemed to be earlier in the compound
heterozygotes. Furthermore, their myoclonic symptoms seemed to be more severe and the
epileptic seizures were more drug-resistant than those of the homozygous patients. No
differences were found between the MRI findings of the two groups.

To summarize, previously undetected regional morphological changes in the brains of
patients with EPM1 were discovered with modern imaging techniques. The changes are
consistent with the clinical symptoms of EPMI1, and combined with detailed
neurophysiological evaluation, they offer new insight into the pathogenesis of EPM1.

National Library of Medical Classification: WL 385, WN 185
Medical Subject Headings: Unverricht-Lundborg Syndrome; Magnetic Resonance Imaging;
Cystatin B/genetics; Myoclonic Epilepsies, Progressive; Mutation/genetics; Brain Mapping; Finland
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TIIVISTELMA

Unverricht-Lundborgin tauti (EPM1), on kystatiini B-geenin mutaatiosta aiheutuva
peittyvasti periytyva sairaus. Se on tavallisin etenevdn myoklonusepilepsian muoto.
EPMI1:n esiintyvyys on lisddantynyt erityisesti Suomessa (4:100000) antaen ainutlaatuisen
mahdollisuuden tutkia laajaa potilasjoukkoa. Taudin oireita ovat ulkoisten aistidrsykkeiden
provosoimat myokloniat, toonis-klooniset epileptiset kohtaukset ja ataksia. Oireet etenevat
ensimmaisten 5-10 vuoden aikana, jonka jdlkeen ne yleensd tasoittuvat. Noin
kolmanneksella potilaista toimintakyky huononee huomattavasti.

Diagnoosivaiheessa aivojen magneettikuvaus on yleensd normaali. Iso- ja pikkuaivojen
atrofiaa voi myohemmin kehittyd. Laajoja EPM1:ta kasittelevia kuvantamistutkimuksia ei
toistaiseksi ole raportoitu. Tutkimuksen tavoitteena oli selvittdd, 10ytyyko modernien
kuvantamismenetelmien avulla aiemmin tuntemattomia aivojen rakennemuutoksia EPM1-
potilailla. Yhteensa 62 potilaalle tehtiin aivojen magneettikuvaus ja 10ydoksid verrattiin
terveisiin verrokkihenkil6ihin.

Vokselipohjaisella analyysimenetelmdlld (voxel-based morphometry) l0oydettiin
motorisiin oireisiin sopien harmaan aineen volyymikatoa molemmin puolin EPMI-
potilaiden motorisella aivokuorella ja talamuksissa. Lisdksi korteksin paksuusanalyysia
kdyttden todettiin ohenemista sensorimotorisella, ndko- ja kuuloaivokuorella. Aivokuoren
oheneminen korreloitui  kddnteisesti ikddn, sairastamisaikaan ja myoklonian
vaikeusasteeseen. = LOydokset  sopivat  oireisiin  liittyvddn  drsykeherkkyyteen.
Vokselipohjaisella ~ menetelmélld  (tract-based  spatial  statistics)  analysoituna
diffuusiotensorikuvauksessa todettiin potilailla laaja-alaisia muutoksia sekd iso- etta
pikkuaivojen valkeassa aineessa krooniseen rappeumaan sopien. Diffuusion suuntaa
kuvaavat parametrit osoittivat, ettd muutokset voivat liittyd aksoni- ja myeliinikatoon.
Verrattaessa kliinista taudinkuvaa ja kuvantamisloydoksia todettiin, ettd taudin alkamisika
ndytti olevan varhaisempi niilld potilailla, jotka ovat yhdistelmaheterotsygootteja
valtamutaation ja harvinaisemman mutaation suhteen, kuin potilailla, joilla on pelkka
valtamutaatio kystatiini B-geenissd. Samoin myokloniset oireet nayttivit olevan heilld
vaikeampia ja ladkevaste epileptisid kohtauksia vastaan huonompi. Kuvantamisloydoksissa
ei ryhmien valilla ollut eroja.

Moderneja kuvantamismenetelmida kayttden todettiin siis oireita selittavid aivojen
rakennemuutoksia ~EPM1-potilailla. ~ Yhdistettynda neurofysiologisiin  tutkimuksiin
muutokset antavat uutta tietoa sairauden syntymekanismeista.

Yleinen suomalainen asiasanasto: epilepsia; magneettitutkimus — aivot; kuvantaminen —
ladketiede
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1 Introduction

Progressive myoclonus epilepsies (PME) constitute a heterogeneous group of diseases
characterized by myoclonus, epileptic seizures and progressive neurological deterioration
(Genton et al. 2005). Unverricht-Lundborg disease or progressive myoclonic epilepsy type 1
(EPM1, OMIM254800), which is an autosomal recessively inherited disorder, is the most
common form of PME. It is caused by mutations in the cystatin B gene (CSTB) (Pennacchio
et al. 1996), but the pathological basis for the disease remains unclear. The prevalence of
EPM1 is increased in certain populations, particularly in Finland where it is 4:100 000
(Kélvidinen et al. 2008), offering a unique opportunity to study a large patient population of
this rare condition.

At the time of diagnosis, magnetic resonance imaging (MRI) of the brain is usually
normal in EPMI1. Cerebral and cerebellar atrophy may develop subsequently. Loss of
volume of the pons and cerebellum has been observed (Mascalchi et al. 2002). However, no
large scale quantitative MRI studies of EPM1 have yet been reported. The development of
MRI techniques enables a more detailed investigation of brain pathology in vivo than
previously has been possible. The aim of the present study was to explore whether
advanced MRI techniques would reveal previously undetected morphological changes in
the brains of patients with EPM1 and provide more information about the pathophysiology
of Unverricht-Lundborg disease.






2 Review of the literature

2.1 PROGRESSIVE MYOCLONUS EPILEPSIES

Progressive myoclonus epilepsies (PMEs) are a heterogeneous group of rare neurological
disorders characterized by myoclonus, epilepsy, and progressive mneurological
deterioration, typically with cerebellar signs and dementia (Genton ef al. 2005). They are
genetic disorders; most are autosomal recessive, one is mitochondrial. The age of onset,
presenting symptoms, predominance of symptoms as seizures, or myoclonus over
cerebellar signs and dementia vary substantially across the different disorders and the
different phenotypes may guide the clinician to the most likely cause. There are five main
causes of PME: Unverricht-Lundborg disease, Lafora disease, neuronal ceroid
lipofuscinoses (NCL), sialidoses, and myoclonic epilepsy with ragged red fibers (MERREF).
These disease entities have been more accurately defined with recent advances in genetic
studies (Shahwan et al. 2005, Shields 2004).

2.2 UNVERRICHT-LUNDBORG DISEASE (EPM1)

The most common cause of PME is Unverricht-Lundborg disease (progressive myoclonic
epilepsy type 1, EPM1, OMIM254800). It is an autosomal recessively inherited disorder that
was first described by Unverricht in 1891 (Unverricht 1891) and by Lundborg in 1903
(Lundborg 1903). The incidence of EPM1 in Finland is about 1:20 000 births per year (Norio
et al. 1979), i.e. the highest reported. Currently there are about 200 diagnosed cases in
Finland, and about three new cases are diagnosed each year (Kélvidinen et al. 2008). There
is also a cluster of EPM1 in the Mediterranean (i.e. in Italy, certain locations of Southern
France and in the North African countries of Tunisia, Algeria and Morocco) (Genton et al.
1990, Moulard et al. 2002). Sporadic cases are found worldwide and EPM1 is probably
underdiagnosed in many countries (Eldridge et al. 1983, Lehesjoki et al. 1993, de Haan et al.
2004).

2.2.1 Clinical picture of EPM1

The age at onset of symptoms is usually between six and sixteen years (Genton et al. 2005).
In at least half of patients, stimulus-sensitive or action-activated myoclonic jerks are the first
symptoms (Norio et al. 1979, Koskiniemi et al. 1974a). The myoclonic jerks may be provoked
by various stimuli such as light, physical exertion, noise and stress. They may be focal or
multifocal and may generalize to a series of myoclonic seizures or even status myoclonicus
(Genton et al. 2005, Kélvidinen et al. 2008). During the first five to ten years, the symptoms
progress and stabilize thereafter (Magaudda et al. 2006). About one-third of patients
become severely incapacitated (wheelchair bound, unable to eat and drink without help)
(Kélvidinen et al. 2008).

Tonic-clonic seizures are another presenting symptom in almost half of patients (Norio
et al. 1979, Koskiniemi et al. 1974a). Absence seizures may also be observed. Epileptic
seizures are usually infrequent in the early stages of the disease, but they often increase in
frequency during the following three to seven years. They may cease entirely with
appropriate antiepileptic drug treatment (Kélvidinen et al. 2008). In rare cases, tonic-clonic
seizures do not occur.

Some years after the disease onset, ataxia, loss of coordination, intention tremor and
dysarthria usually develop. Individuals with EPM1 are mentally alert but show emotional
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lability, depression and mild cognitive decline over time (Genton ef al. 2005, Koskiniemi et
al. 1974a).

The course of the disease is progressive, but naturally the phenotype of EPM1 is more
heterogeneous than previously assumed. Some of the patients become wheelchair bound,
whilst there also seems to be cases, whereby the myoclonus is so mild that it leads to a
marked delay in the diagnosis, or a misdiagnosis of focal epilepsy or juvenile myoclonic
epilepsy. The severity of the symptoms and the speed of disease progression can vary
significantly even within the same family (Genton et al. 2005, Kilvidinen et al. 2008).

In the past, the life span of individuals with EPM1 was shortened and many died before
30 years of age (Koskiniemi et al. 1974a). Early or unexpected deaths of EPM1 patients have
also been reported quite recently (Khiari et al. 2009). However, with advances in
pharmacological, rehabilitative and psychosocial supportive treatment, most patients now
live into their sixties or seventies (Kélvidinen ef al. 2008).

Pharmacological treatment is mainly directed against epileptic seizures and myoclonus.
Valproic acid is the first antiepileptic drug (AED) of choice. It diminishes myoclonus and
the frequency of generalized seizures. It is usually combined with clonazepam. High-dose
piracetam has also been found to be useful in the treatment of myoclonus. Levetiracetam
seems to be effective for both myoclonus and generalized seizures. As add-on treatments,
topiramate and zonisamide may also be used (Genton ef al. 2005, Kélvidinen et al. 2008). The
epileptic seizures can usually be controlled with pharmacological treatment, but the
myoclonus can be quite debilitating despite extensive AED treatment. Phenytoin, including
fosphenytoin in the acute setting, should not be used as it has been found to have side-
effects that aggravate the neurological symptoms and may promote cerebellar degeneration
(Eldridge et al. 1983). Sodium channel blockers and GABAergic drugs such as gabapentin
and pregabalin should also be avoided as they may exacerbate myoclonus (Medina et al.
2005).

