Tori HaAPIO
Improving Effort
Management in Software
Development Projects

PuBLICATIONS OF THE UNIVERSITY OF EASTERN FINLAND
Dissertations in Forestry and Natural Sciences

A

UNIVERSITY OF
EASTERN FINLAND

TOPI HAAPIO

Improving Effort
Management in Software
Development Projects

Publications of the University of Eastern Finland
Dissertations in Forestry and Natural Sciences
No 39

Academic Dissertation
To be presented by permission of the Faculty of Science and Forestry for public
examination in the Auditorium in Tietoteknia Building at the University of Eastern

Finland, Kuopio, on September, 2, 2011, at 12 o’clock noon

School of Computing

Kopijyva
Kuopio, 2011
Editors: Prof. Pertti Pasanen
Dr. Sinikka Parkkinen, Prof. Kai-Erik Peiponen

Distribution:
Eastern Finland University Library / Sales of publications
P.O. Box 107, FI-80101 Joensuu Finland
tel. +358-50-3058396
http://www.uef fi/kirjasto

ISBN: 978-952-61-0493-5 (Print)
ISSNL: 1798-5668
ISSN: 1798-5668

ISBN: 978-952-61-0494-2 (PDF)
ISSNL: 1798-5668
ISSN: 1798-5676

Author’s address:

Supervisors:

Reviewers:

Opponent:

Tieto Finland Oy

P.O. Box 1199

FI-70210 KUOPIO
FINLAND

email: topi.haapio@tieto.com

University lecturer Anne Eerola, Ph.D.
University of Eastern Finland

School of Computing

P.O.Box 1627

70211 KUOPIO

FINLAND

email: anne.eerola@uef.fi

CTO Olli Létjonen, Lic.Tech.
Tieto Finland Oy

P.O. Box 1199

FI-70210 KUOPIO
FINLAND

email: olli.lotjonen@tieto.com

Associate Professor Emilia Mendes, Ph.D.
The University of Auckland

Computer Science department

Private Bag 92019

AUCKLAND

NEW ZEALAND

email: emilia@cs.auckland.ac.nz

Professor Tommi Mikkonen, D.Tech.
Tampere University of Technology
Department of Software Systems
P.O.Box 527

F1-33101 TAMPERE

FINLAND

email: tommi.mikkonen@tut.fi

Professor Matti Rossi, Ph.D. (Econ)
Aalto University

School of Economics

P.O.Box 21210

FI-00076 AALTO

FINLAND

email: matti.rossi@aalto.fi

ABSTRACT

A software supplier organization strives to estimate the effort
needed in building software as accurately as possible to ensure
the project’s budget and schedule, and the success of resource
allocation. Despite the numerous effort estimation approaches
and applications available, the estimates have remained
inaccurate. The objective of this thesis is to improve the
management practices of software development project effort,
resulting in increased effort estimate accuracy.

In the quest of its goal, the thesis commences by presenting
the theoretical background and the key concepts related to
software project effort management, followed with a description
of the iterative research approach. The research problems are
formulated based on the organizational problems
acknowledged in the software engineering literature and the
ones observed at the research site, Tieto Finland Oy. To address
the research problems, research artifacts are built and evaluated
with the constructive research methodology.

The results are presented in five research papers. The main
research results include frameworks for both improving and
managing software project effort, a defined new set of project
activities and their significance in terms of project effort,
recommendations for adopting new project activities in an
efficient manner, a process and method for effort assessments,
and findings from a software project effort data mining
experiment.

This thesis focuses on an activity set of general software
project activities, referred as the non-construction activities,
which are found to be one of the major software project activity
categories besides software construction and project
management. This finding is complemented with
recommendations for efficient adoption of new project activities
and set of activities. By improving the adoption mechanisms of
new project activities it is more likely that effort is registered on
correct activities, which ensures reliable effort input for effort

assessments. The assessment results are improved with the
stepwise software project effort assessment method introduced
in this thesis. When applied, the research results aim to improve
the quality of effort data, which can then be utilized in the effort
estimation method calibration in order to achieve more accurate
estimates.

The research findings and constructed artifacts are beneficial
for project managers and effort analysts who can better manage
their effort-related project activities through-out project’s
lifecycle.

Universal Decimal Classification: 004.41; 005.8
Inspect Thesaurus: project management; software development management;

software engineering, software process improvement; software cost
estimation; software metrics

Acknowledgements

This work was carried out at Tieto Finland Oy for the School of
Computing at the University of Eastern Finland (former
University of Kuopio) during 2003-2011. The initial idea of the
role of the non-construction activities on effort estimation came
from Seppo Hartikka at Tieto Quality. I thank him for raising
this issue up.

I thank the supervisors of this thesis, Dr. Anne Eerola
(University of Eastern Finland) and CTO OIlli Lotjonen (Tieto
Finland Oy) for their invaluable guidance and comments both
for this thesis and the research papers involved.

Associate Professor Emilia Mendes (The University of
Auckland) and Professor Tommi Mikkonen (Tampere
University of Technology) kindly accepted the role of a
reviewer. I wish to thank for their efforts and feedback on my
work.

I thank all my friends in academia for supporting and
encouraging me in my research. I want to especially thank Dr.
Tim Menzies (West Virginia University) for our research co-
operation in Morgantown, Dr. Raimo Rask (University of
Eastern Finland) and Dr. Uolevi Nikula (Lappeenranta
University of Technology) for their thorough feedback on my
Ph.Lic. thesis. The feedback was invaluable in improving this
thesis also, Professor Jarmo]J. Ahonen (University of Eastern
Finland) who enhanced my research into the software process
improvement, Dr. Seppo Lammi (University of Eastern Finland)
from my supervising team for his uplifting and positive
attitude, and Mr. V. Michael Paganuzzi, MA, (University of
Eastern Finland) for his linguistic advice on this summary and
research papers.

I thank my managers at Tieto Corporation for letting me
spend time on conducting research during working hours. I
thank Tieto Corporation and the University of Eastern Finland

for funding my participation to conferences. I also thank the
support of the KYTKY program (EU funded development
program for research co-operation between the software
industry and the University of Kuopio), and Nokia Oyj for the
Nokia Scholarship, which made my visit at the West Virginia
University possible.

My personal thanks go to all my friends and relatives who
have supported me in a way or another during these years and
my research. I especially wish to thank my mother Arja, my
sister Anu and her family, and my wife Minna’s family. Mrs
Terttu Jalkanen is always there when needed - without her I
would have missed a few deadlines!

My deepest gratitude and love go to my wife Minna who
showed remarkable understanding for the long days this
research consumed. I also like to thank her professionally on
commenting my work.

Kuopio, August 2011 Topi Haapio

LIST OF ABBREVIATIONS

3GL 34 Generation Language

4GL 4™ Generation Language

BI business intelligence

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

COCOMO Constructive Cost Model

DSI delivered source instructions

EAF Effort Adjustment Factor

ELOC effective lines of code

FP function point

FPA Function Point Analysis

FSS Feature Subset Selection

GOM Goal/Question/Metric

IT Information Technology

KDSI kilo delivered source instructions

KLOC kilo lines of code

LOC lines of code

MMRE Mean Magnitude of Relative Error

MRE Magnitude of Relative Error

NLOC non-commented lines of code

PRED(I) Prediction at Level [

QM quality management

RE Relative Error

RP research problem

RUP Rational Unified Process

SD standard deviation

SDM Software Development Management (framework)

SPI software process improvement

SPICE Software Process Improvement and Capability
dEtermination

TOM Total Quality Management

ucCp Use Case Points

WBS work breakdown structure

10

II

I1I

IV

LIST OF ORIGINAL PUBLICATIONS

This thesis is based on the following research publications,
which are referred to in the text by their Roman numerals I - V:

Haapio, T., 2007. A Framework for Improving Effort
Management in Software Projects. Software Process:
Improvement and Practice. 12(6), pp. 549-558.

Haapio, T. & Menzies, T., 2011. Exploring the Effort of
General Software Project Activities with Data Mining.
International Journal of Software Engineering and Knowledge
Engineering. In press, accepted 29 March 2011.

Haapio, T. & Ahonen,].J., 2006. A Case Study on the Success
of Introducing General Non-construction Activities for
Project Management and Planning Improvement. In: Lecture
Notes in Computer Science 4034, J. Miinch and M. Vierimaa
(eds.), 7th International Conference on Product-Focused Software
Process Improvement (PROFES 2006). Amsterdam, The
Netherlands, 12-14 June 2006. Berlin Heidelberg: Springer-
Verlag, pp. 151-165.

Haapio, T. & Eerola, A., 2010. Software Project Effort
Assessment. Journal of Software Maintenance and Evolution:
Research and Practice. 22(8), pp. 629-652.

Haapio, T., 2007. A Framework for Effort Management in
Software Projects. In: B. Kitchenham, P. Brereton, and M.
Turner (eds.), 11th International Conference on Evaluation and
Assessment in Software Engineering (EASE 2007). Keele, UK, 2-
3 April 2007. The British Computer Society eWiC, pp. 73-82.

AUTHOR’S CONTRIBUTIONS

II

III

IV

Sole work of Topi Haapio.

Topi Haapio collected and analyzed the data. Tim Menzies
suggested the learners for the data mining experiment, and
assisted in interpreting the results. Topi Haapio provided

the implications to the practice, and Tim Menzies to research.

The paper was written by Topi Haapio, and commented and
enhanced by Tim Menzies.

Topi Haapio set up and conducted the survey, and analyzed
the survey results. The paper was written by Topi Haapio,
and commented and edited by Jarmo]. Ahonen.

Topi Haapio developed the effort assessment process and
method, which were improved together with Anne Eerola.
The paper was written by Topi Haapio, and commented by
Anne Eerola.

Sole work of Topi Haapio.

The publications are printed with the kind permission of the
copyright holders.

11

12

Contents

1 INtroduction ... essasenes 15
2 Theoretical background..............everrvecesnenniniininircncncncnencnene 19
2.1 Key CONCEPLS.....ccviviiiiiiiiiiniiciiicciccs s 19
2.1.1 Effort, costs, estimate, and effort and cost estimation 20
2.1.2 Effort distriDUtion...........cceueueueeeucecciiiiiiiiiiiicisieese e 20
2.1.3 Work breakdown structure (WBS)cccocovvvviviviiviiccccnns 21
2.1.4 Effort managementccccocevvvviniiieciniisiiiisecisieeccian 22
2.1.5 Custom software development project.............cccccoevvvrccnencnns 23
2.1.6 Software process improvement (SPI) and capability maturity

MOACLS ...t 25
2.1.7 Method evaluation Criterialoowovvvvvvvvvviiiiiiiiiiieisisieinieieieienenns 26
2.1.8 SOftware Size METICScovvueveveviveiieieisiesiiineieieieiesescneieie s 28
2.2 Key functions in managing software project effort................ 31
2.2.1 Effort estimations and re-eStimations..............c.cocoevvvvereierevennns 31
2.2.2 Effort data collection..............ccccevviviiviiniiinciiiiiecisiinccia 37
2.2.3 Effort assessments and post-mortem analyses............................ 38
3 Research methodology............ieieennncisisicicncncncncncncncnene 41
3.1 Research process, problems and objectives...........ccccceeueunes 41
3.2 Research methods..........ccccccuiiiiiiiiiiiiiis 47
3.2.1 Constructive 1€Searchcvmevvvvviviiiiiiiiiiiiisisieissieieieeieienns 48
3.2.2 Supportive research methodscccovvvvvveviiiniiiiiiniiiinns 51
4 Improving effort management............eveereeeieiininininincnenenenenn 57
4.1 Relation of research paperscccccvvuriininiicinniicininnenne 57
4.2 Summaries Of PAPETS..........cocoueureueviiiicieiee s 59
4.2.1 Improving effort management research process 59
4.2.2 Improving effort eStMation.............cocccvviviiiiiniiiiininsicecennns 62
4.2.3 Improving effort data quality..............ccccccevvvvviniiniiniiccininns 67
4.2.4 Improving effort ASSeSSMentccccvvviivviiiiiiiiiiiisiciccncncnns 70

13

14

4.2.5 Improving effort management Process..........ccccooevvvvvvivirieieinnnnas 74

4.3 Evaluation of the resultsccccccceiviniiiiniiiiniiine, 77
4.3.1 Addressing research problemsc.ccovvvvvviinniiiiiiiiinnns 77
4.3.2 Comparisons to alternative SOIULIONScccccvvvvvviniiniininas 79
4.3.3 Research evaluation criteria for constructive research artifacts.83
4.3.4 Deployment of the research reSults...........ccoovvvvvininniiinnnnes 84
4.3.5 Limitations of the StUAYceeeveveeiiiiiiiiiiciciccceee 87
4.4 Contribution of the thesis...........cccccoceuiiiiiiii 88
5 CONCIUSIONS....covirrrerrreteririririnenineneeeeesssssssssssesesssssssssesssssesssesenes 91
Referenceseeecenenennnnineieeeeeeeessssssesssssssssssesesssesesesens 95
PN 0 T (U BTG 107

Appendix A: Effort distribution in analyzed 32 software
PIOJECES ittt essse e sssssesesssssessnesssesssnessnes 107

Appendix B: Non-parametric effort and cost estimation
modeling techniques.........ocoieecenrienncrennirencninirencsesscsenesesscnes 109

1 Introduction

Accurate effort estimation is a crucial task for software business
progression: for customers, acquiring software products or
making project contracts for tailored software implementation,
accurate effort estimation enables adherence to schedule and
budget without delay in deployment and introduction (Conte, et
al., 1986; Sommerville, 2001). Software providers require cost,
price, and time-to-market calculations which are not possible
without knowledge of effort and its distribution. Workload
estimation is needed for work and staffing plans. Sufficiently
accurate effort estimation is important for software engineers,
because successful resource allocation decreases working
pressure and haste.

Effort is, however, frequently underestimated (Gruschke and
Jorgensen, 2008; Kitchenham, et al., 2009). During our research,
we have identified several shortcomings related to both
estimating and managing the effort which can explain poor
estimates. We have identified these gaps by reviewing software
engineering literature of past two decades and by observing the
practices in the software industry. In the following, we present
these gaps in concise, and return to them in more detail in sub-
chapter 3.1, with our aims to fill these gaps.

The numerous formal models, methods and tools available
for estimation have reached accuracy levels which are too low
for the software industry companies. In practice, the same level
of accuracy can be achieved with the informal expert judgment
technique, which has remained as the most commonly
employed estimation technique (Jorgensen, 2007). Two factors
are emphasized in respect to the difficulty in producing accurate
estimates: software sizing and the available data for estimations
(Armour, 2002). Moreover, it has been argued that the formal
effort estimation models are too complex and uncertain for

15

16

practical use (Sommerville, 2001). The applications of these
models are usually not transparent, i.e., the factor weights used
for effort derivation are not obtainable in order to validate them.
Transparency would be required by the estimator to evaluate
the reasonability of the gained estimate, i.e., what comprises the
effort and the costs.

