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ABSTRACT

This thesis introduces the challenges and opportunities that visual data flow
programming language (VDFL) presents to the field of software develop-
ment.

Some of the commonly recognized advantages of VDFL are compre-
hensible program code representation and parallel program execution. De-
spite of these advantages, VDFL has not enjoyed great popularity except
for measurement and control system implementations. One of the reasons
for this is related to VDFL’s restricted applicability for large-scale applica-
tions.

In order to enhance VDFL’s applicability, it is necessary to first iden-
tify the language’s restrictions and challenges which may have been hidden
behind questionable development methods that can hinder VDFL’s advan-
tages, for example, by hiding the parallel program execution. Recent re-
search into the restrictions and challenges of VDFL has remained minimal.

In connection with this issue, this thesis studies the challenges and op-
portunities that are discoverable in practice. The results of the study have
been derived mostly from the implementation of an automated documenta-
tion system (ADS), the versions of which were implemented by avoiding
the use of “quick-and-dirty” methods that can break the data flow paradigm.
The study confirms the existing research results regarding the advantages
of VDFL. It also reveals a set of challenges to the use of VDFL, which
include the lack of run-time program variability, monolithic program struc-
tures, and the lack of advanced design methods. The study also raises the
question of end-to-end system verification.

The study suggests new theoretical solutions for discovered challenges;
these include: dynamic case structure, event switch, and dynamic compu-
tational node. The use of formal methods has been proposed for the system
verification.

Universal Decimal Classification: 004.4«236; 004.042
Keywords: visual programming; parallel languages; data flow computing;
data flow analysis, flow visualization, data acquisition, health care
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1 Introduction

The main features of visual data flow programming languages (VDFLs) are
visual syntax representation and program execution based on a data flow
paradigm. In practice, this equates to a highly concrete and comprehensi-
ble language in which visual (graphical) program parts can be executed in
parallel.

Visual data flow languages have enjoyed great popularity among vari-
ous kinds of data acquisition, measurement, and control system implemen-
tations [1–3] and have been praised in favor of fast program development
through rapid prototyping. Furthermore, the comprehensible syntax repre-
sentation and predefined programming tools have been found to be usable
for end-user programming and novice programming. Despite the advan-
tages, the VDFL has remained largely unknown among the general public.

Currently, at a time when parallel computation has -again- become pop-
ular research topic, VDFLs have an advantage over conventional program-
ming languages (PLs) because of their natural support of parallelism [4–7].
It is reasonable, therefore, to make the VDFL more applicable and its pur-
pose more general, and consequently less unknown. Unfortunately, most
of the enhancement proposals were produced in previous decades. For in-
stance, VDFLs have been improved with iteration and condition structures
borrowed from conventional control flow PLs. A procedural abstraction
represents another step towards a more usable VDFL. The previous solu-
tions did not fully comply with the data flow paradigm, but they did con-
siderably increase the usability of the language.

More recent VDFL research, such as [8–13], does not have much to of-
fer in terms of enhancing the VDFLs. Most of the current VDFL research
emphasizes cognitive topics, as is the case in [12], while the more technical
VDFL research has remained marginal. Furthermore, the technical VDFL
literature has focused on the presentation of small or medium-sized mea-
surement applications, as in [14–16]. As a result, it is not possible to reach
any conclusions about the VDFL’s usability on a larger scale.

This study presents restrictions and problems in VDFL programming,



Maija Marttila-Kontio: Visual data flow programming languages: challenges and
opportunities

a topic that has received little attention in the literature. The work is based
largely on an empirical work within an automated documentation system,
ADS. The ADS is a wireless measurement system for patient monitoring.
Another application that is important for the study has been implemented
in order to visualize the behavior of an optical torus. The restrictions and
problems have been discovered by excluding global, local and shared vari-
ables when implementing the ADS and the optical torus visualization sys-
tem. The use of variables has been popular in general VDFL research be-
cause of their ability to increase the program’s flexibility. In [14, 17–23],
for instance, variables have been used for more fluent communication be-
tween program parts. In VDFLs, however, variables are against the single
assignment rule and they also hide the data flow. Therefore, in order to
conserve the VDFL’s advantages, such as the natural support of parallelism
and program comprehensibility, it is reasonable to exclude the variables.

The prototypes of the ADS and the optical torus visualization appli-
cation have been implemented with National Instrument’s LabVIEW [24].
In a relatively small group of commercial VDFLs, LabVIEW represents
one of the most popular and advanced language and programming environ-
ments [1, 2, 16, 25–28].

1.1 THE AIMS OF THE STUDY

One of the over-arching purposes of this study is to represent the opportu-
nities and challenges that a VDFL can bring to software engineering, espe-
cially to programming. Within this, the three main aims are as follows:

1. To report the advantages and opportunities that VDFL brings to pro-
gramming. The automated documentation system has been used as a
case example.

2. To introduce the challenges and restrictions of VDFL. The main goal
is to identify concrete and current examples of the restrictions of VD-
FLs. This issue, among others, is addressed by excluding the usage of
variables in programming. The challenges and restrictions have been
discovered during the design and implementation of the automated
documentation system prototypes and the optical torus visualization

2 Dissertations in Forestry and Natural Sciences No 30



Introduction

system.

3. To introduce solutions and suggestions for VDFL’s restrictions that
are identified and the programming problems that occurred.

1.2 THE ORGANIZATION OF THE THESIS

This study is organized as follows. The chapters 1, 2, and 3 provide the
theoretical bases for the following concepts:

• the von Neumann and the data flow execution models in Chapter 2,

• visual programming in Chapter 3, and

• visual data flow programming languages in Chapter 4.

Each of these chapters provides the main characteristics, opportunities
and challenges of the case in question.

Chapter 5 presents LabVIEW, a visual data flow programming lan-
guage, as well as the challenges and opportunities related to the language.

Chapter 6 introduces an empirical work and the results of this study.
Chapter 7 contains the summary of the papers I-VIII. In each paper, the

basic idea and main results are presented.
Finally, Chapter 8 offers conclusions, discussion, and proposals for fu-

ture research.

Dissertations in Forestry and Natural Sciences No 30 3



Maija Marttila-Kontio: Visual data flow programming languages: challenges and
opportunities

4 Dissertations in Forestry and Natural Sciences No 30



2 On execution models

Every programming language is based on a model of a computing system.
Two common models, the von Neumann model and the data flow model,
are introduced below.

2.1 THE VON NEUMANN MODEL

The von Neumann execution model is defined as follows [4, 29]:

Definition 2.1 The von Neumann model exploits global addressable mem-
ory for storing and modifying program and data objects. During program
execution, the memory is updated by program instructions. A single in-
struction counter (program counter) sustain the address of an instruction
to be executed next. Because of the single instruction counter, computing
always proceeds sequentially and in a predefined order.

Conventional programming languages, such as, Java, C and C++ are
based on the von Neumann model. The conventional programming lan-
guages usually use names, that is, variables, to refer a certain locus on
memory.

Due to the strictly controlled execution order defined by the program-
mer, the von Neumann -based languages are also known as imperative or
control flow languages.

2.1.1 Challenges and opportunities in the von Neumann execution
model

The main limitations of the von Neumann model are its memory latency,
overhead synchronization overhead, and sequential computation [4,29–31].
The single program counter prevents the execution of multiple instructions
at the same time. Backus [29] termed this a bottleneck of the von Neu-
mann model. Equation 2.1 examines the computation of a simple task as an
example of the bottleneck.

Dissertations in Forestry and Natural Sciences No 30 5
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x2 − (x + y)
(x + y)2√y

(2.1)

A control flow -based pseudo code named Fragment 1 contains seven
instructions:

Fragment 1
[ 1 ] k=x ^ 2 ;
[ 2 ] l =x+y ;
[ 3 ] m= s q u a r e _ r o o t ( y ) ;
[ 4 ] p=k−l ;
[ 5 ] r = l ^ 2 ;
[ 6 ] s= r ∗m;
[ 7 ] t =p / s ;

The variables k, l, m, p, r, s, and t are used to store temporary values
into the memory. There are many alternative execution orders for the in-
structions. For example, instructions 1, 2, and 3, as well as instructions 4,
5, and 6 can be executed in arbitrary order. Whatever order is used, the
result of the computation remains the same. In each order, the computation
is completed in seven time units. Because the instructions do not depend
on each other in instructions 1, 2, 3 and in instructions 4, 5, 6, they could
be executed at the same time. The von Neumann model however, requires
sequential scheduling.

Let us further consider a program that is not related to the previous
Fragment 1, but which uses the same variable s:

Fragment 2
. . .
s=s ∗2 ;
. . .

Considering the previous program fragments, which appear on the same
program, the definition of the fragments’ relative execution order is essen-
tial. Because the variable s refers to the same space in global memory, an

6 Dissertations in Forestry and Natural Sciences No 30
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incorrect execution order can cause a semantic error. During the execution
of Fragment 1, for example, the result of the Equation 2.1 can be incorrect
if the variable s has been simultaneously modified in Fragment 2.

While the usage of variables prevents parallelism, it also simplifies the
communication between program parts. By updating the global memory,
the updated value is immediately available for other program parts and
variables. The usage of variables also enables the program to be flexible
and dynamic. Among other things, this represent an opportunity to modify
the program behavior during runtime. For example, the content of a case
structure can be modified using a variable.

Despite Backus’ description of the von Neumann model as “complex,
bulky and not useful” [29], the execution model sets the basis for most cur-
rent programming languages. One reason could be related to its sequential
and understandable nature [32]. Another is the general purpose problem
domain that the universal machine enables. In addition, data abstractions
are easy to implement in von Neumann -based languages. According to Ry-
der et al. [33], abstract data types include encapsulating or enclosing data,
naming the data type, placing restrictions on the use of the operators, hav-
ing rules that specify the visibility of data, and separating the specification
from the implementation.

2.2 THE DATA FLOW EXECUTION MODEL

The data flow execution model is defined as follows [4, 34]:

Definition 2.2 In the data flow execution model, all processing is per-
formed by means of instructions that are applied to values. Instead of the
predefined scheduling, an instruction can be executed as soon as it has re-
ceived all needed input data.

Although the data flow model does not take a position on the represen-
tation of program syntax, data flow execution is usually illustrated with a
data flow graph. Figure 2.1 is a data flow graph that represents the execu-
tion of Equation 2.1.

The execution of Equation 2.1 is completed in four time units and pro-
ceeds as follows. After x and y have received the tokens from, for example,

Dissertations in Forestry and Natural Sciences No 30 7
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Figure 2.1: A data flow graph computing Equation 2.1.

the environment or another instruction, the tokens flow in parallel to in-
structions 1, 2, and 3. Because all required data is initially present in each
of the three instructions, the instructions are then executed simultaneously.
Following the firing rule of data availability, instructions 4 and 5 are ex-
ecuted in the second time unit. Because instruction 6 must wait for the
output value from instruction 5, it is executed in the third time unit. Again,
instruction 7, is dependent on the value coming from instruction 6, and is
therefore executed last, in the fourth time unit. After execution, the result
is displayed in t.