2.2.2 Diagnosis of EPM1
2.2.2.1 Clinical diagnosis
The diagnosis of EPM1 can be suspected when a previously healthy and normally
developed child aged from 6 to 16 years presents with more than one of the following
symptoms or signs:
1) Involuntary, stimulus or action-activated myoclonic jerks, or both
2) Generalized tonic-clonic seizures
3) Mild neurological signs in gross motor function (e.g. clumsiness) or in coordination tests
(e.g. mild dysmetria) or in walking (e.g. mild ataxia)
4) Marked photosensitive, generalized spike-and-wave and polyspike-and-wave
paroxysms in EEG (Koskiniemi et al. 1974b). The EEG background activity varies from
normal to mildly slowed, remaining stable over time (Ferlazzo et al. 2007).
5) Signs of cortical or central atrophy (or both) on magnetic resonance imaging (MRI) of the
brain, or normal MRI
6) A gradual worsening of myoclonus and ataxia

To establish the extent of the disease, a complete neurological examination is essential.
Myoclonus should be evaluated at rest, with action, and in response to stimuli. EEG should
be evaluated before any antiepileptic drug therapy is initiated, when it is most
characteristic. The clinical diagnosis can be further supported and confirmed with genetic
testing for the mutation in the cystatin B gene (Genton et al. 2005, Kalvidinen et al. 2008).

2.2.2.2 Genetic diagnosis
EPM1 is autosomal recessively inherited. The cystatin B gene (CSTB) is the only gene
known to be associated with EPM1 (Pennacchio ef al. 1996). It encodes cystatin B (CSTB), a
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cysteine protease inhibitor. Human CSTB consists of 98 amino acids and it is widely
expressed in different tissues and cell types. Although CSTB has been characterized in
detail in vitro, its physiological function is still unknown (Joensuu et al. 2008).

Eleven different mutations in CSTB have been reported to underlie EPM1 (Joensuu et
al. 2008, Erdinc et al. 2010). An expanded dodecamer repeat mutation is found in
approximately 90% of the disease alleles worldwide (Lafreniere et al. 1997, Lalioti et al.
1997a, Virtaneva et al. 1997). It is detected in homozygous form in the majority of EPM1
patients. In the remaining patients the dodecamer repeat expansion mutation occurs in
compound heterozygous form with one of the nine other mutations associated with EPM1
(Joensuu et al. 2008). No correlation has been found between the number of repeats and the
severity of the disease or the age at onset so far (Virtaneva et al. 1997, Lalioti et al. 1997b,
Lalioti et al. 1998). Reduced CSTB gene and protein expression is the primary pathological
consequence in the majority of EPM1 mutations (Joensuu et al. 2008).

In addition to confirming the EPM1 diagnosis, genetic testing of the CSTB gene can be
used for carrier testing and prenatal diagnosis.

2.2.2.3 Diagnostic imaging of EPM1

At the time of diagnosis the imaging findings of the brain are usually normal. Cerebral or
cerebellar atrophy may develop subsequently. Loss of bulk of the pons, medulla and
cerebellar hemispheres have all been reported in a study of ten patients with EPM1
(Mascalchi et al. 2002), otherwise imaging findings have been unspecific (Parmeggiani et al.
1997, Santoshkumar et al. 2008, Chew et al. 2008). Thickening of the skull has also been
reported (Koskiniemi et al. 1974a, Korja et al. 2007a).

2.2.2.4 Differential diagnosis

If action myoclonus is absent or very mild at the onset of symptoms, a patient can easily be
misdiagnosed as suffering from juvenile myoclonic epilepsy (JME). Individuals with JME
have a normal neurological examination. EEG findings can be fairly similar to those seen in
EPM]1, although in EPM1 there is often background slowing. Myoclonic as well as tonic-
clonic seizures are present with both conditions. The distinctive symptom in EPM1 is action
myoclonus, which may only become clearly evident even years after the onset of symptoms
(Kélvidinen et al. 2008). In cases of severe progression particularly of cognitive or visual
symptoms, other forms of PME should be considered (Kélvidinen et al. 2008, Shahwan et al.
2005). A disorder with an EPM1-like phenotype with linkage to chromosome 12 has been
reported, but the causative gene is unknown (Berkovic et al. 2005). In CSTB mutation-
negative cases this disorder should be considered.

2.2.3 Histopathological findings in EPM1

The histopathological findings in EPM1 are limited. They consist of loss of cerebellar
granule and Purkinje cells, degeneration and loss of neurons in the cerebral cortex,
striatum, thalamus, brainstem nuclei and spinal motor neurons (Eldridge et al. 1983,
Koskiniemi et al. 1974a, Haltia et al. 1969, Cohen et al. 2011). Recently neuronal cytoplasmic
inclusions containing the lysosomal proteins cathepsin B and CD68 have been identified.
These inclusions also showed immunopositivity to both TDP-43 and FUS, associated in
some cases with an absence of normal neuronal nuclear TDP-43 staining. TDP-43 and FUS
are proteins that are encoded by the genes TARDBP and FUS in humans. Mutations in
these genes have been associated with neurodegenerative disorders such as frontotemporal
lobar degeneration and amyotrophic lateral sclerosis (ALS). This finding is consistent with
neurodegeneration in EPM1A as at least a partial consequence of lysosomal damage to
neurons, which have reduced CSTB-related neuroprotection (Cohen et al. 2011).



2.2.4 Animal model of EPM1

A Cstb-deficient (Cstb-/-) mouse model has been generated to study EPM1. The model
mimics the human phenotype reasonably well. The Cstb-/- mice feature myoclonic seizures
that develop by one month of age, and progressive ataxia that becomes evident by six
months of age. However, in Cstb-/- mice the myoclonic seizures occur during sleep,
whereas in humans they are action-activated and stimulus sensitive. Furthermore, no tonic-
clonic seizures, photosensitivity or spike-wave complexes in EEG have been observed in
mice (Pennacchio ef al. 1998).

Histopathological findings in Cstb-/- mice consist of severe loss of cerebellar granule
cells due to apoptotic death (Pennacchio et al. 1998). Less marked neuronal apoptosis can be
seen in the hippocampal formation and entorhinal cortex of animals aged 2-4 months. In
older mice, there is gliosis in the hippocampal formation, entorhinal cortex, neocortex and
the striatum. There is also widespread gliosis in the white matter (Shannon et al. 2002).
Many of these histological features parallel the findings in humans.

2.3 ADVANCED MR IMAGING OF THE BRAIN

2.3.1 Clinical MR imaging

Magnetic resonance imaging (MRI) is a method of choice for imaging disorders of the
central nervous system, particularly epilepsy and neurodegeneration. Compared with x-ray
computed tomography (CT), MRI offers superior tissue contrast and eliminates the effect of
artifacts caused by bone structures, especially in the posterior fossa. Furthermore, MRI
enables imaging in multiple planes and thin slices, and it does not use ionizing radiation.
However, a longer scanning time makes MRI more susceptible to motion artifacts and thus
the imaging of patients who are restless or suffer from movement disorders can be
challenging. There are also some contraindications to MRI: patients with cardiac
pacemakers, cochlear implants, implanted neurostimulators, older ferromagnetic aneurysm
clips, or metal in the eye cannot be imaged with MRI (Shellock et al. 1993).

2.3.2 Volumetric MR imaging

In recent years volumetric MR imaging has become a widely used tool to study alterations
of brain volumes in neurodegenerative disorders such as Alzheimer’s disease (Teipel et al.
2008) or multiple sclerosis (Sicotte et al. 2008), but it has also been used in studies of
epilepsy (Betting et al. 2010), some cerebrovascular disorders (Bendel et al. 2009) and
psychiatric disorders (Yoshida et al. 2009). There are several methods for volumetric MR
imaging of the brain. Most of them utilize high-resolution T1-weighted three-dimensional
imaging. Analyses can be performed by manually or semi-manually outlining regions of
interest (ROI), but this is time consuming, operator dependent, and requires a predefined
ROL. Techniques for studying whole brain volumes in an automated manner have therefore
been developed, including deformation-based morphometry (DBM) (Ashburner et al. 1998),
tensor-based morphometry (IBM) (Good et al. 2001b), voxel-based morphometry (VBM)
(Ashburner et al. 2000, Good et al. 2001a) and methods for measuring cortical thickness
(MacDonald et al. 2000).

2.3.2.1 Manual volumetry

Manual volumetric methods are considered as the gold standard for examining structural
volumes of the brain. Manual volumetry has been utilized for instance in studies of
neurodegeneration (Mascalchi et al. 1998b, Soininen et al. 1994) and epilepsy (Bernasconi et
al. 2003). The ROI is manually drawn in consecutive MRI slices covering the anatomical
structure in question, and the volume is determined by summing up the voxels in the ROI
across all slices and then multiplying the structure area by the sum of the section and gap
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thicknesses. Nowadays commercial, semi- and fully automatic methods have been
developed (Bendel et al. 2006, Wolz et al. 2011, Lotjonen et al. 2011).

2.3.2.2 Voxel-based morphometry

Voxel-based morphometry (VBM) is an established and widely published method. It has
been applied to several conditions such as neurodegeneration (Hamalainen et al. 2007b,
Mezzapesa et al. 2007, Beyer et al. 2007), JME (Kim et al. 2007), temporal lobe epilepsy (Focke
2008), and psychosis (Spencer et al. 2007). VBM provides an automated whole brain method
to study estimated gray matter (GM) concentration surrounding a given voxel. It can also
be utilized to analyze changes in white matter (WM) or cerebrospinal fluid (CSF), and it is
possible to compare brain volume changes within the same study population in
longitudinal studies. The primary VBM steps include normalization of the original MR
images into the same stereotactic space, segmentation of normalized images into GM, WM
and CSF compartments, modulation of the gray matter images in order to keep the total
amount of GM volume in normalized images the same as it was in the original images, and
smoothing of modulated images (Ashburner et al. 2000). In the optimized VBM method
additional preprocessing steps are employed to exclude non-brain voxels prior to
normalization and subsequent segmentation, thus increasing the validity of the results
(Good et al. 2001a). Statistical analyses of regionally specific between group differences in
GM volumes are assessed using standard parametric tests like t-tests or F-tests (Ashburner
et al. 2000). The Montreal Neurological Institute (MNI) coordinates for the peak voxels can
be transformed into Talairach space using the mni2tal routine (http://www.mrc-
cbu.cam.ac.uk/imaging/index.html). The anatomical locations of the peak voxels in the
significant clusters are determined using the Talairach Applet (Lancaster et al. 2000) and
further verified from anatomical atlases (Duvernoy 1999, Tamraz 2006).

2.3.3 Cortical thickness analysis

Cortical thickness analysis is a novel method that has been proposed as a more
sophisticated alternative to volumetric and voxel-based morphometry (VBM) methods to
measure regional brain atrophy (Lerch et al. 2005b). This method has been shown to be
reliable in detecting changes in cortical morphology both at the single subject level and at
the group level, and it provides a direct quantitative measure of the thickness of the
cerebral cortex (Lerch ef al. 2005a). It has shown promise as a sensitive imaging biomarker
in mild cognitive impairment and Alzheimer’s disease, autism, and temporal lobe epilepsy
(Julkunen et al. 2009, Hyde et al. 2010, Bernhardt et al. 2008). There are several methods to
reconstruct the cortical surface, of which there are three that are more prominent (Kim ef al.
2005, Fischl et al. 2000, Mangin et al. 1995). Generally, the processing sequence includes
preprocessing steps such as spatial normalization, intensity homogeneity correction, skull
stripping and tissue classification (Lee et al. 2006). Cortical thickness analysis involves
multiple image processing steps, each method having its own procedure to create the
cortical surface (Kim et al. 2005, Fischl et al. 2000, Mangin et al. 1995). Once the thickness
maps have been generated, the statistical group analyses can be performed, for example,
using the General Linear Model and the t-test corrected for multiple comparisons (Lerch et
al. 2005a).

