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Introduction: Validation of measurement accuracy and precision of an electro-
cardiography (ECG) based ambulatory heart rate variability (HRV) measurement
system (eMotion HRV by Mega Electronics) were assessed in laboratory and field
conditions. Also, data acquisition software for the system was developed in this
work in C# for Windows. HRV can be used to assess the control of the autonomic
nervous system on the heart in e.g. cardiology, diabetes care and sports science.

Methods: The system was validated by simultaneous measurements with an
MDD and FDA approved clinical ECG device. Orthostatic, bicycle ergometer and
24 h daily activity experiments were conducted on five healthy, young persons.
The accuracy of QRS detection of the system was assessed with sensitivity and
positive predictivity measures. Precision of measured ECG RR intervals in the
laboratory experiments was assessed with histogram of RR differences and Bland-
Altman analysis. The effect of the differences in RR intervals between systems was
assessed by calculating a set of time domain and frequency domain HRV measures for
both systems from the orthostatic experiment data. Spectrum estimation methods
Welch’s periodogram and stationary AR(16) model were used. Smoothness priors
was implemented to detrend the data before spectrum analysis. Reliability of the
system in long-term measurements was assessed with artefact ratio analysis. All
analysis methods, a QRS detection algorithm and an artefact detection algorithm
were implemented in Matlab.

Results: The sensitivity and positive predictivity were sqrs = 99.989 % and
pqrs = 99.989 %. The 95 % limits of agreement from Bland-Altman analysis were
(0.591 ± 0.962) ms during rest and (0.820 ± 1.308) ms during exercise. The smallest
difference between systems in HRV measures was 0.001 % and the highest 0.718 %.
The artefact ratios in the 24 h daily activity measurements were 0.009 % at the
lowest and 0.266 % at the highest.

Conclusions: The eMotion HRV system was accurate in QRS detection and the
differences between systems in measured RR intervals and calculated HRV measures
were small. Thus, the performance of the system was comparable to the clinical
ECG device in laboratory measurements and the quality of data was good also in
long-term measurements in field conditions.
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Avainsanat: ambulatorinen biosignaalimittaus, sykevaihtelu, elektrokardiografia,
Bland-Altman-analyysi, Welchin periodogrammi, autoregressiivinen spektriesti-
mointi, pienimmän neliösumman menetelmä, Smoothness Priors.

Johdanto: Tässä työssä validoitiin elektrokardiografiaan (EKG) perustuvan
kannettavan sykevaihtelumittausjärjestelmän ulkoinen ja sisäinen mittaustarkkuus
laboratorio- ja kenttäolosuhteissa. Lisäksi työssä kehitettiin järjestelmälle datan-
purkuohjelmisto C#-ohjelmointikielellä Windows-alustalle. Sykevaihtelua voidaan
hyödyntää autonomisen hermoston sydäntä ohjaavien toimintojen tutkimuksessa
muun muassa kardiologian, diabetologian ja urheilulääketieteen aloilla.

Menetelmät: Mittausjärjestelmä validoitiin vertailemalla sitä kliinisesti
hyväksyttyyn EKG-mittausjärjestelmään yhtäaikaisten mittausten avulla. Vali-
dointimittauksia olivat ortostaattinen testi, rasitustesti ja vuorokauden mittainen
pitkäaikaismittaus. Tutkimushenkilöinä oli viisi tervettä nuorta aikuista. Jär-
jestelmän ulkoista tarkkuutta arvioitiin QRS-tunnistuksen erottelukyvyn ja positii-
visten tulosten ennustuskyvyn avulla. Mitattujen RR-intervallien sisäistä tarkkuut-
ta arvioitiin laboratoriokokeissa erotushistogrammin ja Bland-Altman-analyysin
avulla. RR-intervallien erojen käytännön vaikutusta arvioitiin laskemalla ortostaat-
tisen testin datasta molemmille järjestelmille joukko aika- ja taajuustason sykevaih-
teluparametrejä. Spektriestimointimenetelminä käytettiin Welchin periodogram-
mia, stationaarista AR(16)-mallia ja Smoothness Priors -trendinpoistomenetelmää.
Järjestelmän luotettavuutta pitkäaikaismittauksissa arvioitiin artefaktasuhdeana-
lyysin avulla. Analyysimenetelmät ja algoritmit toteutettiin Matlab-ympäristössä.

Tulokset: Erottelukyky ja positiivinen ennustuskyky olivat sqrs = 99.989 % ja
pqrs = 99.989 %. Bland-Altman analyysin tuloksina saadut 95 % luottamusvälit
olivat (0.591 ± 0.962) ms levossa and (0.820 ± 1.308) ms rasituksessa. Syke-
vaihteluparametrien pienin ero järjestelmien välillä oli 0.001 % ja suurin 0.718 %.
Vuorokausimittausten artefaktasuhde oli pienimmillään 0.009 % ja suurimmillaan
0.266 %.

Johtopäätökset: Järjestelmä oli ulkoisesti tarkka ja erot RR-intervalleissa ja
lasketuissa parametreissä olivat pienet järjestelmien välillä. Järjestelmän suori-
tuskyky oli siis verrattavissa kliiniseen EKG-järjestelmään laboratorio-olosuhteissa
ja datan laatu oli hyvä myös pitkäaikaismittauksissa kenttäolosuhteissa.
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List of Notations

∈ Belongs to
∀ For all
N Natural numbers
R Real numbers
|x| Absolute value of x
||x|| Euclidean norm of x
xT Transpose of x
x̂ Estimate or prediction of x
< x, y > Inner product (i.e. dot product) of x and y
x Average of x
D2 Second order difference matrix
e Observation error vector
et White noise
E{x} Expected value of x
E(z) Z-transform of et
f Frequency
fs Sampling frequency
H Observation matrix
H(z) System function
i Imaginary unit, i =

√−1
I Identity matrix
p Order of an AR model
p(x) Probability density function of x
pqrs Positive predictivity of a QRS detection algorithm
Px(f) Power spectrum of x
rx Autocorrelation of x
R(H) Range of H
sqrs Sensitivity of a QRS detection algorithm
s Trend component of the HRV time series
u Detrended HRV time series
U Energy of a window function
wt Window function
W Width of a window function in number datapoints
x Observation vector
X(z) Z-transform of xt
∆ Difference
ε Residual
θ Parameter vector
λ Smoothing parameter in smoothness priors
σ2
x Variance of x
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List of Abbreviations

Ag-AgCl Silver-Silver Chloride
AIC Akaike Information Criterion
ANS Autonomic Nervous System
API Application Programming Interface
AR(p) Autoregressive model of order p
AV Atrioventricular
BPM Beats Per Minute
DFT Discrete Fourier Transform
ECG Electrocardiogram, Electrocardiography
EMG Electromyogram, Electromyography
FFT Fast Fourier Transform
FPE Final Prediction Error
HF High Frequency band
HR Heart Rate
HRV Heart Rate Variability
IDE Integrated Development Environment
LA Left Arm electrode
LF Low Frequency band
LoA Limits of Agreement
LL Left Leg electrode
MDL Minimum Description Length
RA Right Arm electrode
RL Right Leg electrode (ground electrode)
RR Time interval between successive electrocardiogram R waves
PVC Premature Ventricular Contraction
PNS Parasympathetic Nervous System
QRS Electrocardiogram wave complex, containing the Q, R and S waves
RMSSD Root Mean Square of Successive Differences
RSA Respiratory Sinus Arrythmia
SA Sinoatrial
SDNN Standard Deviation of Normal-to-Normal Beats
SNS Sympathetic Nervous System
TINN Triangular Interpolation of Normal-to-Normal interval histogram
ULF Ultra Low Frequency band
VLF Very Low Frequency band
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Chapter 1
Introduction

Heart Rate Variability (HRV) analysis is a field of research with increasing popularity
that has many viable applications in e.g. cardiology [8], diabetes care [6], sports
science [26] and generally research on the autonomic nervous system , see e.g. [10].
The current clinical applications of HRV analysis include prediction of mortality risk
after myocardial infarction and diagnosis of cardiovascular autonomic neuropathy
[6, 38].

To facilitate the transition of HRV analysis from research to biomedical appli-
cations, there is a need to be able to measure HRV reliably for extended periods
of time. Ease of measurement and reliable devices and algorithms for e.g. QRS
detection are similarily of paramount importance for the success of HRV analysis in
different applications.

In this thesis, a commercial HRV measurement system for long-term ambulatory
measurements is introduced and validated. The system consists of a small one chan-
nel ambulatory electrocardiograph, a device-computer-interface and data acquisition
software. The development of the data acquisition software was a part of this work,
and thus, the design and implementation of the software are described in this thesis.

Concerning validation, the aims of this work are to assess the accuracy and pre-
cision of the measurement data produced by the system via comparison to the data
produced by a golden standard system in resting and exercise conditions. Secondly,
the effect of the differences in the data will be assessed by computing several well
known HRV measures in time and frequency domain and comparing the measures
between systems. Thirdly, the applicability of the measurement system to 24 hour
daily activity measurements will be assessed utilising qualitative analysis of a diary
of activities and an artefact detection algorithm developed in this work.

The second chapter of this thesis contains a brief review of the anatomy and
physiology behind HRV. In the third chapter, measurement methods of HRV are
assessed, while the fourth chapter is about analysis of HRV. The fifth chapter con-
tains a description of the two measurement systems used in this thesis and in the
sixth chapter, the measurement and analysis methods selected for this work are de-
scribed. In the seventh chapter, the results of the validation experiments are shown
and discussed and the eighth chapter concludes the thesis.

9



Chapter 2
Origin of Heart Rate Variability

The rhythm of the heart varies involuntarily from beat to beat as it adapts to changes
in the surrounding environment. This adaption takes place to ensure adequate
perfusion in vital organs in all situations. The oscillation can be assessed with a
time series consisting of the time intervals between consecutive heart beats. The
heart beat occurrence time is usually quantified with the peak of the R wave of
the electrocardiogram (ECG) (see Section 3.1). This time series is called heart rate
variability (HRV) [5].

Historically, the term “heart rate variability” has been understood to describe
both the variation in the interbeat interval as well as in the instantaneous heart
rate (the latter being the reciprocal of the former). Also, other terms describing
the interbeat oscillation have been introduced: cycle length variability, heart pe-
riod variability, RR variability [38]. To mitigate this inconsistency, only the most
established term heart rate variability will be used in this thesis.

When assessing the validity of a biosignal measurement system, it is imperative
to know the biological target of the measurement and the characteristics of the
measurable signal. Therefore, in this chapter, a brief review of the human heart, the
bioelectrical phenomena behind beating of the heart, the regulation of heart rate by
the autonomic nervous system (ANS) and the periodic components of HRV is given.
If not mentioned otherwise, the references for this chapter are [5, 12, 13, 22, 32].

2.1 The Human Heart

The heart is the centre of the circulation system feeding the whole body with oxygen
and nutrients as well as participating in thermoregulation. The heart is located
inside the ribcage, between the lungs and above the diaphragm. It weighs about 250-
300 g and its longest axis is tilted, with the apex of the heart pointing downwards,
usually a bit to the front from the coronal plane and left from the sagittal plane (see
Figure 2.1a). The pumping of the heart and changes in posture alter the geometry
and the position of the heart with respect to other organs during normal function.

The heart is essentially a large muscle, composed of specialised striated muscle
cells. The cardiac muscle cells are connected to adjacent cardiac muscle cells via
special gap junctions, which allow the rapid conduction of electrical signals between

10



2. Origin of Heart Rate Variability 11

cells. The voluntary contraction of the cardiac muscle is based on sliding overlapping
actin and myosin filaments, which is powered by chemical energy bound to adenosine
triphosphate molecules.

The cardiac muscle is divided into four separate hollow compartments: two atria
and two ventricles (see 2.1a). The walls of the ventricles are substantially thicker
than the walls of the atria. In addition, the left ventricle has a thicker wall than the
right ventricle, thus it can produce the highest contraction force.

