
Publications of the University of Eastern Finland

Reports and Studies in Forestry and Natural Sciences

isbn 978-952-61-0635-9

Publications of the University of Eastern Finland
Reports and Studies in Forestry and Natural Sciences

This proceedings is outcome of a

miniconference held on 4.11.2011, at

the University of Eastern Finland.

The editor of this book, before

retirement a month later, invited his

former PhD students to give a talk

under title Computer Science I Like.

The point behind the title was that

scientific research is not just work

but also a vocation. As an event, the

miniconference was a more or less

regular scientific conference, al-

though only one day long and with a

wider scope. For students it offered

a window into the world of research.

Also, it was fun to meet. I thank all

those, who made this miniconference

and proceedings possible.

R
EPO

RTS A
N

D
 STU

D
IES | 0

0
6 | M

a
r

tti P
en

tto
n

en
 (ed

.) | C
om

p
u

ter S
cien

ce I L
ike - P

roceedin
g of M

in
iconferen

ce 4.11.2011

Martti Penttonen (ed.)
Computer Science I Like

Proceeding of Miniconference
4.11.2011 Martti Penttonen (ed.)

Computer Science I Like
Proceeding of Miniconference 4.11.2011

MARTTI PENTTONEN (EDITOR)

Computer Science I Like
Proceedings of Miniconference on 4.11.2011

Publications of the University of Eastern Finland
Reports in Forestry and Natural Sciences

No 6

Kopijyvä

Kuopio, 2011

Editor: Prof. Pertti Pasanen

Distribution:

University of Eastern Finland Library / Sales of publications

P.O. Box 107, FI-80101 Joensuu, Finland

http://www.uef.fi/kirjasto

ISBN: 978-952-61-0635-9 (printed)

ISSNL: 1798-5684

ISSN: 1798-5684

ISBN: 978-952-61-0636-6 (pdf)

ISSN: 1798-5692 (pdf)

Preface

This proceedings is outcome of a miniconference held on 4.11.2011,
at the University of Eastern Finland. The editor of this book, before
retirement a month later, invited his former PhD students to give
a talk under title Computer Science I Like. The point behind the title
was that scientific research is not just work but also a vocation. As
an event, the miniconference was a more or less regular scientific
conference, although only one day long and with a wider scope.
For students it offered a window into the world of research. Also,
it was fun to meet. I thank all those, who made this miniconference
and proceedings possible.

Kuopio, 5 December, 2011 Martti Penttonen

Contents

Anne Eerola: Why do we need software engineering 1
Martti Forsell: Computer architecture re(de)fined — the era of

parallel computing . 23
Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen:

Ten years of Bluetooth security attacks: lessons learned 45
Marko Hassinen: Non-repudiation and smart cards77
Risto Honkanen: Matrix based calculation of all-pairs shortest

paths on the GPU . 87
Konstantin Hyppönen: XML and RDF for semantic

interoperability in public administration . 101
Simo Juvaste: Teaching performance . 113
Anssi Kautonen: Routing on the OCPC . 119
Marja Kuittinen: Learning and teaching computer science 137
Ville Leppänen: Moving threads and parallel thick control flows
Martti Penttonen: How to invent and prove a result 173

159. . .

Why do we need software engineering?
Anne Eerola

School of Computing
University of Eastern Finland

P.O. Box 1627, 70211 Kuopio, Finland

Abstract. The background of the modern software engineering is
based on the software crisis. It was noticed that the quality of soft-
ware is not as good as it should be. Since then, we have got a
lot of methods and tools, but we still have challenges to build up
high quality software that can be maintained, too. Difficulties oc-
cur especially in developing large, heterogeneous, and distributed
information systems. In this paper, we emphasize some of the most
important concerns of software engineering. We cover a path from
requirements engineering, through architecture development and
testing, to component-based software. We highlight the methods
and practices which promote the production of software fulfilling
the requirements of business and stakeholders. Additionally, we
propose that IT Service Management is an important part of soft-
ware engineering.

1 INTRODUCTION

Information systems are nowadays complex, distributed, and they
need to be changed and maintained according business require-
ments. Additionally, many information systems, for example, in
health care and banking domains are critical and require high qual-
ity of software and its production process. In this paper, we con-
sider why software engineering is needed and how does it assist
the development of information systems.

Anne Eerola

The background of the modern software engineering is based
on Year 1968 as an answer to the software crisis. It was noticed
that it is difficult to write correct and understandable computer
programs, which take into consideration change management, too.
Software Engineering (SE) is an engineering discipline which focuses
on cost effective development of high-quality software systems [32].
While computing concentrates on computers, programming lan-
guages and algorithms SE emphasizes tools to solve problems in
software industry or customer organizations [28].

Software Engineering investigates software production (require-
ments engineering, analysis, design, implementation, software test-
ing and inspection, deployment, and maintenance). Moreover, qual-
ity management, product management, and the structure of soft-
ware systems, i.e. architectures, components, frameworks, and pat-
terns are considered [9, 32]. The emphasis is mainly on technical
aspects of software systems. However, most software engineers
agree that it is not possible to start a software development project
without considering carefully the requirements of the stakehold-
ers. After deployment, customers and users need support in using
software systems. Hence, we develop methods, techniques, and
processes of IT service management and propose that IT service
management is an important part of SE [13, 14].

Intelligent thinking requires that a designer focuses his/her at-
tention upon some aspect and follows the separation of concerns prin-
ciple: “We know that a program must be correct and we can study
it from that viewpoint only; we also know that it should be efficient
and we can study its efficiency on another day” [4]. Concerns can
be responsibilities, functions, data, features, tasks, qualities, trans-
actions, services, or any aspect of the requirements or design [3,28].

Modularization is concerned with the meaningful decomposition
of the software system and with its grouping into subsystems, com-
ponents, and services [3, 24]. Since structured design [40] emerged,
high cohesion and low coupling have been attributed to indicate
high quality of software. The term module can be defined as “a
syntactical or conceptual entity of a software system” [3]. A mod-

2 Reports in Forestry and Natural Sciences No 6

Why do we need software engineering

Figure 1: Research in Software Engineering

ule is a component, a class inside a component, or a service using
which the functionality is offered to the customer.

Research in software engineering at the University of Kuopio
(now University of Eastern Finland) started in 1990s. In our re-
search group requirements engineering, architecture design, soft-
ware testing, IT service management, and effort management are
emphasized (see Fig. 1). Typical research methods are case studies,
action research, and constructive research. Data collection is based
on multiple sources of evidence (field visits, workshops, partici-
pative observation in meetings, interviews, access to organizations
tool applications, and internal documentation). The research re-
sults can involve, for example, identification of process challenges;
creation of new methods, and models; providing process imple-
mentation guidelines and recommendations; as well as improving
data, quality, and service management. The group belongs to Infor-
mation Systems and Software Engineering research group.

In this paper the research question is: Why do we need soft-
ware engineering? We aim to answer the question by highlighting

Reports in Forestry and Natural Sciences No 6 3

Anne Eerola

research results that from our opinion are typical and important
to software engineering. Additionally we give an overview of our
research results. The rest of this paper is organized as follows:
Chapter 2 considers effort management as a basis of software pro-
cess management. In Chapter 3, we consider requirements engi-
neering as a collection of stakeholders wants and needs. Chapter 4
discusses software architecture development, especially component
based software development and integration. Chapter 5 empha-
sizes software testing and its importance. Chapter 6 introduces IT
service management. Chapter 7 concludes the paper.

2 EFFORT MANAGEMENT

Usually a software project starts with feasibility study and effort
estimation. Accurate effort estimation is important because it en-
ables to keep project schedule, budget, and time-to-market cal-
culations. Successful resource allocation decreases working pres-
sure and haste of software engineers, too. Haapio proposed that
non-construction activities should be taken into account in addi-
tion to the constructive and project activities [7]. Non-constructive
activities are, for example, configuration management, customer-
related activities, documentation, orientation, and quality manage-
ment. Effort management continues through the whole software
development project and we should help software engineers to adopt
general project activities in order to increase reliability of registered
effort in time-booking entries.

Haapio et al. [8] proposed a novel stepwise method for assessing
software project effort. The method provides necessary tools for the
effort management and assessment. When utilized for post-mortem
analysis, the method can be used for deciding on the project result
and how the project differs from other projects (quantity, quality,
and effort views).

Virtanen [38] has considered effort estimation in component
based software development. He has strived to increase reusability
and productivity in software development. The starting points in

4 Reports in Forestry and Natural Sciences No 6

Why do we need software engineering

Figure 2: Business case as a starting point for requirements engineering [15]

method are product structure and history data of projects. The aver-
age effort of components is after calculation corrected emphasizing
project and human effects.

3 REQUIREMENTS ENGINEERING

The gap, between business decision making and software engineer-
ing, causes inefficiency and quality problems in software develop-
ment. Software engineers do not understand organization’s value
creation objectives and their influence on software production and
structure. For this reason, software does not fulfil business require-
ments and software quality is inadequate too often. Hence, we uti-
lize a business case as a starting point for requirements engineering
(see Fig. 2).

Software systems must fulfill the requirements of the stakehold-
ers. Stakeholders are people, who have interest in the product or
who will be affected by products use [30]. “A requirement is a con-
dition or capability of the software or its component needed by a

Reports in Forestry and Natural Sciences No 6 5

Anne Eerola

user to solve a problem or achieve an objective” [11]. A require-
ments specification describes what the system must do and which
properties the system must have to satisfy a contract, a standard, or
other user requirements [11, 30]. Requirements errors are the most
expensive and the most dangerous software errors [21]. It is im-
portant to gather, analyze, validate, and master the requirements
carefully.

Functional requirements define functions of a software system, or
its component and services, that the system must provide [32]. Ad-
ditionally, functional requirements are data requirements (i.e. the
system must store, maintain, and managed data) and things that
the system is not allowed to do [30]. These requirements are cur-
rently most often presented in the form of use cases described in the
almost standard Unified Modeling Language UML [5].

Quality requirements of software are product, organizational, and
external requirements, for example, usability, standardization, and
safety [32]. One component of the software needs not to be as
high quality as another, if the components do not depend on each
other and if there is no side-effect. Quite often, quality attributes
of software cannot be pinpointed to a certain component [2]. Pri-
oritization and definition of sensitivity points for quality attributes
is needed [17]. Quality requirements of a production process are quali-
ties that software engineers appreciate, for example, maintainability
and reusability [2]. As before, one step of the production process
needs not to achieve as high quality as another, if the importance
and risks of steps differ. A research problem is, how we can find
the components and production steps that are most important to be
emphasized.

We strive to improve requirements engineering (RE) processes
and models through following ways:

• We have derived guidelines for managing requirement pro-
cess in case of large information systems and different profes-
sionals (e.g. nurses, doctors, software engineers, researchers).

• We keep in mind that software requirements should be de-

6 Reports in Forestry and Natural Sciences No 6

Why do we need software engineering

scribed in such a way that architecture and forthcoming soft-
ware are convenient to design (although the process may stop,
if it turns out after the RE-process that software is not a right
solution to current problems).

• We have generated understandable models for requirements
specification contributing architecture design decisions and
detailed requirements specifications (e.g. see Fig. 3).

One problem is that we need a common language for all the
stakeholders in the RE-process and forthcoming software develop-
ment project. Another great problem in RE is that information sys-
tems development processes of customer organizations and soft-
ware providers do not meet each other. Hence, the interaction be-
tween the software provider and its actual client does not occur in
the software providers RE phase. It may happen the product is
built before its requirements are specified [22]. Component based
software development, generic products, and parameter utilization
assist this problem, but do not solve it thoroughly.

4 SOFTWARE ARCHITECTURE DEVELOPMENT

4.1 Software architecture, architectural styles, and patterns

Architectures and design models are important tools to assure soft-
ware quality and to improve software reuse. IEEE Standard 1471-
2000 defines the software architecture as “The fundamental organi-
zation of a system embodied in its components, their relationships
to each other and to the environment, and the principles guiding
its design and evolution”. The software architecture consists of
statements describing how a system is decomposed into its com-
ponent parts and how the functionality is allocated among those
parts. Smolander [31] has considered the role of architecture in sys-
tems development in several organizations. For example, the usage
of architectural viewpoints and the rationale of architecture design
and description are considered.

Reports in Forestry and Natural Sciences No 6 7

Anne Eerola

Figure 3: Home Care -case [34]

Architecture analysis and design offer means to understand busi-
ness goals and stakeholder concerns and map these onto an archi-
tectural representation, and assess risks associated with this map-
ping [17]. The architecture is a blueprint and an implicit high-level
plan for software construction [19].

Software engineering team can use architectural styles, first pro-
posed by Perry and Wolf [27]. The architectural style defines types
of components and connectors (i.e. building blocks), constraints for
using the building blocks, vocabulary, and analysis to reason critical
and risky properties of the solution [2,3]. Examples of architectural
styles are Pipes and Filters, Broker, Repository, and Layered styles.

In addition to styles, software engineers utilize patterns, for ex-
ample, architectural, design, usability, security, and organizational
patterns [3, 6]. The described “pattern is a general and proven so-
lution to a frequently occurring architecture or design problem in
a context” [1, 6, 18]. Examples of patterns are Proxy, State, Facade,

8 Reports in Forestry and Natural Sciences No 6

Why do we need software engineering

Figure 4: Target architecture design

Role, and Undo.
The functionality of the component based system can be of-

fered to the customers using service oriented architecture. This
supports generation of modifications. “A Service-Oriented Archi-
tecture (SOA) is an architecture that is based on the key concepts of
a user interface, service, service repository, and service bus.” [19].

The target architecture defines the vision where we want to de-
velop our information system. Usually it is not possible to move
to the target state at once but we need a migration path from the
current legacy system to the target architecture [25]. Architecture
design, assessment, and evolution are described in Fig. 4.

4.2 Component and service based software development

The structure of software is defined using components and services.
Component based software development (CBSD) and service ori-
ented architectures (SOA) have emerged perhaps to the most pop-

Reports in Forestry and Natural Sciences No 6 9

Anne Eerola

ular software development approach today: In CBSD software is
constructed using self-made and commercial off-the-shelf (COTS)
components and glue code if needed. The idea is not new, but McIl-
roy [23] proposed mass-production of components already in 1969.
A software component is a binary unit for composition according to
the contract and explicit dependencies [33]. It is self-contained piece
of software, which encapsulates a set of related functions and data
and can be independently deployed and plugged into a compatible
environment [10]. At run-time the component is accessed through
a set of interfaces [32]. Similarly build-time interfaces (proxy ex-
port) are advantageous to be utilized in order to shorten time-to-
market [10]. A component has no persistent state. The relationships
and interfaces between components and the internal structure of
each component can be described with UML Diagrams and XML
document type definitions (DTD) [20]. While designing component
based systems we should strive to low coupling and high cohesion
(see Fig. 5).

Component based systems are often object oriented. In object
oriented approach, things in the real world are abstracted as ob-
jects, which encapsulate attributes and methods. Objects commu-
nicate with each other by sending messages. These objects can be
related to each other by aggregation, by association, and by classifi-
cation. Objects are defined in a class. Classes, in turn, form a class
hierarchy, in which subclasses inherit properties, i.e. attributes and
methods from super classes [5, 29].

A service fulfils a contract and it has one or more interfaces and
an encapsulated implementation [19]. Each service is a software
component of distinctive functional meaning (business logic and
data) and is found from a repository. Services are typically not
linked as code libraries but are bound to at runtime.

Our goal has been to develop methods and tools for service-
oriented software development emphasizing business aspects and
quality of software structure (see Fig. 6). We propose a service
map for service workflow definitions, utilize Service Level Agree-
ment (SLA) based on IT Service management framework [12], and

10 Reports in Forestry and Natural Sciences No 6

Why do we need software engineering

Figure 5: Low coupling, high cohesion, and explicitly defined and tested interfaces

clarify protocol requirements using distributed coordination in the
SOA environment. In addition, software service identification and
design has been studied.

4.3 Integration

The focus of the software development process has moved from
separate and independent applications to the integrated and dis-
tributed software systems. Vänttinen [39] has strived to provide
quicker and more effective way, with smaller resources to launch
software products to the markets, and to enable the integration be-
tween software systems, provided by different vendors.

His thesis introduces enterprise application integration (EAI)
and service oriented architectures (SOA) and analyzes three real-
life case studies to find out how principles of EAI, SOA, and soft-
ware product families can be used efficiently in software industry.

Acquired components and legacy systems are integrated ac-
cording to the target architecture [26] in order to get the software
system, which fulfils the requirements of stakeholders. Integration

Reports in Forestry and Natural Sciences No 6 11

Anne Eerola

Figure 6: Framework for service oriented software development [15]

of software pieces can be done by third party using interface defini-
tion language (IDL or XML) and tested interfaces [33]. Additionally,
conformance to the standards is advantageous to be tested [36].

Mykkänen [25, 26] has considered health information systems.
He has proposed methods, models, and guidelines for developing
reusable integration solutions using a component-based and model-
driven approach:

• Methods to improve interoperability of software system

• A generic integration process with integration specification
levels that support collaborative integration definition,

• A method for stepwise migration from current legacy archi-
tecture to component-based target architecture, and

• Experiences and recommendations for integration based on
several pilot projects in software industry and healthcare/welfare
service providers.

5 SOFTWARE TESTING

Nowadays software systems are not built in green field but soft-
ware is constructed from ready-made COTS (commercial off the

12 Reports in Forestry and Natural Sciences No 6

Why do we need software engineering

shelf) which must cooperate with each other. Hence, interoperabil-
ity between applications is important. High quality and reliability
requirements of software systems cause that software testing is im-
portant and testing techniques should be practical and easy to use.
However, in network of organizations it is often impossible to test
all side-effects when a change is accomplished in requirement spec-
ifications or code.

We have strived to improve software testing policy and meth-
ods. Components of different granularities were tested level by
level leading to integration and conformance testing (see Fig. 7).
We defined test cases based on UML diagrams and contracts of
components. The dependency graph was used to assure that the
whole functionality of the system has been covered. Usually, the
internal logic of components is object-oriented and component sys-
tems are distributed.

Toroi [35,37] has proposed methods to help software companies
to apply testing theory efficiently in practice and to improve in-
teroperability by standards and conformance testing. The research
questions were: How can we be sure that the product or an inter-
face conforms to standards? How the recommendations, standards,
and interface specifications should be defined, when we strive for
testability? We considered three viewpoints: integrator, customer,
and service provider.

Additionally, Toroi has considered test process improvement in
industry and given a list of recommendations for improving test
processes. She proposed that organizations have to pay more at-
tention to the following issues: test case documentation, regression
testing, the level of training in testing, clarity of specifications, and
guidance of the test process improvement models.

6 IT SERVICE MANAGEMENT

In software industry there is a strong business need for IT ser-
vice management (ITSM) research. Thousands of IT organizations
worldwide have started to implement ITSM processes and organi-

Reports in Forestry and Natural Sciences No 6 13

Anne Eerola

Figure 7: Testing Component-Based Systems

zations face several challenges while implementing processes. Jäntti
[13] has considered difficulties in managing software problems and
defects, which number has increased due to complex IT systems,
new technologies, and tight project schedules. Regarding emerging
new research topics it is common that the concepts are undefined,
inconsistent, and inaccurate. Hence, conceptual model for IT Ser-
vice Problem Management was proposed (see Fig. 8).

In our research projects MaISSI (Managing IT Services and Ser-
vice Implementation) and KISMET (Keys to IT Service Transition)
we have derived recommendations and guidelines for IT services
and ITSM processes. Our viewpoints have been on designing, im-
plementation, maintaining, and improvement. We have examined
service implementation technologies and tools in close cooperation
with industrial partners, i.e. IT service provider companies, soft-
ware companies, and IT customer organizations. We have helped
industrial organizations to identify challenges in their current ac-
tivities. The goal has been to share knowledge on ITSM standards
and frameworks.

The research validation is carried out in pilot projects that aim
to solve problems that industrial partners have met in their service

14 Reports in Forestry and Natural Sciences No 6

Why do we need software engineering

Figure 8: A part in a conceptual model of IT Service Problem management [14]

Reports in Forestry and Natural Sciences No 6 15

Anne Eerola

management business. For example, we have developed process
descriptions for service support processes (incident management,
problem management) and service transition processes (change man-
agement, configuration management, and continual service improve-
ment). We have helped organizations in configuring service desk
tools, examined how to measure the performance of support pro-
cesses, and organized research workshops and seminars regarding
ITSM. Industrial partners have utilized research results to increase
the quality of ITSM processes, to identify the challenges in their
current activities, to improve the performance and usability of the
tools, and to enable effective knowledge sharing on service man-
agement standards and frameworks.

7 CONCLUSIONS

In this paper, we have emphasized research results that we propose
are important for software engineers in research and industry. We
have described the path from requirements engineering, through
architecture design and software testing to software products and
services. The presented research results form a toolbox needed to
build on time and cost high quality software that fulfills stakehold-
ers requirements. After deployment, software needs to be changed
and evolved according to business requirements. Hence, IT service
management is important.

16 Reports in Forestry and Natural Sciences No 6

References

[1] Alexander C., Ishikawa S., Silverstein M., Jacobson M.,
Fiksdahl-King I., and Angel S., A Pattern Language, Oxford
University Press, New York, 1977

[2] Bosch J.: Design and use of software architectures, Addison-
Wesley, 2000

[3] Buschmann F., Meunier R., Rohnert H., Sommerland P., and
Stal M., Pattern-Oriented Software Architecture A System of
Patterns, John Wiley & Sons, 2001

[4] Dijkstra, E., W., “On the role of scientific though, 1974” In Di-
jkstra, E. W. Selected Writings on Computing: A Personal Per-
spective. New Yourk: Springer-Verlag, 1982

[5] Fowler M.: UML Distilled A Brief Guide to the Standard Ob-
ject Modeling Language, Addison-Wesley, 2004

[6] Gamma E., Helm R., Johnson R., and Vlissides J., Design Pat-
terns Elements of reusable Object-Oriented Software, Addison-
Wesley, 1995

[7] Haapio Topi: Improving Effort Management in Software De-
velopment Projects, Doctoral dissertation, University of East-
ern Finland, 2011

[8] Haapio T., Eerola A.: Software Project Effort Assessment. Jour-
nal of Software Maintenance and Evolution: Research and
Practice. 22(8), pp 629-652, 2010.

[9] Haikala I., Märijärvi J., Ohjelmistotuotanto, 1998, 2004,

[10] Herzum P., Sims O.: Business Component Factory A Compre-
hensive Overview of Component-Based Development for the
Enterprise, Wiley Computer Publishing, 2000

Reports in Forestry and Natural Sciences No 6 17

Anne Eerola

[11] IEEE. IEEE Standard Glossary of Software Engineering Termi-
nology. New York: IEEE, 1983. Leite, J. Viewpoint Resolution
in Requirements ANSI/IEEE Std. 729-1983.

[12] IT Infrastructure Library, Office of Government Commerce
(OGC), 2002 Continual Service Improvement, OGC 2007

[13] Jäntti Marko: Difficulties in Managing Software Problems and
Defects, Doctoral dissertation, Department of Computer Sci-
ence, University of Kuopio, 2008.

[14] Jäntti M., Eerola A.; A Conceptual Model of IT Service Problem
Management, Proceedings of the IEEE International Confer-
ence on Service Systems and Service Management ICSSM06,
2006

[15] Karhunen H., Jäntti M., Eerola A.: Service-Oriented Software
Engineering (SOSE) Framework, International Conference on
Service Systems and Services Management 2005, Proceedings
ICSSSM05, 2005

[16] Kazman R., The Essential Components of Software Architec-
ture Design and Analysis, Proceedings of the 12th Asia-Pacific
Software Engineering Conference (APSEC05), 2005

[17] Kazman R., Bass L., Abowd G., Webb M., SAAM: A
Method for Analyzing the Properties of Software Architectures
http://www.sei.cmu.edu/library/assets/ICSE16.pdf, referred
11.4.2011

[18] Koskimies K., Mikkonen T.: Ohjelmistoarkkitehtuurit, Talen-
tum Media Oy, 2005

[19] Krafzig D., Banke K., and Slama D., Enterprise SOA Service-
Oriented Architecture Best Practices, Prentice Hall, Pearson
Education, 2005

[20] Kuikka E., Eerola A., A Correspondence between UML Di-
agrams and SGML/XML DTDs, Lecture Notes in Computer
Science, Springer-Verlag, 2023/2004

18 Reports in Forestry and Natural Sciences No 6

Why do we need software engineering

[21] Axel van Lamsweerde: Requirements Engineering, John Wiley
Sons Ltd, 2009

[22] Luukkonen I., Eerola A.: Improving requirements Engineering
from the clients perspective in the health care domain, Pro-
ceedings of the 25th conference on IASTED International Mul-
ticonference: Software Engineering, 2007

[23] McIlroy M., D., Mass produced software components. In Naur
P. and Randell B., Software Engineering, Report on a confer-
ence sponsored by the NATO Science Committee, Garmisch,
Germany, 7th to 11th October 1968, Scientific Affairs Division,
NATO, Brussels, 1969,138-155.

[24] Meyer B., Object-Oriented Software Construction, Prentice
Hall International, 1988

[25] Mykkänen Juha: Specification of Reusable Integration in
Health Information Systems, Doctoral dissertation, Depart-
ment of Computer Science, University of Kuopio 2007

[26] Mykkänen J., Tikkanen T., Rannanheimo J., Eerola A., Kor-
pela M.: Specification Levels and Collaborative Definition for
the Integration of Health Information Systems, In Baud R, Fi-
eschi M, Le Beux P, Ruch P, eds. The New Navigators: from
Professionals to Patients, Proceedings of MIE2003, Saint-Malo,
France, 4-7 May 2003

[27] Perry D.E. and Wolf A.L., Foundations for the Study of Soft-
ware Architecture, ACM Software Engineering Notes, 17,
4,October 1992, 40-52

[28] Pfleger S.,L., and Atlee J.M., Software Engineering Theory and
Practice, Pearson Education, Prentice Hall, 2010

[29] Putkonen A.: A Methodology for Supporting Analysis, De-
sign and Maintenance of Object-oriented Systems, Academic
Dissertation, Department of Computer Science and Applied
Mathematics, University of Kuopio, 1994

Reports in Forestry and Natural Sciences No 6 19

Anne Eerola

[30] Robertson S., Robertson J.: Mastering the Requirements Pro-
cess, Addison-Wesley, 1999

[31] Smolander Kari: On the Role of Architecture in Systems De-
velopment, Department of Information Technology, Lappeen-
ranta University of Technology, 2003

[32] Sommerville I., Software Engineering, Eight Edition, Pear-
sonEducation, 2011 Software Architecture Definitions,
http://www.sei.cmu.edu/architecture/start/community.cfm
and IEEE Standard 1471-2000

[33] Szyperski C., Component Software Beyond Object-Oriented
Programming, Addison-Wesley, 1999

[34] Toivanen M.: Home Care -case [PlugIT-hanke], 2004

[35] Toroi T.: Testing Component-Based Systems Towards Confor-
mance Testing and Better Interoperability, Doctoral disserta-
tion, Department of Computer Science, University of Kuopio,
2009.

[36] Toroi T., Eerola A., Mykkänen J., Conformance Testing of In-
teroperability in Health Information Systems in Finland. In:
Kuhn K., Warren J., Leong T-Y, eds. Medinfo 2007, Brisbane,
Australia, August 20-24, 2007, p. 127-131. Amsterdam: IOS
Press, 2007.

[37] Toroi T., Eerola A.: Requirements for the Testable Specifica-
tions and Test Case Derivation in Conformance Testing, In:
Dasso A, Funes A, eds. Verification, Validation and Testing in
Software Engineering, P. 118-135. Hershey: Idea Group Pub-
lishing, 2006

[38] Virtanen, P., 2003. Measuring and Improving Component-
Based Software Development. Doctoral dissertation, Finland:
University of Turku.

20 Reports in Forestry and Natural Sciences No 6

Why do we need software engineering

[39] Vänttinen Pasi: Integrating Applications in Software Com-
pany, Licentiates thesis, Department of Computer Science,
University of Kuopio, 2008

[40] Yourdon E., and Constantine L, Structured Design, Fundamen-
tals of a Discipline of Computer Program and Systems Design,
Englewood Cliff, NJ: Prentice Hall, 1978

Reports in Forestry and Natural Sciences No 6 21

Anne Eerola

22 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined
—the Era of Parallel Computing

Martti Forsell1
1 VTT, Computing Platforms, Box 1100, FI-90571 Oulu, Finland

��������	�
����������
��������������	����������	�
�����	�������

Abstract. Now that all the major general purpose processor manufacturers have
irreversibly switched to multicore processor architectures with aims to increase
the number of processor cores per processor chip as fast as evolving silicon
technologies makes it possible to pack more transistors on them, it is time to
take a look at the architectural ideas behind them. A simple classification of
architectural approaches in current multicores reveals that the symmetric multi-
processor and non-uniform memory access, which lend most of their perform-
ance enhancement techniques from sequential computers, are by far the two
most common ones. Since our measurements and also wide-spread consensus
indicate that the performance and programmability of these approaches is far
from perfect, we ask wether these techniques suit best to multicore style thread-
level parallel execution or are there possibly other/new techniques that would
provide better performance. Based on our on-going analysis of parallel execu-
tion techniques, we are tempted to answer negatively to this question. More
specificly, we claim that techniques, like multithreading assisted high-through-
put computing providing scalable latency hiding, chained static superscalar exe-
cution allowing easy exploitation of low-level virtual instruction-level paral-
lelism, combining/active memory techniques enabling concurrent memory
access and multioperations, and wave based light-weight implicit synchroniza-
tion making possible to emulate strong synchronous models of computation,
provide much higher gains in performance and programmability especially for
general purpose computation than current ones. Even though this is partially
based on preliminary models and on-going work we believe that they already
point relatively well to the right direction. Detailed and verified analytic per-
formance models of TLP approaches and thorough discussion on implications
will be published in the later phases of this research.

Martti Forsell

1. Introduction

Computer architecture is a branch of science focusing on the theory and
practice of designing, selecting and interconnecting hardware compo-
nents to create computers that meet functional, performance and cost
goals and the formal modelling of those systems [Hennessy03]. An
abstract (sequential) computer consists of a processor that is connected to
the memory and input/output data. The processor is able to read and exe-
cute instructions one by one from the memory. While executed, instruc-
tions read one or more input data or memory location values, do a sim-
ple computation for this data, and write the result to output data or mem-
ory. A program is a sequence of instructions that alters the state of the
memory so that the output data (results) can be obtained from the input
data. A realization of a computer consists of these basic components typ-
ically manufactured from semiconductor elements, like transistors, wires,
insulators, resistors, and condensators that in turn form basic building
blocks of digital systems known as logic gates, memory cells, and regis-
ters. These blocks will then be used to build up a processor, memory and
input/output devices. As a physical device, this kind of a computer takes
always some space (or area on silicon), consumes some power, and is
able to execute instructions with some bounded rate. The laws of physics
and properties of the used (silicon) manufacturing technology set practi-
cal limits to the performance of the processor and size and speed of the
memory as well as to the bandwidth of input/output data. The first com-
puters were build according to this kind of Von Neumann architecture,
where both the program and data resided on the same memory so that
instruction execution involving fetch of instruction and actual execution
can not happen in parallel (the Von Neumann bottleneck). The key tech-
niques to improve the performance of this kind of a basic execution
engine connected to the memory and input/output devices include the
Harward architecture, pipelining, dynamic superscalar execution,
caching, and various speculations. The Harward architecture removes the
Von Neumann bottleneck by separating the data and instruction memory
accesses with a help of dedicated paths. Pipelining [Bloch59, Bucholz62]

24 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined

and dynamic superscalar execution [Thornton64, Anderson67,
Tomasulo67] improve the throughput of instruction execution and
exploitation of available instruction-level parallelism (ILP). They make
use of various speculations [Johnson89, Hennessy03] to reduce the delays
due to memory access, control transfer, and pipelining. Caching
[Kilburn62] is used for hiding the latency of the memory systems and bal-
ancing the speed difference between processor and memory devices.

In the early 2000’s, the clock frequency development of processors
and memories almost halted after being exponential for decades since the
power density of ever tightly packed semiconductor elements reached its
upper limit [Mazke97, Brooks00, Mudge01, Intel06, ITRS10]. As a results,
all major processor manufacturers switched irreversibly to multicore
processor architectures and thus to the thread-level parallel (TLP) com-
puting paradigm with aims to increase the number of cores per processor
chip as fast as the silicon technology makes it possible to pack more tran-
sistors on a single chip. The manufacturers naturally hope that by increas-
ing the number of cores, users of multicore processor based computers
get respectively more performance.

Currently by far the two most popular architectural approaches for
multicore computing are symmetric multiprocessor (SMP) and non-uni-
form memory access (NUMA) both making use of the shared memory
intercommunication scheme but lending most of their performance
enhancement techniques from sequential computers. Since our measure-
ments [Forsell02, Forsell11a, Forsell11c] and also wide-spread consensus
among parallel computer experts indicate that the performance and pro-
grammability of these approaches is far from perfect, we ask wether these
techniques suit best to multicore style thread-level parallel execution or
are there possibly other/new techniques that would provide better per-
formance. Based on our on-going analysis of parallel execution tech-
niques, we are tempted to answer negatively to this question and claim
that techniques, like multithreading assisted high-throughput computing
providing scalable latency hiding, chained static superscalar execution
allowing easy exploitation of low-level virtual instruction-level paral-

Reports in Forestry and Natural Sciences No 6 25

Martti Forsell

lelism, combining/active memory techniques enabling concurrent memo-
ry access and multioperations, and wave based light-weight implicit syn-
chronization making possible to emulate strong synchronous models of
computation, provide much higher gains in performance and program-
mability especially for general purpose computation. Even though this is
based on preliminary models and on-going work we believe that they
point already to the right direction. Detailed and verified analytic per-
formance models of TLP approaches and thorough discussion on impli-
cations will be published in the later phases of this research.