An important, yet overlooked, factor explaining poor
estimates is the light consideration on different activities
involved with the project. The estimators employing the expert
judgment technique frequently consider only those activities
that they are in relation with in a software project and focus on
the effort of actual software construction (Jergensen, 2004b,
2005; Jorgensen and Sjeberg, 2004). Moreover, the focus in effort
estimation research and estimation applications has been on
software construction (i.e., analysis, design, implementation and
testing) and project management (Boehm, et al, 2000;
MacDonell and Shepperd, 2003), whilst neglecting other
software project activities. Software engineering literature (e.g.,
(Pressman, 2005; Royce, 1998; Sommerville, 2001)) focuses on
project management and effort concepts, but the emphasis is on
effort estimation and effort-related planning (e.g., scheduling)
rather than on the total management of effort. Effort has not
been seen as an independent area of management like risk or
quality. Literature discusses risk management, quality
management and configuration management individually but
effort is covered as a part of software project management. In
other words, research has particularly focused on improving
effort estimation, and has concentrated on the software
construction effort of the software projects.

Another reason for the effort estimate inaccuracy can be the
inadequacy of previous projects’ effort data collection when
effort is both reported badly and collected without analyzing it
properly afterward. The collected effort data is used for both
improving team performance in upcoming project phases and
project and in calibrating the weights that adjust the factors and
drivers which are used for the effort estimate derivation in the
organization in question. The proposed processes for post-

mortem analysis describe post-mortem of the whole project, and
provide general guidelines without a detailed method to
analyze effort. Furthermore, the proposed analysis processes
require rather large resources (both time and personnel) which,
in practice, are quite limited in the software industry.

In spite of the vast research on effort and cost estimation, the
estimations have remained inaccurate. Besides effort estimation,
a software project involves various other effort-related functions
throughout the project’s lifecycle (Figure 1). These effort-related
functions influence on effort estimation. Some effort-related
functions exist also before and after the project. Therefore, we
propose a broader perspective on the topic.

System's devélupmem E System
e —{fysen]

Requirements

Effort
estimation
(initial) / re-
estimation

Effort

assessment/

analysis !
Phase/ ! i i
Iteration / 1 2 i n n+1
Sprint/ .. ' :

Delivery

Figure 1. The system’s development and consideration of effort in software projects

This thesis considers effort-related software project functions
in a more complete manner, and introduces improvement
results to reduce effort estimation inaccuracy. The results are
applicable in the software industry, particularly in the custom
software development projects. The results are to be applied
together but can also be applied independently. The effort-
related functions are parts of software project’s effort
management, which is presented in this thesis in a form of a
framework.

The thesis consists of five original publications and a
summary reviewing the publications. The organization of the

17

18

summary is as follows. Chapter 2 presents a theoretical
background of the key concepts related to effort management.
Chapter 3 presents the research approach with the key research
problems, and the employed methodologies.

Chapter 4 takes an overview on the research publications.
The chapter begins with describing the relation of the research
papers to each other, followed with the summaries of five
research papers: after describing a research framework for effort
management applied in this thesis, four improvement proposals
are introduced concerning several software development project
phases and their effort-related functions. Chapter 4 ends with an
evaluation of the research papers and results, and a discussion
on the contributions this thesis offers.

Conclusions with suggestions for further research are
presented in Chapter 5.

The Appendices include the quantitative effort data of the 32
software projects examined, and presents further literature for
the non-parametric effort and cost estimation techniques.

2 Theoretical background

This chapter introduces the key concepts related to this thesis,
and the theoretical background for the key activities related in
managing effort in a software project; effort estimation, effort
collection, and effort assessment.

2.1 KEY CONCEPTS

The imprecise estimation terminology used both in practice and
in software engineering literature is not only a confusion in the
literature but also, argued by Grimstad, et al., (2005), a
contributing factor in frequent software project cost overruns,
since the interoperability and communication of the estimates
become difficult. Although Grimstad, et al., (2005) refer in their
study to the term variations of the effort estimate, the concepts
of effort and cost estimations are also frequently mixed, and are
used often faulty as synonyms. Therefore, we first give special
consideration for the definitions of effort, estimate, and effort
and cost estimations related to software projects. This thesis
aims to improve the estimation of effort. Second, the concept of
effort distribution is defined. Effort distribution is one of the key
concepts for our perspective into effort management. Third,
closely related to effort distribution, the concept of work
breakdown structures is defined, since effort estimation is in
many cases based on these structures, or effort is managed with
them. These concepts are parts of effort management, which we
define as the fourth concept. Fifth, the different project types are
defined, since the case studies of this study concern one of them,
custom software development projects. Sixth, the software
process improvement and related process capability maturity
models are presented. Seventh, the concept of evaluation metric
is defined and the well-established metrics are presented. We

19

20

not only evaluate our research results with these metrics but
also utilize them in a method this thesis introduces. Finally, the
software size metrics are presented.

2.1.1 Effort, costs, estimate, and effort and cost estimation

The effort of a software development project can be generally
defined as the time consumed by the project, and it can be
expressed as a number of person hours, days, months or years,
depending on the size of the project (Chatters, et al., 1999).
Brooks (1975) has defined effort as the product of people and
time, i.e., effort = people * time. Effort is estimated in most
projects, especially in projects employing traditional project
management methods, to derive the project costs that are
needed to justify the business case. In agile software
development, the project costs are derived from the estimated
software size (Cohn, 2008). An estimate is a probabilistic
assessment with a reasonable accurate value of the center of a
range. Formally, an estimate is defined as the median of the
(unknown) distribution (Fenton and Pfleeger, 1997). An estimate
is a prediction; hence, an estimation model can be considered as
a prediction system. Effort estimation is often used as a synonym
for cost estimation but, to be precise, cost estimation is derived
from the effort estimate by valuing the effort using the cost of
project personnel and some other major project costs. Thus the
outcome of effort estimation is a time value, whereas the cost
estimate outcome is some monetary value (Conte, et al., 1986;
Fenton and Pfleeger, 1997; Sommerville, 2001).

2.1.2 Effort distribution

Although effort can be distributed in a project between project
activities or project phases in many different ways, effort
distribution is a less-investigated effort estimation area. Indeed, it
has been disputed whether it is useful to distribute effort in the
tirst place (Blackburn, et al.,, 1996, MacDonell and Shepperd,
2003). Yet examples exist in the software engineering literature;
Brooks’ (1975) suggestion for rule-of-thumb effort distribution
for software construction among the first in the mid-1970s.

Effort distribution can also be used to compare different projects
with each other (cf. (Heijstek and Chaudron, 2008)).

2.1.3 Work breakdown structure (WBS)

Effort is distributed on software project activities and sets of
activities that form a work breakdown structure, WBS. A WBS is a
particular defined tree-structure hierarchy of elements that
decomposes the project into discrete work tasks (Royce, 1998;
Wilson and Sifer, 1988). It can be very useful to organize project
activity elements into a hierarchical structure for project
budgetary planning and control purposes (Boehm, 1981). An
early establishment of a WBS helps to divide the effort into
distinct work segments that can be scheduled and prioritized
(Agarwal, et al., 2001).

WBS is also required by the currently employed capability
maturity models. For example, the staged representation of
CMMI (SEI, 2006; SEI, 2010) requires WBS on its maturity level
2. However, no standardized way to create a WBS exists, and
the software engineering literature provides only a few general
WBS including ones applied with the two COCOMO models
(Boehm, 1981; Boehm, et al., 2000), the Rational Unified Process
(RUP) activity distribution (Royce, 1998), and the ISO/IEC 12207
work breakdown structure for software lifecycle processes (ISO,
1995). It is noted that although the concept and practice of using
a WBS is well established, the topic is largely avoided in the
published literature because the development of a WBS depends
on the project management style, organizational culture,
customer preference, financial constraints, and several other
project-specific parameters (Royce, 1998).

Another structure for work breakdown is provided in the
OPEN process Framework (Henderson-Sellers, 2003), which in
one of the five major framework components is Work Units,
which results as a Work Product. A Work Unit is defined as a
functionally cohesive operation performed by a Producer
(people). The three major classes of Work Unit are Activity (e.g.,
‘project planning” or ‘modeling and implementation’), Task (e.g.,
‘code’ or ‘evaluate quality’), and Technique (e.g., ‘class naming’,

21

22

“prototyping’ or “unit testing’). These classes form pairs and are
linked with each other, e.g., Activities are linked with Tasks, and
Tasks with Techniques.

2.1.4 Effort management

The concept of effort management is rarely used in software
engineering or information system research. The concept was
introduced in information system research first in 1995. Young
(1995, p. 716) defines effort management as a management area
that “tracks the commitment of resources against undertakings,
both project and non-project”. In fact, Young (1995) emphasizes
the non-project consideration over project. We, on the other
hand, implicitly limit our consideration to software projects, and
define effort management as an organized process to estimate,
collect, monitor and control, and analyze effort related to
software projects and their activities.

Effort management can be considered to include all necessary
functions which manage effort in a software project. These
functions include effort estimation, effort collection, and effort
assessment and analysis, for instance. Simplified, during project
planning, effort is initially estimated with the method in use.
The estimate is revised during project execution with both
collected and assessed effort data from the project. During
project closure, the delivered project and its effort are analyzed,
and a project final report is drawn.

To assist effort management, some frameworks have been
proposed: Software Development Management (SDM) framework
(Tsoi, 1999), and the frameworks proposed in (Fairley, 1992;
Vesterinen, 1998). These frameworks are fairly limited, both in
terms of project lifecycle phases and effort functions. For
example, the SDM framework is limited mostly to the pre-
project and project phases. The proposed frameworks also
concentrate mostly on the effort estimation function.

2.1.5 Custom software development project
A project holds following major characteristics (Gray and
Larson, 2006):

1. an established objective,

2. adefined life span with a beginning and an end,

3. wusually, the involvement of several departments and

professionals,

4. typically, doing something that has never been done

before,

5. specific time, cost, and performance requirements.

Software projects can be divided into five different categories
(Pressman, 2005): concept development projects, new
application development projects, application enhancement
projects, application maintenance projects, and re-engineering
projects. The concept development projects are initiated to
explore a new business concept or application of a new
technology. The new application development projects are
undertaken as a consequence of a specific customer request.
When the existing software undergoes major modifications that
are observable to the end-user, the project type is an application
enhancement project, whereas an application maintenance
project corrects, adapts, or extends the existing software in ways
that may not be visible to the end-user immediately. The re-
engineering projects are undertaken with the intent of
rebuilding an existing legacy system in whole or partially
(Pressman, 2005).

The project type considered in this thesis’ case studies is a
custom software development project, which refers to a new
application development project, in which the software is
implemented customized. Software projects often implement
customized software (Herzum and Sims, 2000; Szyperski, 1999).
Custom software is a system that is commissioned by a certain
customer for certain special requirements (Sawyer, 2001;
Sommerville, 2001). Although custom software is typically
implemented from scratch, the use of ready-made components
is endeavored (Boehm, et al., 1995; Herzum and Sims, 2000;
Sawyer, 2001; Szyperski, 1999). The components can be either

23

24

self-made component packages, or applications made by a third
party (Herzum and Sims, 2000; Sawyer, 2001; Szyperski, 1999).
Custom software is preferred as the customer gets software that
meets the set requirements, and software does not contain extra
functionality. Moreover, usually the rights for software are
transferred to the customer.

The effort estimations of these different project types vary
although same approaches or methods can be used for several
types. The decisive difference is the amount and depth of the
information in hand to make the estimations. If a software
application exists at the point of the estimation, the knowledge
on the project is naturally higher than in situations, where a new
application is constructed. Hence, the estimations on application
enhancement or maintenance projects should be more accurate
(Boehm, 1981; Boehm, et al., 1995). In fact, the maintenance
projects are excluded from this research since maintenance
project effort estimation is sufficiently accurate both in the
software industry and in the academia. For example, the
findings for estimating the maintenance effort of object-oriented
systems are promising with low misestimating values
(Fioravanti and Nesi, 2001).

In this thesis, we consider aspects that are commonly
associated with the traditional software projects since projects
applying agile software development approach (Cohn, 2008)
emerged at the research site at the end of this research, and
because software deliveries still are in many cases carried out
with traditional project management methods. In fact, Dyba and
Dingseyr (2008) conclude that instead of abandoning the
traditional project management principles in agile deliveries,
one should take advantage of them and combine them with
agile project management. Also, the evidence suggests that agile
methods are not necessarily the best choice for all projects, e.g.,
large ones (Dyba and Dingseyr, 2008).

2.1.6 Software process improvement (SPI) and capability
maturity models

Effort management can also be the focus of the software process
improvement (SPI) activity. SPI means understanding the existing
processes and improving them to achieve improved product
quality and to reduce costs and development time. SPI is usually
an activity that is specific to an organization (Sommerville,
2001).

SPI has its origins in the Total Quality Management (TQM).
The principles of the statistical quality control in the product
quality management from the 1930’s were further developed in
the 1980’s with a premise that real process improvement must
follow a sequence of steps, i.e., make the process concrete,
repeatable and measurable. The premise for improvement is
that it is managed which in turn require that it is measurable
(Zahran, 1998).

The SPI activity initiative can arise from employing a
capability maturity model. The maturity models are used to
improve the related processes. The most widely known and
employed capability maturity models include ISO/IEC 15504
(formerly known as SPICE) (ISO, 1993), and CMMI (SEI, 2006;
SEI, 2010) which evolved from CMM (Paulk, et al., 1993).

The capability maturity models set different effort-related
requirements on software projects. However, these
requirements are presented in a rather fragmented manner in
models” descriptions. For example, CMMI requires elements of
the effort management. Mostly, the effort management relates to
the project management process area in CMMI. Like CMM,
CMMI requires an organization’s measurement repository,
which is used to collect and make available measurement data
on processes, e.g., effort and cost estimates, and the actual effort
and costs, to analyze the measurement data (SEI, 2006; SEI,
2010). Moreover, the staged representation requires work to be
arranged as work elements and their relationship to each other
and to the end product, i.e., into a work breakdown structure.
The structure is required to estimate the scope of the project,
and to plan the project resources and to manage configurations

25

26

(SEL 2006; SEL 2010). It is notable, that even though the latest
release of the CMMI model is enhanced with guidance for
organizations using Agile methods, the process maturity is still
measured based on attributes associated with the traditional
approach of project management such as effort and work
breakdown structures (SEI, 2010).