Based on Definition 2.2, the main characteristics of the data flow exe-
cution model and in data flow languages are as follows [4]:

1. Data dependencies equivalent to scheduling.
The only sequencing constraint controlling the execution order is the
data dependency between instructions. In other words, the instruc-
tions can be executed in parallel if they are not dependent on each
other.

8 Dissertations in Forestry and Natural Sciences No 30
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2. Single assignment of variables.
In data flow languages, variables can be perceived as values that are
produced by instructions behaving as functions [35]. The single as-
signment means that once a value is created it can never be modi-
fied. Therefore an instruction never contains any functionality for
changing an input parameter. Each time, the instruction has received
all input values, it creates new values as outputs. The similar sin-
gle assignment rule can be found among declarative programming
languages, such as functional and logic programming languages 1

[29, 37, 38]. For example, in reference to Fragment 2, above, the
statement s = s ∗ 2 is absurd in the sense of the data flow because
the incoming s can not be modified. Replacing s with another name,
such as w, means that the statement is then w = s ∗ 2 and it becomes
semantically valid.

3. Locality of effect.
The locality of effect means that only short-range data dependen-
cies appear between instructions. The short dependencies are again
caused by the absence of global data storage. In contrast to the von
Neumann model, the previous problem of the same variable usage in
the two unrelated fragments does not appear in the data flow model.
If the output value s is used elsewhere in the program, the data arc
represented by s is then simply branched into each instruction where
the value is needed. Figure 2.2 illustrates a flow graph of the merged
fragments.

4. Freedom from side effects.
The behavior of an instruction in the data flow model is functional.
Because nothing can be modified, the instruction does not create any
side effects elsewhere in the program and the value is guaranteed
to remain the same everywhere it is used. As Figure 2.2 illustrates,
a “variable” representing the data arc in question, cannot represent
multiple different values in different parts of the program.

1In actual fact, functional languages are a superset of data flow languages [36].

Dissertations in Forestry and Natural Sciences No 30 9
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Figure 2.2: Fragments 1 and 2 merging together in a data flow graph.

5. The lack of history sensitivity in procedures.
The lack of history sensitivity means that instructions cannot “re-
member”, because they have no state variables retaining data from
one invocation to the next.

2.2.1 Two approaches of the data flow model

The data flow model presented above is based on a data driven approach
[6, 34, 39]. In such an approach, the execution is dependent on the avail-
ability of data. In the data driven -based process, an instruction is executed
when its inputs have been populated by new data. During its execution, the
instruction absorbs data from its inputs and emits new data tokens on its
outputs.

A demand driven approach enables an instruction to be executed only
when needed [39,40]. In this approach, the execution of a program is started
at “the end”, that is, from the final outputs requesting data from an instruc-
tion or instructions to which they are attached. The instruction’s input then

10 Dissertations in Forestry and Natural Sciences No 30
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requests data from other instructions, etc. In this way, the demand driven
approach sets up a network that only contains the necessary instructions.

2.2.2 Challenges and opportunities in the data flow execution model

Because the data flow model was originally designed to exploit “all the
potential for concurrency” [41], the implicit parallelism and asynchronism
are considered to be the most effective advances of data flow languages
[2, 6, 41–43]. Another advantage of the data flow execution model is that it
allows program definitions to be represented graphically [4,34]. For exam-
ple, Figure 2.1 can be seen as a graphical data flow program that computes
Equation 2.1. Deviating from the common data flow graph representation,
the data arcs in Figure 2.1 are named according to the variables in Fragment
1. Each “variable” represents the output value of an instruction. Although
variables are not used in the data flow model, data arcs can be seen as typed
variables [2]. A data arc does not have a corresponding memory locus in
the conventional sense, but is more like a hardware data bus [7].

Ambler [37,44] has stated that programs with single assignment involve
fewer concepts, are easier to understand, have a flow of data that is easier
to visualize, and have better-preserved notions of mathematics.

A drawback of the data driven approach is the execution of all exe-
cutable instructions even though some instructions do not necessarily need
to be executed at the specific moment [3]. The data flow paradigm has also
been seen as being capable of causing problems, if the problem at hand
does not fit into the data flow diagram representation [1].

In practice, the pure data flow model is not usable because it does not
support control constructs, such as, iteration or condition structures. The
iteration can be considered as contradictory for the single assignment rule
[37].

2.3 SUMMARY AND DISCUSSION

As Iannucci [30] stated, the sequential instruction execution of the von
Neumann model can be considered antithetical to parallel processing. One-
instruction-at-a-time processing has been stated [29] as a bottleneck of the
von Neumann model, causing strong latency of memory requests. Also,

Dissertations in Forestry and Natural Sciences No 30 11
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sharing data between multiple processes while maintaining functioning syn-
chronization represent a widely known restriction of the von Neumann
model. Despite its disadvantages, the majority of today’s programming
languages are based on the von Neumann model.

The strengths of the data flow model, and the model itself represent
a complement to the von Neumann -based execution model. The single
assignment rule means that the data flow model is a sound, simple and
powerful model for parallel processing [31]. Furthermore, a real advantage
of the data flow model is the opportunity to represent the program code
graphically. Therefore, the model has been found to be suitable for visual
programming languages [4, 34].

The data flow model can be seen as a special case of Kahn’s Process
Networks (KPN) model [40, 45]. The KPN model is an asynchronous, de-
terministic, and concurrent programming model where processes work au-
tonomously and they communicate over unbounded FIFO data channels.
As in the data flow model, the state of an autonomous process in KPN is
also inaccessible to other processes and there is no global scheduler present.
The KPN model uses blocking-read synchronization protocol, which means
that a process stalls until the input channel contains sufficient data tokens.
Writing to a channel is non-blocking and can be done right after the process
is executed. Although KPNs are not particularly studied in this thesis, it is
worth mentioning that studied restrictions and enhancement proposals in
KPNs (see, for example, [46, 47]) are quite similar to those represented in
this study.
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Visual techniques are standards in early phases of software development
that exploits various kinds of diagrams (use cases, class hierarchies, state
diagrams, entity-relationship diagrams, etc.) [48, 49]. However, these tools
have generally been used more for designing, not programming. It is rea-
sonable, therefore, to distinguish the visual language and a visual program-
ming language into separate concepts.

A visual programming language (VPL) is often misunderstood as a syn-
onym for any programming language that has a visual programming envi-
ronment. While it does have a visual programming environment, the VPL
actually signifies a language that consists of visual syntax. VPL is defined
as follows [48, 50–52]:

Definition 3.1 A visual programming language uses pictures to express
computation. The program syntax is represented with at least two dimen-
sional program elements. The elements are usually characterized by color,
dimension, location, and shape.

Visual program syntax can be represented in various ways, the most
common of which is through arcs and boxes. Two less popular methods
are datasheets (spreadsheets) [53, 54] and programming by demonstration
[55, 56]. This study focuses on the arcs and boxes form of representation.

3.1 VISUAL SYNTAX REPRESENTATION AND BASIC CHARAC-
TERISTICS

According to the arcs and boxes representation, a visual program resem-
bles a directed graph that consists of computational nodes and data arcs
between them. The data flow graph illustrated in Figure 2.1 can be also
seen as a visual program. Depending on which VPL is in use, computa-
tional nodes can also be referred to as procedures, icons, box, functions, or
virtual instruments. Wire, link, and line are synonyms for the data arc. In
VPL, text is not needed for naming the nodes, and data arcs also remain
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nameless. In order to explain the correspondence of variables in different
execution paradigms, the data arcs are exceptionally named in Figure 2.1.

The computational node can be a phantom node, an operational unit,
or a control structure. The phantom node represents an input or output
interface between the program and its environment. In Figure 2.1, x, y, and
p/s represent phantom nodes, while input and output nodes appear on both
the program code and the user interface.

Operational units range from primitive functions to more complex struc-
tures that represent elements such as, subprograms. An iteration node and
a conditional node represent control structures that typically appear in a
visual program.

A computational node can contain zero or more data ports (terminals).
A data arc represents a certain, predefined data type according to the data
port to which it is attached. Data values, referred to as tokens, flow via the
data arc as a discrete token stream. In conventional text based programming
languages each word can be seen as a token [50]. The token stream is
always one-directional flowing from a node’s output data port to another
node’s input data port or to data ports of multiple nodes.

The common characteristics of visual syntax representation are as fol-
lows [50]:

1. Concreteness.
Concreteness refers to the use of real values rather than a description
of possible ones [57]. The visual program code follows the WYSI-
WYG principle (“What you see is what you get”). Abstractions can-
not be represented visually. Here, a procedural abstraction makes an
exception.

2. Directness.
Directness relates to a cognitive perspective of programming and it
means a short distance between program manipulation and required
action. The directness enables direct manipulation of a program [53,
58]. In [58], Shneiderman stated “the pleasure in using these systems
stems from the capacity to manipulate the object of interest directly
and to generate multiple alternatives rapidly”.
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3. Expliciteness.
Directly stated semantic, whether in textual or visual programs, re-
move the possibility of misinterpretation. An example of explicitness
in visual program code is the way in which relationships between
nodes are represented with directed data arcs.

4. Immediate visual feedback.
When a programmer edits the program code, the semantic feedback
is automatically and immediately provided by the programming en-
vironment. Immediate feedback relates to a program’s liveness, as
introduced by Tanimoto [59].

3.2 CHALLENGES AND OPPORTUNITIES IN THE VISUAL SYN-
TAX

The advantages of visual languages are comprehensible syntax representa-
tion, easy human-computer interaction [60], language independence, direct
manipulation techniques [58], fast software implementation through the use
of rapid prototyping [61,62], and program debugging properties [34,50,63].
The VPLs also have fewer syntactic restrictions as a way of expressing the
program [60]. Visual notations can also provide better organization and can
make information explicit [64].

The weak point of visual programming languages is the lack of vi-
sual abstraction mechanisms that are essential for designing scalable pro-
grams [50, 63]. Consequently, VPLs are often considered inapplicable for
large-scale applications [63]. As Burnett et al. stated in [65]: “Making vi-
sual programming language suitable for solving large programming prob-
lems often seems to require the very complexities VPLs try to remove or
simplify. This is called the scaling-up problem”. Generally speaking, VPLs
can suffer from the common characteristic of it: the concreteness of visual
syntax. Burnett et al. introduced the scaling-up problem through three
major subproblems: (1) representation issues including problems in static
representation, screen real estate and documentation, (2) programming lan-
guage issues, including problems with procedural abstraction, interactive
visual data abstraction, type checking, persistence, and efficiency and (3)
issues beyond the coding process.
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3.3 SUMMARY AND DISCUSSION

The main functioning of VPL can be crystallized to the WYSIWYG prin-
ciple. “What you see is what you get” basically refers to a comprehensible
and concrete program code. What you do not see, however, is something
that cannot be implemented, which represents an inability to use abstrac-
tions in programming.