2.3.4 Diffusion weighted imaging

Diffusion weighted imaging (DWI) is sensitive to molecular diffusion, which is the result of
the random thermal (Brownian) motion involving all molecules including water. DWI is
based on a conventional spin-echo sequence with an additional gradient pulse applied
between the initial 90° pulse and the refocusing 180° pulse. The gradient pulse causes a
phase shift that is cancelled when a second gradient pulse is applied after the 180° pulse, if
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no diffusion has occurred during the period between the two gradient pulses. However, if
molecules have been displaced, the cancellation of the phase shifts will be incomplete,
which is seen as decreased signal intensity. The amount of signal attenuation is
exponentially dependent on the diffusion coefficient D and the strength and timing of the
diffusion gradients, which are expressed as the constant b:

Signal attenuation = e (2.1)

Thus, b gives the amount of diffusion weighting of the diffusion imaging spin-echo
sequence and is calculated as:

b = y2G232(A - 8/3) (2.2)

where G is the gradient strength, 0 is the duration of the gradient, A is the time between the
onset of gradients, and vy is the gyromagnetic ratio of the hydrogen nucleus (Basser 2009).

In a diffusion weighted image the areas of restricted diffusion such as ischemic brain
tissue, appear hyperintense in contrast to normal tissue. The mechanisms for this restricted
diffusion include movement of water into the intracellular compartment, cell swelling
resulting in a reduction of the extracellular space, and increased cytoplasmic viscosity (Yoo
et al. 2011). In CSF the water molecules can move freely and thus it appears very
hypointense in DW images. In addition to diffusion, other parameters such as “T2 shine-
through” have an effect on the signal intensity in DW images. Quantification of the
apparent diffusion coefficient (ADC) helps to distinguish between hyperintensity arising
from true reduction in the ADC and that reflecting T2 prolongation. This requires the
acquisition of images with two different b values. In ADC maps, each voxel gives the value
of the ADC in tissue and restricted diffusion is seen as hypointensity, while CSF appears
hyperintense. Thus, the diffusion differences in tissues are demonstrated without
interference from T2 (Basser 2009, Roberts ef al. 2007).

The ADC reflects the overall translational water motion. However, in the central
nervous system (CNS) axonal membranes and myelin sheaths cause barriers to water
displacement, so that water more readily diffuses parallel to white matter tracts than
perpendicular to them. Consequently, the amount of diffusion is dependent on the
direction of the diffusion gradient. To improve the accuracy of the ADC measurement,
values derived from three orthogonal directions are used in standard practice. Thus, the
value of any given voxel in the ADC or DW images represents the averaged values of the
three gradient directions (Yang et al. 2011).

The principal clinical application for DWI is acute cerebral ischemia (Yoo et al. 2011), but
today it is also increasingly utilized in tumor imaging (Hygino da Cruz et al. 2011), imaging
of CNS infections (Gasparetto et al. 2011a) and traumatic brain injury (Gasparetto et al.
2011b). In addition, DWI has been utilized in head and neck imaging for detection of
middle ear cholesteatoma (Yamashita et al. 2011).

2.3.4.1 Diffusion tensor imaging

Diffusion tensor imaging (DTI) has been used in several diseases to evaluate the integrity of
the WM tracts in vivo (Deppe et al. 2008, Sage et al. 2007, Thivard et al. 2007, Damoiseaux et
al. 2009, Liu et al. 2009). Diffusion anisotropy describes how variable the diffusion is in
different directions. The most commonly used parameter to quantitate diffusion anisotropy
is fractional anisotropy (FA), which is independent of local fiber orientation and can
therefore be compared between subjects and groups. To determine the diffusion tensor, the
diffusion must be measured in at least six different directions. From those it is possible to
determine the degree and direction of anisotropy on a per-pixel basis (Roberts et al. 2007).
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Information on directional diffusion can also be obtained from the three eigenvalues of the
diffusion tensor (A1, A2, As). A1 (axial diffusion, AD) reflects diffusion parallel to axonal fibers
and A2 + As / 2 (radial diffusion, RD) reflects diffusion perpendicular to axonal fibers.
Combined together, these measures reflect the cohesion of fibers within WM tracts
(Pierpaoli et al. 1996). In animal studies, axonal damage has been reported to decrease AD
markedly and RD insignificantly, whereas myelin injury increases RD without changing
AD (Song et al. 2003, Song et al. 2005). The DTI data can be analyzed using either ROI-based
methods or voxel-based methods that enable a whole brain approach. It is also possible to
digitally reconstruct WM fiber paths with tractography (Mori et al. 1999).

2.3.4.2 ROI-based methods

In ROI-based methods the ROI is manually outlined and placed on the tract of interest in
FA maps of individual patients, so the FA values are then measured from the ROI. Thus,
these methods require a predefined region of interest, lacking whole brain volume
information. In addition, it is often difficult to place ROIs on small or thin tracts objectively
and accurately. Different voxel-based methods have been developed to overcome these
problems.

2.3.4.3 Voxel-based methods

Voxel-based methods enable spatial localization of diffusion related changes in the whole
brain. They are fully automated and simple to apply. Many studies follow an approach
similar to that of voxel-based morphometry (Ashburner et al. 2000, Good et al. 2001c). VBM
style analysis can be applied to FA images (Simon et al. 2005). Each subject’s FA image is
registered into a standard space and smoothed before voxelwise statistics are carried out.
However, one cannot guarantee that any given structure has been aligned to the same
structure in all the subjects, and that any voxel in standard space contains the same
information from the same WM structure in every subject. Furthermore, the extent of
smoothing can affect the results substantially (Jones et al. 2005), and there is no general
agreement on how much smoothing is appropriate. Due to these limitations, there has been
a need for more sophisticated approaches.

Tract-based spatial statistics (TBSS) analysis has been proposed as a solution to
overcome the limitations of ROI-based and VBM style methods. In TBSS, the DTI data are
projected on a common “FA-skeleton” of major white matter structures and smoothing is
not required (Smith et al. 2006, Smith et al. 2007). TBSS has been used in studies of aging and
dementia (Damoiseaux et al. 2009, Liu et al. 2009), temporal lobe epilepsy (Focke et al. 2008)
and dyslexia (Richards et al. 2008). Briefly, the TBSS approach involves the following steps:
A common registration target is identified and all subjects” FA images are aligned to this
target using nonlinear registration. Perfect alignment is not required at this point. A mean
FA image is then created using all aligned images and “thinned” to create a skeletonised
FA image; a representation of the centers of WM tracts that are common to all subjects.
Each subjects” aligned FA image is then projected onto the skeleton, and voxelwise statistics
are carried out across subjects on the skeleton-space FA data (Smith ef al. 2006).

2.3.5 Other MRI techniques

2.3.5.1 Proton MR spectroscopy

Proton MR spectroscopy (MRS) is a noninvasive technique that provides metabolic
information about the brain. It is able to detect abnormalities before they are visible in
structural MRI. Together with other MRI techniques, MRS can be helpful both in
diagnostics and differential diagnostics of brain tumors (Weybright et al. 2005, Majos et al.
2009, Fellows et al. 2010), metabolic (Brandao et al. 2004) or degenerative (Mascalchi et al.
2002, Mascalchi et al. 1998a) diseases, or brain injury (Walz et al. 2008). Spectroscopic
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information depends on the repetition time (TR) and the echo time (TE) employed, because
cerebral metabolites have different T1 and T2 relaxation times. N-acetylaspartate (a
neuronal marker), creatine (a marker of energy metabolism), choline (a marker of cell
membrane proliferation) and lactate (a product of anaerobic glycolysis) can be identified
with short and long TEs. Metabolites detected only with short TEs are lipids (products of
brain destruction), glutamine and glutamate (neurotransmitters), and myo-inositol (a glial
cell marker) (Brandao et al. 2004).

MRS can be performed with either single voxel (SV) or multivoxel (MV) techniques. In
the SV technique, appropriate voxel positioning is critical. Voxels must be positioned away
from sources of susceptibility artifacts and lipids. The data is usually acquired in 3 to 5
minutes. Restricted anatomical coverage is the main limitation of the SV technique. The
signals are displayed as a spectral plot instead of an image (Brandao et al. 2004, Cousins
1995).

The MV technique (chemical shift imaging, magnetic resonance spectroscopic imaging)
allows gathering data from multiple voxels simultaneously, providing information of the
spatial distribution of the measured signal. MV analyses can be performed as two-
dimensional or as three-dimensional studies. After quantification of the measured spectra,
the results can be displayed as images of metabolite concentrations (Brandao et al. 2004,
Skoch et al. 2008).

2.3.5.2 Functional MRI

Functional MRI (fMRI) is based on the blood oxygen level-dependent (BOLD) changes in
MRI signal that arise when changes in neuronal activity occur following a change in brain
state, which may be produced by a stimulus or a task. The BOLD contrast relies on changes
in deoxyhemoglobin, which acts as an endogenous paramagnetic contrast agent. An
increase in neural activity in a certain cortical region stimulates an increase in local blood
flow in order to meet the larger demand for oxygen and other substrates. The change in
regional blood flow exceeds the additional metabolic demand, so the concentration of
deoxyhemoglobin within tissue decreases, resulting in a less rapid decay of the MRI signal
from that region. Thus the signal is greater than that in other, less active areas of the brain.
This small signal increase is the BOLD signal recorded in fMRI (Gore 2003, Kim et al. 2006).
In fMRI, various kinds of stimuli are administered in a controlled fashion to the subject in
the MR scanner. For example, sounds may be played or visual scenes may be presented,
and small motor movements or responses can be recorded.

However, there can be situations where the stimuli cannot be successfully applied, e.g.
the patient may suffer from movement disorder, paresis or paralysis or has attention deficit.
Furthermore, appropriate MRI-compatible stimulus devices may not be available. In these
cases, fMRI during a patient’s rest is a useful application. Resting state fMRI is performed
without tasks or external stimuli, thus requiring less cooperation from the patient. It is
based on detecting the low-frequency fluctuations of the temporal BOLD signal in the
resting brain (Biswal et al. 1995, Paakki et al. 2010, Kokkonen et al. 2009).