The atria and the ventricles are separated from each other by heart valves which
open at appropriate times to allow blood flow from the atria to the ventricles. Blood
enters the heart through the atria and exits through the ventricles. The contraction
of different parts of the cardiac muscle in a cyclic, orderly fashion allows circulation
of the blood in the correct directions.

During diastole, the resting phase of the heart, oxygenated blood from the lungs
flows to the left atrium and at the same time deoxygenated blood from the peripheral
circulation enters the right atrium through the superior and inferior vena cavae.
After this atrial filling, both atria contract and pump the blood into the ventricles.
During the subsequent contraction phase, systole, the ventricles contract and force
the blood out 1) from the left atrium through the aorta to the peripheral circulation
and 2) from the right ventricle through the pulmonary arteries to the lungs.

2.2 Cardiac Action Potential

The phenomenon that initiates the contraction of the cardiac muscle, is called the
cardiac action potential. It is a bioelectrical event in which the voltage over the outer
membrane of a nerve or a muscle cell (sometimes called the membrane potential)
rises and falls back to the baseline. The shape of the action potential differs between
different parts of the heart (for an example, see Figure 2.2).

Figure 2.1: a) The heart. b) The conduction system of the heart.
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Generation of Cardiac Action Potentials

Cardiac action potentials can be generated in certain parts of the conduction system
of the heart, a network of specialised cardiac muscle cells (see Figure 2.1b). The
primary source of cardiac action potentials is the sinoatrial node (SA node), the
“pacemaker” of the heart, which is located in the upper part of the right atrium.
When isolated from any nervous input, a healthy SA node generates action poten-
tials with a rate depending on the age of the person. This intrinsic heart rate has
been estimated to be 181.1− (0.57× age) beats-per-minute (BPM). In addition to
the intrinsic heart rate, input from the autonomic nervous system to the SA node
affects the actual rate at which cardiac action potentials are generated.

If the SA node does not function properly, or if there is a blockage in the con-
duction tract, another part of the conduction system can take the pacemaker role,
e.g. the atrioventricular node (AV node) or even the Purkinje fibers. Without input
from the upper parts of the conduction system, the AV node and the Purkinje fibers
pulsate at their own intrinsic pulsation frequency, which is lower than the intrinsic
heart rate. This limits the heart rate and therefore the performance of the heart.

Heartbeats that are not originated from the SA node are broadly called ectopic
beats. One type of ectopy is a premature ventricular contraction (PVC), where the
ventricles contract abnormally early and where the origin of the beat is in the AV
node, in the atrium or in the ventricular muscle. PVCs cause very noticable distor-
tions to the cardiac action potential seen in the electrocardiogram.

Intracellular Conduction of Cardiac Action Potentials

The conduction of a cardiac action potential inside a cardiac muscle cell is based
on the active transportation and passive permeation of electrically charged ions
through the cell membrane. At rest, the ionic distribution over the cardiac muscle
cell membrane is anisotropic. There is an excess of potassium (K+) ions inside the
cell and a surplus of sodium (Na+), calcium (Ca2+) and chloride (Cl−) ions outside
the cell. This distribution makes the membrane electrically polarised, with the po-
tential inside of the cell about 90 mV less than the potential outside. Osmosis force
would balance the concentration differences over the membrane, but the imbalance is
maintained by specialised ion-pumps, the Na+-K+ pump and the Na+-Ca2+ pump.

In addition to the active ion-pumps, there are passive voltage sensitive ion chan-
nels in the cell membrane. These channels open when an action potential wave
comes to their proximity e.g. from another cell. This allows the free flow of nearby
ions into and out of the cell to decrease the concentration gradients over the mem-
brane. Ion channels specific to Na+ are fast to react to a voltage change, while the
channels specific to Cl−, Ca2+ and K+ are slower.

The first phase of the cardiac action potential is depolarisation, where the Na+

ions flow into the cell, increasing the membrane voltage quickly from a negative
value to a positive one. The Na+ channels close very rapidly and the second phase,
repolarisation, begins with the opening of Cl− channels, allowing Cl− ions to flow
into the cell. The following simultaneous opening of K+ and Ca2+ channels induce
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Figure 2.2: The action potential of a ventricular cardiac muscle cell.

a plateau in the membrane voltage. Finally, the flow of K+ ions outside decreases
the membrane voltage back to resting voltage (see Figure 2.2).

The Ca2+ ions now inside the cell initiate the contraction of the cardiac muscle
cell. Because electrical charge flows through the aforementioned ion channels, also
nearby ion channels, being sensitive to voltage changes, are triggered to open, there-
fore continuing the chain reaction of a moving action potential wave.

Intercellular Conduction of Cardiac Action Potentials

The action potential spreads to adjacent cardiac muscle cells efficiently via gap
junctions, because they allow movement of the electrically charged ions between ad-
jacent cells. The action potential generated in the SA node travels in two directions:
The first target is the atrioventricular node (AV node), which lies between the atria
and the ventricles, through three internodal tracts while simultaneously depolarising
the cardiac muscle cells in the right atrium. The second target is the Bachmann
bundle in the left atrium and depolarisation of the left atrium.

The conduction velocity of the action potential wave decreases significantly in
the AV node. This provides an adequate temporal window for the contraction of
the atria to drive the blood into the ventricles. There is an electrically insulating
fibrous tissue layer between the atria and the ventricles, which does not allow the
action potentials to move directly from the atrial cells to the ventricular cells.

After the significant delay in the AV node, the action potential wave moves
rapidly through the His bundle, into the left and right bundle branches, and on into
the Purkinje fibers, which spread the depolarisation wave to the ventricles. As the
ventricles depolarise, the atria repolarise simultaneously. After a significant delay,
the ventricles repolarise also, completing the contraction cycle of the heart.
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2.3 Regulation of Heart Rate by the Autonomic Nervous Sys-
tem

Neurohumoral regulation of the function of the heart takes place to ensure adequate
blood supply in vital organs. Neural regulation is performed by the autonomic
nervous system (ANS) in an automatic and unconscious manner. The ANS can be
physiologically divided into the sympathetic and the parasympathetic (also known
as vagal) branches. The sympathetic nervous system is dominantly responsible for
regulation of organs in activities associated with stress responses, which generally
require a higher heart rate. The parasympathetic nervous system, on the other
hand, has a dominant role in activities associated with rest, for which a slower heart
rate is adequate.

Signal transfer in the nerves operates by conduction of action potentials; to a
great extent in the same way as in ventricular muscle cells. The nerves consist of
bundles of sequential neurons connected to each other by synapses. Notable devia-
tions from the action potential of a ventricular muscle cell are shorter repolarisation
time and the lower number of ions involved: only Na+ and K+ ions participate in the
process. In addition, the conduction of action potentials in nerves is unidirectional
because of the synaptic connections between individual neurons.

Because of the unidirectionality, both branches of ANS must have separate nerves
for afferent signaling (sensory nerves) and efferent signaling (e.g. motor nerves). Af-
ferent signals from the sensory receptor organs can be thought of as input to the
heart rate control system in the brainstem, while the output from that system is the
efferent signaling to e.g. the SA node.

Efferent Innervation

In the heart, the efferent nerves control e.g. the conduction velocity of cardiac
action potentials, myocardial contractility, the diameter of coronary arteries and
the heart rate (i.e. cardiac chronotropic control). The heart rate is regulated by di-
rect sympathetic and parasympathetic innervation of the SA node and the AV node.
Increased activity of the sympathetic efferent nerves and decreased activity of the
parasympathetic efferent nerves stimulate the pacemakers, thus increasing the heart
rate. Respectively, decreased sympathetic activity and increased parasympathetic
activity inhibite the nodes, which decreases the heart rate.

Afferent Innervation

There are afferent nerve receptors in the heart, arteries, lungs and skeletal mus-
cles that participate in regulation of heart rate. Baroreceptors in the walls of the
atria, the ventricles, the aorta and the carotid arteries sense changes in blood pres-
sure. Chemoreceptors, which can sense the concentration of oxygen and carbon
dioxide in blood as well as pH and temperature of blood, can be found e.g. in the
walls of the ventricles and in the common carotid artery.

The receptors of afferent parasympathetic and sympathetic nerves are in differ-
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ent locations in the heart: The receptors of sympathetic afferent neurons are located
in the epicardium, the outer part of the heart, while the parasympathetic afferent
neurons synapse deeper in the heart, in the endocardium. This may expose the
parasympathetic receptors to damage in ischemic heart disease associated necrosis
of the endocardium.

Central Nervous System Connections

The ANS and its sensory organs also have connections to the central nervous sys-
tem. Afferent signals from the heart, arteries, lungs, skin and skeletal muscles are
transferred to e.g. the cortex and the hypothalamus, which in their own part affect
the regulation of heart rate. The efferent connections downwards from the central
nervous system allow also emotions and stress to have input on control of heart rate.

2.4 Periodic Components of Heart Rate Variability

By studying the temporal oscillations in the heart rate, it is in some cases possible
to obtain indirect information about the normal function of the autonomic nervous
system as well as discover novel diagnosis and therapeutic methods for neuropatholo-
gies. Also, by examining the interdependencies between HRV and other biosignals,
e.g. blood pressure and respiration, it is possible to gain further insight into the
autonomic nervous system.

Generally, the response of sympathetic nerve receptors to a stimulus is slow, in
the order of seconds, while the response of parasympathetic receptors can be either
slow or fast. Therefore, sympathetic nervous system activity causes low frequency
oscillations in HRV, while the parasympathetic nervous system drives both lower
and higher frequencies. To assess the periodic components of HRV more precisely,
the spectrum of the signal and specific spectral bands can be studied. The most
established division of the HRV spectrum is the following spectral bands [36, 38]:

• Ultra Low Frequencies (ULF): [0, 0.003] Hz
• Very Low Frequencies (VLF): [0.003, 0.04] Hz
• Low Frequencies (LF): [0.04, 0.15] Hz
• High Frequencies (HF): [0.15, 0.4] Hz

Some extensively studied phenomena appear on specific frequencies or frequency
bands of HRV: The first relationship with HRV and another physiological process,
respiratory sinus arrythmia (RSA), was observed already in the 18th century. In
RSA, the heart rate accelerates during inhalation and decelerates during exhalation.
The resulting frequencies in the HRV time series correlate are usually in the HF
frequency band. Apart from RSA, the HF band oscillations are believed to be
caused by parasympathetic activity.

The LF frequency band contains information about baroreceptor activity and the
0.1 Hz Mayer wave, which is caused by cardiac mechanoreceptors and chemorecep-
tors. It is generally believed that LF frequencies are the product of both sympathetic
and parasympathetic activity.
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The meaning of oscillations in the VLF and ULF frequency bands are less well
defined. They could possibly be caused by changes in the renin-angiotensin system,
thermoregulation, vasomotorics and also by humoral factors. In general, the system
regulating the heart rate is very complex and more research is required to understand
it entirely.



Chapter 3
Measurement of Heart Rate Variability

HRV is defined as a biosignal which is constructed from the time differences between
consecutive heart beats, i.e. heart beat intervals. HRV is typically derived from the
electrocardiogram (ECG), although it can also be reliably derived from magneto-
cardiography also [40, 41]. While magnetocardiography is an accurate bioelectro-
magnetic measurement method and requires no contact between the measurement
devices and the subject, it is not suitable for ambulatory measurements.

Somewhat similar time series describing the cardiac cycle can be constructed
from photoplethysmography, biomedical ultrasound, nuclear medicine, microwave
reflectometry [27] and continuous blood pressure measurements. As these measure-
ments yield information about circulation of blood or dimensions of the cardiac
muscle, as opposed to the bioelectrical information obtained from ECG, they have
different applications than HRV derived from ECG.