SPI and the employment of capability maturity models are
under enormous interest of research. Numerous studies have
been conducted applying capability maturity models in
software industry (e.g., (Clarke, 1997; McBride, et al., 2004;
Rautiainen, et al, 2002)). However, studies describing
improvement activity in software project effort management
context are not very common. It is also argued that maturity
models provide a good basis for SPI, but also an excessive
overhead if deployed in full (Rautiainen, et al., 2002), although
the process maturity correlated negatively with project effort,
i.e., increment changes in process maturity result in reduced
effort (Clarke, 1997). Moreover, it is claimed that SPI do not take
enough in consideration that different business situations
require different processes (Rautiainen, et al, 2002).
Furthermore, it is argued that maturity models may not be the
best models to measure maturity in management processes such
as effort management, as opposed to the technical processes of
developing the software, since models have an underlying
process model that view software development activities in an
industrial production-like fashion, focusing attention on the
flow of work from one process to another (McBride, et al., 2004).

2.1.7 Method evaluation criteria

Both effort estimates and effort estimation methods are
evaluated with criteria metrics: established metrics include
Prediction at Level | (PRED(I)), the Magnitude of Relative Error
(MRE), and the Mean Magnitude of Relative Error (MMRE).
Besides for their conventional use, we employ criteria metrics as
a part of our effort assessment method itself (Paper IV).

The Magnitude of Relative Error (Conte, et al., 1986; Fenton and
Pfleeger, 1997), MRE, is derived from Relative Error (RE), and
determined as follows:

EE _EA

MRE = 1)

A
where Er = estimated effort and Ea = actual effort.

MRE considers both types of errors, overestimates and
underestimates (Kemerer, 1987), which are equally unfavorable
since complete effort accuracy is pursued. The closer to zero the
MRE value is, the better the prediction (Conte, et al., 1986;
Kemerer, 1987). In the light of some studies it seems that effort
estimation accuracy in software projects in terms of MRE follow
normal distribution (Milicic and Wohlin, 2004). As the project
proceeds and the effort is re-estimated, Er closes on E4 and the
MRE value gets smaller, because estimates get more accurate as
more information is available (Boehm, 1981; Boehm, et al., 1995).
Usually an organization sets a certain limit MRE value to project
effort estimations and, if it is exceeded, the reasons are explored
and some actions taken to prevent further excesses.

Prediction at Level | (PRED(I)) describes how many projects in
a set of projects have a MRE </ (Conte, et al., 1986; Fenton and
Pfleeger, 1997):

PRED(])= K (2)
n
where k = the number of a set of n projects whose mean
magnitude of relative error is less than equal to [.

For example, PRED(0.25) is the percentage of estimations that
fall within 25% of the actual value (Shepperd and Schofield,
1997). Hence, PRED(/) identifies those estimates that are
generally accurate (Menzies, et al., 2005, Shepperd and
Schofield, 1997). Since Conte et al., (1986) set I to 0.25 it has been
established as one of the most widely used evaluation criteria in
effort estimation research (e.g., (Boehm, et al., 1995; Gray, et al.,
1999; Menzies, et al., 2005; Shepperd and Schofield, 1997;
Shepperd, et al., 1996) together with MRE. However, as the
choice of the accuracy measure depends on the objectives of the
stakeholders (Shepperd and Schofield, 1997), the MRE value of

27

28

0.25 is considered in many cases too poor and beyond practical
use for the software industry, although values as high as 0.35
have also been employed (Jalote, 2000). The accepted MRE value
for project effort estimations in organizations is usually set by
the business and quality responsible.

Another well-known metric is the Mean Magnitude of Relative
Error MMRE):

MMRE:%XMRE,. 3)
i=l

where 7 is a set of projects and MRE is Magnitude of Relative

Error (Conte, et al., 1986).

2.1.8 Software size metrics

A common input variable for an effort and cost estimation
model or method is the size of the constructed software. A
software product is a physical entity, thus it can be described in
terms of its size (Fenton and Pfleeger, 1997). Software size is
suggested to be described with three fundamental attributes
(Fenton and Pfleeger, 1997): length, functionality, and
complexity. Software size is usually measured either with a size-
related or a function-related measure. The size-related measures
concern the size of some output from an activity. The most
common size-related measure is lines of delivered source code
(lines of code, LOC, which is typically presented as kilo-LOC,
KLOC) (Sommerville, 2001). However, there is dispute on the
definition of LOC. The most widely accepted definition for LOC
is a non-commented source statement, i.e., any statement in the
program except for comments and blank lines (Fenton and
Pfleeger, 1997).

Other examples of well-known length-related measures
include the variants of LOC (e.g., non-commented lines of code
NCLOC or effective lines of code ELOC), delivered source
instructions (DSI), and the complex measure of Halstead’s
software science (Conte, et al., 1986; Fenton and Pfleeger, 1997).
These measures were suggested initially for the procedural
programming languages. More suitable length-measures for

object-oriented programming consider the number of objects,
classes, or methods, for instance (Fenton and Pfleeger, 1997).

The function-related measures are related to the overall
functionality of the delivered software, and they are
independent from the programming paradigm. The best known
function-related measures are function points and object points
(Sommerville, 2001). Function points are intended to measure the
amount of functionality in a system as described by a
specification (Fenton and Pfleeger, 1997). Object points are an
alternative to function points when 4GLs or comparable
languages are used for software development (Sommerville,
2001). Object point approach, first introduced in (Banker, et al.,
1991), is a synthesis of a procedure and reported productivity
data (Banker, et al., 1994). They are also used in the COCOMO II
estimation model for early size measuring (Fenton and Pfleeger,
1997; Sommerville, 2001). The object points are easier to estimate
than function points from a high-level software specification.
The number of object points in a program is a three-level
weighted estimate of the number of separate displayed screens,
the number of produced reports and the number of 3GL
modules that must be developed to supplement the 4GL code
(Fenton and Pfleeger, 1997; Sommerville, 2001).

Both function points and object points can be used to early
stage estimation. Estimates of these parameters can be made as
soon as the external interactions of the system have been
designed. At this stage, it is very difficult to produce an accurate
LOC estimation. Early estimates are essential when using the
algorithmic cost estimation models (Sommerville, 2001).
Moreover, function points are language-independent so
productivity in different programming languages can be
compared (Sommerville, 2001). Hence, several effort and effort-
related measures can be counted in effort assessments in relation
to function points (FP) such as productivity (e.g., hours per FP),
quality (e.g., defect removal efficiency), and finance (e.g., cost
per FP, repair cost ratio) (Garmus and Herron, 2001).

Feature Points, an adaptation to function points, were tailored
to size estimation for computationally intensive systems such as

29

30

real-time systems (Fairley, 1992). In the Feature Point approach,
the number of program’s algorithms is added as the sixth
function point factor. Moreover, some of the function point
weighting factors changed in Feature Points, and the fourteen
complexity factors were reduced down to two: logic complexity
and data complexity.

Besides function points, object points and feature points,
functional sizing approaches include use case based estimation
(Pressman, 2005). This technique, however, involves several
uncertainties, for example how the use cases are presented. The
use case points are calculated based on the number and
complexity of the use cases, their scenarios and different actors,
and weights related to the technical and environmental factors.
An effort estimation method based on the use case estimation
technique, Use Case Points, was introduced by Karner in 1993
(Mohagheghi, et al., 2005), and has been incorporated into RUP
(Royce, 1998).

Another sizing approach is story points, which is applied in
agile estimation (Cohn, 2008). In the story point technique, the
development team values user stories with the relative size of
story points based on the analogy of previously implemented
stories. An agile estimation technique based on story points,
planning poker, was introduced by Grenning in 2002 (Cohn,
2008). Planning poker combines expert judgment, analogy, and
disaggregation of the user stories into smaller entities. During
iterations to reach consensus on the final estimate for an entity,
the team members state their story point size value at the same
time with cards of a non-linear scale, and the differences
between the indicated values are then discussed before next
iteration. Based on the team’s known rate of progress, velocity,
the duration of the project can be derived from the combined
final relative size estimates.

Out of several approaches into software sizing two
approaches and four metrics are employed in practice: size in
terms of program code (KLOC) and program functionality
(function points, use case points, and story points). Since
program functionality is known before the number of

implemented program code lines, function-based approach
seems to be more suitable for effort estimation purposes, in
practice.

2.2 KEY FUNCTIONS IN MANAGING SOFTWARE PROJECT
EFFORT

This sub-chapter introduces key functions related to managing
effort in a software project; effort estimation, effort collection,
and effort assessment.

2.2.1 Effort estimations and re-estimations

The effort of a software project can be estimated and modeled,
and estimation techniques can be classified in several ways. In
the following, we present the evolution from the first effort and
cost estimation approach classifications by Boehm (1981) and
Conte, et al., (1986) to the later classifications by Fairley (1992),
Fenton and Pfleeger (1997) and Briand, et al., (1999, 2000).

Boehm (1981) divided the methods into seven categories:
algorithmic models, expert judgment, analogy, Parkinson, price-
to-win, top-down, and bottom-up. The algorithmic models
include linear models, multiplication models, analytic models,
tabular models, and composite models. Later, this division was
reduced to two main antithesic approaches: algorithmic and
non-algorithmic approaches.

Conte, et al., (1986) divided the approaches of -effort
estimation on the highest level into micro-model and macro-
models of effort. The macro-models of effort were divided
further into historical-experiental models, statistically-based
models, theoretically-based models, and composite models. The
historical-experiental models include expert judgment
technique. The statistically-based models include techniques
such as regression analysis, linear models, and non-linear
models.

In 1992, Fairley (1992) addressed the different estimation
techniques which included the traditional approaches

31

32

(categorized into empirical techniques, regression techniques,
and theory-based techniques) and the advances in the popular
approaches at that time (advances in analogy-based estimation,
function point techniques, regression modeling, theory-based
models, and in size estimation). Fairley (1992) predicted that
analogy-based methods with expert system decision rules will
emerge into future estimations.

Fenton and Pfleeger’s (1997) division was based much on
Boehm’s division, but included only four categories: expert
opinion, analogy, decomposition, and models. Each of these
techniques can be applied either bottom-up or top-down.

Briand, et al., (1999, 2000) divided the effort estimation
techniques into parametric and more advanced non-parametric
modeling techniques (Figure 2). The non-parametric modeling
techniques (Appendix B) have emerged gradually into effort
estimation, but applications are still in short supply.

MNon-parametric effort
cost estimation

techniques
Machnine
learning
[I I 1
Artificial Stepwise :
intelligence Analogy regression Fuzzy logic
|
[[]
Artificial neural Case-based Inductive learning
networks reasoning (rule induction)
|
[|]
Optimized set : :
CART reduction Bayesian analysis,

Figure 2. The non-parametric effort estimation technique classification (adopted from
(Briand, et al., 1999, 2000)

Since the beginning of the 1990’s research on effort estimation
has increased and new approaches have been proposed and
presented. These approaches include various machine learning

techniques and artificial intelligence. Based on the evaluations of
these advanced techniques (e.g., (Finnie and Wittig, 1996;
Mukhopadhyay and Kekre, 1992; Shepperd and Schofield, 1997;
Srinivasan and Fisher, 1995)), one cannot conclude a superior
estimation technique, although case-based reasoning seems to
be a promising one out of the advanced formal approaches. The
results of the evaluations depend on the case and are partially in
conflict with each other. Although new approaches have been
introduced, in practice the methods employed are mostly old
approaches. A reason for this is that the new approaches, such
as artificial neural networks, produce results hard to interpret in
practice (Briand, et al., 1999).

In fact, formal techniques in general are seldom employed in
the software engineering industry. Studies (e.g., (Gray, et al,,
1999; Hihn and Habib-agahi, 1991; Jergensen, 2005; Jergensen
and Sjeberg, 2004; Kitchenham, et al., 2002; Virtanen, 2003))
imply that applied techniques in the software industry are
primarily informal, and based on analogy and expert analysis,
particularly since there is no conclusive evidence that a formal
method outperforms the informal expert analysis (Jorgensen,
2004a, 2004b, 2007; Kitchenham, et al., 2009). The analysis of
tifteen studies comparing the accuracy of expert estimates with
model estimates reported that findings were distributed equally,
i.e., five studies were in favor of expert estimations, five studies
found no difference and five studies were in favor of formal
model-based estimation (Jergensen, 2004b).

In another study (Niessink and van Vliet, 1997), the expert
judgment technique has been reported to outperform the
Function Point Analysis based estimations in the context of
predicting maintenance effort. Expert judgment estimation is
defined as an “estimation conducted by a person who is
recognized as an expert on the task and who follows a process
that is, to some degree, non-explicit and non-recoverable”
(Jorgensen and Sjeberg, 2004, p. 317). Reasons for applying
expert judgment instead of formal estimation methods include
flexibility regarding required input for estimations and time
spent on estimations.

33

34

Software project effort estimation has been increasingly
studied since 1960’s both in the academia and in the software
industry. In particular, the research interest lies within modeling
effort and cost estimation. As models in general, they describe a
phenomenon ex post, and thus their use ex ante for estimation
can be challenging; rather, they can be used for simulating the
software project effort after project’s completion when the actual
effort is in hand. Moreover, the models require information as
input parameters which cannot be obtained before the project is
completed. For example, COCOMO model (Boehm, 1981)
requires the number of lines of code when modeling software
project effort.

Effort and cost estimation has existed in software engineering
research literature since 1960’s when the first models to estimate
effort and cost were introduced (Conte, et al., 1986). These
pioneering models included linear statistical models such as
Nelson and Farr-Zagorsky. The famous formal models are from
the turn of the 1970-80’s, and include the Putnam SLIM model,
Price-S model, the Jensen model, and the COCOMO model.

According to (Pressman, 2005; Royce, 1998; Smith, et al,,
2001), the most widely known models include the COCOMO
(Constructive Cost Model) (Boehm, 1981) and COCOMO I
(Boehm, et al., 1995, 2000) models, which are primarily based on
software size in lines of code, and the Function Point (FP) count
(Albrecht and Gaffney, 1983). The FP count, or Function Point
Analysis (FPA), is based on the software functionality, and can
be used to derive effort with a known productivity factor, and
has many variants such as Mark II FP (Symons, 1988).

The COCOMO models, being influential to our research, are
described in concise in the following. Besides providing a well-
defined cost estimation model, the COCOMO literature (Boehm,
1981; Boehm, et al., 2000) provides different work breakdown
structures with relating effort distributions.