Functional MRI can be used for both clinical and research purposes. For instance,
mapping of critical sensory and motor functions prior to neurosurgery is becoming an
established application (Haberg et al. 2004, Kokkonen et al. 2009). fMRI has also been
utilized in studies of neurodegeneration such as Alzheimer’s disease (Hamalédinen et al.
2007a, Li et al. 2011). Recently some fMRI studies of EPM1 with a limited number of
patients have been published (Visani et al. 2011, Visani et al. 2010, Manganotti et al. 2011).
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2.4 POSITRON EMISSION TOMOGRAPHY (PET) AND SINGLE PHOTON
EMISSION COMPUTED TOMOGRAPHY (SPECT)

Molecular imaging is not within the scope of this thesis. However, in many cases it offers
complementary information to MR imaging, and in some cases when structural imaging is
normal, molecular imaging can be of diagnostic value. Positron emission tomography (PET)
enables tomographic imaging of local concentrations of injected biologically active,
radioactively labeled substances. In PET, positron-emitting isotopes with short half-lives
such as ['°O] (2 min), ["C] (20 min) and [*®F] (110 min) are used. Thus the availability of PET
is limited by the need for an on-site cyclotron to produce [*°O] and [!C]. [**F]-labeled
substances can, however, be transported in from off-site.

Cerebral glucose metabolic mapping using PET and 2-['*F]fluoro-2-deoxyglucose (FDG)
has been extensively studied in epilepsy. In focal epilepsies, regions of interictal glucose
hypometabolism are associated with seizure-generating sites in the brain. The
pathophysiology of decreased [*®F]FDG activity interictally is, however, unknown. Interictal
[F]FDG PET is clinically applied in planning resective epilepsy surgery (Henry et al. 2004).

Single photon emission computed tomography (SPECT) studies involve cerebral blood
flow imaging using radiopharmaceuticals such as technetium-99m-hexamethylpropylene
amine oxime (*™Tc-HMPAO) or *»Tc-bicisate. SPECT can be used for peri-ictal imaging in
patients with focal epilepsy being considered for surgery. Ictal SPECT studies have been
useful to identify a region of focal hyperperfusion (Cascino et al. 2004).

PET and SPECT can also be utilized for the classification and differential diagnosis of
neurodegenerative diseases e.g. parkinsonian syndromes (PS). The pathology in PS
involves the dopaminergic system, of which PET and SPECT studies can offer valuable
diagnostic information. Both pre and postsynaptic functions can be evaluated (Tatsch 2010).
Furthermore, PET imaging with [*F]FDG and Pittsburgh Imaging Compound B (PIB), can
be applied to cognitive disorders such as Alzheimer disease (Scheinin et al. 2009).
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3 Aims of the study

The general aim of the study was to explore whether advanced MRI techniques would
reveal previously undetected morphological changes in the brains of patients with EPM1
compared with healthy controls.

The more specific aims were:

I: To evaluate if patients with EPM1 exhibit regional gray matter volume loss when
compared with healthy age and gender matched controls by utilizing voxel-based
morphometry (VBM).

II: To assess if there are regional alterations in cortical thickness of patients with EPM1
compared with healthy controls and to correlate the possible changes with clinical
parameters by employing cortical thickness analysis.

III: To evaluate if patients with EPM1 exhibit white matter changes compared with healthy
controls by using diffusion tensor imaging (DTI) with tract-based spatial statistics (TBSS).

IV: To evaluate the genotype-phenotype correlations in EPM1 patients who are compound
heterozygous for the dodecamer repeat expansion and the ¢.202C>T mutation in the CSTB
gene.
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4 Patients and methods

4.1 STUDY DESIGN AND PATIENTS

The Ethical Committee of Kuopio University Hospital approved the study protocol and
written informed consent was obtained from all participants. Genetically verified EPM1
patients participating in an ongoing clinical and molecular genetics study carried out by
Kuopio Epilepsy Center, Kuopio University Hospital, jointly with the Folkhédlsan Institute
of Genetics and Neuroscience Center, University of Helsinki, were evaluated at Kuopio
University Hospital between November 2006 and May 2009. The patients had either
participated in an earlier molecular genetics study conducted by the study center or were
referred to the center during the study. Table 1 demonstrates the study design and patient
flow for Studies I-IV. A total of 62 patients were studied. In studies I-III all patients were
homozygous for the dodecamer repeat mutation in CSTB. In study 1V, five patients were
compound heterozygotes for the dodecamer repeat expansion and the ¢.202C>T mutation
in the CSTB gene, and the control patients were homozygotes for the major mutation. The
healthy control group consisted of volunteers matched for age and sex.

4.2 CLINICAL EVALUATION AND NEUROPHYSIOLOGY

A neurologist performed the clinical evaluations of patients with EPM1. Patients’” medical
histories were collected from medical records and by interviewing the patients and their
relatives. A Unified Myoclonus Rating Scale (UMRS) test panel was performed as part of
the clinical patient evaluation. UMRS is a quantitative 74-item clinical rating instrument
comprising of 8 sections (Frucht et al. 2002). In the present study, three sections were used
to evaluate the severity of myoclonus: Stimulus Sensitivity (maximum score 17), Myoclonus
with Action (maximum score 160), and Functional Test (maximum score 28). These sections
were video recorded and evaluated using a standard protocol (Frucht et al. 2002). Higher
UMRS scores indicate more severe myoclonus.
A neurophysiologist re-evaluated all available EEG data based on reports and where

possible, on original digital EEG recordings (Study IV).
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4.3 NEUROPSYCHOLOGY (STUDY 1IV)

Detailed neuropsychological evaluation was performed by a neuropsychologist. The
evaluation consisted of measures for intellectual ability, verbal learning and memory and
visuomotor speed. On the basis of six subtests of the Wechsler Adult Intelligence Scale
Revised (WAIS-R), Information; Similarities, Digit Span, Digit Symbol, Picture Completion
and Block Design, Verbal and Performance Intellectual Quotients (VIQ and PIQ,
respectively) were estimated (Wechsler 1981). Mild cognitive impairment was considered
when the performance was more than 1 SD below the mean (IQ between 85 and 70),
moderate when the performance was 2 SDs below the mean (IQ between 69 and 55) and
severe when performance was 3 SDs below the mean (IQ less than 55). Verbal learning and
memory were assessed with the List Learning Task which consisted of four learning trials
of 15 unrelated words and the percent retention score of the learned words as a measure for
delayed recall. Logical memory was evaluated with immediate and delayed recall of two
stories, the second story was read two times. Percent retention scores of the story contents
were calculated for the delayed memory. Visuomotor speed was evaluated with the
Alternating S-task, in which the subject drew the letter ‘S” and then a reversed letter ‘S’
alternately and continually for two minutes.

4.4 MR IMAGING

4.4.1 MRI protocol

All subjects underwent MR imaging (1.5 T, Siemens Avanto) including T1- and T2-
weighted spin-echo sequences, a fluid-attenuated inversion recovery sequence (FLAIR),
and T1-weighted three-dimensional (T1-3D) imaging (TR 1980 ms, TE 3.09 ms, flip angle
15°, matrix 256 x 256, 176 sagittal slices, slice thickness varying between 1.0 mm to 1.2 mm
depending on the size of the head, and an in-slice resolution of 1.0 mm x 1.0 mm).

DTI data were collected using a gradient echo single shot EPI sequence (TE 98 ms, TR
12300 ms, matrix 128x128, FOV 256x256 mm?, 73 axial slices, slice thickness 2 mm) with
diffusion gradients (b-values 0 and 1000 s/mm?) applied in 30 directions. For spectroscopy,
15 mm thick volumes of interest (VOI) were placed through the thalamus and basal
ganglia, including surrounding temporoparietal white matter and occipital gray matter (80
x 80 mm). Water-suppressed spectra with a repetition time (TR) of 1,500 ms and echo times
(TEs) of 30-270 ms to detect rapidly relaxing metabolites and noninverted lactate were
obtained.

When preparing the patients for imaging, the atmosphere in the MR unit was kept as
calm as possible. Given the stimulus-sensitive myoclonic symptoms in EPM1, a scanning
time of one hour was arranged for each patient in order to minimize the possibility of
motion artifacts in the MR images. To prevent the loud noise of the MR scanner from
triggering myoclonic jerks, some of the patients used hearing protectors in addition to ear
plugs. Motion correction software was available if necessary.

4.4.2 MRI analysis

A neuroradiologist assessed all conventional images visually for focal abnormalities.
Presence of possible brain atrophy was visually evaluated (Study I) on a four-point scale (0
=no atrophy; 1 = mild; 2 = moderate; 3 = severe). Presence of white matter lesions (Study III)
was assessed using the Fazekas classification (Fazekas et al. 1987).

4.4.3 Voxel-based morphometry (Studies I and IV)
T1-3D images were processed using optimized voxel-based morphometry (VBM)
(Ashburner et al. 2000, Good et al. 2001a) with VBM2-toolbox (http://dbm.neuro.uni-
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jena/vbm/) in SPM2 (Wellcome Department of Imaging Neuroscience, London, UK;
www.fil.ion.ac.uk/spm) running under Matlab 6.5 (MathWorks, Inc.). The procedure
includes generation of a customized template and prior probability maps and the primary
VBM steps: normalization of the original MR images, segmentation of normalized images,
modulation of the gray matter (GM) images in order to keep the total amount of GM
volume in normalized images the same as it was in the original images, and smoothing of
modulated images.

First, a customized template of the whole brain and prior probability maps (priors)
were created using all study participants. The origin of spatial coordinates in the individual
images was manually set to the anterior commissure and images were reoriented
perpendicular to the intercommissural line. All images were then spatially normalized to
the Montreal Neurological Institute (MNI) template provided in SPM2 using a 12
parameter affine transformation; segmented into GM, white matter (WM), and
cerebrospinal fluid (CSF) compartments; smoothed with an 8 mm Gaussian filter; and
averaged to obtain customized priors.

Next, the primary VBM steps were performed. The original images were segmented,
and parameters for normalization were determined. The absolute volumes of GM, WM,
and CSF were calculated from the segments and further summarized to obtain the total
intracranial volume (ICV); the CSF/ICV ratio was calculated from these values. Using the
estimated normalization parameters, the original images were normalized to the
customized template through affine and non-linear transformations, resampling to 1 x 1 x 1
mm, and using no masking. The normalized images were then segmented into GM, WM,
and CSF using the customized priors. Finally, a modulation was performed on the
segmented GM images by multiplying the GM voxels by the Jacobian determinants derived
from the spatial normalization step. The modulated GM images were smoothed with a 12
mm Gaussian kernel. The procedure of VBM is demonstrated in Figure 1.

Regionally specific differences in GM volume between patients and controls (Study I)
were assessed using an analysis of covariance with age, sex, and total intracranial volume
(calculated as the sum of GM, WM and CSF volumes) treated as confounding covariates.
Between group differences were analyzed using a t-test with a height threshold of p<0.05
corrected with the family-wise error method. Clusters exceeding 50 edge-connected voxels
were included in the reported analysis. The MNI coordinates for the peak voxels were
transformed into Talairach space using the mni2tal routine (http://www.mrc-
cbu.cam.ac.uk/imaging/index.html). The anatomical locations of the peak voxels in the
significant clusters were found using the Talairach Applet (Lancaster et al. 2000) and further
verified from an anatomical atlas (Duvernoy 1999).