The best-known problem of VPLs, the scaling-up problem, has gener-
ated studies around its subproblems, mostly those that deal with the rep-
resentation issues and, more precisely, the efficient use of screen space.
Shizuki [66], for example, exploited a popular fisheye view model for bet-
ter readability of visual program code. Meyer and Masterson [67] critiqued
Prograph’s usability and commended the user’s inability to control the level
of code details. A similar problem exists in LabVIEW, where the only
option is to capsulate parts of the code into a subVI. The procedural ab-
straction method has been the most popular way of avoiding the scaling-up
problem.

Representation issues, such as the study of efficient use of screen space
and readability of visual program code, have been quite popular. For ex-
ample, a fisheye view method has been represented to improve the com-
prehensibility and readability of visual program code [68]. Sui et al [69]
introduced a VDFL debugger combined together with an improved fisheye
view model. Further, Sui et al. [13] presented an automated refactoring tool
for improving visual code maintainability, understandability, and reusabil-
ity.

The most popular research fields generated around the concept of vi-
sual syntax representation encompass educational and psychological stud-
ies1 [33]. The concepts of novice programming [70–72], programming
by example [56, 73–77], end user programming [11], and cognitive pro-
cesses in programming [78] represent research categories in which VPLs
have been widely exploited. Some of these studies have taken the data flow
paradigm into account as a separate factor affecting the research and its re-
sults. The focus of some other discussions is only set into the visual syntax,

1Although not separately mentioned in the studies, the used visual programming lan-
guage often follows the data flow paradigm.
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as is usually the case in the cognitive research field.
While novice programming is connected to education, end-user pro-

gramming focuses on software engineering, specifically on the client. As
described in [8], end-user programming means “the practice by which end
users write computer programs to satisfy a specific need, but programming
is not their primary job function”. In end-user programming, VDFL is
used to reach a better connection and understanding between the program-
mer and the client [1]. The cornerstone of both the novice programming
and end-user programming can be found from the VPL’s direct manipula-
tion techniques [58, 79, 80] and the opportunity for immediate visual feed-
back [71, 80].

Recent psychological research among VPLs has focused mainly on the
aspects of human cognition [8, 12, 27, 56, 60, 64, 78, 81]. Human cogni-
tion means a study of mental processes, such as problem solving, com-
prehension, and ways of thinking. The basic questions in this study relate
to how different types of programmers understand language representation
and how this can be exploited, for example in education and interpersonal
communication.

One of the most widely referenced studies on human cognition is Thomas
Green’s and Marian Petre’s [78] “Usability Analysis of Visual Program-
ming Environments”. A range of secondary literature [12, 82–86] has been
produced to test and develop the cognitive dimensions’ framework. In ad-
dition, Baroth and Hartsough presented an interesting objection to Green’s
and Petre’s work [78] in [1].
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Integrating the principles and characteristics of visual programming and the
data flow execution paradigm, reaches the following definitions (adapting
[3, 4, 37, 52]):

Definition 4.1 A visual data flow programming language (VDFL) contains
visual, multi-dimensional objects for conveying semantics. Operation of the
visual object is functional and the execution of objects is based on the data
flow execution paradigm.

Unlike the pure data flow programming language, the VDFL usually
contains a specific notation for iteration.

Definition 4.2 The specific notation of iteration consists of:

• Definitions of the initial values of the loop controls,

• A test to determine whether the loop is to terminate or to continue,

• Some expressions giving the value or values to be returned, if the
loop is to terminate

• Some expressions giving the new values to be assigned to the loop
controls.

Based on the definitions above, the data driven VDFL has the following
characteristics and function rules [52]:

1. The operation of a node is functional.

2. A node is executed as soon as its inputs are populated by new data.

3. Data flows via data arcs as a stream of discrete data tokens.
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4. A node can have zero or more input data ports. Respectively, a node
can have zero or more output data ports.

5. If the input ports do not exist, the node is executed once as soon as
the program executes.

6. An executed node produces new values for all its output data ports.

7. In order to be executed again, a node must receive new input values
for each of its input data ports.

8. Each data port is attached to a single data arc.

9. Data arcs cannot fuse together, but a data arc can be branched into
multiple data arcs containing a copy of the original data token(s).

4.1 CONTROL STRUCTURES IN VDFLS

Most VDFLs support control structures for better programmability [3, 52,
87,88]. Although control structures do not follow the pure data flow paradigm,
they have been adapted to the VDFLs in favor of program simplicity [3,52,
89]. As Ghittori et al. stated in [90], “pure data-flow model needs to be
enriched with some forms of control flow constructs in order to tackle non-
trivial applications”.

The basic structures typically offered in VDFLs are while, repeat, and
for structures for iteration, and if-then-else, switch, and case structures for
condition.

4.1.1 Iterative structures

Iterative structure is represented in VDFLs as a cyclic data flow graph [52]
(see Figure 4.1). Like the basic node execution, the iteration structure is
executed according to data availability. The structure produces a new to-
ken(s) that is cycled back to its input(s). In order to avoid endless iteration,
the structure has a mechanism that terminates the loop.
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Figure 4.1: General representation of iteration in the VDFL.

4.1.2 Condition structures

Condition structures enable selective routing of data tokens. The simplest
“routers” in the VDFL are merge (selector) gate and switch (distributor)
gate. Figure 4.2 illustrates the gates.

The switch gate is a conditional control node that routes data from a
single input arc to one of the two output arcs, called the T arc and the F arc.
The incoming control data defines the output arc to which the incoming
data is directed. If the control data is true, the data is then directed to the
true output arc (the T arc). Conversely, if the control data is false, the input
data is directed to the false output arc (the F arc).

The merge gate operates with three inputs and the input data is associ-
ated with a boolean value. If the control data is true, then the data from the
true input arc is directed to the output arc. If it is false, the value from the
false input arc is directed to the output arc.

Regardless of the strict data flow paradigm, Kosinski [7, 91] and Davis
et al. [34] allowed the gates to execute with only a partial number of popu-
lated data ports. According to [7,34,91], the switch gate produces an output
value only for a single output; similarly, the merge gate can execute after
receiving a new token on at least one input data port. While visual data
flow languages do not normally have a switch or merge gate some VDFLs
do have the same kind of structures for accomplishing the task [3]. For ex-
ample, LabVIEW offers a select structure that is similar to the merge gate
(The select structure and a case structure is presented in Chapter 5.1, Figure
5.3.
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Figure 4.2: The switch and merge gates.

Figure 4.3: Procedural abstraction of the data flow graph represented in Figure 2.1.
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4.1.3 Abstractions

The two most important programming language abstractions are procedural
abstraction and data abstraction [50,65]. The procedural abstraction is es-
sential because it makes the visual program more compact by saving screen
space, a frequent problem in visual languages. Hiding numerous program
details makes it possible to achieve a higher level of program view [3]. In
VDFLs, the procedural abstraction means that any subgraph can be repre-
sented as a single function. This is similar to how procedures are used in
conventional languages. The subgraph is created by encapsulating the de-
sired part of the program inside boundaries and then attaching a name to
it. Data arcs cut by the boundaries represent input and output data ports
of the new subgraph. For instance, the function Equation 1 in Figure 4.3
represents an encapsulated program that has been previously illustrated in
Chapter 2.2, Figure 2.1. According to the data flow paradigm, the function
Equation 1 is executed right after the inputs are populated with new data.

The data abstraction means that the programming language supports
user-defined data types, data inheritance, and data encapsulation. It is more
difficult to exploit data abstraction in VDFLs than it is in conventional pro-
gramming languages. The reason for this is related to generality and in-
formation hiding which are hard to fit among concreteness and immediate
visual feedback [50, 65].

4.2 VDF SOFTWARE ENGINEERING

It can be assumed that the majority of VDF applications have been im-
plemented using the rapid prototyping method. As several general VDFL
research articles have mentioned, such as, [28, 36, 50, 61, 64, 92], rapid
prototyping with predefined programming tools enables an easy and fast
programming process. Having indicated the method’s prevalence in many
recent publications, rapid prototyping is considered to be not worth men-
tioning. In this context, many authors [16, 93, 94] seems to feel that the
rapid prototyping method goes with the VDFLs de facto. Those cases that
mention the rapid prototyping method separately (for example, in [94]),
praise its low cost and high development speed.

A VDF application structure is generally described with the use of basic
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Figure 4.4: A block diagram representing an EMS documentation system.

diagrams. Flow diagrams and block diagrams represent the most popular
design tools. The third diagram worth mentioning is a state diagram (state
transition diagram), which is used, for example, in [94]. Hosek et al. intro-
duced the usability of LabVIEW’s State Chart Module and Queued State
Machine [95]. Examples of the usage of the flow diagram can be found
in [14, 96–102].

The block diagram is used to describe both an internal application schema
and the hardware architecture, including equipments, devices, network so-
lutions, etc. An example of block diagram is illustrated in Figure 4.4. With
the block diagram, authors have described a system at a high-level of ab-
straction by separating the system structure into basic modules or com-
ponents, see, for example, [103, 104]. Good examples of how the block
diagram has been exploited to illustrate application modules can be found,
among others, in [15, 104, 105].

Because of the hierarchical nature of VDFLs [63], a commonly used
way of representing an internal application schema is by using a hierar-
chical block diagram. The hierarchical block diagram is generated as a
result of top-down design method, in which a hierarchical model is reached
through an iterative refinement process [7, 33]. The hierarchical structure
can also be achieved with a reversed bottom-up design method [33]. [106]
offers an interesting discussion about the two design methods. The hier-
archical structure of VDF programs can help obtain flexibility and better
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scalability. As Jackson stated in [18], “hierarchical structure makes it easy
to add new components to the model when needed”. Examples of the use
of hierarchical block diagrams in recent VDF system implementations can
be seen in [14, 93, 101].

Over the last decade, more attention has been paid to the design pro-
cesses of VDF applications. While Simulink and Petri Nets represent com-
mon design and simulation tools, different kinds of system architectures
and design patterns, such as, producer-consumer, queued state machines,
and master-slave patterns are also practical [95, 96, 107–110]. Some gen-
eral discussions about the role of software engineering in VDFLs include
[106, 111]. Also, an interesting comparative evaluation of the usability of
Simulink and LabVIEW for design a digital signal processing system is
presented in [112].

4.3 CHALLENGES AND OPPORTUNITIES IN THE VDFLS

The symbiosis between the visual data flow programming language and
the data flow paradigm produces many advantages. The most obvious ad-
vantage of merging the visual syntax together with the data flow execution
paradigm is the support of parallelism [31, 34, 113–115]. Another advan-
tage, the fast software development life cycle through rapid prototyping,
comes from concrete and comprehensible syntax representation.