Boehm (1981) introduced the original COCOMO model in
1981. The original COCOMO model is a collection of three
different models: the Basic model, the Intermediate model, and
the Detailed model. The purpose of using a more complex

model is to achieve more accurate estimation by taking more
factors into account. This in turn requires more details to be
known. The Basic model, which can be applied in the early stage
of the project, estimates the effort based primarily on the
software project’s size in terms of program lines of code (kilo
delivered source instructions, KDSI). The Intermediate and
Detailed models use an Effort Adjustment Factor (EAF) and
slightly different coefficients for the effort equations. The EAF is
a product of the six-scaled Effort Multiplier and the
corresponding cost driver. The COCOMO cost drivers consists
of fifteen independent product, computer, personnel and project
attributes which determine the project’s effort. The major
difference between the Intermediate and the Detailed model is
that Effort Multipliers are in the Detailed model used for each
project phase (Agarwal, et al., 2001; Boehm, 1981; Fenton and
Pfleeger, 1997).

COCOMO was enhanced to COCOMO II in the mid-1990’s in
order to develop the model to address the new needs of
evolving software engineering such as distributed software and
component techniques (Boehm, et al., 2000; Fenton and Pfleeger,
1997). COCOMO 1I categorization is not, however, suitable for
all project situations, and should be adjusted via context and
judgment to fit individual projects (Boehm, et al., 2000).
COCOMO II model’s equation for counting effort corresponds
with the original COCOMO'’s Intermediate (or Detailed) model’s
equation. The amount of Effort Multipliers considered depends
on the project’s development phase as the knowledge on the
project grows (Agarwal, et al., 2001). Moreover, besides using
only lines of code for the software sizing, object or function
points can be used (Fenton and Pfleeger, 1997; Pressman, 2005).

Besides estimating effort and cost, the COCOMO models
provide effort distributions over different work breakdown
structures. A WBS was suggested for projects employing a
waterfall project lifecycle process in (Boehm, 1981). The WBS is
applied with the COCOMO cost estimation model as the model
estimates how effort is distributed on different activities
between eight major categories, namely requirement analysis,

35

36

product design, programming, test planning, verification and
validation, project office functions, configuration management
and quality assurance, and manuals, each having specific
activities in the four project lifecycle phases. These phases were
based on earlier estimation methods and the waterfall lifecycle
model (Boehm, 1981).

COCOMO 1II has been developed to be usable by projects
employing either waterfall or spiral software engineering
processes. In the waterfall approach of COCOMO II, software
activity work was divided into five major categories:
management, system engineering, programming, test and
evaluation, and data. This breakdown was adapted from the
COCOMO’s eight categories, which were partly reorganized
and renamed. The requirements, product design, and
configuration management and quality assurance categories
were organized as system engineering sub-activities.
“Verification and validation” was renamed ‘test and evaluation’,
‘manuals’ became ‘data’, and “project office functions’ became
‘management’ (Boehm, et al., 2000).

The COCOMO I spiral approach is based on the same WBS
approach applied in the RUP (Royce, 1998) The RUP default
WBS is based on seven main categories, namely management,
environment, requirements, design, implementation,
assessment, and deployment. Each of these seven categories
includes activities relating to four project phases (inception and
elaboration of the engineering stage, and construction and
transition of the construction stage) (Royce, 1998). The
COCOMO II WBS for spiral process is based much on the same
seven categories, yet RUP’s “environment’ became ‘environment
and configuration management’ in COCOMO II. Also, the
activities within the four phases partly differ (Boehm, et al.,
2000). Moreover, COCOCO II dropped COCOMO’s modern-
programming-practices parameter in favor of a more general
process-maturity parameter. COCOMO II was also enhanced
with several new parameters (Chen, et al., 2005), for example,
with the development of reuse, multi-site development,
architecture and risk resolution, and team cohesion. Moreover,

the organization can add new proprietary parameters reflecting
its particular situations.

2.2.2 Effort data collection

The software engineering literature (e.g., (Pressman, 2005;
Royce, 1998; Sommerville, 2001)) describes effort-related
functions during project execution (collection, monitoring,
assessments, and re-estimations) very superficially compared to
the effort-related functions during project planning (e.g., effort
estimation, scheduling etc.).

However, a few descriptions exist. In the beginning of the
1980s, Boehm (1981) described a follow-up system for projects’
effort (cost) information. He pointed out that in the beginning
effort estimation is imperfect and actual effort data is needed for
calibration and change management. Moreover, not every
project fits into the estimating model. Hence, the employed
formal effort estimation model requires a particular follow-up
system. This system both supports effective project management
and benefits the long-range effort estimation capabilities. The
data collected in a consistent manner via control activities over
several projects can be analyzed to determine how the actual
effort distribution differs from the estimates. The differences are
fed back to calibrate the model. For a new project, data
collection should be considered to calibrate their estimating
models (Boehm, 1981).

The importance of the effort-related functions during project
execution, such as effort collection, was raised also in (Tsoi,
1999), where a framework for software project development
management was proposed. This framework concentrated on
the pre-project and project phases (referred as acquisition and
operation phases, respectively), and especially on the
monitoring the effort in a software project. The framework
relied on two basic principles which occur in software projects:
the existence of change due to the dynamic environment, and
the need for dynamic, continuous measurement on project
progress to collect real-time information.

37

38

2.2.3 Effort assessments and post-mortem analyses

The projects are assessed after a specific time period, e.g., project
phase, iteration, increment, or sprint, and the project is analyzed
in detail after it has been completed. This retrospective analysis
is called an assessment or postmortem analysis, a project closure or
retrospective, or a post-project analysis (Brady and DeMarco, 1994;
Collier, et al., 1996; Haapio and Eerola, 2006; Jalote, 2000). The
motivation of the analysis is to consider the finished project or
its phase and its results carefully in order to understand and
explain it. The teams and organizations want to learn from
experience and collect information for future utilization, to
improve software processes, and to facilitate product
development based on learning. One of the goals of such
assessment is to decrease the future effort estimation
inaccuracies.

Effort assessments and postmortem analyses are carried out
as a part of SPI. Analyzed effort information is required by the
maturity models, e.g., ISO/IEC 15504 (ISO, 1993) or CMMI (SEI,
2006; SEI, 2010) as evidence of process maturity. Effort is
assessed regardless of the software development model, not
only in waterfall-based projects but also the spiral, incremental,
iterative, and agile approaches, such as widely employed RUP
(Royce, 1998) or Scrum (Schwaber, 1995; Takeuchi and Nonaka,
1986).

The effort assessment takes a retrospective into the success of
effort estimation while retrospective analyses are performed to
get exact data from actual effort and project results in terms of
requirements fulfillment of the stakeholders. A requirement is
defined as “something that the product must do or a quality that
the product must have” (Robertson and Robertson, 1999, p. 5).
The software product holds both functional and non-functional
requirements (Robertson and Robertson, 1999), and on the other
hand, both user and system requirements (Pressman, 2005). The
functionality of the product, i.e., things that the product must
do, and the data manipulated by the functions, is stated as the
functional requirements. The non-functional requirements, on
the other hand, are the product’s qualities, i.e., the requirements

for look and feel, wusability, performance, operational,
maintainability and portability, security, cultural and political,
and legal (Robertson and Robertson, 1999). The user
requirements are statements of “what services the system is
expected to provide and the constraints under which it must
operate” whereas the “system requirements set out the system
services and constraints in detail” (Sommerville, 2001, p. 118).

The rationale for performing assessments and postmortem
analyses is well-represented in the literature as an essential part
of software engineering process and organization’s knowledge
management (Rus and Lindvall, 2002), and highly endorsed by
both IT consultants (Iacovou and Dexter, 2005) and scholars. To
put it simply, the analysis can increase the odds of project
success (Verner and Evanco, 2005) and improve project cost
estimation (Birk, et al., 2002). Despite the benefits, the minority
of the organizations employ assessments consistently (29%
according to (Verner and Evanco, 2005)). The proposed analysis
processes may require rather large resources (both time and
personnel) which, in practice, are quite limited in the software
industry. Moreover, in many cases the analysis descriptions
provide only general guidelines without detailed methods. As
the general software engineering literature (e.g., (Sommerville,
2001)) attempts to cover the whole spectrum of software
engineering, it provides understandably only rough
descriptions of assessments and postmortem analyses. More
detailed presentations can be found in research papers.

In 1990s, the interest in postmortem analysis increased in
particular (Brady and DeMarco, 1994), moving from analyzing
the developed system (Kumar, 1990) to analyzing the process
how the systems were developed (Collier, et al., 1996), and from
closing the project to improve the software engineering process.
These software project postmortem analysis descriptions were
complemented with e.g.:

e a proposal to separate postmortem analyses for
planning, design/verification, and field wuse
(Tiedeman, 1990)

39

40

e an online presentation of an approach to conduct
postmortem analysis (Kerth, 1998)

e a presentation that emphasize learning from
documented success stories (Nolan, 1999)

e a proposal for a light-weighted postmortem analysis
method for small and medium size companies to
increase analysis consistency (Dingseyr, et al., 2001)

e a book much referred to on project postmortem
analyses (Kerth, 2001)

e a distinction between two postmortem analysis types
(Birk, et al., 2002): one is a general postmortem
analysis that collects available experience from an
activity and the other is focused in understanding and
improving a project’s specific activity, such as effort
estimation

e a comparison of two types of postmortem outcomes:
reports and stories (Desouza, et al., 2005a, 2005b)

e different postmortem approaches (Dingseyr, 2005)

e a postmortem method for the telecom domain (Sertic,
et al., 2007)

e retrospective applications for agile software
development (Kinoshita, 2008; Maham, 2008)

e postmortem analysis for maintenance processes
(Anquetil, et al., 2007).

Conducting postmortem analyses have also been criticized.
Postmortem analyses, by nature, take a reactive approach, i.e.,
analyze a project after it failed, while proactive actions would be
more advantageous in preventing the project from failing
(Awazu, et al., 2004). Assessing effort during the project is one
of these steps; it enables necessary, even drastic, measures be
taken before the project is completed. It is also reminded that
documented and recorded information does not improve
anything unless the knowledge is shared and available, and the
tools attract to utilize the information (Lyytinen and Robey,
1999; Petter, et al., 2007).

3 Research methodology

In this chapter, we discuss our research process and objectives,
and present the key research problems with the employed
methodologies to address these research problems.

3.1 RESEARCH PROCESS, PROBLEMS AND OBJECTIVES

Our research process is based on the principles of the
constructive research methodology. The constructive research
method is described in sub-chapter 3.2.1. Besides constructive
research method, we employ several other research methods to
support our research process; the case study and action research
methods to be most important. These supportive research
methods are described in sub-chapter 3.2.2.

With constructed research artifacts, we attempt to solve
organizational problems related to effort and its estimation
(Figure 3). This thesis considers the unit of analysis, effort, in the
context of software development projects.

Initial state Building process Target state
e
Organizational Research Build Evaluate
—>| | problem 1 prablem 1
L) |

Constructive research

Supportive research methods

Figure 3. The research process (adopted from (Jirvinen, 2001))

The motivation for building an artifact is either lacking of
that artifact or low quality of the outcomes achieved with the

41

42

old artifact (Jarvinen, 2001). The research artifacts are built in the
building process. The purpose of the building process is to
achieve a transition from the initial state to the target state
(Jarvinen, 2001). In initial state, we transform the organizational
problems into research problems. In the iterative building
process, a research artifact is first build and then evaluated. If
the evaluation criteria are met, the research artifact can be
considered reach its target state. On the other hand, if there is
still room for improvement, we return to the building activity
where the artifact is upgraded. In time, the target state does not
satisfy the needs anymore, and the state is returned to initial.

In addition to the problems found in organizations and by
the software engineering research that were described in the
Theoretical background chapter, we include in our research
organizational problems that are observed at the research site. It
is notable, that the research process we apply is iterative,
supplementary and cumulative, i.e., new organizational
problems are observed at the research site and identified as a
result from an on-going research iteration, and new iterations
are re-initiated for each new problem that we define as a
research problem. In the following, we formulate the research
problems we aim to solve in this thesis.

Several effort and cost estimation models and methods have
been proposed during the last decades. Despite the numerous
applications available for estimation, effort is, however,
frequently underestimated (Gruschke and Jergensen, 2008;
Kitchenham, et al., 2009). As mentioned in the Introduction
chapter, according to studies (e.g., (Briand, et al., 1999;
Shepperd, et al., 1996)), the effort estimation methods and tools
have reached only low accuracy levels with MRE-values worse
than 0.30, whereas the target value between the estimated and
actual effort for software industry companies can be three times
smaller, for instance.

The effort estimation research and the different estimation
techniques emphasize two factors in respect to the difficulty in
producing accurate estimates: software size and the available
data for estimations (Armour, 2002). Most formal effort and cost

estimation models and methods require a determination on the
size of the software to be produced. The size is generally
determined for example in terms of lines of code (LOC), function
points (FP), or use case points (UCP) (see sub-chapter 2.1 Key
concepts). The prediction of the size of the final software
product is, however, challenging and complex. Another factor
which reflects to inaccurate effort estimates is the shortage of
knowledge on the software to be produced since these estimates
are made especially in the early stages of the software
development process (Armour, 2002; Boehm, 1981).

Concluding from the effort-related challenges described
above and in the Theoretical background chapter, we can
formulate our first and primary research problem as follows:

“Effort (and cost) estimates are inaccurate.” (RP1)

Although several formal approaches have been proposed for
effort estimation they are seldom employed in practice. As
mentioned in the sub-chapter 2.2.1 of Theoretical background,
the applied effort estimation approaches are in most cases
informal, and based on analogy and expert analysis. Jergensen
daunts that it might not be possible to develop effort estimation
models that replace expert judgment, and therefore the best
effort estimation improvement strategy may be to improve the
judgment-based effort estimates (Jorgensen, 2005).

As assumed in the Introduction chapter, an overlooked,
possible factor explaining poor effort estimates is the light
consideration on different activities involved with the project.
Therefore, the likelihood of wunintentionally leaving out
significant activities affecting the estimation is significant. Also,
the focus in effort estimation research and estimation methods
has been on software construction and project management
(MacDonell and Shepperd, 2003), whilst presenting the other
activities related to the project merely as a fixed proportions
from the software construction effort, and as effort overhead.
These activities, which are not directly related to software
construction or project management, include various

43

44

management and support activities, each carried out by several
members of the project.

Experiences from the software industry imply that in effort
estimations where expert judgment technique has been applied
the estimators consider exclusively those activities that occur for
them in a software project and focus on the effort of actual
software construction. Indeed, research (e.g., (Jorgensen, 2004b,
2005; Jorgensen and Sjoberg, 2004)) confirms this observation.
Also, there is a correlation between years of experience and the
variety of different project activities considered for the estimate
(Jorgensen and Sjeberg, 2004): more experienced experts
consider a larger variety of project activities. Different experts
estimate different areas, e.g., programmers estimate the amount
of programming effort.

