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ABSTRACT

Computational data-driven models are increasingly required to support
conclusions  and  to  aid  in  reaching  in-time  and  sufficient  decisions  in
environmental research, planning and management. The aim of this thesis was
to evaluate the usability of modern computational methods and related data-
driven modeling (DDM) schemes for solving the predictive modeling problems
associated with environmental management decision-making. The selected case
studies included were (i) the forecasting of urban airborne pollutant
concentrations, (ii) the characterization of physicochemical and biological
properties of chemical substances, using quantitative structure activity
relationships (QSARs) and chemical grouping, as well as (iii) the prediction of
species-specific forest attributes using airborne laser scanning (ALS) data.

First, a brief overview into the domain of application and the modeling
problems to be studied is given. There follows an introduction to the
computational data-driven modeling approaches, including the main modeling
methods used in this thesis, namely multi-layer perceptron (MLP), support
vector regression (SVR), self-organizing map (SOM) and Sammon’s mapping.
Predictive modeling approaches, based on the selected modeling methods, are
then evaluated and discussed, with specific conclusions in each application
domain.  Finally,  the  significance of  the work is  assessed and recommendations
for future work are laid out.

The  results  of  the  air  quality  studies  show  that  the  MLP  network  yields
moderately good general performance for the prediction of airborne pollutant
concentrations of NO2 and PM2.5.  It is also shown that the performance of MLP
network can be enhanced in operational urban air pollution forecasting, using
the  predictions  of  numerical  weather  prediction  (NWP)  model  as  input.  The
performance of the MLP network is, however, obtained to be degenerated in the
course of peak pollution episodes. Further, the results obtained show that SOM



and MLP are appropriate methods for recovering incomplete air quality datasets
to complete form required by the modeling. In chemical modeling studies,
Sammon’s mapping and its combination with regression-based QSAR models is
shown to be a powerful approach for discovering and visualizing chemical
substance groups. Such a chemical grouping approach could be used as an
alternative  for  conventional,  laboratory-based  testing  strategies  in  REACH
(2006/1907/EC) when characterizing and predicting unknown physicochemical
properties and environmental and health effects of target chemical substances.
Lastly,  the  results  of  ALS-based  forest  inventory  studies  show  that  MLP  and
SVR produce reliable estimates for species-specific forest attributes, which are
increasingly needed by forest management and energy production applications.
The  performance  of  MLP  and  SVR  is  found  to  be  comparable  to  the
corresponding performance of current ALS-based forest inventory methods.

In addition to the novel applications of the modeling methods, the main
innovation of this thesis was to show the usability of GA-based optimization
schemes  for  selecting  the  appropriate  structure  of  air  quality  and  forest
inventory models. Even though approaches based on the use of GA have been
presented in the related fields of environmental modeling, they have not been
previously applied in the selected application domains to this extent.

The  results  and  observations  of  this  thesis  in  general  suggest  that  the
computational methods studied are well-suited for solving complex predictive
modeling problems in environmental management. In the future, further
development of the modeling is required, especially, in respect to the modeling
and prediction of rare and spatially dependent processes. A combination of the
modern data-driven modeling methods and geostatistical modeling methods is
thus one potential research direction. In addition, more emphasis should be
placed  on  improving  the  mechanistic  interpretation  of  the  models  in  order  to
improve their (regulatory) acceptance. This requires the development of hybrid
modeling approaches, where physical information about underlaying system is
encapsulated at some level into the data-driven modeling.

Universal Decimal Classification: 004.9, 502.14, 502.3, 630*5
CAB Thesaurus: information systems; computer techniques; models; neural networks;
data processing; optimization; prediction; environmental assessment; environmental
management; decision making; air quality; chemicals; risk assessment; structure activity
relationships; forest inventories; remote sensing; aerial surveys
Yleinen suomalainen asiasanasto: informatiikka; tietojärjestelmät; tiedonlouhinta;
mallintaminen; mallit; optimointi; neuroverkot; geneettiset algoritmit; ympäristö-
ongelmat; päätöksenteko; ennusteet; ilmanlaatu; kemikaalit; riskinarviointi; metsän-
arviointi; kaukokartoitus; laserkeilaus
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1 Introduction

Nowadays, there is an increasing need for powerful and reliable computational
models that can be used to support decision-makers in managing and regulating
environmental  issues.  Concerning  urban  air  pollution  control,  for  instance,  the
reliable  site-specific  air  quality  forecasts  are  required  in  order  to  set  up
emergency response plans and potential practical measures such as traffic
limitations during peak pollution situations. In chemical risk assessment,
computational non-testing (in-silico) methods are required as alternatives for
conventional  laborious and expensive in-vivo and in-vitro  testing strategies.  In
natural resource management, respectively, powerful remote sensing (RS)
methods are an essential part of decision support and information systems and
are increasingly required to replace time-consuming field-assessment
procedures.

The environment is a highly complex system, characterized with ill-defined
natural and anthropogenic interactions and feed-back loops between systems
(e.g. Green and Klomp, 1998; Haykin and Principe, 1998). In addition, processes
themselves usually have an inner structure, where different parts of the process
influence each other with delays (Haykin and Principe, 1998). Atmospheric
pollutants,  for  instance,  are  a  consequence  of  natural  and  anthropogenic  (e.g.
traffic and industry) emission processes, chemical reactions between species,
solar radiation, temperature and other interactive processes (San José et al.,
2009). According to Green and Klomp (1998) the complexity of environmental
systems can be characterized by spatial and temporal scales, non-linear
interactions and feedback loops, high number of influencing factors, criticality
and human influence.

The complexity of environment poses many challenges in modeling (e.g. Green
and Klomp, 1998). Limitations are associated especially with the analysis of
complex and ill-defined systems, such as biological systems, weather-related
phenomena, fluid turbulence and radar backscatter from the sea surface,
characterized through massive interactions among different parts of a system or
nonlinear phenomena (Haykin and Principe, 1998). In such conditions physical
(mechanistic) based modeling usually fails and statistical approaches are
required  to  establish  unknown  relationships  from  the  data  (e.g.  Gardner  and
Dorling, 1998). The standard statistical approaches are, however, in many cases
relatively unsophisticated for dealing with environmental data, characterized
with missing data, noisy or collinear variables (e.g. McCune, 1997),
heterogeneous distributions (e.g. Rong, 2000), and non-linear, time-delayed
interconnections between variables (e.g. Gardner and Dorling, 1998).
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In recent years data-driven modeling (DDM), which rely on the methods of
computational intelligence (CI), have been increasingly adopted for solving
complex modeling problems in environmental sciences (e.g. Krasnopolsky and
Chevallier, 2003; Solomatine, 2005; Haupt et al., 2008). Basically, DDM can be
regarded as a general framework for the data-based (empirical) modeling,
having a limited knowledge about the physical behavior of the system
(Solomatine and Ostfeld, 2008). The DDM approach can thus in principle act as a
complementary to physical modeling, which is based on the incorporation of
known physical, chemical or biological mechanisms in the modeling.

The objective of this thesis was to evaluate the usability of the modern
computational methods and related DDM approaches for solving complex
predictive modeling problems associated with environmental management
decision-making. The selected case studies were:

� Forecasting of urban airborne pollutant concentrations
� Characterization of physicochemical and biological properties of

chemical substances, using quantitative structure activity relationships
(QSARs) and chemical grouping

� Predicting species-specific forest attributes using airborne laser scanning
(ALS) data

The  study  was  carried  out  through  experimental  model  design  and  evaluation
work with an examination of the external validity using a comparison of model
output with the experimental data. In each application domain suitable
experimental data were available, as well as experts in the field who could
participate in guiding the work.

The selected computational methods contained up-to-date artificial neural
networks  (ANNs)  and  related  methods,  namely  multi-layer  perceptron  (MLP),
support vector regression (SVR), self-organizing map (SOM) and Sammon’s
mapping, all of which have been previously shown to exhibit good processing
and modeling capability for the environmental data (e.g. Canu and
Rakotomamonjy, 2001; Lu et al., 2002; Kolehmainen, 2004; Lu and Wang, 2005).
Moreover, the methods were compared with other modeling approaches
previously adopted in the application/problem domains. In addition to the novel
applications of the modeling methods, the main innovation of the thesis was to
show the usability  of  GA-based optimization schemes for  selecting appropriate
input  variables  and  structure  of  the  data-driven  models.  Even  though
approaches based on the use of GA have been presented in the related fields of
environmental modeling, they have not been previously applied in the selected
application areas to this extent.

In the studies with air quality forecasting (AQF), the main objective was to
investigate the usability of MLP-based modeling for forecasting urban airborne
pollutant concentrations of nitrogen dioxide (NO2) and particular matter (PM2.5)



Introduction

Dissertations in Forestry and Natural Sciences No 60 19

and,  particularly,  to  examine  the  accuracy  of  the  modeling  in  course  of
infrequent occurrence of peak pollution episodes. In addition, the objective of air
quality  studies  was  to  investigate  the  accuracy  of  MLP  in  an  operational
condition, where numerical weather prediction (NWP) data are available for the
modeling. This is important since the evaluation of ANN-based air quality
models has been mainly based on the use of meteorological measurement data
instead of actual NWP predictions (e.g. Kolehmainen et al., 2001; Kukkonen et
al., 2003). Further, novel computational approaches for imputing missing data in
air  quality  datasets  were  examined  in  order  to  recover  incomplete  data  to  the
complete format required by the MLP- based modeling schemes.

In  the  studies  with  QSARs  and  chemical  grouping,  the  objective  was  to
investigate how the methods can be used to characterize unknown
physicochemical properties, and environmental and health effects of target
chemical  substances  within  the  framework  of  the  EU’s  REACH  regulation
(2006/1907/EC). The principal focus was on the discovery of chemical groups for
a set of target chemical substances and a set of reference chemical substances in
respect to the calculated molecular descriptor data. In REACH, the information
derived  from  chemical  grouping  can  allow  the  use  of  the  so-called  read-across
approach, where unknown properties of target chemical substances are
interpolated, based on the existing data of reference chemical substances
belonging to the same chemical group. Such read-across approaches are
expected to be necessary when reducing the need of the extensive laboratory-
based testing procedures often based on the use of animal experiments.

Lastly, the studies in the field of forest inventory, aimed at evaluating the
accuracy of the ANN methods, namely MLP, SVR and SOM in the prediction of
species-specific forest attributes using ALS data. Previously, the ALS-based
forest inventory models have been based largely on the use of conventional
regression methods, and so far ANNs have not been examined in this field to
this extent. The ANN methods were compared to the non-parametric k-most
similar neighbor (k-MSN), which has recently been adopted in the ALS-based
forest inventory studies (e.g., Packalén, 2010).

The structure  of  the thesis  is  divided as  follows.  First,  a  brief  introduction into
the domain of application and the modeling problems to be studied is given
(Chapter 2). In each domain, general research hypotheses and potential
solutions are proposed. There follows the presentation of the modern
computational approaches for the processing of environmental data, including
the main modeling methods studied in this thesis (Chapter 3). Next, the aims of
the thesis are briefly summarized, followed by the presentation of material and
methods and the evaluation of the key results and findings in each case studies
(Chapter 4). Finally, the significance of the work is assessed and
recommendations for future work are laid out (Chapter 5).
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2 The domain of application

2.1 ENVIRONMENTAL INFORMATICS

The work presented here falls into the discipline of environmental informatics.
Environmental informatics is a branch of applied computer science, which
develops and uses information technology and computational methods for
environmental  protection,  research  and  engineering  (e.g.  Avouris  and  Page,
1995; Page and Hilty, 1995; Green and Klomp, 1998; Kolehmainen, 2004).
According to Page and Hilty (2005), environmental informatics can be defined as
follows:

“Environmental informatics is a special sub-discipline of Applied Informatics
dealing with the methods and tools of computer sciences for analyzing, supporting and
setting up those information processing procedures which are contributing to the
investigation, removal and minimization of environmental burden and damages.”

On  the  other  hand,  the  role  of  environmental  informatics  can  be  seen  as  a
mediator between environmental sciences and modern information technology,
providing novel data-driven solutions based on processing collected data into
the information and knowledge needed for problem solving in the domain
(Figure 1).

Figure 1. The role of environmental informatics between environmental sciences
and information technology (modified from Page and Rautenstrauch, 2001).

Soil, Air, Water, Radiation,
Noise, Waste, Landscape

Environmental
Sciences
Management, Economy,

Public Administration, Law,
Engineering, Ecology

Databases, GIS
Communications, Software
Engineering

Information
Technology
Statistics,

Neural Networks, Fuzzy
Logic,
Genetic Algorithms

Problem solving

Requirements of
environmental
problems



H. Niska: Predictive DDM approaches in environmental management decision-making

22 Dissertations in Forestry and Natural Sciences No 60

Such a problem solving requires developing and studying adequate methods for
effective processing of environmental data (e.g. Avouris and Page, 1995;
Kolehmainen, 2004). From this point of view, it is relevant to pay an attention to
the complexity of environmental systems/problems and its various appearances
in collected environmental data, which pose many challenges for the problem
solving.

2.2 CHALLENGES WITH ENVIRONMENTAL DATA

Green  and  Klomp  (1998)  have  arranged  the  sources  of  the  complexity  of
environmental systems into the following categories:

� Spatial and temporal scales
� Non-linear interactions and feedback loops
� High number of influencing factors
� Human influence

Data  produced  from  such  “non-controllable”  environment  represent  a
combination of several processes of multivariate origin, which render non-linear,
chaotic and noisy characteristics of nature.

First, the multitude of variables are required to be collected to achieve sufficient
representation on influencing spatiotemporal factors, their possible interactions
and feedback loops as well as human influence in the modeling. Frequently, the
base dataset have been fused with external dataset from the same geographic
region,  which  is  expected  to  increase  the  amount  of  information  on  the
underlaying problem for the modeling/analysis. These requirements results in
large and heterogeneous data matrices, with different spatial and temporal
scales, different dimensions, modes and orders. Furthermore, data matrices
produced are often correlated or may contain inner structures, where different
variables are interconnected each other with non-linearity and delays. An
important  aspect  is  also  seasonality,  i.e.,  primary  factors  to  be  analyzed  and
modeled are originated from cycles of nature and human activity. Consequently,
several years of measurement data are required to be collected in order to
capture all relevant conditions, changes and trends in underlaying systems.