The rest of the paper is organized so that in Section 2 we will take a
look at existing TLP architectures, in the Sections 3-7 we discuss per-
formance enhancement techniques for latency hiding, synchronization,
virtual ILP exploitation, concurrent memory access and multioperations
respectively, and finally, in Section 8 we give our conclusions.

2. Existing approaches to thread-level parallel execution

The main approaches to TLP computing, classified according to the
used intercommunication mechanism, are message passing and shared
memory. In the message passing approach processor cores have local
memories only and computational subtask communicate by sending mes-
sages to each other. The dataflow computing can be seen as a variant of
this approach. In the shared memory approach cores are connected to
either unified or distributed shared memory and they communicate via
variables on it. Since virtually all current general purpose multicore
processors provide a shared memory abstraction, we focus here on the
two most popular variants of it—symmetric multiprocessor and non-uni-
form memory access.

Symmetric multiprocessor (SMP) is a simple architectural approach for
thread-level parallel computing that is being used typically for a small
number of processor cores. An SMP consists of a number of identical
(often superscalar) processors with local caches, which are connected to
the main memory via a bus (unified case) or crossbar (distributed case)

26 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined

(see Fig. 1). All memory locations are equidistant to all processors, thus
access is symmetric. Caches are used in between the processors and the
main memory and they are kept coherent using a bus snooping mecha-
nism [Culler99, Hennessy03].

Fig. 1.Block diagram of the SMP approach. (P=number of processors, F=num-
ber of functional units, Cnet=latency of the intercommunication net-
work, Dmem=cycle time of the memory, Up=utilization of processors,
Uf=utilization of functional units.)

Non-uniform memory access (NUMA) is a distributed shared memory
approach in which multiple identical (often superscalar) processors with
their local caches and memory banks are connected together via an inter-
communication network (memory is distributed, only local memory is
cached, see Fig. 2). Non-local memory accesses have higher (distance and
traffic situation dependent) latency than local accesses [Swan77]. It is
believed to provide a more realistic memory access concept than SMP—
now the fact that distant memory accesses take longer than local ones is
projected at the architectural approach level— making it much easier to

CLOCK

Read/write requests/replies to/from the memory

MEMORY

Cycle time Dmem

PROCESSOR 1

Execution of a single
thread with utilization Up

Latency Cnet clock cycles

PROCESSOR P

INTERCONNECTION NETWORK (SNOOPING BUS)

F parallel functional units
with utilization of Uf

Execution of a single
thread with utilization Up
F parallel functional units
with utilization of Uf

CLOCK

CACHE CACHE

Multiple instruction
streams multiple
data streams

Reports in Forestry and Natural Sciences No 6 27

Martti Forsell

retain the clock rate of the design fixed as the number of processor cores
increases.

Fig. 2.Block diagram of the NUMA approach. (P=number of processors,
F=number of functional units, Cnet=latency of the intercommunication
network, Dmem=cycle time of the memory, Up=utilization of processors,
Uf=utilization of functional units.)

Cache coherent non-uniform memory access (CC-NUMA) is a variant of
NUMA in which multiple processors with coherent caches and memory
banks are connected together via a intercommunication network (memo-
ry is distributed, also remote memory is cached, coherence is managed by
distributed directories, see Fig. 3) [Lenoski92]. Non-local memory access-
es have higher (distance and traffic situation dependent) latency than
local accesses. A typical CC-NUMA system consists of interconnected
nodes, which have a processor, local caches and a local portion of main
memory [Lenoski92, Agarwal95]. Introducing caching of remote memory
leads to the issue of cache coherence. A cache line can have multiple
copies distributed in all the caches in the system. Updating these cache

CLOCK

Read/write requests/replies to/from remote memories

MEMORY 1

Cycle time
Dmem

PROCESSOR 1

Execution of a single
thread with utilization Up

Latency Cnet clock cycles

PROCESSOR P

INTERCONNECTION NETWORK

F parallel functional units
with utilization of Uf

Execution of a single
thread with utilization Up
F parallel functional units
with utilization of Uf

CLOCK

CACHE

MEMORY P

Cycle time
Dmem

CACHE

Multiple instruction
streams multiple
data streams

28 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined

lines on writes to make the write visible to all processors in the system is
no trivial task. The cache coherence protocol specifies how the memory
is maintained coherent. CC-NUMA cache coherence protocols are typi-
cally based on directories to keep track of the cache line copies in the sys-
tem. The local cache controller in each node must consult a directory to
fetch the most recent copy of the cache line on cache misses. Cache
coherence protocols are known to be complicated and require advanced
cache controllers.

Fig. 3.Block diagram of the CC-NUMA variant. (P=number of processors,
F=number of functional units, Cnet=latency of the intercommunication
network, Dmem=cycle time of the memory, Up=utilization of processors,
Uf=utilization of functional units.)

In our earlier performance evaluations and in an on-going efforts we
model(ed) the performance and in some cases also silicon area and
power consumption of different processor organizations in single and

CLOCK

Read/write/invalidation requests/replies to/from
remote directories

MEMORY 1

Cycle time
Dmem

PROCESSOR 1

Execution of a single
thread with utilization Up

Latency Cnet clock cycles

PROCESSOR P

INTERCONNECTION NETWORK

F parallel functional units
with utilization of Uf

Execution of a single
thread with utilization Up
F parallel functional units
with utilization of Uf

CLOCK

DIRECTORY

CACHE

MEMORY P

Cycle time
Dmem

DIRECTORY

CACHE

LOCAL
BUS

LOCAL
BUS

System takes care of cache coherence with help of
directories and this network

Multiple instruction
streams multiple
data streams

Reports in Forestry and Natural Sciences No 6 29

Martti Forsell

multiprocessor constellations, different approaches for TLP computing
executing parametric benchmark application. In the following we sum-
marize some findings/early results that reveal interesting things about the
performance of the SMP and NUMA approaches with respect to other
existing approaches and our proposals for efficient TLP-aware architec-
tures:

• In [Forsell02] we modeled analytically the performance of eight proces-
sor organizations in both single processor-memory and high-bandwidth
multiprocessor constellations with different pipeline, ILP exploitation,
and threading schemes (see Fig.4). With the used parameters, these mod-
els suggest that memory delays in multiprocessor systems are hidden best
with multithreading and that the more dependencies the weaker per-
formance except for the in-order multithreaded inter-thread pipelined
chained FUs organization.

• In [Forsell11a] we measured the performance of multicore machines
with different approaches to TLP, on-chip intercommunication topology,
hashing schemes, and memory module organizations (see Fig. 5).

• In [Forsell11c] and related deliverables we are studying the performance
of SMP, NUMA and ESM machines and code size with respect to different
versions of parallel algorithms (see Fig. 6 for the very first results). The
ESM approach makes use of the techniques explained in Sections 3-7
[Forsell06].

• In an on-going effort we are modeling analytically the performance of
seven TLP approaches with a parametric workload (see Fig. 7 for early
results). The ESM and CESM are approaches making use of the techniques
explained in Sections 3-7 [Forsell06, Forsell09, Forsell10].

30 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined

Fig. 4.Execution time as a function of the memory system delay Dmem, the
fraction of dependent parallel code Fdp, and the number of pipeline
segments FLs in single and multiprocessor constellations of eight
processor organizations. For more details, see [Forsell02].)

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

1E+17

1E+18

1 4 16 64 256 1024

Single O1
Single O2
Single O3
Single O4
Single O5
Single O6
Single O7
Single O8
Multi O1
Multi O2
Multi O3
Multi O4
Multi O5
Multi O6
Multi O7
Multi O8

Dmem (ps)

Ex
ec

ut
io

n
tim

e
(p

s)

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

1E+17

1E+18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Single O1
Single O2
Single O3
Single O4
Single O5
Single O6
Single O7
Single O8
Multi O1
Multi O2
Multi O3
Multi O4
Multi O5
Multi O6
Multi O7
Multi O8

Fdp
Ex

ec
ut

io
n

tim
e

(p
s)

1E+11

1E+12

1E+13

1E+14

1E+15

1E+16

1E+17

1E+18

8 12 16 24 32

Single O1
Single O2
Single O3
Single O4
Single O5
Single O6
Single O7
Single O8
Multi O1
Multi O2
Multi O3
Multi O4
Multi O5
Multi O6
Multi O7
Multi O8

FLs

Ex
ec

ut
io

n
tim

e
(p

s)

O1=in-order superscalar non-pipelined
O2=out-of-order superscalar
O3=superpipelined
O4=two-stage pipelined
O5=in-order superscalar chained FUs
O6=out-of-order multithreaded VLIW
O7=in-order multithreaded inter-thread

pipelined
O8=in-order multithreaded inter-thread

pipelined chained FUs.

Reports in Forestry and Natural Sciences No 6 31

Martti Forsell

Fig. 5.Shared memory emulation overheads for certain simple functionalities
optimized for MCRCW ESM and NUMA approaches. E4, E16 and E64
are 4, 16, and 64-core systems with a sparse mesh-based interconnect,
M64 is a 64-core system with a multimesh interconnect, (For more
details, see [Forsell11a].)

Fig. 6.Execution time and number of source code line of the aprefix bench-
mark in Xeon SMP using PThreads, DLX NUMA using the e-language
and Eclipse ESM using the e-language. (For more details, see
[Forsell11c].)

Since these studies are pointing to huge performance differences
between the current SMP and NUMA approaches and new ESM and CESM
approaches, we will take a closer look at computing and parallelism and
architectural techniques needed to implement it efficiently. Generally
speaking, the essence of parallel computing is to divide the computation-
al problem at hand to subproblems that can be solved in parallel and to
somehow solve the original problems with a help of these. This requires
granting sufficient bandwidth for interprocessor communication, provid-
ing fast synchronization mechanism between subproblem executions,
and making use of computational patterns that are specific to parallel
computing only. These are discussed in the following four sections.

�

�����

�����

�����

�����

	
���� �	����� ����� � �	� ���� �	�� ��	��� ���� �
��	����	��� ���

�����

�����

�

�����

�����

���	
� �	����� ����� � �	� �������� �	�� ����	� �������� �	��
� �����	� ���
�

�����

������

������

������

��	
�� �� ��	
�� ���

������

������

�

�����

������

����	
�� ��
����	 ���

�����

�����

�����

�����

�����

	�����

	�����

	�����

	� �� 	�� ���

��
��
��
��
��
	
�

��

�	�����������������������

��������������	������
�

������������������

��
���������

���� �����������

���

�

�

� � � �

� � �

� � �

���������

�

�

� � � �

� � �

� � �

������	�����

�

�

� � � �

� � �

� � �

�

�

�

� � � �

� � �

� � �

�����

�����

���	��

���	��

���	��

�
�	

�

��

��
�

��
��

�

�

� � � �

� � �

� � �

�

�

� � � �

� � �

� � �

�
�

���

�

�

� � � �

� � �

� � �

������������

�����

�

�

� � � �

� � �

� � �

�����

�����

�����

	�

��

�	

�

�

� � � �

� � �

� � �

�� 	��

�����������������������	

�

�

� � � �

� � �

� � �

���

�����

���

 ����

�

�

� � � �

� � �

� � �

�����

��������

��

!��

���

"��

���

���

���

���

	��

��

������ ������������ �������� �������

�
��

��
��
	

���
�

��

��������������	�����������

� � � � � � � �

� ������������

� � � � � � � �

� �������	�����

� � � � � � � �

� ��

� � � � � � � �

� �

���

���

���

���

	��

��

��
���
�

�	

�
��

� � � � � � � �

� �

� � � � � � � �

� �

� � � � � � � �

� �

� � � � � � � �

� �

��

!��

���

"��

��

��
�
��

� � � � � � � �

� �

��� ����������� � � � � � � �

� �

��� ������� � � � � � � �

� �

�����

�� ��� ��� ���

32 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined

Fig. 7.Early estimations of the execution time of a parametric benchmark pro-
gram as a function of number of processors (10% of code is sequential,
45% independent parallel, 45% dependent parallel, 20% of code is non-
vectorizable, 10% accesses miss the cache, there are 8192 software
threads) and the cache miss rate (10% of code is sequential, 45% inde-
pendent parallel, 20% of code is non-vectorizable, there are 8192 soft-
ware threads and 64 processors). (ESM=emulated shared memory,
CESM=configurable emulated shared memory, CC-NUMA=cache coher-
ent non-uniform memory access, NUMA=non-uniform memory access,
VC=vector computing, MP=message passing)

3. Hiding the latency

As explained in Section 2, shared memory can be unified or distributed.
A simple lay-out analysis reveals that unified shared memory will lead to
delays proportional to the square root of the number of processor cores
slowing down the memory system clock cycle and/or increasing the
latency with respect to that of distributed shared memory interconnected
with a mesh-like network (see Fig. 8). Another problems is the imple-
mentation of multiported memory. According to our studies the wiring of
P-ported memory takes P 2 times more space than that of a single port
memory of the same size. Thus, in the following we focus on distributed
shared memory implementation.

���������

�������	�

���������

���������

�������
�

���������

���������

��������

���������

���������

���������

�� ��
�

��
�

��

��

�
�

��
	�
�

��
��
��

�
�
��

�
��
��
���
��
���

��
��
��
��
��
��
��
��
�

��� �!��"�#!������!��$�

�%&�

'�%&�

''(�)&*�

�)&*�

%&$�

+'�

&$�

�������

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

���������
�

�������

��������

��������

��������

��
�

�
��
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�%&�

�%&�'

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

��������

��������

�������

����������

����������

��
�

�
��
�

�

�
�

��
����

��
�
��

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

&*)(�''

&*)�

%&$

+'

&$

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

��������

	�������

�� ��
�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

��
�

��

��

�
�

��
	�
�

��
��
��

�
�
�

$!�������!�#"�!��� ��

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

� ���������

���������

���������

�������	�

�������
�

���������

�� ������	���
������������������������ ��

�
��
��
��
	

��
��
��
�
�	
��
��
��
��
��
�

��

����

�����

�� !)�*�

!)�*�

����

+��

���

�������

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

	������

�������

��������

������

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

����

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

�������

��������

	������������
��

	�
�

�
�
��

	
��
���

�
�

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

�����

�*) !��

�*)!

���

+�

��

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

��������

��������

�� ������	�

���������

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

��	���
������������������������

����������������������������

�

�

�

�

�

�

�
�

�

� � � �

�

�

�

�

�

��

�������

Reports in Forestry and Natural Sciences No 6 33

Martti Forsell

Fig. 8.A unified shared memory and distributed shared memory organization.

Accessing the memory on a distributed shared memory system takes
time for communication and memory access on the target module. There
are two principal means for hiding the latency of the memory system—
caches and exploitation of parallel slackness.

Caches are small and fast associatively accessed memories that are
widely used to balance the speed difference between processors and the
main memory by keeping the potentially most frequently used data in the
cache from which it can be quickly retrieved [Kilburn62]. In a case of a
memory access, data is first searched from or stored to the cache. If it is
found, a cache hit occurs and data can be delivered fast back to the
processor. If data is not found, a cache miss occurs and an access to the
slower main memory is performed. After the access is completed data is
delivered to both the processor and stored into the cache so that further
references to the same data can be performed faster. The main problem
with caching applied to distributed shared memory is that if caches are
placed in the front of the network, there is a need for cache coherency
maintenance dropping the performance of the system with communica-
tion intensive algorithms [Lenoski28, Forsell10], or if caches placed in the
behind of the network next to memory modules, they are not able to hide
the latency of the intercommunication network.

The idea of latency hiding with exploitation of parallel slackness (or
high-throughput computing) is that if multiple (denoted with Tp) threads

P processing resources

P-port unified shared memory

max length O(P)

34 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined

are assigned to a single physical processor it is possible to execute other
threads while a thread is accessing memory or committing communica-
tion (see Fig. 9). Special multithreaded processors and a pipelined mem-
ory system are needed to implement this efficiently [Ranade91,
Leppänen96, Sun05]. Another advantage of high-throughput computing is
that it slows down the execution of individual threads which helps to
eliminate the pipeline hazards that slow down execution in single thread-
ed architectures except in the minimal pipeline architecture in which
there are not hazards [Forsell96, Forsell02] (see Fig. 10).

Fig. 9.Single and multithreaded execution and latency hiding with parallel
slackness in the latter.

Fig. 10. Increasing the number of threads per processor from 2 to 6 elimi-
nates control hazards in a 4-stage pipeline.

The effect of using high-throughput computing instead of caching is
shown in Fig. 4 for different processor organizations and in Fig. 7 for TLP
different approaches.

Single threaded processor

Memory Memory

Multithreaded processor

�������	�	
���������������	�	
��������

�����	
�

�����	
�

����
��
	��������	
����
��
���	�	

����
��
	��������	

����
��
���	�	

�������
��������
����������

����
��
	��������	
����
��
���	�	

������
����������

Reports in Forestry and Natural Sciences No 6 35

Martti Forsell

4. Synchronization

Synchronization is one of the most expensive operations in current paral-
lel architectures. Even in a small multicore machine using the SMP or
NUMA paradigm, a barrier synchronization can easily take hundreds of
clock cycles. This rules fine-grained parallel algorithms useless for these
architectures. There exists, however, very efficient synchronization tech-
niques, e.g. the synchronization wave, for high-throughput architectures
dropping the cost of implicit synchronization down to 1/Tp [Leppänen96]
(see Fig.11).

Fig. 11. Synchronization waves separating execution steps in high-through-
put computing.

In it special synchronization messages are sent by the processors to the
memory modules and vice versa. The idea is that when a processor has
sent all its messages belonging to a single step on their way, it sends a
synchronization message. Synchronization messages from various
sources push on the actual messages, and spread to all possible paths,
where the actual messages could go. When a switch receives a synchro-
nization message from one of its inputs, it waits, until it has received a
synchronization message from all of its inputs, then it forwards the syn-
chronization wave to all of its outputs. The synchronization wave may not
bypass any actual messages and vice versa. When a synchronization wave
sweeps over a network, all switches, modules and processors receive
exactly one synchronization message via each input link and send exact-
ly one via each output link. This kind of a cheap implicit synchronization

T threads per
processor
p

Step

Synchronization wave
separating the steps

StepStep Step Step

36 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined

makes it possible to emulate the easy-to-program PRAM abstraction
[Fortune78] efficiently and therefore these architectures are called emulat-
ed shared memory machine (ESM).

5. Exploitation of low-level parallelism

The amount of available ILP is often severely limited, especially if inde-
pendent operations are not seek beyond the basic block boundaries
[Jouppi89, Smith89, Forsell02]. Extracting larger amounts of ILP from a
single threaded general purpose program is possible, but it requires very
complex compilation algorithms like trace scheduling [Fisher81],
superblock scheduling [Hank93] or percolation scheduling [Nicolau85,
Moon93] seeking independent instructions across the boundaries of basic
blocks. Even these advanced techniques fail, if instructions of the code
are excessively dependent on each other. In high-throughput computing
architectures it is possible to exploit ILP-style low level parallelism that
often exists between the threads using the chained organization of func-
tional units rather than traditional parallel organization [Forsell97] (see
Fig. 12). The idea is to divide an instruction to a fixed number of subin-
structions, which are executed in the corresponding functional units in a
chain-like manner sequentially. This kind of technique, chaining, allows
a unit to use the results of the preceding units so that a portion of strictly
sequential subinstruction can be executed during a single instruction
[Forsell97]. This is not possible with models based on parallel organiza-
tion of functional units. We call the obtained ability to execute multiple
subinstructions during a step as virtual ILP.

We have evaluated the effect of chaining both with analytic modeling
[Forsell02] (see Fig. 4) and simulations [Forsell03] (see Fig. 13). Note that
synchronous high-throughput computing works poorly with dynamic
superscalar execution since the scheduler can easily change the ordering
and timing of memory accesses so that the dependencies are violated and
erroneous result is obtained.

Reports in Forestry and Natural Sciences No 6 37

Martti Forsell

Fig. 12. Parallel and chained organization of functional units.

Fig. 13. Speedup of achieved by using parallel and chained organization of
functional units with 5, 7 and 11 functional units per processor with
respect to standard pipelined processor organization.

6. Concurrent memory access

Memory access is said to be concurrent if at least two processors are
accessing the same location during the same step. Naturally, this kind of
concurrence is meaningful only in the case of synchronous TLP execu-

�� �� ��

��

��

��

�� !"���
#!$�

�� !"���
#!$�

38 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined

tion, e.g. in the synchronous high-throughput computing making use of
parallel slackness in latency hiding and synchronization wave as
described above but not in SMP and NUMA. According to the theory of
parallel algorithms [Jaja92], concurrent memory accesses can be used to
speed up execution by a logarithmic factor for a class of parallel algo-
rithms. There are efficient techniques for concurrent memory access even
if we limit the number of ports per memory module to one—namely com-
bining and step caches [Keller01, Forsell05].

Combining is a technique in which memory references targeted to the
same location are combined during routing so that traffic to the final des-
tination is reduced [Ranade91]. Unfortunately, there is a need to sort the
references made during a step of (multithreaded) execution on a proces-
sor prior sending them to the network, a need for machinery in the
routers comparing references on their way to destinations, and a need to
store combined read messages so that their common reply can be split
back to actual replies targeted to processing resources [Keller01]. All this
makes implementation of combining expensive and tricky.

Step caches [Forsell05] are special caches that operate like normal
caches but data stored to a step cache remains valid only until the end of
ongoing step of multithreaded execution during which the references are
independent by the definition of parallel computing so that there is no
need to maintain any kind of cache coherence. In a system with P Tp-
threaded processor cores, step caches help concurrent memory accesses
by reducing the number of references per a location from PTp to P, which
allows the memory system to work without a noticeable performance
penalty if Tp � P even if all the threads are referring to the same location
in parallel (see Fig. 14). Compared to combining, step caches operate
faster due to elimination of the sorting phase but require more parallelism
and operate more arbitrarily, e.g. not preserving the ordering of memory
references and thus making in more difficult to implement e.g. the Priority
variant of the concurrent memory access aware PRAM in which the thread
with the lowest id wins in the case of a concurrent write. Fig. 15 shows
our simulation results [Forsell08a] for a step cached ESM as the speedups

Reports in Forestry and Natural Sciences No 6 39

Martti Forsell

achieved with a help of concurrent memory access in the case of 4, 16 and
64 processor cores with respect to 4-core exclusive access.

Fig. 14. Concurrent memory access in high-throughput computing approach
with and without step caches.

Fig. 15. Speedup provided by concurrent memory access with respect to E4.
(Ex=exclusive memory access with x processor cores, Cx=concur-
rent memory access with x processor cores)

7. Multioperations

According to the theory of parallel algorithms the logarithmic speedup
provided by concurrent memory access (CRCW) can be extended to a
wider set of algorithms if efficient implementation of multi(prefix)opera-
tions operations is provided for synchronous TLP machines [Jaja92]. A
multioperation is a special operation involving participation of multiple

��������
%&

�����	
%

�����	
�

�����	
�

�����	
����

��������
�&

�����	
��

�����	
��'�

�����	
��'�

�����	
�����

��������
�&

�����	
���

�����	
���'�

�����	
���'�

�����	
(����

��������
���&

�����	
)���*��

�����	
)���*��'�

�����	
)���*��'�

�����	
�����

���������
����
+������
����
���� ���������
����
+���
����
����

"���
���

"���
���

"���
���

"���
���

,����-
�������

�
�
���������

��
���-��
����

���������
�
���

-��
�����
����

����
��	
��

���+	�+�

,����-
�������

�
���
���������

��
���-��
����

���������
���

-��
�����
����

����
��	
���������

�����	
���+	�+�

E4 C4 E16 C16 E64 C64
aprefix 1.00 1.41 3.18 4.83 9.49 14.63
max 1.00 1.38 3.16 4.74 12.75 16.31
search 1.00 12.09 3.26 48.12 12.37 189.07
spread 1.00 72.00 3.18 287.43 11.16 1136.46
sum 1.00 1.41 3.18 4.83 11.13 14.63

40 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined

threads and a single memory location, e.g. summing up to P data values
to a memory location in parallel. Multiprefix operations are like multiop-
erations, but each processor receives a cumulative intermediate result of
the operation. Both multioperations and multiprefix operations can be
implemented in constant time with a combining networks technique
[Ranade91] or with step caches/scratchpad and active memory units
[Forsell06, Forsell11b]. The difference of combining and step
cache/scratchpad-based techniques is that while the latter takes poten-
tially less silicon area and performs faster in cases not requiring full con-
currency, it is not able to provide unbounded number of concurrent
ordered multiprefixes like combining. Fig. 16 illustrates an implementa-
tion of ordered multiprefix with a help of step caches, scratchpads and
active memory unit ordering buffers. Fig. 17 shows our simulation results
[Forsell08a] as the speedups achieved with a help of multioperations in
the case of 4, 16 and 64 processor cores with respect to 4-core exclusive
access without multioperations.

8. Conclusions

Based on our recent and on-going analysis of TLP execution techniques,
we have tried to answer the question why the approaches used in current
multicore machines, making use of performance enhancement tech-
niques primarily developed for sequential computers, are not efficient in
TLP execution. For that we have introduced alternative/new TLP-aware
techniques that give much higher performance for many general purpose
TLP computing patterns. The performance advantage comes from scala-
ble latency hiding, radically faster synchronization, more efficient
exploitation of low-level parallelism, and special synchronous TLP exe-
cution aware techniques like concurrent memory access and multi(pre-
fix)operations. Thus, preliminary speaking we can say that high-through-
put computing style interleaved multithreading could replace caching as
a primary latency hiding mechanism for shared memory access but
caching would remain important at the level of memory hierarchy related

Reports in Forestry and Natural Sciences No 6 41

Martti Forsell

Fig. 16. Ordered multiprefix in high-throughput computing approach with
and without step caches.

Fig. 17. Speedup provided by multioperations. (Ex=exclusive memory
access with x processor cores, Mx=multioperation and concurrent
memory access aided execution with x processor cores)

accessing slower/secondary memories from distributed memory mod-
ules, and chained static virtual superscalar execution could replace
dynamic superscalar execution as the most efficient techniques for low-
level parallelism exploitation. Techniques not familiar from sequential
nor current TLP machines—concurrent memory access and multiopera-
tions—could provide further boost enabling advanced parallel patterns.
Likewise, techniques that would become less important include some
standard pipeline hazard prevention mechanisms and speculations. Since

��������
%&

�����	
%

�����	
�

�����	
�

�����	
����

��������
�&

�����	
��

�����	
��'�

�����	
��'�

�����	
��.��

��������
�&

�����	
���

�����	
���'�

�����	
���'�

�����	
(����

��������
���&

�����	
)���*��

�����	
)���*��'�

�����	
)���*��'�

�����	
�����

�/
0��������
��������������

�������������

�/
"��	
��������+���
�������
��
��	����

��
	��������
�����
��������
�������������

)���
������
���
��������
���-*

(/
"����	
��	
������
���
�����

��1�����-
��	���	
�������������

+�����
���������

"������	
����
���
����

"������	
����
���
����

"������	
����
���
����

"������	
����
���
����

"������	
����
���
����

"������	
����
���
����

"������	
����
���
����

"������	
����
���
����

2,���
���������� �,���
����������
�������	
�
���
���������+���
������

��
������	
��
�����	�+���

�������
�
�����	�
����
��3�
�����	-

���	
�����
��������
����

+���
1�
��	���	
��
���
��	

��
���
�����-
����-

��������
�������

�,���
����������
�
�����
��������
��������
��

��������
�����-
��������
�
��	�����
��
����
����
����

�����-
���������
����3�

��
����	�����������
��	��

"������	
����
���
����

"������	
����
���
����

"������	
����
���
����

"������	
����
���
����

,����-
�������
��	
���3�
�����-
����

E4 M4 E16 M16 E64 M64
aprefix 1.00 11.99 3.18 47.27 9.49 184.07
max 1.00 9.85 3.16 39.05 12.75 151.90
search 1.00 12.08 3.26 44.83 12.37 188.90
spread 1.00 71.93 3.18 287.17 11.16 1135.45
sum 1.00 14.39 3.18 56.02 11.13 221.74

42 Reports in Forestry and Natural Sciences No 6

Computer Architecture Re(de)fined

this kind of elimination of performance bottlenecks makes it possible to
use fine-grained TLP programming patterns efficiently, this will also sim-
plify programming considerably. All this may considerably change the
theory and practice of parallel computing in the near future.

Even though this paper is based on partially preliminary models and
on-going work we believe that they point already relatively well at the
right direction. Detailed and verified analytic performance models of TLP
approaches and thorough discussion on implications of these will be pub-
lished in the later phases of our research.

References

[Agarwal95] A. Agarwal et al., The MIT Alewife machine: Architecture and
Performance, Proceedings of the 22nd annual international sym-
posium on computer architecture (ISCA), 1995, pp. 2-13.

[Bloch59] E. Bloch, The engineering design of the Stretch computer,
Proceedings of the Fall Joint Computer Conference, 1959, 48-59.

[Brooks00] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A.
Buyuktosunoglu, J. Wellman, V. Zyuban, M. Gupta and P. Cook,
Power-Aware Microarchitecture: Design and Modeling
Challenges for Next Generation Microprocessors, IEEE Micro 20,
6 (November-December 2000), 26-32.

[Bucholz62] W. Bucholz, Planning a Computer System: Project Stretch,
McGraw-Hill, New York, 1962.

[Culler99] D. Culler and J. Singh, Parallel Computer Architecture—A
Hardware/ Software Approach, Morgan Kaufmann Publishers
Inc., San Fransisco, 1999.

[Fisher81] J. Fisher, Trace Scheduling: A Technique for Global Microcode
Compaction, IEEE Transactions on Computers C-30, 7 (July 1981),
478-490.

[Forsell96] M. Forsell, Minimal Pipeline Architecture-an Alternative to
Superscalar Architecture, Microprocessors and Microsystems 20, 5
(1996), 277-284.

Reports in Forestry and Natural Sciences No 6 43

Martti Forsell

[Forsell97] M. Forsell, MTAC—A Multithreaded VLIW Architecture for PRAM
Simulation, Journal of Universal Computer Science 3, 9 (1997),
1037- 1055.

[Forsell02] M. Forsell, Architectural differences of efficient sequential and
parallel computers, Journal of Systems Architecture 47, 13 (July
2002), 1017-1041.

[Forsell05] M. Forsell, Step Caches—a Novel Approach to Concurrent
Memory Access on Shared Memory MP-SOCs, In the Proceedings
of the 23th IEEE NORCHIP Conference, November 21-22, 2005,
Oulu, Finland, 74-77.

[Forsell06] M. Forsell, Realizing Multioperations for Step Cached MP-SOCs, In
the Proceedings of the International Symposium on System-on-
Chip 2006 (SOC’06), November 14-16, 2006, Tampere, Finland,
77-82.

[Forsell08a] M. Forsell, On the performance and cost of some PRAM models
on CMP hardware, In the Proceedings of the 10th Workshop on
Advances in Parallel and Distributed Computational Models (in
conjunction with the 22th IEEE International Parallel and
Distributed Processing Symposium, IPDPS�08), April 14, 2008,
Miami, USA.

[Forsell08b] M. Forsell, V. Leppänen and M. Penttonen,
Rinnakkaistietokoneen uusi tuleminen, Tietojenkäsittelytiede 28,
(Joulukuu2008), 55-65.

[Forsell09] M. Forsell, Configurable Emulated Shared Memory Architecture
for general purpose MP-SOCs and NOC regions, In the
Proceedings of the 3rd ACM/IEEE International Symposium on
Networks-on-Chip, May 10-13, 2009, San Diego, USA, 163-172.

[Forsell10] M. Forsell, A PRAM-NUMA model of computation for addressing
low-TLP workloads, in The Proceedings of the 12th Workshop on
Advances in Parallel and Distributed Computational Models (in
conjunction with the 24th IEEE International Parallel and
Distributed Processing Symposium, IPDPS’10), April 19, 2010,
Atlanta, USA, 1–8.

[Forsell11a] M. Forsell, Performance comparison of some shared memory
organizations for 2D mesh-like NOCs, Microprocessors and
Microsystems 35, 2 (March 2011), 274-284.

44 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks:
Lessons Learned

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen
School of Computing

University of Eastern Finland
P.O. Box 1627, 70211 Kuopio, Finland

Keijo.Haataja@uef.fi, Konstantin.Hypponen@uef.fi,

Pekka.Toivanen@uef.fi

Abstract. In this paper, a literature review based comparative anal-
ysis of Bluetooth security attacks over the past ten years (2001-2011)
is provided. In addition, a new practical countermeasure against
Man-In-The-Middle attacks on Bluetooth Secure Simple Pairing is
proposed. Moreover, a novel attack that works against all existing
Bluetooth versions is proposed. Furthermore, some new ideas that
will be used in our future research work are presented.