Hence, we can formulate our second research problem as
follows:

“Estimators consider mostly core construction activities, relevant
in their work, when estimating.” (RP2)

A reason for the effort estimate inaccuracy can be the
inadequacy of previous projects’ effort data collection when
effort is both reported badly and collected without analyzing it
properly afterward. The collected effort data is used for both
improving team performance in upcoming project phases and
project and in calibrating the weights that adjust the factors and
drivers which are used for the effort estimate derivation in the
organization in question.

The proposed processes for post-mortem analysis (e.g.,
(Collier, et al., 1996)) describe post-mortem of the whole project,
and provide general guidelines without a detailed method to
analyze effort. Furthermore, as noted in sub-chapter 2.2.3, the
proposed analysis processes require rather large resources (both
time and personnel) which, in practice, are quite limited in the
software industry.

Hence, we can formulate our third and fourth research
problems as follows:

“Effort data quality is bad, i.e., it is not reliable.” (RP3)
“Effort data is seldom assessed.” (RP4)

An important topic to consider in improving effort estimation
is the overall management of software project effort since effort
estimation is not an isolated activity. As mentioned in the sub-
chapter 2.2.1 of the Theoretical background, effort has not been
seen as an independent area of management like risk or quality.
The software engineering literature (e.g., (Pressman, 2005;
Royce, 1998; Sommerville, 2001)) discusses risk management,
quality management and configuration management
individually but effort is covered as parts of software project
management. The literature describes the effort-related
functions during project execution (collection, monitoring, and
re-estimations) very superficially compared to the effort-related
functions during project planning (e.g., effort estimation,
scheduling etc.).

Hence, we can formulate our fifth research problem as
follows:

“Effort-related functions are presented in a scattered way.” (RP5)

It has been argued that the formal COCOMO models and
Function Point count are too complex and uncertain for practical
use (Kemerer and Porter, 1992; Rask, 1992; Sommerville, 2001;
Symons, 1988). The applications of these effort estimation
models are usually not transparent, i.e., the factor weights used
for effort derivation are not obtainable in order to validate them.
Transparency is required by the estimator to evaluate the
reasonability of the gained estimate, i.e., what comprises the
effort and the costs.

Hence, we can formulate our sixth and final research
problem as follows:

45

“The effort estimation models, methods and applications are ‘black
boxes’, i.e., the estimator cannot judge the result.” (RP6)

For addressing these six research problems (Table 1), we
employ constructive research methodology as our primary

methodology.

Table 1. The research problems and the related aims

Research problem Aim

(Initial state) (Target state)

RP1: “"Effort (and cost) estimates are | Increase in the likelihood for more

inaccurate.” accurate effort (and thus cost)
estimates has been enabled.

RP2: "Estimators consider mostly Increase in the estimator consideration

core construction activities, relevant of all significant project activities has

in their work, when estimating.” been enabled.

RP3: “"Effort data quality is bad, i.e., Increase in the reliability (and thus

it is not reliable.” quality) of the effort data has been
enabled.

RP4: “"Effort data is seldom Increase in the ratio and quality for

assessed.” effort data assessment has been
enabled.

RP5: “"Effort-related functions are Increase in the opportunities to obtain

presented in a scattered way.” comprehension on effort-related
functions.

RP6: "The effort estimation models, Increase in the opportunities for the

methods and applications are 'black estimator to question the estimate.

boxes’, i.e., the estimator cannot

judge the result.”

The objective of this research is to develop and describe an
effort management process and suitable artifacts, e.g., models
and methods, which can be used to improve the estimation
accuracy and which address the other research problems.
Accurate estimates can increase customer satisfaction, customer
and supplier business profitability, and the well-being of the
personnel. The results should be advantageous to be applied
both with expert judgment estimations and estimates made with
formal methods.

3.2 RESEARCH METHODS

Several different research strategies have been proposed for the
software engineering and information systems research. These
research methodologies can be found very useful, but no-one is
sufficient by itself to form a well-grounded research program. In
fact, Nunamaker, Chen and Purdin (1991, pp. 95-96) state:
“where multiple methodologies are applicable, they appear to
be complementary, providing valuable feedback to one
another.”

Nunamaker, Chen and Purdin proposed a
multimethodological approach to information systems research,
where the four research strategies have an effect to each other
(Nunamaker and Chen, 1990; Nunamaker, et al., 1991). These
four research strategies were theory building, experimentation,
observation, and systems development. Our research applies all
of these research strategies. However, we do not employ the
multimethodological approach as defined in (Nunamaker and
Chen, 1990; Nunamaker, et al.,, 1991). Rather, we apply a
methodology where it is most suitable, and mostly together
with the case study methodology. We apply case studies as the
observation methodology to both gather information about
research problems and to evaluate research results in practice.
The theory building strategy is applied with all research
problems. The research products are evaluated with prototype
experiments in the software industry. Prototyping is used as a
proof-of-concept to demonstrate feasibility (Nunamaker, et al.,
1991).

Our research is primarily based on constructive research, or
systems development (Nunamaker and Chen, 1990;
Nunamaker, et al., 1991). In the system development research
process that we apply, we first construct a conceptual
framework related to the software process improvement of
effort management. The relationships among the elements of
effort management are then defined, and after analyzing and
designing a research artifact a prototype is build. The prototype
is employed in case studies to observe and evaluate the artifact.

47

48

The system development research process is both parallel and
iterative.

Our research is explorative. In explorative research, different
research strategies can be for example an exploratory survey,
experiment, or case study (Yin, 1994). Moreover, the research
includes characteristics of action research (sub-chapter 3.2.2):
collaboration, implication and situation between the research
and the project under examination.

The research is carried out as a part of organization’s
software process improvement activity. Such action research can
be considered as a part of constructive research (sub-chapter 3.2.1)
where both building and evaluation closely belong to the same
process (Jarvinen, 2001). In software industry, an industry-based
research realizes often as a SPI activity. In industry-based research,
the research is conducted within software industry by a
researcher who is affiliated with the industry. It is noted that
“new knowledge is increasingly produced through a variety of
work- and industry-based research practices” (Garrick, et al.,
2004, p. 329).

Research based on industry data does not come without
challenges. In (Haapio and Menzies, 2009), we describe
challenges we faced during the data mining experiment in the
study of Paper II, and how we overcame them. These challenges
of ours originated from the data that was limited inside, noisy,
and skewed with local factors.

3.2.1 Constructive research
To address the research problems, we employ constructive
research methodology (livari, 1991) as our primary
methodology. Constructive research is a theory building
research methodology. The theory building research strategy
includes development of new ideas and concepts, and
construction of conceptual frameworks, new methods, or
models (Nunamaker and Chen, 1990; Nunamaker, et al., 1991).
Constructive research (Jarvinen, 2001), also referred to as design
science (Hevner, et al., 2004; March and Smith, 1995) or systems
development (Nunamaker and Chen, 1990; Nunamaker, et al.,

1991), consists of two basic activities (Figure 3): building
products and evaluating them (Jarvinen, 2001). The evaluation
of the built product is based on user value or utility, i.e.,
feasibility is demonstrated when the created research artifact
(product) serves human and organizational purposes (Jarvinen,
2001; March and Smith, 1995).

There are four research products; constructs, models,
methods, and instantiations (Jarvinen, 2001; March and Smith,
1995). Constructs (or concepts) form the domain vocabulary. In
this research, the different elements of the effort management
refer to constructs. A model expresses the relationships among
these constructs. Here, the effort management frameworks refer
to the model. A method is a defined set of steps used to perform
a task; here, the proposed stepwise effort assessment method.
An instantiation is the artifact realization in its environment. In
this research, the instantiation is created with case studies in
which the proposed effort management framework and its
related improvement areas are employed to custom software
development projects.

Evaluation is the key activity for assessing constructive
research (Jarvinen, 2001; March and Smith, 1995). Nunamaker,
Chen and Purdin (1991, p. 95) warn that because “of the
emphasis of the generality, the outcomes of theory building
often display limited practical relevance to the target domain.”
The evaluation process attempts to diminish this concern by
applying suitable metrics and comparing the performance of
artifacts for specific tasks (Jarvinen, 2001; March and Smith,
1995). In other words, the constructive research results need to
be pragmatic and advantageous to be utilized in the industry,
and they must provide significant improvement (Jarvinen, 2001;
March and Smith, 1995). The various evaluation criteria of novel
research artifacts stated by March and Smith (1995) and
complemented by Jarvinen (2001) are applied, when possible, in
this research (Table 2).

49

50

Table 2. The research evaluation criteria (adopted from (Jirvinen, 2001; March and
Smith, 1995))

Research outcome Metrics

Completeness, simplicity, elegance, understandability,
Construct _— .

and ease of use. Communication and cognition.

Their fidelity with real world phenomena,
Model completeness, level of detail, robustness, and internal

consistency. Form and content, and richness of

knowledge representation.

Operationality, efficiency, generality, and ease of use.
Method P y vi 9 Y

Application domain.

The efficiency and effectiveness of the artifact and its
impacts on the environment and its users. Emergent
changes with positive and negative unanticipated
outcomes, in addition to economic, technical and
physical impacts on social political and historical
contexts.

Instantiations

As applied sciences, computer science and software
engineering are especially suitable for design science and the
constructive research methodology (livari, 1991; Jarvinen, 2001;
March and Smith, 1995). The research intent is a reason for
differentiation between design science and both natural and
social science (Jarvinen, 2001; March and Smith, 1995). The
intention of our research is to change the current state of the
accuracy of effort estimates. Jarvinen (2001) generalizes the
differentiation between natural and design sciences to 'is' and
'ought to', respectively. To change an unwanted state in
software industry to a desired state, design science provides a
well-suited framework for the transition.

In fact, we have applied both Jarvinen's (2001) and March
and Smith's (1995) taxonomies of research methods in
determining our primary research methodology. While we are
studying reality, we do not focus on the phenomena behind the
reality but instead seek improvements and utility of the research
results. In Jarvinen's taxonomy, the improvements and utility
can be achieved with the approaches for building and
evaluating innovations. Constructive research combines these
two approaches under one research methodology. In addition to

Jarvinen's taxonomy for differentiation between sciences, March
and Smith's research framework identifies different types of
design science products (constructs, models, methods and
instantiations) which we use in our research (Jarvinen, 2001;
March and Smith, 1995).

3.2.2 Supportive research methods

Case study

The primary supportive research method for this study is case
study. Case studies are employed to both examine the data and
to evaluate the research artifacts.

Case study is a form of the observation research strategy
(Nunamaker and Chen, 1990; Nunamaker, et al, 1991).
Observation is often used when relatively little is known from
the research domain. Nunamaker, Chen and Purdin note that
since “research settings are more natural, more holistic insights
may be gained and research results are more relevant to the
domain under study.” (Nunamaker, et al., 1991, p. 95). Case
studies can be wused for gathering information about a
phenomenon which results as a research problem or question. In
this study, the case study methodology is understood and
applied in a broader context than that Yin’s (1994). All research
problems are more of exploratory nature rather than
explanatory. We chose exploratory approach over explanatory
approach from pragmatic reasons to achieve advantageous
results in the software industry, ie., we attempt to solve
problems rather than to understand the phenomena behind the
problem.

As the research interest lies in the comprehension of the
meaning of action, case studies are used to interpret (Jarvinen,
2001) effort in software projects. Moreover, we apply case
studies to research evaluation in which they can be used for
(Fenton and Pfleeger, 1997; Kitchenham, et al., 1995). For
example, the stepwise effort assessment method is constructed
by applying the constructive research methodology. A case
study is employed to evaluate the method in the software

51

52

industry. This same dualistic research methodology approach is
employed in constructing the two frameworks used for both
improving effort management and actual managing the effort in
software projects.

The empirical findings of the research analyses are based on
samples of real custom software development project data
supplied by a software company. The case studies are
conducted at Tieto Finland Oy, a part of Tieto Corporation,
which is the largest Information Technology (IT) services company
in the Nordic countries. Tieto Corporation has approximately
18.000 employees and activity in 30 countries worldwide. Tieto
is building a common business system utilizing reference model
CMML. Earlier, due to company diversity and acquisitions, Tieto
applied both CMM and SPICE (ISO/IEC 15504). There are
several internal research development projects on-going as a
part of software process improvement including studies
improving effort management in the software engineering
process.

Research data consists of 32 custom software development
and enhancement projects which took place in 1999-2006. These
projects were delivered to five different Nordic customers who
operate mainly in the telecommunication business domain. The
delivered software systems were based on different technical
solutions. However, the two most common technologies were
based either on J2EE or on transaction management based
client/server technology. The duration of the projects was
between 1.9 and 52.8 months. The projects, which were carried
out by different teams within the same Finnish business
division, required effort between 276.5 and 51,426.6 person
hours. The staffing of the teams changed from project to project.

All the projects used a waterfall-like software development
process, since iterative and agile processes have emerged in
more recent projects. The project process lifecycle started from
either the analysis phase or the design phase. All projects ended
in customer acceptance of delivery. This span forms the project’s
lifecycle frame, which has been quite typical for delivery
software projects in this organization. The normal work iteration

is included in the effort data. Effort caused by change requests,
however, is excluded from the data, because the work caused by
change requests is not initially known and is therefore not
included in the original effort estimation or project’s scope.

The information related to the effort estimates is gathered for
this research from tender proposal documents, contract
documents, and final report documents. The actual effort data is
gathered from the organization’s previous time-booking system.
The project team members enter their effort in this system.

Action research

Another supportive research methodology which has influenced
our research, and which has a close relation to practice, is action
research (Avison, 2002; Avison, et al., 1999; Baskerville, 1999;
Baskerville and Wood-Harper, 1996; Greenwood and Levin,
1998; Jarvinen, 2007; Kemmis and McTaggart, 2005; Lee, et al.,
2000; Stringer, 1999). Action research “is social research carried
out by a team encompassing a professional action researcher
and members of an organization or community seeking to
improve their situation” (Greenwood and Levin, 1998, p. 4).
Jarvinen (2007) claims, that action research methodology is
similar to design science (i.e., constructive research). In his fit
analysis, Jarvinen compared different pairs of action research
characteristics to ones in design science and concluded that the
similarities are obvious and thus they should be considered as
similar research approaches. Indeed, several fundamentals and
characteristics of action research can be found in this thesis, too.
However, a major requirement does not hold for our research:
our research is industry-based, i.e.,, the author is affiliated
primarily with the industry and only secondary with the
academia. Usually, action research is conducted other way
around. Therefore, our research cannot be considered as action
research per se but as a software process improvement activity.