In addition, environmental data are influenced significantly by deficiencies and
errors in the data collection, which should be considered when developing and
studying the methods (e.g. Cherkassky et al., 2006; Barry and Elith, 2006). A
problem encountered most frequently is missing data, which is due to device
failures, human errors or insufficient sampling and spatial coverage. Other
common problems include measurement errors, noise and outliers, which are
due to errors by devices or human operators and erroneous calibration of
devices.
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2.3 ENVIRONMENTAL MANAGEMENT DECISION-MAKING

The methods studied in Environmental Informatics are often associated with
information processing procedures of environmental management decision-
making. Environmental management is a broad concept, but basically it can be
seen as the process for managing and controlling of human activities and their
impacts on the environment. The main components of environmental
management and its relation to Environmental Informatics are depicted in
Figure 2.

The role of Environmental Informatics in environmental management is mainly
in studying appropriate methods for collecting, retrieving, storing and
processing measurement data into useful information and knowledge needed by
the decision-maker. An essential component of that process is the modeling.
Basically, the modeling is required to aid in reaching in-time and sufficient
management decisions e.g. by means of replacing laborious and expensive
measurement  procedures,  filling  in  information  gaps  of  monitoring  and
producing new information on complex environmental systems (e.g. Avouris
and Page, 1995; Maier et al., 2008). Usually the objective of the modeling is to
predict unknown properties, effects or events of environmental systems from
the basis of the available physical information and/or collected measurement
data from the underlaying system.

Figure 2. Main components of environmental management decision-making and relation
to Environmental Informatics.
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Jakeman et al. (2006) have demonstrated the importance of models in
environmental management options and separated models into different model
families, which include e.g. empirical, data-based, statistical models, process-
based models (called deterministic models), agent-based models and rule-based
models. Following Seppelt (2003), it is useful to divide models into the following
model categories:

� Theory-based (white-box) models
� Empirical (black-box) models
� Theory-influenced empirical (grey-box) models

In complex and ill-defined situations, as studied in this thesis, variables
characterizing the behavior of the system can be measured and used to construct
a data-based model. Such empirical data-based modeling is a natural choice,
since theory-based (physical) modeling suffers the lack of prior-knowledge on
underlaying physical laws and relationships of the system. In addition, theory-
based modeling may be time-consuming or may lead to unnecessarily complex
models.

The modeling is required in various fields of environmental management, which
covers for instance air quality, climate change, wastes and chemicals and natural
resources. In this thesis, the computational methods are studied in the fields
associated  to  urban  air  pollution  control,  chemical  risk  assessment  and
management and natural resources management. Next, the domains of the
application and the modeling problems studied are briefly introduced.

2.4 URBAN AIR QUALITY CONTROL

Urban  air  quality  (AQ)  has  emerged  as  an  acute  environmental  problem,
especially for densely populated metropolitan areas, causing negative effects on
health, ecosystems and materials. To prevent further decline in air quality it is
necessary (Kolehmainen et al., 2001):

� To analyze and specify all pollution sources and their contribution to air
quality

� To study the various factors, which cause the air pollution phenomenon
� To develop tools for reducing pollution by introducing alternatives for

existing practices

Peak pollution episodes are a particular concern, during which ambient air
concentrations are high, due to their adverse health effects for sensitive
population groups such as individuals suffering from respiratory illness,
children  and  the  elderly.  In  Europe,  the  key  pollutants  causing  the  worst  air
quality problems are particular matter (PM10 and PM2.5), ozone (O3) and nitrogen
dioxide (NO2)  (Kukkonen et  al.,  2005).  The European Union has  been active in
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order  to  foster  preventive actions and regulatory measures.  The Clean Air  For
Europe (CAFE) Directive (2008/50/EC) includes mandates for the provision of
information on ambient air pollutant concentration to the public, concerning
occurrences of exceedances of air quality criteria, and predictions for the next
days.

2.4.1 Air quality forecasting

On the basis of the aforementioned issues, it is necessary to develop reliable and
powerful methods for air quality forecasting (AQF), which can be used to launch
preventive actions before and during the episodes. The methods can be used as
part  of  air  quality  warning  systems,  which  aim  to  ensure  a  so  called  early
warning of urban air quality. According to International Strategy for Disaster
Reduction (ISDR), United Nations, early warning can be defined as:

“The provision of timely and effective information, through identified
institutions, that allows individuals exposed to hazard to take action to avoid or reduce
their risk and prepare for effective response.”

From an operational perspective, the prediction of next day’s air pollution levels
is usually required to launch proper actions and control strategies (Monteiro et
al., 2005). In the operational setup the AQF has been previously based on
numerical weather prediction (NWP), in a combination with deterministic
dispersion modeling (DET) and regression-based statistical modeling. The
current AQF methods are, however, limited to predict complex behavior of
chemically and physically reactive air pollutants and meteorological conditions
within the lowest atmospheric layer (e.g. Baklanov et al.,  2002; Kukkonen et al.,
2003).

In the last two decades, considerable efforts have been placed on developing
advanced  DDM  approaches  to  overcome  lacks  of  NWP/DET-based  AQF.
Numerous papers have been published on artificial neural networks (ANN)
based AQF approaches (e.g., Nunnari et al, 1998; Kolehmainen et al., 2001;
Kukkonen  et  al.,  2003),  most  of  them  directing  for  the  use  of  multi-layer
perceptron (MLP) network in the prediction (e.g. Gardner and Dorling, 1998). In
the accordance of the results published, the performance of ANN/MLP has been
shown  to  be  superior  to  that  of  linear  modeling  methods  such  as  linear
regression (e.g. Schlink et al., 2003).

In  recent  years,  the  advantages  of  other  ANN  methods  such  as  support  vector
regression (SVR) for the forecasting of air quality parameters have been shown.
Lu et al. (2002) and Lu and Wang (2005) have made an experimental comparison
between the SVR and radial basis function (RBF) network and showed that SVR
is  superior  to  RBF in predicting respirable  suspended particles  (RSP),  NOX and
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NO2. Juhos et al. (2008) evaluated the performance of SVR for predicting NO
and NO2 concentrations against  the MLP model  and found that  that  SVR gives
more reliable forecasts, although the difference is not very substantial. Further,
Juhos et al (2008) used principal component analysis (PCA) to reduce the
dimensionality  of  the  embedded  input  data.  Chelani  (2010)  compared  the
performance of multiple linear regression (MLR), MLP and SVR in predicting O3

concentrations in Delhi. The results obtained indicated the promising
performance of SVR over MLP and MLR.

Moreover, wavelet-based methods have been presented. Nunnari (2003) present
an approach based on wavelets for the modeling of SO2 time-series. The results
obtained show that there is no significant difference between the performance of
wavelet-based prediction model and MLP model predictions, but that there are
some  advantages  in  using  the  wavelet-based  method  in  terms  of  model
readability. Contrary to this, the results shown by Osowski and Garanty (2007)
indicate that the accuracy can be enhanced by decomposing the measured time
series data into wavelet representation and predicting the lower variability
wavelet coefficients of original time series using SVRs.

Promising results have been obtained also using on ensemble approaches where
a number of trained ANN models share a common input and whose outputs are
somehow combined to produce an overall output (Haykin, 1999). A
representative example on this is presented by Siwek et al. (2010), where several
ANN related modeling methods, which include MLP, SVR, RBF and Elman
recurrent network, are used in parallel to forecast the daily concentrations of
PM10.  In  this  ensemble  approach,  PCA  is  used  to  combine  the  results  of
individual predictors to the final neural predictor.

Despite considerable efforts with ANN-based AQF models, the evaluation of the
ANN models has been largely based on “now-casting” of air quality, i.e., using
the  actual  meteorological  observations  instead  of  NWP  in  the  modeling  (e.g.
Kukkonen et al., 2003). Consequently, there is no proper understanding about
the usability of a combination of NWP data and ANN methods in AQF.

Furthermore,  it  is  often  so  that  the  building  of  ANN  models  is  a  long  and  a
tedious process due to the presence of high number of potential model input
variables. In this context, modern optimization methods, such as evolutionary
and  genetic  algorithms  (EA/GAs),  are  of  particular  interest,  as  they  have  not
been extensively studied in the design of ANN-based AQF models. Many
shortcomings  are  also  originated  from  the  deficiencies  of  air  quality  data.  A
particular issue with air quality datasets is missing data, posing many
significant obstacles for the use of standard ANN models, which usually require
the complete data as a condition for their use.
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2.5 CHEMICAL RISK ASSESSMENT

Risk assessment is an important stage of environmental decision-making
procedures, identifying a risk related to a concrete situation and a recognized
hazard. The risk assessment process consists of the stages of:

� Hazard identification
� Exposure assessment
� Dose-response assessment
� Risk characterization

The risk assessment is associated with risk management, which is a process
consisting of steps of risk classification, risk benefit analysis, risk reduction,
monitoring and review. For more details on basic principles and stages of
chemical risk assessment and management the reader is referred to the extensive
review of Leeuwen and Vermeire (2007).

Risk assessment of chemicals is becoming more relevant after the introduction of
the Registration, Evaluation and Authorization of Chemicals (REACH)
regulation (2006/1907/EC). The REACH regulation requires that producers and
users  of  chemicals  have to  demonstrate  that  their  chemicals  pose a  low risk to
the environment. Reliable risk assessment methods are therefore important in
order to characterize and prevent negative impacts on health and ecosystems
but  also to  ensure that  the use of  chemicals  is  not  unnecessarily  regulated.  The
risk assessment of chemicals is, however, a time consuming and costly process
requiring  often  the  use  of  laboratory  (in-vivo  and  in-vitro)  testing  to  identify
unknown dose-responses of target chemicals.

2.5.1 QSARs and chemical grouping

The situation seems to change as non-testing methods (in-silico) promise
considerable savings in time, money and a reduction in use of animal
experiments when compared with conventional testing strategies. For example,
the European Chemical Agency (ECHA) and the U.S. Environmental Protection
Agency’s (EPA) accept quantitative structure-activity relationship (QSAR)
derived predictions for some regulatory purposes.

QSAR models are based on the similarity principle, i.e., a hypothesis that
structurally similar compounds exhibit similar properties. QSAR aims to derive
a quantitative model of the activity, which can be represented mathematically as
follows: activity = f (physicochemical properties and/or structural properties),
where f is a mathematical function. Biological activity (endpoint) can be
expressed as the concentration of a chemical substance required to give a certain
biological  response,  for  example  as  lethal  dose,  50%  (LD50) or lethal
concentration, 50% (LC50), of a toxin, required to kill half of a tested population
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during a specified time of period. QSARs are denoted as QSPRs, when the target
is a property of a chemical substance. In classical Hansch-type QSAR (Hansch et
al., 1963), physicochemical parameters, steric properties or some structural
features are used as descriptors. Up-to-date QSAR methods have now advanced
towards more complex modeling, including the processing of 2D and 3D
structure of the compounds.

QSARs relate to SARs, which are not quantitative concepts, but rather a
qualitative representation of relationship based on the principle of similarity.
SARs and chemical grouping are closely related methods. Chemical grouping
aims to search for chemical substance groups or categories based on a structural
similarity, which can be based on: common functional group, common
precursor of break-down products and constant pattern in changing of potency.
In  REACH,  the  chemical  grouping  can  be  used  for  extracting  information  on
more complex endpoints  using the so called “read-across” approach.  Annex XI
of the REACH regulation defines the chemical grouping and read-across as
follows:

“Physicochemical properties, human health effects and environmental effects or
environmental fate may be predicted from data for reference substance(s) within the
group of by interpolation to other substances in the group (read-across approach). This
avoids the need to test every substance for every endpoint.”

Despite the considerable efforts in (Q)SARs, there is still room for substantial
improvement (e.g. Schultz et al., 2003). Potential pitfalls are originated from
experimental data supporting the building of a model and model specification
itself. Particular lacks of current (Q)SAR methods are associated with the
prediction of more complex health related effects, including mutagenicity,
carcinogenicity, developmental toxicity, eye and skin irritation, and skin
sensitization (e.g. ECETOC, 1998; Schultz et al., 2003; Cronin and Worth, 2008).
In this context, more advanced data-driven modeling approaches are of interest,
as  they  might  help  to  remedy  the  inherent  limitations  of  current  (Q)SAR
methods.

2.6 ALS-BASED FOREST INVENTORY

Remote sensing (RS) methods are increasingly used as powerful alternatives for
expensive field measurements in various applications of natural resource
management. Concerning forest inventory, airborne laser-scanning (ALS) has
become an important technique due to the cost-effectiveness of such methods
and their accuracy relative to the current field-assessment approaches (Naesset
et al., 2004). The ALS yields a three dimensional georeferenced point cloud,
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which measures physical dimensions of the earth surface directly. For more
details on the theory of ALS, the reader is referred e.g. to Wehr and Lohr (1999).

Most ALS-based forest-inventory methods adopt the area-based laser canopy-
height-distribution approach to predict stand or plot specific forest attributes,
such as mean height, basal area and stand volume, but also single-tree-based
methods have been recently developed (e.g. Vauhkonen, 2010). Packalén (2010)
has evaluated the methods, directing most of the efforts on the use of the non-
parametric k-most similar neighbor method (k-MSN) (e.g. Mouer 1987; Mouer
and Stage, 1995), for stand level forest inventories using ALS data and aerial
photographs. Despite the relatively good prediction accuracy obtained, there is
still room for improvements, especially, in respect to the extraction and the
selection of appropriate ALS variables and the simultaneous prediction of
species-specific forest attributes.

To improve the usability of the ALS-based forest inventory methods, advanced
DDM/CI methods are of interest. In this context, ANN methods are of interest as
they have been shown to be more accurate than other statistical approaches in
various RS applications (e.g. Atkinson and Tatnall, 1997), but have not been
extensively tested in ALS-based forest inventory.
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3 Methods for intelligent
processing of environmental data

3.1 HYPOTHESIS TESTING

Data analysis is a solid starting point for any kind of argument in environmental
related conclusions and decision-making. Usually it is focusing on the testing of
hypotheses on environmental systems using data from a controlled experiment
or an observational study. According to Dowdy et al. (2004) the stages of general
experimental procedure are as follows: (i) state the problem, (ii) formulate the
hypothesis, (iii) design the experiments, (iv) make observations, (v) interpret the
data and (vi) draw conclusions.

From  another  perspective,  the  analysis  of  environmental  systems  can  be
described through iterative experimental approach (Berthouex and Brown, 2002),
where knowledge increases by iterating between experimental design, data
collection and data analysis (Figure 3).

Figure 3. The analysis of environmental systems through the elements of learning
(modified from Berthouex and Brown, 2002).
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The cycle starts with the formulation of a hypothesis, which is based on a priori
knowledge about the underlaying problem. The hypothesis can be represented
using a mathematical model that will be used to produce predictions on the
underlaying system. Iterating between data collection and data analysis
provides the opportunity to enhance the model by shifting emphasis to different
variables, repeating experiments and adjusting experimental settings.

