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ABSTRACT:

This thesis supposes an application of Principal Component
Analysis (PCA), Non-negative Matrix Factorization (NMF) and
Non-negative Tensor Factorization (NTF) for digital image
archiving. It is aimed to develop new efficient methods for
spectral image acquisition, compression and retrieval. It
hypothesizes that the non-negative bases are more suitable for
spectral archiving beside convenient orthogonal.

The thesis introduces three fundamental components of the
digital image archiving system. It gives an overview of the
methods that were developed for the spectral image archiving
recently. PCA, NMF and NTF were applied as a spectral
reconstruction, a spectral reduction and feature extraction
methods. It also supposes a multiresolution approach in
computing NTF and subspace clustering preprocessing for
compression by PCA.

The experiments performed during the study shows that the
non-negative methods reconstruct spectra with the same error
but as the benefit they can be implemented optically. The
compression method based on subspace clustering is more
efficient than convenient k-means. The non-negative basis is
better color feature than orthogonal one in a way of spectral
image retrieval.

Universal Decimal Classification: 004.93, 519.237.7, 512.643.12,514.743

Keywords (Library of Congress Subject Headings): Image processing, Factor

analysis, Calculus of tensors, Matrices
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1 Introduction

Digital imaging is an area of computer science where the
main role is given to 2D visual information transformed into a
binary computer format called digital imaging [1]. It includes
such image processes as acquisition, compression, analysis,
visualization, printing, etc. The digital image consists of a
certain number of elements named pixels; each of them
represents a color in the corresponding position. There are
several sources from which digital images can be acquired.
Usually a digital image originates from a physical scene
captured by a camera or scanner device. There light reflected
from an object is measured by electronic sensors. The digital
image in this case retains the information about the reflected
light. Other types of digital images including medical images
like Magnetic Resonance Imaging (MRI) [2], Computed
Tomography Imaging [3] or X-ray images [4] are based on the
property of a substance to transmit and absorb electromagnetic
rays. There are also computer generated images using graphical
programs, e.g. Photoshop, MathCAD and 3D Studio. They are
becoming increasingly popular and closely integrated with
natural imaging (e.g. photo-processing, map digitizing and
scanning of printed documents). Only digital images taken of
natural objects using visible light are considered in this thesis.

The purpose of digital image archives is aimed to store
images in an organized order for future use. Images in the
archive are protected from external factors (e.g. ageing,
corrosion, discoloration). Due to the expansion of digital
technologies, the investigation of the physical object can be done
quicker and more cheaply using digital image analysis. Also,
digital technologies enable transferring a digital image copy
over long distances in a short time and representing it in



different ways (e.g. paper or textile printing, computer or
mobile device representation and light projection) [5].

The most common trichromatic color technologies nowadays,
such as RGB (Red Green Blue), are affected e.g. by metamerism
(the effect of matching of the color of objects with different
spectral power distributions) and are device and observer
dependent [6]. Therefore the color spectrum as a discrete
analogue of the spectral power distributions is needed for
accurate and device independent color representations. An
example of color spectra is shown in Figure 1.1.

Figure 1.1 Example of six color spectra represented with corresponding colors.
Reflectance spectra of the Macbeth ColorChecker are measured using the
PhotoResearch PR-705 spectroradiometer.

Spectral imaging is an expansion of digital imaging. A
spectral image, also called a multispectral or hyperspectral
image, is a digital image where each pixel is represented by a
color spectrum. From this it follows that the spectral image is an
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accurate representation of color information. This is deeper and
more accurate information than can be captured by mono or
three chromatic cameras or visual systems.

Three fundamental processes of the spectral image archive,
which are also relevant for any digital image archive, are
considered in this study. The processes of acquisition,
compression and retrieval are schematically shown in Figure 1.2
and discussed in this thesis. The benefits of spectral color
representation compared with trichromatic are explained here.
Modern and convenient methods are introduced for each
component of the archive. The direction for future research in
the area of spectral image archiving is also proposed.

Figure 1.2 Three fundamental components of the digital image archive.

Digital image acquisition is a process of image digitization
using an acquisition device e.g. camera or scanner. When the
digital image is acquired, it should be stored in a long-term
memory. The compression process aims to reduce the amount of
allocated memory taken up by the digital image. It allows
saving the digital image in a compact format until it is needed.
An increasing number of digital images in the archive creates a
need for robust methods that can find images in the archive by a
relevant query. These methods are called image retrieval.

This dissertation hypothesizes that Principal Component
Analysis (PCA) [7], Non-negative Matrix Factorization (NMF)
[8] and Non-negative Tensor Factorization (N'TF) [9] are suitable
for spectral image archiving. These methods were applied to
data compression, feature extraction and color spectra
reconstruction. The experiments aimed to show the difference
between convenient orthogonal bases and non-negative ones.



New approaches to spectral image acquisition, compression and
retrieval are proposed and evaluated here.

The dissertation is a compendium of six articles. All of them
have appeared in reputable international conferences. The
publication [P1] introduces the main aspects of an image
database system. A compression method for spectral image
archiving was developed in [P2]. The method was successfully
applied and compared with another. [P3] provides an
acceleration technique for NTF using a multiresolution
approach, which is very important since NTF is widely used in
our research. The acceleration method was improved in [P4] by
subsampling. The publication [P5] gives a new approach to
spectral image retrieval. It compares non-negative and
orthogonal bases as image color features for database search. An
illuminant dependence of PCA, NMF and NTF in the color
spectrum domain is investigated in [P6]. It was also shown there
that non-negative bases are more suitable for spectral
reconstruction.

The dissertation consists of nine chapters. Chapter 1 is an
introduction to the study. Digital imaging, color representation
and color spectrum representation are explained in Chapter 2.
An introduction to the spatial techniques used in all methods
developed in this study is presented in Chapter 3. Chapter 4
hypothesizes a new approach to spectral image acquisition
systems. Chapter 5 proposes compression methods that are
suitable for spectral image archiving. Aspects of retrieval in the
spectral image archive system and new features for them are
introduced in Chapter 6. A summary of publications can be
found in Chapter 7, where my contributions to this study are
presented as percentages. Chapter 8 summarizes the result of
experiments performed during this study. The conclusions part
discusses the main aspects of the study and proposes future
work to be done in the area of spectral archive systems.



2 Digital Color Imaging

The definition of color can be given in two ways. First, color
is a characteristic of electromagnetic radiation. It means that
color sensitivity appears in the brain after the light reflected
from an object stimulates eye sensors [10]. It is based on the
human visual sensation depended from physical, physiological
and psychological factors. This phenomenon is studied in more
detail in color symbolism and psychology [11]. From the
physical point of view, color is a characteristic of the
electromagnetic spectrum taken in the visible range called
visible light [12] (see Figure 2.1). It represents the physical
properties of the substance to reflect, transmit and radiate light.
An individual color sensation depends on the reflectance
property of the observed object, the light source spectrum and
the individual characteristics of the observer sensors.

Wavslingth
1

1Gm  10m i0m  10m 10m 10m W0m  10m

Figure 2.1 Electromagnetic radiation and visible light.



2.1 TRICHROMATIC COLOR MODELS

There are many color models (e.g. CIE XYZ, CIE L*a*b*, RGB,
CMYK). Most of them are three-dimensional i.e. trichromatic.
They are based on three primary colors and arise from the
human color vision system consisting of three types of color
sensitive photoreceptors called cone cells for short, middle, and
long wavelengths [13].

The first trichromatic standard model, defined by the CIE
(International Commission on I[llumination) in 1931, is XYZ
color space (also known as CIE 1931 or CIE XYZ color space)
[14]. It was defined based on a series of experiments performed
in the late 1920s by W. David Wright [15] and John Guild [16].
As a result of the experiments the color-matching functions
x¥(A), ¥ (A) and z (A) were measured with human observers.

They are shown in Figure 2.2 at the visible wavelength range
from 380 to 780 nm.