To study the differences in GM volumes between the compound heterozygous patients
and healthy controls (study IV), a region of interest (ROI) analysis based on the areas of GM
volume loss found in study I of EPM1 patients homozygous for the expansion mutation in
CSTB (primary and supplementary motor areas and thalami) was performed. ROIs were
manually  traced on a  study-specific = mean image  with = MriCro
(http://www.sph.sc.edu/comd/rorden/mricro.html). A similar ROI analysis was performed
between the compound heterozygotes and the homozygous patients. Regionally specific
differences in GM volume between the study groups were assessed using an analysis of
covariance with age, sex and total intracranial volume treated as confounding covariates
with a threshold of p<0.02 corrected with the false discovery rate method (Genovese et al.
2002).
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Figure 1. The primary steps of voxel-based morphometry (VBM).

4.4.4 Cortical thickness analysis (Study II)

Cortical thickness (CTH) analysis was conducted using the pipelining method developed at
the McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University,
Montreal, Canada (http://www2.bic.mni.mcgill.ca/). All subjects’” T1-weighted 3D images
were registered to standard space using the ICBM 152 template (Mazziotta et al. 2001) and
corrected for non-uniformity artifacts (Sled et al. 1998). The images were then segmented
into white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) using the INSECT
algorithm (Zijdenbos et al. 2002), and the magnitude of the partial volume effect was
estimated (Tohka et al. 2004). The brains were then automatically divided into two separate
hemispheres. By using the CLASP algorithm (MacDonald et al. 2000, Kim et al. 2005), the
inner and outer surfaces of the cortex were extracted according to intersections between
WM and GM (white matter surface, WMS) as well as GM and CSF (gray matter surface,
GMS), and the distance between the two surfaces was calculated at 40962 nodes per
hemisphere with the t-link metric (Lerch et al. 2005a). The thickness calculations were
performed on each subject’s native space and then transformed back to standard space for
the group analysis. The data were then smoothed with a 20 mm surface-based diffusion
smoothing kernel prior to the statistical analysis (Chung et al. 2004). Figure 2 illustrates the
procedure of the CTH analysis.
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Statistical analyses of cortical thickness were performed according to the general linear
model with Matlab R2007b (MathWorks Inc., Natick, MA, USA). Significant between-group
differences were tested using a t-test with a threshold of p<0.0001, corrected for multiple
comparisons with the false discovery rate (FDR) method (Genovese et al. 2002). Gender and
voxel size of the original image were used as nuisance variables. The correlations between
clinical parameters and cortical thickness of patients with EPM1 were tested in every node
by examining if the variation in cortical thickness correlated with the variation in clinical
parameters.

Figure 2. The procedure of cortical thickness analysis. (a) All images are registered to standard
space, (b) corrected for non-uniformity artefacts and the final mask for the brain is calculated,

(c) images are segmented into GM, WM and CSF, (d) inner and outer surfaces of the cortex are
extracted and (e) the results are visualized.

4.4.5 Tract-based spatial statistics (Study III)

Study III was carried out in a translational research setting together with a research group
studying the Cstb -/- mouse model of EPM1. However, the animal studies are not addressed
in this thesis.
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Voxelwise analysis with tract-based spatial statistics (TBSS) (Smith et al. 2006, Smith et al.
2007) was used to compare FA, axial, radial and mean diffusion (AD, RD and MD) among
patients with EPM1 and controls. Prior to TBSS analysis the original data were corrected for
eddy current distortions with affine (linear) alignment with FLIRT (Jenkinson et al. 2001,
Jenkinson et al. 2002) which, together with all other image processing tools applied in this
study, is included in the FSL software package (http://www.fmrib.ox.ac.uk/fsl/). The
diffusion tensor model was calculated using the DTIFIT program and the resulting
individual FA maps were used in subsequent co-registration and TBSS procedures. Direct
non-linear co-registration of individual FA maps was applied to the FMRIB58 template and
registration was followed by calculation of mean FA image over all subjects. The mean FA
image was further thinned to represent the mean FA skeleton (white matter tracts common
to all groups) (Figure 3). Individual FA volumes were then projected onto this skeleton. The
resulting spatially aligned FA skeleton data were finally fed to voxelwise cross-subject
statistical analysis.

Figure 3. The mean FA skeleton displayed on the mean FA image.

Eigenvalues A1, A2, As (axial (AD), radial (RD) and mean diffusion (MD)), were brought
to the same TBSS skeleton space using the co-registration warp-fields and tract projection
information obtained during FA processing. For all tensor parameters null distribution in
statistical testing was built up over 5000 permutations. Results are shown and reported
using a threshold free cluster enhancement method (TFCE) (Smith ef al. 2009), thresholded
at a significance level p < 0.05.

Quantitative FA-values as well as parameters of directional diffusivity (AD, RD and
MD) were extracted from regions of interest manually drawn (blinded for the significant
TBSS results) along the TBSS skeleton using standard radiological definitions for white
matter structures. For this purpose the mean FA TBSS skeleton was overlaid with the mean
FA image to aid delineation of anatomic details. Non-midline ROIs were first drawn on the
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left hemisphere and further mirrored to the right side and corrected if there was asymmetry
regarding the exact positioning of the tract in question.

4.5 STATISTICS

Statistical analyses were performed with a statistical package for Windows (SPSS Inc.,
Chicago, IL, USA, versions 14-17). A two-tailed p value of less than 0.05 was considered
significant. Normally distributed continuous-scale variables were analyzed with an
independent samples t-test (Studies I-III). Nonparametric, continuous-scale data for non-
normally distributed variables were analyzed with the Mann-Whitney U test (Study IV).
The between group differences in VBM, cortical thickness analyses and TBSS analyses are
based on t-test statistics and explained in detail in paragraphs 4.4.3, 4.4.4 and 4.4.5.
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5 Results

5.1 CLINICAL FEATURES

The demographic and clinical data of EPM1 patients and controls are provided in Table 2.
The study groups did not differ significantly with respect to age or gender. Disability of the
patients with EPM1 was assessed on a three-point scale based on their Myoclonus with
Action score (0-30 = mild; 31-59 = moderate; 60 or more = severe).

Table 2. Demographic and clinical data of EPM1 patients and controls

Patients Controls
Age, yr 33 + 12 (12-64) 32 + 10 (18-59)
Gender (M/F) 33/29 34/39
Age at onset, yr 10.2 £ 3 (5-25)
EPM1 duration, yr 22.6 £ 10.9 (4-44)
UMRS: Stimulus sensitivity 2.0 £2,3(1-17)
UMRS: Myoclonus with action 48.5 £ 28.7 (2-122)
UMRS: Functional tests 9.9 £ 6.8 (1-9)
Disability (mild/moderate/severe)” 20/21/21

UMRS= Unified Myoclonus Rating Scale
* Grade of disability based on the Myoclonus with action score

5.2 VBM ANALYSIS OF GRAY MATTER VOLUMES (STUDY I)

Images of 34 patients and 30 controls were evaluated. Visual assessment revealed no focal
signal abnormalities in the conventional images. In visual evaluation, 10 out of 34 patients
had no brain atrophy, 10 out of 34 patients had mild and 13 out of 34 patients had moderate
cortical atrophy within their parietal or frontal lobes, or in both. Five patients had mild
atrophy of their occipital lobes. In addition, three patients had mild and two patients had
moderate cerebellar atrophy. Five patients demonstrated signs of atrophy both in the
cerebellum and the supratentorial structures. Two of these patients had been using
phenytoin. Control individuals had no signs of brain atrophy.

VBM in patients revealed significant gray matter volume reduction in bilateral
premotor and primary motor areas, supplementary motor cortex, thalami, and precuneus
compared to healthy controls. The right cuneus and the left lateral orbital gyrus were also
involved (Figure 4, Table 3). The largest significant clusters were within the motor cortex.
No infratentorial changes were found. There was no GM volume reduction in healthy
controls when compared to EPM1 patients.



Figure 4. Areas of GM atrophy in patients with EPM1 compared with healthy controls are
displayed on a study-specific mean image. VBM analysis, p<0.05, corrected with the FWE
method. The colour bar represents T values.

When the patients were divided into two subgroups according to the duration of their
disease (shorter duration ranged 6 to 10 years, n=5; longer duration ranged 11 to 41 years,
n=29), no significant differences in GM volumes were found, indicating no significant
progression in volume reduction.

The absolute GM volume (680.85 + 74.32 ml), WM volume (405 + 53.01 ml), and CSF
volume (654.61 + 116.46 ml) of EPM1 patients were all reduced compared to control subjects
(GM 728.29 + 64.94 ml, p = 0.009; WM 479.74 + 45.7 ml, p < 0.001; CSF 744.7 + 1158 ml, p =
0.003). Accordingly, the total ICV of the EPM1 patients was smaller (1740.71 + 216.86 ml)
than the total ICV of the control subjects (1952.72 + 191.67 ml, p < 0.001). There was no
significant difference in the CSF/ICV ratio between patients and controls (p = 0.47).
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5.3 CORTICAL THICKNESS ANALYSIS (STUDY II)

5.3.1 Group analysis of cortical thickness

Fifty-three patients and 70 controls were evaluated. When assessed visually, there were no
focal signal abnormalities in the conventional images. Statistical differences in cortical
thickness between the patients with EPM1 and healthy controls at the group level are
presented in detail in Table 4 and Figure 5. The EPM1 group displayed widespread
thinning of the cortex in both hemispheres. The effects were more extensive in the left
hemisphere.

Table 4. Areas of significant difference in cortical thickness between EPM1 group and controls.
MNI coordinates,

Brain region Hemisphere Maximum t value
XY,z

Central sulcus right 8.83 43, -16, 36

left 7.04 -39, -18, -45
Paracentral lobule right 8.44 5, -26, 50
Cingulate sulcus left 8.42 -10, -20, 46
Postcentral sulcus left 6.93 -24, -41, 61
Superior frontal gyrus right 7.02 6, 50, 30
Calcarine sulcus left 9.03 -20, -70, 6
Lingual gyrus right 6.96 5, -68, 3
Superior temporal sulcus right 5.60 54, -15, -14
Transverse temporal gyrus right 5.84 45, -27,9

left 4.48 -37,-33, 16
Middle temporal gyrus left 5.98 -48, -66, 4
Fusiform gyrus left 7.52 -25,-77, -9

MNI = Montreal Neurological Institute. MNI coordinates are based on a standard brain template
defined by using multiple MR images of normal controls

The most significant alterations in the sensorimotor cortex were detected in the
paracentral lobule bilaterally and in the depth of the central sulcus bilaterally. There was
also thinning of the bilateral premotor and supplementary motor cortices and in Broca’s
area. The most pronounced changes in the visual cortical areas were detected bilaterally in
the primary visual cortices (pericalcarine cortex). There was also thinning of the associative
visual areas in the occipital lobes and the parietal associative cortex, as well as bilaterally in
the temporal association cortex. Changes in the auditory areas were detected in the left
primary auditory cortex. The parietal association cortex (precuneus) was bilaterally
involved.
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T-value
10.05

Figure 5. Group analysis of cortical thickness. Brain regions demonstrating significantly reduced
cortical thickness in patients with EPM1 compared with healthy controls (p< 0.0001, FDR
corrected).