However, a problem related to the analysis of environmental systems is, that it
may be impossible to manipulate the independent variables to create conditions
of special interest (Berthouex and Brown, 2002). A range of conditions can be
observed  only  trough  observations  or  field  studies  over  a  long  period  of  time,
which are  not,  however,  necessarily  collected from the same view of  intention.
Another problem is the replication of experimental conditions, which restrict the
verification of the generated hypothesis.

3.2 KNOWLEDGE DISCOVERY AND DATA MINING

Environmental data are not, as previously stated, always originated from
designed experiments and in many cases formulating well-defined hypotheses
is difficult (Sulkava, 2008). In such conditions, the experimental procedure
cannot be followed as such, but the first stage is data analysis, which could then
lead  to  define  the  hypothesis,  and  probably  also  to  design  an  experiment  and
collect more data (Sulkava, 2008).

The  analysis  of  environmental  systems  can  thus  be  seen  as  a  multi-stage  and
iterative  knowledge  discovery  process,  in  which  data  gathered  from  the
underlaying system are selected, transformed and modeled in order to extract
useful information (knowledge) that suggests hypothesis and conclusions, and
supports decision making.  Such the iterative data enrichment approach is
mainly followed in this thesis.

According  to  Fayyad  (1996),  the  data  enrichment  process,  when  it  starts  from
database, can be defined as knowledge discovery in databases (KDD). In the first
stage  of  the  KDD  process  (Figure  4),  the  target  data  are  selected  for  the
discovery  using  some  prior  knowledge  of  the  application  domain.  Next,  the
selected target data are undergone a preprocessing stage in which the quality of
data is ensured. Usually the preprocessing covers the issues related to the
handling of missing data, measurement errors and outliers. In the next stage, the
data  transformations  and  dimensionality  reduction  are  performed  in  order  to
compress  the  information  of  the  data  into  a  smaller  number  of  variables  or  a
new more informative set of variables required by data mining methods. In data
mining, model/patterns are extracted from data. Lastly, the model/patterns
obtained in the KDD process are evaluated and interpreted.
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Figure 4. The data processing chain in knowledge discovery in databases (modified from
Fayyad, 1996).

At the core of the KDD process are data mining methods. According to Fayyad
(1996) the link between KDD and data mining is defined as follows:

“KDD refers to the overall process of discovering useful knowledge from data,
and data mining refers to a particular step in this process.”

Data mining contains a set of data analysis methods, contributed often by the
methods of computational intelligence (discussed later), used to explore
complex relationships and to summarize information to an understandable and
useful form in data sets. Hand et al. (2001) defines the data mining as follows:

“Data mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are both
understandable and useful to the data owner.”

Data  mining  can  be  categorized  into  the  following  tasks,  which  correspond  to
different purposes of analyzing data (Hand et al., 2001):

� Exploratory data analysis
� Descriptive modeling (density estimation and cluster analysis)
� Predictive modeling (classification and regression)
� Pattern and rule discovery
� Retrieval by content

The  objective  of  exploratory  data  analysis  (EDA)  is  to  explore  data  without  a
clear hypothesis of what to look for by means of simple visualization methods or
more advanced data mining methods (e.g. Kolehmainen, 2004). In the
descriptive modeling, intrinsic properties of the data are explored e.g. by means
of density estimation and cluster analysis (Bishop, 1995; Hand et al., 2001). In
cluster  analysis,  the  data  samples  are  portioned  into  subgroups  according  to
their similarity using problem dependent proximity measures.
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The aim of  predictive modeling is  to  build a  model  which is  able  to  estimate  a
value of one variable from values of other variables. The prediction is performed
either for discrete values, when it is called classification, and for continuous
function, when it is called regression (Hand et al., 2001; Han and Kamber, 2006).
The rest of the data mining tasks, i.e. pattern and rule discovery and retrieval by
content, are closely related for searching patterns of interest such as association
rules (Hand et al., 2001).

In this thesis, the major focus was on predictive (regression) modeling. The EDA
approach was considered in one of the studies as a form of qualitative approach
for cluster analysis and prediction.

3.3 COMPUTATIONAL INTELLIGENCE

The methods of computational intelligence (CI) are increasingly used in solving
complex  data  mining  tasks  in  environmental  sciences  and  engineering  (e.g.
Krasnopolsky and Chevallier, 2003; Solomatine, 2005; Cherkassky et al., 2006;
Haupt et al., 2008). CI is an ambiguous concept, which combines the elements of
learning, adaptation and evolution to create computer-based (computational)
models that are, in some sense, “intelligent” (e.g. Bezdek, 1994; Fogel, 1995; Pal
and Pal, 2002). According to the literature, any system that generates adaptive
behavior  to  meet  goals  in  a  range of  environments  can be said to  be intelligent
(e.g. Bezdek, 1994; Fogel, 1995). A definition was proposed by Engelbrecht
(2007):

“Computational intelligence is the study of adaptive mechanisms to enable or
facilitate intelligent behavior in complex and changing environments.”

The definition emphasizes the target, which is the complex or changing
environment. Pal and Pal (2002) combine the existing definitions by requiring
the following characteristics of a computational intelligent component:

� Considerable potential in solving real world problems
� Ability to learn from experience
� Capability of self-organizing
� Ability to adapt in response to dynamically changing conditions and

constraints

Machine learning is a concept with respect to CI.  The main goal of machine
learning is to create algorithms that utilize past experience, or example data, in
solving problems (Mitchell, 1997):

“Machine learning is study of computer algorithms that improve automatically
through experience.”
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CI has adopted inspiration and ideas from biological mechanisms and patterns
of behavior (Hanrahan, 2009). The most well-known CI methods include
evolutionary and genetic algorithms, artificial neural networks and fuzzy logic.
The basic principles of artificial neural networks and evolutionary and genetic
algorithms studied in this thesis are shortly introduced next.

3.3.1 Neural networks

Artificial neural networks (ANNs) are computational models that simulate the
structure and functions of biological neural networks and adopt supervised or
unsupervised learning (e.g. Haykin, 1999). The ability to analyze and model
complex  non-linear  systems  makes  ANNs  attractive  for  the  study  of
environmental systems (May et al., 2009). Basically ANN is an adaptive system
consisting of a group of interconnected artificial neurons (computational units)
that adapt its parameters (the connection weights) based on external or internal
information that flows through the network during an iterative learning phase
(training). According to Haykin (1999), a neural network can be viewed as
follows:

“A neural network is a massively parallel distributed processor made up of
simple processing units, which has a natural propensity for storing experimental
knowledge and making it available for use.  It resembles the brain in two respects: (1)
Knowledge is acquired by the network from its environment through a learning process,
(2) Interneuron connection strengths, known as synaptic weights, are used to store the
acquired knowledge.”

ANNs can be classified by the learning method (or algorithm) they are adopting.
Broadly, the learning methods can be categorized into supervised learning and
unsupervised (or competitive) learning methods. According to Haykin (1999),
the learning can be defined in the context of ANNs as:

“Learning is a process by which the free parameters of a neural network are
adapted through a process of stimulation by the environment in which the network is
embedded. The type of learning is determined by the manner in which the parameter
changes take place.”

In supervised learning, model responses are known, and the weights of the
network  are  adjusted  so  that  it  produces  a  desired  input-output  mapping
(Figure  5).  The  basic  aim  is  to  infer  a  function,  called  classifier  if  the  output  is
discrete, and regression function if the output is continuous, which can be used
to  generalize  from  training  data  to  unseen  external  data.  ANNs  adopting
supervised learning are particularly suitable for complex predictive modeling
tasks, where the complexity of the data makes the design of a function by hand
impractical.
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Figure 5. The basic principle of supervised learning (modified from Mitchell, 1997).

Some of the most well-known supervised learning ANNs are multi-layer
perceptron  (MLP)  networks,  radial  basis  function  (RBF)  networks,  learning
vector quantization (LVQ) and support vector regression (SVR).

It should be emphasized that ANNs adopting supervised learning include a lot
of  tunable  parameters.  It  is  typical  that  the  training  error  tends  to  decrease  in
parallel with the increase of model complexity, and with too much fitting, called
overfitting, the model captures noise in the training data, and will not generalize
well (Hastie et al., 2001). As stated by Schlink et al. (2003), the presence of noise
necessitates a trade-off between the accurate modeling of training data and good
generalization power of the model, which is known as the bias-variance trade-
off (Geman et al., 1992). The traditional way to avoid overfitting is the early-
stopping, where original data are divided into the datasets of training, testing
and validating. A training set is used to construct the model whereas a test set is
used to control potential overfitting of the ANN model. Finally the validation set
is used to evaluate the generalization ability of the model. In addition, various
regularization approaches have been presented.

Conversely to  supervised learning,  in  unsupervised learning the network aims
to  auto-associate  information  from  the  network  inputs.  Unsupervised  learning
methods are well-suited for approximating the probability distribution of the
inputs or to discover structure in the input data (Cherrkassky and Mulier, 1998).
The most well-known unsupervised ANN method is the self-organizing map
(SOM), which is one of the main methods studied in this thesis.

3.3.2 Evolutionary and genetic algorithms

Evolutionary algorithms (EAs) comprise a class of search methods inspired by
evolution and natural selection (e.g. Bäck, 1996; Fogel, 2006), and extensively
used in ANN model design (e.g. Miller et al., 1998; Yao, 1999; Castillo et al.,

Learning is aimed at
minimizing this

difference
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system

Data-driven
model

(learning)

X Y (Observed output)

� (Predicted output)



Methods for intelligent processing of environmental data

Dissertations in Forestry and Natural Sciences No 60 37

2002). EAs have many appealing features compared to other search and
optimization algorithms, such as the ability to:

� Perform global search
� Escape local minima
� Deal with discontinuous and multi-modal functions
� Perform parallel processing (algorithm can be parallelized)

The  best  known  EAs  are  the  genetic  algorithms  (GAs)  whose  basic  principles
were first proposed by Holland (1975). GAs are iterative search heuristics
mimicking natural evolution by means of selection, recombination and mutation.
The theoretical background of GAs appears to be limited, but the building block
hypothesis has been commonly proposed (Goldberg, 1989):

“A genetic algorithm seeks near-optimal performance through the juxtaposition
of short, low-order, high performance schemata, called building block.”

The hypothesis suggests that by decomposing the overall problem into sub-
problems  and  solving  these  sub-problems  separately,  GA  can  find  good
solutions to the overall optimization problem.

The  basic  idea  of  GA  is  to  create  a  random  set  (population)  of  bit-coded
solutions (chromosomes or genotypes), which encode candidate solutions to the
problem (phenotypes). Each component of chromosome represents a gene,
which can be in several states, called alleles (feature values). The created
population is then evolved by means of genetic search operations, namely
selection, recombination and mutation, until a desired criterion is reached. The
basic cycle and operations of GA are presented in Figure 6.

Figure 6. The basic cycle and operations of GA (modified from Man et al. 1999).
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In  the  first  stage  of  GA  the  population  is  ranked  using  an  objective  (fitness)
function. According to the rank a specific ration of the population is selected in a
stochastic way to reproduce a set of new solutions (off-springs) through genetic
operations: recombination and mutation. Often so called elitism selection is
adopted, i.e., the individual having the highest fitness selected throughout the
generations. After reproducing new off-springs, follows the replacement of the
old population with the new population based on the fitness. The procedure is
iterated until a stopping criterion is fulfilled.

Even though EA/GAs seem to be power search algorithms in general and have
been shown to often find better solutions than other search algorithms, there are
some disadvantages attached to them as well, which should bear in mind. These
include the selection of appropriate genetic operators and parameters, and there
is no guarantee for convergence.

In addition to basic GA, numerous more sophisticated EAs have been proposed.
Among the methods, there are multiple objective evolutionary algorithms
(MOEAs) applied for solving complex multi-objective optimization problems. In
case of multi-objective problems, no unique optimal solution can be achieved,
but  instead  a  set  of  trade-off  (non-dominate)  solutions.  These  solutions  are
known as the Pareto-optimal set (Goldberg, 1989) where no improvement in any
objective is possible without sacrificing at least one of the other objectives.

Over the past decade, a number of MOEAs have been suggested, among them
Fonseca and Fleming’s MOGA (1995), Srinivas and Deb’s NSGA (1994) and
Horn et al’s NPGA (1994). To attain well-distributed Patero-optimal solutions,
specific Pareto ranking, sharing and goal attainment methods have been
adopted. For more precise details on these methods, the reader is referred to the
aforementioned references.

3.4 PREPROCESSING THE DATA

Preprocessing of the data is an important step in the KDD/data mining process,
required  to  transform  the  data  into  an  appropriate  format  required  by  the
modeling. Typically data preprocessing deals with issues of data cleaning (e.g.
handling of missing data, outliers and measurement errors), data
transformations and dimensionality reduction (Han and Kamber, 2000), which
are shortly discussed next.

Basically,  the  target  data  to  be  modeled/analyzed  are  often  given  as  a  data
matrix, consisting of data rows and columns. The columns correspond to the
measurement  variables  (called  also  attributes  and  features).  The  rows
correspond to  units  of  measurement  (e.g.  chemical  substance or  study field)  or
different points of time.
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The format of the target data matrix is given as:
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(1)

where p is  the  number  of  variables  (data  columns)  and n is  the  number  of
samples (data lines).

Incomplete data matrices, i.e. missing data, pose most likely most significant
obstacles for the adoption of standard modeling methods, which generally
require complete data as a condition for their use (Gentili et al., 2003;
Magnaterra et al., 2003). According to Norazian (2008) incomplete data matrices
can result in three major problems which are:

� A loss of information and as a consequence, a loss of efficiency
� Complications related to data handling, computation and analysis due

to irregularities in data structure and the impossibility of using standard
software

� The results may be biased due to systematic differences between
observed and unobserved data

Broadly  there  are  two  alternative  ways  to  handle  missing  data,  which  are  case
deletion and imputation. The case deletion aims at discarding all incomplete
data rows of the data matrix. However, in such an approach, significant amount
of information can be lost. Contrary to the case deletion the imputation aims at
replacing  missing  data  using  an  imputation  method.  Various  methods  for
missing  data  imputation  have  been  developed  (e.g.  Little  and  Rubin,  1987;
Dixon, 1979; Schafer, 1997; Schneider, 2001). However, they are often limited for
dealing with inherent characteristics of environmental data.

3.5 DATA TRANSFORMATIONS AND DIMENSIONALITY REDUCTION

The transformation of environmental data is usually needed to transform the
data into proper format required by a model. This is needed before applying a
model, for the following reasons (Kolehmainen, 2004):

� The variable is cyclic, so it includes discontinuities
� The data distribution does not enable the algorithm to recover important

features
� The magnitudes of the variables differ, so the variables with largest

numeric values tend to dominate the modeling
� There are outliers, which suppress important features
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For most standard modeling methods, cyclic variables pose a problem since they
include discontinuities. Transformation of cyclic variables into continuous
variables can be performed using sine and cosine functions as follows:


� = sin �
2�

��

�, 
� = cos�
2�

��

� (2)

where x is  a  value  of  the  variable  and �x describes the upper bound of the
variable (e.g. for the hour of the day �x = 24).