As Davis and Keller stated in [34], a directed graph is the most natural
way to represent the mental image of data flow execution. For example,
data dependencies between instructions are simple and natural to represent
with data arcs. Furthermore, the opportunity to insert viewing elements
easily at different spots to investigate the data has been found to be usable
[3].

Merging program parts into a single program is an advantage derived
from the visual syntax representation. Figure 4.5 provides an example of
how programs are merged together in the VDFL. Supposing that values x
and y are dependent on the outputs of F, the program parts can be merged
together by attaching F’s outputs to the inputs of the three instructions.
Consequently, the phantom nodes x and y can be removed, although all of
the necessary information is still present.
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Figure 4.5: Two VDF programs merged into a single program.
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For example, Hils [3] stated, that the usability of visual data flow pro-
gramming languages has been shown to be best among narrow and special-
ized application domains. Data manipulation, along with signal and image
processing, represents typical application domains. The VDFL has also
showed its strength among novice programmers or programmers without
any programming experience [1, 2].

The main open topics in VDFL research refer to problems in program
scalability and general programmability. To the author’s knowledge, not
many recent studies discuss VDFL’s programmability, other than the cog-
nitive point of view. There has been little discussion of any challenges,
restrictions, opportunities, possible improvements, and future development
trends. Recent studies have only mentioned the VDFL as an implementa-
tion tool.

As presented in this study, VDFL’s problems and challenges can appear
in the form of a monolithic program structure, which is caused by the data
flow paradigm. Furthermore, the lack of program dynamics, the absence of
a flexible switch structure, and weak run-time program variability are some
problems that can cause challenges in VDFL programming.

Good usability of the rapid prototyping method has led to less scrutiny
of the VDF software design. Compared to design tools, such as architec-
tures and design patterns used in software engineering in conventional PLs,
the scale of the design and modeling tools used in VDF software engineer-
ing are more narrow.

The way in which software engineering methods have been used for
VDFL poses yet another problem, which has not been studied to any great
degree. Most VDF applications are developed for demanding measurement
and data acquisition tasks, such as patient care; therefore, a well functioning
and robust application must be seriously considered. The fact that most
VDF applications have been implemented with rapid prototyping method,
creates the need to have a proper testing process.

4.4 SUMMARY AND DISCUSSION

The VDFL has been popular among narrow-scaled application domains,
such as testing, simulation, measurement, signal processing, and labora-
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tory systems. The language’s main advantage has been its easy and fast
programming, which does not require advanced programming skills.

Small prototypes of a narrow problem domain do not necessarily ex-
pose the challenges and restrictions of the VDFL. Although less reported,
programming challenges quickly increase during implementation of larger
applications with the VDFL. The general programmability can become
clumsy and, at the same time, the program code can turn into monolithic
“spaghetti code”.

In order to achieve better program scalability and common programma-
bility, VDFLs have been slowly started to enhance with data abstractions.
Some VDFLs (such as Data Vis [116]) can provide higher-order functions
that takes other functions as input values. The more common way has
been to use visual object-oriented programming1 VOOP. The idea is based
on the possibility of creating user-defined data types (classes) when the
corresponding objects can flow as tokens through the VDF program [57].
The concept of object-flow and higher order functions has been studied
in [115, 117, 118].

Unfortunately only a few new publications have actually discussed the
usability of object flow in VDFLs2. One is [25], which was mentioned
above, and another is presented in this study.

In order to guarantee the robustness of VDF application, another so-
lution (instead of a large testing process) is to use formal methods [120].
While formal definition of VDFL have been studied, mostly in previous
decades [121–123], publications in VDFL formalization, reasoning and re-
finement have remained slow. The present study has taken a step on the
long path towards automatically verifying VDF applications by presenting
a formal modeling with action systems.

1Some VDFLs, such as Prograph, Fabrik, and Cantata, supported the object-oriented
paradigm.

2Several articles have introduced a combination of control flow and data flow languages.
The focus of those articles is on the improved code representation and program comprehen-
sibility. See, for example, [119]
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LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) is
a commercial software platform and is one of the best-known and widely
used visual data flow programming language and software for virtual in-
strumentation [124]. LabVIEW applications are typically implemented for
industrial automation, laboratory research, bio-instrumentation and health-
care purposes [124,125]. The majority of LabVIEW users are scientists and
engineers who do not have a strong programming background. Although
LabVIEW consists of both a visual data flow programming language and a
visual programming environment, the language is commonly considered to
be a programming platform.

Referring to the different types of representation of visual syntax, the
LabVIEW syntax consists of “arcs and boxes” where virtual instruments
(VIs) represent the boxes and data wires represent the arcs. LabVIEW of-
fers a wide library of predefined virtual instruments, varying from simple
algebraic operations to more complex operations for data acquisition, com-
munication management, and database entry, for example. The execution
of virtual instruments is based on the data flow paradigm and, more pre-
cisely, the data driven approach.

As is the case with most VDFLs, LabVIEW cannot be seen as a pure
data flow language because of the control structures it offers. Another eye-
catching difference can be found between LabVIEW and a pure visual syn-
tax representation. In LabVIEW, the user is able to create textual code and
to use local and global variables1 in programming.

The programming environment of LabVIEW contains a block diagram
and a front panel. The front panel represents the user interface consisting
of controls and indicators (i.e., the phantom nodes). The controls represent
virtual instruments (VIs) for input data whereas the indicators are used for
displaying output data.

The actual programming is done on the block diagram. In addition to

1The use of local and global variables should be avoided. The use can lead unexpected
program behaviour and slower performance [126].
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the input and output VIs, the block diagram contains function VIs. The
functions represent predefined instruments in LabVIEW’s function library.
Each VI has input and/or output terminals (i.e., data ports) for attaching
incoming and outgoing data wires.

Figure 5.1 presents a measurement program prototype of the Auto-
mated Documentation System (ADS) used in this study. The application
reads an oxygen saturation level and pulse information from a wireless
pulse oximeter via a Bluetooth connection. The application has six con-
trol instruments. Five of these, Bytes to read, Data in, Channel, Address,
and Bytes to read 2 are for data acquisition and for managing a Bluetooth
connection. With the sixth control instrument, Stop, the user eliminates the
application execution.

The Pulse and SPO2 indicators are used to display the measurement
results. The Error indicator displays possible error data. In addition to the
basic controls and indicators, the application contains function VIs, such as
a function for extracting a subarray from an input array.

5.1 CONTROL STRUCTURES IN LABVIEW

LabVIEW offers while and for structures for iterative computation man-
agement, as shown in Figure 5.2. The continuous data acquisition in Figure
5.1 has been managed with a while structure. The data acquisition code to
be repeated is placed inside the while structure.

A condition is managed in LabVIEW with a case structure. For simpli-
fied cases, the programmer can use a select structure, see Figure 5.3. The
select structure is based on the merge gate and it selects data from one of
the data wires according to the Boolean control value. In Figure 5.1, the
case structure is used to control the execution of the while structure.

5.2 ABSTRACTIONS IN LABVIEW

LabVIEW supports procedural abstraction by enabling the usage of sub vir-
tual instruments (subVIs). The previous application shown in Figure 5.1,
used three subVIs to communicate between the system and the measure-
ment device. The subVIs are Spo config, Bluetooth Read, and Bluetooth
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Figure 5.2: LabVIEW’s for structure (left) and while structure (right).

Figure 5.3: Two condition structures in LabVIEW. The CASE structure is on the left and the
Select structure is on the right.
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Close Connection.
LabVIEW also supports data abstraction. LabVIEW’s object-oriented

programming tool (LVOOP2) allows the creation of user-defined data types
and the exploitation of data inheritance and data encapsulation in program-
ming [25]. With the LVOOP, the user can also achieve a cleaner program
code that is easier to debug [127]. Applications implemented with the
LVOOP tool have been advertised to scale better for large programming
tasks [25, 127].

The execution of the application in Figure 5.1 proceeds as follows.
The subVI Spo config is executed right after it has received data from the
four controls. The case structure is executed after receiving data from the
three subVIs. If the status of the error is False, the while loop is executed
next. Otherwise, the Bluetooth connection is closed, occurred errors are
displayed, and the application is terminated. Inside the while loop, the
measurement data is continuously acquired from the pulse oxymeter de-
vice until the user terminates the application execution or an error occurs.

5.3 USAGE

LabVIEW has been used for monitoring, data acquisition, data manipula-
tion, controlling, and simulation system development. As is the case with
other visual programming languages, LabVIEW has also been used in com-
puter science and engineering education.

5.3.1 Monitoring, controlling, and simulation

LabVIEW applications have been built to measure and/or monitor: soil
contamination [103], weather characteristics [96], the transient tempera-
ture of droplets [128], air quality [99], properties of cementitious materi-
als [129], and a nodal resistance of composite structures [15]. Chu and
Ganz’s WISTA-system (wireless telemedicine system for disaster patient
care) [130] is somewhat similar to the automated documentation system,
which has been a platform for empirical VDFL research represented in this
study.

2Graphical object-oriented programming GOOP is another commonly used term.
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LabVIEW has been used for different kinds of control system imple-
mentations. In [131], Bryant et al. presented a system for controlling
the measurement of motor and neural data. Hosek et al. [95] introduced
a control application for an optical coherence tomography system. Con-
trol systems have also been implemented for vehicle navigation [94, 132],
controlling the water level in two water tanks [133], and for maintaining
heating and air conditioning [134].

Simulation applications represent the third application domain that of-
ten appears in LabVIEW application presentations and in the VDFL re-
search. Simulation applications have usually been implemented in collabo-
ration with a simulation specialized system, usually with Simulink of Math-
Works. In [135], LabVIEW, Simulink, and Active-HDL were used to con-
trol and simulate hardware properties. LabVIEW and Simulink were also
used in [14], which introduced a wind power simulation system. In addition
to collaborative simulation systems, Gutiérrez-Castrejón et al. presented an
interesting comparison between two similar simulation applications imple-
mented with LabVIEW and Matlab [136] . Naturally, VDFL-based simu-
lation systems can be implemented without an external simulation applica-
tion. In [137], for example, Kim et al. introduced a LabVIEW application
for a web-based nuclear reactor simulator.

5.3.2 LabVIEW in education

Naturally, the problem domain of LabVIEW dominates the educational
scope [9]. In [138], LabVIEW was used for teaching logic design concepts
and practices for computer science and engineering students. In [139], Lab-
VIEW was used for distance and mobile access to remote reconfigurable
laboratory workbenches for e-learning within electrical engineering educa-
tion. Coito [140] again used LabVIEW as a remote laboratory environment
for blended learning. Remote access was also used for laboratory experi-
ments in [141] and for experimental tasks on measurement instrumentation
in [142]. In [143], LabVIEW and Visual Basic were used to introduce
the latest design techniques, computer-aided instrumentation, design, and
process control to students. In [26], students used LabVIEW to develop
software programs that were able to simulate physical and biological phe-
nomena.
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Figure 5.4: The LEGO R�Mindstorms R�robot car.