3.1 Electrocardiography

Electrocardiography (ECG), invented by Willem Einthoven in 1902 [9], is concerned
with the measurement and analysis of the electrocardiogram (similarily abbreviated
ECG), which is the electrical manifestation of the contractile activity of the heart.
In other words, the ECG shows the voltage over time induced on the measurement
electrodes by the cardiac action potential wave travelling through the heart. Mea-
surement electrodes are usually placed on the surface of the thorax or on the limbs.
ECG is used widely in the clinical as well as in the research laboratory setting e.g.
to

• study the rhythm of the heart and to diagnose arrhythmias
• monitor the long-term effects of cardiovascular drugs
• diagnose conduction disturbances in the heart
• study metabolism and oxygen supply of the heart
• locate and measure injuries and scar tissue in the heart muscle
• assess overgrowth of the heart muscle
• diagnose electrolyte abnormalities
• assess cardiovascular risk in occupational and sports science [17, 22].

17
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As the cardiac action potential (see Subsection 2.2) moves through the conduc-
tion system of the heart and activates contraction of the cardiac muscle cells, it
generates a time-dependent electric field around the heart.

As defined in [22], the depolarisation and repolarisation waves of cardiac muscle
contraction can be modeled as dipole layers, i.e. planes consisting of closely packed
electrical dipoles normal to the plane surface. The dipoles in the layer model the
extracellular potential caused by the influx and efflux of the electrically charged ions
through the cell membrane.

When an approximately cylinder shaped cardiac muscle cell depolarises in one
end (let us call this the activation origin), the extracellular potential at that end
becomes negative (see Subsection 2.2). The easily conducting gap junctions between
the cells force the emerging electrical field to be parallel to the cell. Thus, the emerg-
ing electrical field around the cell points away from the activation origin towards
the other end, the activation target, which has positive potential around it. This
can also be seen as a dipole with the negative end pointing to the activation origin
and the positive end pointing to the activation target. Thus, the positive polarity
of the dipole layer modeling the moving depolarisation wave is in the direction of
wave movement. The negative polarity of the dipole layer points backwards.

Repolarisation wave follows the depolarisation wave with a delay dependent on
the type of the cell [22]. The dipole layer modeling the repolarisation wave has
reverse polarity compared to the depolarisation wave. Thus, the negative polar-
ity points in the direction of movement of the wave and positive polarity points
backwards.

If the voltage, caused by the movement of the dipole layers from the activation
origin to the activation target, would be measured parallel to the cardiac muscle cell,
with the ground electrode at the activation origin end, the voltage would be positive
during the depolarisation, negative during the repolarisation and zero otherwise.
This measurement can be called the electrogram [12, 13]. The electrocardiogram,
on the other hand, is the sum of the electrograms produced by all the muscle cells
in the heart.

3.1.1 Waveform of the Electrocardiogram

The waveform of the normal ECG signal from a healthy person during one cardiac
cycle can be seen in the Figure 3.1. This form can be obtained from a measurement
made parallel to the electrical axis of the heart, i.e. approximately parallel to the
left and right bundle branches (see Figure 2.1b) with the ground electrode near the
right clavicle and the positive electrode under the heart on the left side of the chest.

The normal ECG waveform consists of several waves, known as P, Q, R, S,
T and U waves. The positive P wave is the result of depolarization of the atria.
The baseline between the P and Q waves, the PQ interval, results from the delay
of the depolarisation wave in the AV node. The repolarisation of the atria and the
depolarisation of the ventricles occurs during the negative Q, positive R and negative
S wave, together known as the QRS complex. Because of the larger muscle mass of
the ventricles, ventricular depolarisation masks the repolarisation of the atria in the
ECG. Thus, the QRS complex represents ventricular contraction [13, 22].
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Figure 3.1: The waveform of the ECG with the different waves.

The T wave is caused by ventricular repolarisation. According to the description
of the electrogram in the previous subsection, the repolarisation waveform on the
ECG should be negative. But because the action potential duration in epicardium is
shorter than in the endocardium, the epicardium repolarises before the endocardium,
in spite of earlier depolarisation of the endocardium. Therefore the wave representing
ventrical repolarization, the T wave, is positive [13, 22].

The shape and number of the waves can change due to cardiac pathologies [13,
22]. This is the basis for many cardiac disease diagnostics.

The frequency content of the ECG waveform lies between frequencies 0.05 and
500 Hz, while most of diagnostically relevant signal power is under 100 Hz. The
QRS complex has center frequency around 17 Hz and the T wave a frequency of 1–2
Hz [17, 39].

3.1.2 Resting ECG

There are several different paradigms of ECG measurement for different purposes.
Resting ECG is the most standard measurement paradigm in the clinical setting
[17]. It utilises the international standard "12 lead ECG", in which 12 separate
channels of ECG are measured by ten electrodes placed on the thorax and on the
limbs. In ECG lexicon, the word "lead" can mean both a measurement channel and
an electrode, thus the use of terms "channel" and "electrode" is preferred in this
work.

Placement of the thorax electrodes in resting 12 channel ECG is the following
[17] (see also Figure 3.2):

• V1 in the fourth intercostal space, at the right sternal border
• V2 in the fourth intercostal space, at the left sternal border
• V4 in the fifth intercostal space, in the left midclavicular line
• V3 between V2 and V4
• V6 in the left midaxillary line, at the horizontal level of V4
• V5 between V4 and V6.

Additionally, three limb electrodes are placed on the left wrist (left arm electrode,
LA), on the right wrist (right arm electrode, RA) and on the left ankle (left leg



3. Measurement of Heart Rate Variability 20

V1 V2

V3

V6

Le
ft
m
id
cl
av
ic
u
la
r
lin
e

V5V4

LARA

LLRL

Figure 3.2: The locations of the thorax electrodes in the 12 channel ECG and
the locations of the limb electrodes in the Masor-Likar modification [24].

electrode, LL). A ground electrode is placed on the right ankle (right leg electrode,
RL).

The twelve ECG channels are bipolar measurements measured between two elec-
trodes, using the right foot ground electrode as the reference. Let us denote the
voltage between each electrode and the ground with LA, RA, LL, V1, V2, V3, V4,
V5 and V6, respectively. Now the twelve bipolar ECG channels can be derived from
these voltages:

I = LA− RA V1 = V1− VW

II = LL− RA V2 = V2− VW

III = LL− LA V3 = V3− VW

aVR = RA− 1

2
(LA + LL) V4 = V4− VW

aVL = LA− 1

2
(RA + LL) V5 = V5− VW

aVF = LL− 1

2
(RA + LA) V6 = V6− VW,

where VW = 1
3
(RA + LA + LL) is the Wilson’s Central Terminal, the average voltage

of the three limb electrodes. The precordial channels V1, V2, V3, V4, V5 and V6, are
written here with subscript to differentiate them from the above mentioned voltages.
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3.1.3 Exercise ECG

In exercise ECG, a modified version of the resting ECG 12 channel system is often
used. In this so called Mason-Likar electrode placement system [24], the thorax
electrodes are placed in the same way as in resting ECG, but the limb electrodes are
placed on the torso as shown in Figure 3.2. This reduces EMG artefact from muscles
of the moving limbs and motion artefact caused by the moving electrode cables, but
the alternate electrode placement may also somewhat distort the shape of ECG
signal. Therefore, the exercise ECG measurements are not directly comparable with
resting ECG measurements for all purposes [17].

3.1.4 Long Term ECG

Long term ECG monitoring is used for arrythmia diagnosis and follow up of phar-
maceutical effects. A 24 h ECG measurement is conventionally called a “Holter”
–measurement. Different number of measurement channels, from 1 to 12, are used
in Holter-measurements with the placement of electrodes following approximately
that of the 12 channel measurement setup. Applications of the long term ECG mea-
surements include arrythmia diagnosis, monitoring of ST-segment, QT-time and the
shape of the T-wave [13]. The application studied in detail in this work is moni-
toring and analysis of RR intervals, i.e. HRV analysis. When the detection of RR
intervals is the main interest in the measurement, bandpass filters that emphasise
the 10 Hz QRS complex can be used.

3.1.5 Sampling

The sampling frequency for ECG measurement should satisfy the Nyqvist sampling
theorem, which means the sampling frequency should be at least twice as high as
the highest frequency of the measured signal. Generally, in a clinical resting ECG,
a sampling frequency of 500 Hz is used, while in high resolution ECG, 1000 Hz or
higher values can be used [32]. For HRV analysis, the sampling frequency of ECG
should be 500–1000 Hz [5] to resolve the very slow RR fluctuations also.

3.1.6 Electrode Material and Placement

Typically, disposable and adhesive silver-silver chloride (Ag-AgCl) surface electrodes
are used on the thorax. In resting ECG, reusable electrodes are generally used
around the wrists and the ankles, but in exercise and long term ECG, only disposable
and adhesive electrodes are used. Ag-AgCl-electrodes are almost completely non-
polarisable, meaning that no capacitative layer is formed on the electrode-skin-
interface. This reduces artefact caused by electrode movement [42].

As in all biomedical signal measurement paradigms that utilize surface electrodes
to measure a voltage produced by a subcutaneous tissue, to get best signal quality,
the impedance on the electrode-skin-interface has to be equal on all electrodes. To
achieve this most reliably, the impedance can be minimised by shaving the hair
under the electrode, abrading the skin with e.g. sand paper and cleansing the skin
with alcohol before attaching the pre-gelled electrode. The skin-electrode interface
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should to be left to stabilise chemically for a short period of time before conducting
the actual measurements [13, 42].

Electrical conduction over the skin-electrode interface can be further enhanced
with added conductive paste or gel, if not included in the disposable electrode.
Sweating and increased perfusion near the measuring site increase the electrical
conductivity of the skin-electrode interface. Sweating or excess use of conductive
gel may also cause short-circuiting of electrodes located very close to each other or
loosening of electrodes from the skin [13].

3.1.7 Variability in ECG and Measurement Artefacts

There is always some variation in the ECG between subjects (interindividual vari-
ability), between measurement sessions for the same subject (intraindividual vari-
ability) and also between single heartbeats within the same measurement session
(beat-to-beat variability) [35]. Measurement environment, instrumentation, and
physiological factors affect the variability in the measured signal and can cause arte-
facts that interfere with the analysis of the signal and diagnosis.

Physiological Variability and Sources of Artefacts

There are numerous physiological factors that affect the ECG. The position and
orientation of the heart vary interindividually and also intraindividually due to pos-
ture changes. Thus the direction of the currents from the heart vary also which
affects the precision at which certain surface electrode positions can measure cor-
rect voltages [35].

The electrical activity of the skeletal muscles, the electromyogram (EMG), has
most power in the frequency band of 5-400 Hz when measured on the skin [14]. Thus,
it contains overlapping frequencies with the ECG signal, including the QRS complex,
and can not be completely removed with frequency domain filtering. EMG activity
originates from movement of the limbs, other muscular tension and shivering due to
a cold environment. This is naturally inevitable in monitoring measurements and
therefore a certain amount of low-pass filtering is needed, if e.g. only the frequency
content of the QRS complex is of interest in the measurement.

Subject movement can also cause movement or complete disengagement of the
electrodes and the electrode cables. Movement of the electrode cables can change
the area of the current loops formed by the conductive skin and the cables. This
phenomenon facilitates the contamination of the ECG signal by electromagnetic
interference from external sources [35] (see more specifically in the next subsection).

Age, weight and ethnicity have been proven to have noticable effect on the mea-
sured ECG signal as well [35]. The effect of age is more pronounced during the
age interval 10-18 years and the trends of change flatten after the age of 50 years.
The age has an effect also on the occurrence rate of ventricular and supraventricular
premature beats [35], where the conduction of the action potential from the SA node
is for some reason blocked, and therefore the ventricles are activated by an action
potential originating from either the AV node or from the Purkinje fibers, rather
than by an SA node action potential.
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Pregnancy increases heart rate and also cardiac output. Changes in body temper-
ature, and therefore also eating and drinking affect the action potential conduction
in the heart. Temperature changes have effects also on the autonomic nervous sys-
tem control of the heart. Physical training increases cardiac muscle mass, increases
the voltages of ECG, slows down the resting heart rate and increases the conduction
times in the ventricles [35].