Many environmental variables have log-normal distributions. In some modeling
circumstances, e.g. in case of standard parametric statistical methods,
logarithmic transformation of variable (e.g. log10) is required to reach the
assumption of normal distribution of variable.

The transformations encountered most often include data scaling, which aims to
equalize the magnitudes of variables and thus preventing the variables with
largest  numeric  values  to  dominate  the  modeling  process.  The  standard
methods include variance scaling and equalization. The variance scaling is
defined as follows:


� =

 � 
����

���

(3)

where x' is the transformed variable, x is an original value of variable, xmean is the
mean value of variable and xstd is the standard deviation of variable.

A particular advantage of the variance scaling is that it is not very sensitive to
outliers. When the extreme values of variable are of interest, or are wanted to be
weighted, more useful way could be equalization. In equalization, the variables
are linearly scaled to the comparable range between 0 and 1, thus preventing
any variables to dominate the modeling process:


� =

 � 
���


��� � 
���
(4)

where xmin and xmax are the minimum and maximum values of variable,
respectively.

Equalization can however be influenced by outliers, which are common in
environmental datasets, and in such situations the variance scaling should be
preferred. Further, in some situations it may be justified to use data
normalization (or standardization) where the length of the data vectors is scaled
to one as follows:
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where xij is an original element of the data vector and �xi� is the length (norm)
of vector xi.

The normalized data reflect the relative values of variable in each data vector
instead of actual magnitude. This may be particularly useful when the goal is to
examine rather the profiles of data vectors than the magnitudes of single
variables.

It is often the case that some of variables in data are irrelevant for the modeling
being carried out and dimensionality reduction is required to be carried out.
Collinearity is one issue of concern, i.e. information in one of variable dublicate
or overlap with information in another variable, and can lead to computational
instabilities, large statistical correlations between variables and inflated standard
errors (Piegorsch and Bailer, 2005). Term multicollinearity refers to a situation
where two or more predictor variables in multiple regression model are linearly
correlated.  Another  issue  is  the  curse  of  dimensionality,  which  means  that  the
higher the dimension the more data is needed to find accurate model parameter
estimates (Sulkava, 2008).

Guyon and Elisseeff (2003) have listed the objectives of dimensionality
reduction, or input variable selection, which are:

� Improving the prediction performance of the predictors
� Providing faster and more cost-effective predictors
� Providing a better understanding of the underlaying process that

generated the data

When reducing the dimensionality of data, two concepts are separated. Feature
selection is used to choose a subset of features, or variables, while feature
extraction aims at creating a smaller set of new, more information rich, variables.

The methods can further be classified into wrapper and filter approaches (e.g.
Kohavi  and  John,  1997;  Liu  and  Motoda,  1998).  Wrapper  selection  is  based  on
iterative evaluation of models using subsets of input variables. Contrary to
wrappers, filters are conversely model-free approaches where some measure is
used to determine whether or not each candidate variable should be included
into a set of model input variables. Since filters avoid the modeling stage, they
can perform selection significantly faster than wrapper approaches (Hanharan,
2009).  In  addition  to  the  filter  and  the  wrapper  approach,  embedded  methods
have been presented. Embedded methods are usually specific to given model,
performing variable selection as the part of training process. For more details on
embedded methods, the reader is referred e.g. to Guyon and Elisseeff (2003).
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Principal component analysis (PCA) has been commonly adopted for extracting
features from environmental data (e.g. Mujunen and Minkkinen; 1996;
Asikainen, 2006). PCA is a linear statistical method to project p-dimensional
dataset X into a lower, s-dimensional space on uncorrelated variables (Jolliffe,
2002), which is often required by the standard modeling methods. The basic aim
of  PCA  is  to  generate  principal  components  (PCs) TP’ for explaining the
variance  of  data,  so  that  each  PC  explains  the  maximum  amount  of  residual
variance  not  explained  by  preceding  PCs.  In  PCA  the X-matrix is decomposed
into a sample score matrix T, variable loading matrix P’ and residual matrix E:

� =  !� + " (6)

where X is the data matrix (n x p), T is the score matrix (n x s), P is the loading
matrix (s x p) and E is the residual matrix (n x p), and TP' and E describes the
systematic variation and the noise of data, respectively.

Sequential forward selection (SFS) is perhaps simplest algorithm for feature
selection. In SFS algorithm the variables are included in progressively larger
subsets until the prediction performance of the model is maximized. The
corresponding selection procedure can be performed backwards, when it is
called sequential backward selection (SBS).

In addition to the previous methods, sensitivity analysis (SA), called also
relevance or importance analysis, can be adopted when determining most
efficient variables to models. Basically, SA methods aim to evaluate model’s
robustness for input variables, i.e.,  for estimating the rate of change in a model
output  with  respect  to  changes  in  the  model  inputs  (Daescu,  2009).  The  inputs
having  low  influence  on  the  model  output  are  usually  considered  to  have  low
importance in the modeling and can thus be discarded.

3.6 EXPLORATORY DATA ANALYSIS

In  exploratory data  analysis  (EDA) the target  data  are  visualized and explored
without a clear hypothesis by means of simple plotting of one or two variables,
histograms and box plots. The aim is usually to uncover underlaying structure,
extract  important  variables  or  detect  outliers  and  anomalies  from  the  data.
However, with multidimensional environmental data, more advanced methods
such  as  PCA,  SOM  and  Sammon’s  mapping  are  required  to  reduce  the
dimensionality of the data (e.g. Kolehmainen, 2004).

The basic methodological basis for SOM and Sammon’s mapping studied in this
thesis is given next.
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3.6.1 Self-organizing map

Self-organizing map (SOM) is one of the best known unsupervised neural
learning methods (Kohonen, 2001), shown to be particularly suitable for
complex environmental related data exploration tasks (e.g. Simula et al, 1999;
Kolehmainen, 2004). The basic aim of SOM is to find prototype vectors that
optimally  represent  the  input  data,  and  at  the  same  time  to  achieve  a  low
dimensional representation of the input space of the training samples usually in
the  two-dimensional  map  grid.  Training  of  SOM  results  in  a  topological
arrangement of output neurons, which are defined by their location on the map
grid  and  by  the  weight  vector,  which  has  the  same  dimensionality  as  input
vectors. The SOM learning is initiated by assigning random values to the weight
vectors (called also prototype or reference vectors) of the network:

#� = ($��,$��,… , $��) (7)

where w is the weight vector, m refers  to  the  index  of  neuron  and p is  the
number of variables.

The training patterns are fed into the network one-by-one in random order, and
this procedure is repeated a pre-determined number of times (epochs) for each
of them. At each training step, the best matching unit (BMU) is found. The BMU
is the neuron with the smallest Euclidean distance to the input vector:

%(�� ,&) = '*-min�.�� � #�. (8)

where c is  the  index  of  BMU, xi is the input vector and W includes all weight
vectors. BMU and its neighboring neurons are then adjusted according to the
following update rule:

#�(/ + 1) = #�(/) + 03�(/)[�� � #�(/)] (9)

where w is  the  weight  vector, m is the index for the neuron updated, t is  a
counter for iterations, and h is the neighborhood function. A commonly used
neighborhood function is the Gaussian function:

03�(/) = 4(/)exp5�
�63 � 6���

27�(t)
8 (10)

where �(t) is a learning rate factor, rc and rm are the location vectors in the map
grid for the corresponding neurons and �(t) defines the width of the kernel.
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To summarize, the SOM algorithm proceed as follows:

(i) Find the BMU for input vector according to the minimum Euclidean
distance (Eq. 8)

(ii) Move the weight vector of the BMU towards that input vector, using the
update rule (Eq. 9)

(iii) Move the weight vectors of neighboring neurons, according to the
neighborhood  function  (Eq.  10),  towards  that  input  vector,  using  the
update rule (Eq. 9)

(iv) Repeat steps (i)�(iii) for the next input vector until all input vectors have
been used

(v) Repeat steps (i)�(iv) until convergence
(vi) Find the final BMU for each input vector according to the Euclidean

distance

In principle, SOM is particularly suitable for different data exploration tasks, but
it can be used also for regression modeling. Regression can be accomplished by
searching the BMU for the vector with unknown components using the known
vector components. In this thesis, the SOM was used for regression in two of the
studies  (Papers I and V).  The output  of  SOM was based on the mean value of
target variables of the BMU for the selected predictor variables, following the
principle adopted by Kolehmainen et al. (2001).

3.6.2 Sammon’s mapping

Sammon’s mapping (Sammon, 1969) is a non-linear mapping tool that belongs
to the so-called metric multidimensional scaling methods (Kohonen, 2001).
Sammon’s mapping is a useful tool for the preliminary analysis and
visualization of class distributions and the degree of their overlap. Sammon’s
mapping aims at representing the points of p-dimensional data onto a subspace
of  two  dimensions,  preserving,  however,  the  inter-pattern  distances  as  far  as
possible.

Basically Sammon’s mapping is based on the minimization of the following cost
function:
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where n is the number of data points, dij is the Euclidean distance between two
points xi and xj in the original space, and d’ij is the Euclidean distance between
the corresponding points x’i and x’j in the lower dimensional target space.
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The minimization is usually based on the steepest descent (Kohonen, 2001),
updating the positions in the target space as follows:
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where 
��� is the pth  coordinate  of  the position of  the point  in  target  space, t is
the counter for iterations and the factor � is experimental factor, influencing on
the convergence of the algorithm.

Contrary to PCA, Sammon’s mapping is capable of maintaining the non-linear
properties of data. In addition, the benefit of Sammon’s mapping is the ability to
compress highly multidimensional and collinear information into very low
dimension. Unfortunately, the numerical calculation of Sammon’s mapping is
time-consuming, which significantly restricts its usage for large datasets. In such
data conditions, the combination of SOM and Sammon’s mapping has been
shown to be an efficient alternative (Kolehmainen, 2004).

3.7 PREDICTIVE MODELING

According to Hand et al. (2001) predictive modeling can be seen as a data
mining task,  which aims to  build a  model,  which is  able  to  estimate  a  value of
one  variable  from  values  of  other  variables.  The  basic  goal  is  to  find  a  model,
which fits the training data and produces maximal accuracy (low bias) and
precision (low variation) with the external validation data (Berthouex and
Brown, 2002). In this context, the selection of the appropriate model structure is
of particular importance to obtain good generalization. With an insufficient
amount  of  model  parameters  it  is  not  possible  to  get  a  good  fit  to  the  data,
whereas  if  too many parameters  are  used,  the model  fits  the training data  but
has poor external performance (generalization) with external data.

Following Åström and Wittenmark (1990), the main components of the model
building include: (i) selection of the model structure, (ii) parameter estimation,
and (iii) model validation. Selection of the model structure aims at determining
the model input-ouput signals and the internal components of the model,
appropriate to the problem studied. In parameter estimation, the values of the
unknown parameters of a model structure are estimated using parameter
estimation methods. The selection of the parameter estimation method depends
on  the  structure  of  the  model,  as  well  as  the  properties  of  the  data.  Lastly,  in
model  validation,  the  goodness  of  the  model  is  assessed,  usually  in  respect  to
accuracy and generalization ability.
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Next, the regression modeling methods studied or referred to in this thesis are
briefly described and discussed.

3.7.1 Conventional regression methods

The most well-known regression method is linear regression (LR). Basically, LR
aims at  predicting variables  as  a  function of  a  set  of  some observable  predictor
variables (Piegorsch and Bailer, 2005). The conventional multiple linear
regression (MLR) model can be expressed in matrix form:

F = �G+ H (13)

where y includes the values of the dependent variable (or response variable), X
includes the values of independent variables (or regressors, or explatory
variables, or predictor variables, or input variables), � are the regression
coefficients (parameters) and e includes the residual errors (e.g. due to noise).

The parameters of (M)LR models are often estimated using the least squares (LS)
approach, which is based on minimizing the sums of squared residuals. The LS
estimates of the regression coefficients can be solved using the following matrix
algebra called pseudo-inverse (Berthouex and Brown, 2002):

GI = (�J�)?K�JF (14)

For non-linear equations, an algebraic solution cannot be found, and parameter
estimation is usually carried out using iterative methods such as Gauss-Newton
(Berthouex and Brown, 2002).

With highly dimensional and collinear data, PCA-based regression methods are
extensively adopted (e.g. Mujunen and Minkkinen, 1996). Commonly adopted
methods include principal component regression (PCR) and partial least squares
(PLS) (Geladi and Kowalski, 1986; Esbensen, 2002). In PCR, orthogonal PCs are
used straightforwardly as the independent variables instead of the original
variables, which avoid the use of collinear data in the modeling. In PLS, both
input  and  output  matrices  are  decomposed  into  score,  loading  and  residual
matrices,  and PCs are  generated as  linear  combinations of  original  variables  in
such a way that they provide maximum correlation with the dependent variable.

Environmental processes are usually described through autocorrelated time-
series. The existing correlation can be used to predict future behavior of a
variable on the basis of past records of variable and/or other external (exogenous)
variables. The classical methods to analyze and predict such series include
autoregressive  (AR)  and  moving  average  (MA)  models.  In  principle,  AR  is  an
application of linear regression, in which a linear model is formed using
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previous values of the same variables. The method is called ARX, if the model
includes one or more external variables (exogenous). For more details on time-
series models (such as AR/ARX) and their applications to dynamic systems the
reader is referred e.g. to Ljung (1999).

It is often inadequate to adopt linear regression models, due to non-linear
characteristics of environmental systems. To overcome this problem, various
non-linear regression methods have been developed (e.g. Piegorsch and Bailer,
2005). These methods include e.g. piecewise regression model, also known as a
segmented regression model, based on segmentation of the modeling along the
range of the predictor variable, exponential regression models based on
expected exponential functional relationships, growth curves, rational
polynomials and multiple nonlinear regression (Piegorsch and Bailer, 2005).
Other non-linear regression modeling methods include artificial neural
networks (ANNs), such as multi-layer perceptron (MLP) and support vector
regression (SVR), studied in this thesis.

As alternative to the previous parametric regression methods, non-parametric
regression methods can be used. In non-parametric regression no underlying
parametric  model  is  assumed,  but  only a  large amount  of  the data.  It  relies  on
assumption  that  the  value  of  an  unknown  sample  can  be  predicted  using  the
values of its nearest neighbors. In most of the cases Euclidean distance metric is
adopted to search nearest observations. Nearest-neighbor regression (NN) is
probably the simplest and computationally easiest non-parametric regression
method. In addition, there are other more sophisticated approaches, such as the
most similar neighbor (MSN) method (Mouer, 1987).