5.3.2 CTH correlations with clinical symptoms and the duration of the disease

Figure 6 illustrates the correlation between the mean cortical thickness and age in patients
with EPM1 and in controls. Cortical thickness was reduced with increasing age in both
groups, but in patients, the alterations were confined to more limited areas of sensorimotor,
primary and associative visual and primary auditory cortices (p < 0.01), whereas in controls,
the age-related thinning was more diffuse throughout the hemispheres (p < 0.01).
Furthermore, the cortex in the affected areas in EPM1 cases was thinner than in controls.
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Figure 6. Scatter plots indicating correlations between age and mean cortical thickness in
individual patients and controls.

In a univariate analysis there was a significant negative correlation between the
duration of the disease and cortical thickness in the same regions as the age effects in EPM1
(p <0.01). When age was included in the analysis as a nuisance variable, the correlations did
not survive the FDR correction.

There was also a significant negative correlation between the Myoclonus with Action
score and cortical thickness, especially in the pars opercularis and supramarginal gyrus
bilaterally, but also in superior and inferior parietal gyri (parietal association cortex), visual
areas and the premotor and prefrontal cortices bilaterally (p < 0.05). When illness duration
was included as a nuisance variable, the correlations did not survive the FDR correction.
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The correlation analysis between cortical thickness and the age at onset did not reveal any
significant results.

5.4 TBSS ANALYSIS OF WHITE MATTER TRACTS (STUDY III)

Nineteen patients and 18 healthy controls were evaluated. The conventional MR images did
not reveal WM abnormalities, besides a few punctate T2-hyperintensities in one patient
(Fazekas grade 1) (Fazekas et al. 1987). Three patients had mild and nine patients had
moderate cerebral atrophy. One patient had cerebellar atrophy. Seven patients had no
visible brain atrophy.

TBSS revealed decreased FA values in almost all major white matter pathways in
patients with EPM1 when compared with healthy controls (Figure 7). Global FA was
decreased in EPM1 both along the TBSS skeleton (0.41 £ 0.03 vs. 0.45 + 0.02, p <0.001) and in
native space (0.33 £ 0.02 vs. 0.37 + 0.02, p <0.001). Axial, radial and mean diffusion values
extracted from the TBSS skeleton space followed the pattern of increased RD and MD,
while AD was either unchanged or increased (Table 5). No statistically significant decrease
was detected in AD, RD or MD in patients with EPM1.

Figure 7. Decreased FA in EPM1 patients compared with controls (TFCE corrected, p < 0.05).
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5.5 GENOTYPE-PHENOTYPE CORRELATIONS (STUDY 1IV)

5.5.1 Course of the disease

Three male and two female patients heterozygous for the dodecamer expansion and
c.202C>T mutations participated in the study. Patients 1 and 2 were siblings as well as
patients 3 and 4. Table 6 presents the demographic characteristics and antiepileptic drug
(AED) treatment of the patients at the time of the study visit. The age of onset of the
symptoms in patients carrying the compound heterozygous mutation was found to be
significantly lower than in the control EPM1 group of patients carrying homozygous
mutation (7 + 2 years vs. 10 £ 1 years, respectively, p = 0.005, Table 6).

5.5.2 Clinical and neurophysiological evaluation

With respect to the duration of the disease, both groups were rather homogenous (mean
duration 18 # 8 years in compound heterozygotes vs. 15 + 8 years in homozygotes, Table 6).
However, there was a significant difference in myoclonus severity between the compound
heterozygous and the homozygous EPM1 patients assessed using the UMRS Myoclonus
with Action score (67 +32 vs. 33 £ 17, p =0.006, Table 7).

Patients 1 and 2 had limited walking ability and were wheelchair bound occasionally
during severe disease episodes. An especially handicapping symptom observed with
patient 1 was attacks of negative myoclonus, which in combination with strong generalized
or multifocal myoclonic jerks often resulted in falls during walking. Patients 3 and 4 were
completely wheelchair bound. Moreover, patient 4 had continuous spontaneous and/or
movement or stimulus induced multifocal and generalized myoclonic jerks, which
significantly complicated the evaluation of neurological status and UMRS scoring. The
youngest female patient had the shortest duration of the disease and moderate myoclonus.
The most pronounced neurological finding in this patient was ataxia. Only patient 3 was
seizure-free; the remaining four patients reported 1-4 tonic-clonic seizures in 1-2 month
periods despite extensive medical treatment (Table 6). All patients were dependent on the
help of others in their daily life.

The available EEG data were re-evaluated based on reports, and when possible on
original digital EEG recordings. There were 3 to 10 EEGs for each patient (routine,
ambulatory long-term, video-EEG, or EEG-monitoring at Intensive Care Units). None
exhibited a normal EEG in any of the recordings. The background activity was disturbed in
all five patients, with mild slowing in one, and moderate in four. The spontaneous
epileptiform activity presented as generalized irregular polyspike- or spike-wave
discharges in all patients. Focal epileptiform abnormalities were also seen in all, in fronto-
central regions in four, and in the occipital region of one patient. EEG and clinical
photosensitivity up to clinical myoclonus or generalized seizures during photic stimulation
were documented in all, and one patient also showed enhancement of occipital
epileptiform abnormalities upon exogenous sensory stimuli. There was only a loose electro-
clinical correlation between EEG discharges and clinical myoclonus: the clinical myoclonus
was frequently reported to also occur without any simultaneous EEG correlates. Two
patients had suffered from status epilepticus (SE). One initially had an EEG-confirmed
generalized myoclonic status, and later, when this was resolved, exhibited a clear focal
seizure with right fronto-central onset. The other SE patient suffered from clinically
convulsive SE, but the EEG was recorded when the patient was already sedated under
propofol.
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Table 6. Demographic data, seizure frequency and treatment at the study visit.

Patient Nr Gender Age Age at EPM1 Tonic- Treatment at Expansion
symptom duration clonic study visit length
onset seizure (mg/d) (allele

frequency 1/allele
2)
1 M 23 5 18 1-2 per VPA 2100; LTG 2/71
month 200; LEV 2250;
PIR 31200
2 M 21 7 14 1 per 2-3 VPA 1100; LTG 2/70
month 200; LEV 2000
3 F 34 10 24 Seizure- VPA 900; CZP 2/61
free 2.25; TPM 125;
PIR 2400
4 M 37 7 29 1-2 per VPA 1200; CZP 2/61
month 4; LEV 1500;
PIR 3600
5 F 14 6 8 2-4 per VPA 1400; CzP 2/70
month 6

Compound 3M/2F 26 £9 7 =2 (5- 18+ 8 --- --- 2/67 £ 5

heterozygote (14-36) 10) (8-29) (61-71)

group?®

Expansion 11M/10F 25 +9 101 15+ 8 --- --- 64 £5 (55-

homozygote (12-38) (7-12) (4-28) 73) / 68 +4

group?® (60-75)

M, Male; F, Female; VPA, valproate; LTG, lamotrigine; LEV, levetiracetam; PIR, piracetam; CZP,

clonazepam; TPM, topiramate.  Data presented as Mean + St. Dev (Minimum-Maximum) unless

otherwise indicated
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5.5.3 Neuropsychology

The intellectual performance of the compound heterozygous patients was below the normal
range and the cognitive dysfunction of individual patients in verbal and performance tasks
varied from mild to severe. Two of the youngest patients (1 and 5) had severe cognitive
impairment and have needed special schooling. Patient 2 had only mild cognitive
impairment but needed special vocational rehabilitation after normal school. Patients 3 and
4 developed moderate cognitive impairment after finishing normal school. Patients 1-4 are
now receiving disability pension; patient 5 is still at school.

As a group these patients had a lower mean VIQ and PIQ than the control EPM1
patients (VIQ 75 + 10 vs. 90 = 14, p = 0.044; PIQ 57 + 13 vs. 79 + 15, p = 0.013). In the learning
of the word list, the two groups performed similarly, but the compound heterozygous
patients had poorer immediate recall of the stories. In delayed memory measures the
groups did not differ. In the visuomotor task the performance of the compound
heterozygous patients was significantly impaired compared with the control EPM1 group.

5.5.4 MR imaging

Visual assessment of conventional images revealed mild frontotemporal post-traumatic
changes in patient 4 but the other patients had no focal abnormalities. In addition, patient 4
had moderate cerebellar and mild cerebral atrophy. Patient 3 had moderate cerebellar
atrophy and patient 1 had moderate cerebral atrophy. Patients 2 and 5 had no visible brain
atrophy. In the control EPM1 group of 21 patients who are homozygous for the major
mutation, six patients had mild or moderate cerebral atrophy, one patient had mild
cerebellar atrophy and three patients had mild or moderate cerebral and cerebellar atrophy.
The remaining eleven patients had no visible brain atrophy.

An ROI-based VBM analysis of the primary motor and premotor cortex, supplementary
motor cortex and thalami revealed GM volume loss in all of those areas when compared
with the 24 healthy controls (Figure 8). There were no significant GM volume changes
between the homozygous and the compound heterozygous patients. DTI and MRS could be
performed only on patient 3 of the compound heterozygote group, and thus no statistical
comparisons were feasible. In MRS the lactate concentration was increased in the CSF of
patient 3.

Figure 8. Areas of gray matter atrophy in compound heterozygous EPM1 patients compared with
controls superimposed on a volume rendered average image of the study population. VBM
analysis, p<0.02 corrected with the FDR method.
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6 Discussion

In the present study, the MR imaging findings of patients with EPM1 have been compared
with those of healthy controls in order to explore whether modern imaging techniques
would reveal previously undetected structural changes in the brains of the patients.
Furthermore, the phenotype-genotype correlations between two groups of patients with
different mutations in CSTB have been addressed. The high prevalence of EPM1 in Finland
offered a unique opportunity to evaluate, at present, the largest number of patients with
EPM1 at the same study center.

6.1 GRAY MATTER VOLUME LOSS IN EPM1 (STUDY I)

In the present study of 34 patients with EPM1, VBM revealed significant volume loss in
supratentorial gray matter, particularly within the cortical motor areas. Thalami and
precunei were also affected bilaterally. When assessed visually, mild to moderate cerebral
atrophy was present in most of the patients, but any regional changes in gray matter
volume were too subtle to detect.

According to the VBM analysis, no infratentorial changes were found in the group
comparison with healthy controls. Previously, volume loss of the structures in the posterior
fossa has been reported, along with unspecific cortical atrophy (Mascalchi et al. 2002). The
neuropathological findings in the animal model of EPM1, the Cstb -/- mice, consist of severe
loss of cerebellar granule cells due to apoptotic cell death; less marked neuronal apoptosis
in the hippocampal formation and entorhinal cortex in younger animals; and gliosis in the
hippocampal formation, entorhinal cortex, neocortex, and striatum in older animals
(Pennacchio et al. 1998, Shannon et al. 2002). These data from both human and animal
studies suggest that changes in the posterior fossa structures play a major role in the
pathophysiology of EPM1. However, in the group analysis we found no infratentorial
changes. In visual evaluation mild or moderate cerebellar atrophy was detected in only five
of 34 patients. Two of these patients had been using phenytoin in the past (Eldridge et al.
1983), and one patient had a history of excessive alcohol use. These factors may have
contributed to the development of cerebellar atrophy. In the previous study reporting
atrophy in the posterior fossa (Mascalchi et al. 2002), the number of patients is substantially
smaller than in the present study, which may also explain the discrepancy between the
results. In view of the results of Study I, it seems that in patients the supratentorial changes
may be a significant pathophysiological factor. However, although VBM failed to
demonstrate pathology in the posterior fossa, DTI of the same patients did reveal changes
in the cerebellum, thus adding to the results of the study.