1 INTRODUCTION

Bluetooth1 is a technology for short range wireless data and real-
time two-way audio/video transfer providing data rates up to 24
Mb/s. Bluetooth operates at 2.4 GHz frequency in the free Indus-
trial, Scientific, and Medical (ISM) band. Bluetooth devices that
communicate with each other form a piconet. The device that initi-
ates a connection is the piconet master and all other devices within
that piconet are slaves.

Already in 2006, the one billionth Bluetooth device was shipped
[1]. Less than five years later in 2011, the four billionth Bluetooth
device was shipped2, and the volume is expected to increase rapidly
in the near future. According to In-Stat, the eight billionth Blue-
tooth device is expected to be shipped by the end of 20133. There-
fore, it is very important to keep Bluetooth security issues up-to-

1https://www.bluetooth.org/Technical/Specifications/adopted.htm

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

date.
Our results: In this paper, we provide a literature review based

comparative analysis of Bluetooth security attacks over the past ten
years (2001-2011). In addition, we propose a new practical counter-
measure against Man-In-The-Middle (MITM) attacks on Bluetooth
Secure Simple Pairing (SSP). Moreover, we propose a new practical
attack that works against all existing Bluetooth versions. Further-
more, we present some new ideas that will be used in our future
research work.

The rest of the paper is organized as follows. Section 2 gives
an overview of Bluetooth security. A literature review based com-
parative analysis of Bluetooth security attacks over the past ten
years (2001-2011) is provided in Section 3: the attacks are designed
against Bluetooth versions up to 2.0+EDR (Enhanced Data Rate),
but some of them work also against all existing Bluetooth versions
up to 4.0. Since MITM attacks are also possible and dangerous
against the latest SSP-enabled Bluetooth versions (i.e. Bluetooth
versions 2.1+EDR – 4.0), MITM attacks on Bluetooth are explained
in a separate attack section (Section 4). The section also provides
a comparative analysis of the all existing Bluetooth MITM attacks
over the past ten years (2001-2011). Section 5 proposes a new prac-
tical countermeasure against MITM attacks on SSP. A new practical
attack that works against all existing Bluetooth versions is proposed
in Section 6. Finally, Section 7 concludes the paper and sketches fu-
ture work.

2 OVERVIEW OF BLUETOOTH SECURITY

The basic Bluetooth security configuration is done by the user who
decides how a Bluetooth device will implement its connectability
and discoverability options. The different combinations of con-
nectability and discoverability capabilities can be divided into three
categories, or security levels:1 [1]

2http://www.bluetooth.com/Pages/Press-Releases-Detail.aspx?ItemID=126
3http://www.instat.com/press.asp?Sku=IN1104968MI&ID=3238

46 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

1. Silent: The device will never accept any connections. It simply
monitors Bluetooth traffic.

2. Private: The device cannot be discovered, i.e. it is a so-called
non-discoverable device. Connections will be accepted only if
the Bluetooth Device Address (BD ADDR) is known to the pro-
spective master. A 48-bit BD ADDR is normally unique and
refers globally to only one individual Bluetooth device.

3. Public: The device can be both discovered and connected to.
It is therefore called a discoverable device.

Bluetooth security is based on building a chain of events, none
of which should provide meaningful information to an eavesdrop-
per. All events must occur in a specific sequence for security to
be set up successfully. In order for two Bluetooth devices to start
communicating, a procedure called pairing must be performed. As
a result of pairing, two devices form a trusted pair and establish a
link key which is used later on for creating a data encryption key
for each session.1 [1]

In Bluetooth versions up to 2.0+EDR, pairing is based exclu-
sively on the fact that both devices share the same Personal Identifi-
cation Number (PIN), or passkey, that is used for generating several
128-bit keys. When the user enters the same passkey in both de-
vices, the devices generate the same shared secret which is used for
authentication and encryption of traffic exchanged by them. The
PIN is the only source of entropy for the shared secret in Blue-
tooth versions up to 2.0+EDR. As the PINs often contain only four
decimal digits, the strength of the resulting keys is not enough
for protection against passive eavesdropping on communication.
Even with longer 16-character alphanumeric PINs, full protection
against active eavesdropping cannot be achieved: it has been shown
that MITM attacks on Bluetooth communications (versions up to
2.0+EDR) can be performed [1–4].1 [1]

Bluetooth versions 2.1+EDR, 3.0+HS (High-Speed), and 4.0 add
a new specification for the pairing procedure, namely SSP1. Its

Reports in Forestry and Natural Sciences No 6 47

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

main goal is to improve the security of pairing by providing pro-
tection against passive eavesdropping and MITM attacks. Instead
of using (often short) passkeys as the only source of entropy for
building the link keys, SSP employs Elliptic Curve Diffie-Hellman
(ECDH) public-key cryptography. To construct the link key, de-
vices use public-private key pairs, a number of nonces, and Blue-
tooth addresses of the devices. Passive eavesdropping is effectively
thwarted by SSP, as running an exhaustive search on a private key
with approximately 95 bits of entropy is currently considered to be
infeasible in short time.1 [1]

In order to provide protection against MITM attacks, SSP either
uses an OOB channel (e.g., Near Field Communication, NFC), or
asks for the user’s help: for example, when both devices have dis-
plays and keyboards, the user is asked to compare two six-digit
numbers. Such a comparison can be also thought as an OOB chan-
nel which is not controlled by the MITM. If the values used in the
pairing process have been tampered with by the MITM, the six-digit
integrity checksums will differ with the probability of 0.999999.1 [1]

SSP uses four association models. In addition to the two asso-
ciation models mentioned previously, OOB and Numeric Compari-
son, models named Passkey Entry and Just Works are defined. The
Passkey Entry association model is used in the cases when one de-
vice has input capability, but no screen that can display six digits. A
six-digit checksum is shown to the user on the device that has out-
put capability, and the user is asked to enter it on the device with
input capability. The Passkey Entry association model is also used
if both devices have input, but no output capabilities. In this case
the user chooses a 6-digit checksum and enters it in both devices.
Finally, if at least one of the devices has neither input nor output
capability, and an OOB cannot be used, the Just Works association
model is used. In this model the user is not asked to perform any
operations on numbers: instead, the device may simply ask the user
to accept the connection.1 [1]

SSP is comprised of six phases:1 [1]

48 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

1. Capabilities exchange: The devices that have never met before
or want to perform re-pairing for some reason, first exchange
their Input/Output (IO) capabilities to determine the proper
association model to be used.

2. Public key exchange: The devices generate their public-private
key pairs and send the public keys to each other. They also
compute the Diffie-Hellman key.

3. Authentication stage 1: The protocol that is run at this stage
depends on the association model. One of the goals of this
stage is to ensure that there is no MITM in the communica-
tion between the devices. This is achieved by using a series of
nonces, commitments to the nonces, and a final check of in-
tegrity checksums performed either through the OOB channel
or with the help of user.

4. Authentication stage 2: The devices complete the exchange of
values (public keys and nonces) and verify the integrity of
them.

5. Link key calculation: The parties compute the link key using
their Bluetooth addresses, the previously exchanged values,
and the Diffie-Hellman key constructed in phase 2.

6. LMP authentication and encryption: Encryption keys are gen-
erated in this phase, which is the same as the final steps of
pairing in Bluetooth versions up to 2.0+EDR.

Even though SSP improves the security of Bluetooth pairing,
it has been shown that MITM attacks against Bluetooth 2.1+EDR,
3.0+HS, and 4.0 devices are also possible by forcing victim devices
to use the Just Works association model [1, 5–9]. Thus, the security
of SSP should be further improved.

Reports in Forestry and Natural Sciences No 6 49

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

3 COMPARATIVE ANALYSIS OF BLUETOOTH SECURITY

ATTACKS

Security threats in distributed networks (such as Bluetooth) can be
divided into three categories: disclosure threat, integrity threat, and
Denial-of-Service (DoS) threat. Disclosure threat means that informa-
tion can leak from the target system to an eavesdropper that is not
authorized to access the information. Integrity threat concerns the
deliberate alteration of information in an attempt to mislead the re-
cipient. DoS threat involves blocking access to a service, making it
either unavailable or severely limiting its availability to an autho-
rized user. Disclosure and integrity attacks typically compromise
some sensitive information and therefore can be very dangerous,
while DoS attacks typically only annoy Bluetooth network users
and are considered to be less dangerous. [1, 10]

Sections 3.1, 3.2, and 3.3 explain some typical disclosure, in-
tegrity, and DoS threats, respectively. Some typical threats which
cannot be classified as only one single threat (so-called multithreats)
are explained in Section 3.4.

3.1 Disclosure Threats

BlueSnarfing attack 4,5 (also referred to as BlueStumbling attack) means
that an attacker connects to the target device without alerting its
owner and steals some sensitive information, such as entire phone-
book, calendar notes, and text messages. At least three BlueSnarfing
applications exist: Adam Laurie’s BlueSnarf 5, Ollie Whitehouse’s
RedSnarf 6, and Bluediving Project’s Bluediving 7. The success of
BlueSnarfing attack depends very much on the vendor’s implemen-
tation of the Bluetooth protocol stack for the target device. There-
fore, the attack works only if the protocol stack of the target device
is poorly implemented, i.e. there are serious flaws in the authen-
tication and data transfer mechanisms of some Bluetooth devices.
A list of the devices known to be vulnerable to BlueSnarfing attack

50 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

without firmware/software update can be found in 5. [1]
An Off-Line PIN Recovery attack 6 [2] (also referred to as Off-Line

PIN Crunching attack) is based on intercepting the traffic of the initial
pairing process and after that trying to calculate the correct SRES
(Signed Response; i.e. authentication result) value by guessing dif-
ferent PIN values until the calculated SRES equals to the intercepted
SRES. It is worth noting that SRES is only 32 bits long. Therefore,
a SRES match does not necessarily guarantee that an attacker has
discovered the correct PIN code, but the chances are quite high
especially if the PIN code is short. The attack is dangerous only
if the PIN code is short and it has no case-sensitive alphanumer-
ical characters (and perhaps some other characters as well). The
requirement to witness the initial pairing process between the vic-
tim devices is not a big problem for the attacker, because it can be
arranged in many different ways: for example, by disrupting the
Physical Layer (PHY) in such a way that a frustrated user thinks
something is wrong and deletes previously stored link keys, by us-
ing three methods proposed in [11] which can force two target de-
vices to repeat the initial pairing process, or by sending a Bluetooth
device anonymously to the target person as a prize in some com-
petition. After that the user initiates a new pairing process and the
attacker can intercept all the required inputs for an Off-Line PIN
Recovery attack.6 [1, 2, 10, 12]

An Enhanced implementation of Off-Line PIN Recovery attack [11]
is an average of 30 % faster than the original Off-Line PIN Re-
covery attack6 [2]. It is based on the optimization of Secure And
Fast Encryption Routine + (SAFER+) [13] using the algebraic ma-
nipulation of the SAFER+ round. Moreover, three methods which
can force two target devices to repeat the initial pairing process are also
proposed in [11]: the methods are based on the fact that Bluetooth

4http://trifinite.org/Downloads/BlueSnarf CeBIT2004.pdf
5http://madrock.net/2008/03/serious-flaws-in-bluetooth-security-lead-to-

disclosure-of-personal-data
6http://cansecwest.com/csw04archive.html (see the report of Ollie White-

house)
7http://bluediving.sourceforge.net

Reports in Forestry and Natural Sciences No 6 51

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

specifications1 allow Bluetooth devices to forget a link key and thus
an attacker can abuse this possibility by forcing victim devices to
forget their current link key. However, the Bluetooth user is re-
quired to enter a PIN code again during the new pairing process
and therefore a suspicious user may realize that her device is under
attack. [1, 11, 13]

An Off-Line Encryption Key Recovery attack 6 extends an Off-Line
PIN Recovery attack6 [2, 11]. When the PIN code is discovered via
an Off-Line PIN Recovery attack, the attacker can produce the re-
quired ACO (Authenticated Ciphering Offset; i.e. a 96-bit authen-
tication result) and thus she can also recover the encryption key.
Therefore, an Off-Line Encryption Key Recovery attack is danger-
ous only when an Off-Line PIN Recovery attack or its enhanced
implementation has been completed successfully.6 [1]

A Brute-Force BD ADDR Scanning attack 6 [1] uses a brute-force
method only on the last three bytes of a BD ADDR, because the first
three bytes are publicly known and can be set as fixed. RedFang 8 is
a security analysis tool for finding non-discoverable Bluetooth de-
vices by brute-forcing the last three bytes of BD ADDR and doing
a name inquiry6,8. We also designed, implemented, and tested our
own tool to carry out this attack. Our Brute-Force BD ADDR Scan-
ning Security Analysis Tool [1, 14] is on average four times faster than
RedFang, because it runs on a special hardware, LeCroy’s Bluetooth
protocol analyzer9, which can use Bluetooth radio much more ef-
ficiently than a normal PC with a Bluetooth Universal Serial Bus
(USB) dongle. A detailed description of our security analysis tool
can be found in [1, 14]. [1]

Besides a Brute-Force BD ADDR Scanning attack, techniques for
finding hidden Bluetooth devices in an average of one minute have been
proposed [15] and even implemented in a form of an open-source
Bluetooth sniffer10 that operates on a single channel. The Universal
Software Radio Peripheral (USRP11) was used as a radio device to

8http://www.securiteam.com/tools/5JP0I1FAAE.html
9http://www.lecroy.com/protocolanalyzer/protocoloverview.aspx?seriesid

=103&capid=103&mid=511

52 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

eavesdrop on Bluetooth packets. It is the hardware device associ-
ated with the GNU Radio Project12, which develops an open-source
framework for implementing software radio systems, i.e. systems
in which radio devices are implemented in software. Due to the
buffering and asynchronous nature of the GNU Radio framework
and the hardware restrictions of the USRP, no working prototype
of the Bluetooth sniffer that supports frequency hopping has been
implemented yet. However, the current version of the Bluetooth
sniffer is still capable of finding hidden (non-discoverable) Blue-
tooth devices in the range of vulnerability in an average of one
minute.10 [1, 15]

A BluePrinting attack 13 is used to determine the manufacturer,
device model, and firmware version of the target device. For ex-
ample, an attacker can use Blueprinting to generate statistics about
Bluetooth device manufacturers and models, and to find out whether
there are devices in the range of vulnerability that have issues with
Bluetooth security. BluePrint 14 is a tool for performing BluePrinting
attack under Linux environments.13,14 [1]

Our practical experiment, Interception of Packets attack [1,16], was
conducted in order to demonstrate the importance of data encryp-
tion and to show how easy it is for an eavesdropper to intercept all
packets exchanged via air. Our practical experiment clearly demon-
strated that all information exchanged via air can be seen clearly
on the screen of the attacker’s laptop when encryption is not used.
A detailed description of our practical experiment can be found
in [1, 16].

3.2 Integrity Threats

Reflection attacks [4] (also referred to as Relay attacks) are based on
the impersonation of target devices. An attacker does not have to

10http://www.cs.ucl.ac.uk/staff/a.bittau/gr-bluetooth.tar.gz
11http://www.ettus.com/downloads/ettus ds usrp v7.pdf
12http://gnuradio.org/redmine/projects/gnuradio/wiki
13http://trifinite.org/Downloads/Blueprinting.pdf
14http://trifinite.org/trifinite stuff blueprinting.html

Reports in Forestry and Natural Sciences No 6 53

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

know any secret information, because she only relays (reflects) the
received information from one target device to another during the
authentication, i.e. a Reflection attack in Bluetooth can be seen as a
type of a MITM attack against authentication, but not encryption.
Section 4.2 provides more information about Reflection attacks. [1,
4]

A very dangerous form of integrity threat takes place when an
attacker uses a stronger RF signal in order to displace the active
piconet device: the main principle for successfully completing an
Exploitation of a stronger RF signal attack [10] is to send the target
device’s receiver an RF signal that is at least 11 dB stronger than the
signal that the legitimate piconet device is sending, thus capturing
the channel from the legitimate piconet device. [1, 10]

A Backdoor attack 5 means that an attacker establishes a trusted
relationship with the target device through authentication and en-
sures that this trusted relationship no longer appears to be in the
target device’s register of paired (authenticated) devices. When the
backdoor is installed in the target device via a Backdoor attack, the
attacker can continue the attack in many different ways: for exam-
ple, trying to exploit the resources of the target device via a trusted
relationship, trying to perform a BlueSnarfing attack (see Section
3.1), or trying to slip a virus or worm to the target device (see Sec-
tion 3.4). A list of the devices known to be vulnerable to Backdoor
attacks without a firmware/software update can be found in 5. [1]

3.3 DoS Threats

DoS threats can be roughly divided into two parts: attacks against
the PHY and attacks against protocols above the PHY. [1, 10]

At the Physical Layer (PHY), an attacker can jam the piconet en-
tirely or capture the channel from the legitimate piconet device. A
jammer can perform Disruption of the PHY attack [10] relatively far
away from the communicating devices (approximately up to 100
meters) by using a Bluetooth transmitter with a power amplifier
and a directional antenna [1, 10]. This type of attack can be very

54 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

dangerous if the attacker is using a stronger RF signal to displace
the existing legitimate piconet device (see Section 3.2) and then try-
ing to steal some sensitive information from the target device. [1,10]

Attacks on higher levels of the Bluetooth protocol stack try to exploit
some of the characteristics of higher level protocols in an attempt to
occupy the attention of one or more devices of the piconet in such
a way that they are unable to serve other legitimate devices within
a reasonable time. [1, 10]

A BD ADDR Duplication attack [1, 10] is based on the idea that
an attacker places a bug in the range of susceptibility. The bug du-
plicates the BD ADDR of the target device. When any Bluetooth
device tries to make a connection with the target device, either the
target device or both devices, i.e. the target device and the bug,
will respond and jam each other. In this way, the attacker has de-
nied access from the legitimate device. We designed, implemented,
and tested our own Bluetooth security analysis tool, BD ADDR Du-
plication Security Analysis Tool [1, 17], which was successfully used
to perform BD ADDR Duplication attacks. A detailed description
of our security analysis tool can be found in [1, 17]. [1]

A Synchronous Connection-Oriented (SCO) / Extended SCO (eSCO)
attack [1, 10] is based on the fact that a realtime two-way voice re-
serves a great deal of a Bluetooth piconet’s attention so that the
legitimate piconet devices are not getting the service within a rea-
sonable time. We designed, implemented, and tested our own Blue-
tooth security analysis tool, SCO/eSCO Security Analysis Tool [1, 17],
which was successfully used to perform SCO attacks. A detailed
description of our security analysis tool can be found in [1, 17]. [1]

A Big Negative Acknowledgement (NAK) attack [1, 10] is based
on the idea of putting the target device on an endless retransmis-
sion loop so that the legitimate piconet devices have considerably
slowed throughput. In the attack, an attacker requests any informa-
tion from the target device and every time the requested informa-
tion is received, the attacker sends NAK, i.e. the transmission has
failed. We designed, implemented, and tested our own Bluetooth
security analysis tool, Big NAK Security Analysis Tool [1, 17], which

Reports in Forestry and Natural Sciences No 6 55

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

was successfully used to perform Big NAK attacks. A detailed de-
scription of our security analysis tool can be found in [1, 17]. [1]

A Logical Link Control and Adaptation Protocol (L2CAP) Guaranteed
Service attack [1, 10] is based on the idea that an attacker requests
the highest possible data rate or the smallest possible latency from
the target device so that all other connections are refused and all
throughput is reserved for the attacker. However, the success of the
attack is implementation-dependent, because all Bluetooth devices
do not necessarily support the abovementioned optional L2CAP
Quality-of-Service (QoS) features. [1]

A Bluetooth Object Exchange Protocol (OBEX)15 Message attack 16 is
based on Nokia 6310i17 Bluetooth mobile phone’s flaw (some other
Bluetooth mobile phones may also be vulnerable) that allows an at-
tacker to perform a remote DoS attack. The attack can be performed
by sending invalid Bluetooth OBEX messages to the target device.
As a result of this attack, the target device will loss its availability
and may crash/reboot.16 [18]

A BlueSmacking attack 18 is based on using the standard tools
that are shipped with BlueZ protocol stack19. An attacker can use
BlueSmacking attack to knock out some Bluetooth devices imme-
diately: for example, many HP’s iPAQ Personal Digital Assistants
(PDAs) are vulnerable to BlueSmacking attack.18 [18]

A BlueSpamming attack 20 is based on the idea that an attacker
spams Bluetooth devices with arbitrary files if they support OBEX:
BlueSpam 20 is a Palm OS application for performing BlueSpamming
attacks.20 [18]

A Battery Exhaustion attack [1, 10] is based on the idea of occu-
pying the target device in such a way that it also consumes rather
quickly the battery of the target device. [1, 10]

15http://www.irda.org
16http://www.osvdb.org/displayvuln.php?osvdb id=3890
17http://nds1.nokia.com/phones/files/guides/6310i usersguide en.pdf
18http://trifinite.org/trifinite stuff bluesmack.html
19http://www.bluez.org
20http://www.mulliner.org/palm/bluespam.php

56 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

3.4 Multithreats

There are also many attacks which cannot be classified as only one
single threat. For example, BlueBugging attacks, Blooovering at-
tacks, HeloMoto attacks, On-Line PIN Cracking attacks, BTKey-
logging attacks, and BTVoiceBugging attacks can be classified as
disclosure and integrity threats.

A BlueBugging attack 21 [1] means that an attacker connects to
the target device (typically a Bluetooth mobile phone) without alert-
ing its owner, steals some sensitive information, such as an entire
phonebook, calendar notes, and text messages, and has full ac-
cess to the GSM (Global System for Mobile communications) AT
command set. It means that the attacker can, in addition to steal-
ing information, send text messages to premium numbers, initiate
phone calls to premium numbers, write phonebook entries, con-
nect to the Internet, set call forwards, try to slip a Bluetooth virus
or worm to the target device, and many other things. A list of the
devices known to be vulnerable to a BlueBugging attack without a
firmware/software update can be found in 5. Several public Blue-
Bugging tools exist: for example, btxml 22, Blooover 23, and Blooover
II 24. Our practical experiment, BlueBugging attack [1, 18], demon-
strated the dangerousness of such an attack by using the btxml22.
A detailed description of our practical experiment can be found
in [1, 18].21 [1]

Blooover23 and its successor Blooover II24 are derived from Blue-
tooth Hoover, because they run on handheld devices, such as PDAs
or mobile phones, and are capable of stealing sensitive information
by using a BlueBugging attack21 [1]. A Blooovering attack 23,24 can be
done secretly by using only a Java 2 Micro Edition (J2ME) compat-
ible Bluetooth mobile phone or handheld device with Blooover or
Blooover II installed. They are intended to serve as auditing tools,
which can be used for checking whether Bluetooth devices are vul-

21http://trifinite.org/trifinite stuff bluebug.html
22http://www.saftware.de/bluetooth/btxml.c
23http://trifinite.org/trifinite stuff blooover.html
24http://trifinite.org/trifinite stuff bloooverii.html

Reports in Forestry and Natural Sciences No 6 57

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

nerable or not, but they can be used for attacking against Bluetooth
devices as well.23,24 [1]

A HeloMoto attack 25 is a combination of BlueSnarfing (see Sec-
tion 3.1) and BlueBugging attacks. HeloMoto attack is based on the
poorly implemented handling of the trusted devices on some Mo-
torola’s Bluetooth mobile phones (for example, models V80, V5xx,
V6xx, and E398 are vulnerable without firmware/software update)
and it gives full access to the GSM AT command set.25 [18]

An On-Line PIN Cracking attack 6 [1] means that an attacker is
trying to connect with the target device by guessing different PIN
values. It is based on the idea of changing the BD ADDR of the
attacking device every time a PIN guess fails, i.e. the attacker by-
passes the ever increasing delay between retries. An On-Line PIN
Cracking attack works only when the target device has a fixed or
short adjustable PIN code. We designed, implemented, and tested
our own On-Line PIN Cracking Security Analysis Tools, On-Line
PIN Cracking Script [1, 14] and On-Line PIN Cracking Tool [1, 17],
which are (as far as we know) the only security analysis tools for
an On-Line PIN Cracking attack implemented so far. A detailed
description of our security analysis tools can be found in [1, 14, 17].
6 [1]

Our Bluetooth security attack, a BTKeylogging attack [1, 14], ex-
tends both the Brute-Force BD ADDR Scanning attack6 [1] and On-
Line PIN Cracking attack6 [1]. A BTKeylogging attack is carried
out on a wireless connection between a Bluetooth-enabled key-
board and a PC: in the attack, an attacker uses the target device (a
Bluetooth-enabled keyboard) as a ”Bluetooth keylogger” by inter-
cepting all packets (i.e. all keypresses) sent via air and decrypting
them. The attack is possible when the target keyboard has a fixed or
short adjustable PIN code. Moreover, the attacker must witness the
initial pairing process between the target keyboard and the target
computer: thereafter, all intercepted information, such as all user-
names, passwords, and sent e-mails, can be decrypted. A detailed
description of our attack can be found in [1, 14]. [1]

25http://trifinite.org/trifinite stuff helomoto.html

58 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

Our Bluetooth security attack, a BTVoiceBugging attack [1, 14],
also extends both a Brute-Force BD ADDR Scanning attack and an
On-Line PIN Cracking attack. A BTVoiceBugging attack is possible
when the target device has a fixed or short adjustable PIN code and
it has support for SCO or eSCO links. In the attack, an attacker uses
the target device (for example, a Bluetooth headset or a Bluetooth-
enabled PC/laptop equipped with a microphone and speakers) as
a ”Bluetooth bugging device”. In such a case, the attacker can listen
to sensitive conversations (for example, important business or other
meetings taking place in the vicinity of the target device) via a SCO
or an eSCO link, and she can also record these conversations for
later use. We also defined three different BTVoiceBugging attack
scenarios in order to eavesdrop on a typical business meeting. A
detailed description of our attack as well as its different scenarios
can be found in [1, 14]. [1]

For example, BTPrinterBugging attacks and attacks based on
using Bluetooth worms/viruses can be classified as disclosure, in-
tegrity, and DoS threats.

We designed, implemented, and tested our BTPrinterBugging at-
tacks [1, 19], which are based on the idea that an attacker abuses
the target Bluetooth-enabled printer in order to do various harmful
things: the attacker can, for example, both intercept and decrypt
all the information that is sent to the printer (a BTPrinterBugging
via Packet Interception attack [1, 19] can be performed using our BT-
PrinterBugging via Packet Interception Security Analysis Tool [1, 19]),
use the printer remotely as if it was her own (a BTPrinterBugging
via Impersonation attack [1, 19] can be performed using our BTPrint-
erBugging via Impersonation Security Analysis Tool [1,19]), deny access
to the printer from the legitimate piconet users (a BTPrinterBugging
via Access Denial attack [1, 19] can be performed in Windows envi-
ronments by using our BTPrinterBugging via Access Denial Security
Analysis Tool [1, 19] and in Linux environments by using our BT-
PrinterBugging via Access Denial Security Analysis Tool II [1, 19]), and
do many other harmful things. A detailed description of our secu-
rity analysis tools and attacks can be found in [1, 19]. [1]

Reports in Forestry and Natural Sciences No 6 59

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

Bluetooth worms and viruses have been often mentioned in the
media, for example, in 26,27, because there are several Bluetooth
worms and viruses, such as Cabir 28, Skulls.D 29, and Lasco.A 30,
which use Bluetooth-enabled mobile phones for infecting other Blue-
tooth mobile phones. In addition, in January 2005, Brazilian soft-
ware developer Marcos Velasco released all source codes of his
Lasco.A worm/virus on his homepage31, but later on removed them.
However, Lasco.A sources can still be downloaded from many Brazil-
ian file servers. It means that practically anyone can now write their
own Bluetooth viruses just by modifying Lasco.A sources. In ad-
dition, Bluetooth worms and viruses can be very dangerous if the
target device is vulnerable to BlueBugging, because in that way
an attacker can slip in a virus or worm without alerting the user.
Moreover, it is expected that attackers will exploit the techniques for
finding hidden Bluetooth devices in an average of one minute10 [15]
in order to spread viruses and worms more efficiently. [1]

4 MITM ATTACKS ON BLUETOOTH

Our MITM attacks on SSP, BT-Niño-MITM attack [1,6], BT-SSP-OOB-
MITM attack [1, 8], BT-SSP-Printer-MITM attack [1, 7], and BT-SSP-
HS/HF-MITM attack [1, 8] as well as the SSP MITM attack of Suoma-
lainen et al. [5], are described in Section 4.1. Section 4.2 provides a
literature review based comparative analysis of the existing MITM
attacks on Bluetooth over the past ten years (2001-2011), including
our MITM attacks on Bluetooth SSP.

26http://www.dailywireless.org/2005/02/04/bluetooth-viruses
27http://www.viruslist.com/en/analysis?pubid=204791928
28http://www.f-secure.com/v-descs/cabir.shtml
29http://www.f-secure.com/v-descs/skulls d.shtml
30http://www.f-secure.com/v-descs/bluetooth-worm symbos lasco a.shtml
31http://www.velasco.com.br

60 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

4.1 MITM attacks on SSP

We call our first attack as BT-Niño-MITM attack [1, 6] (also referred
to as Bluetooth - No Input, No Output - Man-In-The-Middle attack). In
the attack we exploit the fact that the devices must exchange in-
formation about their IO capabilities during the first phase of the
SSP (see Section 2). The exchange is done over an unauthenticated
channel, and an attacker that controls this channel can therefore
modify the information about capabilities and force the devices to
use the association model of her choice. In our attack, the devices
are forced to use the Just Works association model, which does not
provide protection against MITM attacks. The MITM uses two sep-
arate Bluetooth devices with adjustable BD ADDRs for the attack.
Such devices are readily available on the market. The MITM clones
the BD ADDRs and user-friendly names of the victim devices in
order to impersonate them more plausibly. We also described three
general scenarios for the attack. A detailed description of our attack
and its scenarios can be found in [1, 6]. [1]

Suomalainen et al. [5] have presented an attack against SSP
similar to our BT-Niño-MITM attack. In their attack the MITM
prompts one device to use the normal Numeric Comparison as-
sociation model, while forcing the other device to use the insecure
Just Works association model. This leads to one of the devices (the
one which uses the Numeric Comparison association model) treat-
ing the resulting link key as authenticated, and it might choose to
trust it even for an application which requires a high level of secu-
rity. However, this attack looks somewhat suspicious from the point
of view of the user: one of the devices asks the user to compare the
integrity checksums, while the other device does not display any
numbers. In the tests performed by Suomalainen et al. [5], only 6
users out of 40 accepted the pairing on both devices. Compared with
the SSP MITM attack of Suomalainen et al. [5], our BT-Niño-MITM at-
tack looks less dubious: indeed, the user is only asked to confirm
the pairing on both devices by pressing a button. Moreover, since
this confirmation request is optional in the Bluetooth specification1,

Reports in Forestry and Natural Sciences No 6 61

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

some of the manufacturers might choose to skip it in order to im-
prove usability. [1, 6]

We call our second attack as BT-SSP-OOB-MITM attack [1, 8]
(also referred to as a Bluetooth - Secure Simple Pairing - Out-Of-Band
- Man-In-The-Middle attack). The attack requires that an attacker can
somehow see the victim devices, i.e. there must be some kind of vi-
sual contact (for example, a hidden video camera or direct line-of-
sight) to the victim devices. In the attack legitimate users are misled
to select a less secure option instead of using a more secure OOB
channel, for example, USB cable, Infrared Data Association (IrDA),
or NFC. The attack works against any two OOB-capable Bluetooth
devices that support SSP. We also described a general scenario for
the attack. A detailed description of our attack and its scenario can
be found in [1, 8]. [1]

We call our third attack as BT-SSP-Printer-MITM attack [1, 7]
(also referred to as a Bluetooth - Secure Simple Pairing - Printer - Man-
In-The-Middle attack). In this attack we exploit the fact that almost
all Bluetooth-enabled printers that support SSP (especially those
connected using Bluetooth USB printer adapters) will use the Just
Works association model in order to make printing user-friendly.
It is not likely that users will be required to press any printer but-
tons just to accept the connection establishment in the initial pairing
process of SSP. Therefore, the Just Works association model seems
to be the most logical choice for SSP-enabled printers. Our attack
works even against such SSP-enabled printers that should provide
MITM protection via the Numeric Comparison, the Passkey Entry,
or the OOB association model, because victim devices can be forced
to use any association model that the attacker chooses [1, 5–9]. We
also described two scenarios for the attack. A detailed description
of our attack and its scenarios can be found in [1, 7]. [1]

We call our fourth attack as BT-SSP-HS/HF-MITM attack [1, 8]
(also referred to as a Bluetooth - Secure Simple Pairing - Headset/Hands-
Free - Man-In-The-Middle attack). In the attack we exploit the fact that
almost all Bluetooth-enabled headsets and hands-free devices that
support SSP will use the Just Works association model in order to

62 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

make pairing process user-friendly. Our attack works even against
such SSP-enabled headsets and hands-free devices that should pro-
vide MITM protection via the Numeric Comparison, the Passkey
Entry, or the OOB association model, because victim devices can
be forced to use the Just Works association model [1, 5–9]. We also
described a scenario for the attack. A detailed description of our
attack and its scenario can be found in [1, 8]. [1]

After a successful BT-Niño-MITM attack, BT-SSP-OOB-MITM
attack, BT-SSP-Printer-MITM attack, BT-SSP-HS/HF-MITM attack,
or SSP MITM attack of Suomalainen et al., the MITM can intercept
and modify all data exchanged between the victim devices, and
even use certain services that victim devices offer. [1, 5–9]

4.2 Comparative Analysis of Bluetooth MITM Attacks

The first MITM attack on Bluetooth was devised in 2001 by Jakobs-
son and Wetzel [2]: the attack is also world’s first Bluetooth security
attack and thus the year 2011 is a major 10-year milestone in the history
of Bluetooth security attacks – this milestone was also a big motivator
in writing this research paper.