From an educational perspective, robotics and VDFLs form a fruitful
combination. Teaching robotics with an easily programmable platform and,
vice versa, teaching VDFL with the help of programmable robots, have
both been sources for many studies. The LEGO R�Mindstorms R� [144] robot
has been a practical tool for teaching computer engineering [145–151], the
actual programming of which is managed with a LabVIEW type, drag-and-
drop -based programming language. Figure 5.4 illustrates a LEGO robot
car. Figure 5.5 presents an example of the program code controlling the car
movements.

5.4 CHALLENGES AND OPPORTUNITIES IN LABVIEW

The LabVIEW application developers, such as those listed below, usually
reach a similar conclusion: in order to develop a measurement, control, test,
simulation, or an analysis application, LabVIEW is a good or even better
choice than conventional text-based PLs. The following advantages have
been brought out as typical research results:

• A user friendly graphical user interface (GUIs) that is easy to design
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Figure 5.5: A program code of the LEGO R�Mindstorms R�robot car.

[104, 132]

• System modularity [16, 25, 95, 96, 128, 137]

• Parallel computation [16, 95]

• Easy and fast development process [94, 132, 135, 152]

• Powerful system performance [96, 101, 153]

• Extendability and flexibility [16, 17, 93, 96, 102, 103, 128]

• Low costs [23, 93, 96, 131]

The extendability in the list refers to possibility to modify the pro-
gram for other kinds of problem domains with little efforts. For example,
in [128], Lin and Zhao has mentioned that “transient temperature measure-
ment system can also be used widely in other field of transient temperature
measurement’s.

Whitley and Blackwell stated in [28] that “LabVIEW users are confi-
dent that the advantages of the visual programming provided by LabVIEW
outweigh its disadvantages”. According to Baroth and Hartsough [1], the
main advantages are ease of learning, ease of communication, speed, in-
creased productivity, and adaptability. On the other hand, Baroth and Hart-
sough questions the language’s applicability for large-scale applications
which is also known as the scaling up problem [63, 65]. Furthermore,
Baroth and Hartsough are skeptical if the implemented applications can
be properly maintained over ten years.

36 Dissertations in Forestry and Natural Sciences No 30



LabVIEW

The important question has long been whether LabVIEW and other
VDFLs are applicable to large-scale applications. A study by Jamal and
Wenzel [63] discussed the possibilities of developing complex graphical
programs in LabVIEW using hierarchical programming methodologies. They
stated that “without effective abstraction mechanism, visual programs fail
to scale adequately when compared to popular text-based programming lan-
guages”. As a result, however, Jamal and Wenzel found LabVIEW appli-
cable to a “broad range of applications” providing “high degree of freedom
developing such applications”. The recent LabVIEW implementations in-
troduced above all seem to be fit into the group of small and medium-sized
applications.

As presented in Chapter 4.3, one of the problems in visual program-
ming was the user’s inability to efficiently control the level of details in the
program code. A similar problem exists in LabVIEW, for which the only
solution is to encapsulate parts of the code into a subVI. However, as pre-
sented in this study, encapsulating a program to subprograms can restrict
the communication between program parts (and subVIs). Many LabVIEW
programmers avoid possible restrictions and problems either knowingly or
unknowingly, by using methods borrowed from control-flow based textual
languages. Typically, this means using of global and local variables or
shared variables. The usage of variables, however, fights heavily against
the data flow paradigm. In [154], the usage of global variables is “consid-
ered poor programming practice: they hide the data flow of your application
and create more overhead”. The use of global and local variables in Lab-
VIEW, and more generally in VDF programming, can hide the restrictions
and problems of a VDFL would not otherwise be fixed in a more suitable
way.

Although LabVIEW supports local, global, and shared variables (see
Figure 5.6), programmers are advised to avoid them [126]. In a significant
number of recent publications that present a LabVIEW application, the pro-
grammers have used global, local and/or shared variables. For instance,
global variables have been used in [17–20], local variables in [17, 21–23]
and shared variables in [14]. Based on a quite restricted view of the authors’
program codes, it is hard to say whether the program could have been de-
veloped in a more proper way, or if the use of global and/or local variables
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Figure 5.6: From left: local variable, global variable, and formula node in LabVIEW.

was necessary for a functioning VDF program.
Another doubtful way to develop a LabVIEW program has been to use

of a particular node that enables parts of the program code to be written
with a textual PL. In LabVIEW, the node is called a formula node (as in
Figure 5.6). Usually the formula node is exploited in situations where Lab-
VIEW does not offer proper tools for implementation. Another case is to
use formula node for saving screen space. Examples of the unnecessary use
of the formula node can be found in [15, 19]. As is the case in Putta’s et.
al’s application, the usage of the formula node is irrelevant and the textual
program code is implementable with virtual instruments like the rest of the
program. An example of how Putta et. al [15] have used the formula node
is presented in Figure 5.7. Below the formula node in Figure 5.7 is the
alternative program code implemented with virtual instruments.

The use of variables and embedded textual program code is usually an
attempt to avoid, among other things, the scaling-up problem and some-
times uneasy programming. It also indicates the inadequacy of program
structures of the VDFL. It almost seems that problems and restrictions no
longer exist because of the abnormal but commonly accepted programming
tools and methods in use. However, if variables and embedded textual code
are excluded, restrictions and problems will appear in VDFL programming.

5.5 SUMMARY AND DISCUSSION

Several visual data flow programming languages have been brought to the
market since 1970 [2, 13, 36], some of the most best-known of which are
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Figure 5.7: Above: Formula node used by Putta et. al. Below: the same calculation
implemented with virtual instruments.

listed below. [3] contains an inclusive introduction to various VDFLs. Note
that the listed languages that are no longer available are marked with an
asterisk (*).

• Fabrik (*) [155, 156] for constructing user interfaces.

• HI-VISUAL (*) [157] for image processing and for office work, such
as accounting and data management tasks. The language uses the
arcs and boxes representation. Most of the publications relating to
the language are from the beginning of the millenium.

• VIVA (*) [59] for image processing. The language uses the arcs and
boxes representation.

• Cantata (*) [158] for image and signal processing. The language uses
the arcs and boxes representation.

• Vipers (*) [88] for general purpose programming.

• DataVis (*) [116] for scientific visualization. The language uses the
arcs and boxes representation.
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• Prograph (*) [159] for general-purpose programming. The language
uses the arcs and boxes representation.

• VEE [160, 161] for test, measurement, and data analysis. The lan-
guage uses the arcs and boxes representation. Commercial program-
ming language from Agilent Technologies.

• LabVIEW [24, 162, 163] for test, measurement, and data analysis.
The language uses the arcs and boxes representation. Commercial
programming language from National Instruments.

In addition to the above list, several recent VDFLs have been devel-
oped for academic purposes, such as LabScene [69], NimoToons [164],
and PdaGraph [165]. There are also programming languages that are ad-
vertised as having a pure visual syntax but where some of the program
code has to be written despite it being created with visual objects. Ex-
amples of such languages are Microsoft Visual Programming Language,
MVPL [166], two-dimensional C++ [167], and Simulink [156, 168]. Al-
though Simulink is not a particular focus of this study, it is worth noting that
Simulink often appears among VDFLs as a model-based design tool [153].
In the author’s opinion, Simulink and MVPL can be seen as such languages,
because, in both languages textual code is sometimes required inside a vi-
sual node.3 Also popular are studies that discuss visual languages as design
models that support the data flow paradigm. Relational Blocks [169] and
Ptolemy [170,171] are examples of such languages. Naturally, many visual
data flow programming languages have been introduced.

While discussing of VDFLs, commonly known workflow languages
are worth mentioning. Workflow languages (WFLs) are process control
languages that were originally developed from the notion of factory au-
tomation [172]. Usually workflow languages are modeled and analyzed
with graph-based formalism like Petri nets [173, 174] or with Kahn’s Pro-
cess Networks [46]. Workflow languages are used in workflow management
systems that are used for controlling, monitoring, optimising, and support-

3Simulink and Microsoft’s MVPL are usually described as VDFLs. The issue of the
pure VDFL is relative: depending on how tight the definition of VDFL is, they may or may
not be read among VDFLs.
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ing, among other things, business processes. BPEL and Taverna repre-
sent examples of such workflow management systems. Commonly known
BPEL (Web Services Business Process Execution Language for Web Ser-
vices) is an executable workflow language. It describes business process
activities as Web services [175]. Taverna, again, is used for bioinformatic
workflows [176, 177]. Workflow languages have some similarities with
VDFLs. A workflow is represented with a directed graph where nodes
represent workflow activities and links represent interaction between ac-
tivities. Like in VDFLs, in workflow graphs, nodes can be seen as func-
tions. Similarly, a workflow can be structured as a hierarchical graph that
contains sub-workflow graphs. The execution of a workflow is based on
either control dependency or data dependency. According to the execution
rule, workflows are called control driven workflows (control flows) or data
driven workflows (data flows) [178]. The relation of VDFL and the latter
execution rule is apparent.
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6 Empirical work and
the results of the study

In this study, the advantages and disadvantages of visual data flow program-
ming language have been empirically examined through two applications.
Both applications have been developed with LabVIEW. During implemen-
tation, atypical methods such as, the use of global and local variables have
been avoided in programming. Hence, possible restrictions in VDFL are
more easy to expose.

The first and larger work discusses a multistage design and implementa-
tion process of automated documentation system (ADS). Discovered char-
acteristic of the VDFL have been published in Papers I-VII. The Section
6.1 introduces the basic structure, functioning, and requirements of the
ADS. Discovered advantages and restrictions are also listed in Section 6.1.

The second and smaller empirical work discusses visualization of an
optical torus with a visual data flow programming language. The basis
here is in exploiting visual program code and the flow of data tokens for
demonstrating how data packets flow in an optical torus. It was soon dis-
covered that VDFL’s apparently similar model of data flow can not be put
into practice for visualizing the torus. The met challenges and restrictions
are presented in Paper VIII and Section 6.2.

In both studies, solutions for improving the VDFL and enhance its pro-
grammability have been proposed. These solutions as well as the discov-
ered restrictions are novel and related research have not been published.
Without an access to LabVIEW’s source code, the proposed solutions (ex-
cluding a dummy packets solution) can only be presented in theory. This
means that the applicability of the solutions could not have been put into
practice.
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Figure 6.1: The user interface of ADS.

6.1 AUTOMATED DOCUMENTATION SYSTEM

The automated documentation system (ADS) is a system for patient moni-
toring. The architecture of the ADS is based on secure two-way transfer of
measurement data, the structure that is presented in Paper I. The systems
deploys wireless measurement devices for acquiring data from patient’s vi-
tal signs and given treatment. A technical overview of the system and its
measurement equipments are given in Paper II. The ADS has been orig-
inally designed for emergency medical services (EMS), but the usability
of the system has also been studied for disaster relief coordination, as pre-
sented in Paper II, and for patient home monitoring, as presented in Paper
III. The Figure 6.1 illustrates the user interface of ADS. The user interface
is based on an official form of the Social Insurance Institution of Finland.