The mechanism that causes the observed gray matter volume loss in cortical motor areas
and thalami remains unknown, as the overall pathophysiology of EPML1 is still poorly
understood. The clinical myoclonus in EPM1 is considered epileptic (i.e., cortical) in nature
(Caviness et al. 2004). Advanced electrophysiological methods such as
magnetoencephalography (MEG), somatosensory evoked fields (SEF), EEG, somatosensory
evoked potentials (SEP), and long-loop reflexes have been applied to EPM1 patients
(Canafoglia et al. 2004, Forss et al. 2001, Silen et al. 2000, Silen et al. 2002a, Silen et al. 2002b,
Visani et al. 2006). These studies have provided indirect evidence of increased cortical
inhibition and disturbed activation, as well as hyperexcitability of the sensorimotor cortex.
Transcranial magnetic stimulation (TMS) is particularly well suited to study the
inhibitory/excitatory balance of the motor cortex. A recent study of 24 patients with EPM1
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suggests a prevailing inhibitory tonus of the primary motor cortex as a possible reactive
mechanism to the disease (Danner et al. 2009). Earlier, evoked potential studies have also
shown abnormalities beyond the primary motor cortex in the thalamocortical loops
(Mervaala et al. 1984, Mervaala et al. 1986), and a recent PET study also points to a
thalamocortical dopaminergic defect in EPM1 (Korja et al. 2007b).

The total intracranial volume of the EPM1 patients was smaller than that of healthy
controls but the CSF/ICV ratio was not reduced compared to controls, indicating that there
was no general brain atrophy in EPM1 patients. This might suggest that EPM1 patients
have a smaller head size than healthy controls. However, a previous study of 93 Finnish
EPM]1 patients reports normal head circumferences (Koskiniemi et al. 1974a). Thickening of
the skull has also been observed (Koskiniemi et al. 1974a, Korja et al. 2007a), but skeletal
changes in EPM1 are not addressed in this thesis.

In a retrospective study on long-term evolution of Unverricht-Lundborg disease in 20
patients who had been closely followed since the onset of their disease symptoms,
myoclonus progressed only during the first 5 years of apparent disease (Magaudda et al.
2006). These results indicated that EPM1 progresses over a limited period and stabilizes
thereafter, and the authors speculated that the self-limited progression might be the
consequence of age-related apoptosis in selected neuronal populations. When we divided
our patient population into those with a shorter (range 6-10 years) or longer (range 11-41
years) duration of the disease since diagnosis, and compared their gray matter volume loss
with VBM, we observed no significant difference. This may reflect the phenomenon
described in the aforementioned study (Magaudda et al. 2006). However, to reliably
correlate the VBM findings with the clinical severity of the disease, a larger patient
population would be necessary.

A limitation of Study I is that the VBM analysis concentrates on the volumes of gray
matter structures but it is considered to be less reliable in analyses of white matter. The
results of the present study indicate that the disease affects the cortical gray matter in the
motor areas. While the mechanism of this finding remains to be verified, a more detailed
comparative analysis of the pyramidal tract structures with the use of diffusion tensor
imaging and detailed neurophysiological evaluation will be warranted in the future.

6.2 REGIONAL CHANGES IN CORTICAL THICKNESS OF PATIENTS WITH
EPM1 (STUDY II)

The myoclonic jerks in EPM1 are often provoked by a variety of exogenic stimuli
(Kalvidinen et al. 2008, Koskiniemi et al. 1974a); however, morphological changes in the
sensory cortical areas of the brain have not been reported. In addition, there is considerable
variation in the severity of the disease between patients and even within the same family
(Kalvidinen et al. 2008), but to the best of our knowledge, no correlations between
quantitative structural changes in the brain and clinical parameters such as the duration of
the disease, age at onset or myoclonus severity have been investigated so far.

In agreement with the VBM findings, significant and progressive thinning of the cortical
motor areas of patients with EPM1 was found in comparison to the healthy controls. This
type of thinning of the motor cortex has not been reported previously, and it may be related
to the most disabling symptoms in EPM1, i.e. myoclonus. In previous MEG studies the
origin of cortical myoclonus has been localized to the sensorimotor cortex (Mima et al.
1998a, Mima et al. 1998b).

As a novel finding, we found extensive changes in the cortical sensory areas, the visual
areas and the auditory areas as well. Cortical thinning in the sensory areas extended well
beyond the primary and secondary somatosensory, visual and auditory cortices. For
instance, the parietal association cortex was extensively affected. This area is involved in
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important cortical functions, e.g. visual localization of objects, elaboration of motor
program necessary to reach these objects, spatial perception and spatial memory in
collaboration with the visual association cortex, and auditory functions especially in the
supramarginal gyrus in conjunction with the auditory association cortex (Mesulam 1998).
The areas of regionally reduced cortical thickness were in parallel with the severity of the
action myoclonic symptoms of EPM1. Alterations in the visual and auditory cortices thus
seem to be congruent with the stimulus-sensitive nature of the symptoms. Interestingly,
cortical thinning was also observed in the Broca’s area, but the relevance of this finding
remains to be clarified.

TMS (Canafoglia et al. 2004, Danner et al. 2009) and MEG (Silen et al. 2000) studies have
pointed to impaired sensorimotor cortical inhibition in EPM1. An absence of activation of
the secondary sensory cortex (SII) has been reported in patients who exhibited more severe
motor symptoms (Forss et al. 2001), and the authors speculated that deficient activation of
SII could account for the disturbed sensorimotor integration, contributing to impaired
movement coordination. The same phenomenon may be reflected in our finding that the
Myoclonus with Action score correlated negatively with cortical thickness in the sensory
areas, including the SII area. Patients with more severe myoclonus had thinner
sensorimotor cortical areas than patients with milder symptoms.

The duration of the disease correlated negatively with cortical thickness in our
univariate analysis. However, one cannot be absolutely certain that the process of cortical
thinning in EPM1 is progressive. Since all the clinical parameters we have evaluated seem
to correlate with each other as well as cortical thickness, it is difficult to totally separate
their effects. Age correlated negatively with cortical thickness both in patients and controls,
but in patients, the findings were more limited. Thus the progression of cortical thinning
cannot be explained by age alone. The affected cortical areas seemed to be thinner in EPM1
cases than in controls, even in young individuals. The onset of EPM1 is in early childhood
or late adolescence, the peak being around 12-13 years (Genton 2010), and before the onset
of symptoms the disease process has probably already had an effect on the brain. This may
explain the more limited age related thinning of cortex in patients with EPM1.

In the control group the effects of aging were consistent with previous reports of age
affecting the prefrontal and parietal cortices negatively, as well as gray matter around the
central sulcus and the relative sparing of temporal and parahippocampal cortex (Salat et al.
2004, Thambisetty et al. 2010). Other investigations have also found that the occipital lobes,
and particularly the visual cortex, are negatively affected by age (Salat et al. 2004, Gaetz et
al. 2011). In a study of normal aging with 883 participants the results were fairly similar to
those in our study (Fjell et al. 2009). In the present study the pericalcarine cortex was
relatively spared in healthy controls, but interestingly, it was more extensively affected in
EPM1 cases. The mean age of the control group in our study was 33 years, which is
substantially younger than in previous reports, and this might explain some of the
differences in the results.

There was some variation in the slice thickness (1 to 1.2 mm) of the MR images, which is
a limitation in Study II. However, from 123 scans in only 16 did the slice thicknesses differ
from 1 mm, and slice thickness was also included as a nuisance variable in the statistical
analyses. Therefore it should not affect the results significantly. Cortical thickness analysis
concentrates on the cerebral cortex and cannot be applied to deep gray matter, cerebellum
or white matter, which can thus be considered as another limitation of the method. In the
future, it may be possible to gather more information on the subcortical pathways by
utilizing diffusion tensor imaging together with cortical thickness analysis.
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6.3 WHITE MATTER CHANGES IN EPM1

Study III aimed to clarify the possible changes in the white matter tracts of patients with
EPM1 by applying diffusion tensor imaging with TBSS analysis. TBSS revealed decreased
FA in the pyramidal tracts of patients with EPM1. However, the changes in WM extended
far beyond the corticospinal tracts. FA was also decreased in thalamic WM, the corpus
callosum and in the association fibers as well. There were also significant changes in the
cerebellar WM.

Previous studies have revealed loss of neuronal volume in the structures of the posterior
fossa (Mascalchi et al. 2002), in agreement with the observed GM volume loss particularly in
the cortical motor areas and thalami (Study I), and thinning of the sensorimotor cortex
(Study II). T2 hyperintensities in the basal ganglia and WM of EPM1 patients have also
been reported (Korja et al. 2010). The finding of motor cortex abnormalities is in agreement
with the results of a navigated TMS study, suggesting an impairment of cortical inhibitory
networks (Danner et al. 2009). Earlier studies with evoked potentials have also reported
abnormalities beyond the primary motor cortex in the thalamocortical loops (Mervaala et al.
1984, Mervaala et al. 1986). Furthermore, it has been speculated that the cerebellum may
modulate the balance between inhibition and facilitation in the motor cortex, and that
cerebellar pathology may play a role in the mechanisms involved in provoking action
myoclonus (Tijssen et al. 2000). In view of the results of the present study, it seems that both
supratentorial and cerebellar changes are major factors contributing to the pathophysiology
of EPM1.

To evaluate the changes in the WM in more detail, we analyzed other diffusivity
parameters (AD, RD and MD). The alterations in the diffusivity parameters in the majority
of the examined supratentorial ROIs follow the pattern of chronic WM degeneration (FA
decrease, increase in RD and MD) as reported in a recent study of age-related differences in
white matter (Burzynska et al. 2010). This pattern is thought to reflect axonal and myelin
loss (Concha et al. 2006, Sun et al. 2008).

The histopathological data of EPM1 is limited. The data from patients consists of diffuse
loss of cerebellar granule and Purkinje cells, degeneration and loss of neurons in the
cerebral cortex, striatum, thalamus, brainstem nuclei and in spinal motor neurons (Eldridge
et al. 1983, Koskiniemi et al. 1974a, Haltia et al. 1969). In animal studies with Cstb-deficient
mice, severe loss of cerebellar granule cells has been found (Pennacchio et al. 1998). In
younger animals there was less marked neuronal apoptosis in the hippocampal formation
and entorhinal cortex. Gliosis in the hippocampal formation, entorhinal cortex, neocortex
and the striatum was present in older animals. There was also widespread gliosis of the
WM (Shannon et al. 2002).