Figure 2.2 Human color-matching functions x (A), y (A) and z (A).

The corresponding coordinates are calculated over a spectral
power distribution s(A) of the reflected light /(A)

X=x j s()F(A)dA
Y=« j s(A)F(A)dA .1)
Z=x j s()Z(1)dA,
where x (1), ¥ (A) and Z (A) are color matching functions; s(A) is
the product of the light source radiance distribution and the

reflectance property of the observed object [17]; and «k is a
normalizing factor calculated as



K= L (2.2)
[iyayda

CIELAB, also known as CIE 1976 L*a*b* uniform color space,
was defined by CIE in 1976 [18]. It aimed to linearize color
space, which means a change in color value should produce a
change of about the same visual importance. This effect is very
important to avoid the nonuniformity of color difference. CIE
L*a*b* is also a trichromatic color model. L* indicates the
lightness of the color. a* is a position between green and red
(negative values indicate green while positive values indicate
magenta). b* is a position between blue and yellow (negative
values indicate blue and positive values indicate yellow). The
corresponding CIELAB coordinates are calculated as follows:

L¥=116 f(Y/Y,)-16
a*=5007[(X/X,)-(Y/Y)] 2.3)
b*=200/[(Y/Y,)~(Z/Z,)),

where

a'? ,when o > (6/29)

/@) {1/3 (29/6)’a +4/29 ,otherwise S
where Xo, Yo and Zo are the corresponding CIE XYZ tristimulus
values of the reference white point. From this it follows that
CIELAB is device and observer independent.

Due to the increasing importance of digital technologies,
digital color is becoming more popular. Digital color is a way of
numerical representation of color in computer memory. It
allows storing, transferring and analyzing color faster and more
cheaply than the analog variant.

The best known digital color model is RGB [19]. It is an
additive model where colors are an additive combination of the
primary red, green and blue. The RGB color model is widely
used in computer graphics, e.g. CRT monitors, televisions, video
projectors, scanners and digital cameras, although it has two
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primary problems as well as CIE XYZ. First, RGB is non-
uniform color space. The numerical difference between two
colors in RGB space is non-linear. The second problem is device-
dependency. There are a lot of RGB spaces, and each of them
belongs to a corresponding device. The standard sRGB color
coordinates under a D65 light source can be calculated over XYZ
values by the following formula:

R 3.241 -1.5374 -0.4986 | X
G|=| -09692 18760 0.0416 |Y |. (2.5)
B 0.0556 -0.2040 1.0570 )| Z

Due to RGB being one of the simplest color spaces, it is the
most popular color space in the digital color area.

2.2 SPECTRAL IMAGING

An electromagnetic spectrum is a discrete analog of a spectral
power distribution function. Taken in the visible range of light,
the electromagnetic spectrum characterizes a color named the
color spectrum. The spectrum is usually represented as an m-
dimensional vector s=[s(A1),...,s(An)]T. Here m is the number of
color spectra components (number of wavelengths), which
depends on the application, e.g. m can be anything from some
hundreds to a thousand in remote sensing applications. The
visible range from 400 to 700 nm with 5 nm sampling is accepted
as optimal according to Lehtonen et al. [20]. This is the most
accurate color representation, and the importance and usage of
it is increasing in many areas e.g. medicine, history and quality
control.

A spectral image is a digital image where each pixel is
described by a color spectrum. It is represented as a 3D matrix
in which the first and second dimensions correspond to the
image spatial characteristics width and height, and the third one
is the spectral domain. A spectral image can be considered
either as a set of spectra stored in image pixels or as the set of



gray scale images located as wavelength layers. Figure 2.3 a)
and b) shows an example of a spectral image and its RGB
representation respectively.

b

Figure 2.3 Macbeth ColorChecker: a) 1¢ 2+, 3% and 61st band; b)RGB representation.

The increasing use of spectral images has raised questions
about the need for a standard spectral image format. Recently, a
technical committee of the CIE Division 8, TC8-07 of
Multispectral Imaging, has been working to define a general
data format for storing spectral images [21]. The reason for this
is a problem with data compatibility stemming from the fact
that almost all research groups have their own format for
storing spectral data and the exchange of spectral images
between researchers is not very common at the moment. There
are currently five main standards which are widely used in the
spectral imaging research area [22].

The MUSP multispectral image file format [23] is a spectral
image format developed by Color AIXperts GmbH (Aachen,
Germany). All the information necessary to reconstruct the
spectra of all pixels is in one file in a simple form. The Natural
Vision data file format specification [24] was established in 1999
by the Telecommunications Advancement Organization of
Japan (TAO). It aims to enable high-fidelity natural color
reproduction in visual telecommunication systems. JPEG2000
[25] is the most recent addition to the family of international
standards developed by the Joint Photographic Experts Group
(JPEG). TIFF (Tagged Image File Format) [26] is a tag based file
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format for storing and interchanging raster images. It has spread
to video applications, facsimile transmission, medical imaging,
satellite imaging as well as document storage and retrieval.
HDF5 [27] is a general-purpose library and file format for
storing scientific data.

2.3 DIGITAL IMAGE ARCHIVING

Interest in spectral image databases has been increasing over
the last years [28] [29]. The increasing importance of spectral
image applications is one of the main reasons. Spectral image
archive systems and digital image archives in general are mainly
based on three main processes, namely acquisition, compression
and retrieval. These are represented in Figure 1.2. Many
effective techniques have been developed for databases of
trichromatic images, but spectral representation of color
requires more advanced methods than just managing
component images separately, as is commonly done with RGB
or similar images. Spectral image databases have been studied
in depth by Kohonen et al. [30].

A number of digital image acquisition devices have been
developed [31]. Most modern techniques are based on digital
photo and video cameras which capture an image in RGB
format [32]. The incoming light is separated by filters into three
primary colors, and then measured by separate sensors. This
technology was patented in 1976 by Bryce Bayer [33] and has
been widely improved and applied up until the present day.
The main principles of Bayer’s filter mosaic are shown in Figure
2.4. Although the first spectral imaging systems were developed
in the beginning of the 1970s [34], spectral imaging has not been
developed as widely as imaging systems based on RGB images.
It was mainly used in the field of remote sensing. However,
increasing attention to spectral imaging requires development of
a spectral imaging acquisition system in order to obtain spectral
images faster and more cheaply.

11
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Image compression is one of the most important tasks in
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Figure 2.4 Bayer’s filter mosaic principals.

image processing. Applications of image compression are used
in such areas as multimedia, data communications, remote
sensing, etc. [5]. A common characteristic of all of these
applications is that data is too large for them to handle without
compression. Images must be small enough for easy
management (e.g. transfer, analyses, storage etc.), but the
quality of the reconstructed image has to be suitable for further
usage. A number of methods have been developed for spectral
image compression. Some of them are methods created for
trichromatic images, which remove only spatial redundancy
(e.g. TIFF [25], JPEG2000 [26], etc.). Others are spectra reduction
methods (Principal Component Analysis (PCA) [7], spectrum
smoothing [35], subsampling [20], etc.). Such methods as 3D
wavelet, Non-negative Tensor Factorization (NTF) [9] and
methods which treat the spatial and spectral domain separately
belong to the three-dimensional approach. They are the most
efficient because they reduce the spatial and spectral domain.
Most of the modern well-known and powerful searching
systems (e.g. Google, Yahoo and AltaVista) use text based
algorithms even for image retrieval. The queried image is
looked for according to the relation between text based features
i.e. tags given by the user. Due to an increase in the number of
available digital images, more robust image retrieval algorithms
based on image content (i.e. texture, shape and color) need to be
developed. Most image retrieval algorithms developed
nowadays are based on a similarity measurement between
content based characteristics of an image [36]. These
characteristics are named image features. They are aimed to be
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much smaller than the original image but characterize the image
content as fully as possible. In the spectral imaging area, image
features play a big role because spectral images take up a lot of
memory and the process of direct comparison between spectral
images takes time.
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3 Reconstruction Methods

Groups of algorithms, namely PCA, NMF and NTF, are
defined in this study as reconstruction methods for spectral
image data. The original multidimensional matrix can be
reconstructed by them as decomposition of a product of lower
dimensional matrixes. These methods and their variants are
invaluable tools for blind source separation, feature selection,
dimensionality reduction, noise reduction, and data mining [37].
PCA, NMF are methods for two-way representations or two-
dimensional reconstruction. Although the original NTF is
multidimensional, 3D and 2D approaches are considered in this
study. A modification of the 3D NTF aimed to accelerate
calculation time has also been proposed.