In emergency situations, time is scarce and treating the patient takes
all the attention. Considering the later care in a hospital, documenting the
treatment process and the patient’s condition is similarly important to the
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Figure 6.2: The block diagram of the ADS.

treatment process. Still, the documentation is done when the situation al-
lows it. Currently, in Finland, the documentation is mostly done by manu-
ally filling an official form (in exception of ECG, for instance). The space
for treatment information are highly limited and the data of vital signs is
based on few observations taken from time to time. Furthermore, copying
the data into hospital’s paper form can cause errors and the process is time
consuming. For this purpose, the ADS offers more reliable documenta-
tion approach. By offering time stamped data about given medication and
patient’s response to the treatment enables more informative and compre-
hensive health care research in the field of EMS.

The ADS consists of two separate parts; a collector device and mea-
surement devices (see Figure 6.2). A laptop, PDA or Tablet PC represents
a basic collector device that acquires and stores measured data. For good
usability, all measurement devices are wirelessly connected to the collector
device. In our study, the wireless connection was enabled through Blue-
tooth communication protocol. Interaction between measurement devices
and a collector device is usually one-way but, in some cases, a measure-
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ment device can be controlled during runtime. Therefore, in Figure 6.2, the
connection from a measurement device to a collector device is presented as
a dashed line. The collector device also communicates via secure two-way
connection to a server located, for instance, on a hospital or a health care
centre.

The field of health care sets high requirements to the automated docu-
mentation system. It is important to implement an automated system that
does not need extra hands to control it. Furthermore, whenever technology
is attached to a person, a system’s reliability and robustness are prerequi-
site.

6.1.1 Early phases on the ADS development

First versions of the ADS system were developed by prototyping. In VDFL
based application implementations this is a normal method. As discovered,
it is easy to prototype small program parts, such as, data acquisition tools
for an oxygen saturation device and a program for controlling a bar code
reader. The usability of predefined virtual instruments for easy and fast
application development has been brought out in Papers II and III. Easy
modification, for instance, refers to ability of quickly replacing virtual in-
struments by other ones. However, as the requirements and the size of the
ADS increased, it became clear that the rapid prototyping as a single devel-
opment method does not guarantee a well-functiong result.

In Paper IV, the structure of the ADS has been designed by combining
methods used in VDF application design with the methods that are com-
monly used in designing applications based on a conventional PL. Because
of the important role that modularity plays in developing modifiable and
maintainable systems, the general structure of the ADS has been presented
as a four-layer architecture (see Figure 6.3). Layers are from top to down:
User Interface, Business Logic, Communication, and Local Storage. On
top, a pervasive Security component offers security service to each of the
layers. Each layer contains one or more components. In this study, the fo-
cus is set on the Communication layer and its components that are: Long
Distance Communication (LDC), Short Distance Communication (SDC),
and Data Acquisition (DAQ) component.

The general component architecture is language-independent, but the
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Figure 6.3: The four-layer architecture of the ADS.

internal structure of a component is designed using the top-down design
method. The main reason for using the top-down method is that it follows
the same hierarchical structure as the VDFL. At that point, at which parts
of the ADS had been prototyped, the top-down design method and VI pro-
totyping were found to be usable. This is partly because of the design’s
ability to implement various alternative prototypes and test programs with
minimal effort.

As the process of the ADS development proceeded we learned that us-
ing the top-down design method as the only design tool does not necessarily
meet all assigned requirements. For example, there is no practical way to
ensure whether the designed model can be put into practice. The top-down
design method produces a hierarchical structure of program nodes, with-
out accounting for the necessary data types or the communication between
program structures.

Compared to the software engineering in the field of conventional PLs,
VDFL lacks effective design tools and methods. Despite the VDFL based
application design is not similar to conventional design processes, diagrams
such as, activity, use case, communication, and sequence diagrams were
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used in the design process of the ADS. The sequence diagram and activity
diagram were used for understanding the communication between com-
ponents in different layers. The use case diagram and sequence diagram
were used for modeling, for instance, the type of interaction that is needed
between the ADS and a health care person. The use case diagram also
helped us to notice the actions possible to automatize with the ADS. In ad-
dition to the previous diagrams, a component diagram and a class diagram
were found usable later in the ADS development process. They were used
for creating user defined data types enabled by LabVIEW’s visual object-
oriented programming (VOOP).

While the conventional diagrams enabled us to analyze and clarify the
communication and overall activities, a clear connection between design-
ing and the requirements of the ADS did not reached. Because meant for
control-flow based languages, a conventional diagram does not take into
account the absence of variables and abstractions in VDFL. For example,
the communication between program components is easy to model with
the design methods mentioned above, but they do not help to recognize and
further avoid component interaction problems caused by the VDFL. An in-
teraction problem between program components are presented in Paper VI
and it is also explained in Section 6.1.2.

The scarcity of proper design tools and methods has led to the study
of an alternative way to verify a robust VDF system. The question is es-
pecially important when the ADS is used for patient care. There are no
room for mistakes or situations where, for instance, data acquisition does
not work.

A study that is presented in Paper VII has examined the usage of formal
methods, specifically action systems for the verification. The main idea
relates to the question of whether the robustness of the ADS can be formally
verified. The kind of study is a novel approach that has not been previously
examined.

Action systems are based on predicate transformer systems. An action
is any statement in an extended version of Dijkstra’s guarded command
language. The functioning of an action is almost similar to a computational
node; while a computational node can be executed in parallel, actions can
be executed in any order or in parallel.
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The study of action systems and VDFLs is just beginning. After basic
mappings have been examined the results are promising. The mappings
from the visual computational node, node composition, case structure and
merge structure into to action systems have been discovered to be natural
because of the similarity in the semantics of VDFL and action systems.
The most important similarity is recognized in parallel program execution,
although it is important to take differences in execution into account. An
executable action will not necessarily be executed at all in an action sys-
tem, while in the VDFL an executable node is always executed. Another
difference can be found in the naming of variables representing data arcs.
However, these differences do not prevent or complicate the usage of ac-
tions systems in formalizing VDFLs. The results heavily encourage the
continuation of work on reasoning and refining VDFL-based programs.

6.1.2 Implementation process

VDFL’s restrictions started to expose on a larger scale when prototyped
ADS components needed to be connected together. The lack of program’s
run-time variability and overall weak system dynamics, as well as a mono-
lithic program structure were major restrictions that impeded programming,
system’s well-functioning, and system maintenance.

The lack of program’s run-time variability represents an inability to
easily modify program behavior during runtime. A reason for this relates
to the omission of global, local, or shared variables in programming. For
example, user interface components can be created dynamically during the
execution of a program based on conventional programming language. In
contrast, all VDF components on the user interface must be created before
the program execution and only the visibility of a component can be con-
trolled during runtime.

Another example of the lack of variability, a rigid case structure, is in-
troduced in Paper V. If again conventional PLs and VDFLs are compared,
the content of a case structure in conventional programming languages can
be retrieved from a database but a similar procedure is impossible in VD-
FLs. For example, the case structure in Figure 6.4 is controlled by a Mea-
surement devices menu list. Depending on a value picked from the menu
list, the case structure executes a corresponding case. The menu list is mod-
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Figure 6.4: A case structure controlled by a menu list control.

Figure 6.5: A menu list modified by a property node.

ifiable during runtime, that is, it can update its values with the help of prop-
erty node. In this example, the Measurement devices menu list is updated
according to detected measurement devices in range. Figure 6.5 represents
a program code for modifying the menu list with its property node. The
property node (on top right) gets its values from the Bluetooth Discover
node returning the names and addresses of discovered measurement de-
vices in range. The names of devices are collected to an array representing
input data of the menu list’s property node.

The problem occurs, when the value picked from the menu list is for-
warded to the case structure. Unlike the menu list, the case structure can not
be updated during runtime because it does not have its own property node.
All its cases has to be created before program execution. Therefore, if, for
instance, the ADS end user needs to add a new measurement device into
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Figure 6.6: In the middle: a list maintaining information about measurement subVIs.

the system, he or she must manually modify the case structure as well. It is
obvious that this will not guarantee easy modifiability and maintainability
of the ADS.

In order to deal with the case structure problem, Paper V introduces a
solution entitled a “dynamic case structure”. The dynamic case structure
exploits a property node with which to dynamically create the content of
the case structure. The functionality of the case structure modification is
similar to the menu list modification. The case structure executes the case
n according to the input value n. The value n represents, for example, the
name of a subVI to be executed. It is important to note that each case in
the case structure must have the same type of input and output data. This
restricts the usability of the dynamic case structure. The problem can be
avoided by using encapsulated data. LabVIEW’s support of encapsulated
data are discussed in Paper VI, and it is also explained later in this section.

The dynamic case structure involves more internal controlling than the
basic menu list modification. The case structure must have rules for manag-
ing subprograms that are executed in the case structure. One solution is to
maintain a list of all possible subVIs (see Figure 6.6). Each subVI contains
a control code of a measurement device. If a new device and its control
code are attached to the ADS, user only needs to update the SubVI list.

Yet another example of the lack of program dynamics is a dynamic call
problem that is described in details in Paper VI. The problem refers to in-
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ability to manage execution of some subVIs while some others remain idle.
This problem was examined to fix with the use of visual object-oriented
programming (VOOP) tools. The usability of the VOOP tools have been
tested in the implementation of the ADS’s data acquisition (DAQ) compo-
nent. The VOOP brings basic object-oriented characteristics such as, data
inheritance and data encapsulation, to VDFL programming.

The flexibility and modifiability of the DAQ component was enhanced
because of the ability to create user defined data types. For example, defin-
ing a data type that is based on a measurement device ancestor class made
it possible to dynamically introduce and initialize only the necessary mea-
surement objects.

The dynamic call problem is closely related to the problem of mono-
lithic program structure, the restriction of VDFL that is also described in
Paper VI. A monolithic program structure refers to a large and clumsy ap-
plication without any modularity. Modularity, again, is the key of today’s
applications that are easy to modify and maintain. The monolithic pro-
gram structure is a naive solution to the component interaction problem.
The interaction problem results from the data flow paradigm. For instance,
sending or receiving data requires a temporary termination of the emitting
and the receiving subprograms (components). This can be avoided only by
re-factoring the original subprograms onto the main program. This results
in a more monolithic program code that is hard to maintain and modify.

At the same time, the problem of monolithic structure represents VDFL’s
restriction that could be avoided through the use of variables. However, pro-
gram parts become tightly coupled if local variables are used. Furthermore,
the use of variables weakens the program’s modifiability and maintainabil-
ity; this is because if, for instance, a computational node is removed, the
programmer must manually remove each variable referring to the node.