Technical Sources of Artefacts

Incorrect electrode placement of the precordial electrodes in the 12-channel ECG
can lead to incorrect diagnosis and incomparability of the resulting signals to cor-
rectly measured signals [13, 35]. Training of measurement personnel is the most
efficient way to deal with this type of artefacts.

Inadequate attachment and adhesion of the electrodes to the skin may cause
disengagement of the electrodes and therefore abrupt baseline jumps in the ECG or
complete loss of signal. Invalid choice of filters, sampling rate or electrode material,
inadequate skin preparation or an amplifier input impedance of less than 5 MΩ
may all constitute artefacts in the measured signal that can hamper analysis and
diagnosis [35].

Electromagnetic interference from alternating current near the measurement site
can produce a noticeable 50 or 60 Hz power line interference frequency component
in the signal via capacitative coupling [13, 35]. This can be minimised by equalising
the contact impedances of the electrode-skin-interfaces, using high input impedance
amplifiers, shielding the electrode cables and by minimising the area of the current
loops. The area can be reduced by simply using short cables between the electrode
and the amplifier or by fixing the cables firmly to the skin. Longer cables can be
wound around each other, creating current loops with reverse polarity, which nullify
the effect of each other to some extent, i.e. using twisted pair cabling.

If the power line interference has contaminated the ECG signal, it may be re-
moved via proper analog or digital filtering or advanced methods [19]. These post-
processing methods can distort the signal or remove desirable frequency content,
thus it is always preferable to optimise the measurement setting instead.

3.2 QRS Detection

The HRV time series can be formulated from an ECG measurement by detecting
the occurrence of heart beats and calculating the time intervals between consecutive
beats. To obtain the most direct information about the control of the ANS to the
sinus node, heart beat occurrence times should be determined from the time points
when action potential is generated in the SA node (see Chapter 2). The voltage
induced between surface ECG electrodes by generation of the action potential in
the SA node is very small and thus hard to distinguish from measurement noise.

The R wave is produced by depolarisation of the ventricles and it has the high-
est signal-to-noise ratio of all ECG waves in the surface ECG. This is because the
ventricles have the highest cardiac muscle cell count of all parts of the heart and
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because the cells depolarise virtually simultanously. Defining the heart beat occur-
rence time, and the HRV time series, based on the occurrences times of R waves
thus gives heart beat detection the highest reliability.

There are several types of R wave peak detectors, or in a more broad sense,
QRS detectors. Some detector algorithms are based simply on detecting the rising
edge of the R wave through derivative operations, while more advanced algorithms
use linear and nonlinear filters, different transformations and decision algorithms
that adapt the function of the detector to changes in the ECG signal. Some QRS
detectors utilise one ECG channel [18, 29] and some use several channels [7].

The accuracy of QRS detectors can be quantified by the metrics sensitivity sqrs

and positive predictivity pqrs [18]:

sqrs =
TP

TP + FN
(3.1)

pqrs =
TP

TP + FP
, (3.2)

where TP = true positive, FP = false positive and FN = false negative. A false
positive value means, that something else than an actual R wave was labeled as one.
A false negative, on the other hand, is an actual manually verified R wave undetected
by the algorithm. A detected R wave can be considered to be true positive, if it is
in the range of ± 75 ms from the actual R wave [18].

A classical online QRS detector by Pan and Tompkins [29] is described here.
The detector algorithm has been proven useful in presence of several kinds of ECG
artefacts [30]. It contains the following four preprocessing steps. The input to each
step is denoted with xi, i = 1, ..., N and the output with yi.

1. 5–11 Hz digital bandbass filter to remove baseline trend and high frequency
noise, and to amplify QRS complex frequencies.

2. Difference operator to emphasise fast changes in the signal:

yi =
1

10
(2xi + xi−1 − xi−3 − 2xi−4), (3.3)

where N is the number of datapoints in the ECG signal. This filter approxi-
mates a linear derivative operator between frequencies 0–30 Hz [29].

3. Squaring operator:
yi = x2

i , (3.4)

4. Moving average operator:

yi =
1

W

W∑
k=1

xk (3.5)

W =
150 ms

fs
(3.6)

where W is the window width of the moving average in number of datapoints
and fs is the ECG sampling frequency.
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After preprocessing, the detector uses an adaptive threshold and a decision al-
gorithm to categorise all positive deflections in the ECG to 1) R waves or 2) noise
peaks. The decision algorithm uses average voltage of the R waves, average RR
interval and physiological boundary values to adapt to changes in the ECG.

The variation in successive RR intervals can be very low in e.g. infants or
subjects with low RSA, even in few milliseconds. Factors affecting in the accurate
and precise detection of these changes are quality and sampling rate of the ECG,
and an accurate QRS detector. The error due to a low sampling frequency has an
especially large effect on spectral estimates of the HRV signal when the variation
in RR intervals is small [25]. The recommended sampling rate for ECG meant for
HRV analysis is 250 to 500 for healty adults, giving an precision requirement of ±
2 to ± 4 ms. For subjects with especially low-amplitude RR variation, sampling
rate of 500 to 1000 Hz is recommended, giving ± 1 to ± 2 ms precision requirement
[4, 33].

The HRV time series formulated from the R wave occurrence times (see Figure
3.3) can be visualised e.g. as a tachogram (see Figure 3.4a), where each heart beat
interval is represented as a function of the interval number. The signal can also be
represented as a time series (see Figure 3.4b), where the same heart beat intervals
are represented as a function of the occurrence time of the end point of the interval.
This time-series is naturally non-equispaced, if the RR interval is not constant during
the whole measurement.

Figure 3.3: Construction of the HRV time series from RR intervals.
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Figure 3.4: Visualisation of the measured RR intervals. a) Tachogram. b)
Non-equispaced HRV time series.



Chapter 4
Analysis of Heart Rate Variability

There are several measures that can calculated from the HRV time series, including
ones that express general parasympathetic or sympathetic activity. The calculated
measures are used e.g. in prognosis of several diseases and in sports science. The
analysis methods to gain these measures are generally divided into time domain,
geometrical, frequency domain and nonlinear methods [38]. There are also different
techniques to preprocess the HRV time series to render it suitable for certain time
domain and spectrum estimation methods as well as techniques to detect and correct
artefacts in the HRV time series. In this thesis, the attention is on some of the most
popular time and frequency domain analysis methods.

4.1 Artefact Detection and Correction

Before the measured HRV time series is ready for trend removal or further analy-
sis, possible measurement artefacts and strong deflections caused by physiological
anomalies, including premature ventricular contractions, have to be accounted for.
Because the goal of HRV analysis is to look at the ANS control over the heart rate,
only normal heart beats initiated by SA action potentials can be included in the
analysis as such. The artefacts cause significant bias especially in time and fre-
quency domain estimates of HRV, while some geometrical and nonlinear methods
are less vulnerable to artefacts [4].

The sections of a time series which contain these artefacts can be either excluded
from the analysis altogether or corrected by some interpolation method. In some
situations excluding data with artefacts could yield selection bias to the analysis
results, rendering correction of the artefacts inevitable is these situations.

Most typical types of artefacts are missed or spurious QRS complexes between
the actual ones. These are seen in the HRV time series as RR values about double or
half value compared to the trend of the preceding and following data, and therefore
these artefacts are somewhat simple to detect. Moving average or some other type
of low-pass filter is one method to detect and to correct these outliers. Algorithms
based on moving average usually reject RR values that differ more than a certain
percentage from the average of a static number of past RR values [20]. The methods
based on mean of past values can also have adaptive parameters, which allows

27
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training of the algorithm to individuals [31].
Median filtering is an alternative to the low-pass approach in this problem. The

upside of a median filter is the good ability to detect and correct impulse-like arte-
facts, while the downside is nonlinearity of the median operation, which renders the
median filter ineligible for frequency domain examination.

4.2 Preprocessing

The HRV time series is a non-equispaced time series, if there is any variation in the
RR intervals. Traditional spectral analysis methods, such as the Discrete Fourier
Transform (DFT) and autoregressive (AR) modeling require the time series to be
equispaced, stationary and zero-mean (see Section 4.5). The HRV time series can
be morphed to an equispaced time series by e.g. linear or cubic spline interpolation
and by sampling new, equispaced, data points from the interpolation functions.

Especially during long-term recordings and varying levels of physical activity,
the HRV time series is non-stationary and it is, by definition, never zero-mean.
Thus, trend removal methods must be applied before spectral analysis with the
aforementioned methods can be carried out. For example, in measurements shorter
than 5 minutes, VLF and slower frequencies do not contain reliable information,
and can thus be discarded [38]. The effect of detrending on the estimates of LF
frequencies is significant, especially when estimating the HRV spectrum with a low
order autoregressive time series model (see Section 4.5) [37].

There are a number of trend removal methods available for HRV analysis. These
include polynomial fits, low-pass filtering and advanced methods, such as smooth-
ness priors. Smoothness priors is applied for the measurements conducted in this
work. To understand the method, basics of least squares (LS) estimation have to be
reviewed first.

Least Squares Estimation

Assume that we have measurements x = (x1, x2, ..., xN)T ∈ RN taken at time in-
stances t1, t2, ..., tN , where (·)T denotes the transpose operation. We can fit a model
in this data, e.g. a linear observation model

x = Hθ + e, (4.1)

where H ∈ RN×p is the observation matrix, θ = (θ1, θ2, ..., θp)
T ∈ Rp is a parameter

vector describing the model and e = (e1, e2, ..., eN)T ∈ RN is an observation error.
If p < N , the system of equations x = Hθ is overdetermined, and therefore no θ
can satisfy the system of equations. Instead we have to find θ̂, an estimator for θ.
The LS solution for θ̂ can be defined as the parameter vector θ that minimises the
squared norm of the error [23]:

l(θ) = ||e||2 (4.2)
= ||x−Hθ||2, (4.3)
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where || · || is euclidian norm. It can be proven (see e.g. [16]) that the function (4.3)
is minimised when the residual vector x−Hθ is orthogonal to R(H), a p dimensional
subspace spanned by the columns of H. This orthogonality can be expressed as an
inner product:

< x−Hθ̂,Hθ >= 0, ∀θ, (4.4)

where θ̂ is the best estimator for θ in LS sense, so that Hθ̂ ∈ R(H). Now we can
use this expression to solve the θ̂ that minimises the function (4.3):

(Hθ)T (x−Hθ̂) = 0, ∀θ (4.5)

θTHTx− θTHTHθ̂ = 0 (4.6)

θT (HTx−HTHθ̂) = 0 (4.7)

< HTx−HTHθ̂, θ > = 0. (4.8)

Because this must be true for all θ,

HTx−HTHθ̂ = 0 (4.9)

HTHθ̂ = HTx (4.10)

θ̂ = (HTH)−1HTx, (4.11)

where (·)−1 denotes the inverse matrix. The above solution exists, if (HTH) is an
invertable matrix. To estimate values x in the time instances t according to the
parameter estimates θ̂, the prediction of the model (4.1) can be used:

x̂ = Hθ̂. (4.12)

Smoothness Priors

Smoothness priors are a set of regularised variants of the least squares (LS) esti-
mation method. The method presented here is an application to detrending the
HRV time series, originally published in [37]. As the name of the method implies,
it uses prior information the smoothness of the trend of the HRV time series. The
measured RR intervals x ∈ RN can be thought to be a sum of a smooth trend
component s ∈ RN and the underlying true HRV time series u ∈ RN :

x = s+ u. (4.13)

The trend s can be modeled with a linear additive observation model:

s = Hθ + e, (4.14)

where H ∈ RNxp is the observation matrix, θ ∈ Rp is the parameter vector of the LS
regression, N is the number original datapoints and p is the number of parameters.
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In smoothness priors, the minimised function is

l(θ) = ||x−Hθ||2 + λ2||D2Hθ||2, (4.15)

where λ ∈ R is the smoothing parameter and D2 is a difference operator, a discrete
approximation of the second derivative:

D2 =


1 −2 1 0 0 . . . 0
0 1 −2 1 0 . . . 0

. . .
0 . . . 0 1 −2 1 0
0 . . . 0 0 1 −2 1

 ∈ RN−2×N . (4.16)

The term ||x − Hθ||2 in the function (4.15) is the squared error norm seen in the
LS estimation method and the term λ2||D2Hθ||2 is the regularisation term, which
adjusts the effect of the squared norm of the second derivative of the prediction
Hθ on the minimised function. If λ = 0, no smoothing is applied, and the solution
(parameter estimates θ̂ and prediction Hθ̂) is the same as in the normal LS case.
With higher values of λ, a smoother prediction for the trend is achieved.