3.1 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) [7] is a data
transformation technique. In Image Analysis it is usually used
when the task is lossy reduction of a large amount of data with
high correlation. Suppose there is a set of random spectra
5=[Sy,...,51], where 1 is the number of spectra, Si=[s(A1),...,5(Am)]T
is the j" spectrum, and m is the number of wavelengths. The
covariance matrix of the spectra set is

Cy =3 (S, = ES))S, ~ S, 6.

where spectral expectation E(S) is equal mean spectrum of the
spectra set S as
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ES)=1Ys | (32)
n‘s

The components of Cs, denoted by cas, represent the
correlation between the a" and p" wavelength components of
the spectra S. The component ca is the variance of the a
wavelength component of the spectra S. The variance of a
component indicates the spread of the spectrum component
wavelength values around its mean value. If two wavelength
components e.g. the a” and B of the spectra S are uncorrelated,
their correlation is zero (cap=c=0). The autocorrelation matrix is,
by definition, always symmetric. The eigenvectors ei and the
corresponding eigenvalues oi of the covariance matrix are the
results of the solution of the equation

Cse, =0e, (3.3)

where i=1,...,m corresponds to the number of wavelengths. By
putting the eigenvectors in order of descending eigenvalues, an
orthogonal basis with the first eigenvectors having the direction
of the largest variances of the data can be found. Now the
compact form or the reduced spectrum S$* can be found by

S*=[e,,....e, ] (S-5), (3.4)

where k denotes the transformation rank. The reduced spectra

S*, mean spectra S and the basis can be used for spectra
reconstruction by

St =[e,,....e, JS*+S. (3.5)

This means that the original spectra S is mean shifted and
projected on the coordinate axes having the dimension k and
transforming the vector back by a linear combination of the
basis vectors. This minimizes the mean-square error between
the original spectrum and the reconstructed spectrum using the
given number of eigenvectors [38].
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If the data is concentrated in a linear subspace, this provides
a way to compress data without losing much information and
simplifying the representation. By picking the eigenvectors
having the largest eigenvalues, as little information as possible
is lost in the mean-square error sense [38]. One can e.g. choose a
fixed number of eigenvectors and their respective eigenvalues
and get a consistent representation or an abstraction of the
spectra. This preserves a varying amount of information of the
original spectra. Alternatively, we can choose approximately the
same amount of information and a varying amount of
eigenvectors and their respective eigenvalues. This would in
turn give an approximately consistent amount of information at
the expense of varying representations with regard to the
dimension of the subspace.

3.2 NON-NEGATIVE MATRIX FACTORIZATION

Non-negative Matrix Factorization (NMF) has been widely
used in image processing [8] [39] [40] [41] [42]. It solves the
factorization problem by finding non-negative matrix factors W
and H of the original matrix S as

S ~WH (3.6)

where the original data S is approximated by two non-negative
matrices: W of size (mxk) and the matrix H of size (kxn), hence
the S of size (mxn). The main term of the NMF problem is that
both parts of the equation (3.5) consist of non-negative elements.
To find an approximate factorization a cost function that
quantifies the quality of the approximation is defined as
Euclidean distance. NMF is based on the minimization of the
cost function

min (S — WH|

W,H>0

(3.7)

2
F’
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2, . .
where |||| - 1s the square Frobenius norm, i.e. the sum of squares

of all entries elements. From this description, a reduced
representation is achieved by choosing rank k. Solutions to the
minimization problem (3.7) have been found using gradient
descent. In NMF the following iterative learning rules are used
to find linear decomposition [42]:

Ha (_Ha VV;’a - ’ (38)
! n; (WH)IU
W._<«W aniﬂ : (3.9)
" MeEwH),
Wa
[ — (3.10)

Ho m

where a=1,...,k, u=1,...,m and 1=1,...,n. The initial value of W
and H is random. The output from the optimization problem is
matrixes Wand H.

The factorization rank k can be varied by the user depending
on the application. The normal restriction is that the number of
samples in S is larger than the sum of samples in Wand H, i.e.
(n+m)k<nm. The factorization process is schematically presented
in Figure 3.1.

Figure 3.1 Non-negative matrix factorization.
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3.3 3D NON-NEGATIVE TENSOR FACTORIZATION

3D Non-negative Tensor Factorization (3D NTF) [9] [43] [44]
finds the reconstruction of original data as a sum of three
vectors multiplied by tensor product

k
G~ u"®v @w, (3.11)
u=l1

where G is the original 3D non-negative matrix with (axbxc)
size, ® is a tensor multiplication, a-dimensional vectors u# from
the basis for the first domain of the matrix G, b-dimensional
vectors v from the basis for the second domain of G, and c-
dimensional vectors w* from the basis for the third domain. All
elements of u#, v* and wt are non-negative, k is the factorization
rank, and a normal requirement is (a+b+c)k<a-b-c. The
factorization process is schematically presented in Figure 3.2.

%

=u'

b i
& ®@+_,_+ @ &

Figure 3.2 Non-negative tensor factorization for 3D data.

The basic approach of NTF is to find a solution to the
problem

2

min

ut vi wH >0

, (3.12)

F

2. . e
where |||| . 1s the square Frobenius norm. A multiplicative

update rule for the NTF minimization problem (3.12) is given in
[9]. The approach minimizes the reconstruction error in the
Frobenius norm sense. The iteration steps for u, v and w are
respectively defined as
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e

i=l...a, j=1...k, (3.13)

j Jpi
; Vi Za,g G cUaW;
v«

i k R R s
Z lvi” <u,u’ ><w',w >
P

i=1..,b, j=1..k, (3.14)

J Y
Wi 2 s G, 53 V5

w/ <« : —, i=1l,..c, j=1...,k, (3.15)
y:lwiy <u",u’ ><v* v >
where <,,.> refers to the inner product and a=1,...,4, f=1,...,b,
C=1,...,c. Note that the update rule preserves non-negativity
provided that the initial values for the vectors u, v, w are non-
negative. In any iteration of the update process, the values of v/
are updated Jacobi style with respect to the entries u/ for
i=1,...,a and are updated Gauss-Seidel style with respect to the

entries of other vectors {u#}u#j and vectors {v*,w" }ﬁ;l. The

general convergence proof of the multiplicative rule was
introduced in [43] for the bilinear case. The main difference is
that the NTF update rule is performed in a Gauss-Seidel fashion
for the vectors u,..., u* while their update rule is performed
Jacobi style. Since a Jacobi-type update rule is used only for a
single vector 1/ the optimization function with respect to the

variable u/ has a diagonal Hessian matrix — the proof of this is
in [9].

3.4 2D NON-NEGATIVE TENSOR FACTORIZATION

2D NTF can be defined by neglecting one of the domains in
the 3D approach (3.11). Since the spectra data set S is only two-
dimensional, the first domain is the spectral domain (m-size)
and the second domain consists of the large number of spectra
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n. Now the solution of the optimization problem (3.12) can be
represented as

T
S—uv'|,

min

u,v=>0

(3.16)

where the original 2D data S is approximated by two non-
negative matrices: u of size (mxk) and the matrix v of size (nxk),
hence the S of size (mxn). A multiplicative update rule for the
NTF minimization problem (3.13-14) can be modified for the 2D
approach. The iteration step is defined as follows:

, u ! S”,
ul < -t , (3.17)
Z ut < v v >
where i=1,...,m, j=1,...,k,
v« Z" 1St (3.18)

1
Zl"z<””>

where i=1,...,n, j=1,...,k and <,,.> refers to the inner product.