The extensive changes in the subcortical WM, pyramidal tracts, thalami and cerebellar
WM of patients with EPM1 parallel the previous imaging reports and the sparse
histopathology data of EPM1. However, the mechanism of the WM degeneration remains
yet to be clarified. It is also unclear whether the GM changes are secondary to the WM
degeneration, or vice versa.

6.4 PHENOTYPE OF EPM1 IN COMPOUND HETEROZYGOUS PATIENTS

EPM1 follows autosomal recessive inheritance and is caused by mutations of the cystatin B
(CSTB) gene (Pennacchio et al. 1996). Most patients are homozygous for the expanded
dodecamer repeat mutation alleles, but eleven other EPM1-associated mutations have also
been identified (Joensuu et al. 2008, Lalioti et al. 1997b, Erdinc et al. 2010). With the
exception of the missense p.Gly4Arg mutation (Lalioti et al. 1997a), these other mutations
have been reported to occur in compound heterozygosity with the expansion mutation. In
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study IV, the clinical, cognitive and imaging characteristics of five EPM1 patients who are
compound heterozygous for the dodecamer repeat expansion and the ¢.202C>T mutations
were evaluated.

In visual evaluation, one of the compound heterozygous patients had signs of brain
contusion in the MR images, which is not surprising considering the myoclonic jerks that
can be severe enough to cause a person to fall down. VBM findings of the compound
heterozygous patients did not differ from those of the patients homozygous for the
expansion mutation. When we performed a VBM analysis between the compound
heterozygous EPM1 patients and healthy controls, based on the brain areas that were found
to be atrophic in EPM1 patients carrying the homozygous mutation, the most significant
clusters of GM volume loss were in the supplementary motor cortex. There was also GM
volume loss in the primary and premotor cortex and the thalamus bilaterally. It is possible
that there are no structural differences between the two genotypes. On the other hand, the
number of compound heterozygous patients in the present study was quite small and thus
any subtle differences may be difficult to detect. In a recent TMS study, the same patients
exhibited functional changes in primary motor cortical areas, congruent with their
structural changes (Danner et al. 2011).

In spectroscopy, an increase in lactate concentration was observed in the CSF of patient
3, suggesting that cerebral energy metabolism may be affected in EPM1 through a yet
unidentified mechanism. However, this finding needs further investigation with data from
more subjects. We could not perform MRS for the rest of the compound heterozygous
patients due to myoclonic jerks which made it impossible to continue scanning for a
sufficient time. For the same reason DTI was feasible in only one patient. MR imaging of
patients with this particular mutation in the CSTB gene seems to be more challenging than
imaging patients with the major mutation.

It has been believed that similar disease manifestation develops in patients with EPM1
irrespective of the underlying mutations. Previous studies characterizing EPM1 patients
have found no genotype-phenotype correlations, including no association between the
length of the expanded dodecamer repeat and the age of onset of the disease or its severity
(Virtaneva et al. 1997, Lalioti et al. 1998). However, the results of Study IV show that
compound heterozygosity for the dodecamer expansion and the c.202C>T mutation in the
CSTB gene is associated with earlier onset of symptoms. Moreover, the patients carrying
such a mutation are more likely to have a more severe form of the disease, resulting in more
severe myoclonus and treatment-resistant epileptic seizures. It has previously been
reported that in EPM1, the epileptic seizures have a positive response to AED treatment
(Iivanainen et al. 1982) and tend to decrease in frequency or cease completely within 10-15
years from the onset of the disease (Norio et al. 1979, Magaudda et al. 2006). In the present
study, three of the compound heterozygous patients, with a disease duration of over 10
years, were still suffering from tonic-clonic seizures despite extensive AED treatment.
Therefore it seems that epileptic seizures in EPMI1 patients that are compound
heterozygous for the dodecamer expansion mutation and the c.202C>T mutation are more
drug-resistant than in EPM1 cases caused by the homozygous expansion mutation. The
myoclonus in compound heterozygous patients also seems to be more severe and
incapacitating and it seems to lead to earlier and more frequent use of a wheelchair as
compared with homozygous patients.

Instability of the ¢.202C>T mutant transcript and protein has been suggested based on
real-time quantitative PCR and Western analyses in patients’ cells and through in vitro
transfection experiments (Alakurtti et al. 2005, Joensuu et al. 2007). Therefore, the more
severe clinical manifestations in the compound heterozygous patients are likely to reflect
the reduced amounts of the CSTB protein in the patients’ cells compared to the cells of



42

patients homozygous for the expansion mutation, rather than a dominant negative effect of
the mutant p.Arg68X transcript.

Scalp EEGs showed, in addition to generalized epileptiform discharges more focal /
regional epileptiform activity over fronto-centro-temporal regions in all patients. These
spikes or sharp waves occurred separately, in trains, or as electrographic seizures of 13
seconds or less. EEG in EPM1 usually shows features of generalized epilepsy (Shahwan et
al. 2005), whereas focal epileptiform abnormalities have not been previously described
(Kalvidinen et al. 2008). Interestingly, these focal features were seen over sensory-motor
head regions, where the structural changes were found.

The cognitive intellectual performance of compound heterozygous patients seems to be
poorer than that of homozygous patients, especially in regards to performance tasks and
with visuomotor skills. The compound heterozygous patients seem to need special
education because of their cognitive problems, whereas this is not the case in homozygous
patients, who usually perform normally in school and may have their vocational education
and employment limited more by their motor symptomes.

The current study shows that the patients carrying compound heterozygous dodecamer
repeat expansion and ¢.202C>T mutations in the CSTB gene seem to have a more severe
form of EPMI1 than the patients who are homozygous for the expansion mutation. Even
though the number of compound heterozygous patients in Study IV was quite small, it has
nevertheless been shown that the type of genetic mutation does indeed play a role in the
disease phenotype, which has implications for the counseling of patients.

6.5 LIMITATIONS OF THE STUDY

As the myoclonic symptoms in EPM1 are stimulus-sensitive, the loud noise of the MR
scanner can cause problems during imaging. The possibility of motion artifacts has to be
considered. Motion correction software is nowadays available in clinical scanners; however,
it cannot be utilized with the T1-3D sequences needed for VBM or cortical thickness
analysis. Particularly the compound heterozygous patients in the present study seemed to
be quite sensitive to the noise of the scanner, and DTI for example was feasible with only
one of them. Spectroscopy was also challenging for the compound heterozygotes due to the
long scanning time, although the sequence itself is not that noisy. Nevertheless, in most
cases the image quality was good. It is helpful to keep the atmosphere during scanning as
calm as possible and to use proper hearing protection to reduce the noise.

The patient populations in Studies III and IV were quite small. During the time when the
imaging data were acquired, the software in the MR scanner used in the present study was
upgraded, and the DTI sequence changed. Thus only 19 patients were imaged with the
same sequence and could be included in Study III. As for Study IV, we aimed to evaluate
different genotypes in EPM1, and at present there are only five known patients in Finland
who are compound heterozygous for the dodecamer expansion mutation and the c.202C>T
mutation.

The slice thickness of the T1-3D images varied between 1.0 mm to 1.2 mm depending on
the size of the head, but the in-slice resolution was 1.0 mm x 1.0 mm. In the majority of the
cases the slice thickness was, however, 1.0 mm and the issue has been taken into account in
the statistical analyses. Therefore it is not likely that slice thickness variation has affected
the results significantly.

The methods used in the present study are based on group comparisons. Thus they
cannot be applied to the analysis of individual patients. Furthermore, this is a cross-
sectional study, and prospective studies with advanced imaging would be needed to gain
more conclusive data on the possible progression of structural changes in the brains of
patients with EPM1.
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6.6 FUTURE CONSIDERATIONS

Sophisticated MRI techniques and new analysis methods enable group comparisons and
reveal subtle morphological changes that cannot be detected by visual inspection of
individual cases. In addition, group analyses provide an opportunity to correlate clinical
parameters such as neuropsychological results with the structural alterations discovered
with imaging.

The combination of various MRI techniques offers complementary information about
the pathophysiology of EPM1. For example, in the present study DTI brought out cerebellar
alterations in addition to changes in the supratentorial WM, while VBM and cortical
thickness analysis disclosed changes in the supratentorial GM structures.

Although advanced MR imaging has revealed previously undiscovered morphological
changes in the brains of patients with EPMI1, the molecular and histopathological
pathogenesis of EPM1 still remains to be elucidated. The results of the present work may
help in future studies that aim to clarify the cellular mechanisms that result in the
phenotype of EPM1. By correlating the imaging findings in humans with those of Cstb-
deficient mice and focusing on the possible structural changes common to both, it may be
possible to gain more histopathological information about EPM1.

Transcranial magnetic stimulation is considered to be particularly well suited to study
the inhibitory/excitatory balance of the motor cortex. Future TMS studies guided by the
data from structural MRI studies would likely add to the current knowledge of the
pathogenesis of EPML. 1t is likely that the brain’s functional responses to various stimuli are
also altered in EPM1. With fMRI it would be possible to study the activation of different
cortical areas, and by combining the results with those of neurophysiological studies a
more comprehensive picture of the pathophysiology may be accomplished. Furthermore,
evaluation of the possible changes in brain metabolism of patients with EPM1 by utilizing
MR spectroscopy would be important and might give further insight to the pathogenesis of
EPML.

Finally, the advanced neuroimaging methods used here may also be useful in studying
other neurodegenerative disorders. It would be valuable to see whether there are similar
structural changes in other conditions with movement disorders, or if the alterations found
in the present study are specific to EPMI.
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7 Conclusions

1. Patients with EPM1 show significant loss of gray matter volume bilaterally in the motor
cortex and thalamus, when compared with healthy controls. The atrophic changes are
consistent with the motor symptoms of EPM1.

2. In cortical thickness analysis the patients with EPM1 show thinning of the sensorimotor,
visual and auditory cortices in comparison with healthy controls. These cortical areas are
consistent with the stimulus-sensitive nature of the symptoms of EPM1. Cortical thickness
(CTH) correlates negatively with clinical parameters such as age, the duration of EPM1 and
the severity of myoclonus. The effects of the clinical parameters on CTH cannot be totally
separated because of their correlation with each other. The results do, however, suggest
that the process of cortical thinning is progressive.

3. Patients with EPM1 exhibit extensive chronic degeneration of both supratentorial and
infratentorial white matter (WM), when compared with healthy controls. Changes in the
directional diffusivity parameters indicate that the WM changes may reflect axonal and
myelin loss.

4. The phenotype of EPM1 seems to be more severe in patients heterozygous for the
dodecamer repeat expansion and the c.202C>T mutations in the cystatin B gene, compared
with patients homozygous for the dodecamer repeat expansion. The age at onset of
symptoms seems to be younger. These patients also have more severe myoclonus and
drug-resistant tonic-clonic seizures. Moreover, their cognitive performance is lower. These
findings have implications for the counseling of EPM1 patients with different genetic
findings.

5. The results of Studies I-III point to widespread neurodegenerative changes throughout
the brain, explaining the poor response to AED treatment in EPM1. This should be taken
into account in future studies and in the counseling of patients.
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