Now we can write the function (4.15) in a form similar to (4.3), on which we can
apply the LS solution (4.11):

l(θ) = (x−Hθ)T (x−Hθ) + (λD2Hθ)
T (λD2Hθ) (4.17)

=
[
(x−Hθ)T (λD2Hθ)

T
] [x−Hθ
λD2Hθ

]
(4.18)

=

[
x−Hθ
λD2Hθ

]T [
x−Hθ
λD2Hθ

]
(4.19)

=

∣∣∣∣∣∣∣∣[x−HθλD2Hθ

]∣∣∣∣∣∣∣∣2 (4.20)

=

∣∣∣∣∣∣∣∣[x0
]
−
[

H
λD2H

]
θ

∣∣∣∣∣∣∣∣2 . (4.21)

This can be written as 

l(θ) = ||x̃− H̃θ||2

x̃ =

[
x
0

]

H̃ =

[
H

λD2H

] (4.22)

and can therefore be solved with (4.11):

θ̂ = (H̃T H̃)−1H̃T x̃. (4.23)
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This can be reduced to

θ̂ =

[[
H

λD2H

]T [
H

λD2H

]]−1 [
H

λD2H

]T [
x
0

]
(4.24)

=

[[
HT (λD2H)T

] [ H
λD2H

]]−1 [
HT (λD2H)T

] [x
0

]
(4.25)

= (HTH + λ2HTDT
2 D2H)−1(HTx). (4.26)

When the only assumption of the trend s is smoothness, the observation matrix H
can be chosen to be an identity matrix: H = HT = I ∈ RN×N . Therefore, we get

θ̂ = (I + λ2DT
2 D2)−1x. (4.27)

The prediction for the smooth trend component is thus

ŝ = Hθ̂ = θ̂ = (I + λ2DT
2 D2)−1x (4.28)

and the prediction for the underlying, nearly stationary, HRV time series from the
function (4.13):

û = x− ŝ = (I − (I + λ2DT
2 D2)−1)x. (4.29)
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Figure 4.1: The frequency response of smoothness priors at the middle point.
With a λ value of 500 and a sampling frequency of 4 Hz, the cutoff frequency
(3 dB or 1/

√
2 ≈ 0.7 attenuation) at this time point of the filter is 0.036 Hz.

The smoothness priors method can be thought of as a time-varying high-pass
filter. For example, the Figure 4.1 shows the frequency response of the middle
point of the smoothness priors filter. The cut-off frequency of the filter can be
increased by decreasing the smoothing parameter λ, and vice versa. An advantage
of the smoothness priors method is the ability to adjust the frequency response of the
filter with just one parameter, compared to complicated multiparameter adjustment
of a traditional high-pass filter, including order, ripple power and cut-off frequency
adjustment. Another advantage of the smoothness priors method is that filtering of
the data is strictest in the middle of the data and attenuated in the ends of data,
which decreases distortion at the end points [37].



4. Analysis of Heart Rate Variability 32

4.3 Time Domain Analysis Methods

The most straight forward HRV measures are time domain measures. The average
RR value and the average HR value are

RR =
1

N

N∑
j=1

RRj (4.30)

HR =
1

N

N∑
j=1

60

RRj

. (4.31)

A very popular measure describing overall variability in the HRV time series is the
Standard Deviation of Normal-to-Normal beats (SDNN) [38], emphasising that only
artefact free SA node originated data should be used in the calculation:

SDNN =

√√√√ 1

N − 1

N∑
j=1

(RRj − RR)2. (4.32)

A measure of short term variability is the Root Mean Square of Successive Differences
(RMSSD)

RMSSD =

√√√√ 1

N − 1

N−1∑
j=1

(RRj+1 − RRj)2. (4.33)

When using time domain HRV measures, it is important to compare measurements
of equal durations [38].

4.4 Geometric Methods

HRV Triangular index is defined as the ratio between the sum of the RR values and
the maximum height of the histogram of the RR values, when the histogram bin
width is 1/128 s [21]. The Triangular Interpolation of Normal-to-Normal interval
histogram (TINN) is defined as the width of the base of a triangle fitted to the main
peak in the histogram of the RR values. Both of these methods are insensitive to
artefacts in the measured HRV time series, but require measurements with a duration
of at least 20 minutes [38]. The HRV triangular index also correlates with the more
error-prone SDNN measure [1], and therefore is a candidate for interchangeable use
with the SDNN.

Another geometric analysis method is the Poincaré plot, which gives an estimate
of the correlation between successive RR values. It is an ellipse fit to the scatter
plot of RRj+1 as a function of RRj. See [1, 36] for details.

4.5 Frequency Domain Analysis Methods

When measuring variability in a time series, intuitively the most natural tool for
the task is spectrum analysis; either stationary or time-varying methods. The power
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spectrum or power spectral density (PSD) contains information about how the power
(i.e. variance) in the measured time series is distributed as a function of frequency.
Frequency domain measures of HRV can subsequently be computed from the spec-
trum.

Spectrum estimation methods can be divided in two categories: parametric and
non-parametric. The parametric methods include time series models such as the
autoregressive (AR) model, the moving average (MA) model and the combination of
these two: the ARMA model. Non-parametric methods, on the other hand, include
e.g. methods based on the discrete Fourier transform (DFT) and methods based on
wavelets. In this thesis, two spectrum estimation methods are presented and applied
to HRV data: the stationary AR model and DFT based Welch’s periodogram. The
description of the methods presented here is based on [36], if not stated otherwise.

4.5.1 Stationarity

The spectrum estimation methods presented in this thesis require the input time
series to be stochastic and stationary processes. A stochastic, i.e. random, process
xt, t = 0, . . . , N − 1 is a series of random variables. We can define expected value,
or mean, E{xt} and autocorrelation rx(j, k) for this process:

E{xt} =

∫ ∞
−∞

xp(xt)dx ∀t = 0, . . . , N − 1 (4.34)

rx(j, k) = E{xjxk} (4.35)

=

∫ ∞
−∞

∫ ∞
−∞

xjxkp(xj, xk)dxjdxk j, k ∈ [0, . . . , N − 1], (4.36)

where p(·) is the probability density function.
According to the most strict definition, a stochastic process is stationary only if

no statistical properties of the process change as a function of time. A less strict,
and more applicable, class of stationary processes is the class of wide-sense station-
ary processes, for which the mean E{xt} is constant ∀t = 0, . . . , N − 1 and the
autocorrelation rx(j, k) depends only on the time lag τ = j − k.
4.5.2 Autoregressive Spectrum Estimation

Stationary AR spectrum estimation is based on the assumption that the input time
series xt is a stationary AR process. This means that every data point xt is de-
termined by a white noise process et and the previous values of the time series
xt−1, . . . , xt−p, where p ∈ N is the order of the AR process. More precisely, an
AR(p) process is

xt =

p∑
j=1

ajxt−j + et, (4.37)

where (a1, ..., ap)
T = θ are the coefficients of the AR(p) process [23]. An AR(p)

process xt can also be interpreted as the output of a linear time-invariant (LTI)
system specified by θ, when the input signal to the system is white noise et. The
phases of AR spectrum estimation are the following:
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1. The model order p is first estimated somehow.
2. Then an AR(p) model is fit into the signal, the result of which are the AR(p)

model coefficients θ.
3. Finally the coefficients θ are used to calculate the power spectrum estimate.

Model Coefficient Estimation

In an AR(p) model, the white noise term in the AR(p) process is replaced by a
residual term ε

xt =

p∑
j=1

ajxt−j + εt, (4.38)

which is then minimised in some sense to compute estimates for the model coeffi-
cients. Methods to do this include minimising the variance or the squared norm of
the residual. The latter method is based on least squares, for which the system of
equations (4.38) must be written in matrix form in the following way:


xp+1

xp+2
...
xN

 =


xp xp−1 . . . x1

xp+1 xp . . . x2
...

...
xN−2 xN−3 . . . xN−p−1

xN−1 xN−2 . . . xN−p



a1

a2
...
ap

+


εp+1

εp+2
...
εN

 (4.39)

x = Hθ + ε (4.40)
ε = x−Hθ. (4.41)

The squared norm of the residual

||ε||2 = ||x−Hθ||2 (4.42)

is then minimised in LS sense (for comparison, see (4.3)) with the parameter estimate

θ̂ = (HTH)−1HTx. (4.43)

Spectrum Estimation

To estimate the power spectrum of xt using the estimated model coefficients θ̂ we
define the AR(p) process as

xt = −
p∑
j=1

ajxt−j + et. (4.44)
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By moving terms, by noting that a0 = 1 and by implementing the z-transform on
both sides of the equation we get

p∑
j=0

ajxt−j = et (4.45)

p∑
j=0

ajz
−jX(z) = E(z) (4.46)

X(z) =
E(z)∑p
j=0 ajz

−j , (4.47)

where X(z) is the z-transform of xt (system output) and E(z) is the z-transform
of et (system input). System function, also known as transfer function, H(z) of an
LTI system is defined as the ratio between the z-transform of the system output and
z-transform of the system input. Therefore, for an AR system

H(z) =
X(z)

E(z)
=

1∑p
j=0 ajz

−j (4.48)

X(z) = H(z)E(z). (4.49)

The frequency response of an LTI system is H(ei2πf/fs), where i is the imaginary
unit, f is frequency and fs is the sampling frequency. In other words, the frequency
response is the system function evaluated on the complex plane unit circle, where
z = ei2πf/fs . The power spectrum of the AR process (i.e. the output from the AR
system) is

PAR(f) =
∣∣X(ei2πf/fs)

∣∣2 (4.50)

=
∣∣H(ei2πf/fs)

∣∣2 ∣∣E(ei2πf/fs)
∣∣2 (4.51)

=

∣∣∣∣∣ 1∑p
j=0 aje

−i2πjf/fs

∣∣∣∣∣
2

Pet(f), (4.52)

where Pet(f) is the power spectrum of white noise et, which is equal to σ2
e/fs i.e.

constant by definition. Thus, we get for the power spectrum of the AR process

PAR(f) =
σ2
e/fs∣∣∣1 +

∑p
j=1 aje

−i2πjf/fs

∣∣∣2 . (4.53)

Because the measured data is assumed to be the output from an AR system, we
get the power spectrum of xt by replacing the coefficients aj with the coefficient
estimates âj. The variance of white noise σ2

e is estimated with the variance of the
residual σ2

ε , also using the estimated coefficients âj

σ̂2
e = σ2

ε = σ2
x−Hâ. (4.54)
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Therefore, we get

PAR(f) =
σ2
ε/fs∣∣∣1 +

∑p
j=1 âje

−i2πjf/fs

∣∣∣2 . (4.55)

It is also possible to decompose the AR spectrum into separate components repre-
senting ULF, VLF, LF and HF bands, but this is not discussed in this work. For
more information, see e.g. [23, 36].

Model Order Estimation

Usually in biosignal measurements, the exact characteristics of the physiological
system generating the signal are unknown. Therefore, methods to estimate the op-
timal model order for e.g. spectrum analysis are required. Selection of the proper
AR(p) model order to accurately model the underlying process owes to the prin-
ciple of parsimony, also known as the Occam’s Razor. It means that the simplest
solution to a problem is usually the correct one. Thus, the lowest order model that
sufficiently describes the signal at hand is the best choice [11].