Even though the attack was devised for the version 1.0B of the
Bluetooth standard, it works also with all Bluetooth versions up to
2.0+EDR. The attack assumes that the link key used by two victim
devices is known to the attacker. The authors also showed how
to obtain the link key using an Off-Line PIN Recovery attack (see
Section 3.1). The MITM attack requires that both devices are in
public or private security level (see Section 2), i.e. both victim de-
vices must be connectable. In the attack, the BD ADDRs of the at-
tacker’s devices must be cloned to equal the addresses of the victim
devices. Moreover, to prevent the jamming of the communication
channel, the victim devices must be both masters or both slaves (in
two different piconets). In this case they transmit in unsynchro-
nized manner and cannot see the messages of each other, while
communicating with the attacker. After establishing connection to
both victims, the attacker sets up two new link keys. [1, 2, 7, 9]

Reports in Forestry and Natural Sciences No 6 63

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

Kügler [3] further improves the attack of Jakobsson and Wetzel.
By manipulating with the clock settings, the attacker forces both
victim devices to use the same channel hopping sequence but dif-
ferent clocks. In this way, the victim devices are unsynchronized
and can see only the messages the attacker sends them. Moreover,
Kügler [3] shows how a MITM attack can be performed during the
paging procedure. The attacker responds to the page request of
the master victim faster than the slave victim and restarts the pag-
ing procedure with the slave using a different clock. The master
and slave use the same channel hopping sequence, but a different
offset in this sequence. The attack works also in case when both vic-
tim devices send and receive data packets over an encrypted link.
Even though the Initialization Vector (IV) used for encryption de-
pends on the clock, the last bit of the clock is unused. Therefore,
the attacker can flip this last bit, forcing the victims to use clocks
which have the difference of approximately 11.65 hours. Although
the integrity of data is protected with Cyclic Redundancy Checks
(CRCs) which are appended to the plaintext prior to encryption,
the attacker can manipulate intercepted ciphertext. After modify-
ing the ciphertext in a certain way, the attacker updates the CRC bits
(see [20] for details): the integrity checks performed by the victims
do not detect the modification. It must be noted, however, that the
attacker does not have much time for manipulating the transmitted
data. [1, 3, 7, 9]

As we discussed in Section 3.2, Reflection attacks [4] (also referred
to as Relay attacks) can also be seen as a type of a MITM attack
against authentication, but not encryption. The only information
needed is the BD ADDRs of the victim devices. During the paging
procedure, the attacker responds to the request of the first victim
device (A), and initiates a connection to the second victim device
(B), posing as A. If the victim devices can hear each other, the mech-
anisms described in [3] can be used to achieve this. In the attack,
the messages are simply relayed by the attacker’s devices. The at-
tacker can successfully perform authentication by using reflection
attacks, but she cannot continue the attack if the target devices en-

64 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

crypt their communication. By combining reflection attacks with a
known secret PIN code, link key, or encryption key, the attacker can
both impersonate the victim devices and decrypt the information
transferred between them. Victim devices can detect the attack by
noticing a considerable increase in latency of getting the response
to authentication challenge, caused by relaying. This countermea-
sure is not described in the standards, and it is up to the discretion
of manufacturers to provide it. [1, 3, 4, 7, 9]

The versions 2.1+EDR, 3.0+HS, and 4.0 of Bluetooth provide
protection against the abovementioned MITM attacks, by the means
of SSP described in Section 2. However, it has been shown that
MITM attacks against SSP-enabled Bluetooth devices are also pos-
sible by forcing victim devices to use the Just Works association
model [1, 5–9] (see Section 4.1). Thus, the attacker can bypass all
security checks which would normally be in place. The association
is then unauthenticated: the devices are aware of this fact, but it
depends on the manufacturer how they react to this. If the vic-
tim devices have already established a link key, the attacker can use
jamming to disrupt the communication and then she can initiate the
connection under a chosen association model with both devices. As
a result, the attacker learns the link key used by the devices and she
can intercept all data transmitted between the devices. [1, 7, 9]

In Table 1 we summarize the properties of the MITM attacks
overviewed in this section. It is interesting to note the connection
of MITM attacks to other developments in the Bluetooth security
analysis. For instance, at the time when most of the MITM at-
tacks were introduced, implementing them was not an easy task, as
there were no devices with adjustable BD ADDRs, except sophis-
ticated and expensive protocol analyzers. Now the situation has
changed: Bluetooth devices with an adjustable BD ADDR are read-
ily available and techniques for finding hidden (non-discoverable)
Bluetooth devices have been invented (see Section 3.1). Therefore,
the danger of MITM attacks has recently increased. [1, 7, 9]

Reports in Forestry and Natural Sciences No 6 65

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

Table 1: MITM Attacks on Bluetooth: a Summary and Comparison. [1, 7, 9]

Attack: [2]: [3]: [4]: [5]: [6–8]:
Bluetooth
versions:

1.0–
2.0+EDR

1.0–
2.0+EDR

1.0–
2.0+EDR

2.1+EDR–
4.0

2.1+EDR–
4.0

Attack
goals:

Impersona-
tion, modi-
fication

Impersona-
tion, modi-
fication

Impersona-
tion

Impersona-
tion, modi-
fication

Impersona-
tion, modi-
fication

Attacking
devices:

2 2 2 2+132 2+132

Devices at-
tacked:

Connectable Connectable
or non-con-
nectable

Connectable
or non-con-
nectable

Connectable
or non-con-
nectable

Connectable
or non-con-
nectable

Distances: Any33 Any33 Any33,34 Any33 Any33

Detection: By user35 None36 By device37 By user38 By user39

Main
counter-
measure:

Security
policies40

Integrity
checks41

Detecting
the delays

At the user
interface
level

At the user
interface
level42

5 NEW PRACTICAL COUNTERMEASURE FOR SSP

The simplest and cheapest countermeasure against SSP MITM at-
tacks is to enforce devices to accept only authenticated link keys.
Thus, we propose that the devices should require a MITM protection dur-
ing SSP and enforce it by not accepting unauthenticated link keys, which
are generated only by the Just Works association model. In practice,
this can be accomplished as follows. The Bluetooth specification1

discusses the concept of a ”security database” that contains an en-
try for each service along with the security requirements of that

32A jamming device is also required.
33The attacker must use two Bluetooth adapters. Actual distance is limited by

speed of the link between the attacker’s devices.
34The victim devices must be out of each other’s range.
35The user enters PIN to renegotiate.
36The attack remains undetected.
37There are delays in getting the LMP authentication response.
38One of the devices asks to compare numbers, while the other one does not.
39No Numeric Comparison is used although both devices have displays and

keyboards.
40Security policies protecting against MITM attacks are proposed.
41Cryptographic integrity checks of packets should be used.
42Modifications to SSP specification are also proposed.

66 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

service. Bluetooth protocol stacks commonly include this ”security
database” function. One of these security requirements should be
whether the device requires an authenticated or unauthenticated
link key. If this security requirement is not met, access to the ser-
vice is not granted. Therefore, this simple countermeasure is up to
the discretion of Bluetooth protocol stack provider, i.e. the counter-
measure can be used only if the Bluetooth protocol stack provides
a ”security database” function.

Other countermeasures against SSP MITM attacks are described
in [1,6–9]. In addition, various Bluetooth security attacks in progress
can be prevented and stopped by monitoring communication to dis-
cover such attacks: thus, we have proposed an Intrusion Detection
and Prevention System [1, 21] for Bluetooth networks to prevent and
stop attacks in progress. A detailed description of our proposal can
be found in [1, 21]. Moreover, we feel that the use of RF fingerprints
(also referred to as RF signatures) [22–24] could be the future of se-
cure Bluetooth communications: therefore, we have proposed an RF
Fingerprint-Based Security Solution for SSP [22]. A detailed descrip-
tion of our proposed system can be found in [22]. Furthermore, a
detailed description of countermeasures for Bluetooth devices up
to 2.0+EDR are described in [1, 16, 17].

6 NEW PRACTICAL ATTACK

Based on our findings and practical experiments on Big NAK at-
tacks [1, 17] as well as our research work conducted on propos-
ing an Intrusion Detection and Prevention System for Bluetooth
networks [1, 21], we propose a new attack called Big POLL attack,
which works against all existing Bluetooth versions, i.e. Bluetooth
versions 1.0A – 4.0. In the attack, the attacker keeps victim devices
(piconet slaves) busy all the time by sending repeated POLL packets
to them so that they will not go into sleep or low-power mode. The
Big POLL attack is possible, because during a normal piconet oper-
ation, the master device can use POLL packets to check that slave
devices are still alive (i.e. up and running), and slave devices must

Reports in Forestry and Natural Sciences No 6 67

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

always respond to a POLL packet sent by the master device. The
attacker needs to discover the BD ADDRs of all piconet devices (i.e.
the BD ADDR of master device and BD ADDRs of slave devices),
impersonate the piconet master (i.e. duplicate its BD ADDR), and
start sending POLL packets to all piconet slaves.

Let us assume the following attack scenario:

1. The attacker uses a Brute-Force BD ADDR Scanning attack,
a Bluetooth protocol analyzer, techniques for finding hidden
Bluetooth devices in an average of one minute, or 79 Bluetooth
receivers in parallel to discover the hidden (non-discoverable)
BD ADDRs of the piconet master and all piconet slaves.

2. The attacker impersonates the piconet master by duplicating
its BD ADDR.

3. The attacker starts sending POLL packets non-stop to all pi-
conet slaves, thus keeping them busy all the time.

In our attack, the attacker consumes the batteries of the victim
devices (piconet slaves) rather quickly. Moreover, piconet slaves
are not getting the legitimate piconet services within a reasonable
time, because the attacking device keeps them busy all the time.
It is worth noting that the attacker does not need to witness the
initial pairing process between the victim devices or intercept any
random numbers sent via air: the only information required is the
BD ADDRs of the victim devices.

Big POLL attacks can be very annoying if the attacker uses them
non-stop to deny the legitimate piconet devices access to the piconet
services. Moreover, the attacker can use these kinds of attacks to
mislead the target devices in such a way that they delete previously
stored link keys so that the initial pairing process is restarted.

The only feasible countermeasure for a Big POLL attack seems
to be the following: a Bluetooth network should use our Intrusion Detec-
tion and Prevention System [1, 21] or some other intrusion detection
and prevention system that is capable of detecting a Big POLL at-
tack.

68 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

7 CONCLUSION AND FUTURE WORK

A literature review based comparative analysis of Bluetooth secu-
rity attacks over the past ten years (2001-2011) was provided in the
paper. In addition, a new practical countermeasure against MITM
attacks on SSP was proposed. Moreover, a novel attack that works
against all existing Bluetooth versions was proposed.

The current level of security is insufficient in many Bluetooth
devices on the market as this research paper clearly shows. Since
there are billions of Bluetooth devices in use without SSP’s im-
proved security features, malicious security violations are not ex-
pected to decrease in the near future. On the contrary, these old
Bluetooth devices will be sold for many years to come, thus making
security concerns even more alarming. Furthermore, MITM attacks
on SSP are also possible by forcing victim devices to use the Just
Works association model.

Since we have now covered all noteworthy Bluetooth security
attacks, including our own attacks, during the past ten years (2001-
2011) in this paper, it is also valuable to summarize the dangerous-
ness and practical relevance of the attacks: thus, Figure 1 summa-
rizes all attacks described in this paper by providing dangerousness
and practical relevance figures.

The problems we want to investigate in our future research work
are concerned with the following issues:

1. Since we have already proposed an Intrusion Detection and
Prevention System for Bluetooth networks as well as an RF
Fingerprint-Based Security Solution for SSP, we want to com-
bine these research results by implementing a working proto-
type of such a combination system and also analyze its effi-
ciency.

2. Since it is nowadays possible to acquire the hardware required
for MITM attacks, we want to make practical implementations
of all existing Bluetooth MITM attacks. Moreover, we want to
analyze the results of the practical experiments, draw conclu-

Reports in Forestry and Natural Sciences No 6 69

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

Figure 1: Our estimation of dangerousness and practical relevance of the attacks.

sions, and propose practical countermeasures based on our
findings.

3. Since there are many new emerging wireless technologies,
such as ZigBee and Ultra-Wideband (UWB), which are quite
similar to Bluetooth technology, it is expected that our Blue-
tooth security related research work can be quite easily ex-
tended to cover the security of these new technologies. There-
fore, we want to investigate how various Bluetooth security
attacks and their countermeasures can be ported to support
ZigBee and UWB technologies. In fact, we are currently con-
ducting a practical research work on ZigBee security attacks.

4. We feel that the use of steganography [25–28] could be one
potential solution for securing Bluetooth communications in
the future: in fact, we have performed some research work on
steganography [25, 26] and we are also currently conducting

70 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

a research work on the computational aspects of watermark-
ing and steganography for allowing secure authentication be-
tween the communicating Bluetooth devices, i.e. we plan to
embed certain messages into digital images by using digital
watermarking and/or steganography that hides the existence
of the messages allowing secure extraction of these embedded
messages only by the legitimate recipient.

Acknowledgements

We gratefully acknowledge Elena Trichina, Martti Penttonen, and
Tapio Grönfors for their guidance and supervision during the work
presented in Haataja’s Ph.D. thesis [1]. We also thank Sanna Pasa-
nen and Niina Päivinen for their cooperation on RF Fingerprint
related research work [22].

Reports in Forestry and Natural Sciences No 6 71

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

72 Reports in Forestry and Natural Sciences No 6

References

[1] K. Haataja, Security Threats and Countermeasures in Bluetooth-
Enabled Systems, Ph.D. Diss., University of Kuopio, Depart-
ment of Computer Science, Feb. 6, 2009.

[2] M. Jakobsson and S. Wetzel, ”Security Weaknesses in
Bluetooth,” Lecture Notes in Computer Science, Vol. 2020, pp.
176–191, Springer-Verlag, 2001.

[3] D. Kügler, ”Man-In-The-Middle Attacks on Bluetooth,” Lecture
Notes in Computer Science, Vol. 2742, pp. 149–161, Springer-
Verlag, 2003.

[4] A. Levi, E. Cetintas, M. Aydos, C. Koc, and M. Caglayan,
”Relay Attacks on Bluetooth Authentication and Solutions,”
Lecture Notes in Computer Science, Vol. 3280, pp. 278–288,
Springer-Verlag, 2004.

[5] J. Suomalainen, J. Valkonen, and N. Asokan, ”Security Asso-
ciations in Personal Networks: A Comparative Analysis,” Lec-
ture Notes in Computer Science, Vol. 4572, pp. 43–57, Springer-
Verlag, 2007.

[6] K. Hyppönen and K. Haataja, ””Niño” Man-In-The-Middle At-
tack on Bluetooth Secure Simple Pairing,” in Proceedings of the
Third IEEE International Conference in Central Asia on Internet,
The Next Generation of Mobile, Wireless, and Optical Communica-
tions Networks, Tashkent, Uzbekistan, Sep. 26–28, 2007.

[7] K. Haataja and K. Hyppönen, ”Man-In-The-Middle Attacks
on Bluetooth: a Comparative Analysis, a Novel Attack, and
Countermeasures,” in Proceedings of the Third IEEE International
Symposium on Communications, Control, and Signal Processing, St.
Julians, Malta, Mar. 12–14, 2008.

Reports in Forestry and Natural Sciences No 6 73

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

[8] K. Haataja and P. Toivanen, ”Practical Man-In-The-Middle At-
tacks Against Bluetooth Secure Simple Pairing,” in Proceedings
of the 4th IEEE International Conference on Wireless Communica-
tions, Networking, and Mobile Computing, Dalian, China, Oct.
12–14, 2008.

[9] K. Haataja and P. Toivanen, ”Two Practical Man-In-The-
Middle Attacks on Bluetooth Secure Simple Pairing and
Countermeasures,” IEEE Transactions on Wireless Communica-
tions, Vol. 9, No. 1, pp. 384–392, Jan. 2010.

[10] R. Morrow, Bluetooth: Operation and Use, New York, USA,
McGraw-Hill, 2002.

[11] Y. Shaked and A. Wool, ”Cracking the Bluetooth PIN,” in Pro-
ceedings of the 3rd ACM International Conference on Mobile Sys-
tems, Applications, and Services, Seattle, Washington, USA, Jun.
6–8, 2005, pp. 39–50.

[12] C. Gehrmann, J. Persson, and B. Smeets, Bluetooth Security,
Boston, Massachusetts, USA, Artech House, 2004.

[13] J. Massey, G. Khachatrian, and M. Kuregian, ”SAFER+,” in
Proceedings of the First NIST Advanced Encryption Standard Can-
didate Conference, Ventura, California, USA, Aug. 20–22, 1998.

[14] K. Haataja, ”Two Practical Attacks Against Bluetooth Security
Using New Enhanced Implementations of Security Analysis
Tools,” in Proceedings of the IASTED International Conference on
Communication, Network, and Information Security, Phoenix, Ari-
zona, USA, Nov. 14–16, 2005, pp. 13–18.

[15] D. Spill and A. Bittau, ”BlueSniff: Eve Meets Alice and
Bluetooth,” in Proceedings of the First USENIX Workshop on Of-
fensive Technologies, Boston, Massachusetts, USA, Aug. 6, 2007.

[16] K. Haataja, ”Bluetooth Security Threats and Possible
Countermeasures,” in Proceedings of the Annual Finnish Data
Processing Week at the University of Petrozavodsk on Advances in

74 Reports in Forestry and Natural Sciences No 6

Ten Years of Bluetooth Security Attacks: Lessons Learned

Methods of Modern Information Technology, Petrozavodsk, Rus-
sia, 2005, Vol. 6, pp. 116–150.

[17] K. Haataja, ”Three Practical Bluetooth Security Attacks Using
New Efficient Implementations of Security Analysis Tools,” in
Proceedings of the IASTED International Conference on Communi-
cation, Network, and Information Security, Berkeley, California,
USA, Sep. 24–26, 2007, pp. 101–108.

[18] K. Haataja, ”Bluetooth Network Vulnerability to Disclosure,
Integrity, and Denial-of-Service Attacks,” in Proceedings of the
Annual Finnish Data Processing Week at the University of Petroza-
vodsk on Advances in Methods of Modern Information Technology,
Petrozavodsk, Russia, 2006, Vol. 7, pp. 63–103.

[19] K. Haataja, ”New Practical Attack Against Bluetooth Security
Using Efficient Implementations of Security Analysis Tools,” in
Proceedings of the IASTED International Conference on Com-
munication, Network, and Information Security, Berkeley, Cal-
ifornia, USA, Sep. 24–26, 2007, pp. 134–142.

[20] N. Borisov, I. Goldberg, and D. Wagner, ”Intercepting Mobile
Communications: the Insecurity on 802.11,” in Proceedings
of the 7th ACM Annual International Conference on Mobile
Computing and Networking, Rome, Italy, Jul. 16–21, 2001, pp.
180–189.

[21] K. Haataja, ”New Efficient Intrusion Detection and Prevention
System for Bluetooth Networks,” in Proceedings of the ACM In-
ternational Conference on Mobile, Wireless MiddleWare, Operating
Systems, and Applications, Innsbruck, Austria, Feb. 12–15, 2008.

[22] S. Pasanen, K. Haataja, N. Päivinen, and P. Toivanen, ”New
Efficient RF Fingerprint-Based Security Solution for Blue-
tooth Secure Simple Pairing,” in Proceedings of the 43rd IEEE
Hawaii International Conference on System Sciences, Koloa, Kauai,
Hawaii, Jan. 5–8, 2010.

Reports in Forestry and Natural Sciences No 6 75

Keijo Haataja, Konstantin Hyppönen, Pekka Toivanen

[23] M. Barbeau, J. Hall, and E. Kranakis, ”Detecting Imperson-
ation Attacks in Future Wireless and Mobile Networks,” Lec-
ture Notes in Computer Science, Vol. 4074, pp. 80–95, Springer-
Verlag, 2006.

[24] O. Ureten and N. Serinken, ”Wireless Security Through RF
Fingerprinting,” Canadian Journal of Electrical and Computer En-
gineering, Vol. 32, No. 1, pp. 27–33, 2007.

[25] A. Kaarna and P. Toivanen, ”Digital Watermarking of Spectral
Images in PCA/Wavelet-Transform Domain,” in Proceedings of
the IEEE International Geoscience and Remote Sensing Symposium,
Toulouse, France, Jul. 21–25, 2003, Vol. 6, pp. 3564–3567.

[26] A. Kaarna, P. Toivanen, and K. Mikkonen, ”Watermarking
Spectral Images Through the PCA Transform,” in Proceedings
of the IS&T Image Processing, Image Quality, and Image Capture
Systems Conference, Rochester, New York, USA, May 13, 2003,
Vol. 6, pp. 220–225.

[27] C. Podilchuk and E. Delp, ”Digital Watermarking: Algorithms
and Applications,” IEEE Signal Processing Magazine, Vol. 8, No.
4, pp. 33–46, Jul. 2001.

[28] D. Artz, ”Digital Steganography: Hiding Data Within Data,”
IEEE Internet Computing, Vol. 5, No. 3, pp. 75–80, May/Jun.
2001.

76 Reports in Forestry and Natural Sciences No 6

Non-repudiation and Smart Cards
Marko Hassinen

University of Eastern Finland
School of Computing

P.O. Box 1627, 70211 Kuopio, Finland

Abstract. Moving from paper documents and written contracts into
the era of electronic transactions and agreements, there is a major
hurdle with assuring authenticity of a contract and commitment of
the parties. This paper discusses the concept of digital signature
and some technical aspects of modern digital signature schemes. In
particular, smart cards and their usability in deriving unforgeable
and non-repudiable digital signatures are discussed.

1 INTRODUCTION

Since ancient times people have had a need to make contracts, and,
also derive a document for later reference. In order to mitigate
a future dispute concerning the content of an agreement, there has
generally been two or more identical copies of a contract document.
Furthermore, for assuring genuinity of such a document, means of
authenticity are probably as old as first written contracts. Before
writing came a widely common skill, some kind of drawn personal
marks were used. Traditional signatures are obviously handwritten.

Quite often with written documents there are two independent
persons who vouch for the authenticity of the signature. At the
same time these persons generally attest that a signature has been
made willingly and not under any kind of force. Should there be
a subsequent dispute about the content of the contract or the au-
thenticity of a document, these people can be consulted. In case
the contract was signed without independent witnesses, methods
of signature authenticity verification can be enforced.

A digital signature is an attestation of some digital content.
Most often it is used to show commitment to a digital document.

Marko Hassinen

The most general scenario is to use a fixed-length hash value (you
can think of it as a type of ”fingerprint”) of the document that is
subsequently encrypted using the signer’s private encryption key.

Traditional handwritten signatures also have other important
properties that are just as important when considering a digital
signature. A handwritten signature can not be detached from the
document and transferred to another one. This seems trivial but
considering the case of digital signatures, detaching the signature
from the document is really easy, and most often these are separate
by default. This is not an actual problem as long as the signature
cannot be attached to another, different document.

2 HOW DIGITAL SIGNATURES ARE MADE

To create a digital signature that has the same legal force as a writ-
ten signature on a paper document, one has to consider the proper-
ties of handwritten signatures and match or exceed them. The main
properties are resistance to forgery, unquestionable binding to the
document which is signed and non-repudiation.

The first two properties are obtained through using hash algo-
rithms. A hash algorithm is an algorithm that takes a variable size
input and produces a fixed size output. The input of a hash al-
gorithm is called a preimage. If two distinct preimages produce
a common result, there is a collision. A good hash algorithm has
strong collision resistance, which means that it is infeasible to find
two distinct preimages that produce the same hash result. There
is also weak collision resistance in which it is infeasible to find an
input that produces the same hash as a given input.

The hash itself is not adequate digital signature as it is trivial for
an attacker to change the document and calculate a new hash. This
corresponds to a situation with paper documents where it would
be enough to have a signature on a contract regardless whose sig-
nature that would be. In order to protect the hash, an additional
security measure, namely encryption, has to be applied. To pro-
tect the hash from tampering and tying it to the signer, Public Key

78 Reports in Forestry and Natural Sciences No 6

Non-repudiation and Smart Cards

Cryptography is used.
Public Key Cryptography is a form of asymmetric encryption

and relies on a concept of two different keys, hence a key pair.
These keys are mathematically related but it is not feasible to cover
one key just by knowing the other. Generally the keys are referred
to as a public key and a private key. Clearly, the private key is meant
to be held private and it should be known only to the owner of the
key. In certain cases even the owner does not know the private
key, but is in possession of the key and can use it for cryptographic
operations. Probably the most used public key algorithm is RSA
(Rivest-Shamir-Adleman) that was invented 1977 by the aforemen-
tioned.

Asymmetric encryption refers to a method in which a key pair
is used and the key pair works in the following way; if one key
is used for encryption, the other one can be used for decryption.
Furthermore, each key has only one unique counterpart and en-
cryption done with one key can only be decrypted using the other
one. A digital signature is obtained by encrypting the hash value
using the private key of the signer. Assuming the key is truly pri-
vate, no-one else can produce such a signature. Figure 1 shows a
crude outline of how sender (Alice) uses a hash algorithm to derive
a hash and her public key (in this case located on a smart card) to
create a digital signature. She then sends this signature along with
the document to Bob.

Figure 1: Basic description of a digital signature creation

Reports in Forestry and Natural Sciences No 6 79

Marko Hassinen

The public key is, as the term implies, meat to be public and
known to a wide audience. Communicating with a person or sys-
tem that uses Public Key Cryptography, obtaining the correct public
key is vital. To securely manage the mass of public keys, a system
called Public Key Infrastructure (PKI) has been created. To under-
stand the need for such a system, it is enough to imagine a situa-
tion where one has received a contact from a previously unknown
source that uses Public Key Cryptography to protect the communi-
cation. The question arises where can one find the public key of the
sender?

PKI system is as the name states an infrastructure for storing
public keys. Without taking any stance on the architecture how the
keys are stored, there is the issue of how to verify that a key belongs
to the person/organisation it is claimed to belong to. Consider the
case where the keys would be in a public database and one would
retrieve a public key from the database. Should the keys have no
protection against tampering, a man-in-the-middle (MTM) attack
against communication would be trivial. Imagine a situation where
you would use your private key to encrypt a message and send
it to a person who does not already have your public key. This
person would retrieve the key from a database and decrypt your
message. In case the decryption worked, the recipient would be in
(dis)belief that the message in fact came from you. Now, an attacker
would intercept your message and decrypt the message with your
key obtained from the database. Then the attacker would modify
the message at will and encrypt the message with the his private
key and send the message to the final recipient. Upon receiving
the message, the recipient would query the public key database
for your key. At this point the attacker would intercept the key
query and answer with a message containing his public key. This
would make the recipient believe that the message is genuine and
originated from you.

In order to protect the public keys from forgery, a system of
public key certificates has been introduced. The basic idea of a cer-
tificate is to hold the public key and relevant information, such as

80 Reports in Forestry and Natural Sciences No 6

Non-repudiation and Smart Cards

details of the key owner. The certificate itself is then digitally signed
by an organisation called Certificate Authority (CA). The role of a
CA is to grant public key certificates for individuals and/or organ-
isations. In order to grant a certificate, it is the responsibility of the
CA to verify by various means the true identity of the certificate
applicant.

Upon receiving a digital signature, the recipient retrieves the
signers public key certificate from the certificate repository (usually
using a protocol called LDAP, Light Weight Directory Protocol) and
verifies that the certificate is valid and genuine. In order to validate
genuinity, the recipient needs to have the public key of the CA,
which is also contained in a certificate signed by the CA itself. In
Figure 2, Bob has received a document from Alice with adigital
signature. To verify the signature, Bob retrieves Alices public key
certificate from a database. With this public key Bob can decrypt the
signature and obtain a hash value. Accordingly Bob can calculate
a hash from the document he has received and by comparing these
two hash values, Bob can determine if the signature is valid.

Figure 2: Basic description of a digital signature verification

Reports in Forestry and Natural Sciences No 6 81

Marko Hassinen

Usually, computer systems come with a list of most common CA
certificates and in case CA certificate is not on that list, the user can
import a CA certificate into the certificate store. Obviously, in this
case it is very important to verify that the CA certificate is obtained
from a reliable source.

To assure interoperability with different environments, certifi-
cates are standardized in the X 509 standard. The X509 format
contains most importantly the public key and owner information.
The listing below shows content of one certificate and the details
can be studied from the example.

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

b4:86:40:84:96:d2:3c:10:a0:6a:64:0c:e7:a9:a4:26

Signature Algorithm: sha1WithRSAEncryption

Issuer: C=FI, O=Sonera, CN=Sonera Class2 CA

Validity

Not Before: Oct 23 14:26:21 2008 GMT

Not After : Oct 23 14:26:21 2011 GMT

Subject: C=FI, ST=Pohjois-Savo, L=Kuopio, O=Unicta Oy,

CN=*.unicta.fi

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public Key: (1024 bit)

Modulus (1024 bit):

00:d9:8c:48:59:ca:fa:f3:fb:f9:8c:8a:8c:82:05:

85:8b:1c:a0:2a:35:3b:dc:fa:37:1c:20:bf:92:f9:

77:a9:08:c5:89:c3:72:29:44:bd:f0:b5:9a:b5:24:

1c:c0:18:41:e5:67:91:e9:71:ad:80:a5:3e:78:63:

13:3f:c9:af:56:27:4b:29:79:0b:e3:ba:fa:e1:dd:

b3:87:08:6e:e3:bd:f6:27:07:12:d7:34:42:b4:61:

85:00:2f:2a:5b:51:eb:6c:62:a5:36:93:44:f7:b7:

7e:9f:14:a7:66:52:41:6b:b9:32:81:a7:b6:15:22:

9c:8d:13:c3:c3:17:98:6a:a5

Exponent: 65537 (0x10001)

X509v3 extensions:

X509v3 Authority Key Identifier:

82 Reports in Forestry and Natural Sciences No 6

Non-repudiation and Smart Cards

keyid:4A:A0:AA:58:84:D3:5E:3C

X509v3 Certificate Policies:

Policy: 1.3.6.1.4.1.271.2.3.1.1.2

X509v3 CRL Distribution Points:

URI:ldap://194.252.124.241:389/cn=Sonera%20Class2%

20CA,o=Sonera,c=FI?certificaterevocationlist;binary

X509v3 Extended Key Usage:

TLS Web Server Authentication, TLS Web Client

Authentication

X509v3 Subject Key Identifier:

29:A2:9F:7E:FE:31:CF:5C:B5:E6:

EB:31:01:31:43:EE:36:69:95:CC

Signature Algorithm: sha1WithRSAEncryption

1a:80:83:14:9d:7f:b2:56:45:64:bb:e2:6a:d3:2a:18:29:a5:

8e:ba:d8:b8:4e:b8:07:ac:fb:b4:e8:ed:7e:39:6d:4a:ce:15:

84:7f:19:7b:02:72:36:e6:92:a8:a1:25:44:5d:32:1e:42:4e:

4c:a4:d7:ce:04:f2:31:65:ce:4d:39:70:b1:da:23:f8:1c:fa:

c7:26:c9:1d:05:70:46:3d:45:c3:24:bb:4a:03:bd:bb:01:94:

c2:9f:00:52:b9:57:70:80:3f:01:1e:f7:cb:c5:b7:57:77:33:

79:56:56:0f:d7:c7:21:0e:5c:6f:d5:16:b5:78:d4:99:8c:27:

e0:1d:cb:22:33:9b:9d:f4:60:b4:d9:8c:99:e8:54:a6:e3:bb:

47:f7:2f:4c:43:06:d1:b4:5d:ae:77:04:fe:05:5b:0d:a0:51:

ae:34:d8:81:fc:26:df:38:b7:a9:6d:19:1b:d0:9e:51:74:0c:

72:46:03:87:82:88:d9:e2:c9:a1:42:49:ae:bf:44:dc:e0:8c:

ce:33:5f:b4:3f:34:95:44:16:b8:6a:e6:b8:6c:7f:9d:e3:8e:

48:d2:fe:89:7a:9c:6f:fc:ce:2d:c0:29:6c:df:02:a4:77:23:

86:94:3b:25:20:18:f6:e3:71:fe:81:10:6f:dd:b8:32:97:33:

90:8b:d9:4b

There is naturally always the possibility that the private key cor-
responding to a public key on the certificate goes missing or gets
compromised. In such case there is a need to void the certificate.
This can be done using a Certificate Revocation List (CRL) that con-
tains certificates that have been revoked for any reason. CRLs are
updated periodically and in business scenarios where real time re-

Reports in Forestry and Natural Sciences No 6 83

Marko Hassinen

vocation information is vital, one can use Online Certificate Status
Protocol (OCSP) that allows the recipient to query the status of a
certificate.