Outside the programming forums, the monolithic structure of VDFL
based programs is not widely discussed problem. Although in some forums
data encapsulation and data inheritance have been described as usable tools
against monolithic VDF program structure, in this study the VOOP tools
have not been found to be particularly effective for the purpose. Although
it is easy to pass data into a subVI with the help user defined data types,
this does not solve the interaction problem between program components.
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The main reason for this is related to visual program structures that operate
as functions.

6.2 OPTICAL TORUS VISUALIZATION SYSTEM

An optical torus visualization system is based on the exploitation of the
visual program code and the data flow paradigm. The purpose of this
project was to create a visual program that is similar to a 4 × 4 optical
torus model. The torus has four processors and twelve routers. The proces-
sors and routers are represented as subVIs in LabVIEW. The basics of 4× 4
optical torus and the visualization application are given in Paper VIII.

The visualization system continues the discussion about the restricted
dynamics of a VDF program. The main problem was caused by the absence
of a VDF control mechanism that could have routed incoming data tokens
to the desired output data wires. In one particular case, the mechanism
should have been able to route a data token to one of the two output data
wires. The restriction derived from the partial dependency of incoming
data and it relates to the structure of switch gate illustrated in Figure 4.2
in Section 4.1.2. As mentioned in Section 4.1.2, the switch gate is not
supported at the moment in the form presented by Kosinski and Davis et al.
in [7, 34, 91].

In Figure 6.7, a basic router is illustrated. The router has two inputs
and two outputs. The problem posed by the partial data dependency re-
veals a limitation of data flow paradigm. In connection with the data flow
paradigm, free flow of data is often mentioned. Anyway, here the execu-
tion of a router is strongly limited by the data flow paradigm. The problem
occurs due to the rules of routing data tokens. If there is token in the input
wire A in, it is always routed to the output wire A out. The token in A in is
never routed to B out. A token in the input wire B in can be either routed to
A out or B out. Which way it is routed depends on the address of a target
processor but also the contents of the wire A in. If there is data token in A
in, the token in B in is always routed to the wire B out. This refers to the
partial dependency of the B in on the A in.

A router can have 0, 1, or 2 data tokens to route. Under the data flow
principle this is not possible, and thus the router waits until it receives data
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Figure 6.7: A router having two inputs and two outputs.

tokens on both of its input wires. So, the flow of data tokens turns synchro-
nized and not-so-free.

Paper VIII introduces three solutions to the problem. Although the
research and proposed solution are based on LabVIEW, the results are ap-
plicable to other VDFLs, as long as the VDFL supports event handling and
the ability to set and get node properties. The problem and the proposed
solutions have no related research in publications.

A dummy packet is a solution that can be implemented with current
LabVIEW. According to the data flow paradigm a computational node is
executable only when all its input data wires contain new values. The so-
lution exploits empty values such as, empty strings or empty arrays for
enabling the router to execute when only a single input data wire contains
an actual data. Here, the actual data refers to a data that is relevant for
a router or a processor. The dummy packets do not represent actual data
but are rather used to fulfill the data flow. Because lots of empty strings
or empty arrays are needed in this solution, the program requires wide re-
source consumption. Also, the solution does not meet the basic idea of
visualizing how data tokens flow in an optical torus because of the empty
data. Therefore, the solution of dummy packets is not good.

The dummy packets based implementation process raised also the ques-
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tion of a null value. The null value is common in conventional program-
ming languages and refers to an indeterminate data. In VDFLs the null
value does not exists but it would be required to indicate an empty data
wire. The previous dummy packets solution becomes more usable if the
dummy packets can be replaced by null values. The proposed solutions
below also require the VDFL to support the null value.

An event switch and a dynamic computational node (DCN) represent
solutions that currently can not be verified in practice. Both solutions ex-
ploit an idea of monitoring the content of a data wire. Furthermore, when-
ever content monitoring is needed, the use of null value plays an important
role. Because data tokens do not arrive into a node’s input terminals at
exactly the same time, the null value can set the pace to the program’s ex-
ecution. This means a “time window” within which to wait for incoming
data. Otherwise, the event switch or DCN, having more than one input data
wire, will never execute. The usage of these solutions is not limited to the
problem scope presented in the paper. Both solutions can be seen as a mod-
ified switch structure that work somewhat like a switch on a train track; in
that it can steer the flow of data tokens into the appropriate data wire.

The functioning of event switch is based on advanced event handling
and the ability to set and get node properties. An event structure is a basic
control structure in LabVIEW that enables an action to execute according
to the occurred event. An event can represent a changed value of control
or indicator, for instance. A single event structure can manage only one
event at a time. However, the proposed event switch solution is required to
handle more complicated logical firing rules than the current event structure
can handle.

In the event switch solution, four specific nodes N1, N2, N3 and N4
represents data of A in, B in, A out, and B out, respectively. Illustrated in
Figure 6.8, each of the nodes has a property node placed inside the event
switch structure (See Figure 6.9). Diverging from the basic event structure,
the event switch can manage more complicated firing rules, such as, “null
value in N2 AND new value in N1”. A corresponding event occurs and the
value in the property node N1 is then transmitted to the property node of
N4. The event switch now simulates the original router in optical torus that
can route 0, 1, or 2 data tokens.
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Figure 6.8: The event switch.

Figure 6.9: The dynamic computational node (DCN).
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The ideology of a dynamic computational node (DCN) is quite similar
to the dynamic case structure presented in Section 6.1.2 and in Paper V.
The DCN has dynamic data terminals that can be switched on or off (see
Figure 6.9). The way in which the DCN becomes executable depends on
the activation rules of a node. This is similar to the execution rules of the
event switch structure. The activation rules are individual for each DCN
and are defined by a programmer. The DCN differs from a conventional
computational node by executing a subVI that is dependent on the activated
data terminals. Therefore, if an input terminal A in is activated, the DCN
executes a corresponding subVI and the token in A in is routed to the output
terminal A out. Now, only the data terminal A out is activated and the token
flows to another DCN.

It should be noted that wherever the DCN is used, it transitively forces
every other node attached to the DCN’s data wires to be dynamic. There-
fore, a program consist of either DCNs or basic computational nodes.

The advantage of using the DCNs instead of variables can be seen in
the visual program code representation. In the DCN, the representation of
a program code is more concrete than in the case of using variables. The
program that consists of the DCNs can be viewed as a program that is made
up of program “variations”. The “variation” of the program that is actually
executed depends on which data wires are populated by new data tokens.
What comes to the data flow paradigm, the solution does not break the
paradigm since a program variation is only executable when all its inputs
have new values.

6.3 SUMMARY

The common advantages of VDFL were observed, including comprehen-
sibility, ease of use, modularity, and fast implementation process. These
advantages have been known for a long time and have been reported in
numerous papers, such as, [1, 2, 58, 60–62, 64]. As learned in this study,
the implementation of smaller applications or program components is fast,
with rapid prototyping and top-down design methods. When implementing
larger applications, such as the ADS, however, the use of rapid prototyping
and top-down design methods does not guarantee the application’s practi-
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cality. While the top-down design method offers a good modular structure,
it does not offer any guidelines for the practical communication between
program components. Despite the emergence of some new design aids,
VDFL still lacks effective design tools and methods.

The concrete visual syntax and the data flow paradigm both present
challenges to program dynamics. Specifically, the problem derives from
the lack of program dynamics, which, among other things, can result in
an inability to programmatically modify the program or the behavior of a
program structure.

For instance, considering a situation where a customer needs to attach
new measurement device to a measurement system, the customer is re-
quired to modify the system’s source code. In many cases, program codes
for controlling new devices is offered by the system developer but with-
out variables, the new programs are hard to automatically attach into the
system. This can lead to problems, among others, with the highly auto-
mated documentation system, prerequisites for which are the system’s easy
modification and maintenance.

The data flow execution paradigm itself can be a restrictive factor that
causes a strongly synchronized program execution. Routing data flow in
a certain direction requires a more dynamic control structure than what is
currently available. One answer could be the switch structure proposed by
Dennis in [42]. However, this structure is not offered in modern VDFLs
and the output data in this structure can only be directed to one of the two
output data arcs. This conflicts with the data flow paradigm, where each
output data arc must be populated by new data.

Solutions have been proposed, both in practice and in theory, to deal
with the previous challenges in programming. A dummy packet represents
a solution to the problem of routing data packages in optical torus appli-
cation. For the problem of program dynamics, a dynamic case structure,
a dynamic computational node (DCN), and an event switch have been in-
troduced. The weak point is, the solutions’ practical usability and imple-
mentability have not been designated. The proposed program structures
also follow the data flow paradigm, although in an expanded form.

The runtime modification and the flexibility of visual data flow pro-
grams can be partially enhanced by using visual object-oriented program-
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ming (VOOP). Features such as inheritance and data encapsulation can sig-
nificantly reduce the number of data arcs on program code. The true benefit,
therefore, comes from the node execution, which now depends only on a
single data element or an encapsulated data package. However, the control
structures and the concrete representation of a visual data flow program
still restrict the interaction between program components. Consequently,
the VOOP tool cannot solve the problem of monolithic program structure.
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Papers I-VII are related to the research of the Automated Documentation
System (ADS) and are presented first. Paper VIII which is not related to
the ADS, is presented last.

Paper I: Secure two-way transfer of measured data

This paper introduces the basic architecture, functionalities, communica-
tion solutions, and the implementation tool of the measurement system.
The measurement system architecture is developed with three main qual-
ities in mind: secure two-way transfer of measurement data, quick adapt-
ability for different kinds of measurement tasks, and strong data presenta-
tion capabilities through XML techniques. The Automated Documentation
System (ADS), introduced later, is based on this architecture. Here, the
measurement system is implemented with LabVIEW and designed to run
on a PDA platform. By exploiting LabVIEW’s PDA Module, the prototyp-
ing of several measurement system functionalities was easy.

The paper represents the cornerstone of the later research into measure-
ment system implementation with the VDFL. More specifically, the paper
sets the basis for the ADS design and implementation processes represented
in Papers II-VI.

Paper II: Disaster relief coordination using a documentation system for
emergency medical services.

This paper represented the ADS through more technical details and with the
most important requirements. It introduced the measurement devices used,
the communication solutions and the basic functionalities for controlling
the measurement. The Paper II focused on the function of measurement
rather than the entire ADS. The measurement process set the basis on a
data acquisition (DAQ) component and a short distance component (SDC),
which plays an important role in later papers. Furthermore, the system re-
quirements presented in this paper represent the reasons for later challenges
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and problems.

Paper III: Wireless system for patient home monitoring

The paper III presents an adaption of the ADS’s measurement component
for patient home monitoring. The contribution of the paper is to represent
VDFL’s advantages that have been discovered during the implementation
of the monitoring system.