Other employed supportive research methods
Besides case study and action research, other supportive
research methods were employed for the research papers of this

53

54

thesis. In addition to case study, other qualitative research
method techniques (e.g., elements of the grounded theory
(Glaser and Strauss, 1967)) were used in analyzing the texts of
the research material (project final reports, project plans, and
tender proposals) in order to determine our other unit of
analysis besides effort: the different general software project
activities (referred as non-construction activities). The grounded
theory method was also used to form the work breakdown
structure of the non-construction activities. Besides grounded
theory, an exploratory survey was applied as a qualitative
research methodology. Structured questionnaires were employed
as the data gathering technique in the survey. Questionnaire is
one of the mostly used data gathering techniques in the survey
studies, a form of field methods. Survey research is not about
administering questionnaires, but a methodology which
involves gathering information for scientific purposes from a
sample of population using standardized instruments or
protocols (Jarvinen, 2001); here, using questionnaires as data
collection technique. The first questionnaire used open-ended
questions (theory-creating research approach) and the latter
questionnaire close-ended questions (theory-testing research
approach) (Jarvinen, 2001). Moreover, the study contained
elements of interpretive field study (Klein and Myers, 1999) since
our aim is to understand both the context of effort registration,
and the process influencing it.

Quantitative techniques were used in a controlled experiment
(Juristo and Moreno, 2001; Jarvinen, 2001; Wohlin, et al., 2000)
for exploring and analyzing the actual effort and the relation
between estimated and actual effort. In a controlled experiment,
as many factors as possible belonging to the studied
phenomenon are under researcher’s control (Jarvinen, 2001).
Suppositions, assumptions, speculations and beliefs are tested
with experimenting. In other words, the purpose of
experimentation is to match ideas with reality (Juristo and
Moreno, 2001).

Experimentations have two levels (Juristo and Moreno, 2001):
the first level is experimenting in laboratory (controlled

conditions), and the second level is experimenting in reality
(uncontrolled conditions), i.e., experimentation is carried out
with real projects. The tightness of control is, however, usually
in opposition to the richness of reality at the same level of
knowledge (Jarvinen, 2001). In fact, the researchers have to
ultimately make a trade-off between these two iso-epistemic
attributes.

In a controlled experiment, the Goal/Question/Metric
paradigm provides a useful framework (Wohlin, et al., 2000). In
the Goal/Question/Metric (GQM) paradigm (Basili and Rombach,
1988), data collection is designed thus (van Solingen and
Berghout, 1999):

1. Conceptual level (Goal): a goal is defined for an object for a
variety of reasons, with respect to various models of quality,
from various points of view and relative to a particular
environment.

2. Operational level (Question): a set of questions is used to
define models of the object of study and then focuses on that
object to characterize the assessment or achievement of a
specific goal.

3. Quantitative level (Metric): a set of metrics, based on the
models, is associated with every question in order to answer it
in a measurable way.

One of the techniques used to achieve goals in a controlled
experiment is data mining. Data mining is also one of the
popular processes for producing business intelligence (BI)
information, which is utilized in improving the software process
quality of cost or effort estimations, for instance. Data mining is
used to reveal hidden patterns in unstructured data to provide
valuable information for business utilization. Indeed, BI and
data mining have been increasingly employed in the software
industry for finding predictors from data for modeling software
project effort. The data mining tools are employed to model the
data (Pyle, 1999) by regression or with trees, for example. The
models of data behavior are generated with data mining
learners, using appropriate data. The data can be gathered either
manually or automatically. On a general level, project data

55

56

collection can be divided into two groups according to its
purpose: the data which is collected during a project for
project’s own purposes, and the data which is collected from
multiple projects for BI and SPI purposes. Whereas the
automated data gathering processes can produce a vast amount
of data in some business areas (Pyle, 1999), the manual data
gathering results usually in smaller and noisier data sets.
Another reason for the differences in data set sizes and quality is
that in non-commercial organizations government funding can
enable a more research-motivated and extensive data collection,
whereas in the software industry data collection is more driven
by the customer needs and the process maturity models which
the companies are committed to (Haapio and Menzies, 2009).

4 Improving effort
management

In this chapter, we present the summary of our research papers
on improving effort management in software projects. We begin
with what relation the research papers have in respect to each
other, and continue with the summaries of the five research
papers. Then, we evaluate our results in respect to the research
problems, alternative solutions, research evaluation criteria for
constructive research artifacts, and the deployment of the
research results at the research site. Finally, we discuss what
contributions this thesis has to offer.

4.1 RELATION OF RESEARCH PAPERS

In this sub-chapter, an overview on the research publications is
given. Moreover, we conclude in describing how the research
papers answer to the research questions.

This thesis consists of five research papers. The first paper
introduces a research framework for improving the software
project effort management in software engineering industry
(Paper I). The three next papers describe a series of actions to
improve effort management, and thus influence the effort
estimation accuracy: improvements for effort estimation (Paper
II), improvements for effort data quality through improved data
collection and time-booking (Paper III), and improvements for
effort assessment (Paper IV). Moreover, the results of these
papers relate to each other. The relationships between the
papers are presented in Figure 4. Each research artifact creates
output that serves as input to the next artifact in the cycle. The
effort-related functions presented in papers II-IV are all parts of

58

the effort management framework, which we introduce in our
last paper (V).

PaperI:
Research / SPI framework

Result/output:
Interests on / improvements to effort management areas

1 | r————-—--- 1
¥ ¥ \lr
Paper II- Paper Ill: Paper IV:
On effort estimation On data collection T T EEEEETTET
Result/output: Result/output:
Improved knowledge Result/output: Improved assessed
on estimated effort, a >{| Improved collected »|| knowledge on
WBS, activity and effort data quality estimated effort, WBS,
effort behavior and activity and effort
behavior

Paper \V.
Effort management framewoyk

Result/output:
Managed effort

7 yr 17|

Figure 4. The relation of research papers

The research framework, presented in Paper I, and the
research problems guided us in studying four concepts related
to effort management by raising possible improvement interests
in different effort management areas. The results of these
studies are presented in individual papers (II-V).

Paper II results in improved knowledge on software project
activities and their effort. These results including new activities
and set of activities require efficient adoption by the project
team and thus are input for the consideration of data collection
practices (Paper III) to improve effort data quality. The collected
effort data is used in effort assessment (Paper IV). The assessed
effort, based on improved effort data quality achieved with
Paper III's results, closes the cycle and is input for effort
estimation method’s calibration and project team’s software
project activity and effort knowledge, which is thus increased.

4.2 SUMMARIES OF PAPERS

In this sub-chapter, we briefly present the main ideas and
research results of our studies.

4.2.1 Improving effort management research process

The aim of our research is to improve effort management to
increase effort estimation accuracy. In Paper I, we propose a
research framework for improving software project effort
management as a part of an organization’s software process
improvement activities. We consider effort management to
include functions which are necessary to manage the effort
consumed by a software project. These functions include effort
estimation, effort collection, and effort analysis'.

In Paper I we strive to present the software project lifecycle
and its effort-related and activity-related functions as a coherent
effort management process, and provide a research framework
for improving that process. Two perspectives for managing
effort are presented. The two perspectives include effort
distribution on particular activity sets and the necessary
functions during different software project phases. Moreover,
the general software project activities, later referred as non-
construction activities, are defined.

The first perspective in improving effort management is to
consider necessary functions during different project phases.
The different phases include a phase prior to a software project,
the three phases of the software project lifecycle (pre-project,
project, and post-project), and a phase after the project does not
exist anymore. The effort-related and software project activity
related functions to be considered in SPI work are listed in Table
3.

1In Paper IV, we complemented effort analysis function with effort

assessment.

59

60

Table 3. The effort-related and activity-related functions in effort management

Project-related Functions related to software project’'s
phase Effort Activities
Prior to project’s | Estimation method Organization’s default
existence preparation WBS establishment
Project’s WBS creation in
Project: Pre-project Estimation effort time-booking
system
Collection,
. . Monitor, Project’s WBS adoption,
Project: Project) .)
Assessment?, Effort registration
Re-estimation
Project: Post-project Analysis Analysis
After project’s | Estimation method Organization’s default
existence adjustment WBS adjustment

The other perspective, the effort distribution, is for dividing
the whole software project effort into reasonable activity sets,
which assists the concentration on the activity sets needing the
most attention for improvement. Based on our previous research
(Haapio, 2004) we propose that the effort of software
construction, project management, and non-construction
activities be analyzed separately to identify characteristics
typical for each category, as it aims to minimize the fluctuation
within these categories between projects. The rationale and the
original breakdown into these three categories presented in
(Haapio, 2004) were based on the flexibility requirements of
adding any new future project activity into one of the three
categories according to its function and the actor performing the
activity. The function of a software project activity can relate to
software construction, to management, or to other. A software
project consists of two distinctive types of actors, a project
manager and project team members. Both actors can construct
software whereas the project manager solely leads a project.

2 In Paper IV, we complemented effort analysis function with effort

assessment.

However, various management activities can be conducted also
by project team members. Hence, a software project includes
three major activity categories:

e Software construction involves the effort needed for the
actual software construction in the project’s lifecycle
frame, such as analysis, design, implementation, and
testing. Without this effort, the software cannot be
constructed, verified and validated for the customer
hand-over.

e Project management involves project lead activities that
are conducted solely by the project manager, such as
project planning and monitoring, administrative
tasks, and steering group meetings.

e All the general software project activities in the
project’s lifecycle frame that do not belong to the
other two main categories can be termed non-
construction activities. These activities include various
management and support activities such as
configuration management, customer-related
activities, documentation, orientation, project-related
activities, quality management, and miscellaneous
project activities, which are carried out by several
members of the project.

Hypothetically, many of the non-construction activities can
be eliminated from a software project and the software can still
be constructed. In practice, however, a project would be more or
less uncontrolled and unsupported without the non-
construction activities. This in turn can increase both the
software construction effort and project management effort
needed to get the project accomplished.

In our effort management related SPI work, we have been
applying the two perspectives of effort distribution on particular
activity sets and necessary functions during different phases
together in a matrix (Figure 5), concentrating especially on the
non-construction activities. The matrix assists to both improve
the management of the whole area of effort (all elements) and,

61

62

on the other hand, to focus on sub-areas which need a special
improvement interest on a particular moment (one element).

Project Phase
Prior Project Pre-Project Project Post-Project | After Project
(Project (Project (Project
Planning) Execution) Closure)
Non-
Construction
Effort Activities
Distribution .
(Software Project
Project Management
Activities)
Software
Construction
Estimation Collection, Estimation
Method Estimation Monitor, Analysis Method
Preparation Re-estimation Adjustment
Effort-Related Functions
WBS Regljzlilili'tanon Adoption, Al WES
Establishment Y Effort Y Adjustment
Creation Registration

Activity-Related Functions

Figure 5. Matrix for improving effort management in software projects

Our approach is dynamic considering the effort-related
functions, and the employment of the approach depends on the
needs of the organization which wants to improve its effort
management instead of concentrating merely on the effort
estimation function.

4.2.2 Improving effort estimation
In order to understand the impact of the non-construction
activities have on effort estimation and the estimate accuracy,
we examined the effort of the three main software project
activity categories (software construction, project management,
and non-construction activities) in Paper II. The category in
particular focus was the non-construction activities of which
activities were individually analyzed.

In Appendix A, the key figures of the effort proportions on
analyzed 32 software projects’ activity sets and the non-
construction activities are presented. The median effort of

software construction does not differ from that reported by
MacDonell and Shepperd (2003) (76.7% and 76.9%, respectively),
although the approach and basis of division were different to
ours. This suggests that there might be a tendency to have a
certain effort distribution, and that the division in this study
seems to be appropriate. Also, it is notable that in this data set
the non-construction activity effort proportion is very similar to
that of the project management (Figure 6). This suggests that it
is important to view the non-construction activities and their
effort as an independent group.

100,0%

80,0% | | |

60,0 %

40,0 %

20,0% '

: I
0,0% .
Software Project Non-construction
construction management activities

Figure 6. The effort of software construction, project management and non-

construction activities in the analyzed 32 software projects

Not only the effort of the non-construction activities
comprises a significant amount of effort (median 11.2% is
comparable with project management’s 11.3%) but also the
effort of the non-construction activities results in a great
variance between projects if the activities are not planned and
managed (i.e., controlled) during the project. For example, the
32 custom software development projects considered in Paper II
comprise a deviation of 7.68% (Appendix A). This deviation
causes deviations to other main activity categories’ effort.

In previous research (Haapio, 2004, 2006), by applying the
grounded theory methodology, we have identified the different

63

64

non-construction activities in the case studies concerning our
data set of 32 custom software development projects from the
research site. The activities are generic and most exist in every
custom software development project. We have defined the
following current non-construction activities in Paper II:

e Configuration management

e Customer-related activities

e Documentation

e Orientation

e Project-related activities

¢ Quality management

e Miscellaneous activities.

In addition to these activities found in our data set, other
software project activities can be considered as non-construction
activities based on the definition of the activity category (sub-
chapter 4.2.1). These activities relate to global sourcing projects
(e.g., project start-up or culturally-related tasks), to open source
projects (e.g., license management), or to product line projects
(e.g., product line management), for instance.

In Paper II, we seek for predictors of software project activity
effort related to the three main software project categories and
the six non-construction activities by using the data mining
technique. We exclude the ‘miscellaneous activities’ response
class for two reasons: firstly, the frequency of these activities
appearing in a project was small (28.1%) compared with the
frequencies of the other activities (53.1%-90.6%), and secondly,
‘miscellaneous activities’, with no common denominator, is a
‘dump’ category. We applied several machine learners provided
by the Weka application (Holmes, et al, 1994) to mine the
predictors. First, we applied learners for continuous classes.
However, the results for continuous classes turned out to be
somewhat disappointing, with small correlation coefficients. We
continued by discretizing the classes, and applied the learners
for discrete classes. Finally, all learners for discrete classes
achieved a result when applying Feature Subset Selection (FSS)
prior learning.

Our data mining experiment results are two-fold: whereas
we find no evidence that none of the three main software project
activity categories is a significant factor influencing effort
estimation, we can find evidence of a relation between the
estimated total software project effort and one of the non-
construction activities, namely quality management, actual
effort. This finding can be used in improving effort estimations,
and is a useful supplement to the scanty research on the possible
impacts of effort estimates on project work and behavior
(Jorgensen and Sjoberg, 2001).

The practical implication of this study relate to the specific
conclusion we can offer to software businesses and quality
management. The implication is that the actual quality
management (QM) effort proportion of total project effort will be
larger in projects that are estimated to be small rather than large,
which has to be considered in the effort estimates.

Quality management is essential to software projects and
their success. Intuitively, absolute QM effort increases with
project size and total effort, as there are more project
deliverables requiring quality assurance. Indeed, our data
shows such a tendency between the absolute effort values of
quality management and total project effort. However, our data
does not support a pattern of a linear, logarithmic or
exponential growth of quality management effort as the total
effort of a project increases. This implies that quality
management effort is not a constant in software projects and
thus cannot be predicted with an approach applying merely a
constant. In fact, this supports the findings for quality assurance
effort behavior in software projects (cf. Figure V.24 in (Abdel-
Hamid, 1984, p. 419)).