We can quantize what is sufficient by e.g. examining the reduction in residual
variance σ2

ε as the model order p is increased. Advanced model suitability crite-
ria include the Final Prediction Error (FPE) [2], the Akaike Information Criterion
(AIC), Corrected AIC for sequences shorter than 20 samples (AICc), B-Information
Criterion (BIC), the Minimum Description Length (MDL) [34] and the φ criterion
(see reviews in [11, 36]):

FPE(p) = σ2
ε

(N + p)

(N − p) (4.56)

AIC(p) = N ln(σ2
ε ) + 2p (4.57)

AICc(p) = N ln(σ2
ε ) + 2p+

2(p+ 1)(p+ 2)

N − p− 2
(4.58)

BIC(p) = MDL(p) = N ln(σ2
ε ) + p ln(N) (4.59)

φ(p) = N ln(σ2
ε ) + p ln(ln(N)). (4.60)

Iterating from AR(p) models with low order to ones with a higher order and calcu-
lating the residual variance for each model, so-called criterion curves as a function of
model order can be calculated. With orders smaller than that of the actual process,
σ2
ε >> σ2

e , which is called under-modeling. On the other hand, over-modeling, i.e.
using models with higher order than the true one leads to only a minor decrease in
σ2
ε [11].
The above mentioned criteria have similar properties to σ2

ε . Thus, the best model
order can be chosen near the order where the selected criterion function levels off
or, in the optimal case, in the minimum of the criterion function. It must be noted
though, that the above criteria have originally been developed for actual AR(p)
processes and therefore they can be used only as guidelines when estimating the
order biological systems, such as the autonomic nervous system, which regulates the
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modulations in the measured HRV time series. It has been noted experimentally
that AR models of order 8 to 20 describe the HRV times series sufficiently [38].

4.5.3 Welch’s Periodogram

The discrete Fourier transform (DFT) of xt ∈ RN , evaluated at frequencies fk =
kfs

N
, k = 0, ..., N − 1 is

XDFT(fk) =
N−1∑
j=0

xje
−i2πjk/N (4.61)

which can be considered as the Fourier transform of an infinite periodic extension of
xt multiplied with aN point rectangular window. Fast Fourier Transforms (FFT) are
algorithms that are used to calculate the DFT efficiently in terms of computational
effort. The DFT is used in spectrum estimation methods such correlograms and
periodograms. The fundamental periodogram power spectrum estimate for xt is

PPG(fk) =
1

Nfs

∣∣∣∣∣
N−1∑
j=0

xje
−i2πjk/N

∣∣∣∣∣
2

(4.62)

which is the squared absolute value of DFT scaled with the term 1
Nfs

. The rectan-
gular window used in calculation renders an inherent spectral leakage property to
the periodogram.

Averaging methods to reduce the variance and windowing methods to reduce the
spectral leakage of the periodogram have been developed. These are generally called
periodogram modifications. Welch’s periodogram [45] is one of them, in which both
averaging and windowing are utilised. Overlapping signal segments with a length
of D < N points are taken from xt, yielding M number of segments x(m)

j , where
j = 0, ..., D − 1 and m = 1, ...,M . Each segment is then multiplied by a window
function wj. After this, the average of the periodograms of these windowed segments
is calculated:

PWelch(fk) =
1

M

M∑
m=1

 1

DfsU

∣∣∣∣∣
D−1∑
j=0

wjx
(m)
j e−i2πjk/D

∣∣∣∣∣
2
 , (4.63)

where U is the energy of the window function wj

U =
1

D

D−1∑
j=0

w2
j . (4.64)

For example the Hanning window can be used for wt. Both averaging and the
use of overlapping segments reduce the variance of the estimate, but at the same
time decrease the frequency resolution, when compared to the original periodogram
(4.62).
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4.5.4 HRV Measures

Typical frequency domain HRV measures are band powers and peak frequencies of
each band calculated from the estimated power spectrum [38, 36]. Power of each
spectral band (ULF, VLF, LF and HF) can be calculated

P[fk,fl] = (f1 − f0)
l∑

j=k

P (fj), (4.65)

where fk and fl are the lower and higher border frequencies of the calculated spectral
band, respectively.

The power of each spectral band can be expressed as an absolute value (in ms2

or a similar unit) as above. Another way to express the band power is normalised
to total power:

P[fk,fl](%) =
P[fk,fl]

Ptotal

× 100. (4.66)

Yet another established way is to express band power in "normalised units" (n.u.),
which is defined only for LF and HF bands:

PLF(n.u.) =
PLF

Ptotal − PVLF − PULF

(4.67)

PHF(n.u.) =
PHF

Ptotal − PVLF − PULF

. (4.68)

The ratio of absolute LF and HF powers, PLF/PHF, is also a popular measure
of HRV, because is reflects the balance between sympathetic and parasympathetic
activity [38].

To resolve if a measured HRV signal contains frequencies f , the length of the
measurement has been recommended to be at least ten times the corresponding
wavelength [38]. For example, to resolve LF and HF frequencies, the duration of the
measurement has to be at least

t =
10

fmin(LF)
=

10

0.04 Hz
≈ 4.2 minutes. (4.69)

4.6 Nonlinear Analysis Methods

The more recently developed analysis methods of HRV are nonlinear in nature and
able to describe complex systems, such as the autonomic nervous system, and are
a promising direction of HRV analysis. These methods include calculation of ap-
proximate and sample entropy, detrended fluctuation analysis, correlation dimension
analysis, calculation of largest Lyapunov exponent, calculation of fractal dimension,
calculation of Hurst exponent and recurrence plot analysis. See [1] for a review.



Chapter 5
Measurement Systems

5.1 eMotion HRV

The eMotion HRV measurement system is a commercial measurement system de-
veloped by Mega Electronics Ltd, Kuopio, Finland. The system consists of a one
channel RR interval sensor using ECG, a computer interface, data acquisition soft-
ware and a docking station for recharging multiple sensors (see Figure 5.1).

Contribution of the author to product development of the eMotion HRV system
was the design, implementation and testing of the data acquisition PC software,
eMotion LAB. The product development of the system, including documentation
and testing, was in compliance with the prevailing standards of the European Med-
ical Device Directive (MDD) and the Food and Drug Administration (FDA) of the
United States.

5.1.1 Sensor

The sensor measures one channel ECG with two electrodes. For measurement, two
adhesive disposable electrodes are attached on the chest of the subject according to
the placement seen in Figure 6.1 and the snap-on electrode connectors of the sensor
are connected. The sensor weighs 16 g and is 35×35×15 mm in size, and therefore
does not necessarily require any attachment method to the subject other than the
adhesive electrodes.

The sensor measures the ECG signal with a sampling rate of 1000 Hz using
a band-pass filter to maximise ECG power in the QRS complex frequencies. The
amplitude resolution in ECG measurement is 1 µV / bit with a 12 bit analog-to-
digital converter. The intervals between consecutive R waves are detected with an
adaptive QRS detector, which uses measures based on the moving average of R wave
amplitude and RR interval to categorise deflections in the measured ECG as R waves
or noise peaks. The accepted RR intervals are stored in the memory of the sensor for
later downloading. The sensor has 4 MB of flash memory and a Li-Ion battery with
a capacity of 135 mAh, totalling to a measurement capacity of approximately eight
consecutive days in room temperature and mild physical activity of the subject.

39
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Figure 5.1: The eMotion HRV measurement system, containing the HRV sen-
sor, the USB interface and the USB cable.

Figure 5.2: Screen shot of the eMotion LAB software.
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5.1.2 Software Development Tools

The data acquisition software of the measurement system, eMotion LAB, was devel-
oped for the Windows platform, using the C# programming language version 3.0,
the .NET Framework version 3.5, Service Pack 1, the Visual Studio 2008 integrated
development environment (IDE) and the Windows Forms graphical application pro-
gramming interface (API).

C# is a programming language developed by Microsoft and publicly released in
2000 as a part of the .NET software framework. The .NET framework is currently
one of the main platforms used in Windows software design. C# has a similar syntax
to C and C++ programming languages, but is fundamentally object oriented much
in the same manner as Java. It has advanced features such as automatic memory
management (garbage collection), generic data types and interoperability features
with software and libraries outside the .NET framework. It has also attained a
certification by the International Organization for Standardization [15].

Microsoft Visual Studio is an IDE for the Windows operating systems. It can be
used to develop Windows applications in languages such as Visual Basic, C++ and
C#. It contains integrated text editing, compiling, debugging and Windows Forms
design features in one graphical user interface.

Windows Forms is one of the graphical APIs included in the Microsoft .NET
framework and Visual Studio. Windows Forms applications are typically event
driven, in which the user initiates the majority of activities performed by the ap-
plication through a graphical user interface via e.g. clicking a button or entering a
character string in a text box.

5.1.3 Software

The product development part of this thesis was to design and implement the data
acquisition software eMotion LAB. It is meant for downloading measurement data
from the eMotion HRV sensor, viewing and modifying sensor settings as well as
reviewing and exporting the data to file (see Figure 5.2).

The sensor communicates with the computer with a device driver and an API.
The sensor is shown as a serial COM port to the operating system, with which
the eMotion LAB software communicates bidirectionally using the API. The API is
written in C++ and therefore the interoperability features of the .NET framework
were used to link the API to C# code.

A graphical user interface was designed and implemented for the software to
allow the user to interact with the software with the use of events. The user inter-
face contains a Windows Forms control for plotting and browsing the measurement
files. The measurements can be viewed as tachograms or as non-equispaced HRV
time series. The software shows also measurement metadata that is stored on the
sensor and calculates simple statistical measures from the measurement, including
the average, standard deviation, minimum and maximum of the RR and HR values
as well as RR and HR histograms.

The measurement data with the metadata can be saved to an SDF file, which is
formatted as an INI file containing ASCII data. The file format consists of a header
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section for the metadata and of a data section for the RR values. The RR values
are written in milliseconds, one value in each row. The SDF files can be opened in
the eMotion LAB software later as well as in the Kubios HRV analysis software for
further processing and analysis [28].

5.2 Cardiovit CS-200

The comparison system was a 12 channel exercise ECG system Cardiovit CS-200
with measurement software SDS-200 v. 2.45, manufactured by Schiller AG, Baar,
Switzerland. The system is cleared by the MDD and the FDA for clinical stress
ECG use. The system has 0.05 - 150 Hz measurement bandwidth, 500 Hz sampling
frequency and 5 µV / bit amplitude resolution with a 12 bit analog-to-digital con-
verter. The common mode rejection ratio of the ECG amplifier is higher than 100
dB and the input impedance 100 MΩ. The system also has defibrillation protection
and pacemaker detection. The CS-200 system was connected to a bicycle ergometer
Ergoselect 200 (Ergoline GmbH, Bitz, Germany) controlled programmatically from
the CS-200 system.



Chapter 6
Materials and Methods

The performance of the eMotion HRV system in HRV measurement in different set-
tings was validated by comparison to the commercial system Cardiovit CS-200. The
measurements comprised of two laboratory experiments: an orthostatic experiment
and an exercise experiment, and a 24 hour normal daily activity experiment. In the
orthostatic and exercise measurements both measurement systems were used simul-
taneously, while in the daily activity measurement only the eMotion HRV system
was used. A QRS detection algorithm was developed and implemented for ECG
data obtained from the CS-200 system.

The HRV time series obtained from the orthostatic and exercise experiments were
compared using histogram and Bland-Altman analysis. In addition, selected HRV
parameters were calculated from the orthostatic experiment data and compared
between the systems. Data from the daily activity experiment was analysed using
activity diaries and an artefact detection algorithm developed in this work. All the
detection and analysis algorithms as well as data visualisation were implemented in
the Matlab environment (MathWorks Inc, MA, USA), totalling to 2803 lines of code
in Matlab script and functions.