3.7.2 Multi-layer perceptron

The multi-layer perceptron (MLP) is the most commonly used feed-forward
neural network, having numerous applications to prediction, function
approximation and classification in environmental sciences (e.g. Gardner and
Dorling, 1998).

The MLP network consists of processing elements, called neurons or nodes, and
connections (Haykin, 1999). The processing elements are arranged as layers, the
input  layer,  hidden  layer(s)  and  output  layer.  An  input  layer  distributes  input
signals  to  the  hidden  layer.  Each  unit  in  the  hidden  layer  sums  its  input,
processes it with a transfer function (called also activation function), and
distributes  the result  to  the output  layer,  or  in  case  of  several  hidden layers,  to
the  next  hidden  layer.  The  units  in  the  output  layer  compute  their  output  in  a
similar way. Usually the sigmoidal transfer function is used in the hidden layer
and linear transfer function in the output layer when modeling a continuous
function.
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The basic principle of a neuron model is illustrated in Figure 7, where the output
signal of a single neuron is expressed as:

L� = MA: $��
� + N��
�<� B (15)

where f denotes the transfer function, j is the index of the neuron, n is the
number of neurons in input layer, xi is the input from ith input neuron, wij is the
weight between ith input neuron and jth hidden neuron and bj is the bias of the
neuron.

Figure 7. Basic principle of a neuron model.

It has been shown that the MLP network is an universal approximator, i.e.
capable  of  approximating  any  measurable  function  to  any  desired  degree  of
accuracy (Hornik et al., 1989). Thus, specific attention is required to be placed on
the  selection  of  appropriate  model  structure,  in  order  to  prevent  a  risk  of
overfitting and to achieve sufficient generalization. Usually one hidden layer is
shown to be sufficient approximation in regression problems.

Training of the MLP network is performed using the back-propagation (BP)
algorithm (e.g. Bishop, 1995; Haykin, 1999) by adjusting iteratively the weights
of  the  network  to  minimize  the  network  error  function,  i.e.,  a  sum  of  squared
errors calculated between actual and desired outputs for all data input rows:

9(#) = : O��(#)�
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where n is the number of data input rows, w contains the weights and biases of
the network, and ei(w) contains the error of the network for input row i.

In the first phase (called forward pass), the signals of the network are computed
starting  from  the  input  layer  and  resulting  in  the  output  layer.  Next  the
difference between the computed and known (i.e. measured data) output is
calculated. This error signal is then propagated backwards in the network in the
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second phase by calculating the local gradients of the neurons and adjusting
each weight value according to the local gradient and the current signal value.

At general level, i.e. not paying attention to the details of the implementation, it
is possible to describe the learning using the well-known formula of gradient
descent as follows:

#(/ + 1) = #(/) + 4(/)P(/) (17)

where �(t) is a learning rate factor, w(t) is a vector of current weights, g(t) is the
current gradient for weights and t is a counter for iterations.

Major problems associated with the basic BP algorithm are, however, slowness
in learning, local minima and poor generalization. To overcome the previous
drawbacks several enhancements have been proposed, including the methods of
numerical optimization (e.g. Haykin, 1999). Some of the methods are based on
the computation of Hessian matrix, which contains the second derivates of the
network errors with respect to the weights and biases. Unfortunately, the
computation of the Hessian matrix is computational demanding for feed-
forward networks, and thus the methods, which do not require the computation
of second derivates, have been developed.

Perhaps,  the  most  efficient  algorithm  for  medium  size  networks  is  the
Levenberg-Marquardt (LM) algorithm (Hagan and Menhaj, 1994), which is also
used in comprising works of this thesis. The LM algorithm was designed to
approach a second-order training speed without requiring computation of the
Hessian matrix. When the error function has the form of a sum of squares, then
the Hessian matrix can be approximated:

Q = RSR (18)

where J is  the  Jacobian  matrix  containing  first  derivates  of  the  network  errors
with respect to the weights and biases:

R =

T
U
U
U
V
WO�
W$�

�
WO�
W$X

� 
 �
WO�
W$�

�
WO�
W$XY

Z
Z
Z
\ (19)

where the N is the number of weights.
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Next the gradient of the error function can be computed:

P = RSH (20)

where e is a vector of networks errors [O�, O�,… , O�]S. The LM algorithm uses the
approximation of H in the following Newton-like update:

�(/ + 1) = �(/) � [RSR + ^_]?�RSH(/) (21)

where μ is a scalar and I is the identity matrix.

Following Hagan and Menhaj (1994), the parameter μ is multiplied by some
factor � when a step would increase the network performance index and divided
by it when a step decreases the performance index. Suitable initial values could
be μ = 0.01 and � = 10, as suggested by Hagan and Menhaj (1994).

3.7.3 Support vector regression

Support vector regression (SVR) is a modern regression method closely related
to feed-forward neural networks (Haykin, 1999; Vapnik, 1995; Burges, 1998). In
recent years, SVR has been increasingly used in the field of environmental
modeling, e.g., Yu and Liong (2007) in forecasting hydrologic time-series,
Mileva-Boshkoska and Stankovski (2007) in predicting ozone concentrations, Lu
and Wang (2005) in NOx and  NO2 prediction, Lu et al. (2002) in predicting
respirable suspended particles (RSP), and Canu and Rakotomamonjy (2001) in
predicting O3 concentrations.

SVR  adopts  the  structure  minimization  principle,  which  has  been  shown  to  be
superior to the traditional empirical risk minimization employed by
conventional neural networks. The theory of SVR originates from support vector
machines (SVMs), which are developed for classification task. The most
commonly used implementation is �-SVR (e.g. Drucker et al. 1997; Vapnik, 1995),
which  is  basically  an  extension  of  the  linear  regression  model,  which  aims  to
find the following function:

L = #S�+ N (22)

The learning task is transformed to the quadratic optimization problem based on
the minimization of the so-called Vapnik's �-insensitive loss function (for more
details see e.g. Smola and Schölkopf, 1998 and Vapnik, 1995). The optimization
problem can be formulated into the following form:
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`ab �
�
�#��+ d : (f� + f�g)�

�<� (23)

Subject to:

L� � #S�� � N h j + f�

#S�� + N � L� h j + f�g

f�, f�g k 0

where n denotes the number of samples, C is a positive constant that defines the
degree of penalized loss when a training error occurs, i.e., trade-off between the
training error and the model flatness, � is the radius of the insensitive zone and
� are slack variables to measure the deviation of training samples outside �–
intensive zone.

After solving the optimization problem, the following function can be used to
estimate new data points:

L = : (4� + 4�g)�
�<� q��, �r + N (24)

where 4�,u4�g are Lagrange multipliers (for the support vectors 4� or 4�g are non
zero) and q. , . r  denotes the dot product.

This is the so-called support vector expansion in which w can be described as a
linear combination of the training patterns. In a sense, the complexity of a
function is  independent  of  the dimensionality  of  input  space but  depends only
on  the  number  of  support  vectors,  which  are  a  small  subset  of  training  data
extracted by the algorithm.

The non-linear property of SVR is achieved by mapping of the input vector x
into the higher dimensional feature space, using a non-linear mapping function
�(x):

L = : (4� + 4�g)�
�<� qw(��), w(�)r + N (25)

To obtain sufficient efficiency, the mapping can be performed using a kernel
function K(xi, xj) to yield the inner products in the feature space rather than
calculating �(x) explicitly:

L = : (4� + 4�g)�
�<� y(��, �) + N (26)
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The radial basis kernel function is commonly used, which is given as follows:

yA��, ��B = exp�
.�� � ��.

�

2z�
	

(27)

whereu7 is the spread parameter.

Most important is the choice of control parameters, i.e., coefficients � and C
(Cherkassy and Ma, 2004; Chen and Wang, 2007; Osowski and Garanty, 2007).
The regularization constant C controls the smoothness of the approximation
function, i.e. a greater C value indicates less regularization and a more complex
model. The constant � determinates the margin within the error is neglected,
dominating the number of support vectors by governing the accuracy of the
approximation function. For normalized input signals the value of	� is usually
adjusted in the range (10-3–10-2)  and  C  is  much  bigger  than  1  (Osowski  and
Garanty, 2007).

3.8 MODEL VALIDATION

The evaluation of the model’s generalization ability is an important step of the
predictive modeling. In principle, the model validation is performed using an
external, independent validation data, which has not been incorporated to the
building stage of the model. In addition, the internal performance of the model
(goodness-of-fit) is usually relevant to examine.

Commonly used validation methods include hold-out, k-fold cross-validation
(leave many out, LMO) and leave one out (LOO) (e.g. Snee, 1997; Michaelsen,
1987).  Moreover,  the  method  of  bootstrapping  is  used  for  re-sampling  of  the
validation set to produce the distribution of re-sampled validation indices (Efron
and Tibshirani, 1993). In the holdout scheme, the data are randomly divided into
training and validation sets. The validation set is used to test the performance of
a model built on training data. However, such a method can underestimate the
prediction power of a model due to insufficient sampling, i.e., how the data is
divided into training and validation set. Opposite to the holdout, the LMO
divides  the data  into several  subsets  which are  in  turn used as  a  validation set
and the rest of the subsets as the training set. The LMO method enhances the
statistical reliability of the performance estimate compared to the hold-out
method. The basic idea of the LOO is similar to the LMO but it tries to maximize
the amount of the training data by testing a model for each data row.

The  holdout  and  LMO  methods  are  commonly  used  in  case  of  large
environmental time-series datasets. The benefit of these methods is the
computational efficiency compared to the LOO and bootstrapping. The LOO
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and the bootstrapping are suitable methods for validating the models limited to
relatively small number of data rows. The selection of a feasible method should
be, however, always made case by case, and it is recommended to use several
methods simultaneously to achieve more extensive understanding about the
performance.

Several statistical measures have been presented for the measuring of
performance of a predictive regression model (e.g. Willmott, 1981; Willmott et
al.,  1985).  In  principle,  the  validation  statistics  are  based  on  the  calculation  of
validation error e, i.e. the difference of the observed data point yi and predicted
data point �i, for data lines i, …, n in the validation set:

O� = L� � L{� (28)

Most likely the most common statistical measure is the coefficient of
determination (R2),  which  indicates  how  much  of  the  observed  variance  is
accounted for by the model:

R� = 1 �
: (L� � L{�)��
�<�
: (L� � L})��
�<�

(29)

where 
 is the observed mean of  variable.

However, there are defects with R2 when using it for evaluating and inter-
comparing models. For instance, in certain situations the magnitude of R2 is not
consistently related to the accuracy of the prediction (e.g. Fox, 1981; Willmott,
1981). This is the case e.g. when the estimates � correlate well with the
measurements y, but a systematic offset is observed.

Fox (1981) recommended for calculating the mean absolute error (MAE), the
mean  bias  error  (MBE)  and  the  root  mean  square  error  (RMSE).  The  MAE  is
calculated simply as follows:

MAE = �
�
: |O�|�
�<� (30)

where n is the number of observations in the validation set.

To calculate RMSE, sums of squares of errors (SSE) or the predicted residual
sum of squares (PRESS, Weisberg, 1985) is determined first as follows:

SSE = : O���
�<� (31)
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SSE can be further  transformed to  the mean squared error  (MSE),  which is  the
average squared error for the validation set divided by the number of
observations:

MSE =
SSE
b

(32)

From MSE RMSE can be calculated:

RMSE = �MSE (33)

The  advantage  of  RMSE  over  MSE  is  that  it  is  in  the  original  units  of  the
estimated  variable.  RMSE  can  be  divided  into  its  systematic  (RMSEs) and
unsystematic (RMSEu)  components  using  a  least-squares  estimate  of  the
predicted data point. Then to describe how much the model underestimates or
overestimates  the  values  (the  bias),  the  mean  bias  error  (MBE)  can  be
determined as follows:

MBE =
: O��
�<�

b
(34)

To  get  a  relative  and  dimensionless  measure  of  the  accuracy  the  index  of
agreement (IA, called also d) can be calculated as follows (Willmott, 1981):

IA = 1 � 5
SSE

: (|L{� � L}| + |L� � L}|)��
�<�

8 (35)

In  general,  IA  is  an  appropriate  and  well-understandable  operational  measure
limited to the range of 0�1, i.e., if it is not good then it is unlikely that the model
can be used in practice (Kolehmainen, 2004).

When the aim is to model rare environmental events, conventional validation
statistics cannot solely guarantee the performance of the model (Cherkassky et
al., 2006). Methods for evaluating models in such critical situations (e.g. urban
air pollution episodes; Schlink et al., 2003) are the fraction of false predictions
(FA), the fraction of correct predictions (TA) and the success index (SI):

SI = TPR � FPR (36)

where TPR is the true positive rate representing the sensitivity of the model (the
fraction of correct predictions) and FPR is the false positive rate, representing
the  specificity  of  the  model.  SI  is  limited  to  the  range  of  -1�1  and  for  a  perfect
model SI = 1.
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The significance of the model predictions can be evaluated using various
statistical  tests.  A commonly used test  is  the  F-test,  which is  used to  assess  the
overall significance of the regression model. The F-value is the ratio between
explained model variance (systematic part) and unexplained model variance
(random part):

F = R�(b � � � 1)/(�(1 � R�)) (37)

The  estimation  of  the  standard  errors  for  the  estimated  parameter  can  be
performed using the method of bootstrapping. The bootstrapping is a non-
parametric approach utilizing the re-sampling of the validation set with
replacement and calculating the indicators for each set separately to produce the
distribution of re-sampled validation indices (Efron and Tibshirani, 1993). The
standard error for the estimated parameter is thus the standard deviation of the
re-sampled indices.
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4 Case studies

4.1 AIMS OF THE PRESENT STUDY

The  objective  of  this  thesis  was  to  evaluate  the  usability  of  modern
computational methods and related DDM approaches for solving complex
predictive modeling tasks associated with environmental management decision-
making. The thesis was carried out through the representative case studies,
which fall into the following fields of modeling: (i) air quality modeling and
forecasting (Papers I–III), (ii) QSARs and chemical grouping (Paper IV) and (iii)
remote  sensing  (Paper V). The specific research objectives studied in each
application domain are as follows:

� To  evaluate  and  compare  the  performance  and  suitability  of  SOM  and
MLP  and  other  computational  methods  for  recovering  missing  data  in
air quality datasets (Paper I)

� To evaluate the performance of MLP-based modeling schemes for the
forecasting of hourly urban air pollutant concentrations  (Papers II–III)

� To evaluate the usability of a chemical grouping approach based on
Sammon’s mapping and regression-based QSAR models for predicting
physicochemical and biological properties of a set of target chemicals
(Paper IV)

� To  evaluate  the  accuracy  of  MLP,  SVR  and  SOM  for  the  prediction  of
species-specific stem volumes using ALS and other remote sensing data
(Paper V)

� To test the usability of GA-based schemes for selecting appropriate
model  structure  and  input  variables  in  the  forecasting  of  hourly  air
quality (Papers II–III) and ALS-based forest inventory (Paper V)

In each application domain, the data-driven modeling approaches were
designed and evaluated through an examination of the external validity using a
comparison of model output with the experimental data.