The first advantage discovered is the possibility to create personalized
user interfaces without a great deal of effort. This advantage comes from
the VDFL’s comprehensible program code representation and predefined
user interface components that are easy to modify or replace by other UI
components. The advantage is decisive in situations where the users of
the monitoring system (here health care personnel) do not have a strong
background in programming.

The second advantage is the easiness and the certainty to create a robust
monitoring system for a relatively small scale problem domain such as, re-
mote data acquisition. The advantage derives from LabVIEW’s predefined
virtual instruments for data acquisition and several kinds of communication
protocols.

Paper IV: A highly automated documentation system: component design

Paper IV presents the modular structure of the ADS. The structure has been
designed by combining methods used in VDF application design with the
methods that are commonly used in designing applications based on a con-
ventional PL. As a case example, the design process of a short distance
component (SDC) is described. At that point, at which parts of the ADS
had been prototyped, the top-down design method and VI prototyping were
found to be usable. Nevertheless, it was also possible to note the possibility
of future problems, such as the restriction in run-time program variability.

The main contribution of the paper is to present how the modularity of
the VDFL and component design fits together. The paper also sets the basis
for the research and implementation process described in Papers V and VI.
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Paper V: Implementation of an automated documentation system with a
visual data flow programming language

This paper is a continuation of the previous paper in that it introduces ad-
vantages and restrictions founded during the implementation of the ADS.
The top-down design, combined with rapid prototyping, has been noted
as a practical method for developing measurement components. However,
using the top-down design method as the only design tool does not neces-
sarily meet all defined requirements. With the top-down method, however,
the user will not get any help how to manage the interaction between pro-
gram components, for instance. Nor the method does not offer any glues
for necessary types of data. In its own part this is important in designing
program components and the input and output values they offer.

Restrictions have also been noted in a program’s run-time variability
and in its influence on the maintainability of the ADS. The paper introduces
a theoretical solution entitled “a dynamic case structure” that exploits a
property node with which to dynamically create the content of the case
structure.

Neither the discovered restrictions nor the proposed solution have re-
lated research.

The contribution of the paper is to introduce the previously mentioned
restrictions and challenges that appeared during the implementation of the
ADS.

Paper VI: A monolithic program vs. modifiability: enhancing a visual data
flow program with object-oriented techniques

As Paper VI explains, attaching a new measurement device into the ADS
can be managed through visual object-oriented programming (VOOP) tools.
The paper discusses the lack of program dynamics and the problem of
monolithic program structure, as well as how these problems can be avoided
with the use of data inheritance and data encapsulation. The VOOP tools
have been tested in the implementation of the ADS’s data acquisition (DAQ)
component. The flexibility and modifiability of the DAQ component was
enhanced because of the ability to create user defined data types. For ex-
ample, defining a data type that is based on a measurement device ancestor
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class made it possible to dynamically introduce and initialize only the nec-
essary measurement objects.

Although data encapsulation and data inheritance have been described
as usable tools against monolithic VDF program structure, the VOOP tools
have not been found to be particularly effective for that purpose. The main
reason for this is related to visual program structures that operate as func-
tions. Paper VI presents a dynamic call problem which is an example of the
challenge to manage some program parts to execute while other stay idle.
The paper also presents how the use of control structures (here an iteration
structure) easily makes the VDF program more monolithic.

The contribution of this paper is that it introduces the possibilities the
VOOP tool can bring to VDF programming. The contribution also con-
tains the representation of 1) the restrictions that can be avoided by using
VOOP and 2) the restrictions of monolithic program structure that can not
be avoided by using the VOOP.

Paper VII: Visual data flow languages with action systems

This paper is indirectly related to the ADS. The main idea of the paper re-
lates to the question of whether the robustness of the ADS can be formally
verified. The question is especially important when the ADS is used for
patient care. In this paper, the basic concepts of VDFL is formalized with
action systems. The mappings from the visual computational node, node
composition, case structure and merge structure into to action systems are
presented. The mapping has been discovered to be natural because of the
similarity in the semantics of VDFL and action systems. The most im-
portant similarity can be found in parallel program execution, although it
is important to take differences in execution into account. An executable
action will not necessarily be executed at all in an action system, while
in the VDFL an executable node is always executed. Another difference
can be found in the naming of variables representing data arcs. However,
these differences do not prevent or complicate the usage of actions systems
in formalizing VDFLs. The results heavily encourage the continuation of
work on reasoning and refining VDFL-based programs.

The contribution of this paper is that it presents the basic mapping from
the VDFL into the action system formalism.
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Paper VIII: Not-so-free data flow in a visual data flow programming lan-
guage

This paper continues the discussion about the restricted ability to modify a
VDF program during runtime. The paper introduces an attempt to visualize
an optical communication network in LabVIEW. The visualization is based
on the exploitation of the visual program code while the user interface is
omitted from the review. The research contains work that has a twofold
purpose:(1) to create a LabVIEW code similar to 4× 4 optical torus and
(2) to then visualize the flow of data tokens by exploiting LabVIEW’s slow-
motion execution ability.

The main problem was caused by the absence of a switch-alike VDF
control mechanism able to route incoming data to the desired output. The
requirement derived from the partial dependency of incoming data. Fur-
thermore, it was noticed during the research that the absence of null value
caused restrictions in implementation.

Paper VIII proposes three solutions to this problem. Each of the pro-
posed solution simulates the functioning of the router in optical torus. A
dummy packets solution uses empty arrays or empty string for enabling flu-
ent flow of data. The two other solutions exploit an ability to monitor the
content of data wires which requires the use of null values (which the re-
cent version of LabVIEW does not have). An event switch solution is based
on an event structure with an extended support of event rules. The solution
also uses a property node for transferring data into the desired output. A
dynamic computational node (DCN) is based on dynamic data terminals.
According to which terminals are activated by new data, the DCN executes
the corresponding program code.

It should be noted that wherever the DCN is used, it also forces every
other node attached to the DCN’s data wires to be dynamic. Therefore, a
program consist of either the DCNs or basic nodes. The advantage of using
the DCNs instead of variables can be seen in the visual code representation.
In the DCN, the representation of program code is still more concrete than
in the case of using variables. The program that consists of the DCNs can be
viewed as a program that is made up of program “variations”. The “varia-
tion” of the program that is actually executed depends on which data wires
are populated by new data tokens. What comes to the data flow paradigm,

Dissertations in Forestry and Natural Sciences No 30 65



Maija Marttila-Kontio: Visual data flow programming languages: challenges and
opportunities

the solution does not break the paradigm since program variation is only
executable when all its inputs have new values.

This paper makes two contributions: (1) it presents the challenges and
restrictions of VDFL discovered during the implementation of visualization
system, and (2) it describes three solutions for solving the problem.
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Any concrete examples of how VDFL’s restrictions emerge in practice are
rarely discussed. Possible restrictions and problems in programming have
been either knowingly or unknowingly avoided by exploiting global or local
variables. In VDFL, the usage of variables fights strongly against the data
flow paradigm and the variables also hide the data flow. In other words, if
the restrictions and problems in VDF programming are typically avoided
by using variables, this eliminates the great advantage of the VDFL, which
is its support of parallelism.

A VDFL’s restriction has been discovered in the communication be-
tween computational nodes by excluding the use of local and global vari-
ables, . Under the data flow paradigm, the nodes (including condition and
iteration structures) operate as functions. Without variables, the runtime
communication between nodes can be strongly restricted inside a “closed
node”, which makes it difficult to implement the communication. The pre-
vious communication problem again causes the program structure to be
monolithic.

Problems that affect the program’s variability were also found in the
program dynamics. This study has presented examples of how the problem
comes out in practice.

In order to avoid the monolithic program structure and to enhance the
program dynamics, this study includes solution proposals, both in practice
and in theory. Even though the monolithic program could not have been
noticeably enhanced through the use of visual object-oriented tools, the
exploitation of user defined data types and data encapsulation can be con-
sidered as a good way to improve VDFL applicability. The dynamic case
structure, the dynamic computational node and the event switch structure
are some solutions to the lack of program dynamics in VDFL.

Since the data flow computational model is a special case of Kahn’s
process networks (KPN) model [40, 45], similarities can be noticed in the
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models’ restrictions and enhancement proposals. The restriction that led
to introduce the dynamic computational node for VDFLs, for instance, is
similar to the Vrba’s representation [47] of KPN’s limitation of determin-
ism. Vrba, as well as Lee et al. [46], states that KPN’s limitations can
be avoided with a non-deterministic merge. The use of non-deterministic
merge in KPNs contributes to the use of dynamic computational node in
VDFLs, because the behavior of the non-deterministic merge is similar to
the behavior of dynamic computational node. In both, a node is executable
when data appear on any of its inputs. Considering Vrba’s proposals and
this study, it seems natural to equip VDFL with structures that is similar to
the behavior of KPN’s non-deterministic merge.

The study also identified already widely stated advantages of VDFL.
Rapid prototyping enables easy and fast program development. Further-
more, the top-down design method was a practical way of designing the
hierarchical model of the measurement application. Designing small mea-
surement systems, such as parts of the ADS, reveals the advantages of rapid
prototyping and the top-down design method. However, restrictions can be
identified here as well. More design tools and methods will be needed for
the far-reaching and proper development of larger scale applications. This
thesis argues that rapid prototyping and top-down design methods are inad-
equate for this purpose. Research into better design tools and methods for
VDFLs can be seen as a fertile field for future research.

The current design methods raise questions about the robustness and
effective functioning of the final application. Considering the use of a mea-
surement system for patient care, there is no room for negative surprises.
This study has introduced the use of formal methods in verification. The
focus is set particularly on action systems and their ability to formalize
VDFLs. Consequently, it has been noticed that action systems fit well for
this purpose To the best of the author’s knowledge, the formalization of
VDFL with action systems has not previously been researched. The results
strongly encouraged the continuing future use of the research.

In addition to the research fields of language improvements, better de-
sign methods, and the formalization, several other interesting research fields
can be found among VDFLs. The demand driven approach of data flow
could be an answer for a more dynamic VDF program; this is an idea that
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has not been widely studied. Design methods represent another promising
research area. The design methods can be enhanced if more attention is paid
to improvements of VDFL. Furthermore, when object-oriented characteris-
tics are combined with the VDFL, the design methods can also be partially
borrowed from OO-programming. There is some on-going research in this
area.

This thesis suggests that the development of VDFL is moving towards a
language that combines the best characteristics of VDFL and control flow-
based textual languages. The VOOP, for instance, is a good example of
made improvements that does not break the data flow. This would make it
possible to use more abstract structures than are currently available in VD-
FLs. At the same time, the research can offer a more comprehensible pro-
gramming language than is represented by today’s object-oriented PLs. As
Meyer and Masterson stated in [67], “Properly coupled with object-oriented
concepts, true visual programming could open the doors to a wider group
of programmers, those who minds easily grasp the factory metaphor”.
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