DSS, Digital Signature Standard by National Institute of Stan-
dards and Technology (NIST) is the de-facto standard for Digital
signatures. The most recent version was defined in 2009 as FIPS
186-3. A standard is essential in order to make different systems
using digital signature interoperate. The FIPS standard reads; A
digital signature is computed using a set of rules and a set of pa-
rameters that allow the identity of the signatory and the integrity
of the data to be verified. Naturally, one needs a system to agree on
and communicate those rules and parameters.

3 SMART CARDS

A Smart Card is generally a plastic card with a chip in it. Most com-
mon sizes are the traditional credit card size and SIM (Subscriber
Identity Module) cards. Smart Cards can be thought of as small
computers that get their operating power though the visible con-
tacts on the card surface. Figure 3 shows a couple of examples of
smartcards with the smart card contact area showing yellow. There
are also contactless smart cards, but in this paper we shall concen-
trate on the contact version only.

Figure 3: Some examples of smart cards

84 Reports in Forestry and Natural Sciences No 6

Non-repudiation and Smart Cards

In addition to being able to make computations, smart cards
contain variable amount of non volatile memory that can be used to
store cryptographic keys and smart card applications. Many smart
cards allow user to create custom made applications which can be
then stored and run on the card.

For cryptographic purposes, smart cards have a very important
feature called tamper resistance. Sometimes smart cards are said to
be tamper proof, but there are different opinions on whether this
assertion actually holds. Several attacks against smart card tamper
resistance have been tried but with varying and usually not very
admirable success. Most attacks have a questionable feasibility and
are often too expensive to be practical.

The tamper resistant behaviour makes smart cards lucrative choi-
ce when storage of user credentials is an issue. Namely, storage of
the private key in asymmetric encryption, authentication and dig-
ital signatures, can be problematic as the scenario really needs to
keep the private key private. The benefit for using a smart card
for storing a private key comes with the smart card ability to run
applications on the card. This allows locating the key generation
algorithm on the card and generating the keys on the card. Adding
the feature of non volatile memory, we can come to a scenario in
which the key pair is generated on the card and the private key can
be kept on the card without ever bringing it outside the card.

Using such a card to create a digital signature would mean send-
ing the hash value to be signed to the card and asking for the card
to do the private key encryption. This way, a digital signature can
be obtained without having to handle the private key. In essence
most such cards are constructed in a way that does not allow the
private key to be exported from the card, and this is a very impor-
tant condition for obtaining non-repudiation. Naturally, the card
is protected with a PIN (Personal Identification Number) that the
user has to know to use the card.

After (or during) the key generation procedure the public key
can obviously exported from the card. Most often the key gener-
ation happens on the initialization phase, when no information of

Reports in Forestry and Natural Sciences No 6 85

Marko Hassinen

the future user is present. Later on, as user data becomes available,
the card is personalized at which point a public key certificate is
created for the user and the visual appearance of the card is final-
ized.

4 CONCLUSION

Non-repudiation with digital signatures has a clear requirement
that the signer has a secret that nobody else has. Non-repudiation
can not be obtained using shared secrets. Smart cards are ideal for
this purpose if we can be sure that a valid digital signature can only
be created on the card. In doing so, we obtain a strong two-factor
authentication, namely what the signer knows (the PIN) and what
the signer has (the card). The fact that the secret key is located only
on the card and can not be exported creates a situation in which we
can conclude that a valid digital signature could not have originated
from anywhere else the card.

Using a smart card to derive a digital signature has received the
status of a legally binding show of commitment (assuming accred-
ited PKI and CA). Such a commitment is valid in a court of law.
However, one should realize that the system still is a TTP (Trusted
Third Party) scenario in which a fraud is possible but requires a
conspiracy of a large number of participants.

Further reading

1. DSS, Digital Signature Standard.
http://csrc.nist.gov/publications/fips/fips186-3/fips 186-3.pdf

2. Wolfgang Rankl,Wolfgang Effing: Smart Card Handbook

3. Bruce Schneier: Applied Cryptography

4. Menezes et al.: Handbook of Applied Cryptography

86 Reports in Forestry and Natural Sciences No 6

Matrix Based Calculation of All-Pairs
Shortest Paths on the GPU

Risto T. Honkanen
Kajaani University Consortium, CEMIS-Oulu

P.O. Box 51
FIN-87101 Kajaani, Finland
Risto.Honkanen@oulu.fi,

http://cc.oulu.fi/∼rhonkane

Abstract. Calculation of large graph problems are common in many
practical applications. Graphics Processing Units (GPUs) offer a
large amount of parallelism and high computational power. In this
study we present the all-pairs shortest-path problem and matrix
based calculation of it on the GPU. We show that the GPU imple-
mentation is considerably faster that the CPU based if the sparse-
ness of real world networks are not taken into account.

1 INTRODUCTION

Graph algorithms have a lot of use in practical solutions such as
part of more complex algorithms or representing relationships oc-
curring in many real-world systems. Those are, e.g., communica-
tion systems, electrical networks, data mining, transportation sys-
tems, or scheduling systems. Processing graphs efficiently has been
a research focus for tens of years. Some of graph theory problems
are, e.g., connected component problem (CCP), spanning tree prob-
lem (STP), and shortest path problem (SPP). In this presentation,
we concentrate on all-pairs shortest path problem (APSP). Solving
all-pairs shortest paths of a graph requires a large amount of com-
putation. For instance, using the Floyd-Warshall algorithm to find
APSPs for a weighted, directed graph requires Θ(|V|3) time steps,
where |V| is the number of vertices in the graph [7].

In order to accelerate computation, a number of techniques have
been presented, such as cluster and multi-core computing and graph-

Risto Honkanen

ics processing units (GPUs). The GPU initially was designed to ac-
celerate graphics tasks in gaming and rendering [7]. The comput-
ing performance of GPUs has increased rapidly during the last few
years. for example, NVIDIA offers a number of desk-top comput-
ers having hundreds of processing units at the graphics card(s) [5].
NVIDIA offers a programming model called Compute Unified De-
vice Architecture (CUDA). CUDA allows programmers to use a
unified programming framework and C-like subroutines to effi-
ciently execute their parallel programs on a GPU.

Harish and Narayanan presents a number of CUDA based im-
plementations of large graph algorithms in their paper [2]. They
experimented algorithms designed for sparse matrices. According
to their studies the GPU based algorithms is considerably faster
when the degree of network rather high (6 – 7). Using real world
data they found that the GPU is slower than CPU. According Har-
ish and Narayanan this is because of the low average degree of the
graphs [2]. Garland proposes the use of compressed sparsed row
presentation in his paper [1]. This saves substantially the storage
space and processing time [1].

In this paper, present a demonstration of matrix based calcula-
tion of APSP on the GPU. We show that the matrix based calculation
of APSP can be implemented efficiently on the GPU in comparison
to its serial counterpart. However, presenting real world routing
problems by matrices usually leads to calculation of sparse matri-
ces. This strongly reduces the efficiency of matrix based computing.

The paper is organized as follows. In Section 2 we present the
CUDA programming model for GPUs. Section 3 discusses War-
shall’s transitive closure and Floyd-Warshall’s algorithms. In Sec-
tion 4 we present our implementation for calculation of APSPs on
the GPU. Section 5 presents the results of our work. Finally, Section
6 discusses conclusions and future work.

88 Reports in Forestry and Natural Sciences No 6

Matrix Based Calculation of All-Pairs Shortest Paths on the GPU

2 CUDA PROGRAMMING ON THE GPU

A CUDA program consists of a serial part executed at the CPU and
a number of kernels executed at the GPU. Section 2.1 introduces
the the CUDA hardware model we use. In Section 2.2 we present
the CUDA software model.

2.1 CUDA Hardware Model

At the hardware level, the graphics processing unit is a collection of
a number of multiprocessors each having a number of processors or
CUDA cores. A schema of CUDA hardware interface is presented
in Figure 1.

"#"
#"

$�������	
�����

��������	
������

��������	
�����

��������	
������

������	����
�����

�
�

�
�

�
�

�
�

�
�

�����

����
���
����

�
� �
��
��
��
��
�

���������	�	�

!���
�	�	�

"
#�	
��
����

Figure 1: CUDA hardware model

The number of multiprocessors and CUDA cores vary a lot. Ta-
ble 1 represents the number of multiprocessors and CUDA cores
deployed at various NVIDIA GPU cards [6].

Reports in Forestry and Natural Sciences No 6 89

Risto Honkanen

Table 1: Examples of NVIDIA’s GPU cards.

of multiprocessors # of CUDA cores

GeForce GTX 460 7 336
GeForce GTX 580 16 512

Tesla S 1070 4× 30 4× 240
Quadro FX 4800 24 192
Quadro FX 5600 16 128

Each multiprocessor has its own shared memory space such that
CUDA cores deployed at the multiprocessor have equal access to
the shared memory. Each core has its local register space. Mul-
tiprocessors and cores communicate with Central Processing Unit
(CPU) via device memory space deployed at the graphics card.

2.2 CUDA Software Model

At the software level, the CUDA model consists of a number of
independent threads running in parallel. The host side program
usually consists serial part of the program executed at the CPU and
a number of kernel programs executed at the GPU. A programmer
usually

1. Decides how to divide the problem in independent sub-problems
and forms a grid of blocks

2. Allocates enough memory space at the GPU for the kernel
program

3. Transports the needed data to the GPU

4. Executes the kernel

5. Returns results at the memory space of the CPU

6. Deallocates memory space at the GPU

90 Reports in Forestry and Natural Sciences No 6

Matrix Based Calculation of All-Pairs Shortest Paths on the GPU

An schema of CUDA programming model is presented in Fig-
ure 2. On the left hand side of Figure 2 resizes the CPU part of the
program. Right hand side of Figure 2 presents the GPU part of the
program.

��)������	

!��!�

��!����
�!��!���

��!����
�!��!���

��)����������
!��!�

�!����

�!����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����
�����

�����������

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

Figure 2: CUDA software model

The problem is divided in a grid of blocks. Each block con-
sists of a number of independently executable threads. If multi-
ple blocks are assigned to a single multiprocessor, their execution
is time-shared. Each block has its own unique block ID and each
thread inside a block has its own thread ID. The system allows the
programmer access within any thread during its execution.

3 CALCULATING ALL-PAIRS SHORTEST PATHS

Calculating accessibility of nodes of a graph between each other is
a basic problem with graphs. Warshall’s transitive closure (WTC)
algorithm is presented in Section 3.1. By modifying the WTC we are

Reports in Forestry and Natural Sciences No 6 91

Risto Honkanen

able to calculate all-pairs shortest-paths. Floyd-Warshall algorithm
is presented in Section 3.2.

3.1 Warshall’s Transitive Closure

Let us consider a directed graph G = (V, E), where V is the set
of vertices and E is the set of edges. The transitive closure of G is
defined as a graph G+ = (V, E+) such that for all v, w ∈ V there is
an edge (v, w) ∈ E+ if and only if there is a non-null path from v to
w ∈ G [4]. Algorithm Transitive Closure (G) resolves the transitive
closure of G [8].

Transitive Closure (G)
1: n← |V [G] |
2: for j← 1 to n
3: for i← 1 to n
4: if i = j or (i, j) ∈ E[G]

5: then t(0)i,j ← 1

6: else t(0)i,j ← 0
7: for k← 1 to n
8: for i← 1 to n
9: for j← 1 to n
10: t(k)i,j ← t(k−1)

i,j ∨ (t(k−1)
i,k ∧ t(k−1)

k,j)

11:Return T(n)

At the beginning of computation (on lines 1 – 6) transitivity table
T is initialized. After that, transitivities of degree k are calculated
by using transitivities of degree k− 1 and dynamic programming.

3.2 Floyd-Warshall Algorithm

We can solve the APSP using the Floyd-Warshall algorithm. Let us
consider G = (V, E) be a directed graph having |V| = n vertices
and |E| edges. Additionally, let us consider W be an n× n weight
matrix such that the weight of element wi,j is defined as [3]

92 Reports in Forestry and Natural Sciences No 6

Matrix Based Calculation of All-Pairs Shortest Paths on the GPU

wi,j =

⎧⎪⎨
⎪⎩

0 if i = j
weight of edge (i, j) if i �= j and (i, j) ∈ E
∞ if i �= j and (i, j) /∈ E

(1)

We then define d(k)i,j be the weight of shortest path from the ver-
tex vi to the vertex vj using vertices only from the set 1,2,...,k as

intermediate vertex. When k = 0, we have d(0)i,j = wi,j. After that,
we can define a recursive formulation for calculation of all-shortest
paths as

d(k)i,j =

{
wi,j if k = 0

min
(

d(k−1)
i,j , d(k−1)

i,k + d(k−1)
k,j

)
if k ≥ 1

(2)

Now, combining Equations 1 and 2 and modifying algorithm
Transitive Closure (G) we can solve APSP problem using algorithm
Floyd-Warshall (W) [8]:

Floyd-Warshall (W)
1: n← rows(W)

2: D(0) ←W
3: for k← 1 to n
4: for i← 1 to n
5: for j← 1 to n

6: d(k)i,j ← min
(

d(k−1)
i,j , d(k−1)

i,k + d(k−1)
k,j

)
7: Return D(n)

The expression d(k)i,j ← minn
k=1

(
d(k−1)

i,j , d(k−1)
i,k + d(k−1)

k,j

)
is simi-

lar to the expression defining the product of two matrices ci,j =

∑n
k=1 ai,kbk,j. In fact, we can use ideas of matrix multiplication pre-

sented in CUDA programming manual [6] in parallelization of the
Floyd-Warshall algorithm.

4 PARALLEL IMPLEMENTATION USING CUDA

The CUDA programming model extends standard C/C++ with a
number of parallel programming abstraction, namely a hierarchy

Reports in Forestry and Natural Sciences No 6 93

Risto Honkanen

of threads, barrier synchronization, and shared memory. Kernels of
a CUDA program can only operate out of device memory that can
be allocated either as linear memory or CUDA arrays [6]. Let us
consider memory allocation for the matrix presented in Figure 3. It
can be done as:

int N = 16;

int Size = N * N * sizeof(float);

float d A;

cudaMalloc(&d A, Size);

����

����

�

�

�����

�����

�����

��	
��������� ��	
���������

��	
��������� ��	
���������

�������
�����
�����

�������
�����
�����

�
�	

�
�
��
�

Figure 3: Schema for division in blocks and memory references

Copying of host matrix h A to device vector d A can be done
as cudaMemcpy(d A, h A, Size, cudaMemcpyHostToDevice);. As
we mentioned in Section 2, the task is divided in grid of block such
that each block consists of a number of independent threads and a

94 Reports in Forestry and Natural Sciences No 6

Matrix Based Calculation of All-Pairs Shortest Paths on the GPU

block is allocated to a multiprocessor. Let us consider the 16× 16
matrix presented in Figure 3 and division of the work in four 8× 8
blocks. An example of CUDA code to do that is as:

BLOCKSIZE = 8;

...

dim3 dimBlock(BLOCKSIZE, BLOCKSIZE);

dim3 dimGrid(N / dimBlock.x, N / dimBlock.y);

MyKernel<<<dimGrid, dimBlock>>>(d A, N)

For now on, the kernel program executes 256 threads divided in
four blocks indicated by blockIdx.x and blockIdx.y. Each block
consists of 64 threads indicated by threadIdx.x and threadIdx.y.
During the execution of Floyd-Warshall algorithm, during each ex-
ecution step of k loop, each thread is responsible for the evaluation
of its distinctive result value.

Let consider evaluation of value at d A[i,j]. The thread re-
sponsible to evaluate the value has blockIdx.x = 0, blockIdx.y

= 0, threadIdx.x = 7, threadIdx.y = 7 as presented in Figure 3.
Additionally, it needs data from d A[i,k] and d A[k,j]. Row and
column indices of needed data in devices linear memory can be
evaluated as Row = BlockIdx.y * BLOCKSIZE + threadIdx.y and
Row = BlockIdx.x * BLOCKSIZE + threadIdx.x. The core code of
kernel can be presented as

Row = BlockIdx.y * BLOCKSIZE + threadIdx.y

Col = BlockIdx.x * BLOCKSIZE + threadIdx.x

for (kk = 0; kk < NNODES; kk++)

if (A[Row][Col] > (A[Row][k] + A[k][Col]))

A[Row][Col] = (A[Row][k] + A[k][Col])

5 EXPERIMENTAL RESULTS

We tested our implementations on AMD Athlon dual core running
on 64-bit Fedora 10 Linux distribution. The GPU card used were

Reports in Forestry and Natural Sciences No 6 95

Risto Honkanen

NVIDIA GeForce 9600 GT having 64 cuda cores, 512 MB of memory,
and running at 720 MHz.

Figure 4 presents the computation times for serial C and CUDA
versions of APSP. The graphs indicates that data transfers between
CPU and GPU dominate the evaluation time of CUDA implementa-
tion when the matrix size is small. The time complexity of serial C
version is O(n3), where n is the size of matrix. The graphs support
the argument. According to the graphs, the CUDA implementa-
tion offers at least ten-fold speedup in comparison with the serial
C implementation.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 200 400 600 800 1000 1200 1400 1600 1800 2000

Ev
al

ua
tio

n
tim

e
[s

]

Size of matrix

Evaluation times

C
CUDA

Figure 4: Evaluation times of matrix operations.

The implementations we have presented have a number of draw-
backs: Firstly, we didn’t take into account sparseness of matrix
presenting actual road networks. If this property is taken into
account, the evaluation time of serial implementation can be de-
creased substantially. Secondly, shared memories of multiproces-
sors were omitted. The use of shared memory should decrease the

96 Reports in Forestry and Natural Sciences No 6

Matrix Based Calculation of All-Pairs Shortest Paths on the GPU

evaluation time of CUDA implementation. Thirdly, in order to op-
timize global memory loads and stores we should use 32-, 64-, or
128-bit data types.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we presented calculation of all-pairs shortest path
problem based on Floyd-Warshall algorithm and matrix operations.
We concluded that the GPU based implementation is superior in
comparison to its serial counterpart. However, we did not take
into account sparseness of matrices based on real world routing
problems.

A continuation to our work is to implement matrix based all-
pairs shortest path algorithms on GPU such that the sparseness of
matrices has been taken into account. Additionally, the efficient use
of shared memory should decrease the evaluation time of CUDA
implementations as well.

Reports in Forestry and Natural Sciences No 6 97

Risto Honkanen

98 Reports in Forestry and Natural Sciences No 6

References

[1] Garland, M.: Sparse matrix computations on manycore GPU’s
In Proceedings of the 45th annual Design Automation Conference.
2008.

[2] Harish, P., Narayanan, P. J.: Accelerating large graph algorithms
on the GPU using CUDA. In proceedings of IEEE International Con-
ference on High Performance Computing (HiPC). IEEE, 2007.

[3] Katz, G. J., Kider Jr., J. T.: All-Pairs Shortest-Paths for Large
Graphs on the GPU. Graphics Hardware, 2008.

[4] Nuutila E.: An efficient transitive closure algorithm for cyclic
digraphs. Information Processing Letters 52, (1994), pp. 207–213.

[5] NVIDIA Corporation: NVIDIA corporation home pages. Avail-
able: http://www.nvidia.com/page/home.html. Downloaded
Sep 2, 2011.

[6] NVIDIA Corporation: NVIDIA CUDA C Programming Guide.
Available:
http://www.nvidia.com/object/cuda home new.html.
Downloaded Sep 2, 2011.

[7] Okuyama, T., Ino, F., Hagihara, K.: A Task Parallel Algorith for
Computing the Costs of All-Pairs Shortest Paths on the CUCA-
compatible GPU. In Proceedings of 2008 IEEE International Sym-
posium on Parallel and Distributed Processing with Applications, pp.
284–291. IEEE, 2008.

[8] Cormen, T. H., Leiserson C. E., Rivest R. I., Stein C.: Introduction
to Algorithms, Second Edition. The MIT Press, 2001.

Reports in Forestry and Natural Sciences No 6 99

Risto Honkanen

100 Reports in Forestry and Natural Sciences No 6

XML and RDF for Semantic Interoperability
in Public Administration

Konstantin Hyppönen
University of Eastern Finland,

School of Computing
P.O.B. 1627, FI-70211, Kuopio, Finland

Konstantin.Hypponen@uef.fi

Abstract. In this paper, we discuss the main features and initial
design goals of current structured document formats with regard to
their applicability for data exchange in public administration. We
argue that semantics should not be expressed using element names
in document formats. Instead, public administration should switch
to more intensive use of semantic technologies and presentation
markup.

1 INTRODUCTION

People have used documents for communication, business and ad-
ministration for years. With the move to computer-based publish-
ing and electronic processes, documents are now commonly stored,
processed and archived as computer files. In the history of docu-
ment standards, three main phases can be identified:

1. Simple text files

2. Binary document formats

3. Structured document formats

First, documents were processed using simple text editors. The
switch to binary document formats was mainly driven by the need
for better formatting of documents. Structured documents were
developed to simplify automated processing of documents or doc-
ument parts.

Konstantin Hyppönen

In this article we concentrate on the coupling between seman-
tics and document formats. We describe the use of structured doc-
uments in public administration and illustrate the need for more
precise analysis of semantics conveyed by them. We argue that
the current development of structured document formats is driving
public administration more towards the use of semantic technolo-
gies.

2 SYNTAX, SEMANTICS OR PRESENTATION?

Structured document formats normally describe the rules for con-
structing text-based documents enriched with markup of certain
document parts or characteristics. Well-known examples of struc-
tured document formats are HTML and LaTeX. We use these exam-
ples here to illustrate some of the features provided by document
formats, with the purpose of identifying different markup types:

Syntax The document format specifies a syntax that should be used
for document markup. In HTML and XML, characters < and
> are used to mark the elements that specify the parts of the
document. In LaTeX, a reverse slash \ is used for the same
purpose. Other syntax rules may describe the markup of el-
ement attributes, mechanisms for inclusion of binary data, or
ways to include comments in the source code of the docu-
ment.

Semantics A document format may include a range of ready-made
tags for marking the semantics of the document text. For
example in LaTeX, environment theorem can be used for sig-
nalling that the text of the paragraph describes a theorem.
In HTML, the element <title> specifies that the text is the
caption of the document, and the element <address> defines
the contact details of the documents author. In addition, a
document format may specify a way for adding new tags for
semantic markup. In LaTeX, new tags or environments may
be added by the user in a given document in such a way that

102 Reports in Forestry and Natural Sciences No 6

XML and RDF for Semantic Interoperability in Public Administration

the document is still displayable on other systems.

Presentation Often, the document structure includes instructions
for systems that display or print the document. The instruc-
tions can be direct or implied. An example of a direct instruc-
tion is the element <i> in HTML or tag \textit in LaTeX, both
of which specify that the text should be rendered in italics.
Implied instructions are usually embedded in the structured
document processors or renderers. A reference rendering of a
heading (<h1> in HTML or \section in LaTeX) might imply
the use of the bold font face and a bigger font size. Thus, the
document is rendered in a certain way by the processor, al-
though there is no explicit formatting information in the doc-
ument.

Older structured document formats show rather tight integra-
tion of semantics and presentation. Perhaps, this is due to the his-
tory of binary document formats. The latest development of struc-
tured document formats shows more clear separation of semantics
and presentation. This follows the principle of the “separation of
concerns”, formulated by Dijkstra in 1974 [2]. Presentation features
are intended to be described in either a separate document (style
sheet), or agreed upon and implemented in a certain way by the
rendering engine. The current understanding is that the document
itself should contain only semantics, while the presentation features
ought to be described elsewhere. The task is not always easy due
to historical reasons. For example, the most recent draft of HTML5
retains the element <i>, but defines it in a different way:

“The i element represents a span of text in an alternate voice
or mood, or otherwise offset from the normal prose in a manner
indicating a different quality of text, such as a taxonomic designa-
tion, a technical term, an idiomatic phrase from another language,
a thought, or a ship name in Western texts.”

One can see that the semantic meaning of this element (“differ-
ent quality of text”) is rather vague. Indeed, the specification even
advises authors to check whether other elements are more appro-

Reports in Forestry and Natural Sciences No 6 103

Konstantin Hyppönen

priate:
“Authors are encouraged to consider whether other elements

might be more applicable than the i element, for instance the em
element for marking up stress emphasis, or the dfn element to mark
up the defining instance of a term.”

In addition, the note says, ‘Style sheets can be used to format i
elements, just like any other element can be restyled. Thus, it is not
the case that content in i elements will necessarily be italicized.”
The result is an element with an indefinite semantic meaning and
no precise specification of presentation.

3 STRUCTURED DOCUMENTS IN PUBLIC ADMINISTRA-

TION

Public administration is one of the biggest consumers of docu-
ments and document standards. Traditionally, public administra-
tion has relied on document processors included in office suites.
With the recent move to eGovernment and electronic processes,
the use of XML-based document formats has increased. XML is a
metaformat, which does not define any ready-made tags for seman-
tic markup, but specifies syntax and a model for defining grammars
for other document formats. Grammars are expressed in the form
of schemas, for example, using the W3C XML Schema specifica-
tion. Numerous XML-based document formats and XML schemas
have been developed for public administration. XML documents or
messages are used for exchanging information between computer
systems. However, the document contents is often prepared or con-
sumed by humans.

We illustrate the requirements placed on structured document
formats for public administration by examining the case of Finnish
social services. The following requirements were taken into ac-
count:

1. The document should convey precise semantic meanings of
data items

104 Reports in Forestry and Natural Sciences No 6

XML and RDF for Semantic Interoperability in Public Administration

2. It should be possible to render or print out the document

3. It should be possible to archive the document in such a way
that its content is accessible despite the changes in the seman-
tics of the field.

In order to achieve the first requirement, we started examin-
ing the semantics of social care documents. Social services in Fin-
land use about 240 different document types, grouped in 15 cate-
gories (applications, decisions, agreements, etc.). Document struc-
tures vary greatly. Some document types are highly structured,
with small semantic units [5] such as “the coded type of the in-
come of the applicant”, while others contain only a few headings,
with the rest of contents remaining effectively unstructured. We
performed the semantic analysis of the document type contents us-
ing the Core Components Technical Specification (CCTS) model [8],
resulting in some 150 aggregate core components. Aggregate core
components are object classes that represent real life concepts ap-
pearing in documents. Examples of such concepts are Human, Or-
ganisation, Income, or Financial Situation. Core components can be
further specified (“qualified”) in the context of a certain document
type, resulting in aggregate business information entities with more
precise semantics.

The result is a data model consisting of about 1000 elements in
aggregate core components. The meaning of the elements can be
specified more precisely at the document type level. Furthermore,
documents can include elements that are used only in a certain doc-
ument type. Counting all the elements for which precise semantic
meaning has been defined, the data model incorporates a few thou-
sand of data elements.

Elements defined in the data model for a certain field could be
transformed to document schemas in several different ways:

1. Define a separate schema for each document type or group of
document types

2. Define a single schema that includes all these elements

Reports in Forestry and Natural Sciences No 6 105

Konstantin Hyppönen

3. Decrease the precision of semantic meanings, switching to
more broad concepts. Define a document format schema based
on the broad concepts, and provide a means for including
more precise meaning in document instances.

We examine these options with regard to the requirements pre-
sented above.

The option 1 results in a number of schemas. In our case this
number is up to 240. The requirement A is satisfied, as the schemas
include precise semantic meanings of elements. However, in order
to render or print the documents (requirement B), the same num-
ber of style sheets must be implemented and maintained. In addi-
tion, archiving (requirement C) becomes cumbersome, as the single
archive might contain documents based on 240 different schemas.
In addition, as semantics change from time to time, schemas and
corresponding style sheets must be updated, increasing their amount
(due to archiving requirements, all schema and style sheet versions
must be retained).

The option 2 produces a gigantic schema. It enables documents
to convey precise semantic meaning of data, and a single (but large)
style sheet is sufficient for rendering and printing out the docu-
ments. However, updates in the semantic model influence this
schema, which has a negative impact on archiving. Furthermore,
the size of the schema influences performance.

The option 3 is similar to the approach that document formats
currently provide. They define elements with rather vague seman-
tic meaning. However, the concepts defined in, e.g., HTML, Doc-
Book or similar document formats are not even close to the concepts
used in public administration (such as provision of social services).
Some fields have, however, used this option. For example, the doc-
ument standard HL7 CDA R2 used in health care is based on a
reference information model (HL7 RIM). The document standard
includes a limited number of elements (concepts). More precise se-
mantic meanings of document parts are expressed through the links
to external code sets. In addition, the internationally defined doc-
ument standard can be somewhat extended on the national level

106 Reports in Forestry and Natural Sciences No 6

XML and RDF for Semantic Interoperability in Public Administration

by adding new elements to represent missing semantics. However,
the resulting semantic model is somewhat fragmented, as part of
the semantics is defined in the international standard, part in the
national extensions, and part in code sets.

4 STRUCTURED DOCUMENT FORMATS WITH NO SEMAN-

TICS?

The semantics of data used in public administration varies greatly
depending on the domain. However, many common concepts can
be identified, such as object classes describing a Human, Organisa-
tion, Vehicle or an Address. Data dictionaries of commonly used
core components for business and public administration have been
constructed, such as National Information Exchange Model [4] or
Core Components Library [7]. Although such models are usu-
ally designed for their eventual mapping to XML Schemas [6, 9],
other implementations of document formats are also possible. In
Finnish National IT Project for Social Services a decision was made
in favour of using XHTML+RDFa, with semantic annotation of
XHTML elements by linking them to a data dictionary [3].

We argue that structured document formats designed for public
administration should not endeavour to express semantics in the
names of the elements. One of the reasons is that semantic models
tend to develop and change, negatively influencing the stability of
the document format. In addition, since it is commonly not pos-
sible to implement all possible precise semantics in a single docu-
ment schema, designers tend to extend it or start “outsourcing” the
semantics to external ontologies or code sets. Extensions and ex-
ternal modules make the document format more complicated, and
the semantics of the overall model become fragmented. Even more
important problem is that semantics which exist in the document
format might be used wrongly (in a different meaning), if an ele-
ment with appropriate semantics cannot be found in the document
format.

Instead, we suggest the following strategy for the modellers of

Reports in Forestry and Natural Sciences No 6 107

Konstantin Hyppönen

data exchange schemas and structured document formats in public
administration:

• A data dictionary should be constructed using a reference
model such as CCTS, NIEM or more general ISO 11179 [1].

• The data dictionary should be represented as an ontology
(RDF/OWL) for referencing it from the document instances.

• The data dictionary may be used for the construction of XML
schemas. XML schemas should not be used for describing
document formats. Instead, their use should be restricted to
the development of message exchanges (with no requirements
on archiving, display rendering or printing).

• The document format should concentrate on presentation mark-
up and enable referencing to external data dictionaries.

To summarize, we suggest the separation of domain semantics
and the structured document format. The document format should
include only minimal semantics necessary for its operation, such as
elements for grouping blocks of text and constructing tables. This
suggestion follows the principle of the separation of concerns.

For precise modelling of semantics in data dictionaries, their
construction should be supported by terminological work. It should
be taken into account, however, that it is challenging to combine a
data dictionary with a terminological dictionary in the same repos-
itory. Therefore, we suggest keeping them in two separate ontolo-
gies with different structures, one of which is designed for data
modeling, and the other one for terminological work. The ontolo-
gies should be linked in order to specify which concepts in the
terminological dictionary are represented by which object classes
or data fields in the data dictionary. Also the naming should be
consistent in both models.

How does XML compare with semantic technologies in this
work? Naturally, in the design and maintenance of semantic mod-
els semantic technologies should be utilized. For instance, both data

108 Reports in Forestry and Natural Sciences No 6

XML and RDF for Semantic Interoperability in Public Administration

dictionaries and terminological dictionaries can be represented us-
ing the RDF data model. On the other hand, XML is a power-
ful metaformat for the design of data exchange interfaces between
computer systems. Although in some cases data could be medi-
ated directly in RDF, we argue that XML will retain its positions
due to performance advantage and better tool support. At the
same time, we suggest that the modelling of semantics directly as
XML schemas should be avoided, as better technologies exist for
this work.

5 CONCLUSION

In this paper we argued that the construction of structured doc-
ument formats with element names based on domain semantics
should be avoided in public administration. Instead, we suggest
that semantic modeling should be performed separately in tight
collaboration with domain experts, knowledge engineers and ter-
minologists. Semantic modeling should not influence the construc-
tion of a document format, to avoid unnecessary dependencies be-
tween these two scopes of development work.

Acknowledgement This work was supported by the Tikesos project
(National Project for IT in Social Services).