3.5 INTEGER WAVELET TRANSFORM

The wavelet transform performs the appropriate
approximation of the data [45]. The original data is transformed
to the approximatve component and to the detail component. In
the inverse wavelet transform these two components are used to
reconstruct the data. The wavelet transform carries the perfect
reconstruction property [46]. The principle of multiresolution is
illustrated in Figure 3.3, a), b). The lower level approximation is
received as values a1 from the original values g;. In practice the
transform is performed using convolution with low-pass filter i
and high-pass filter g. Different requirements can be set when
defining the filters [46].

20



The wavelet transform is one-dimensional in nature. In an
image that is a two-dimensional signal, the one-dimensional
transform is applied to the rows and columns of the image. In
the three-dimensional case, the one-dimensional transform is
applied to all dimensions separately. The principle of the three-
dimensional, separable transform is shown in Figure 3.3, c).

Figure 3.3 Wavelet transform. a) Forward transform. b) Inverse transform, c)

Separable three-dimensional wavelet transform applied twice [P3].

One of the simplest and best known wavelet transforms is the
Integer Wavelet Transform (IWT), which is based on the Haar
discrete transform [47]. This transform is used in the study. The
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basic form of the IWT on the jt level subtracts even samples
from odd samples to get the difference dj1 and the new
approximation aj+1 as

di = o =G Ay =+ \_djﬂ,//zjr (3.19)
where the original data is stored in 4;. The second subscript

refers to the index in the sample vector. The exact reconstruction
comes from calculating the values in reverse order as

Ajor =djg— \_djﬁ-l,//zj Ajorn =i +dp (3.20)

3.6 MULTIRESOLUTION NON-NEGATIVE TENSOR
FACTORIZATION

NTF algorithm convergence is slow because the process is
iterative and initialization is random. The multiresolution
approach, which is aims to accelerate algorithm convergence, is
proposed in [P3] and investigated in [P4]. It is based on an
approximation of the original data by wavelet transform. The
original data is transformed to the approximative component
and to the detail components. In the inverse wavelet transform
these components are used to reconstruct the data. The wavelet
transform carries the perfect reconstruction property.

Finally, the multiresolution approach to NTF computation
consists of the following steps:
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Algorithm 3.1:

Begin
Compute the lowest resolution transform using (3.19) for
the original data set.
Compute u, v, and w (Egs. 3.13, 3.14, 3.15) for this lowest
level in multiresolution.
repeat
Interpolate u, v, and w for the next higher level in
multiresolution.
Use (3.20) to compute the next higher level in
multiresolution.
Compute u, v, and w for the current multiresolution
level.
until 4, v, and w are computed for the highest level in
multiresolution.
End

The number of iterations depends on the data set used in the
application. Typically, hundreds or even thousands of iterations
are needed for the process to converge. We suppose the criteria
of the iteration converge is a limit of the average similarity
measure between the bases u, v, w and the corresponding bases
obtained in the previous iteration.

3.7 ERROR AND QUALITY MEASURES

Reconstruction methods, which are the primary objects of
consideration in this study, are evaluated by numerical
characteristics [48] [48]. They are mainly separated into two
groups. The first group of characteristics characterizes
compression method efficiency e.g. the compression ratio. The
second group represents the information loss e.g. peak signal-to-
noise ratio (PSNR) [50] and goodness of fit coefficient (GFC)
[51], AE [12].
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Compression ratio cr [52] represents a ratio between the
number of bits of the original and the compressed images. It is
calculated as

o — number of bits for the original image (3.21)
number of bits for the compressed image '

The compression losses can be evaluated by quality and error
measures. They are all based on the mean pixelwise
reconstruction accuracy and calculated between original and
reconstructed spectra as mean value over the image.

Two of the most convenient error measures were used in our
study. The color difference AE between two colors in CIE L*a*b*
color space is the standard color quality measure. It is defined as

AE =NAL* +Aa* +Ab** (3.22)

where AL*, Aa* and Ab* are differences between the
corresponding CIE L*a*b* coordinates.

Root mean square error (RMSE), from spectral point of view,
is the Euclidean distance [53] between an original and a
reconstructed spectrum divided into square toot of the
dimension of the spectrum (number of wavelengths). The error
measure, which originally is Euclidean distance, is used in this
study and defined as

ErmsE = \/i (SO (4) - Sr(li))z ’ (3.23)

i=1

where s5°(Ai) and s7(Ai) are components of the original and
reconstructed color spectrum, correspondingly. m is the number
of wavelengths.

The quality measures and RMSE are based on the average
pixelwise difference between an image’s spectrums. As opposed
to error, quality measures become higher when the evaluated
spectra are similar. The quality measures are represented in this
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study by the goodness of fit coefficient (GFC) and peak signal-
to-noise ratio (PSNR).
GFC [49] between two spectra is calculated as

55 ()
EGrc = ml:1 ~ /
\/ZSO(&)ZZ‘SJ(&)Z

(3.24)

where s5°(Ai) and s7(Ai) are components of the original and
reconstructed color spectrum, correspondingly. m is the number
of wavelengths.

PSNR is a quality measure expressed in decibels (dB). It
represents the computational quality of the spectra. PSNR is
defined as

a2

s
&psvp =10l0g)y——, (3.25)

MSE

where § is the theoretical maximum of the spectrum and ¢,

is the mean square error between the original and reconstructed
spectra calculated as

m

> (") -5, (3.26)

1
Eyse =
m i

where s5°(Ai) and s7(Ai) are components of the original and
reconstructed color spectrum, correspondingly. m is the number
of wavelengths.
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4 Image Acquisition

From silver halide photography to modern highly accurate
digital cameras, the acquisition process has been the most
important part of image processing [34]. Most of the modern
image acquisition devices sense light reflected from the object
and transform it into a digital format. The quality of the
acquired image mostly depends on such aspects as illumination,
camera optics and sensors. The increasing importance of digital
imaging has created a need to develop new cheaper, quicker
and more accurate spectral image acquisition systems.

This chapter introduces spectral image acquisition systems.
Three of the best known approaches, namely dispersive,
narrowband and spectra reconstruction, are presented here. This
section also presents a spectral image acquisition system which
is based on light source simulation [54]. In this study, a new way
to design the light source using a statistical approach to NTF is
described. The image is reconstructed from the acquired NTF
data.

4.1 NARROW BAND FILTERS BASED CAMERAS

There have been several implementations of spectral cameras
using narrow-band interference filters [55]. Figure 4.1 shows the
main working principle of these cameras. The system consists of
a set of interference filters which are attached to a rotating
tablet. Component images are acquired one by one by a
monochromatic charge-coupled device (CCD) camera as regular
gray-scale images through narrow band interference filters. The
spectrum of the light source must be measured beforehand.
Using this spectral image acquisition system, color reproduction
with high accuracy and illumination difference correction is
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possible. However, the measured object should stay stable
during scanning. The accuracy of the camera mostly depends on
the number of filters and shape of the color spectrum of each
filter. The filter must be designed so that the intersection of the
color spectrums is as small as possible.

Figure 4.1 The narrow band interference filter based spectral image acquisition

system.

4.2 PRISM-GRATING-PRISM BASED CAMERAS

A property of the electromagnetic waves to refract in a prism
with a different bending degree is utilized into line-scan
imaging spectrograph. A light, passing through prism-grating-
prism (PGP) element, is broken up into its constituent spectral
colors. Short wavelength rays are refracted with higher
dispersion than long ones. It allows measuring a spectral power
distribution of the light for every wavelength with the certain
accuracy.