We can conclude that we can set a maximum proportion for
QM effort as a rule-of-thumb when estimating the QM effort for
large projects. In a tight market situation, the correct smallest
possible estimate of the QM cost could improve the chances of
winning a deal. However, the rule-of-thumb does not hold for
smaller projects. It seems that in small projects we can set a

65

minimum proportion for the QM effort but the actual amount
can turn out larger.

Our finding suggests that projects that are perceived to be
smaller at their beginning seem to devote more effort on QM
activities than larger projects (Figure 7). This, in turn, can result
in better quality projects, also in terms of actual effort (i.e., cost)
estimates, promoting project success (cf. (Standish, 1999). In
other words, a small project might not consume all a team’s
energy in the software construction tasks. Instead, the team can
devote energy also to quality management. Vice versa, the
results imply that projects that are perceived to be larger at their
beginning tend to spend less effort on quality management as a
proportion of the total project effort. One reason for this might
be that the team’s energy is consumed by other (ie.,
construction) project activities. In fact, there is evidence that
effort estimates have an impact on software project work and
behavior whether a project is estimated, and thus perceived, as
either a small or large project when the project is starting
(Abdel-Hamid, 1984, 1986; Jorgensen and Sjeberg, 2001).

Estimated
Total Project
Effort(h)

6000 : : /
5000 : -
5 /
4000 : /,
3000 T */ *
. /
>
2000 4 : 2
*
1000 . .
/ | . .
‘.

0 4 i | | ! f Actual Quality
0 8 16 24 32 40 48 56 64 72 80 Management
Effort(h)

Figure 7. The theory of actual quality management effort relation to the estimated total
project effort

In the light of our data mining experiment, QM was the only
non-construction activity that showed a pattern of estimated
total project effort influencing actual effort. One reason for this
might be that QM (or its sub-activities) is intuitively considered
important by the project team, and is performed whenever
possible (when a team’s energy is not consumed by software
construction). The other supporting activities (e.g., configuration
management, orientation, and documentation) do not present
the same kind of behavior, i.e., no pattern could be found in our
data. However, on average in the projects, all the other non-
construction activities consumed more effort than QM, which
indicates that they are necessary in a software project (cf.
(Haapio, 2006)). Moreover, these activities are relevant for the
success of the delivery in terms of both software and project
quality, and thus should not be considered a cost overhead.
Devoting effort to non-construction activities can indeed reduce
the effort needed for software construction or project
management, and reduce the cost of poor quality in terms of, for
example, warranty costs. Hence, all non-construction activities
must be carefully considered in software project effort
estimation, but unfortunately our data does not reveal to what
extent, except for the QM effort.

4.2.3 Improving effort data quality

In Paper III, we examine the adoption of general project
activities to increase the reliability of registered effort and
uniformity of the work breakdown structure in order to increase
effort data quality.

The effort registration on old, familiar time-booking entries
can begin immediately, and effort is usually registered on the
correct entry. The new project activities and new sets of
activities, however, require an adoption period before effort can
be registered on the new time-booking entries. The adoption
time varies but can at worst last whole project execution which
results in poor effort data quality and skewed effort data as
effort is registered on wrong activities or is not registered at all.
The correct registration of effort is essential for effort monitoring

67

68

and effort re-estimations, since from this point on the project’s
own registered effort is the primary data for re-estimations. The
re-estimations benefit also from effort assessments, which are
conducted as each project phase, iteration or sprint ends.

In the case study presented in Paper III, a two-phased
questionnaire survey was conducted among a large project team
totaling 33 persons to explore the efficient adoption of a specific
set of software project activities: the non-construction activities.
This WBS was new to the project team.

The results include factors that both promote and discourage
the adoption of new project activities, and a suggestion for an
adjusted work breakdown structure of the non-construction
activities.

The main findings for efficient new project activity adoptions
include recommendations for versatile and frequent information
on both new and old activities and by several sources,
emphasized in the beginning of the project. Recommended
sources of information include written guidelines sent by e-
mails and verbal information given by management. It is
notable that only a small minority of choices for information
sources are considered somewhat “poor”. Peer information, or
self-initiated questions are considered as “poor” sources.

Furthermore, it can be beneficial to consider an optimal
number of activities for a project. This consideration involves
the funneling of effort on correct activity, since leaving project
activities out of the WBS increases the probability of
misregistration, i.e., effort is registered on a wrong time-booking
entry or left unregistered, which skews the effort data. From a
project team member’s view, the project should contain as small
a number of different project activities (time-booking entries) as
possible. Moreover, project activity views provided by the effort
time-booking system should preferably be customized for the
project team member, i.e, only those entry alternatives are
shown in the work time booking system’s user interface that are
necessary for a particular person. The time-booking entries
should be titled clearly and consistently between the projects to

achieve consistency. Therefore, the use of mandatory and
optional project activity set templates is advantageous.

From the project aspect, the greatest difficulties are caused by
naming the project activities as time-booking entries in the work
time booking system in project start-up. To benefit effort
monitoring and analysis, the entries are named with somewhat
cryptic coded titles instead of using long and clear titles, which
would have ensure better adoption and understanding. From
the information point of view, the new project activities are
introduced with an induction e-mail from the project manager
regarding the project activities and with an internal project kick-
off event where these activities are also explained to the project
team. Although according to the project team members these
informative actions are appropriate and recommended, a more
detailed description and examples of the activities and the
registration of effort on them would be endeavored. Moreover, a
documented guideline should be included in the project
network folder in the future projects. This guideline explains the
titles and purposes of the time-booking entries.

Getting the project team to be self-steering with the new
project activities is a challenge. Although the information
sources promoting self-steering are favored, the high ratios in
active information both as favored information sources and the
motivating and assisting factors give a clear statement.
Furthermore, the project case study results reveal that without a
strong commitment on promoting the adoption leaves the
project team puzzled about the activities and registrations.

The main findings concerning the WBS of the non-
construction activities include that every project should contain
a set of mandatory non-construction activities as time-booking
entries for effort monitoring, analyzing, and estimation
purposes. The non-construction activities provided in the
project’s WBS that are perceived useful as individual time-
booking entries by the majority of the project team members is
presented in Table 4.

69

70

Table 4. The non-construction activities of the case project perceived useful as

independent time-booking entries by project team members (N=33)

Activity Perceived
useful
(%)
Documentation 92.3
Orientation 92.3
Reviews 84.6
Quality assurance 76.9
Customer support 69.2
Project events 61.5
Technical environment maintenance 61.5
Technical environment set-up 53.8

None of the non-construction activities included is
considered more useless than useful by the majority. According
to the study of Paper III, it appears that a suitable set of non-
construction activities includes customer support (including
customer support, queries, and training), documentation (non-
related to software construction, e.g., user guides), orientation,
project team working (including project start-up, events and
project-related tasks), quality assurance, reviews, and
configuration management (including setup and maintenance of
technical environment, configuration and version management).

4.2.4 Improving effort assessment

In Paper 1V, a process (Figure 8) and a novel stepwise method is
proposed for assessing software project effort. The method
provides necessary tools for the effort assessment and, when
utilized for post-mortem analysis, for deciding on the project
result and how the project differs from the other projects. The
deviating projects require different set of analysis questions. The
effort assessment method is advantageous to be used for
individual projects and a set of multiple projects. A set of
projects can be analyzed for the annual projects’ report, for
instance. A comparison between projects is useful when dealing

with annual projects’ reports. The annual projects’ report is
usually a summary of final reports of projects.

Effort
estimation
(initial)
Effortre-
estimation

Effort
assessment

Assessment
report

——

Post-
mortem
analysis

'
1
1
'
'
'
'
'
'
'
'
1
|
'
'
'
'
1
'
'
'
'
i
I
1
i
'
'
'
'
'
'
'
H
v T
i

—|: Final
report
Phase / !

Iteration / 1 1 2 1 n n+1
Sprint/ .

Final
Delivery

Figure 8. Effort assessment process

The project (or projects in the case of project comparison) can
be positioned into a coordinate to be assessed in respect to
quantity (functional and non-functional) results, quality results,
and effort (Figure 9). Here we assume that it is possible to
approximate results of the project in relation to functional
(quantity) and quality requirements by utilizing discrete values
on axes x and y: below, meets, and exceeds. This assessment
results in 3x3x3=27 different situations the project can be in. A
project meeting the quality and quantity requirements is most
favorable in long term customer relationship. A project resulting
below requirements leads to customer dissatisfaction and, in
some cases, to project cancellation. In cases where a project
exceeds its requirements the customer is satisfied but the
supplier makes losses.

On axis z, the project effort is considered in respect to its
estimation. The effort can be underestimated, accurately
estimated, or overestimated. Project effort may be overestimated
which may indicate the stakeholder’s dissatisfaction though

71

72

increased costs. The underestimation indicates that there are
some problems to accomplish the project on time and budget,
and thus the quantity or quality of results may be decreased.

Quantity
Exceedsrequirements
&
4 S A
& & g
i & & &
Meetsrequirements 4% A2 \')*
> 3 o
4 = <& &
4 4 &
) & o
Below reguirements »o & &
d ¢ & &
{ } 1 Quality

Overestimated
Accurately estimated

Underestimated

Effort

Figure 9. Project positioning in respect to quantity, quality, and effort

The stepwise effort assessment method is used for analyzing
the effort of a specific set of project activities and their effort
estimates compared with those of other projects. Before
employing the method the project activity set in question has to
be specified and composed. Any activity set can be specified
and analyzed with the proposed method.

Analysis of the activity sets of the project is advantageous to
discover the relationships between different activity sets that are
not isolated and affect each other. Relationships between
activity sets may highlight the contradictions between them.
Hence, we propose that the relationships between activity sets
and their effort should be emphasized, too. It is possible that
investing too little effort in one activity set increases the effort of
another. We argue this with two simple examples:

e The effort of the activity set ‘testing’ may have a
relationship to the effort of the activity set ‘deployment and
introduction’. If the components and their interfaces have been

tested and the conformance tested thoroughly, the effort of
introduction decreases.

¢ The activity sets ‘architecture design’ and ‘software
implementation” affect each other in the same way. Emphasizing
architecture designs facilitates finding design patterns that can
be used several times in software construction decreasing the
implementation effort. The above examples illustrate that
software process improvement initiatives may come forward
while the relationships between activity sets and their effort are
compared.

One condition for employing the analysis method is that an
effort repository has been built. The effort repository, a subset of
project knowledge repository, contains effort data of the
completed projects. The project activities and their effort are
collected to the repository, and the activities are reorganized
consistently into the repository. These activities can be
organized into specific default activity sets, which represent a
typical set of activities to be analyzed with the method. The
activities can be chosen for the set based on their frequency and
significance in projects. Hence, a certain granularity level of the
project activities is required. The granularity level defines on
how detailed level the activities are broken into. The granularity
level is set to support the analysis, effort reporting, and the data
collection for the future effort estimations.

The proposed effort assessment method has five steps:

1. A preliminary step where the existence of the effort
repository and the usability of the default activity set
is confirmed (and built, if necessary).

2. Extraction of a specific set of project activities and the
calculation of the actual effort of those activities. The
extracted set of project activities is then compared
with the default activity set to decide the method
applicability in that particular case.

3. Calculation of the total project effort estimation error.

4. Setting the project coordinate and placing projects
into it.

5. Analysis of the project or projects.

73

74

The five steps of the method are described in detail in Paper
IV. As a result of these steps the effort repository is updated
with possible new activities belonging to the activity set. The
effort information results are used for effort estimation method
calibration and project assessment, and final and annual
reporting.

The stepwise effort assessment method is evaluated and
employed in a case study in Paper IV to analyze the effort of the
non-construction activities. While a comparison between our
method and others is challenging, the feasibility of the proposed
method is shown in the case study considering four projects.
First and foremost, the method assists in gathering selectively,
based on quantitative effort data, qualitative effort information
from the informants to produce iteration assessment, project
final and annual project portfolio reports. Secondly, the method
can be employed to collect calibration input for the effort
estimation method or model; the method provides effort
calibration information as a result to populate a repository from
which the effort estimation method’s factor weights can be
derived.

4.2.5 Improving effort management process

Paper V introduces a novel framework for software project
effort management. The framework includes three perspectives
into effort management: effort management lifecycle with
different phases, necessary functions during those phases, and
software project activities (Figure 10). These perspectives
influence on each other.

Software Effort
Project Management
Activities Functions
;Finu_r'l'-?.e-léif?:f;ifﬁr}fi ~ | Aclwiy-Heled Fumclons |
Activity Set; | i
Activity, Eltort repostory preparation
Activitys Effort estimat on Regstraton ety craaton
Activity Sety Elkxl coleclon, Farw rogsiralon ety agoplon,
Activity, Elfgrt mandoring. Effort regstraton onrejstralon
AE‘ti“-"it‘)" Elfort re-estimalion enles
i | Effortanalyss Soltware projct activly analyse
Activitys [Efforirepostory uptating. | WES agustment
Effort estimation method
| Adpstmer

Figure 10. The three perspectives of the effort management framework

The effort management lifecycle can be divided into
continuous five phases: a phase preceding software project’s
three phases, three project-related middle phases (pre-project,
project, and post-project) referring to software project’s lifecycle
(phases II-IV highlighted with gray in Figure 10), and a phase
following the software project’s phases.

Effort management starts before a project exists. The effort
management functions include the establishment of a general,
project-independent WBS. Also, the effort estimation method
(or, tool) for the software project is either acquired or a
proprietary estimation method is constructed, which after the
method is initially prepared for estimations, for example with
effort or cost driver calibration.

75

76

In project’s lifecycle, during the pre-project planning, the
project is planned and set up. Project planning includes the
project activity planning and effort estimation sub-functions.
Effort is initially estimated with the method in use with project
information supplied by the customer. At this point, the
different activities concerning the project are also planned.
These activities include the activities related to actual software
construction, project management, and other project-related
activities. The planned activities are created during the project
setup into the work time booking system as time-booking
entries for effort registrations during the project execution.
These entries are organized into particular activity sets as a
work breakdown structure.

During the actual project phase the project effort is collected,
monitored, assessed, and re-estimated. Effort is collected during
the project execution to monitor its realization. If actual effort
deviates from the planned, the reasons are explored and
necessary actions are taken. Furthermore, effort is collected for
re-estimations with adjusting project-specific data, and for effort
analysis after the project has been completed. The effort
collection includes effort registration by the project team
members on time-booking entries in the work time booking
system. The new project activities and new sets of activities
require an adoption period before effort can be registered on the
new entries.