Reports in Forestry and Natural Sciences No 6 109

Konstantin Hyppönen

110 Reports in Forestry and Natural Sciences No 6

References

[1] ISO/IEC 11179, Information Technology – Metadata registries
(MDR)

[2] Dijkstra, E.W.: On the role of scientific thought. In: Dijkstra,
E.W. (ed.) Selected writings on Computing: A Personal Per-
spective. pp. 60–66. New York, NY, USA: Springer-Verlag New
York, Inc. (1982)

[3] Hyppönen, K., Alonen, M., Korhonen, S., Hotti, V.: XHTML
with RDFa as a semantic document format for CCTS modelled
documents and its application for social services. In: Garca-
Castro, R. (ed.) ESWC 2011 Workshops. LNCS, vol. 7117, pp.
229–240. Springer (2011)

[4] National Information Exchange Model:
https://www.niem.gov

[5] Nei, S.: Semantic document model to enhance data and knowl-
edge interoperability. In: Devedi, V., Gaevi, D. (eds.) Web 2.0
& Semantic Web, vol. 6, pp. 135–160. Springer US (2009)

[6] NIEM Technical Architecture Committee (NTAC):
National information exchange model naming
and design rules. Version 1.3 (October 2008),
http://www.niem.gov/pdf/NIEM-NDR-1-3.pdf

[7] United Nations: Core components library, http://
www.unece.org/cefact/codesfortrade/unccl/ccl index.html

[8] United Nations. Centre for Trade Facilitation and Electronic
Business: Core components technical specification. Version 3.0
(September 2009), http://
unece.org/cefact/codesfortrade/CCTS/CCTS-Version3.pdf

Reports in Forestry and Natural Sciences No 6 111

Konstantin Hyppönen

[9] United Nations. Centre for Trade Facilitation and
Electronic Business: XML naming and design rules
technical specification. Version 3.0 (December 2009),
http://unece.org/cefact/xml/UNCEFACT+XML+NDR+V3p0.pdf

112 Reports in Forestry and Natural Sciences No 6

Teaching Performance
Simo Juvaste

School of Computing, University of Eastern Finland,
PO Box 111, 80101 Joensuu, FINLAND,

Simo.Juvaste@uef.fi

Abstract. We discuss why and how performance should be a part
of IT teaching and daily work of IT professionals. IT professionals
often think of performance, but not necessarily in correct situations.
The needed level of performance awareness is trivial in most cases,
but without the awareness, there will be scalability failures. In most
cases, the motivation for high performance programs is actually ef-
ficiency. For deeper performance, the key considerations are (mass)
memory usage, algorithms, and parallel execution.

1 INTRODUCTION AND MOTIVATION

Many, if not most, IT developers and students think a lot of per-
formance of computer systems. However, many students tend to
look on details or other wrong places when trying to ”optimize”
things. Also, in software engineering studies and real life projects,
the correctness of the system goes, rightly, in front of performance.
As computer hardware performance have improved exponentially
last four decades, one could presume that software performance
could be neglected in almost all cases. It might be true, but every-
one must agree that occasionally (or even often) software we use
is slower than we wish. We claim that in many cases the slowness
is because some developer just forgot to think performance besides
reliability. In some key point of the software something was made,
e.g., quadratic instead of linear.

The impressive speed of modern PCs may lead some developers
to think that computing resources are almost ”infinite”, and there
is no reason to optimize anything beyond ”fast enough” for the
user. This view ignores, however, two important (or most impor-

Simo Juvaste

tant) software markets, namely mobile devices and server software.
Modern mobile, battery operated devices have also very power-
ful processing capabilities, but limited power resources. Modern
mobile processors can remain long times idle at very low power
consumption, and in case of need for processing power, fire up the
circuits (using way more power) at need. After the computation,
the processor can go to low power idle mode again. The faster (in
term of time/clock cycles) the computation was, the less energy
was wasted, and the more time the device remains usable. Further
current trends in IT are cloud services and server virtualization. In
a cloud computing service, the customer buys server capacity in
terms of processing power, memory, and network bandwidth. The
more efficient (i.e., faster) the server software is, the more users it
can serve with the same amount of resources, or the less resources
are needed the serve the same amount of users. These topical is-
sues are the methods to motivate students for performance studies
in general.

In most software developments, there are no needs for highly
optimized solutions. The common CS folklore (attributed to Dijk-
stra, Hoare, or Knuth, depending the source) about evils of prema-
ture optimization of details is, of course, true. We should teach our
students to concentrate on most important aspects of performance.
In other words, keep is simple. If the performance plan is simple
enough, the developers might be able to follow it.

If we seek for performance instead of efficiency, the current and
future technique is parallelization. Parallel processing is (finally)
becoming a commodity in form of multi core processors. It is still
unclear whether all future developing should be made parallel pro-
cessing aware or not? Probably not yet. In any case, all developers
must remember the possibility of concurrence.

In the remaining of this paper, we briefly discuss what to teach
for every CS student about performance. First, we try to give the
absolute minimum what every developer must remember in all
projects to achieve reasonable efficiency. Second, we discuss the
next important issues in achieving high performance.

114 Reports in Forestry and Natural Sciences No 6

Teaching performance

2 WHAT EVERY DEVELOPER MUST KNOW AND REMEM-

BER ABOUT PERFORMANCE

When students come from programming courses to data structures
and algorithms courses, they already can use arrays and quickly
lists as well. In the early exercises in the data structures course,
most algorithm performance mistakes made by students are related
to wrong usage of arrays and linked lists. Modern programming
language libraries, such as JavaSE, C++, C�, or glib provide conve-
nient implementations of lists and arrays. The convenience masks
the underlying data structure, but unfortunately it masks also the
performance. It is very easy for the programmer to accidentally
use the array as a list, or list as an array. In both cases, some op-
erations suddenly take linear time. Make the mistake in a loop,
and we have quadratic time. Quadratic time goes without notice as
long as we test the program with small input (up to thousands of
elements). The programmer is happy with a working system. But,
the quadratic complexity will be a problem later if the component
is used for millions of elements! Even worse mistakes might make
the time complexity cubic. How to avoid such errors? There is
no other way than to keep time complexity in mind in design and
implementation. In the application program, this is usually about
trivial for anyone who did the introductionary algorithms course.
More difficult is to know and especially remember the time com-
plexity of the library operations. Thus, we should emphasize the
correct usage of basic data types. Especially, we should make clear
difference between lists and arrays even if most APIs try to hide the
difference.

Very similar dangers occur in relational databases. A missing
index, sorted usage of a hash, or Cartesian join work ”instantly”
in a small database, or with single user, but case huge scalability
problems with real data sets and several concurrent users. Most
of time the problems are easily avoided if the developer is aware
of the few pitfalls. How the developers remember of the pitfalls.
Database programming is more abstract than the rest of applica-

Reports in Forestry and Natural Sciences No 6 115

Simo Juvaste

tions, thus there are fewer temptations to do the local ”cosmetic”
optimizations. On the other hand, as the actual execution is not
apparent, the developers won’t think in time complexity.

Experimental complexity analysis

With the ever increasing usage of libraries and more complex tools,
the traditional complexity analysis in becoming impossible. The li-
braries provide more or less black boxes with documentation telling
only the functionality of each method, but little or no information
on time complexity. An educated developer probably can guess
some complexities based on his/her knowledge on the most com-
mon implementations – which is yet another reason for data struc-
tures and algorithms course. Ultimately, the software provider
needs to make some guarantees of software performance in sec-
onds, transactions/second, concurrent users, etc. To estimate such
measures, the developer need both asymptotic complexity class of
the system, and either measured performance of the component (or
prototype), or an estimate of it. If we use black box libraries, we
need to find out also the complexity class of the component ex-
perimentally. It is not very difficult, but it is not a common part
of computing curricula. Thus, to be able to extrapolate the perfor-
mance beyond the test set, we need both algorithmic, and practical
skills.

3 WHAT ABOUT PERFORMANCE DETAILS AND OPTIMIZA-

TION?

If premature optimization is evil in 97% of cases, how often opti-
mization is needed? During the 40 years since introduction of the
rule, compiler technology has improved a lot. Now the compilers
can do 99+% of the local optimization needed. For more complex
optimizations, there is still some trics to exploit, but half of the de-
velopers probably never need it. Most of the rest might need it few
times in their career. The rest few cases probably should be left

116 Reports in Forestry and Natural Sciences No 6

Teaching performance

for performance specialists. In most projects, there is no need for
a performance specialist, but in some cases there should be a guru
designing all the algorithms and profiling all the code.

If the algorithm is efficient, then the next things to consider are
memory access patterns. True random access memory is not used
anymore. All high performance systems have fairly high memory
hierarchy from caches to mass storage. Standard DRAM memory
types have high bandwidth relatively high random access times.
Thus the keys for efficient memory usage are sequential access and
cache usage optimizations. These can easily make a 10× difference
in performance. In mobile and virtual machine environments, the
difference might be lower, though.

One of the common culprits for system delays have been mass
memories, especially rotating hard disks. The disks provide also
very high sequential performance, but very poor random perfor-
mance. Thus, there are good possibilities for disasters and improve-
ments. The recent remedy for mass storage performance problems
has been Flash technology. Flash provides clear improvement (up
to 100×) in random access times, and little edge on bandwidth.
Flash, however, has its own performance issues related to the writ-
ing mechanism used. It should not used just as a replacement for
rotating magnetic disks.

4 ARE WE READY FOR PARALLEL PROCESSING?

Parallel processing has been the key for the best performance since
the dawn of computing. Until recently, most of parallel processing
has either appeared within the single processor model, or in large
scale increasing the system cost considerably. As the clock speeds of
processors and instruction level parallelism have reached their lim-
its, we have seen multiprocessing become mainstream. Parallel pro-
gramming is, however, far from mainstream. Parallel processing is
about speed (real time benefits). Most software is truly fast enough
if it was made efficient (as we described above). There is no use to
parallelize inefficient software. Thus, parallel programming proba-

Reports in Forestry and Natural Sciences No 6 117

Simo Juvaste

bly should be limited for those few % applications where there is
so much to compute that the processing power makes difference.
As above, it might be that only (small) part of developers actually
needs this in near future. They should, however, be aware of the
possibility of being involved with a parallel component.

What is important in parallel programming?

Parallel programming is more complex that sequential program-
ming. Thus the possibilities for inefficient result are ever greater
that in sequential development. Often a new student in a paral-
lel computing course comes with a program that has linear ineffi-
ciency, i.e., not achieving any speedup! Amdahl’s law was proba-
bly the first guideline for parallel program design. Even if the law
seems trivial and outdated, it probably is still the first and most
important one to teach for new parallel computing students. Later
the goal should be efficiency. If the goal in parallel processing is
speed, there are no processors to waste for inefficient algorithms.

Next to efficient algorithms is again memory usage. Shared
memory (or interconnection network) bandwidth is an expensive
resource and latency increases as the system grows. Most of paral-
lel program optimization is about optimization of memory access
(or other data transfer).

5 CONCLUSIONS

Performance is still important, but in almost all cases, we should
keep it simple. Complex algorithms, memory optimization, and
highly parallel algorithms have their places, but not in everyday
development. Everyday development must, however, remember
performance next to reliability.

118 Reports in Forestry and Natural Sciences No 6

Routing on the OCPC
Anssi Kautonen

Nokia Siemens Networks
P.O.Box 1, FI-02022 Nokia Siemens Networks, Finland

Anssi.Kautonen@nsn.com

Abstract. Optical communication offers huge bandwidth and ma-
kes it possible to build communication networks of very high band-
width and connectivity. We study routing of the h-relations in op-
tical communication pararallel computer under so called OCPC or
1-collision assumption. In an h-relation each processor is the origin
and the destination of at most h-messages.

In this paper we study two cases. One where h is smaller than
the number of processor. We introduce Penalty and Thinning algo-
rithms.

The another we study is the case where h is much larger than the
number of the processors, h 	 p log p. Our algorithm uses total-
exchange primitive to route packets. The algorithm attempts to bal-
ance the number of packets between origin-destination pairs. The
experiments show that algorithm achieves simulation cost which is
very close to 1 when h is large compared to the number of proces-
sors.

1 INTRODUCTION

We assume the OCPC (Optical Communication Parallel Computer) mo-
del (also known as Local Memory PRAM, S*PRAM, and Optical
Crossbar Parallel Computer). The OCPC model was first introduced
by Anderson and Miller [1], and has been studied in [7], [8], [10],
[13], [14], [15], [12], [16], [17], [2], [19] and [20].

The memory of OCPC is divided into modules, one module per
processor. Communication network is a complete network, thus
distance between any pair on nodes is one and the degree of nodes
is p− 1. Processors communicate with each other by transmitting

Anssi Kautonen

messages. A processor can transmit a message directly to any other
processor and the transmission takes one time unit. At any time
unit a processor can send at most one message. The message will
succeed in reaching the processor, if it is the only message with
that processor as its destination at that time step. If two or more
processors attempt to send a message to the same processor, no
transmission is successful and a retransmission must occur. This is
called the OCPC or 1-collision assumption.

A successful transmission is acknowledged by sending an ac-
knowledgment message/read value to the processor that sent the
message. A non-successful transmission is detected by the absence
of acknowledgment message. Thus, in constant time all the proces-
sors requesting access are informed whether they have succeeded
or not. Since each processor can send at most one message and
receive at most one message during message sending phase, all ac-
knowledgements are successful in the acknowledgement sending
phase.

In this paper we consider balanced communication patterns,
called h-relations. Let p be the number of processors in a paral-
lel computer. Let K = (kij) be a p× p matrix, where kij gives the
number of messages originating at processor i and destined for pro-
cessor j. If we let h be the maximum sum of any row or column of
this matrix; then the matrix specifies an h-relation. The problem of
solving this communication task is termed the h-relation problem.

The problem is motivated by implementation of the shared mem-
ory abstraction, for example the PRAM model [5] and the BSP
model [20], and also by direct implementation of specific parallel
algorithms. The value of h affects the latency parameter of the BSP
model, and the effiency of the implementation of the h-relation af-
fects the bandwidth parameter of the BSP model.

If suitable techniques, such as the slackness principle and ran-
domized hashing are used, implementation of shared memory can
be reduced to efficient routing of an h-relation in a complete net-
work under OCPC assumption. An m processor algorithm, when
implemented on an n processor machine, where n ≤ m, is said to

120 Reports in Forestry and Natural Sciences No 6

Routing on the OCPC

have parallel slackness factor of m/n for that machine. A physi-
cal processor simulates virtual processors in a round-robin manner.
This helps, under certain conditions, to decrease the amortized cost
of packet routing to a small constant per packet. When h packets
can be transmitted in O(h) time we say that routing is work opti-
mal.

1.1 Previous results

Anderson and Miller observed that if all processors have complete
information about a given h-relation, there exists a schedule which
routes the h-relation using exactly h communication steps. This
observation is based on Hall’s famous theorem on the existence of
perfect matchings in bipartite graphs.

We assume that each processor initially only knows about the
messages that it wants to send, and it learns about the rest of the h-
relation only through the successes and failures of the packets that
it tries to deliver. Also, we assume that each processor knows the
value of h, when the routing begins.

In direct algorithms, the processors send messages directly to
their final destination without any intermediate destinations. Gold-
berg & al. [8] proved that for any (randomized) direct algorithm
there is a 2-relation that takes Ω(log p) steps to route. MacKenzie,
Plaxton and Rajaraman generalized this result by showing for any
(randomized) direct algorithm and any h ≥ 2, there is an h-relation
that takes Ω(h + log h log p) expected steps to route. On the other
hand, there exists a randomized direct algorithm (Geréb-Graus and
Tsantilas [7]) that takes O(h + log h log p) routing steps with high
probability – so the lower bound is tight.

Even for indirect algorithms it is not possible to achieve time
bounds of the form O(h) for small values of h. Golberg et al. [9]
proved a lower bound of Ω(h +

√
log log p) for realizing h-relation

on the OCPC.
The simplest attempt to implement an h-relation is perhaps the

randomized algorithm called the greedy algorithm (see Algorithm 1).

Reports in Forestry and Natural Sciences No 6 121

Anssi Kautonen

By greedy principle, each processor makes a packet transmission
attempt at every time step until all packets are transmitted. The
fatal drawback of the greedy algorithm is livelock situation: Some
packets can cause mutual failure of sending until eternity. Consider
the situation, when two processors each have one packet targeted
to the same processor. Due to greediness they are forced to send
— and fail for ever since then. Unfortunately, this situation is very
common: At the end of the routing process (unless special care is
taken), there are usually several processors, which all attempt to
send their message(s) to the same processor(s).

Algorithm 1 Greedy routing algorithm.
1: proc Greedy
2: for all processors par do

3: while processor has packets remain do

4: choose an usent packet at random try to send ot to its des-
tination

The livelock situation can be avoided. Such an algorithm was
provided by Anderson and Miller [1], and it was improved by
Valiant [20]. These (non-direct) algorithms route work-optimally
an h-relation for h ∈ Ω(log p), where p is the number of proces-
sors. Other algorithms with even lower latency were proposed
by [3, 4, 8, 10, 11] (the problem setting is not exactly the same in
all papers). The asymptotically best algorithm is Goldberg et al.’s
algorithm [8], which routes an arbitrary h-relation on a p-processor
OCPC with Θ(h + log log p) communication steps. If h ≤ log p,
then the failure probabilty can be made as small as p−α for any
positive constant α.

Contrary to these theoretically strong algorithms, the algorithm
of Geréb-Graus and Tsantilas [7] has the advantage of being di-
rect, i.e. the packets are sent to their targets directly, without in-
termediate nodes. The algorithm of Geréb-Graus and Tsantilas
routes work-optimally h-relations, for h ∈ Ω(log p log log p). In-
deed, for h ∈ Ω(log p log log p), the GGT algorithm routes any
h-relation in time O(h) with probability higher than 1− 1/pα for

122 Reports in Forestry and Natural Sciences No 6

Routing on the OCPC

any α ≥ 1. Also Kautonen & al. have developed direct work op-
timal algorithms, [14], [15] and [16]. Those algorithms route pack-
ets in time O(h + log p log log p), and are thus work optimal when
h ∈ Ω(log p log log p).

In 1-optimal protocols the focus is on the leading constant fac-
tors of asymptotically efficient algorithms, since using a single total-
exchange operation efficiently requires that h ∈ Ω(p). Gerbessiotis
and Valiant [6] have presented a 1-optimal algorithm that routes a
random h-relation using at most h

p (1 + o(1)) + O(log log p)) total-
exchange rounds with high probability. The total-exchange (also
known as all-to-all personalized communication) in the OCPC is real-
ized as follows (see Algorithm 2). Protocol runs in p − 1 phases,
and during phase j processor i transmits its message destined for
processor (i + j) mod p. If m is the maximum number of messages
over all sender-destination pairs, then m total-exchange rounds are
required to route messages.

Rao et al. [19] have presented a better protocol that uses only
h
p (1 + o(1)) + O(log∗ p) total-exchange rounds with high probabil-
ity. In these results, the leading constant factors are very small, i.e.
clearly less than e when h	 p.

2 PENALTY ALGORITHM

In the Penalty algorithm (see Algorithm 3) the control of the trans-
mission rate is based the number of unsuccessful transmission at-
tempts the packets have had. The packet transmission probability
is a function f of the the number of unsuccessful transmission at-
tempts that the packet has had. If this function f is monotonically
increasing, then the Penalty algorithm is livelock free. For example
f can be logarithm, square root, linear or square function. When
packets targeted to processor p collide, the value of function f in-
creases for those collided packets. Thus, transmission probability of
those packets decreases. As the number of collisions of the packets
targeted to processor p increases, the expected number of packets
tried to transmit ot processor p during one time step decreases be-

Reports in Forestry and Natural Sciences No 6 123

Anssi Kautonen

Algorithm 2 Total-exchange algorithm
1: proc Simple total-exhange(p, h)
2: for all processor Pi par do

3: t = (Pi + 1) mod p
4: while packets remain do

5: if processor has a packet to send to processor t then

6: Send that packet to processor t
t = t + 1

7: if t = Pi then

8: t = t + 1
9: if t = p then

10: if Pi = 0 then

11: t = 1
12: else

13: t = 0

low 1. Hence, the packet transmission will be eventually successful.

Algorithm 3 Penalty algorithm
1: proc Penalty(f :function)
2: for all processors P par do

3: while processor P has sent packets do

4: choose a packet x at random
5: if 1/(number of failures of x) ≥ RandomNumber[0..1)

then

6: attempt to send x

The idea used in this algorithm is similar to used in the Eth-
ernet. There are however several differences between the Penalty
algorithm and the Ethernet algorithm. In the penalty algorithm
each packet has its own counter, which is augmented by one by
one when a transmission fails du collision. The packet that is at-
tempted to transmit is chosen uniformly at random instead of the
head of queue as it is done in the Ethernet. Messages in the Penalty
algorithm are never discarded.

124 Reports in Forestry and Natural Sciences No 6

Routing on the OCPC

3 THINNING ALGORITHM

In basic form of the Thinning algorithm (see Algorithm 4), the pack-
ets are routed phase by phase. In each phase, each packet (in ran-
dom order) is tried at most once. The expected number of transmis-
sion attempts per time unit has a fixed value throughout the phase.
Thinning by factor t (where t > 1) means making h packet sending
attempts in t× h units of time. (A similar effect could be achieved
by transmitting with probability 1/t.) Thinning factor may or may
not change from phase to phase.

This algorithm is inspired by Gerb-Graus and Tsantilas algo-
rithm [7], and Paterson and Srinivasan’s algorihm [18].

Algorithm 4 Thinning algorithm
1: proc Thinning(h,h0,t,τ)
2: for all processor P par do

3: i := 1
4: while h > h0 do

5: Try to transmit h packets (if so many remain) in the follow-
ing �t(i)h steps

6: h := (1− e−1/τ(i))h; i := i + 1
7: while packets remain do

8: Try to transmit the remaining packets in the following
�t(i)h0 steps

For each time step of the i’th phase, there are the same expected
number of packet transmissions. In the first phase each processor
has at most h packets, but as the algorithm moves to the next phase
(next round of first while-loop), the value of h represents only a
certain kind upper bound for the expected degree of the current
h-relation. Especially, this means that a processor may have more
than h packets when a phase begins, but only tries to send h of
those.

The larger value t(i) is the higher the probability of successful
transmissions is. However, the drawback is that a processor can not
successfully transmit a packet at those moments when it does not

Reports in Forestry and Natural Sciences No 6 125

Anssi Kautonen

even try to send. Thinning by factor t(i) would thus imply ineffi-
ciency by factor t(i). However, the increasing packet transmission
probability compensates this disadvantage.

The function t(i) is related to the function τ(i) that charecter-
izes how the problem size hi in beginning of the i′th phase is quan-
ranteed to decrease to hi+1 at the end of the phase. The expectd
number of successful transmssions per processor during a phase i
is hi/e1/t(i). The function τ(i) must selected so that there remaind
an hi+1-relation with high probability after phase.

Even though transmission probabilyt less than 1 elinates the
livelock, it does not guarantee steady throughput. When the degree
of h-relation decreases, the packet transmission attempts become
less and less random. There is a high risk that number of packets
per processor becomes unbalanced. If the lenght of routing phase
is close to 1 there is a danger of repeated collisions. That is why
there is a lower limit h0 ∈ Ω(log p) for the number of time steps
per phase. The level h0 will achieved after O(log(h/hh0)) phases, if
the degree of the h-relation can be decreased during each phase by
at least some fixed constant factor.

Theorem in [16] state following:

Theorem 3.1 Let h0 = Θ(log p), and t and τ be the functions in the
Thinning algorithm. If 1 ≤ τ(i) ≤ αt(i) and t(i + 1)/t(i) ≤ βτ(i) for
some constants 0 < α < 1 and 0 < β < 1, and h ∈ Ω(log p log log p),
then the Thinning algorithm routes any h-relation in time O(h) with high
probability.

The conditions for thinning factor t and compression factor τ are
quite general – the most essential requirement is that t(i) ≥ τ(i).
Consider the following four cases.

Case I: Consider situation, where 1 < t(1) = t(2) = t(3) = . . . = d,
1 ≤ β′τ(i) = α′d, 0 < α′, β′ < 1, and for c it holds that
1− e−1/τ(i) = c. This is the case of constant thinning (CT) [14],
and it satisfies the conditions of Theorem 3.1.

Case II: t(i) = 1 + i× d for some d > 0. For a properly chosen d, it

126 Reports in Forestry and Natural Sciences No 6

Routing on the OCPC

is possible to define τ(i) so that it satisfies the conditions of
Theorem 3.1. This is called linear thinning (LT) in [14].

Case III: t(i) = δdi−1 and τ(i) = di−1 for some δ, d > 1. This case is
called geometric thinning (GT) in [14, 15]. As such it does not
satisfy the conditions of Theorem 3.1, but it can be made to
satisfy the conditions by choosing τ(i) = d′ + di−1 for some
constant d′ > d.

Case IV: Let

t(i) = t1 +
(t2 − t1)(tanh(i− k)− tanh(−k))

1− tanh(−k)
,

for some 1 < t1 < t2, k ≥ 1. This is a sigmoid thinning (ST)
algorithm. Also in this case it is possible to define τ(i) so that
the conditions of Theorem 3.1 are met.

The analysis of the algorithm can be found in [16].

4 BALANCE ALGORITHM

The Penalty algorithm and Thinning algorithms were developed
case were h < p. We have also developed algorithm for case where
h > p (see Algorithm 5). The algorithm is collision-free, no spe-
cial acknowledgement step is required. The algorithm is based on
total-exchange and it is indirect, thus some packets are sent to final
destination via an intermediate destination(s).

In order to be efficient, total-exchange based algorithms require
a large h/p-ratio. The problems in a simple total-exchange scheme
are that the number of the messages between origin-destination
pairs in not balanced, and routing two messages from processor
Pi to processor Pj takes at least p routing steps.

The expected number of packets over any any origin-destination
pair is h/p. However the number packets over all origin-destination
pairs is not uniform. Some pairs have “excess” of packets and some
pairs have “defiency” of packets with respect to the average value.

Reports in Forestry and Natural Sciences No 6 127

Anssi Kautonen

The standard deviation of the number of packets over all origin-
destination pairs is Θ(

√
h/p), thus to route all packets to their final

destinations would require at least h/p + Ω(
√

p/h) total-exchange
rounds using the Algorithm 2. Especially the routing of the last
packets takes many routing steps. The maximum number of mes-
sages between any origin-destination pair determines the number
of routing steps required to route all messages to their final desti-
nations.

We have developed an algorithm that balances the load so that
the number of messages over all origin-destination is approximately
equal. Routing is done using the total-exchange protocol. If the
processor has no packet to send to current target processor, then
it checks to which processor it has most packets to send. Let m
be the maximum number of messages to any other processors. Let
x1, . . . , xn be a set of processors to which the current processors
have m packets to send. If m is greater than one, then one of pack-
ets destined to one of processors x1, . . . , xn is chosen uniformly at
random. If m is one, then the last packets to some destination are
not sent because a packet may travel from intermediate destination
to intermediate long before the packet arrives its final destination.

Assume that h >> p log p, then routing random h-relation then

routing a random h-relation takes h
p (1 + o(1)) + O(

√
h
p log p) total-

exchange rounds. Arbitrary h-relations can be routed about in twice
that time, by routing messages first to random intermediate destina-
tions and then to their final destinations as proposed by Valiant [20].
The whole analysis can be seen [12].

5 EXPERIMENTAL RESULTS

We have developed a routing simulator. It can simulate several
kinds of routing algorithms for complete optical networks. The re-
sult of simulation is the average routing cost. The cost is the number
of steps required to route all packets, divided by h. In the experi-
ments packets are routed to final destinations. The minimum sim-
ulation cost is 1. A processor needs at least 1 step per packet. The

128 Reports in Forestry and Natural Sciences No 6

Routing on the OCPC

Algorithm 5 Balance algorithm
1: proc Balance (p, h)
2: for all processors Pi par do

3: t = (Pi + 1) mod p
4: while packets left do

5: if processor has a packet to send to processor nt then

6: Send that packet to processor nt
7: else

8: Let m be the maximum number of packets left that the
current

9: processor has to send to any other processor
10: if m > 1 then

11: Let x1, . . . , xn be the set of processors for which
12: the current processor has m packets to send
13: Select uniformly at random one of packets targetted
14: to some of processors x1, . . . , xn.
15: Send the selected packet to processor nt

t = t + 1
16: if t = Pi then

17: t = t + 1
18: if t = p then

19: if Pi = 0 then

20: t = 1
21: else

22: t = 0

Reports in Forestry and Natural Sciences No 6 129

Anssi Kautonen

results are averages of 1000 experiments.

5.1 Assumptions

We make the following assumptions.

• The machine has p processors. Each processor one optical
transmitter and one optical receiver. During a time step a
processor can send and receive at most one packet.

• It is assumed that processors have a common clock. All pro-
cessors accomplish the packet transmission step at the same
time.

• In each experiment, each processor has h packets to send. The
destination of packet cannot be the sending processor itself.

• Simulation is stopped after all packets are sent, or if there
is a livelock. We classify as as livelock situation, where the
simulation cost becomes higher than 100. However, in the
algorithms we have studied in this paper, the real livelock sit-
uation is impossible, and simulation cost over 100 extremely
unlikely.

When investigating the results of the Penalty algorithm, it seems
that when p is small or when h is small compared to p compared
to p then logarithmic and square root functions are good choces as
a backoff function f . For large p linear function is the best choice.

Thinning algorithms require more experiments in order to find
good values for parameters. Different thinning methods give quite
similar results.

When comparing the Penalty algorithm and the Thinning algo-
rithms it seems when h is small compared to p the Penalty algo-
rithm is the best choice, but when h > log p Thinning algorithms
are the best choice. When p = 1024 and h = 2 then the simulation
cost is with the Penalty algorithm is 8.0 and with the Geometric
Thinning algorithm 10.8. And when p = 1024 and h = 1024 the
simulation cost is 3.5 with the Penalty algorithm 3.0.

130 Reports in Forestry and Natural Sciences No 6

Routing on the OCPC

When h > p the Balance algorithm is the better option than
the Penalty algorithm or the Thinning algorithm. When h is very
large compared to p, the best result achieved using the Penalty al-
gorithm or the Thinning algorithm is e ≈ 2.7. However with the
Balance algorithm the simulation cost approaches 1 as the value of
h increases. When p = 1024 and h = 1024 the simulation cost with
Balance algorithm is 2.0 and when p = 1024 and h = 32 ∗ p then
the simuation cost is 1.1.

More simulation results available in [13], [14], [15], [12], and [16].

Reports in Forestry and Natural Sciences No 6 131

Anssi Kautonen

132 Reports in Forestry and Natural Sciences No 6

References

[1] R. J. Anderson and G. L. Miller. Optical Communication for
Pointer Based Algorithms. Technical Report CRI-88-14, Com-
puter Science Department, University of Southern California,
LA, 1988.

[2] F. Meyer auf der Heide, K. Schröder, and F. Schwarze. Routing
on networks of optical crossbars. Theoretical Computer Science,
196(1–2):181–200, 1998.

[3] A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Shared
Memory Simulations with Triple-Logarithmic Delay. Lecture
Notes in Computer Science, 979:46–59, 1995.

[4] M. Dietzfelbinger and F. Meyer auf def Heide. Simple, Efficient
Shared Memory Simulations. In Proceedings of the 5th Annual
ACM Symposium on Parallel Algorithms and Architectures, pages
110–119, Velen, Germany, June 30–July 2, 1993. SIGACT and
SIGARCH. Extended abstract.

[5] S. Fortune and J. Wyllie. Parallelism in random access ma-
chines. In Proceedngs of the 10th ACM Symposium on Theory of
Computing, pages 114–118, 1978.

[6] A.V. Gerbessiotis and L.G. Valiant. Direct Bulk-Synchronous
Parallel Algorithms. Journal of Parallel and Distributed Comput-
ing, 22(2):251–267, 1995.

[7] M. Geréb-Graus and T. Tsantilas. Efficient Optical Commu-
nication in Parallel Computers. In Proceedings of the 4th An-
nual ACM Symposium on Parallel Algorithms and Architectures,
pages 41–48, San Diego, California, June 29–July 1, 1992.
SIGACT/SIGARCH.

[8] L.A. Goldberg, M. Jerrum, T. Leighton, and S. Rao. A Doubly
Logarithmic Communication Algorithm for the Completely

Reports in Forestry and Natural Sciences No 6 133

Anssi Kautonen

Connected Optical Communication Parallel Computer. SIAM
Journal on Computing, 26(4):1100–1119, 1997.

[9] L.A. Goldberg, M. Jerrum, and P.D. MacKenzie. An Ω(h +√
log log n) Lower Bound for Routing in Optical Networks.

SIAM Journal on Computing, 27(4):1083–1098, 1998.

[10] L.A. Goldberg, Y. Matias, and S. Rao. An Optical Simulation of
Shared Memory. SIAM Journal on Computing, 28(5):1829–1847,
1999.

[11] R. K. Karp, M. Luby, and F. Meyer auf der Heide. Efficient
PRAM Simulation on a Distributed Memory Machine. Algo-
rithmica, 16(4/5):517–542, October/November 1996.

[12] A. Kautonen. Fast Total-Exchange Algorithm. Lecture Notes in
Computer Science, 3758:524–529, 2005.

[13] A. Kautonen, V. Leppänen, and M. Penttonen. Simulations of
PRAM on Complete Optical Networks. Lecture Notes in Com-
puter Science, 1124:307–310, 1996.

[14] A. Kautonen, V. Leppänen, and M. Penttonen. Constant Thin-
ning Protocol for Routing h-Relations in Complete Networks.
Lecture Notes in Computer Science, 1470:993–998, 1998.

[15] A. Kautonen, V. Leppänen, and M. Penttonen. Thinning Proto-
cols for Routing h-Relations in Complete Networks. In Proc. of
International Workshop on Randomized Algorithms, pages 61–69,
Brno, 1998.

[16] A. Kautonen, V. Leppänen, and M. Penttonen. Thinning Pro-
tocols for Routing h-Relations Over Shared Media. Journal of
Parallel and Distributed Computing, 70(8):783–789, 2010.