The principle a line-scan imaging spectrograph is shown in
Figure 4.2. The reflected from the object light is passed through
a horizontal slit, holding the information of the one selected
sampling line. Vertical dimension of a sensor matrix in PGP
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cameras is reserved for wavelength measurement. Passed
thought PGP element light is reflected into the light sensor. The
spectral power distribution for each pixel in the sampling line is
measured along the vertical direction [56].

Epaciral og

Figure 4.2 The PGP based spectral image acquisition system [56].

To digitize an entire object the image must be built up line by
line. It requires a relative movement between the sample and
the spectrograph. This is usually achieved by mechanically
scanning the object past the slit. Once the scanning operation is
finished, the system has acquired a series of images each with
one spatial and one spectral axis. For the following data
evaluation, it is convenient to treat these images as a three-
dimensional data set with two spatial dimensions and one
spectral axis. Following this methodology, it is the most suitable
to acquire spectral images small objects and of flat surfaces e.g.
paper or textile.

4.3 SPECTRUM REPRODUCTION APPROACH

The reflectance spectra of natural objects and printed media
having relatively low dimensionality [57]. Moreover, it has been
shown that the color spectra can be reproduced accurately from
the low-dimension representation of spectra [58]. In recent
years, various imaging systems with color reproduction have
been developed basing of the reconstruction property of color
spectra [59].

It was proposed a multichannel vision system which is based
on the use of a CCD camera and six color filters in 1996 by
Tominaga [60] [59]. More advance multispectral imaging system
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with 29 filters in a wavelength range from 420 nm to 1550 nm
was built by Baroni et al. later on [61]. Haneishi et al. [62] has
used a five-color acquisition system for spectral image
archiving. Optimization an energy function based on second
and fourth order statistical moments allows Lenz et al. to design
an unsupervised low-dimensional color filter set [63].

The main components of the image acquisition system are
represented in Figure 4.3. The spectral radiance of the light
source is denoted as I(A), the spectral reflectance of the
measured object as r(A), the spectral transmittance of an optical
system including a color filter as o(A) and the spectral sensitivity
of the CCD array as ¢(A).

Figure 4.3 Schematic view of the image acquisition system.
The camera response fin scalar form is calculated as [64]
lmax
f= L o(A)r(A)dA, @.1)
where r(A) is the object reflectance spectrum and w(A) is the

system properties denoted by
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w(A)=l(A)o(A)p(A). (4.2)

For discrete convenience, the camera response equation (4.1)
can be rewritten as a scalar product

fFw'r, (4.3)

where r=[r(A1),...,r(An)]" is the object reflectance spectrum and
w=[w(A1),...,w(Am)]" is the system property in uniformly
sampling at an m wavelength interval.

Direct measurements of the reflectance with monochromatic
light require expensive equipment. We suppose the popular
indirect approach where the camera responses fr=[fi,...,fr]” to an
unknown reflectance r, using a set of p chromatic filters or
illuminants with known spectral characteristics, may be
described as [65]

fr=QTr, (4.4)

where Q=[(),..., ()] is an (mxp) matrix of system properties
within p filters or light conditions. f=[fi,...,fy] T represents the
camera responses to unknown reflectance r=[r(A1),...,7(Am)]".

The problem of estimating a spectral reflectance 7 from the
camera responses fr for system Q is usually formulated as
finding an estimation ® that reconstructs the spectra from the
measurement vector

r=0f, (4.5)
where © is an (mxp) matrix. Three approaches are commonly
used to find © by using spectral reflectance of n samples of a
training set R=[ri,...,r«] and corresponding camera responses
fr=[f1,...,fr]": the method based on PCA [66], the method based on

Wiener estimation [67], and the methods using multiple
regression approximation [68].
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4.4 PROPOSED ESTIMATION METHOD

The spectral reflectance of the training set R is approximated
as follows:

R=WH, (4.6)

where R is a (mxn) matrix of the measured sample reflectance
spectra, W (mxk) is the spectral basis and H is a (kxn) matrix of
multipliers. The spectral camera response given by (4.4) can be
represented for R spectra as

F=Q™WH, (4.7)

where F is an (pxn) matrix of the camera responses n color
samples measured within p filters or light conditions. The
matrix of multipliers H is denoted as follows:

H=(Q™W)F. 4.8)
Using (4.6) and (4.8) the approximation of R follows as
R=W(Q™W)F. 4.9)

Considering (4.5) for approach of training set R and
measured camera responses F, the estimation of ® can be
calculated as:

O=-W(Q™W)", (4.10)

where W is the color basis for system properties Q.

The basis vector set for any spectral set calculated by PCA is
orthogonal and contains negative coefficients. This
disadvantage makes measurement more complicated. First, the
object is illuminated by spectral power distribution consisting of
positive elements and then negative. Kaarna et al. [69] showed
that a non-negative basis for various spectral color sets can be
found by NMF. In [P6] it was proved that non-negative
methods, e.g. NMF and 2D NTF, have approximately the same

31



reconstruction error compared with PCA for different spectral
sets under different light sources.

Assuming that the rank of the factorization k can be chosen as
any and, due to non-negativity, the color basis W can be
implemented optically, the estimated spectra is as follows:

F=wQw)'f, (4.11)

A future task is to implement the calculated color bases
optically, construct the measurement system with implemented
color filters and check the feasibility of the proposed technique
experimentally.

The following presents examples of two novel spectral color
acquisition systems based on color reconstruction. The main
idea of them is to perform color measurement by a standard
CCD camera under different light sources, where the spectrum
of light sources is produced by subspace methods [54] [70].

4.4.1 Computer Controlled Set of Light-emitting Diodes

Parkkinen et al. [58] showed that a spectral database
containing 1257 samples measured from the Munsell book of
colors [71] can be represented accurately by a few basis vectors
produced using a subspace method. Principal Component
Analysis allows finding an optimal (low-dimensional) set of
basic spectra with which any natural color spectrum can be
reconstructed with any required precision. The spectral color
acquisition system was built [54] based on this fact. It consists of
a set of light-emitting diodes and generates any predefined basic
spectrum with the possibility of fast switching from one
spectrum to another.

The Nippolainen and Kamshilin [54] system is presented
inFigure 4.4. It consists of a set of LEDs which generates light at
different wavelengths and covers the whole visible range.
Emitted by the LED set, light travels through collimators to the
diffractive grating, where it is mixed and directed to the same
angle. In addition, a slit is used to control the bandwidth of the
outline spectral lines. The electronic unit of the light source was
designed to provide the injection current of LEDs and the width
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of the slit. Thus an operator may form color vectors, which are
different sequences of spectral lines with different output
power.

Figure 4.4 Optical setup for the Computer Controlled Set of Light-emitting Diodes
[54].

4.4.2 Liquid Crystal Spatial Light Synthesizer

Hauta-Kasari et al. [70] designed a low-dimensional color
filter set for the 1269 Munsel spectra using a supervised neural
network. The competitive learning algorithm was based on the
Instar—algorithm by Grossberg [72], which was introduced by
Kohonen'’s [73] self-organizing map with the winner take all
(WTA) layer. The natural network clusters of the color spectra
and, after learning, the centers of the clusters are used as color
filters. Detailed descriptions of competitive learning and self-
organization can be found in [72] [73], and [74]. It was shown in
[70] that the Munsell spectral set was reconstructed by the
designed color filters with sufficient accuracy and the
reconstruction accuracy was comparable to the subspace
method.

It was implemented optically using the Liquid Crystal Spatial
Light Synthesizer. The white light source is a halogen lamp pair.
The light is introduced to a narrow slit by a fiber light guide and
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then reflected by a mirror and incident on a concave grating.
The collimated light is dispersed on the focal plane of the
concave grating. On the dispersion plane there are a rectangular
window, a cylindrical lens and liquid crystal (LC) panel. The
transmittance of the LC panel along the wavelength axis is
controlled by a computer through a monochrome image board
and LC driver. The light passing through the LC panel is finally
mixed by a second concave grating. The function of the
cylindrical lens in the dispersion plane is to gather light energy
effectively into the second grating in order to prove good
mixing and to make the light loss as small as possible. Mixed
light from the second grating is directed to the measuring plane
by a mirror. The schematic representation of the optical setup
for the spectral synthesizer is shown in Figure 4.5 (modified
from [70]).