6.1 Subjects

The subjects of the measurements were healthy young adults in normal physical
condition, one female and four males. The age (mean ± σ) of the subjects was
(25.8 ± 2.2) years, the weight (71.6 ± 6.5) kg, the height (174.5 ± 6.8) cm and the
body-mass index (23.5 ± 1.3) kg

m2 .

6.2 Measurements

6.2.1 Electrode Placement

The ECG electrode positions used in the orthostatic and exercise experiments can
be seen in the Figure 6.1. Twelve ECG channels were measured with the CS-200
system using the Mason-Likar exercise ECG electrode positions (Figure 3.2). HRV
time series derived from the channel II was used as the comparison for the eMotion
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HRV system due to the parallel electrode positions. Rest of the channels were used
to check for occurrence of ectopic beats.

For both the orthostatic and exercise experiments, disposable and adhesive elec-
trodes Blue Sensor M (Ambu A/S, Ballerup, Denmark) were used. The skin under
the electrodes was shaved when it was necessary and cleansed with alcohol before
electrode attachment.

The electrodes and the cables were firmly attached to the patient with tape and
with a wide elastic belt to reduce cable and electrode movement artefacts. The
electrode cables were also wound around each other to minimise the area of the
cable loops and therefore to diminish the 50 Hz powerline artefact.

RA

LLRL

e-

e+

a

b

c

Figure 6.1: The locations of the measurement electrodes and the polarity of
the measurement channels for HRV measurements during the orthostatic ex-
periment and the exercise experiment. e+ stands for the positive electrode of
the eMotion HRV system and e− the negative electrode. The signal of the
channel II (vector c) can be derived from the two measurements (vectors a and
b): a− b = (LL− RL)− (RA− RL) = LL− RA = c = II.

6.2.2 Orthostatic Experiment

The first part of the measurements was the orthostatic experiment [43], where the
subject lay relaxed in the supine position for five minutes, stood up and remained
standing for another five minutes, while the HRV time series was recorded with both
systems. The subject lay relaxed for a period of five minutes before the beginning
of the measurement.
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6.2.3 Exercise Experiment

In the exercise experiment the subjects cycled on the Ergoselect 200 ergometer for
13 minutes. The load of the ergometer was light in the beginning and in the end of
the experiment, with a higher load level in the middle (Table 6.1).

Table 6.1: Measurement protocol
Phase Load (W) Duration (min:s)

Warm up 100 5:00
Exercise 175 3:00

Cool down 100 5:00

6.2.4 Long-term Daily Activity Experiment

In the long-term daily activity experiment, the HRV of the subjects was monitored
for a 24 hour period with the eMotion HRV measurement system. The subjects were
instructed to fill a diary table of their activities during the measurement period to
track possible causes of artefacts in the measured time series. The diary was advised
to be filled with 30 minute precision.

In the daily activity experiment, disposable surface electrodes Blue Sensor R
(Ambu A/S, Ballerup, Denmark) were used. The recommended maximum time to
wear the electrodes is 24 hours. The skin under the electrodes was shaved when
it was necessary and cleansed with alcohol before electrode attachment. The elec-
trode cables were attached to the body with tape to diminish electrode and cable
movement artefacts.

6.3 Analysis

6.3.1 Generation of the Reference HRV Time Series

The HRV time series from CS-200 ECG data was generated using a QRS detector
based on the Pan-Tompkins algorithm [29], as described in the Subsection 3.2. ECG
channel II was used as algorithm input and the ECG signal was upsampled to a
sampling frequency of 2 kHz before QRS detection using cubic spline interpolation
to increase the precision of the reference RR values. The occurrence times of the
detected R waves were verified visually (see Figure 6.2). The two HRV time series
were temporally synchronised after measurements by matching the shapes of the
time series and removing the non-overlapping data.



6. Materials and Methods 46

1065 1066 1067 1068 1069 1070 1071 1072 1073
−500

0

500

1000

1500

2000

2500

t (s)

EK
G

 (µ
V)

Figure 6.2: Example of performance of the QRS detector developed on the
ECG signal measured with CS-200 system containing baseline wander and
EMG artefact. The detected R wave peaks are shown with (o).

6.3.2 QRS Detection Accuracy Evaluation

The accuracy of the eMotion HRV QRS detector during the orthostatic experiment
and during the exercise experiment was assessed using sensitivity and positive pre-
dictivity measures, see equations (3.1, 3.2). The R wave occurrence times measured
by the eMotion HRV system were verified visually using the CS-200 ECG measure-
ment as reference.

6.3.3 QRS Detection Precision Evaluation

The RR intervals calculated from the correctly detected R waves in the orthostatic
and the exercise experiments were compared between the systems. The precision of
eMotion HRV QRS detection was assessed by analysing the difference between the
systems with a histogram of differences and a Bland-Altman plot [3]. The Bland-
Altman plot is a scatter plot of the differences between the compared sequences as
a function of the average of the sequences. Limits of agreement (LoA) (mean ± 2σ)
were also calculated and plotted on the scatter plot to quantise the differences. The
Gaussian shape of the distribution of differences was confirmed with the histogram.

6.3.4 Comparison of HRV Measures

The data from the orthostatic experiment was used to calculate a set of selected
time and frequency domain HRV measures both for the supine and the standing
measurement phases. These measures were then compared between the systems.
Stationary signal segments with a duration of five minutes were used for HRV mea-
sure calculations. The time domain measures were RR, HR, SDNN and RMSSD.

RR and HR were calculated directly from the measured HRV time series. For
calculation of SDNN and RMSSD, the time series were 1) cubic spline interpolated
with 4 Hz sampling frequency (see Figure 6.3), 2) detrended with the smoothness
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priors method, and 3) cubic spline interpolated at the original time points of the R
waves (see Figure 6.4). In the resulting time series, the differences between successive
RR intervals was the same as in the original measured HRV time series, but the trend
had been removed, which is the requirement for SDNN and RMSSD calculation.
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Figure 6.3: Example segment demonstrating the cubic spline interpolation of
a measured HRV time series. The original non-equispaced values are shown
with (o) and the spline functions sampled with a 4 Hz sampling frequency are
shown with (×).
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Figure 6.4: Cubic spline interpolation of the detrended HRV time series. The
detrended equispaced data is shown with (×) and the RR values evaluated at
original locations are shown with (o).
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The calculated frequency domain measures were PLF, PHF, PLF/PHF and Ptotal.
The frequency domain estimates were calculated from bothWelch’s periodogram and
AR(16) spectrum estimates. For spectrum estimation, the HRV time series were first
cubic spline interpolated with 4 Hz sampling frequency, and then detrended with the
smoothness priors method, thus producing a zero-mean, stationary and equispaced
time series, all requirements of the spectrum estimation methods used. For Welch’s
periodogram, the Hanning window, 256 s window width and 50 % segment overlap
were used. The AR(16) model coefficients were estimated using the LS method, the
spectrum estimate was evaluated with 4096 points and the optimality of the model
order was assessed with FPE, AIC and MDL criteria.

6.3.5 Analysis of Daily Activity Data

Artefacts in the HRV time series during the daily activity measurement were de-
tected with an artefact detection algorithm consisting of a three-point median filter
and comparison between the measured time series and the median filtered time se-
ries. The algorithm labeled RR intervals as artefacts, if they were 1) higher than
1.5 times the corresponding median filtered value, 2) lower than 0.5 times the corre-
sponding median filtered value or 3) higher than 10 s. The ± 50 % threshold value
was selected empirically to best detect artefacts for the measurements gained from
all of the five test subjects.

According to the labels, an artefact ratio Nartefacts/Nall was calculated for each
measurement. The activities reported in the activity diaries were then correlated
qualitatively with the occurrence of artefacts in the measurements.



Chapter 7
Results and Discussion

In this chapter, the measured data and results of analysis from the orthostatic, exer-
cise and daily activity experiments will be reviewed. Inferences about the accuracy
and precision of the QRS detection capability of the eMotion HRV system and its
effects on HRV measures calculated from the data will be made. In addition, the
applicability of the eMotion HRV system to long-term ambulatory measurements
will be made based upon the results of the analysis.

7.1 QRS Detection Accuracy Evaluation

Data from the orthostatic and exercise experiments was used to assess the accu-
racy of the eMotion HRV QRS detector using sensitivity and positive predictivity
measures and manual verification. Regarding the ECG signal measured from the
study population by the CS-200 system as the reference, all R waves were identi-
fied correctly by the eMotion HRV system in the orthostatic experiment, and one R
wave was misdetected during the exercise experiment. Thus, sensitivity and positive
predictivity for the QRS detector of eMotion HRV in this study population were

sqrs = 99.989 % (7.1)
pqrs = 99.989 %. (7.2)

These are very high figures, and show that the data procuded by the eMotion HRV
system is accurate for a normal, healthy population.

7.2 QRS Detection Precision Evaluation

The HRV time series of one subject measured with both systems in the orthostatic
experiment can be seen in the Figure 7.1. There is a five minute wide-sense station-
ary segment in the beginning of both time series, followed by a rapid decrease in
the RR intervals compensating the redistribution of blood volume due to standing
up. The RR intervals settle by average at a lower level in the standing phase than
in the supine phase and another five minute wide-sense stationary segment can be
seen in the end of the measurement. The differences between the time series are in
the order of milliseconds, and can not thus be easily distinguished from the figure
in question.

49
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Figure 7.1: The HRV time series of one subject measured with both systems in
the orthostatic experiment. eMotion HRV data is shown with grey and CS-200
data is shown with black.

The HRV time series of one subject from the exercise experiment can be seen in
the Figure 7.2. The strong fluctuations in the RR intervals due to climbing on the
ergometer can be seen in the beginning of the time series, followed by a decreasing
trend in the mean and variance of the RR intervals during the five minute period
of light ergometer load. The mean and variance of RR values decrease significantly
after the increase in the ergometer load from 100 W to 175 W, only to increase again
during the following period of light load and the relaxation period in the end of the
experiment. Again, the point-to-point differences are difficult to distingish from the
figure at hand.
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Figure 7.2: The HRV time series of one subject measured with both systems
in the exercise experiment. eMotion HRV data is shown with grey and CS-200
data is shown with black.
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The differences in individual RR values

∆RR = RReMotion HRV − RRCS−200 (7.3)

can be seen more easily with the histograms of differences and the Bland-Altman
plots. Compound data from all five subjects in the orthostatic experiment is shown
in the Figure 7.3, and all exercise experiment data is shown in the Figure 7.4. The
differences between RR intervals in the Bland-Altman plot are quantized in clusters
with a spacing of 0.5 ms due to finite precision of 2 kHz and 1 kHz of the ECG signals
used in HRV time series generation. The LoA (∆RR ± 2σ∆RR) of the Bland-Altman
plots, for each subject individually and for compound data, are listed in the Table
7.1. For all future measurements, the difference in RR intervals between the systems
lies between the LoA with a probability of approximately 95 %.

Table 7.1: Mean ∆RR and double standard deviation 2σ∆RR of the differences
between systems in Bland-Altman analysis.

Orthostatic experiment
Subject(s) ∆RR (ms) 2σ∆RR (ms)

1 0.643 1.510
2 0.635 1.511
3 0.649 1.640
4 0.570 1.424
5 0.909 1.629
All 0.670 1.557

Exercise experiment
Subject(s) ∆RR (ms) 2σ∆RR (ms)

1 0.385 2.174
2 0.403 2.218
3 0.298 2.007
4 0.231 1.940
5 0.446 2.241
All 0.343 2.109

During the analysis, a temporal lag between the internal clocks of the measure-
ment systems was detected. The cumulative temporal lag was approximately 421
ms during a 500 s measurement, which is equal to 0.8 % lag. This lag caused a small
bias in the RR value differences seen in the Table 7.1. This lag is not present when
two eMotion HRV sensors are compared, and thus the bias was corrected for accu-
rate analysis of the QRS detection precision of eMotion HRV. This was achieved
by scaling the measurements from different systems to equal duration. After the
scaling operation, the Bland-Altman analysis was conducted for the absolute value
of differences between individual RR values (∆RR), and the results listed in the
Table 7.2 were obtained.