[17] P.D. MacKenzie and V. Ramachandran. ERCW PRAMs and
Optical Communication. Theoretical Computer Science, 196(1–
2):153–180, 1998.

134 Reports in Forestry and Natural Sciences No 6

Routing on the OCPC

[18] M.S. Paterson and A. Srinivasan. Contention Resolution with
Bounded Delay. In Proceedings of 38th Annual IEEE Symposium
on Foundations of Computer Science, pages 104–113, 1995.

[19] S.Rao, T. Suel, T. Tsantilas, and M. Goudreau. Efficient Com-
munication Using Total-Exchange. In Proceedings of 9th IEEE
International Parallel Processing Symposium, pages 544–555, 1995.

[20] L.G. Valiant. General Purpose Parallel Architectures. In Hand-
book of Theoretical Computer Science, Ed. Jan van Leeuwen, Elsevier
and MIT Press, volume 1. Elsevier Science, 1990.

Reports in Forestry and Natural Sciences No 6 135

Anssi Kautonen

136 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science
Marja Kuittinen

University of Eastern Finland
School of Computing

P.O. Box 111, FI-80101 Joensuu, Finland
marja.kuittinen@uef.fi

http://www.uef.fi/cs

Abstract. This paper discusses the practice of learning and teach-
ing computer science (CS). The first part includes an overview of
the ACM curricula guidelines and other learning objectives, a short
description of learning paradigms, and a characterization of CS stu-
dents as learners. The second part consists of a description of the
body of knowledge that CS teachers should master including is-
sues such as the history of the discipline and the role of computers
in education. This is followed by some options for teaching, that
is, hardware and software suitable for teaching CS. Finally, there is
a discussion of the role of CS education research emphasizing that
it is essential for CS teachers to follow up the relevant literature in
order to keep up-to-date.

1 INTRODUCTION

Computer science education is given practically worldwide. Edu-
cation is available in various schooling levels from K-12 (primary
and secondary education) to universities. The reason for educating
computer scientists is obvious: there is a need for proficient com-
puter science (CS) professionals who are able to produce quality
products—software and hardware. In this paper we focus on CS
education given at the university level. We are interested in learn-
ing and teaching CS, and stress the role of CS education research as
a basis for quality education.

Computing has been taught from the late 1950’s. Since then, CS
educators and researchers have been trying to find out what are the

Marja Kuittinen

essential topics of computing, what topics are recommendable, and
how to teach them in an efficient way. At the moment, thanks to
the work of the Association for Computing Machinery (ACM), the
computing community has detailed curriculum guidelines for both
undergraduate and graduate programs of computing. Today there
are more than 300 universities around the world offering degree
education in computer science (TopUniversities, 2011).

Over decades the general belief of human learning has shifted
from pure behaviorism to cognitivism, having impact on CS edu-
cation, also. A lot of multidisciplinary research has been reported,
but there are still many open questions, such as how to teach pro-
gramming fruitfully, or how to concretize abstract issues that are so
common in computing.

The rest of this paper is divided into two parts: learning com-
puter science and teaching computer science. The first part presents
what undergraduate CS students should learn of the discipline, fol-
lowed by a short review of learning paradigms and a description
of CS students as learners. The second part consists of the body
of material that CS teachers should master, some options for teach-
ing CS, and, finally, an introduction to CS education research with
a short list of top publications, that all teachers should have their
eyes on in order to keep up-to-date in education.

2 LEARNING COMPUTER SCIENCE

This section describes briefly what an undergraduate student in CS
should at least learn. In addition, there is a short review on learning
paradigms and theories.

2.1 What should be learned in CS?

The Association for Computing Machinery (ACM) has been tailor-
ing curriculum recommendations since 1960’s (ACM, 2011a). The
first one (Conte et al., 1965) presented 16 courses divided into re-
quired (containing 5 courses), highly recommended electives (4), and

138 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science

other electives (7). These 16 courses concerned topics such as algo-
rithmic processes, programming, compilers, information structures,
numerical calculus, and logic design.

Since then, the ACM has endeavored, together with leading pro-
fessional and scientific computing societies, to tailor curriculum rec-
ommendations to the computing at approximately ten-year inter-
vals. The latest curricula recommendation—Computer Science Cur-
riculum 2008 (aka CS2008; see ACM, 2008)—is an interim review of
the Computing Curricula 2001 Computer Science (aka CC2001; see
ACM, 2001) volume, whose Body of Knowledge has been updated
by the guidance of consultations and discussions with several quar-
ters (industry, academia, etc). Originally, the CC2001 was based on
the CC1991 which was strongly influenced by Denning & al. (1989).
In CC2001, the term core (used for the first time already in 1978 in
this contex) was defined. The definition says:

“The core is the set of units for which there is a broad
consensus that the material is essential to an undergrad-
uate degree in computer science.”

The CS2008 Body of Knowledge has 14 topics with 280 core
hours; one core hour being equivalent to 60 minutes. The 14 top-
ics are as follows: Discrete Structures (43 core hours), Programming
Fundamentals (47 core hours), Algorithms and Complexity (31 core
hours), Architecture and Organization (36 core hours), Operating
Systems (18 core hours), Net-Centric Computing (15 core hours),
Programming Languages (21 core hours), Human-Computer In-
teraction (8 core hours), Graphics and Visual Computing (3 core
hours), Intelligent Systems (10 core hours), Information Manage-
ment (11 core hours), Social and Professional Issues (16 core hours),
Software Engineering (31 core hours), and Computational Science
(no core hours). The detailed descriptions of the topics can be found
in CS2008 Curriculum Update (ACM, 2008).

The Computing Curricula 2005 (aka CC2005; see ACM, 2005)
provides undergraduate curriculum guidelines for five defined sub-
disciplines of computing: Computer Science, Computer Engineering,

Reports in Forestry and Natural Sciences No 6 139

Marja Kuittinen

Information Systems, Information Technology, and Software Engineer-
ing. Most of the sub-disciplines have got either a new or updated
curriculum since then (see ACM, 2011a).

The core hours are the minimum that an undergradute student
should learn in order to get an essential base on which other courses
may build. In addition to the ACM’s recommendations, there are
other things that CS undergraduate students should learn. Boyle &
Clark (2004) state that

“Two of the many things the educated computer scien-
tist might know about are computer science pantheon
(idols) and the metaphorical structure of the discipline’s
technical language.”

Their first claim is, that it is necessary for each generation to
have some knowledge of the past and to understand how things
came to be as they are in order to be able to contribute to the evo-
lution of discipline. Boyle & Clark divide the idols of computing
into eponymy and pantheon: a person whose name is attached to an
invention, occasion, or place; and temple of all gods, respectively.
They claim that eponymy, as used and recognised in general pub-
lic, is scarce in the CS. Probably only Turing would be known to the
public, thanks to the Turing Test.

According to Boyle & Clark (2004), the existence of the pantheon
is a badge of disciplinary maturity, and, thus, a knowledge of it is
part of the disciplinary education. In order to find out the pantheon
of CS, Boyle (2003) conducted a survey asking higher education
teachers

“To which 8 people in the discipline do you consider
all Computing (and similar) graduates should be able to
attach a two-sentence biography?”

The top ten is summarised in Table 1 including the views of
UK and North American respondents. The detailed results are pre-
sented in Boyle (2003).

140 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science

Table 1: Percentage of poll of the top 10 choices; overall, UK and North American respon-
dents (Boyle & Clark, 2004).

Overall UK North America
Turing 20 20 21
Von Neumann 15,5 13 19
Knuth 12,5 11,5 13
Dijkstra 11,5 7,5 13
Babbage 10 12,5 7
Hopper 7,5 7,5 9
Gates 7 8 5
Wirth 6 6 5
Berners-Lee 6 8,5 5
Lovelace 4,5 4,5 4

Secondly, Boyle & Clark (2004) argue that it is also important
to develop understanding of the metaphorical structure of the lan-
guage used in a discipline. This means that in the case of comput-
ing, it is necessary to understand that technical terms are not only a
collection of nouns with abstract definitions. For example, the term
network is itself metaphorical and references a communications net-
work such as a local goods transportation system using the same
concepts, e.g., packet, route, address, bridge, collide, etc. Thus, the
language of networking is the language of transport systems.

2.2 On Learning and CS

Dozens of learning theories have been created during the history
of educational sciences. These theories can be classified in several
ways into different paradigms. One of the classifications presents
four paradigms (Learning-theories.com, 2011): behaviorism, cogni-
tivism, constructivism, and humanism.

The first paradigm, behaviorism, is based on stimulus—response
principle. The idea is that all behavior can be explained without the

Reports in Forestry and Natural Sciences No 6 141

Marja Kuittinen

need to consider internal mental states or consciousness. A learner
is viewed as a passive object, responding to environmental stim-
uli. Example theories of this paradigm are Classical Conditioning
(Pavlov, 1927) and the GOMS Model (Card, Moran, and Newell,
1983). This paradigm is nowadays obsolete.

Cognitivism emphasises that mental functions can be understood.
The learner is an information processor, whose actions are conse-
quences of thinking. Example theories are Cognitive Load Theory
(Sweller, 1988), Mental Models (Johnson-Laird, 1983), and the Stage
Theory of Cognitive Development (Piaget, 1928). Cognitivism re-
placed behaviorism in the 1960’s as the dominant paradigm.

Constructivism considers learning as an active, constructive pro-
cess. A learner is an information constructor who actively creates
his own subjective representation of the objective reality. Example
theories are Communities of Practice (Lave and Wenger, 1998), Dis-
covery Learning (Bruner, 1967), and Situated Learning (Lave, 1988).

Finally, humanism sees learning as a personal act. A learner has
affective and cognitive needs, that need to be fulfilled. Learning
is student-centered and the teacher is a facilitor. Example theories
are Experiential Learning (Kolb, 1984) and Maslow’s Hierarchy of
Needs (Maslow, 1943).

What kind of learners are CS students, then? According to
Alaoutinen & Smolander (2010), CS students have some significant
differences in their learning styles compared to engineering stu-
dents and that cultural features, gender, and personal background
affect learning. Alaoutinen & Smolander state that most engineer-
ing students are active, sensing, visual, and sequential (in terms of
Felder Silverman Learning Style Model), whereas CS students are
less visual and less sequential when compared to engineering stu-
dents. These differences should be taken into account when plan-
ning teaching.

Another study by Renwick & Foltz (2011) concerned the learn-
ing styles of information technology students. They made a short
survey of recent research into learning styles, which revealed that
IT students prefer kinesthetic learning styles as opposed to visual,

142 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science

aural, and read/write styles. Kinesthetic learners learn best from
doing: they use trial and error, complete laboratory exercises, and
work problems out in a hands-on manner. Thus, IT students benefit
from active learning experiences.

Cukierman & McGee Thompson (2009) describe how they have
developed the Academic Enhancement Project (AEP, Simon Fraser
University), which has been created to support student learning
by integrating activities that introduce students to basic learning
theory and strategies into core first-year CS courses. Their find-
ings concerning the usefulness of those activities indicate that such
practices are promising to address students’ academic challenges,
possibly having a positive impact on retention.

3 TEACHING COMPUTER SCIENCE

In this section we first discuss what are the demands for CS teach-
ers. Then we have a few words about the existing options for teach-
ing and end with a short review of the CS education research.

3.1 What should CS teachers know?

It is obvious that CS teachers need to have the mastery of core CS
material discussed previously in this paper. In addition, there are
other things a CS teacher should be familiar with. Gal-Ezer & Harel
(1998) have presented a valuable body of material with relevant
bibliography that good CS teachers should master. Such knowledge
expands teachers’ perspectives on the field enhancing the quality of
teaching. The following is a brief summary of the issues raised by
Gal-Ezer & Harel.

History of a science provides a global perspective of the field and
its structure as well as clarifies its relationship with other fields.
Knowing the history of one’s discipline generates appreciation to
the pioneers of the field and provides a deeper understanding of
everything what has been done so far. In addition, the cognizance
of the history of the discipline is essential for being able to teach
students to know the idols—as Boyle & Clark (2004) suggested.

Reports in Forestry and Natural Sciences No 6 143

Marja Kuittinen

What is CS? It is useful for a CS teacher to know the unique
nature of CS, with its special algorithmic way of thinking and ex-
tremely short history. The ACM curricula recommendations give
an idea of what the field is really about. In addition to the bibliog-
raphy proposed by Gal-Ezer & Harel (1998), it might be interesting
to read the article by Tedre (2011).

A bird’s-eye view of the discipline is essential for CS teachers.
Gal-Ezer & Harel (1998) note that “it should be as comprehensive
as possible, with depth and detail begin sacrificed for scope and
perspective”.

Computers in education deals with various approaches to teaching
CS. Actually, there exists three totally different directions: dissem-
inating computer literacy; using computers in teaching other sub-
jects; and teaching CS. Realizing this partition is very important for
CS teachers, in order to avoid confusing the spirit and the methods
of one direction with those of the others.

The problematics of learning and teaching programming includes sev-
eral difficult questions such as when, to whom, how, and why—
indeed, whether—to teach programming. As Gal-Ezer & Harel
(1989) state, this topic is not only broad, multisided, and highly
controversial, but also crucial in its long-lasting influence on stu-
dents.

Tools and methods for teaching are essential to know for CS teach-
ers. In the late 1990’s the situation was not that good, but nowadays
there is an extensive variety of computer-based teaching aids avail-
able. A problem is how to find information about them. Using
portals, such as the ACM Digital Library, produces a nice list of sci-
entific articles, but presumably not all of the tools and methods can
be found that way. There exists repositories for CS, such as Stan-
ford CS Education Library (2006) and CITIDEL Repository (2011),
that are discussed in more detail in the next section.

In order to keep up to date with the development of CS educa-
tion, it is necessary for teachers to read relevant professional peri-
odicals. Suggestions for suitable reading can be found in Gal-Ezer
& Harel (1998) and later on in this paper.

144 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science

3.2 Options for teaching CS

Options for teaching are numerous in any field including computer
science. There is an abundance of technical equipment as well as
software available for use to support learning.

Educational technology covers both tools and methods used for
teaching in general. It relies on a broad definition of the word “tech-
nology”, which refers to material objects of use to humanity, such
as machines or hardware, but can also encompass broader themes,
including systems, methods of organization, and techniques (Ed-
ucational Technology, 2011). Furthemore, educational technology
includes, but is not limited to, software, hardware, as well as Inter-
net applications, such as wikis and blogs, and activities.

The Educational technology page in Wikipedia presents a good
list of technology available (Educational Technology, 2011):

• Computer in the classroom: Teachers are able to demonstrate a
new lesson, present new material, illustrate how to use new
programs, and show new websites.

• Class website: An easy way to display students’ work is to
create a web page designed for the class. Once a web page is
designed, teachers can post homework assignments, student
work, famous quotes, trivia games, etc.

• Class blogs and wikis: Blogs allow students to maintain a run-
ning dialogue, such as a journal, thoughts, ideas, and assign-
ments that also provide for student comment and reflection.
Wikis are more group focused and allow multiple members
of the group to edit a single document and create a truly col-
laborative and carefully edited finished product.

• Wireless classroom microphones: With the help of microphones,
students are able to hear their teachers more clearly and teach-
ers no longer lose their voices at the end of the day.

• Mobile devices: Mobile devices such as smartphones can be
used to enhance the experience in the classroom by providing

Reports in Forestry and Natural Sciences No 6 145

Marja Kuittinen

the possibility for teachers to get feedback.

• Interactive whiteboards: An interactive whiteboard that pro-
vides touch control of computer applications enhances the ex-
perience in the classroom by showing anything that can be on
a computer screen. This not only aids in visual learning, but
it is interactive so the students can draw, write, or manipulate
images on the interactive whiteboard.

• Online media: Streamed video websites can be utilized to en-
hance a classroom lesson (e.g. United Streaming, Teacher
Tube, etc.)

• Digital games: The field of educational games and serious
games has been growing significantly over the last few years.
Digital games are being provided as tools for the classroom
and have a lot of positive feedback including higher motiva-
tion for students.

As far as software is concerned, an embarrassment of riches is
offered. For years there have been attempts to create a digital li-
brary of computing containing educational material available (e.g.,
Grissom & al. 1998, Fox & al. 2002) resulting in at least two repos-
itories: Computing and Information Technology Interactive Digital
Educational Library (CITIDEL Repository, 2011), and OpenSemi-
nar (2011). CITIDEL contains links to diverse communities offering
several topics of computing (e.g., algorithm visualization, operat-
ing systems, and computer networks). It also offers a possibility
to search or browse its material. OpenSeminar is, according to the
website, “a web-based open courseware platform that enables in-
structors to collaborate on material for similar courses by sharing
links to content. The end result of an OpenSeminar in a given sub-
ject is an expert-maintained repository or database of links to online
information that is openly available on the Internet.” In addition to
the general repositories, there are specialized portals, such as Al-
goViz.org, the Algorithm Visualization Portal (2009), which offers a

146 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science

variety of things to do: search for visualizations, read field reports,
look for research papers, etc.

It seems that only a minor part of all educational tools are avail-
able in the repositories mentioned above. There are probably hun-
dreds of different tools or similar: a search for “educational tool”
in the ACM Digital Library produced 11 889 results (in November
2011). If we consider an educational tool in a wider meaning in-
cluding teaching methods etc., we end up discussing such things as
peer instruction (e.g., Porter & al. 2011), collaborative learning (e.g.,
Hamer & al. 2011), combining multiple pedagogies (e.g., Pollock &
Harvey, 2011), storytelling and puzzles in teaching (e.g., Krishna
Rao, 2006) as well as games (e.g., Sung, 2009; Nickel & Barnes,
2010), robots (e.g., Soule & Heckendorn, 2011), and virtual reality
(e.g., Adams & Hotrop, 2008).

It is challenging to discover applications suitable for educational
use. Repositories are useful but they cover only a minority of the
tools available. It takes a lot of time to find out what else is on offer
and whether there is anything reasonable available for the demand
at hand.

3.3 CS education research

It is obvious that research should be the basis for teaching at the
university level. However, it seems that adopting a new curriculum
based on research results is not an easy task. Ni (2009) has con-
ducted a study to determine factors influencing CS teachers’ deci-
sion on whether to adopt a new CS curriculum. He found several
factors influencing adoption summarizing that teachers’ excitement
in a new approach drives adoption, while more organizational or
social issues inhibit adoption.

What kind of topics have been studied within CS education re-
search, then? For example, the most recent proceedings of the Inter-
national Computing Education Research Workshop, ICER 2011, includes
scientific papers concerning collaborative learning, informal learn-
ing, CS1 (introduction to programming), research design, general-

Reports in Forestry and Natural Sciences No 6 147

Marja Kuittinen

education computing, tools to support learning, and the ways in
which students choose to study computing and specialize within
computing. This list gives a nice view to the variety of topics con-
cerned in CS education research.

Typical questions discussed are, e.g., “How to design courses
and evaluate learning outcomes?”, “How to combine course man-
agement, teaching and student learning in CS?”, or “Why learn-
ing in certain topics is so difficult?”. The first question concerning
course design and evaluation of learning outcomes is a multidisci-
plinary problem, to which solutions have been tried to find in learn-
ing taxonomies. For example, Fuller & al. (2007) have been develop-
ing a CS-specific learning taxonomy—the Matrix Taxonomy—based
on Bloom’s taxonomy (Bloom & al., 1956) and revised Bloom’s tax-
onomy (Anderson & al., 2000).

Further, the second question concerns learning management sys-
tems (LMS), such as Blackboard and Moodle. For example, Rößling
& al. (2008) present an overview of CS specific on-line learning re-
sources and provide guidance on how one could extend an LMS to
include computer-based software tools. They also discuss an LMS
that is extended specifically for CS education: Computing Aug-
mented Learning Management System, CALMS. Another example
of LMS use is presented by Rößling & al. (2010) discussing how to
adapt Moodle to better support CS education.

The third question—why learning in certain topics is so difficult—
can be exemplified with novice programming, which has been stud-
ied for decades. One of the latest papers trying to explain the rea-
sons for difficulties in learning programming is Robins (2010). He
introduces the learning edge momentum (LEM) effect as an alter-
native explanation to the earlier proposed division of students into
two distinct populations of programmers and non-programmers.

There exists dozens of periodicals and conferences concerning
computing and education. Their scientific quality varies from ref-
ereed to unreviewed, and sometimes it is difficult (or even impossi-
ble) to find out which one is at issue. Therefore, selecting the most
valuable sources is really challenging. One possibility is to sub-

148 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science

scribe alerts on interesting topics (e.g., from ScienceDirect, 2011)
and see if the alerts pay off. One option to keep informed is to sign
up for the Csed-research mailing list (2008) which is intended to
facilitate communication between CS education researchers.

Top publications

The are several conferences and scientific journals that publish pa-
pers on CS education research. The best journal for a researcher,
in my opinion, is Computer Science Education (2011), whose own
description says that the journal “presents information on educa-
tional research, current and prospective practices and techniques,
the teaching experience, experiments with results, and educational
software . . . [and c]overs fields of computer science, computer sci-
ence and engineering, and software.” The Computer Science Edu-
cation journal publishes four issues per year containing 3–4 papers
in each issue (15 altogether in year 2010). The leading conference is
the earlier mentioned ICER (ACM, 2011b), which publishes papers
concerning both learning and instruction (in year 2011 there were
18 papers accepted out of 47 submissions). Sheard & al. (2009)
made an analysis of research into the teaching and learning of pro-
gramming with a comparison of papers of six computing education
conferences. Based on the results received, the ICER conference was
ranked as the leading research conference for computing education.

From a teacher’s point of view, the most interesting confer-
ences are annually organized SIGCSE Technical Symposium (SIGCSE,
2011b) in the United States, and Innovation and Technology in Com-
puter Science Education (aka ITiCSE; see SIGCSE, 2011a) in Europe or
nearby. The SIGCSE Technical Symposium, as the conference itself
announces, addresses problems common among educators working
to develop, implement and/or evaluate computing programs, cur-
ricula, and courses. The symposium provides a forum for sharing
new ideas for syllabi, laboratories, and other elements of teaching
and pedagogy, at all levels of instruction. In the year 2011 there
were 107 papers accepted (out of 315 submitted). The ITiCSE con-

Reports in Forestry and Natural Sciences No 6 149

Marja Kuittinen

ference traditionally accepts submissions on the use of technology
in supporting computer science teaching and learning, the prac-
tice of teaching computer science and computer science education
research. This year there were 66 papers accepted (out of 169 sub-
mitted).

The number of papers of the previous publications is yearly
about 200 in total. Teachers following these sources and reading
at least a proportion of those papers yearly will be very knowl-
edgeable and can be content.

4 CONCLUSIONS

In this paper we have discussed CS education and issues related to
it. We noted that CS as a discipline has advanced a lot since the
late 1950’s when the first courses were taught. Likewise, learning
theories have evolved during the past decades having an impact
on CS education. Nevertheless, these changes have barely been
noticeable in teachers’ professional attainments—improvements are
quite seldom exploited in everyday education. To ameliorate this
situation, we presented a summary description of the knowledge
that CS teachers should master, and introduced some options that
are available for organizing tuition. Finally, we discussed the role
of CS education research and stressed that it is essential for CS
teachers to follow up the relevant literature in order to keep up-to-
date.

5 REFERENCES

ACM (2001) Computing Curricula 2001: Computer Science,
http://www.acm.org/education/education/education/curric vols
/cc2001.pdf

ACM (2005) Computing Curricula 2005: The overview report,
http://www.acm.org/education/education/curric vols/
CC2005-March06Final.pdf

150 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science

ACM (2008) Computer Science Curriculum 2008: An Interim Revi-
sion of CS 2001, http://www.acm.org/education/curricula/
ComputerScience2008.pdf

ACM (2011a) Curricula Recommendations,
http://www.acm.org/education/curricula-recommendations

ACM (2011b) ICER conference,
http://wp.acm.org/icer-conference/about/ (21.11.2011)

J.C. Adams and J. Hotrop (2008) Building an economical VR system
for CS education. SIGCSE Bull. 40(3), 148-152.
http://doi.acm.org/10.1145/1597849.1384312

S. Alaoutinen and K. Smolander (2010) Are computer science stu-
dents different learners?. In Proceedings of the 10th Koli Calling Inter-
national Conference on Computing Education Research (Koli Calling ’10).
ACM, New York, NY, USA, 100-105.
http://doi.acm.org/10.1145/1930464.1930482

AlgoViz.org, The Algorithm Visualization Portal (2009)
http://algoviz.org/ (21.11.2011)

L.W. Anderson, D.R. Krathwohl, P.W. Airasian, K.A. Cruikshank,
R.E. Mayer, P.R. Pintrich, J. Raths, and M.C. Wittrock (eds) (2000) A
Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s
Taxonomy of Educational Objectives, Abridged Edition. Allyn & Ba-
con.

B.S. Bloom, M.D. Engelhart, E.J. Furst, W.H. Hill, and D.R. Krath-
wohl (1956). Taxonomy of educational objectives: the classification of
educational goals; Handbook I: Cognitive Domain. New York, Long-
mans, Green, 1956.

Reports in Forestry and Natural Sciences No 6 151

Marja Kuittinen

R. Boyle (2003) Who shall we put on the postage stamps?, Tech-
nical Report 2003.10, School of Computing, University of Leeds,
http://www.engineering.leeds.ac.uk/computing/research/
publications/reports/2003/2003 10.pdf

R. Boyle and M. Clark (2004) CS++: content is not enough. SIGCSE
Bull. 36(1), 422-426. http://doi.acm.org/10.1145/1028174.971443

J.S. Bruner (1967). On knowing: Essays for the left hand. Cambridge,
Mass: Harvard University Press.

S. Card, T. Moran and A. Newell (1983) The Psychology of Human-
Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ.

CITIDEL Repository (2011) http://www.citidel.org/ (21.11.2011)

Computer Science Education (2011)
http://www.tandf.co.uk/journals/NCSE

S.D. Conte, J.W. Hamblen, W.B. Kehl, S.O. Navarro, W.C. Rhein-
boldt, D.M. Young, Jr., and W.F. Atchinson (1965) An undergradu-
ate program in computer science—preliminary recommendations.
Commun. ACM, 8(9),543–552.
http://doi.acm.org/10.1145/365559.366069

Csed-research mailing list (2008)
https://mailman2.u.washington.edu/mailman/listinfo/
csed-research (21.11.2011)

D. Cukierman and D. McGee Thompson (2009) The academic en-
hancement program: encouraging students to learn about learning
as part of their computing science courses. In Proceedings of the
14th annual ACM SIGCSE conference on Innovation and technology in
computer science education (ITiCSE ’09). ACM, New York, NY, USA,
171-175. http://doi.acm.org/10.1145

152 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science

P.J. Denning, D.E. Comer, D. Gries, M.C. Mulder, A. Tucker, A.J.
Turner, and P.R. Young (1989) Computing as a discipline. Commun.
ACM, 32(1),9-23,
http://dx.doi.org.ezproxy.uef.fi:2048/10.1145/63238.63239

Educational technology (2011)
http://en.wikipedia.org/wiki/Educational technology (21.11.2011)

E.A. Fox, H. Suleman and M. Luo (2002) “Building Digital Libraries
Made Easy: Toward Open Digital Libraries”, In Proceedings of 5th
International Conference on Asian Digital Libraries, December 11-14,
Singapore, 14-24.

U. Fuller, C.G. Johnson, T. Ahoniemi, D. Cukierman, I. Hernn-
Losada, J. Jackova, E. Lahtinen, T.L. Lewis, D. McGee Thompson, C.
Riedesel, and E. Thompson (2007) Developing a computer science-
specific learning taxonomy. SIGCSE Bull. 39(4), 152-170.

J. Gal-Ezer and D. Harel (1998) What (else) should CS educators
know? Commun. ACM, 41(9), 77-84.
http://doi.acm.org/10.1145/285070.285085

S. Grissom, D. Knox, E. Copperman, W. Dann, M. Goldweber, J.
Hartman, M. Kuittinen, D. Mutchler, and N. Parlante (1998) “De-
veloping a digital library of computer science teaching resources”,
ACM SIGCUE Outlook, 26(4), 1-13.
http://doi.acm.org/10.1145/316572.358289

J. Hamer, A. Luxton-Reilly, H.C. Purchase, and J. Sheard (2011)
Tools for ”contributing student learning”. ACM Inroads 2(2), 78-
91. http://doi.acm.org/10.1145/1963533.1963553

F. Haug (2011) Relevant Algorithm Animations/Visualizations (in
Java). http://www.ansatt.hig.no/frodeh/algmet/animate.html

Reports in Forestry and Natural Sciences No 6 153

Marja Kuittinen

P.N. Johnson-Laird (1983) Mental Models: Towards a Cognitive Science
of Language, Inference, and Consciousness. Cambridge: Cambridge
University Press.

D.A. Kolb (1984) Experiential Learning: Experience as the Source of
Learning and Development. Prentice-Hall, Inc., Englewood Cliffs, N.J.

M.R.K. Krishna Rao (2006) Storytelling and puzzles in a software
engineering course. SIGCSE Bull. 38(1), 418-422.
http://doi.acm.org/10.1145/1124706.1121472

J. Lave (1988) Cognition in Practice: Mind, mathematics, and culture in
everyday life. Cambridge, UK: Cambridge University Press.

J. Lave and E. Wenger (1998) Communities of Practice: Learning, Mean-
ing, and Identity. Cambridge University Press.

Learning-Theories.com — Knowledge Base and Webliography,
http://www.learning-theories.com/ (21.11.2011)

A.H. Maslow (1943) A Theory of Human Motivation. Psychological
Review, 50(4), 370-396.
http://psychclassics.yorku.ca/Maslow/motivation.htm

L. Ni (2009) What makes CS teachers change? Factors influenc-
ing CS teachers’ adoption of curriculum innovations. SIGCSE Bull.
41(1), 544-548.
http://doi.acm.org/10.1145/1539024.1509051

A. Nickel and T. Barnes (2010) Games for CS education: computer-
supported collaborative learning and multiplayer games. In Pro-
ceedings of the Fifth International Conference on the Foundations of Dig-
ital Games (FDG ’10). ACM, New York, NY, USA, 274-276.
http://doi.acm.org/10.1145/1822348.1822391

154 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science

OpenSeminar: A Community-based Platform for Collaborative Open
Courseware. http://openseminar.org/se/ (21.11.2011)

I.P. Pavlov (1927) Conditioned Reflexes: An Investigation of the Physio-
logical Activity of the Cerebral Cortex. Translated and Edited by G.V.
Anrep. London: Oxford University Press.

J. Piaget (1928) La causalit chez l’enfant. British Journal of Psychology,
18(3), 276-301

L. Pollock and T. Harvey (2011) Combining multiple pedagogies
to boost learning and enthusiasm. In Proceedings of the 16th annual
joint conference on Innovation and technology in computer science educa-
tion (ITiCSE ’11). ACM, New York, NY, USA, 258-262.
http://doi.acm.org/10.1145/1999747.1999820

L. Porter, C. Bailey Lee, B. Simon, and D. Zingaro (2011) Peer in-
struction: do students really learn from peer discussion in comput-
ing? In Proceedings of the seventh international workshop on Computing
education research (ICER ’11). ACM, New York, NY, USA, 45-52.
http://doi.acm.org/10.1145/2016911.2016923

J.S. Renwick and C.B. Foltz (2011) Learning styles of information
technology students. In Proceedings of the 2011 conference on Informa-
tion technology education (SIGITE ’11). ACM, New York, NY, USA,
313-314.
http://doi.acm.org/10.1145/2047594.2047679

A. Robins (2010) Learning edge momentum: a new account of out-
comes in CS1, Computer Science Education, 20(1), 37-71.
http://dx.doi.org/10.1080/08993401003612167

G. Rößling, M. Joy, A. Moreno, A. Radenski, L. Malmi, A. Ker-
ren, T. Naps, R.J. Ross, M. Clancy, A. Korhonen, R. Oechsle, and J..

Reports in Forestry and Natural Sciences No 6 155

Marja Kuittinen

Velzquez Iturbide (2008) Enhancing learning management systems
to better support computer science education. SIGCSE Bull. 40(4),
142-166.
http://doi.acm.org/10.1145/1473195.1473239

G. Rößling, M. McNally, P. Crescenzi, A. Radenski, P. Ihantola, and
M.G. Snchez-Torrubia (2010) Adapting Moodle to better support CS
education. In Proceedings of the 2010 ITiCSE working group reports on
Working group reports (ITiCSE-WGR ’10), Alison Clear and Lori Rus-
sell Dag (Eds.). ACM, New York, NY, USA, 15-27.
http://doi.acm.org/10.1145/1971681.1971684

ScienceDirect (2011)
http://www.sciencedirect.com/science (21.11.2011)

J. Sheard, S. Simon, M. Hamilton, and J. Lönnberg (2009) Analy-
sis of research into the teaching and learning of programming. In
Proceedings of the fifth international workshop on Computing education
research workshop (ICER ’09). ACM, New York, NY, USA, 93-104.
http://doi.acm.org/10.1145/1584322.1584334

SIGCSE (2011a) ITiCSE Conferences,
http://www.sigcse.org/events/iticse
(21.11.2011)

SIGCSE (2011b) The SIGCSE Technical Symposium,
http://www.sigcse.org/events/symposia (21.11.2011)

T. Soule and R.B. Heckendorn (2011) COTSBots: computationally
powerful, low-cost robots for Computer Science curriculums. J.
Comput. Sci. Coll. 27(1), 180-187.