Concawe grating Lens LC-panel Caoncave grafing

Light Source Output light
Figure 4.5 Optical setup for the Liquid Crystal Spatial Light Synthesizer [70].

Comparing the methods introduced above we can conclude
that the measurement system based on liquid crystals is more
accurate. It simulates a color spectrum by using diffracted light.
Since there are no mechanical elements, the system is fast and
reliable. The benefit of the LED system is price as Light-emitting
Diodes are becoming cheaper.

34



5 Compression

Image compression is an important task in digital imaging.
Memory expense and the fact that most digital images take
more storage memory in an original than in a compressed
format have created a need to develop efficient compression
methods. Most compression methods are based on reduction of
data redundancy, e.g. the number of image pixels with the same
color value in digital imaging. These values can be coded by
short binary sequences.

Image compression is widely used in such areas as
multimedia, image archives, data communication and remote
sensing. A number of image compression methods have been
developed in recent years [52]. They are mainly defined as lossy
or lossless compression [5]. Lossless image compression (e.g.
PNG, TIFF, GIF) [75] is performed in images with high value
content e.g. medical imaging. The original image can be
reconstructed after compression by decompression. Images with
high content prediction or high redundancy are compressed by
lossy compression methods such as JPEG, JBIG and PGF [25].
These compression methods reconstruct the original image data
with small losses. The benefit of lossy methods comparing with
lossless is the significant difference in size between the original
and compressed files.

Most of the image compression methods developed in the
past are suitable for gray-level or RGB images. Due to the
increasing importance of spectral imaging, we need
compression methods with more advantages than managing an
image’s layers separately, as is commonly done with
trichromatic images. A number of methods have been
developed recently [76] [77] [78] [79]. Some of them are methods
that treat the spatial and spectral domain separately. An
example of this is an approach including combinations like 2D
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wavelets in the spatial domain and principal component
analysis (PCA) in the spectral domain [80] [81]. Methods
assuming the 3D property of the spectral image, e.g. 3D
wavelets [82] and NTF [43], are also used in the area of spectral
imaging.

5.1 CLUSTERING METHODS

Clustering is a set of unsupervised pattern recognition
methods, which are aimed at separating a data set into a
number of subsets (clusters) characterized by a clustering table
or clustering centers [83]. The process of finding the final values
of the clustering centers is usually iterative. At each step the
input data is split into a number of clusters and the center of
each cluster is adjusted by minimizing the scheme of an
associated performance index which replaces the cluster center
by the arithmetic mean of the cluster’s samples. The process
terminates when the corresponding adjustments of two
consecutive iterations are the same.

5.1.1 k-means Clustering

k-means (also known as c-means) clustering is the best
known clustering method [81]. It consists of a sequence of
iterative-update rules. The algorithm calculates a cluster center
as the mean of the samples belonging to the same cluster as

Yy =L >'S., a=l..k, (5.1)

where S, j=1,...,n is the given spectra, Yo, a=1,...,k is a set of
clustering centers, na corresponds to a number of elements
belonging to the a cluster, and Jj, j=1,...,n is the indexes of
clustering which l=a if Sj belongs to the a' cluster. Then the
clusters are updated by the minimum of RMSE over the
clustering centers and given spectra. For the given spectra S and
k — number of clustering, a k-means algorithm follows:
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Algorithm 5.1:

Initialize Yo =random, a=1,.../k;
for j=1,...,n
Assign if (|| S, -7Y, I* is minimal for a=1,...,k)
then li=q;
do
Remember Yo=Y, a=1,...,k;
Calculate Y, a=1,...,k, according (5.1)
for j=1,...,n
Assign if (|| S, =Y, |I’ is minimal a=1,...,k)
then li=q;
Repeat until (Yo ==Y, a=1,...,k)

The output of the method is a set of the final cluster centers
Yo, a=1,...,k and [;, j=1,...,n —indexes of clustering to represent
which cluster the j* sample belongs to.

5.1.2 Subspace Clustering

A more suitable clustering algorithm for the PCA application
was proposed by Parkkinen et al. [84]. The method is based on
definition of a projection measure between a subspace and
sample spectrum. This measure is defined as the projection
length of the sample spectrum s onto the subspace L, which in
the case of one-dimensional subspacing is equal to a scalar
product between spectrum s and normalized vector / as
follows:

_<s, 0>
- 7
1|

P(0) (5.2)
where s is the sample spectrum and / is the one-dimensional

basis of the subspace L, and ||||2 is the square Euclidean norm.

The iterative-update rules are the same as k-means. The
algorithm calculates a cluster center as the first principal
component of a spectra 5S¢, j=1,...,k, where 5 is the spectra
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composed of the samples belonging to the cluster a defined as
the cluster table. It then updates the cluster items by the
maximum projection length (5.2).

For the given spectra S, the subspace clustering algorithm is
as follows:

Algorithm 5.2:
Initialize t,, =random , 5=, a=1,...k;
Assign for j=1,...,n
if (P, (¢,) is maximal for a=1,...,k)
then l=a;
do
old __ e _ .
Remember =11, 5=0,a=1,..k
F for j=1,...,n
orm fora=1,...k
if (l]==a)
then S*=[S¢, §j];
?,, a=1,...k; as the first Component of
Calculate
spectra S® from cluster a
Assign for j=1,...,n
if (P (£,) is maximal a=1,...,k)
then l=a;
Repeat until (E(;[d =/,,a=1,..k)

The output of the method is a set of the final cluster centers
¢, , a=1,....k or subspace bases and [j, j=1,...,n — indexes of
clustering to represent which cluster the j" sample belongs to.

Subspace clustering finds clusters as elements distributed
along cones (subspace axis) [84]. Although the tip of a cone can
only go through the point of origin, it has been hypothesized to
decrease the transformation losses. Figure 5.1 presents an
example of k-means and subspace clustering applied to the
same data set.
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Figure 5.1 Example of clustering, (a) k-means method, (b) subspace clustering method.

5.2 PROPOSED COMPRESSION METHOD

Three main specifications for digital image archive
compression are considered in this study. First, the time taken
by compression is not as significant as the decompression
period. Second, the quality of the reconstructed image must be
flexible according to the application. The image can be
accurately compressed for a reasonably long storage time.
Finally, the size of compressed images is aimed at storing as
many images as possible because digital archives are
characterized by a huge number of processed images.

We hypothesize a lossy compression approach aiming to be
most suitable for an application in a historical archive system.
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The proposed method consists of a number of sequential steps
presented in Figure 5.2. An original image consists of pixels
with similar colors. First, the sets of these pixels can be found by
clustering performed in the original spectral image or in CIE
L*a*b* representation of the original spectra. Next, the original
image is transformed to a cluster table where each cluster
consists of a single spectrum from the original image. Then each
set of spectra belonging to one cluster is transformed by PCA.
Finally, the compressed image consists only of the cluster table
and components of spectra reduction.

I — (&) (L]}
orgine JT'- Ef  —
speciral || B —
image 1= | | f — |
I indexnes of indexes of
- clusberi ng o usierng PCA cluster ng PTA eponsruced
—_— Speral
; fransform reconsiruchion | == 1
4 E reduced =
— clusher Eable L F
clusiier table
L*a"b* :::d-ju:{t P
mage bass

Figure 5.2 Proposed compression technique (a) compression; (b) decompression.