The differences between systems can be explained partly by differences in the
QRS detectors. Especially, the eMotion HRV system detects peaks of the R waves
from band-pass filtered ECG with slightly rounded peaks, while the QRS detector
developed in this work used the raw ECG with a bandwidth of 0.05 - 150 Hz in
R wave peak detection. Other possible factors increasing the variance of the RR
value differences could be the fluctuations in the distances between measurement
electrodes and the heart as well as changes in conduction velocities due to movement
of the thorax. The larger variance of differences during the exercise experiment
strengthens this hypothesis.
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Table 7.2: Mean |∆RR| and double standard deviation 2σ|∆RR| of the ab-
solute value of differences between the systems in Bland-Altman analysis for
measurements scaled to equal duration.

Orthostatic experiment
Subject(s) |∆RR| (ms) 2σ|∆RR| (ms)

1 0.600 0.895
2 0.582 0.944
3 0.631 1.035
4 0.545 0.849
5 0.592 1.089
All 0.591 0.962

Exercise experiment
Subject(s) |∆RR| (ms) 2σ|∆RR| (ms)

1 0.858 1.330
2 0.893 1.308
3 0.806 1.186
4 0.765 1.187
5 0.824 1.500
All 0.820 1.308

To summarise, the precision of QRS detection of the eMotion HRV system was
in this population ± 0.962 ms during rest and ± 1.308 ms during exercise, when
the absolute RR value differences of duration scaled measurements were assessed.
These values fulfill even the requirements of QRS detection precision for individuals
with low-amplitude RR variation of ± 1 to ± 2 ms for HRV analysis [4], and thus
validates the measurement precision of the eMotion HRV system for HRV analysis.
To put the values into perspective, the precision is superior compared to the LoA
of -12.4 to 11.5 ms and -15.1 to 14.3 ms determined in a validation study of two
ambulatory HRV measurement devices, which use chest strap electrodes [44].
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Figure 7.3: Histogram of differences and Bland-Altman plot of the orthostatic
experiment.
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Figure 7.4: Histogram of differences and Bland-Altman plot of the exercise
experiment.

7.3 Comparison of HRV Measures

Two HRV segments with a duration of five minutes from the orthostatic exper-
iment were used for estimation of HRV measures for each subject. The origi-
nal measurement, the estimated trends and the interpolated and detrended seg-
ments used for frequency domain HRV measure estimation are shown in the
Figure 7.5. The the absolute differences in HRV measures θ between systems
(eMotionHRV − CS200) and relative differences in the HRV measures between sys-
tems ((eMotionHRV − CS200)/CS200) are listed in the Tables 7.3 and 7.4.

For spectrum estimation, the criterion curves for estimation of the optimal AR
model order were plotted and are shown in the Figure 7.6. Based on the minima of
the curves, 16 was chosen as the order for all AR spectrum estimation models.

For detailed assessment of the differences between the measurements on fre-
quency domain HRV measures, the spectrum estimates and the difference between
the spectrum estimates were plotted in the Figures 7.7 and 7.8. The differences
in the spectrum estimates are not visible when plotted upon the other, but the
difference plot reveals the subtle deviations.

The magnitude of the effect of the spectrum estimate differences can be seen in
the Tables 7.3 and 7.4. At most, the relative difference between systems of any of the
calculated HRV measures was 1.61 % (AR(16) PLF), while the smallest difference
was 0.06 % (RR).

The effect of the time lag between the system clocks on the HRV measures was
assessed also. The HRV measures were calculated from data scaled to equal duration
and the population averages of differences between systems was calculated for each
each HRV measure. The population average differences for both original unscaled
data and scaled data are shown in the Table 7.5. The absolute value of all population
average differences were below 1 % for the unscaled data and below 0.72 % for the
scaled data. The differences are very small and demonstrate the validity of the
eMotion HRV system for HRV measurement.
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Table 7.3: Calculated HRV measures with the absolute and relative differences
for one subject for the supine segment.

Absolute Relative
HRV Measure CS-200 eMotion HRV Difference Difference (%)
RR (ms) 1034.597 1035.325 0.728 0.07
HR (BPM) 57.994 57.953 -0.041 -0.07
SDNN (ms) 105.363 105.519 0.156 0.15
RMSSD (ms) 127.819 128.037 0.218 0.17
Welch PLF (ms2) 1467.447 1476.725 9.278 0.63
Welch PHF (ms2) 8801.040 8829.558 28.518 0.32
Welch PLF/PHF 0.167 0.167 0.001 0.31
Welch Ptotal (ms2) 10519.177 10559.000 39.823 0.38
AR(16) PLF (ms2) 1466.875 1469.835 2.959 0.20
AR(16) PHF (ms2) 8971.349 9013.205 41.855 0.47
AR(16) PLF/PHF 0.164 0.163 -0.0004 -0.26
AR(16) Ptotal (ms2) 10719.696 10766.235 46.539 0.30

Table 7.4: Calculated HRV measures with the absolute and relative differences
for one subject for the standing segment.

Absolute Relative
HRV Measure CS-200 eMotion HRV Difference Difference (%)
RR (ms) 735.959 736.430 0.471 0.06
HR (BPM) 81.526 81.474 -0.052 -0.06
SDNN (ms) 59.845 59.906 0.060 0.10
RMSSD (ms) 47.008 47.029 0.021 0.04
Welch PLF (ms2) 1705.877 1710.476 4.599 0.27
Welch PHF (ms2) 1689.118 1691.423 2.305 0.14
Welch PLF/PHF 1.010 1.011 0.001 0.13
Welch Ptotal (ms2) 3535.677 3543.454 7.777 0.22
AR(16) PLF (ms2) 1947.793 1970.353 22.560 1.61
AR(16) PHF (ms2) 1409.614 1421.087 11.473 0.81
AR(16) PLF/PHF 1.382 1.387 0.005 0.34
AR(16) Ptotal (ms2) 3680.180 3715.356 35.177 0.96
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Figure 7.5: a) The original measurement, segments chosen for HRV measure
estimation and the estimated trends. b) The interpolated and detrended supine
segment. c) The interpolated and detrended standing segment.
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Figure 7.7: The spectrum estimates and differences of spectrum estimates
for the supine phase of the orthostatic experiment. a) Welch’s periodogram,
spectrum estimates from both systems. b) Welch’s periodogram, difference be-
tween systems. c) AR(16), spectrum estimates from both systems. d) AR(16),
difference between systems.

Table 7.5: Population averages of the relative differences between systems
for each HRV measure. The averages are calculated for both original and
temporally scaled measurements.

Unscaled data Scaled data
HRV Measure Supine (%) Standing (%) Supine (%) Standing (%)
RR 0.079 0.075 0.002 -0.001
HR -0.079 -0.075 -0.002 0.001
SDNN 0.211 0.105 0.140 0.044
RMSSD 0.275 0.217 0.204 0.146
Welch PLF 0.342 0.143 0.165 0.004
Welch PHF 0.093 0.431 0.031 0.515
Welch PLF/PHF 0.255 -0.256 0.141 -0.485
Welch Ptotal 0.254 0.177 0.124 0.062
AR(16) PLF 0.760 0.416 0.339 0.245
AR(16) PHF 0.763 0.992 0.377 0.718
AR(16) PLF/PHF 0.008 -0.538 -0.026 -0.434
AR(16) Ptotal 0.720 0.408 0.322 0.168
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Figure 7.8: The spectrum estimates and differences of spectrum estimates
for the standing phase of the orthostatic experiment. a) Welch’s periodogram,
spectrum estimates from both systems. b) Welch’s periodogram, difference be-
tween systems. c) AR(16), spectrum estimates from both systems. d) AR(16),
difference between systems.
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7.4 Long-term Daily Activity Experiment

The 24 hour long daily activity measurements were analysed visually and the arte-
facts in the signal were detected with the median filtering algorithm. The length
of the measurements was less than 24 hours in two cases because of an electrode
tearing off during the night and due to taking a shower. The ratio of artefacts
for each measurement is presented in Table 7.6. Figure 7.9 shows two examples of
the daily activity HRV measurement and the detected artefacts with activity notes
made by the subjects, while the Figure 7.10 shows a part of the first measurement
with the detected artefacts to demonstrate the performance of the artefact detection
algorithm.

Activities that caused artefacts to the measured HRV time series included disrob-
ing a jacket, bicycling, weight lifting, cleaning, embarking and disembarking a truck,
playing badminton and running. Also, occasional missed or spurious beats during
normal life were detected. On the other hand, activities during which no artefacts
were present included driving a truck, playing guitar, stepper training, lower body
muscle training and bicycling.

The ratios of artefacts are generally low, but differ multifold between subjects.
This fact, together with occurrence of measurement artefacts during light activity,
such as sitting, suggest that the placement of the electrodes failed for the subject
number two and three. Activities generally causing more artefacts to the measure-
ment, especially with these two subjects, were associated with activity of upper
body muscles, while activities with active lower body muscles resulted in good sig-
nal quality. EMG of the pectoralis muscles therefore seems to cause artefacts in
the measurement. Nevertheless, the low artefact ratios prove the applicability of
the eMotion HRV system for long-term ambulatory measurements in normal daily
activity with correct electrode placement.

Table 7.6: Number and ratio of artefacts in the daily activity measurements.

Subject Nartefacts Nartefacts/Nall (%)
1 42 0.040
2 273 0.266
3 61 0.111
4 10 0.009
5 75 0.077
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Figure 7.9: Two examples of daily activity HRV measurement. The upper
graph is subject 1 and the lower subject is number 4. The activity notes made
by the subjects are listed and detected artefacts are shown with (o).
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Figure 7.10: An example of performance of the artefact detection algorithm
on the 24 hour daily activity measurements. The detected artefacts are shown
with (o).



Chapter 8
Conclusions

In this thesis, the eMotion HRV measurement system was introduced and validated.
In addition, the development of the data acquisition software for the system was
described. To justify the methods of validation, theory on the physiological origin
of HRV as well as measurement and analysis methods of HRV were discussed.

The objectives of the validation were 1) to assess the accuracy of the eMotion
HRV QRS detector with sensitivity and positive predictivity measures, 2) to analyse
the absolute beat-to-beat differences between eMotion HRV and the comparison
system data with histogram and Bland-Altman analysis, 3) to analyse the relative
differences in HRV measures calculated from the data of the two systems, 4) to assess
the quality of long-term measurements conducted with the eMotion HRV system and
to identify possible sources of measurement artefact during normal daily activity.

The measures weighing the accuracy of the QRS detection capability of the sys-
tem were high (sqrs = 99.989 %, pqrs = 99.989 %) in the orthostatic and exercise
experiments. The results of the histogram and Bland-Altman analysis, on the other
hand, confirmed that the eMotion HRV system is also precise (0.591 ± 0.962 ms dur-
ing rest and 0.820 ± 1.308 ms during exercise) in the measurement of RR intervals,
which can be over ten times more precise as chest strap measurements [44].

The effect of the differences in RR values between systems on HRV measures was
assessed by calculating several well known HRV measures for both systems in the
orthostatic experiment. The calculated measures were time domain measures RR,
HR, SDNN and RMSSD and frequency domain measures PLF, PHF, PLF/PHF and
Ptotal using the spectrum estimation methods Welch’s periodogram and stationary
AR(16) model. The population average of relative differences of the measures be-
tween systems was 0.001 % at the lowest and 0.718 % at the highest, further proving
the preciseness of the eMotion HRV system.

The artefact ratios in the long-term daily activity experiment were small: 0.009
% at the lowest and 0.266 % at the highest. The low ratios prove the applicability
of the eMotion HRV system for long-term measurements in normal daily activity.

There is a need for accurate, precise, and reliable HRV measurement systems,
which are yet unobtrusive and simple to use. All in all, the results of the validation
experiments show that the system fulfills these needs for ambulatory measurements
in resting as well as in exercise conditions.
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