4.2 EXPERIMENTAL DATA

Experimental data were derived in each application domain, varying from
continuous monitoring data to more static field or laboratory experiments. The
characteristics of the experimental data posed many requirements for the
computational methods and approaches used. The experimental data and its
properties are briefly summarized in Table 1.
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Table 1: The properties of experimental data sets used in this thesis.

Paper I II–III IV V

Data source Air quality
monitoring stations
and meteorological
stations

Air quality
monitoring stations
and meteorological
stations; NWP

Laboratory in-vitro
and in-vivo
experiments

Remote sensing
and field
experiments

Number of data
lines

~8758 (1 year) 25 000 – 35 000
(3-4 years)

32 463

Number of data
columns
(variables)

Less than 15 Between 30 and
100

Up to 1191 44 multiplied by
transformations

Temporal
resolution

1 hour 1 hour; 6 hours
(NWP data)

(no temporal data) (no temporal data)

Spatial dimension ~30 x 30 km ~30 x 30 km (no spatial data) < 10 x 10 km

Data quality 0 –15% missing
data

0 –15% missing Erroneous values
(constants and
zeros)

(no severe data

quality problems)

Air quality time-series datasets were investigated in Papers I–III. The data sets
consisted of concentrations of major airborne pollutants monitored in urban
traffic and urban background stations, all in hourly averaged time-scale, and
processed according to the existing quality assurance/quality control (QA/QC)
procedures. The concentration data were supplemented with the basic
meteorological variables.

In Paper  I the  experimental  data  consisted  of  airborne  concentration  data  and
meteorological observation data monitored in Helsinki, Finland and Belfast,
Northern Ireland,  during the year  1998 (Sect.  2.1, Paper I). In Papers II and III
the concentration and meteorological data were monitored in the Helsinki
metropolitan area during the periods of 1996–1999 (Sect. 2.1, Paper II) and 2000–
2003 (Table I, Paper III), respectively, and supplemented with additional
parameters such as the Monin-Obukhow length and the mixing height,
estimated using the meteorological pre-processing model MMP-FMI (e.g.
Karppinen et al., 2000). In Paper III the meteorological input data were
supplemented  with  the  NWP  data  produced  by  the  HIRLAM  limited  area
weather forecasting model (Eerola, 2002) (Sect. 2.1.2, Paper III).  The  HIRLAM
grid point nearest to the selected air quality monitoring stations was selected.
For  this  point,  all  the  forecasts  (listed  in  Table  I, Paper III) from the model
surface levels made within 00, 06, 12 and 18 Coordinated Universal Time (UTC)
were employed.

In Paper IV the chemical descriptor data associated with a group of chemical
substances were examined. The chemical substances are presented in Table 3,
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Paper IV. The data set consisted of molecular descriptors (topological,
geometrical, connectivity indices, etc.) calculated from chemical molecular
structures using the DRAGON package (Talete, http://www.talete.mi.it),
comprising altogether a total of 1191variables. Furthermore, some other
variables were calculated using standard packages (e.g., ALOGPS 2.1,
HYPERCHEM) and methods such as EVA (Turner and Willett, 2000). The data
produced by the molecular modeling were linked with the corresponding
physicochemical (Table 4, Paper IV), fate and toxicity variables (Table 5, Paper
IV)  derived  by  means  of  the  standard  EPA/ECOSAR  models
(http://www.epa.gov) or simple linear regression models (e.g. Papa et al., 2005;
Gramatica et al., 2007).

In Paper V, the remote sensing (RS) data supplemented with the experimental
field measurements (II A, Paper V)  were collected from 463 sample plots  in  67
randomly  chosen  stands,  in  the  Matamansalo  test  area  in  Eastern  Finland.  The
RS data consisted of the feature data calculated from ALS data and digitized and
corrected aerial photographs (II B, Paper V). Species-specific volume estimates
were calculated for each plot as a function of measured diameter at breast height
(DBH) and calculated tree height (Veltheim, 1987) using the species-specific
models presented by Laasasenaho (1982).

4.3 COMPUTATIONAL APPROACH

The general computational approach adopted follows mainly the stages of the
previously  presented  KDD  process  (Fayyad,  1996),  considering  the  data  as  a
static resource of the information for the modeling. The main stages of the data
processing and modeling carried out can be condensed into the following chain:

� Data collection and selection
� Data preprocessing (cleaning, transformations and dimensionality

reduction)
� Model parameter and model structure selection
� Model validation
� Model interpretation

In the first stage, the experimental data gathered from each application domain
was preprocessed and transformed to appropriate format for the modeling. The
actual (predictive) modeling step was then performed using various
computational modeling methods. In the modeling stage, the selection of
appropriate model input variables and structure was performed in order to
enhance the predictive capability of a model. After which, the external validity
of the modeling was evaluated against experimental data using the standard
validation methods and performance measures. Lastly, the interpretation of the
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resulting models was performed by utilizing the problem-specific expert
knowledge in each application domain.

4.3.1 Data preprocessing

In Papers  I–III,  the  imputation  of  missing  data  was  performed  in  order  to
ensure the use of the ANN-modeling methods. This was followed by the
transformation of discontinuous timing variables (such as day of week and hour)
and  wind  direction  into  continuous  series  of  sine  and  cosine  components.  In
Paper V, various transformations of original features were calculated for the
basis of input variable selection. The data scaling was performed next using the
standard  variance  scaling,  as  suggested  to  be  robust  for  potential  outliers.  In
Paper IV, Sammon’s mapping was used to reduce the dimensionality of the data
in order to facilitate the interpretation of the modeling results.

4.3.2 Modeling methods

The selection of modeling methods was made based on the previous studies and
knowledge, which in general suggest the potential of modern computational
data-driven methods in solving complex and ill-defined environmental
modeling tasks (e.g. Kolehmainen et al., 2001; Canu and Rakotomamonjy, 2001;
Lu et al., 2002; Kolehmainen, 2004; Lu and Wang, 2005). The main emphasis has
been on the up-to-date ANN models, namely: MLP, SVR and SOM. The
methods were used in parallel or in a combination with the other statistical
modeling methods in order to create problem tailored approaches.

In Paper I, the MLP and SOM were benchmarked for filling-in the missing air
quality data. The methods were benchmarked with other statistical imputation
methods including linear interpolation (LIN), multiple linear regression (MLR)
and multivariate nearest neighbor (NN) regression (Dixon, 1979). In Papers II
and III,  MLP-based  air  quality  forecasting  (AQF)  schemes  were  studied.
Previously, the ability of the MLP network for the forecasting of concentrations
of  a  range  of  pollutants  has  been  shown  by  many  studies  (e.g.  Gardner  and
Dorling, 1998; Kolehmainen et al., 2001; Kukkonen, et al., 2003). In Paper IV,
Sammon’s mapping was adopted for the discovery of chemical substance
groups from high-dimensional chemical descriptor data. Previously, the benefits
of Sammon’s mapping for solving complex data exploration tasks have been
shown,  for  instance  for  the  analysis  of  urban  air  quality  and  fermentation
process data (Kolehmainen, 2004). Lastly, in Paper V, MLP, SOM and SVR were
applied  for  predicting  species-specific  stem  volumes  using  ALS  data  and
airborne photographs, benchmarking the methods in respect to the non-
parametric k-MSN method applied previously in the domain (e.g. Packalén and
Maltamo, 2007).
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4.3.3 Variable and parameter selection

The  selection  of  appropriate  ANN  input  variables  and  structure  was  of
particular concern since a too complex network can lead to over-fitting and poor
generalization power. The major emphasis was on testing GA-based selection
schemes, which have been shown to merit many appealing benefits in ANN
design, such as the ability to deal with large feature and model architecture
space, non differentiable and noisy error function and multimodality (e.g. Miller
et al., 1998; Yao, 1999; Castillo et al., 2002). For more throughout information
about the details of the developed GA-based schemes, the reader is referred to
the original research papers (Papers II and III).

In case of the MLP network (Papers II, III and V) the model structure selection
was formulated using the direct or in-direct encoding. In the direct encoding
each  phenotypic  feature  (e.g.  network  input)  is  encoded  by  using  exactly  one
genotypic code, whereas in the indirect encoding only some characteristics of
the model are encoded (e.g. Yao, 1999). The selection of model input variables
was  implemented,  using  the  direct  encoding  by  representing  the  model  input
variables as a bit string, where 0 refers to the absence of an input variable and 1
refers to the presence of an input variable in the model. Contrary to this, the
indirect encoding was used for selecting the high-level architecture of the MLP
network, by encoding the number of hidden layers and nodes to the bit string
(see  Figure  1, Paper II).  The  benefit  of  the  indirect  encoding  is  its  better
scalability, but on the other hand small changes in the representation (e.g.
number of hidden layers) might lead to significant changes in fitness (Castillo et
al., 2002).

The evaluation of generalization ability for different MLP network structures
was performed using the conventional hold-out validation, in which the
performance of the trained networks was assessed using IA, calculated based on
external validation set (Paper II). The conventional early-stopping strategy was
used  to  control  over-fitting  by  comparing  the  error  of  the  training  set  to  the
corresponding error of the validation set during the training (Sarle, 1995).
However,  in  practice,  the  evolving  of  the  MLP  network  is  computationally
tedious, due to the iterative training phase of MLP. To overcome this problem,
the  actual  training  of  MLP  was  replaced  by  a  sensitivity  analysis  (SA)  in  the
MLP  design  stage  (Paper III).  In  this  scheme,  the  sensitivity  of  an  input  was
estimated by replacing an input variable in the test set by its average computed
on the training set and calculating the effect of this elimination on the output of
the MLP network.

In case of the SVR model, the complexity of model structure was controlled
straightforwardly using hyper parameters � and  C,  which  control  noise-
sensitivity and flatness of the model, respectively. In case of SOM, major efforts
focused  on  the  selection  of  appropriate  SOM  size  (Papers I and V).  This  was
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performed mainly through experimental testing of different alternatives for
SOM size in respect to the quantization error or the prediction error of the SOM
model.

4.3.4 Model validation

The validation of model’s external prediction performance is an essential stage
of  the  model  building  process.  In  this  thesis,  the  prediction  performance  was
evaluated using CV/LOO statistics based on the standard statistical performance
measures and their bootstrapped confidence levels. The selection of validation
methods  was  made  based  on  the  previous  studies  in  the  application  domains
studied.

In air quality modeling, the cross-validation between the years has been largely
used to test the ability of air quality models to predict values outside the
training years (e.g. Kukkonen et al., 2003). In QSAR modeling and ALS-based
forest  inventory the LOO statistics  have been commonly calculated to  describe
the prediction ability of the models (e.g. Packalén and Maltamo, 2007; Gramatica
et al., 2007). In case of QSAR modeling also internal performance rates, reflecting
goodness-of-fit, were reported (Paper V).

The standard RMSE and R2 were calculated throughout the experiments,
supplemented with the dimensionless IA. To describe how much the model
underestimates  or  estimates  the  response  variable,  the  bias  was  calculated.  SI
was used to determine the success in the prediction of critical events (Papers II
and III). Further, to assess the statistical significance of the models, the standard
t-test or F-test was employed in some conditions (Papers IV and V).

4.4 IMPLEMENTATION OF THE MODELING SCHEMES

The data processing and modeling approaches covered in this thesis were
implemented mainly using in-house Matlab functions and scripts based on
available Matlab toolboxes. Based on that programming work the Matlab
toolbox  (called  MTools)  was  designed  and  implemented  (currently  not
publically available). The contribution of MTools was that of facilitating and
speeding up the required model design process, as the whole data processing
chain  was  not  needed  to  be  coded  always  from  scratch  throughout  the
experiments.

In principle, MTools library is composed of the user defined run script, the main
function and low-level data processing and modeling functions (Figure 8).
MTools main function covers all the relevant stages of data processing required
to build up and test predictive data-driven models for the target data. Actual



Case studies

Dissertations in Forestry and Natural Sciences No 60 63

modeling methods are based on the implementation of the existing Matlab
toolboxes and their, C-code based, low-level functions. These toolboxes included
Spider  v.  1.71,  SOM  Toolbox  v.  2.0,  Neural  Network  Toolbox  v.  5.0,  Statistics
Toolbox v. 5.2 and GEAT toolbox v. 3.5.

Using MTools, the user can build up the (predictive) modeling run, which starts
from the selected target data matrix and ends up final model estimates and
computed statistical performance indices. The defined model run can involve
missing  data  imputation,  data  scaling,  sine  and  cosine  transformations  of
discontinuous variables, variable delaying, modeling runs for the selected
modeling methods and computation of statistical performance indices for
resulting model outputs.

Figure 8. The architecture of Matlab Mtools modeling library.

4.5 DATA-DRIVEN MODELING APPROACHES

Following the selected computational approach, the data-driven modeling
approaches were built and evaluated in the selected application domains. To
provide a more compact understanding of the modeling experiments, the stages
of data processing and modeling carried out are summarized in each application
domain in Table 2.

Spider

MTOOLS
runscript

MTOOLS

(incl. generic interface to data and models)

SOM tbx.

MATLAB/C-CODE
(impl. computationally intensive tasks)

Neural
network tbx.

Statistics
tbx.

GEAT tbx.

Function/program
level

Model design and
experiment level

Data processing
and modelling level
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Table 2: The main stages of data processing in the predictive data-driven modeling
schemes evaluated in this thesis.

Paper I II–III IV V

Air quality forecasting QSARs and
chemical
grouping

ALS-based forest
inventory

Data selection Good quality air
quality data

Representative
years and locations

Based on a set of
target chemical
compounds

Based on stands of
a forest inventory

Handling of
missing data

Missing data
replaced using NN
(Dixon, 1979)

Missing data
replaced using
SOM+MLR (Paper
I)

Incomplete or
constant variables
omitted

(no missing data)

Data
transformation
and scaling

Variance scaling;
sine and cosine
transformation of
cyclic variables

Variance scaling;
sine and cosine
transformation of
cyclic variables

Variance scaling;
logarithmic
transformations

Variance scaling;
square root,
logarithmic
transformations
and powers

Modeling
methods

MLR, NN, MLR,
SOM, MLP

MLP Sammon’s
mapping and MLR
(PLS, SVM
discussed)

SOM, MLP, SVR, k-
MSN

Model structure
selection

All the existing
input variables
selected

GA and multi-
objective GA;
sensitivity analysis

Based on the
existing models or
knowledge

Multi-objective GA

Model validation Hold-out (artificial
gaps)

Hold-out (last
year) and cross-
validation

Leave-one-out
validation

Leave-one-out
validation

Next,  the  key  results  and  their  significance  in  each  application  domain  are
assessed, by reproducing some figures from the original papers. For more
throughout application-specific information, the reader is referred to the original
research papers.