It was shown in [P2] that the clustering performance in CIE
L*a*b* space gives a number of benefits. The small size of CIE
L*a*b* significantly reduces the CPU time of clustering.
Moreover, compression based on CIE L*a*b* clustering
represents smaller visual losses then the same compression
based on clustering in spectral space. The human visual system
is not sensitive enough to recognize small changes in
components of color spectra [85]. It allows applying space
transformation and “forget about” the least correlated
components of the color spectra.

To find spectra sets which are better suited to the PCA
application, another clustering technique named subspace
clustering was applied in this method [84]. Subspace clustering
finds clusters as elements distributed along cones (subspace
axis). Although the tip of a cone can only go through the point
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of origin, it was hypothesized to decrease the transformation
losses. Because the clustering is iterative, the proposed method
cannot be used for real-time applications like data
communication or remote sensing. However, it seems to be best
for applications where decompression time and decompressed
image quality are more important than compression (e.g. a
digital image archive system or web browsing).
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6 Retrieval

Due to an increasing amount of digital images, digital image
archives require robust retrieval methods that are able to find
images in the archive by relevant query [36]. Many methods
have been developed in recent years. They are mostly based on
the distance between sequential characteristics of the digital
image called image features. There are two main classes of
image features. The first class concerns the shape of the image
content, e.g. LBP [86] and GLCM [87], and the second class
concerns the color, e.g. color histogram [88], blob histogram [89],
color correlogram [90], and MPEG-7 [91]. Section 6.1 introduces
two image features which used in the area of image retrieval:
image analysis and pattern recognition.

Spectral image archive systems are characterized by a huge
amount of required memory [92]. Spectral images take up a lot
of memory even in compressed format. Due to the increasing
importance of spectral imaging, spectral image archive systems
have become increasingly popular in the last years. However,
this area has not been studied yet. Most acquisition,
compression and retrieval methods known nowadays are for
gray-scale or three chromatic (e.g. RGB) imaging and are not
suitable for spectral color usage.

Spectral image indexing retrieval methods have been studied
by several authors in the last years [93] [94] [95] [96]. Most
studies are based on similarity measurement between spectral
image features extracted by spectra reduction methods e.g.
principal component analysis (PCA) [7], self-organizing map
(SOM) [56], independent component analysis (ICA) [97], and
factor analysis (FA) [98]. We propose a new spectral color
features extraction technique in [P5]. It is based on non-negative
tensor factorization (NTF) and showed good results during the
test set. The main benefit of these features is that due to non-
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negativity they can be implemented optically. The method is
presented schematically in Section 6.2.

6.1 IMAGE FEATURES

6.1.1 Color Histogram

The probability density function of the image color or color
histogram is widely used for image indexing and retrieval [99].
Comparing with the shape of the image content, the colors of
the pixels in the image provide additional information which is
used in many pattern recognition and image analysis
applications. The color histogram describes the global color
distribution in an image. It is obtained by quantization of the
color space by the number of equal sized colors and counting
the number of pixels belonging into each quantized color [100].
These numbers are further normalized by the total number of
pixels in the image. An image color histogram is calculated as

h(i) =P(i) =, 6.1)
n

where P(i) represents the probability of the i color, ni is the
number of pixels with the i* color, and 7 is the total number of
pixels in the image.

The color histogram is robust to translation of object and
rotation about the viewing axis; it does not include any spatial
information. The retrieval method is based on similarity
measures proposed before, i.e. RMSE (3.23), GFC (3.24) or PSNR
(3.25).

6.1.2 Local Binary Pattern

The Local Binary Pattern (LBP) approach [85] is a spatial
filtering method which characterizes the texture properties by
means of spatial organization of the neighborhoods. The LBP
operator consists of a 3x3 neighborhood, which is thresholded
by the value of the centering pixel. The thresholded
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neighborhood is then multiplied by the corresponding binomial
weights and the LBP number varies from 0 to 255. LBP is
invariant against any monotonic gray scale transformation, and
rotation invariance can be achieved by rotating binomial
weights [101]. An example of a calculation of an LBP is shown in
Figure 6.1.

Threshold Multyply

"
1!{: 3.15 B.D

1 J2|64(128) ( O | O 128

=

o | W | &
=
—

LBP = 1+2+4+8+128=143
Figure6.1 Example of a calculation of an LBP.

6.2 PROPOSED METHOD

A new color based method for spectral image database search
is proposed in [P5]. It is based on a similarity measure between
spectral image color features. It was supposed that the third
component of the Non-negative Tensor Factorization (which is
corresponds to the spectral domain) holds the most significant
spectral color information suitable for database search. The
method was compared with the convenient spectral data
analysis technique i.e. Principal Component Analysis.

Non-negative Tensor Factorization (NTF) is a new technique.
It represents an original 3D non-negative matrix as tensor
multiplication of non-negative bases. The non-negative basis for
data description is useful for two reasons. First, the approach is
natural since many measuring devices output only non-negative
values. Secondly, non-negative filters can be physically
implemented. Thus, many possibilities exist for the non-
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negative bases application. They include feature extraction in
image databases, band selection in spectral imaging, and even
image compression. The computational complexity of NTF is
more complicated than that of PCA. But a new way of NTF with
a multiresolution approach is aimed to accelerate the time
complexity of the features extraction.

The search method consists of two steps, as presented in
Figure 6.2. The first step is feature extraction using one of the
proposed methods, e.g. NTF or PCA. For NTF, each spectral
image was applied as a 3D non-negative matrix. Bases u, v, and
w were obtained using the multiresolution NTF algorithm
introduced in Section 3.3. The non-negative basis for the spectral
domain (normalized w) defines the spectral image feature. For
PCA, each spectrum vector from a spectral image was stored in
2D matrix row wise order. Then, according to the PCA theory,
an autocorrelation matrix in a special content was calculated for
each spectral image matrix. An orthogonal basis that consists of
ordered eigenvectors of the autocorrelation matrix defines the
spectral image feature. The second step is measuring the
similarly between the extracted features.

Figure 6.2 Spectral image database search process.

The similarity between spectral image features was
calculated in this study using RMSE (3.23), GFC (3.24) and
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PSNR (3.25). However, due to the random initialization, NTF
produces different ordered bases for the same spectral image.
Therefore the similarity measure must be order independent. To
find the similarity between two bases we calculated the
similarity between all possible combinations of vectors in the
bases. The best value (minimum for RMSE, maximum for GFC
and PSNR) was defined as the result.
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/ Experiments and Results

Most of the suggestions proposed during the study were
empirically proved by experiments. The experiments were
performed on PC and Matlab [102] script language and C
language were used as the main tools. The sample spectra and
spectral images were taken from different sources, e.g.
InFotonics [103], AVIRIS [104], CBCL [105], and the University
of Bristol [106]. The results of the experiments were published in
six international conferences, which the current thesis is based
on. From there we are able to conclude the following.

A compression technique most suitable for an application in
a historical archive system was proposed in [P2]. The
experiments showed the following. Subspace clustering is more
suitable for a PCA application than convenient k-means. Due to
slow clustering performance, compression takes time.
Decompression is fast and the quality of the decompressed
image is suitable for a historical image archive. We have
obtained the lowest AE =2, in the case of subspace clustering in
CIE L*a*b* and the lowest erumse = 0.063 in the case of subspace
clustering in spectral space. The clustering number mostly
affects the computation time but not the compression ratio.
From this it follows that the quality of the decompressed image
can be improved with a small decrease in compression ratio.
The error measure depends on the space where clustering is
performed. AE is lower if clustering is applied in CIE L*a*b*.

The concept of NTF acceleration using a multiresolution
approach and sampling was proposed and comparably proved
in studies [P3] and [P4]. The experiments show that the
proposed approach is from 2 to 10 times faster than the original
computation. It was also shown that preprocessing is applicable
for low k, k<8, with respect to the data size used in the
experiments.
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A color based spectral image retrieval algorithm based on
similarity measures between spectra color features is proposed
in [P5]. We defined NTF and PCA bases, obtained from image
spectra, as the representative characteristics of the image colors
(i.e. image features). A new technique of similarity
measurement between spectral bases was proposed. It assumes
that NTF returns the basis vectors in a random order, as
opposed to PCA. The proposed method was implemented and
tested on 107 spectral images. To find the most appropriate
features and a similarity measure for those features, the method
was tested using PSNR, GFC and Euclidean distance. An NMF
basis within PSNR was found to be the best match.