Stanford CS Education Library (2006) http://cslibrary.stanford.edu/
(21.11.2011)

156 Reports in Forestry and Natural Sciences No 6

Learning and Teaching Computer Science

K. Sung (2009) Computer games and traditional CS courses. Com-
mun. ACM, 52(12), 74-78.
http://doi.acm.org/10.1145/1610252.1610273

J. Sweller (1988) “Cognitive load during problem solving: Effects
on learning”. Cognitive Science, 12(2), 257-285.

M. Tedre (2011) Computing as a Science: A Survey of Competing
Viewpoints. Minds & Machines, 21(3), 361-387.
http://www.springerlink.com/content/v66j682n57602453/

TopUniversities (2011) Country guides, course information and uni-
versity rankings for undergraduate degrees.
http://www.topuniversities.com/search/universities/
computer%20science (21.11.2011)

Reports in Forestry and Natural Sciences No 6 157

Marja Kuittinen

158 Reports in Forestry and Natural Sciences No 6

Moving Threads and Parallel Thick Control
Flows

Ville Leppn̈en
Department of Information Technology

University of Turku
Turku, Finland

ville.leppanen@it.utu.fi

Abstract. The purpose of this short paper is to challenge the reader
to consider unconventional approaches. Two ideas concerning par-
allel computations are discussed in particular: Moving threads (in-
stead of data), and parallel thick control flow. The author has had
a major role in the development of both ideas. The parallel thick
control flows represents actually a generalization of the ordinary se-
quential single-threaded computing to parallel flows with thickness
in terms implicit threads. The unconventional approach stems from
not having threads with a control flow but making each (parallel)
control flow to have multiple implicit threads (thickness). Conse-
quently, e.g. the program counter and call stack are then properties
of each flow – not properties of each thread.

1 INTRODUCTION

Considering the theme of this conference ’CS I Like’, I have always
found theory of computer science very fascinating. If I would need
to pick up one paper that has been very influential for me, then
that paper would be Leslie Valiant’s paper [13] on bridging model
for parallel computing and its related handbook paper [12]. Those
papers have lots of different kinds of messages. One message (un-
conventional view) is that one should move the focus in efficient
routing from as small as possible routing time to throughput and
as small as possible amortized cost per routed packet (ignoring the
routing time that had been so dominating in the literature before).
The bridging model that Valiant proposed had these routing re-

Ville Leppänen

lated properties modelled – and several kind of architectures have
been proposed ever since his paper to provide efficient throughput
routing with as little parallel slackness used as possible.

Next, this paper will explain the concepts moving threads and
parallel thick control flows. For more on parallel thick control flows,
see [8]. The reader is challenged to consider the unconventional
approach related to those concepts and the pros and cons of the
approaches. In concluding section some remarks are given.

2 MOVING THREADS

We have developed a completely new kind of approach for map-
ping computations on multicore architectures [2, 3, 7, 10, 11] (some
preliminary ideas appear in [5, 6]). We have also developed a sim-
ulator and a programming language for the approach and studied
programming on it [9].

2.1 Idea

Instead of moving data read and write requests, we move extremely
lightweight threads between the processor cores. Each processor
core is coupled with memory module and parts of each memory
module together form a virtual shared memory abstraction. Ap-
plications are written using a high-level language based on shared
memory. As a consequence of moving threads instead of data we
avoid all kinds of cache coherence problems. Other advantages are
flexible and efficient creation of new threads. In our architecture,
the challenge of having efficient implementation of an application
reduces to mapping the used data so that the need to move threads
is balanced with respect to the bandwidth of the communication
lines. Writing an application to use lots of threads is rather easy
(due to rich literature of parallel algorithms using shared memory
abstraction). This method also eliminates the need for separate re-
ply network and introduces a natural way to exploit locality with-
out sacrificing the synchronicity of the PRAM model.

160 Reports in Forestry and Natural Sciences No 6

Moving Threads and Parallel Thick Control Flows

2.2 Overall architecture

An overview of our architectural framework is shown in Fig. 1. The
system consists of c RISC-based cores, an inter-connection network
between the cores, and a main memory system. Each core maintains a
set of threads, can execute instructions from those, send and receive
threads via the network, and has a cache memory for accessing a
part of the main memory. Each core Ci “sees” a unique fraction of
the main memory via its data cache – such memory locations are
called local to Ci. Thus, if a thread residing at core Ci issues a mem-
ory instruction concerning some memory location local to core Cj,
then the thread must be moved to Cj before executing the instruc-
tion. Moving a thread basically means moving the contents of its
registers and program counter (as well as possibly next decoded in-
struction). The program, being executed by a thread to be moved,
is not moved, since each core has an instruction cache, which con-
tains fractions of all program codes being executed by the threads
residing at that core.

Each memory location is local to only one core. Thus, there
are no consistency problems, since there is no real replication of
the contents of memory locations. Each memory location can be
cached. The data caches of cores act as root access points into the
main memory. In the framework, we do not specify how the main
memory is organized – e.g. it can be partitioned into blocks. We nei-
ther do not fix the organization of the memory system – there can
be multiple levels of caches. The mapping of memory locations into
cores is not fixed in our architectural framework. We expect such a
mapping to be balanced, but leave it open whether the mapping is
static or dynamically set by the executed programs.

2.3 Single core and execution of moving threads programs

Each core maintains a dynamically varying set of threads by stor-
ing their register values in a register file and maintaining other in-
formation regarding them in a thread pool. A core extracts instruc-
tions from the threads (by using their program counter value) in

Reports in Forestry and Natural Sciences No 6 161

Ville Leppänen

������������	��
�������
������
���
�����

���� �� ��

���

��	�

������

�����
	�����

����
�����

������

����
�����

������
����	��
�����

������

���	����
�	 �

!��
	�������	��
�"����	��

!	!� 	��

��������

Figure 1: Overview of our multicore system.

its thread pool and injects such instruction into its instruction ex-
ecution pipeline. None of instruction in the pipeline is a non-local
memory instruction. The nature of next instruction is determined
at the end of execution pipeline – thus, the need to move a thread
is determined as early as possible. See Figure 2.

The goal is that each of the cores has Θ(X) threads to execute,
and the threads are independent of each other – i.e. the core can
take any of them and advance its execution. By taking an instruc-
tion cyclically from each thread, the core can wait for memory ac-
cess taking a long time (and even tolerate the delays caused by
moving the threads). The key to hide the memory (as well as net-
work and other) delays is that the average number of threads X per
core must be higher than the expected delay of executing a single

162 Reports in Forestry and Natural Sciences No 6

Moving Threads and Parallel Thick Control Flows

��

��

��

��

��

��

��

��

�

��
��

��

	�

��

��

	�
�����
�

������
����

��

��

������

��

������

��

������

�
�
�
�
�
�
�
�
�

����
�
�
�

�
�
�

�
�

�
��
�

�
�

��
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
�
�
�

�

�
�

�����������

�����

�
�

�
��
�

��

����

����

���������������
�������

��

������

��

������

��

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�

��

��������
�
������
���
����
�����

��!�
��������

��

	�

����
������

�������
���������

Figure 2: The datapath model of the moving threads processor core.

instruction from any thread.

The network connecting the cores is for moving threads between
the cores. Thus, each core has separate thread buffers for sending
and receiving threads. The received threads are moved into the
thread pool of the receiving core, and respectively sending means
removing a thread from the pool of the sending core.

The execution of all threads in the whole system is synchronous.
The most strict interpretation of PRAM execution is that all threads
execute synchronously stepwise – meaning that there is implicit
synchronization after each step (i.e. atomic instruction). A less strict
interpretation is that there is a separate synchronization instruction
in the instruction set, and encountering such an instruction in the
execution is treated as a barrier synchronization point (all threads
pass over a barrier when all the threads have reached it). The in-
structions of a thread between two barrier synchronization points
can be called as a superstep (notice that the length of superstep does
not need to be static). The approach to the nature of execution syn-
chrony is very crucial considering the semantics of programs and

Reports in Forestry and Natural Sciences No 6 163

Ville Leppänen

ease of programming. It is obvious that the more strict synchrony
the easier to program but the more costly to implement. In our
architectural framework, we do not specify how often the threads
are synchronized, but we fix the architectural method of keeping
the threads in synchrony. Our method is the synchronization wave
method which can be seen to have been outlined already in the Flu-
ent machine. The idea of synchronization wave is that a wave front
separates two consecutive (super)steps. The wave front moves over
an element (whether an interconnection node or an element related
to the execution pipeline of a core) once it has arrived into the el-
ement via all input ”links”. Moving over a node means that the
wave front is forwarded to all possible output ”links” of the node.

3 THICK CONTROL FLOW

A software engineering perspective aiming at (reasoning about) cor-
rectness of parallel programs provides a fact supporting grouping
of threads more tightly to each other and making each group to
proceed (quite) synchronously. Reasoning about correctness of se-
quential programs or testing their execution has been successful, as
one has been able see the execution of a program as a sequence of
state transitions. In this respect, synchrony is a language-level or
library-level mechanism to define states. The more the threads can
do operations between states, the harder it will be to reason about
the correctness of state transitions. If a huge number of threads
can proceed at arbitrary speed, the program can be in very many
different states. Such multithread programming is very difficult in
correctness sense. Having only a few thick parallel synchronous
control flows in the program makes it much easier to reason about
the correctness, since such a mode of execution significantly re-
duces the amount of possible program states.

3.1 Idea

When a thick control flow (in terms of the number of threads) is exe-
cuting a statement or an expression of a program, all the threads are

164 Reports in Forestry and Natural Sciences No 6

Moving Threads and Parallel Thick Control Flows

considered to execute the same program element synchronously in
parallel. Considering method calls, when a control flow with thick-
ness t calls a method, the method is not called separately by each of
the t threads, but the control flow calls it only once with t threads.
A call stack is not related to each thread but to each of the parallel
control flows, since threads do not have program counters – only
control flows have program counters. Executing a branching state-
ment means temporarily splitting a thick control flow into several
other flows, which join after the branching statement.

The concept of thread is only implicit, although as language
constructions statements for increasing/decreasing thickness are
needed. The type system is extended with thickness. A thick
variable is an array-like value having a thread-wise actual value.
Method signatures naturally advance types with thickness, but non-
thick types are also useful.

The concept of thick control flow makes the programmer to fo-
cus on co-operation of few parallel thick control flows instead of a
huge number of parallel threads. The concept computation’s state is
promoted as a flow is seen to have a state (instead of each thread).
The concept of state has been a central role in achieving correct-
ness in sequential programs. The concept of thick control flows is
related to data parallelism and stream computing. It is a natural
generalization of ordinary imperative sequential programming.

The concept of thick control flows is a straightforward general-
ization of ordinary sequential program flows. A typical sequential
program implicitly defines a lots of different kinds of control paths
“through” the program. When a sequential program is run with a
single thread, the thread follows exactly one of the possible control
paths. From a semantical view point, one can consider that even
a single-threaded program runs through all of its possible control
paths in parallel. At each program statement involving a condi-
tional branching of control (if-statements, switch-statements, loop
condition checks, . . .), the control of a single-threaded control flow
can be considered to advance to all possible branches with thick-
ness either one or zero threads – naturally we must require that the

Reports in Forestry and Natural Sciences No 6 165

Ville Leppänen

incoming thickness matches with the sum of outgoing thicknesses.
Executing a control flow of zero thickness naturally has no effect
(and can be ignored in practice).

3.2 Some considerations on program execution

Considering method calls, when a control flow with thickness t calls
a method, the method is not called separately with each thread, but
the control flow calls it only once with t threads. A call stack is
not related to each thread but to each of the parallel control flows.
Executing a branching statement can mean temporarily splitting a
thick control flow into several other flows.

Originally, a program is considered to have a flow of thickness
1, measured conceptually in number of parallel threads. A method
can be considered to have a thickness related to the calling flow’s
thickness. For creating a thick flow, we consider having to options:
Either have a statement to dynamically set the thickness of the flow
(by increasing/decreasing it), or have a block statement defining
that the statements of the block are executed with a given thickness.
We choose to support the latter option, thick block, as it is more
naturally related to “thick”, replicated variable declarations as well
as the common idea of program stack.

A thick control flow of thickness t consists of t implicit threads.
We assume them to have a unique identity expressed as an integer.
Basically, we consider the identities to be between 0 . . . t− 1, but it
might be useful to have language constructions supporting other
kind of indexing of implicit threads.

By a replicated variable, we mean a specifically declared variable
within a thick block that has a unique instance for each thread of the
flow. The degree of replication is dynamic, depending on the ac-
tual thickness of the flow. In practice, a replicated variable can be
implemented as an array allocated from the memory.

The thick control flow concept clearly needs a stack-like struc-
ture for handling nested calls and nested thick blocks. However, as
a flow can split into separate flows, the stack concept expands to a

166 Reports in Forestry and Natural Sciences No 6

Moving Threads and Parallel Thick Control Flows

uniquely rooted tree-structure called cactus tree.
Nesting thick and ordinary block statements is meaningful and

can be supported. Consider a situation where a thick block Bout of
thickness tout contains an inner thick block Bin of thickness tin. A
nested block is not executed thread-wise but flow-wise, and there-
fore considering the flow thickness, a flow executing the inner thick
block has thickness tin (instead of tout × tin). There are issues con-
cerning replicated variables, but those are not explained in this pa-
per.

Consider a programming language constructs for branching state-
ments like, if-then-else, switch ,and case. A control flow is
executing each statement or expression of a program instead of
a thread. When executing a branching statement with incoming
control flow thickness of tin and there are k possible branches with
thicknesses t1

out, . . . , tk
out, we simply require that tin = t1

out + . . . +
tk
out. Statements also involve joining the split control flows as the

branches join – our thick control flow approach assumes that there
will always be an implicit join at the end of a branching statement.

Considering semantics, the concept of thick control flows can
be very helpful. All threads of a control flow can be seen to syn-
chronously march through the (common) program code. When a
flow is split into separate flows, it is perhaps best to consider that
nothing is assumed about the advancing speed of the split flows.
However, joining of different parts involves an implicit synchro-
nization of the joined flows.

3.3 Function calls

Consider function calls, when a control flow with thickness t calls a
method, the method is not called separately with each thread, but
the control flow calls it only once with t implicit threads.

A function declaration needs to declare if it is meaningful to call
a function with a thick flow (with e.g. a keyword ’rep’ in the func-
tion signature). Recall that within a function one can change the
thickness by using a thick block definition. The implicit flow thick-

Reports in Forestry and Natural Sciences No 6 167

Ville Leppänen

ness parameter can be seen as a possibility for the caller to define
how many implicit threads should be used inside the function. For
thick functions, it is meaningful to tie the thickness of passed val-
ues and return value to the thickness of calling flow. Notice that it
is useful to be able to define non-replicated type in thick function’s
signature.

If the return value of a function is of replicated type, a normal
return of a thick function call can be seen to return an array of
values. It is also possible to consider some of the implicit threads to
end their execution to an exception – then the thickness of normally
returning control flow can be seen to reduce when some fraction of
the incoming control flow has been separated by exceptions. The
normal exception handling mechanisms (of e.g. OO languages) can
be seen to later join the separated parts of the control flow with the
original control flow.

3.4 Object-oriented features

The concept of parallel thick control flows can be extented to OO
language constructions, too. The calling object can always be seen
as the 0’th parameter of a function. In fact, if a call is applied to
a replicated expression having object values, then a single method
call can have multiple objects as callers!

The locking mechanism of objects can be preserved, but a lock
should acquired by a thick control flow instead of an implicit thread
within a thick control flow.

We do not further elaborate object-oriented features in this pa-
per.

4 CONCLUSIONS

Hopefully, the two unconventional views discussed were stimu-
lating. Determining the true benefits and drawbacks of moving
threads and parallel thick control flows requires a lot of work. In
case of the moving threads, it seems that threads should either (a)

168 Reports in Forestry and Natural Sciences No 6

Moving Threads and Parallel Thick Control Flows

be seen as very simple (few registers per thread) and the true ben-
efit comes from memory consistency, or (b) be seen as having lots
of registers in which case the mechanism is an extension of the
memory system to computing. The concept of parallel thick control
flows is so new that its pros and cons are left open.

Finally, although it is exciting to look matters from a completely
different viewpoint, the reader must be warned that selling the idea
of the new viewpoint to the scientific community is often very dif-
ficult.

Reports in Forestry and Natural Sciences No 6 169

Ville Leppänen

170 Reports in Forestry and Natural Sciences No 6

References

[1] M. Forsell and V. Leppänen. Supporting Concurrent Memory
Access and Multioperations in Moving Threads CMPs. In Pro-
ceedings of PDPTA 2010, pages 377–383, 2010.

[2] M. Forsell and V. Leppänen. “Moving Threads: A Non-
Conventional Approach for Mapping Computation to MP-
SOC.” In Proceedings of the 2007 International Conference on
Parallel and Distributed Processing Techniques and Applications
(PDPTA’07), pages 232-238, Jun 2007.

[3] M. Forsell and V. Leppänen. Moving Threads Processor Archi-
tecture MTPA. Journal of Supercomputing, 57, pages 5–19, May
2011.

[4] J. Keller, C. Kessler, and J. Träff. Practical PRAM Programming.
Wiley, 2001.

[5] V. Leppänen: Studies on the Realization of PRAM, PhD thesis,
University of Turku, Department of Computer Science, TUCS
Dissertation 3, November, 1996.

[6] V. Leppänen. “Balanced PRAM Simulations via Moving
Threads and Hashing.” Journal of Universal Computer Science, 4:8,
675–689, 1998.

[7] V. Leppänen, J.-M. Mäkelä and M. Forsell. A RISC-Based Mov-
ing Tiny Threads Architecture. Proceedings of 2011 Conference
on Parallel and Distributed Processing Techniques and Applia-
tions, PDPTA’11, II, CSREA Press, pp. 485–491, Jul 2011.

[8] V. Leppänen, M. Forsell and J.-M. Mäkelä. Thick Control Flows:
Introduction and Prospects, Proceedings of 2011 Conference on
Parallel and Distributed Processing Techniques and Applia-
tions, PDPTA’11, II, CSREA Press, pp. 541–546, Jul 2011.

Reports in Forestry and Natural Sciences No 6 171

Ville Leppänen

[9] J.M. Mäkelä and V. Leppänen. Towards programming on the
moving threads architecture. In CompSysTech ’10: Proceedings of
the International Conference on Computer Systems and Technologies,
pages 137–142. ACM Press, 2010.

[10] Mäkelä, J.-M., Leppänen, V. and Forsell M. RISC-Based Moving
Threads Multicore Architecture. In Proceedings, 12th International
Conference on Computer Systems and Technologies (CompSys-
Tech’11), ACM Press ICPS Vol. 578, pages 51–56, Jun 2011.

[11] J. Paakkulainen, J.M. Mäkelä, V. Leppänen, and M. Forsell.
Outline of risc-based core for multiprocessor on chip architec-
ture supporting moving threads. In CompSysTech ’09: Proceed-
ings of the International Conference on Computer Systems and Tech-
nologies, pages 1–6. ACM Press, 2009.

[12] L.G. Valiant. “General Purpose Parallel Architectures”. In
Handbook of Theoretical Computer Science, Ed. Jan van Leeuwen, El-
sevier and MIT Press, volume 1. Elsevier Science, 1990.

[13] L.G. Valiant. “A bridging model for parallel computation”.
Communication of the ACM, 33:8, pp. 103-111, 1990.

172 Reports in Forestry and Natural Sciences No 6

How to Invent and Prove a Result
Martti Penttonen

School of Computing
University of Eastern Finland

P.O. Box 1627, 70211 Kuopio, Finland
martti.penttonen@uef.fi

Abstract. In this talk we present, by a case, how a scientific result is
achieved and proved, and through which phases does the research
go. Our case concerns algorithmic research, in particular a routing
algorithm. In other branches of computer science the stories may
differ, but probably some similarity can be found.

1 INTRODUCTION

Each scientific result has a story behind, how the question arose,
and how the result was achieved.

In mathematics, there is a long tradition of polishing the result
and proof so that the story is hidden, at least for most. In computer
science, results are often less sophisticated, and the history may
even be explicitly written in the result and the proof.

In this paper, we tell the story of a result, a routing algorithm
and its analysis. What is the structure of such a story? In our case,
when the problem was algorithmic, the story went more or less as
follows:

1. Motivation. What is the question? Why is that question in-
teresting? Is it possible to get an answer, an approximation or
an exact answer? Is it possible for us and now?

2. First try. Is there an obvious way to find a solution? Does it
solve the problem?

3. Experiment. Test the obvious solution. Does it work at all?
How good is it?

Martti Penttonen

4. Literature search. Has somebody investigated the same prob-
lem or a rather similar problem? If yes, experiment with it,
too.

5. Reflection. If the obvious or literature solutions did not work,
why so? What is the core of the problem? What kind of
methods might work.

6. Invent and experiment. If the idea did not work, return to
the previous step. If it seems to work, continue.

7. Clarify and prove that the result holds.

8. Test and tune. Check the correctness and performance by
practical tests, simulations. Simplify, recognize weaknessess,
tune for performance.

9. Write a report.

Not all research problems are similar, but often the above pattern
applies, at least in algorithm research.

2 THE PROBLEM

Our motivation came from the theory of parallel computation. Par-
allel computation would be easier, if processors had a shared mem-
ory, and if possible, with a low latency. If processors have local
memory, shared memory could be implemented by fast parallel
processor to processor communication. Optics would offer high
bandwidth of communication, but collisions should be avoided.
Under so called OCPC (Optically Connected Parallel Computer)
condition packet sending succeeds only when there are no other
packets trying to enter to the same target. Is there an algorithm that
works efficiently under the OCPC assumption, preferrably simple
and fast?

We found an algorithm thas seems suitable for the purpose. Af-
terwards, it seems very simple, almost naive. However, it required

174 Reports in Forestry and Natural Sciences No 6

How to invent and prove a result

quite a lot of work, and quite a hard analysis. It offers a nice exam-
ple, how algorithmic research may be done.

In a communication system, we want that anybody can commu-
nicate with anybody, but not all time. Usually one communicates
with only one at a time, if any. The situation is not like Fig. 1 (a)
but rather like Figure 1 (b).

Figure 1: (a) All-to-all and (b) a more realistic routing task.

Further, it is not cost-efficient to have permanet, dedicated com-
munication links between all pairs, but to use a shared commu-
nication resource. We assume that one agent, call it a processor,
has a number of packets to send, but it can send only one packet
at a time, see Figure 2 (a). On the other hand, it is natural to as-
sume that processors cannot process many incoming messages at
the same time. Hence, in Figure 2 (b) the sendings from 1 and 3
to 2 fail. This condition is called the 1-collision condition. Colliding
packets must be resent.

If packets are more or less randomly addressed, we can abstract
our routing problem as an h-relation, in which each processor has at
most h packets to route, and each processor is target of at most h
packets. Our problem now is, how much time do we need to route
all packets. If a processors has h packets, at least h time is needed,
but do need more?

Reports in Forestry and Natural Sciences No 6 175

Martti Penttonen

1

2

3

4

5

6

7

8

218543

4385114

2443876

76587633

34782765

1856432 654781 2

3

4

5

6

7

8

1
18543

54781

443876

385114

6587633

4782765

856432

84756321 4756321

Figure 2: A step of a routing task.

3 A FIRST TRY AND IMPROVEMENTS

A good rule is that do it as simple as possible, but not more. The
greedy principle means trying to move directly towards the solution,
without worrying about the possible obstacles. In this case, the
greedy algorithm is written as follows:

proc greedy
for all processors pardo

while processor has packets do

choose an unsent packet at random and try to send it

Figure 3: Greedy routing algorithm.

If packets are randomly addressed, which is natural unless we
do not know anything special about the packets, the probability of
successful sending, when there are p processors, is (1− 1

p)
p−1 ≈ 1

e .
Hence, 1/e fraction of packets may be successfully routed at every
moment, and we might expect that e is enough time to route a
packet.

Unfortunately the greedy algorithm does not fulfil our expecta-
tions. One soon observes that it ends up with a livelock: the same
collision starts to repeat. Consider a situation when two processors
both have only one packet, addressed to the same processor. They
will collide for ever.

The fault in the greedy algorithm is that it forces to repeat the

176 Reports in Forestry and Natural Sciences No 6

How to invent and prove a result

colliding step. That rule should be loosened somehow. A solution
was proposed in [1]. Their idea is to start like greedy, but when the
number of remaining packets has decreased from h to k < h, the
packet is tried only with probability h/k. However, when the num-
ber of remaining packets has been halved, they restart recursively.
With some more detail, their algorithm can be written as in Figure
4. In the algorithm, the recursion threshold is ε and the parameter
α affects on the speed and success probability.

proc GGT(h,ε,α)
for i = 0 to log1/(1−ε) h do

for all processors pardo

for e(εh + max{√4εαh ln p, 4α ln p})/(1− ε) times do

choose an unsent packet x at random
attempt to send x with probability # unsent packets / h

h := (1− ε)h

Figure 4: Geréb–Graus and Tsantilas algorithm.

In [1] it was proved that GGT algorithm works work-optimally, i.e.
it routes any h-relation with h ∈ Ω(log p log log p) in O(h) time.
But how good is it? How does it behave in practice?

In order to better see, how does the GGT algorithm behave, we
wrote a simulator. With suitable values of parameters, the numbers
of successful, non-tried, and remaining packets develop as depicted
in Figure 5.

Looking at Figure 5, some questions arise. The sawblade pat-
tern looks suspicious. If the number of unsent packets seems to

Figure 5: Routing with GGT.

Reports in Forestry and Natural Sciences No 6 177

Martti Penttonen

Figure 6: Routing with PCT.

decrease smoothly, why should the sending probability be changed
abruptly? Shouldn’t the sending probability remain the same or
change smoothly. Figure 6 shows the throughput, when packets
are sent with some probability less than 1. Call this protocol proba-
bilistic constant thinning protocol, PCT. PCT seems to be faster than
GGT.

Decreasing sending probability has two opposite effects. If you
do not try to send, then the unsent packet does not arrive at its
target. On the other hand, as fewer packets are being sent, the
risk of collisions decreases and livelock is eliminated. If sending
probability is 1/t (t > 1), expected routing time per packet would
be E(t) = te1/t. When t > 1 grows, the expectation E(t) grows at
first rather rather moderately: E(1) = e ≈ 2.72, E(2) ≈ 3.3, E(3) ≈
4.2 etc. At the beginning of routing, the greedy algorithm promises
E(1) = 2.72 but it leads to livelock. If the sending probability is
decreased to 1/1.1, the expectation grows only to E(1.1) = 2.73
and we avoid the livelock.

The expected routing time calculated for random packets is not
the whole truth. When the number of packet decreases, the distri-
bution of packets becomes less and less random. This is seen in the
long tail in the Figures 5 and 6. When only few packets remain, the
probability of collisions grows higher. Therefore, when the num-
ber of remaining packet decreases to log p, we let the the sending
probability decrease. Even though the results in [4] are not directly
applicable to our case, that paper was a good source of inspiration
for understanding the tail phenomenon.

For practical reasons, instead of sending a packet with proba-
bility 1/t, in CT algorithm of Figure 7, we send h packets in a time

178 Reports in Forestry and Natural Sciences No 6

How to invent and prove a result

window of length th, which has roughly the same effect. In the
algorithm, d is another constant, 1 < d < t. In the routing progress
curve of CT, in Figure 8 there are some discontinuities like in GGT,
but smaller.

proc CT(h,h0,t,d)
for all processors pardo

while h > h0 do

Try to transmit h packets (if so many remain) in �th steps
h := (1− e−1/d)h

while packets remain do

Try to transmit the remaining packets in �th0 steps

Figure 7: Constant thinning algorithm.

The curve in Figure 8 shows, that our “constant thinning” routing
protocol performs quite well. Note that the best we can hope, is to
route h packets in eh time. In [2] some generalized versions of the
algorithm are presented.

Figure 8: Routing with CT.

4 ANALYSIS

By experiments, literature and intuition, we came to a promising
routing algorithm. But is it really as good as the experiments hint?
Does it really route work-optimally, i.e. route h packets in O(h)
time? If so, under what assumptions?

The analysis of data communication protocols is often difficult.
Still it is worth trying, not only for knowing the correctness for sure,

Reports in Forestry and Natural Sciences No 6 179

Martti Penttonen

but also for better understanding the algorithm and even improv-
ing it. We managed to prove the work optimality of a generalized
version of the CT algorithm. It is found in [2] and we do not repeat
the proof here. However, it is useful to recall some principles.

• How does routing proceed in the large? When a simulator is avail-
able, by experimenting with the parameters, one can observe
that the main routing process and the tail routing process be-
have differently. In the main processing, thinning factor is im-
portant, in the tail processing, the choice of h0 matters. Hence,
the analysis should be divided in two parts.

• How to analyze a randomized algorithm? In simulations, we
see that with good parameters, routing proceeds steadily. Can
we trust on it? When we are dealing with expectations, often
Chernoff bounds prove out to be useful. Intuitively, Chernoff
bounds tell that it is not probable that a process deviates very
much from the expectation. Some useful forms of Chernoff
bounds [3] are:

Pr(X < (1− ε)E) ≤ (
e−ε

(1− ε)1−ε
)E

Pr(X < (1− ε)E) ≤ e−ε2/2

Pr(X > (1 + ε)E) ≤ (
eε

(1 + ε)1+ε
)E

Pr(X > (1 + ε)E) ≤ e−ε2/3

and
Pr(X > r) ≤ 2−r f or r ≥ 6E.

By the first formula for Pr(X < (1− ε)E) we manage to prove
that from round to round, the number of unsent packets de-
creased to a fraction, with high probability.

• Progress from round to round? By comparing packet numbers
in two successive rounds, one can prove that the number of
packets decreases in geometric series. Therefore, with high

180 Reports in Forestry and Natural Sciences No 6

How to invent and prove a result

probability the number of packets reaches the h0 ∈ O(log p)
threshold in time that is proportional to log h, where h ∈
Ω(log p log log p) is the original number of packets.

In the tail, however, the decrease of packets is slower. One can
see that when h ≤ h0 packets remain, expected sending time
for a packet is eh0/h. For all packets, this leads to a harmonic
series, whose sum, also is in O(log p log log p). By the last
form of Chernoff bound one can prove that O(log p log log p)
time bound can be achieved with high probability.

• Throughout the analysis, some smaller mathematical tricks
were needed.

In this way, we managed to prove that
for h ∈ Ω(log p log log p), CT routes an h-relation work-optimally.

Furthermore, experiments show that by increasing the h “a little”,
the routing time comes close to 3h. For a more general result, see [2]

5 CONCLUSIONS

By a well-known phrase, scientific results require some inspiration,
and a lot of perspiration. We can affirm it. Perspiration is needed
to familiarize with the problem and to develop suitable tools for
experimentations. We used computer simulations for experiment-
ing and learning the nature of the problem. Perspiration is also
required for finding and learning right mathematical tools needed
in the analysis. We found Chernoff bounds suitable for our pur-
pose. Key word is understanding the problem. It inspires the intuition
both in inventing a result, and in proving it.

Reports in Forestry and Natural Sciences No 6 181

Martti Penttonen

182 Reports in Forestry and Natural Sciences No 6

References

[1] M. Geréb-Graus and T. Tsantilas. Efficient optical communi-
cation in parallel computers. In SPAA’92, 4th Annual Sympo-
sium on Parallel Algorithms and Architectures, San Diego, Califor-
nia, pages 41 – 48, June 1992.

[2] A. Kautonen, V. Leppänen and M. Penttonen. Thinning Pro-
tocols for Routing h-Relations Over Shared Media. Journal of
Parallel and Distributed Computing, 70(8):783-789, 2010

[3] M. Mitzenmacher, E. Upfal: Probability and Computing. Cam-
bridge University Press, 2005.

[4] M.S. Paterson and A. Srinivasan. Contention Resolution with
Bounded Delay. In Proceedings of 38th Annual IEEE Symposium
on Foundations of Computer Science, pages 104–113, 1995.

Reports in Forestry and Natural Sciences No 6 183

Publications of the University of Eastern Finland

Reports and Studies in Forestry and Natural Sciences

isbn 978-952-61-0635-9

Publications of the University of Eastern Finland
Reports and Studies in Forestry and Natural Sciences

This proceedings is outcome of a

miniconference held on 4.11.2011, at

the University of Eastern Finland.

The editor of this book, before

retirement a month later, invited his

former PhD students to give a talk

under title Computer Science I Like.

The point behind the title was that

scientific research is not just work

but also a vocation. As an event, the

miniconference was a more or less

regular scientific conference, al-

though only one day long and with a

wider scope. For students it offered

a window into the world of research.

Also, it was fun to meet. I thank all

those, who made this miniconference

and proceedings possible.

R
EPO

RTS A
N

D
 STU

D
IES | 0

0
6 | M

a
r

tti P
en

tto
n

en
 (ed

.) | C
om

p
u

ter S
cien

ce I L
ike - P

roceedin
g of M

in
iconferen

ce 4.11.2011

Martti Penttonen (ed.)
Computer Science I Like

Proceeding of Miniconference
4.11.2011 Martti Penttonen (ed.)

Computer Science I Like
Proceeding of Miniconference 4.11.2011