4.5.1 MLP-GA based air quality forecasting

In Papers II–III, a data-driven modeling approach based on the standard MLP
network was developed and evaluated for the forecasting of urban
concentrations of NO2 and PM2.5 (Figure 9). The advantage of the proposed MLP-
based air quality forecasting (AQF) scheme is, that it does not require exhaustive
information on underlying air pollution mechanism and has the ability of
modeling non-linear relationships between different predictor variables.



Case studies

Dissertations in Forestry and Natural Sciences No 60 65

Figure 9. Computational approach adopted for air quality forecasting.

The basic idea of the modeling was to establish a site-specific association
between emissions, estimated here from time of day inputs, meteorology and air
quality.  An innovation of  the modeling was that  the meteorological  input  data
were supplemented with the numerical weather predictions (NWP) provided by
the limited area weather forecasting model HIRLAM (Eerola, 2002). Previously,
the evaluation of ANN/AQF modeling schemes has been largely performed
using the meteorological measurement data instead of the actual NWP data (e.g.
Kukkonen  et  al.,  2003).  The  main  stages  of  the  modeling  are  briefly  discussed
next.

Handling of incomplete air quality data

First the datasets gathered from different sources of information underwent the
preprocessing of collected raw datasets in order to achieve harmonized and
complete training data. In the data preprocessing, a particular focus was placed
on the missing data, which is a common problem with air quality datasets,
posing obstacles for the use of standard MLP-modeling.

In Paper I, various computational methods were tested using simulated missing
data patterns, the methods ranging from mean substitution, interpolation
(nearest neighbor, linear and spline) and regression to the standard ANNs (SOM
and MLP). It was found that short missing data gaps can be replaced reliably
using LIN. The performance of LIN depends, however, strongly on the variable
under  study  (see  Figure  1, Paper I).  Compared  to  ANNs,  the  performance  of
LIN was shown to be better in case of short missing data gaps, the performances
being,  as  expressed  using  IA,  0.85  for  LIN  and  0.72–0.81  MLP  and  SOM  (see
Table 3, Paper I).  This  is  not,  however,  the  case  with  more  complex  missing
patterns, where the performance of LIN is more degenerated compared to
ANNs. This makes a combination of LIN and ANNs attractive for the
replacement of missing air quality data sets.
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On  the  basis  of  the  aforementioned  observations  a  hybrid  scheme  based  on  a
two-stage imputation procedure was tested (Paper I, Sect. 2.3.6). The basic idea
of  the  method  is  to  predict  the  performance  of  the  linear  substitution  for
different gap lengths (hours), from the basis of the average gradient and the
exponent �, which describes the memory characteristics of time-series. The
exponent � (Feder, 1988) is related to Hurst exponent H and fractal dimension D,
which are commonly used in fractal and spectral analysis for measuring
randomness of time-series and roughness of a surface (Voss, 1991). The
relationship can be represented using the following MLR model:

exp(;�) = �� g exp(-*';�) + �� g exp(�) + d� (38)

where di is the index of agreement (marked in the compendium as IA) calculated
for different gap lengths i, gradi is  the  average  gradient  over  the  gap  length i
calculated for every available time point of variable, � is the exponent calculated
ignoring the real gaps, and Ai, Bi and Ci are regression coefficients for the gaps i
calculated from air quality datasets.

The  overall  accuracy  of  the  proposed  MLR  model  (Eq.  38)  was  found  to  be
moderately good, the bootstrapped overall performance being 0.81, as expressed
using  IA,  for  the  air  quality  variables  and  for  1�24  hours  gap  lengths  studied
(these results are not published). The proposed MLR model can be encapsulated
in to the following two-stage imputation scheme:

1. Stage

1. Define a limit value for the imputation performance (e.g. di =
0.90) and estimate the critical gap length for a variable using the
MLR model (Eq. 38)

(predict di for different gap lengths i based on the calculated
variable specific gradi and  the  exponent  � until di decreased
below a chosen limit value)

2. Perform the linear substitution for the missing data gaps under
the defined critical gap length

2. Stage

3. Select  a  multivariate  imputation  method  (e.g.  SOM)  and
perform the missing data imputation for the remaining missing
data patterns

The results obtained in the imputation of missing air quality data are in general
consistent with the literature (e.g. Latini and Passerini, 2004; Turias et al., 2007;
Pisoni et al., 2008), suggesting the good usability of SOM and MLP in recovering
the missing data in air quality datasets. The pros and cons of different methods
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in respect of different criteria are presented in Table 5, Paper  I. The benefit of
SOM over MLP is, that it is less dependent on the actual location of the missing
values, i.e., MLP imputation scheme requires the training of separate networks
for different missing data patterns, which can lead to an incoherence between
imputed values (Kalteh and Hjorth, 2009). Furthermore, SOM do not generate
the values outside the original data range. Therefore, it seems to be safer to rely
on SOM.

From the point of ANN/MLP-based AQF models, the recovery of incomplete air
quality data is the essential part of the modeling, since the complete/continuous
data are required for training and testing networks as demonstrated in Papers II
and III.  Alternatively,  it  is  possible  to  discard  all  incomplete  data  rows  of  the
data matrix (e.g. Kolehmainen et al., 2001), but such approach can lead to the
loss of a significant amount of information and other potential pitfalls in the
modeling.

Finally, it is worthwhile noting, that despite the methods being tested here
solely  with  the  air  quality  data,  they  could  be  applied  to  other  type  of
environmental data with the same structure.

Selecting MLP model structure

After the pre-processing of the air quality data, the MLP network was trained to
predict hourly NO2 and PM2.5 concentrations in time (Papers II and III). A major
concern was the complexity  of  the MLP network,  which was controlled by the
selection of appropriate model input variables and the selection of high-level
parameters (a number of hidden layers and nodes).

In this thesis, evolutionary selection schemes were employed, which might have
some benefits in ANN-based AQF model design. In Paper II,  the  standard GA
with  one  objective  was  used  for  evolving  appropriate  MLP  network  structure
(hidden  layer)  and  relevant  input  variables  simultaneously.  It  was  found  that
GA is capable of reducing the enhancement of the prediction performance of the
model  slightly  (see  Table  2, Paper II). A limitation of this approach was, as
expected, the high computational demand, which is due to the training of the
MLP network for each input subset-structure combination. Furthermore, the
ability of single-objective GA to reduce the number of model input variables was
found to be limited.

To overcome the problems obtained in Paper II, the multi-objective GA (Fonseca
and Fleming, 1993; Srinivas and Deb, 1994; Deb, 2004) was tested in Paper III.
The objective was to minimize the prediction error of the MLP network and the
number of model input variables, simultaneously. Furthermore, the sensitivity
analysis (SA) of the MLP network proposed by Moody and Utans (1991) was
used in conjunction with the multi-objective GA to reduce the computational
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burden  of  the  model  evolving.  Such  a  SA  approach  is  capable  of  testing  the
importance of input variable subsets instead of one input variable at a time.
Usually SA is performed by varying only one variable at a time (e.g. Belue and
Bayer, 1995), but a clear limitation of such an analysis is that it may not consider
an interconnection between other variables and may therefore lead to a
misleading analysis (May et al., 2009).

Accuracy of prediction

The resulting cross-validated performance statistics showed moderately good
general prediction performance for the MLP models studied, IA values ranging
between 0.80–0.91 for NO2 and 0.63–0.81 for PM2.5 (Table 2, Paper II;  Tables  2
and 3, Paper III).  The  accuracies  obtained  are  in  line  with  the  corresponding
accuracies  reported  in  the  previous  studies  (e.g.  Kolehmainen  et  al.,  2001;
Kukkonen et al., 2003). In the operational set-up (MLP+NWP24, see Paper III),
NWP/HIRLAM  input  data  were  shown  to  increase  the  accuracy  of  the  MLP
models with the corresponding predictions based solely on the meteorological
observations (MLP+MPP00), the IA values increasing from the level of 0.7 to the
level of 0.8.

The results obtained for NO2 in Paper II were  revalidated  using  the
corresponding MLP model trained on the concentration data collected at the
Töölö air quality monitoring station, Helsinki during the years 1996–1999 (these
results are not published). The model was trained for the years 1996–1999, and
tested for the last year 1999.

According to the achieved results, the accuracy obtained using the now-casting
MLP  model  (corresponds  to  MLP+MPP24,  see Paper III) was approximately
0.90–0.91, as expressed using IA values. The performance is comparable with the
results obtained in Papers II–III, which showed the accuracy between 0.86–0.90.
The proposed MLP model seems to be capable of predicting the occurrence of
highest  concentrations  to  some  extent  (Figures  10  and  11).  This  observation  is
also made by Kukkonen et al. (2003) with the same data. However, this is not the
case with the Vallila data, where the models tend to underestimate the highest
concentrations throughout (see Figure 4c, Paper III).

The true potential of the models is not obvious in the light of calculated
statistical performance measures, since the validation schemes used were
measuring the performance of the models strictly on an hourly level and did not
consider the potential temporal “shift” in the prediction. From the application
point of view (air pollution control and early warning), such hourly accuracy is
not always necessary, but it is sufficient to derive information on potential
episodic situations with lower temporal accuracy (e.g. bihourly, 6-hourly or
daily).
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Figure 10. Measured versus predicted NO2 concentrations at the Töölö station during
the year 1999 as obtained with the MLP+MPP24 model. The plot is enhanced with least
squares fitting line (dotted) and a line showing perfect fit (solid).

Figure 11. Hourly time series of the measured and predicted concentrations of NO2 at
the station of Töölö from 9 to 23 March 1999 for the MLP+MPP24 model.

It should be emphasized, that the prediction of infrequent peak pollution events
is important to be parallel to the successful modeling the average behavior of a
system.  In  accordance with the obtained results,  the  limited ability  of  the MLP
models  to  forecast  an  occurrence  of  peak  pollution  situations  is  obvious.  False
alarm rates obtained were in the level of 50% (see Tables 2 and 3, Paper III).
Underestimation of the highest concentrations was interpreted to be mainly due
to the tendency of the MLP model to average over the rare episodic data but,
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obviously, also due to the absence of relevant predictor variables in the training
data. It is clear, for instance, that some necessary variables are missing in case of
long range transportation of PM2.5. Further, the meteorological input data
gathered from the area-based NWP forecasts and/or area-based monitoring
network do not represent the site-specific meteorological conditions sufficiently.
Compared with deterministic dispersion modeling (DET), the MLP models,
however, seem to exhibit higher site-specific prediction accuracy (e.g. Kukkonen
et al., 2003; Rantamäki et al., 2005).

The restriction of the ANN/MLP models still is not being applicable neither for
predicting spatial  concentration distributions in  urban areas  nor  for  evaluating
air pollution scenarios for future years (Kukkonen, et al., 2003). This is mainly
due to the MLP network being solely based on the experimental data, i.e., it does
not imply real physical interactions of the air pollution process, and cannot
properly predict/extrapolate pollution situations outside the training data.

Despite the lacks previously discussed, it should be emphasized that the
evaluation of the MLP network was performed here based only on restricted
training  data.  Therefore,  strong  conclusions  should  be  made  with  care.  As  a
general conclusion, the MLP network can be regarded as a potential tool for the
prediction of pollutant concentrations in city hot-spots, however, providing the
good quality and representative training data exist. Combined with other
modeling tools the MLP-based models can strengthen decisions in operational
air quality management and pollution control.

Recommendations for future work

Many  inherent  problems  are  associated  with  the  MLP  network,  which  include
the determination of feasible network structure, the selection of training data,
local minima and the curse of dimensionality. These issues were shown in the
present study and partly resolved through the GA-based model design. It is,
however, obvious that more emphasis should be directed on more advanced
methods,  such  as  SVR,  wavelets  and  ensembles,  instead  of  the  standard  MLP
network.

Perhaps more important is, however, the enhancement of the capabilities of
ANN network to learn extreme and spatially dependent characteristics of urban
air quality. The lack of the ANN model trained strictly on using site-specific data
is, that it may easily overfit the data when trying to reproduce extreme values
(Foresti et al., 2010).  Enhancements could be found for instance from Extreme
Value  Theory  (EVT),  which  is  a  branch  of  statistics  for  analyzing  the  tail
behavior of a distribution (Gumbel, 1958; Beirlant et al., 2004). Many interesting
statistical modeling approaches, which adopt the principles of EVT can be found
(e.g.  Easteo,  2007).  Another  potential  research  direction  is  to  combine  ANNs
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with geostatistical modeling methods (such as interpolation methods).
Geostatistical methods can be used to produce more representative spatial
training  data  for  ANN  modeling,  thus  enabling  also  predictions  for  spatial
concentration distributions required in air quality management (e.g. Attore et al.,
2007; Foresti et al., 2010; Foresti et al., 2011).

4.5.2 Novel QSAR and chemical grouping approach

In Paper IV, QSAR modeling and the chemical grouping approach based on a
combination of Sammon’s mapping and MLR models was evaluated for the
characterization of unknown physicochemical properties and (eco)toxicity of a
set of target chemical substances within the REACH regulation (Figure 12). The
basic goal was to explore the similarity between the target chemical substances
and the set of more information rich reference chemical substances (see Table 3,
Paper IV)  in  order  to  apply  the  read-across  within  the  identified  chemical
substance  categories.  The  proposed  approach  can  be  considered  as  a  sort  of
semi-quantitative prediction method for the interpolation of existing
information from a set of reference chemical substance to a target chemical
substance.

Figure 12. (Q)SAR approach based on QSAR predictions and Sammon’s mapping
(modified from Figure 2, Paper IV).

A particular issue with the QSAR modeling and chemical grouping was that of
reducing the dimensionality of multivariate descriptor data. This was required
for better discovery and visualization of chemical groups for target substance
chemicals, which is essential for the adoption of the read-across for filling-in
data gaps in REACH. Previously, the dimensionality reduction has been usually
performed using PCA or  related approaches  (e.g.  Wold et  al.,  1987;  Geladi  and
Kowalski, 1986). However, PCA in its basic form cannot provide a compact and
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easily  understandable  picture  about  the  chemical  clusters  in  2D  space.  To
overcome the previous lack, Sammon’s mapping was used to explore the
similarity  of  the chemical  substances  in  two feature  dimensions.  The basic  goal
was  to  determine  whether  changes  in  chemical  structure  lead  to  any  marked
shift in chemical and (eco)toxicological properties.