We have calculated color filters for five different spectrums
in [P6] to evaluate the effect of different light sources on the
reconstruction error. The obtained results show that the
reconstruction bases are strongly affected by the light source.
The properties of the applied light sources are clearly reflected
in the corresponding bases. Smooth lights give smooth bases
and peaks arise in the corresponding bases in the same order.
The reconstruction error was calculated using three well-known
measures, namely AE, GFC and PSNR, to find the reconstruction
parameters more accurately.
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8 Summary of the
Publications

In the first paper [P1], we aim to find relations between
mathematical and human methods for grouping images in order
to find more possibilities for developing the actual quality of
images for different purposes. In this study, we propose two
methods. Hierarchical grouping is one of the ways to perform
automatic grouping of images. The method is based on
hierarchical steps of objects and image features detection (e.g.
people, buildings, trees, sky, cars, etc). In the second way, the
explanation group images are searched from Self-Organized
Maps. Preliminary results are based on psychological tests on
humans, MPEG-7 based features of the images and face
detection methods. We also show some notes and questions
related to this problem and plans for future research.

The proposed study is the first step in digital image archive
investigation. Although most of the results are positive, we are
faced with a number of problems. That is the main reason why
the spectral image archive is considered further.

My part of this study covers the hierarchical steps of image
features detection i.e. face detection. My contribution is about
40-50%.

In the second paper [P2], we propose a spectral image
compression technique for spectral archives. The technique
consists of a combination of color clustering and spectral
reduction. Subspace clustering and k-means are applied in
various color spaces. Principal Component Analysis (PCA) is
used as a spectra reduction technique. The proposed
compression method is compared with the spectral image
compression method for data communication. All compression
methods are compared by two quantitative error rate measures.
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The experiments show that the proposed compression
technique is the most suitable for archive systems. However,
CPU time increases with the number of clustering but the
quality of the reconstructed image can be improved by using a
higher number of clustering. The phenomena relationship
between the space of clustering and the error measure is
explained in conclusion. Also a wide research area for
improvement is given here.

My part of this study coves algorithm development,
implementation and representation. My contribution is about
80-90%.

In the third paper [P3] we show how to accelerate NTF using
a multiresolution approach. The large dataset is preprocessed
with an integer wavelet transform, and NTF results from the
low resolution dataset are utilized in the higher resolution
dataset. The paper does not cover aspects of the digital image
archive, but it extends the NTF theory, which is used in all three
parts of the spectral image archive studied in this thesis.

The experiments show that the multiresolution based speed-
up for NTF computation varies in general from 2 to 10
depending on the dataset size and on the number of required
basis functions. That is the reason why the proposed
acceleration technique is used for further calculations.

My part of this study covers algorithm implementation and
representation. My contribution is about 20-30%.

In the fourth paper [P4] we propose sampling methods for
the preprocessing phase which enables a faster way to compute
the non-negative tensor factorization (NTF). In preprocessing
both sampling and interpolation are applied to the original data
because the computational complexity depends on the number
of bases, i.e. the rank of the factorization, and on the dimensions
of the spectral image. Three approaches are compared: direct
subsampling, integer wavelet transform, and spectral
smoothing. The paper supposes the extension of the NTF theory
for more rapid feature extraction.

The experiments have been applied to five spectral images.
The results indicate that preprocessing can remarkably reduce
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the time needed for NTF. From the approaches, the integer
wavelet transform shows the best performance from the
computational and quality perspectives. The computational load
from direct subsampling is the lowest for one iteration, and
spectral smoothing is computationally the heaviest.

My part of this study covers algorithm implementation and
manuscript writing. My contribution is about 40-50%.

In the fifth paper [P5] we propose a technique for color based
retrieval from a spectral image database. The technique is based
on a similarity measure between spectral image features
extracted by a spectral reconstructed method. Non-negative
tensor factorization (NTF) and principal component analysis
(PCA) are applied in a spectral image domain for color feature
extraction. The calculations are performed by using
multiresolution approach proposed in [P3] and [P4].

The proposed method is implemented and tested with a
spectral image database. The images from the database are
ordered according to the similarity between them and the tested
image. Three similarity measures were applied in the two
spectral image feature spaces. The results of the experiments are
visually presented in the paper. The best combination of the
spectral image feature and similarity measure in our opinion is
NTF and PSNR correspondently. Further work will be
proposed.

My part of this study covers algorithm development,
implementation and manuscript writing and presentation. My
contribution is about 80-90%.

In the sixth paper [P6] we found illuminant dependence of
Principal Component Analysis (PCA), Non-negative Matrix
Factorization (NMF) and Non-negative Tensor Factorization
(NTF) in spectral color imaging. All these methods are applied
as dimension reduction methods in the color spectrum domain.
The effect of light sources on the quality of the reconstructed
spectrum is investigated.

Five reflectance spectra sets from different sources were used
in tests. Four light source spectrums with various shapes were
applied for light source simulation. We evaluate the
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reconstruction spectrum by quality and error measures
including AE, GFC and PSNR. The obtained results show that
the non-negative basis of NTF and NMF are more suitable for
optical implementation than PCA. Because of the similarity of
the reconstruction error and the fact that the best reconstruction
was obtained under peaky light sources, we can build an LED
based acquisition system prototyped in this thesis.

My part of this study covers algorithm development,
implementation and manuscript writing and presentation. My
contribution is about 80-90%.
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9 Conclusions

The dissertation is a compendium of the publications
collected during the study of fundamental spectral image
archiving components i.e. the processes of image acquisition,
compression and retrieval. It was supposed that PCA, NMF and
NTF (defined as reconstruction methods in this thesis) are
suitable to be applied to all the components of the spectral
image archive, and future research has been proposed for each
of them. The reconstruction methods were applied in ways of
data reduction, feature extraction and color spectra
reconstruction. The results of experiments were published with
the following conclusions.

PCA is a convenient method, and its importance for the
spectral imaging area has been shown by several authors before.
It has been widely used for spectra reduction due to the high
correlation of color spectra components. The dissertation based
on the mentioned phenomena introduces a new compression
method which is suitable for spectral image archives. It was also
supposed that the compression technique can be applied by
improving the introduced clustering method according to a
spectral image’s source and application.

It was shown that the non-negative basis gives a number of
benefits compared to the orthogonal one. It can be implemented
optically with approximately the same reconstruction error as
with the orthogonal, but the number of required measurements
is half as many. Based on these phenomena, a spectral
acquisition system based on color spectra reconstruction was
hypothesized. The system considers light source simulation. The
light source spectra are calculated using one of the non-negative
spatial methods instead of an orthogonal one. Moreover, the
features obtained by NTF show better relevance for spectral
image retrieval. The spectral image retrieval method was
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proposed during this study. The method finds similar images in
the database according to the non-negative bases obtained by
NTF instead of using irrelevant features which are more
convenient for grayscale and trichromatic image retrieval.

The CPU time required for bases calculation is the biggest
weakness of the non-negative methods introduced in the
dissertation. Although the multiresolution approach aiming to
reduce calculation time introduced in the thesis shows
significant improvements, I believe it is still possible to find
faster and more efficient methods for non-negative matrix
factorization.
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Non-negative bases in
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The objective of this study was

to show benefits of non-negative
methods in spectral image archiving.
Processes of an image acquisition,
compression and retrieval were
considered as fundamental
components of a digital image
archiving. Principal Component
Analysis, Non-negative Matrix
Factorization and Non-negative
Tensor Factorization were applied as
a spectral reconstruction, a spectral
reduction and feature extraction

methods.
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