The modeling approach adopted followed the principles of the (Q)SAR analysis,
which starts with the computation of molecular descriptors of a set of molecules
with limited structural variability and known responses. These data are then fed
into  the  basis  of  the  data-driven  analysis.  In  this  thesis,  DRAGON-based
structural descriptors were computed. These DRAGON data were
supplemented with physicochemical and (eco)toxic data produced by the simple
MLR models (e.g. Papa et al., 2005; Gramatica et al., 2007). Sammon’s mapping
was then used to  discover  chemical  substance groups in  that  high dimensional
structural and property/activity descriptor space (Figure 13).

Figure 13. Principle of the Sammon’s mapping-based chemical grouping (reproduced
with recalculation from Figure 8, Paper IV).

Regulatory acceptance of the modeling

The obvious benefit of the approach is the ability of Sammon’s mapping to
visualize the patterns and analogies for a set of target chemicals in two
dimensions. This could be beneficial from the application point of view (the
REACH regulation), as it facilitates the visual interpretation of the results.
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Whenever the (Q)SAR models are used for regulatory purposes, the models
should however fulfill regulatory validation principles, i.e., the sufficiency of
information for making a particular regulatory decision (Tichý and Rucki, 2009).
According to OECD (2007) the following validation principles are considered
useful for the assessment of regulatory models:

� A defined endpoint
� An unambiguous algorithm
� A defined domain of applicability
� Appropriate measure of goodness-of-fit
� Robustness and predictive ability
� Mechanistic interpretation, if possible

The previous criteria are complementary to the REACH regulation, in which (i)
the relevance, (ii) the reliability and (iii) the adequacy of the models is required
(Worth et al., 2007; ECHA, 2010). The relevance, the reliability and the adequacy
refer to the appropriateness of the prediction in relation to the information
needed for the regulatory purpose, the inherent quality i.e. validity of the model
and its applicability and the sufficiency of information for making a particular
regulatory decision.

The mechanical interpretation of the proposed analysis can however be
impossible or impractical. Further, the approach tends to reflect more the overall
structural similarity (cf. DRAGON descriptors) than the biological activity when
it  is  based  on  a  high  number  of  complex  structural  molecular  descriptors.  To
overcome these deficiencies, the approach was compensated by mechanical-
based  selection  of  key  descriptor  variables,  which  were  related  to  the  basic
structural information and well-defined physico-chemical and biological
properties of the substances under study.

Challenges with the modeling

Taken overall, the approach produces the semi-quantitative results, which still
contain highly supportive information for the regulatory purpose. It should be
emphasized, that the (Q)SAR predictions are valid only within the domain of
training/calibration  data,  and  whenever  the  models  are  used  for  external
predictions, some basis in physical reality is required (e.g. Johnson, 2008).

Limitations remain, especially when it comes to the assessment of more complex
health related endpoints (e.g. Schultz et al., 2003; Cronin and Worth, 2008).
Health  endpoints  are  many  times  reflected  by  differences  in  mode  of  action
between chemical classes and differences in toxicokinetics and toxicodynamics
between species. On the other hand, it has been found that the most critical
aspects with respect to the development of valid QSARs seems not to be model
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concepts,  but  high  uncertainties  and  inconsistency  in  the  data  used  for
calibrating QSARs (e.g. Thomsen, 2001).

As a recommendation for further work, more emphasis should be placed on
building  up  extensive  QSAR  databases,  which  enable  further  testing  and
evaluation of new data-driven modeling concepts, especially, for the modeling
of a complex biological activity. Further toxicological data are required, which
could be released through initiatives related to the REACH regulation (Cronin
and Worth, 2008).

4.5.3 ANN-GA based forest inventory modeling

In Paper V, three ANN models, namely MLP, SVR and SOM, were evaluated for
the prediction of stem volumes (m3ha-1)  of  Norway  spruce,  Scots  pine,  and
deciduous  trees  at  the  field  plot  and  forest  stand  levels  using  the  features
calculated from the ALS data and aerial photographs. Previously, the ALS-based
prediction of continues forest attributes has been mainly based on conventional
parametric and non-parametric regression methods (e.g. Naesset et al., 2005;
Packalén and Maltamo, 2006). Although the relatively good prediction
accuracies have been achieved, the methods have faced with many potential
shortcomings originated from the characteristics of the ALS data. Therefore,
new, more powerful methods capable of handling high dimensional RS data,
which may contain irrelevant, correlated and noisy variables, are required for
ensuring reliable forest attribute estimates.

The ANN methods were compared with the corresponding k-MSN method
(Packalén and Maltamo, 2006). According to the achieved LOO performance
statistics (Table II and III, Paper  V) ANN modeling can be regarded as an
appropriate approach for the ALS-based forest inventory resulting in high
prediction performance (see Figure 14). The accuracies obtained with different
ANN models were, in terms of IA, between 0.71–0.96 in plot level and 0.84–0.98
in stand level, which can be considered to be sufficient for forest inventory
purposes. The achieved performances are in general comparable with the
corresponding accuracies obtained in related studies (e.g. Packalén and
Maltamo, 2007).
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Figure 14. Measured versus predicted stand volumes by tree species and total volume as
obtained with MLP (reproduced from Figure 3, Paper V).

The highest prediction accuracies were obtained with the MLP and SVR
methods.  The  accuracy  of  SOM  was  found  to  be  degenerated  compared  to  the
corresponding accuracies achieved using MLP and SVR. A problem observed
with  the  direct  application  of  MLP  and  SVR  was  that  they  produced  the
negative values outside the original data range. However, it might be possible to
avoid this problem with aid of specific data transformation methods, which
were out of scope in this thesis.

To sum up, a relatively limited dataset was used to evaluate and compare the
ANN  methods  in  this  thesis.  Consequently,  further  evaluation  of  the  ANN
methods is required using more extensive ALS data. This could show better the
potential of an ANN-based forest inventory analysis.

In addition to the novel application of ANN modeling methods, the major
innovation of the study was to show the usability of the multi-objective GA for
selecting appropriate ALS variables in ALS-based forest inventory. Previously,
the selection of the ALS features has often been based on time-consuming trial-
and-error experiments using iterative insertions and deletions, more advanced
but local heuristic procedures or filter based distance metrics such as Minkowski
distances (e.g. Packalén and Maltamo, 2006; Packalén and Maltamo, 2007;
Peuhkurinen et  al.,  2008).  The use of  global  search procedures  has  been largely
omitted, expect for some recent studies (e.g. Holopainen et al., 2010). In general,
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the multi-objective GA-based variable selection method was found to be well-
suited for the selection of appropriate ALS variables for species-specific forest
inventory models. Further, the combination of k-MSN and multi-objective GA
was  shown  to  be  powerful  alternative  for  the  input  variable  selection.  A
particular  benefit  of  such the approach is  its  ability  for  global  of  exploration of
the ALS feature subsets.
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5 Summary and conclusions

In  this  thesis,  the  usability  of  the  modern  computational  methods  and  related
data-driven modeling schemes was evaluated in solving the predictive
modeling problems associated with environmental management decision-
making. The selected case studies included (i) the forecasting of urban airborne
pollutant concentrations, (ii) the prediction of physicochemical and biological
properties of a set of target chemical substances using quantitative structure-
activity relationships (QSARs) and chemical grouping, as well as (iii) the
prediction of species-specific forest attributes using airborne laser scanning (ALS)
data and other RS data.

The investigation was mainly based on experimental model design and
evaluation work, with an examination of the external validity using a
comparison of model output with the experimental data. The main modeling
methods investigated included artificial neural networks (ANNs) and related
methods, among them multi-layer perceptron (MLP), support vector regression
(SVR) and self-organizing map (SOM) and Sammon’s mapping. In addition to
the novel applications of the modeling methods, the main innovation of the
thesis  was  to  demonstrate  the  usability  of  genetic  algorithm  (GA)  based
optimization schemes for determining appropriate model input variables and
structure in the application domains studied. Even though approaches based on
the use of GA have been presented in the related fields of environmental
modeling, they have not been previously applied to this extent in the selected
applications.

First, the experiments were conducted with air quality data. In the first stage, the
computational approaches based on MLP and SOM were developed and tested
for imputing missing data in air quality datasets. The results obtained show that
MLP and SOM are well-suited and relatively accurate methods for missing data
imputation. The advantage of SOM over MLP is that it is less dependent on the
actual location of the missing data and thus it seems to be safer rely on it.
Moreover,  it  is  shown  that  the  performance  of  linear  substitution  in  respect  to
the length of gaps can be estimated separately for each variable of air quality by
calculating a gradient and the exponent �, the latter describing the memory
characteristics of the variable time-series. This relationship can be encapsulated
into the hybrid method proposed in the thesis.

In the second stage of the air quality studies, the MLP-based modeling schemes
were built and evaluated for the forecasting of airborne pollutant concentrations
in city hot-spots. This part of the work aimed to strengthen the previous
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knowledge about the usability and accuracy of MLP-based models in air quality
forecasting  and  in  particular,  to  yield  new  information  about  the  accuracy  of
MLP models in the operational condition where numerical weather prediction
(NWP) data are available. This is important since the evaluation of MLP-based
models has been largely made using the meteorological observations instead of
the  actual  NWP  data.  In  addition  to  the  novel  applications  of  MLP,  the  main
objective was to evaluate the usability of novel GA-based optimization schemes
for  selecting the structure  and input  variables  of  the MLP model  needed in air
quality forecasting.

The results of the MLP-based air quality forecasting in general show moderately
good prediction performance for airborne concentrations of NO2 and  PM2.5. In
addition, it is shown that the operational accuracy of the MLP network can be
enhanced  using  the  forecasts  of  the  NWP  model  as  the  model  input.  The
performance of MLP is, however, degenerated in the course of peak pollution
episodes where pollutant concentrations reach their highest values. This is a
clear  shortcoming  from  the  urban  air  pollution  control  point  of  view  and
requires  thus  more  attention  in  the  future.  Throughout  the  air  quality  studies,
GA-based  optimization  schemes  are  shown  to  be  well-suited  for  designing  the
MLP-based air quality models. The major observation from the experiments
with GA is that the multi-objective GA combined with the sensitivity analysis
(SA) of the MLP network provides a computationally powerful approach for the
input variable selection, which could be useful also in other related problem
domains.

In  the  second  stage  of  the  thesis,  novel  chemical  grouping  approach,  based  on
the combination of Sammon’s mapping and simple regression-based
quantitative structure-activity relationships (QSAR) models was developed and
applied for characterizing unknown physicochemical and biological properties
of chemical substances under the information requirements of the REACH
(2006/1907/EC). The results and observations show that Sammon’s mapping is a
powerful  method  for  discovering  and  visualizing  chemical  substance  groups
and their internal physicochemical and biological analogies from the chemical
descriptor data. The advantage of Sammon’s mapping is its capability of
compressing highly multidimensional and collinear descriptor data into visually
interpretable two dimensions. Such a chemical grouping approach is expected to
be a suitable read-across approach for predicting physicochemical properties,
human health effects and environmental effects from the data of information
rich reference substances in REACH. This could then reduce the need of
expensive and laborious laboratory testing,  where every substance is  tested for
every endpoint.

Lastly, ANN modeling methods were presented in airborne laser scanning (ALS)
based forest inventory, where they have not been previously applied to this
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extent. Three ANN-based ALS models, namely SOM, MLP and SVR, were
compared to the k-MSN method previously adopted in ALS-based forest
inventory. In addition, the multi-objective GA was used to select appropriate
model input variables among the large number of potential ALS-based
descriptors. The results obtained show that MLP and SVR produce reliable
estimates for species-specific forest attributes. The accuracy of SVR and MLP is
comparable with the corresponding accuracy obtained with the k-MSN method.
In addition, it is shown that the performance of the models can be enhanced
using the GA-based optimization scheme.

In  accordance  with  the  results  obtained  with  ANNs,  MLP  and  SVR  produced
highest prediction performances. The problem of MLP network is, however, the
risk of  over-fitting,  which makes the use of  SVR more favorable  option for  the
modeling. In addition, multi-objective GA was shown to be a respectable
method for selecting appropriate input variables for the modeling. In that
respect,  it  seems  reasonable  to  use  GA  with  SA  or  simpler  predictor  (such  as
linear regression) as a filter approach and then train a more complex non-linear
ANN model on the resulting variables. This also concurs with the results
reported in the literature (e.g. Guyon and Ellissef, 2003).

Overall, the results and observations of this thesis suggest that the modern
computational approaches studied are well-suited for solving complex
prediction problems of environmental management, however, providing that
good  quality  and  representative  datasets  exist  in  problem  domains.  More
precisely, it is shown that the computational approaches studied have great
capability of:

� Enhancing the quality of environmental data for further data processing
and modeling in environmental management.

� Producing sufficient and in-time predictions on complex environmental
systems and processes required by decision-makers.

� Optimizing  the  structure  of  data-driven  models  in  order  to  achieve
computationally more powerful, predictive and interpretable models
required by applications of environmental management.

� Replacing existing laborious and expensive field and laboratory testing
procedures currently used in various assessment procedures of
environmental management.

� Discovering interpretable clusters/patterns from large environmental
datasets, which can be used to suggest hypothesis and to support
conclusions in environmental management.

The results of this thesis can be used in the development of new, more accurate
data-driven modeling schemes required by applications of environmental
management,  as  well  as  the  scientific  base  for  further  studies.  In  the  future,
further development of predictive modeling is required, especially, in respect to
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the modeling of rare and spatially dependent processes, as shown in this thesis
through the prediction of infrequent peak pollution episodes. The combination
of the modern data-driven modeling methods and geostatistical modeling
methods is thus one potential research direction. In addition, more emphasis
should be placed on improving the mechanistic interpretation of the data-driven
models  in  order  to  improve  their  (regulatory)  acceptance.  This  requires  the
development of hybrid modeling approaches where physical information about
underlaying  phenomenon  is  encapsulated  at  some  level  into  the  data-driven
models.
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Nowadays, there is an increasing 

need for powerful and reliable com-

putational models that can be used 

to support decision-makers in man-

aging and regulating environmental 

issues. This work provides novel 

data-driven modeling approaches, 

which rely mainly on the methods 

of computational intelligence, for 

solving complex prediction problems 

associated with urban air quality 

control, chemical risk assessment, 

and forest inventory. It is shown that 

the computational approaches stud-

ied entail many inherent benefits 

for environmental data processing 

and modeling, providing thus poten-

tial alternatives to the conventional 

procedures used in environmental 

management decision-making.
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