During project closure, the post-project phase, the delivered
project is analyzed, and a project final report is drawn. As a sub-
function, effort analysis is conducted to produce input for a
thorough, usually qualitative, project post-mortem analysis. In
effort analysis the actual effort of project activities are compared
with the estimated, and the reasons for the accuracy or
inaccuracy are analyzed and explained. Effort analysis produces
effort information for improving and calibrating the estimation
method, thus improving the software process. Moreover, if new
significant activities are identified, they are recorded for activity
planning of future projects.

In our framework, effort management ends into a phase
following a project’s lifecycle. The estimation method is
adjusted after the project has been post-mortem analyzed. The
analyzed effort data is stored in the effort repository. The effort
repository requires preparation and adjusting actions during the
tirst and last phase, respectively.

Besides effort management lifecycle, Paper V presents the
other framework elements, software project activities and effort
management functions (see also Table 3 in sub-chapter 4.2.1), in
detail.

4.3 EVALUATION OF THE RESULTS

In this sub-chapter, we first evaluate the research results of each
paper against those four perspectives that are applicable for the
paper in question, and then discuss the limitation of the study.
Our four evaluation perspectives are:
1. how the results address the research problems,
research artifacts’ comparison with prior alternative
solutions,
3. how the results meet the research evaluation criteria for
constructive research artifacts, and
4. the level of deployment of the research results at the
research site.

4.3.1 Addressing research problems

In sub-chapter 3.1, we stated six research problems we aim to
provide improvements as solutions. In Table 5 we map the
research problems with the research papers, i.e,, whether the
research results of the research papers address the research
problems either directly (d) or indirectly (i).

77

78

Table 5. Research papers addressing directly (d) or indirectly (i) to the research

problems
Research problem Research paper

I II III IV \"/
RP1: “"Effort (and cost) estimates are i q i i i

inaccurate.”

RP2: "Estimators consider mostly
core construction activities, relevant i d i i d
in their work, when estimating.”

RP3: “"Effort data quality is bad, i.e.,
it is not reliable.”

RP4: “"Effort data is seldom
assessed.”

RP5: “"Effort-related functions are
presented in a scattered way.”

RP6: "The effort estimation models,
methods and applications are 'black
boxes’, i.e., the estimator cannot
judge the result.”

Paper I addresses indirectly to all but one of our research
problems by providing a framework for improving effort
management. The utilization of the framework aims to increase
effort estimates, and to increase knowledge of the different
activities and sets of activities related to a software project.
Effort collection and assessment are included in the framework
as effort-related functions. The effort-related functions are
assembled together in one framework.

Paper II with the findings of non-construction activities and
their effort addresses directly three research problems (RP1, RP2
and RP6). The research results of Paper II include both
knowledge on software project activities and related effort. Thus
they promote the transparency of those activities in estimation
models and applications.

Paper III with the findings to improve the adoption of new
software project activities addresses directly to research
problem 3 since the results can be used in improving the quality
(and thus reliability) of effort data. Thus Paper III indirectly

addresses to research problems related to effort estimation
accuracy (RP1), consideration of different activities in estimates
(RP2), and the assessment of effort data (RP4).

Paper IV addresses directly to research problem 4 by
providing a process and novel method to assess software project
effort. Indirectly, Paper IV addresses the problems related to
estimation accuracy (RP1), activity consideration (RP2), effort
data quality (RP3), and the transparency of software project
activities and related effort (RP6), as the method can be used to
reveal such information.

Paper V with the effort management framework addresses
directly to two research problems (RP2 and RP5) by having
software project activities as one of the three perspectives in the
framework, and assembling effort-related functions together
within the framework. Paper V also addresses indirectly to three
research problems (RP1, RP3 and RP4) as the utilization of the
framework aims to increase effort estimates, and as the effort
collection and assessment are included in the framework as
effort-related functions.

4.3.2 Comparisons to alternative solutions

A novel research artifact must provide “significant
improvement” (Jarvinen, 2001; March and Smith, 1995)
compared to previous ones. A comparison to prior solutions is
possible for the effort management frameworks (Paper I and V),
and for the effort assessment method (Paper IV). Comparisons
to the alternative solutions are, however, complicated by their
differences, e.g., purpose.

A comparison between the frameworks proposed in papers I
and V and the existing frameworks and capability maturity
models implies that some major elements related to effort
management seem to have been previously neglected (Table 6):

e A lifecycle related to effort management is identified
in our frameworks and in the SDM framework (Tsoi,
1999). However, the SDM framework is limited
mostly to the pre-project and project phases whereas
our framework includes phases before and after these

79

80

two phases. The lifecycle the assessment models refer
to is the process to be evaluated.

e All examined frameworks and assessment models
identify several effort-related functions. The
frameworks, however, concentrate mostly on the
effort estimation activity whereas our frameworks
identify a larger range of effort-related functions
concerning a software project.

e The role of software project activities is acknowledged
in all but two frameworks (Tsoi, 1999; Vesterinen,
1998). However, effort distribution is not included in
the other frameworks as a key perspective into effort
management whereas the activities and sets of
activities are a key perspective for our frameworks.
Only our frameworks include activity-related
functions. The assessment models identify activity-
related functions, but only ISO/IEC 15504 (ISO, 1993)
specifies them in more details.

The process maturity assessment models do not provide
direct tools to improve effort management rather than
requirements for the software engineering process to consider
effort management, i.e., the models tell “‘what’ to do (or should
be done) rather than ‘how’ it should be done. The assessment
models are focused on the improvement of the technical
processes of software development rather than project
management, in which effort management commonly is
included in the assessment models.

Table 6. A comparison of effort management related frameworks on three effort

management perspectives

Framework Identifies effort Specifies effort Acknowledges
management management software
lifecycle phases functions: effort- | project

and activity- activities
related

(Fairley, 1992) None Effort-related Yes

SDM 2 (emphasizes

. Effort-related No

(Tsoi, 1999) forepart)

(Vesterinen, Effort-related
3 (process

1998) . (process
improvement . No

improvement
related)
related)

CMM'’s . "

Both (identifies, Yes (does not

(Paulk, et al., None does not specify) specify)

1993) pecity pecity

ISO/IEC 15504's
None Both Yes

(IS0, 1993)

CMMTI'’s None Both (identifies, Yes (does not

(SEI, 2006) does not specify) specify)

Framework for

improving effort
5 Both Yes

management

(Paper I)

Effort

management
5 Both Yes

framework

(Paper V)

Our frameworks aim to
estimations. Therefore, the effort-related functions which are
influenced by effort but which do not (significantly) influence
effort are delimited from the frameworks. An example of such a
function is resource allocation, which has an influence on the
effort estimation, since resources are not identical, i.e., other
members are more experienced than others and thus require less
effort to complete a task. However, we consider this influence to

be rather insignificant,

improve the accuracy of effort

since project teams are usually

81

82

heterogenic, i.e., the team consists of both more- and less-
experienced members.

In general, the postmortem analysis presentations describe
capturing the attributes of the whole project, whereas the effort
assessment method proposed in Paper IV focuses on capturing
the effort information related to a project or projects in a focused
and thus efficient manner. To our best knowledge, such a
detailed method is not presented so far in the context of effort
assessment.

Most postmortem analysis presentations introduced in sub-
chapter 2.2.3 (Birk, et al., 2002; Brady and DeMarco, 1994;
Collier, et al., 1996; Desouza, et al., 2005a, 2005b; Dingseyr, et al.,
2001; Nolan, 1999; Tiedeman, 1990) refer only vaguely to
software project effort (or cost), mostly as examples of project
effort, cost or productivity attributes that need to be either
collected or assessed. One third (i.e., five) of the papers do not
refer to effort or cost at all (Anquetil, et al., 2007; Dingseyr, 2005;
Kinoshita, 2008; Kumar, 1990; Maham, 2008). The sole method-
oriented paper (Sertic, et al., 2007) presents only one general
question on effort when assessing team efficiency.

Out of 15 presentations prior to ours, only Kerth’s (1998,
2001) describe in more detail how to collect effort information.
He presents the collection of effort information as questions to
be stated in interviews (postmortem meetings or email queries).
The example questions presented address the same relevant
information that have an influence on each other (effort, and
quantity and quality results) as our approach. However, we
attempt to provide a more systematic approach to assess project
effort with our method than that of Kerth. We promote a self-
steered assessment by providing a detailed and stepwise
process and method where the effort can be assessed by the
project manager and team without an external facilitator.
Facilitator-based approaches are challenging for large
companies due to distributed software engineering and the
large number of projects needed to be assessed in a short time.

Furthermore, in effort assessment the same question set does
not apply in every situation. For example, factors, such as actual

effort and the estimate error, affect the consideration. Hence, it
is advantageous to analyze project activities in separate sets,
which in turn have to be grouped and equipped with questions
in a reasonable way.

4.3.3 Research evaluation criteria for constructive research
artifacts

We can identify two main types of constructive research
products in our research: model and method. We apply the
research evaluation criteria (Table 2) for a model in evaluating
the two frameworks (Papers I and V), and the research
evaluation criteria for a method in evaluating the effort
assessment method (Paper IV).

The criteria metrics for a model include fidelity with real
world phenomena, completeness, level of detail, robustness, and
internal consistency (March and Smith, 1995), and form and
content (Jarvinen, 2001).

The context of effort management is quite universal, i.e.,
different organizations with software projects follow more or
less same process and perform same effort-related functions. A
model (here; the framework) is an abstraction of the real world,
and completeness of the model in relation to the reality cannot
be demanded (Jarvinen, 2001). Nevertheless, these criteria were
the driving forces in building the proposed frameworks. Besides
completeness and a suitable level of detail, robustness was a key
premise for the frameworks. One research problem was the
earlier fragmented presentations of effort management,
especially in the case of capability maturity models. The
criterion on internal consistency is a natural requirement from
the research point of view (cf. (Jarvinen, 2001)). To support the
criterion for form and content, special consideration is given on
the presentation to support communication and diminish
misunderstanding. The constructed innovation must provide
significant improvement (Jarvinen, 2001, March and Smith,
1995). The proposed effort management frameworks were
constructed based on the case study analysis on three other
frameworks (Fairley, 1992; Tsoi, 1999; Vesterinen, 1998) and

83

84

three process maturity assessment models (ISO, 1993; SEI, 1993;
SEI, 2006).

The criteria metrics for method evaluation include
operationality, efficiency, generality, and ease of use. In other
words, the research results need to be pragmatic. Practicality is
especially considered throughout our research. We evaluate our
effort assessment method as suggested in (Jarvinen, 2001): by
showing its feasibility in practical use. Our research originates
from practical demands, ie., we study topics yearning
improvement. The data sample was based on real projects, and
results were evaluated with prototyping in Tieto Finland Oy,
and the results were reported as case studies.

Although the results were evaluated in case studies with the
non-construction activities, the results could have been
evaluated with other activity sets as well. The research results
can be generalized to consider all software project activities.
Moreover, our research is not limited to just only one activity set
and only one phase. Instead, our studies also include crossing
the different activity sets and phases.

4.3.4 Deployment of the research results
In this sub-chapter, we discuss how the research results are
deployed at the research site.

Most of the research artifacts presented in this thesis have
been gradually integrated into Tieto Corporation’s group-level
project management process as a part of Tieto’s software process
improvement activities. The artifacts have been piloted with real
business cases either on unit or group-level in Tieto.

By the end of 2010, the main concepts of the research were
introduced in process material, i.e., process descriptions, tools,
document templates and their guidelines, and project
management process training materials. The introduced
concepts include both effort management and the work
breakdown structure of the non-construction activities.

The process descriptions and document templates
acknowledge better the effort management process and its
functions, effort assessments and analysis, for example. The

process activities have been complemented with effort
assessments and project’s post-mortem effort analysis. At the
research site, the WBS template for the general software project
activities was enhanced with the missing non-construction
activities which were identified in our research. The WBS
template is utilized in project planning (effort estimation and
scheduling), and in effort collection as an example WBS for
project’s WBS in the work time booking system. Moreover, the
finding of the significance and the amount of the non-
construction activity effort was included into the planning
guidelines.

The research results have been in pilot use in parts of the
Tieto Corporation. Here, we provide two examples: effort
management framework and effort assessment process and
method.

The effort management framework has been employed in
software development projects at Telecom & Media, the largest
business area within Tieto. As a result of the pilot it was found
out that not only the framework increased the project managers’
knowledge on effort management related issues, but also
improved the adherence to the effort management related
process and functions. According to the framework, we
distinguished five phases and applied the effort-related and
activity-related functions related to each phase. For effort
management purposes and to increase the project comparability
we divided effort in three major project activity sets: software
construction, project management, and non-construction
activities, and established a WBS with a generic part concerning
the non-construction activities to be employed with software
projects.

The deployment of the effort assessment process has taken
place gradually at the research site. The foundation of
postmortem analyses and final reports were integrated into
Tieto’s project management process in late 1990s from which on
the pre-defined process and document template have been
utilized. The process acknowledges and requires an analysis of
the effort and outcome of the project. From a reactive approach

85

86

of analyzing projects at the end the project, the process evolved
to a more proactive approach in mid-2000s when the waterfall
development model was complemented with the incremental,
iterative, and agile models, which require assessments after each
phase, iteration or sprint.

The challenge has been the inconsistent implementation of
the assessments and postmortem analyses-the depth of the
analysis is based rather on the project manager than the process,
and what the manager emphasizes and considers important.
The conclusions have remained disconnected, and the
dependencies between software project activities and their effort
have not been considered.

In analyses, the quantitative part of the method has been
applied, ie. the project activities’ actual effort has been
recorded with their estimation errors. In practice, however, only
the significantly underestimated projects and activities have
been analyzed thoroughly. We argue that by adding little more
effort (i.e, cost) to how effort assessments are currently
performed at Tieto the benefits of the assessments can be
significantly increased. Indeed, the value of an assessment
limited only to quantitative results can be questioned. Without
an extensive qualitative analysis of the project activities and
their effort, the assessment results (i.e., benefits) remain
moderate, and the assessments do not initiate estimation or
software process improvement actions.

Method’s utilization is required to reveal a poor estimation.
A project-level estimation error does not imply how successful
the estimation has actually been. By applying the method we are
able to reveal that the accuracy of total project effort is based
rather on sheer luck than a thoroughly successfully estimated
project.

The relevant group-level project management sub-processes
are currently revised to address better the shortcomings. While
the awareness of the role of activity sets in effort assessments
has increased, the approach has to be deployed throughout the
organization. To promote and ease both adaption and the
utilization of the method, we are automating the quantitative

part of the method, with an error coordination presentation.
This application can state the relevant questions to activity set
under examination.

The gathering and calculation of the effort data is very time-
consuming if it is not automated. However, the data is very
useful in assisting the estimation of forthcoming projects, if the
data is feasibly organized. Moreover, a structured data
employing default activity sets ensures the comparability of the
projects.

4.3.5 Limitations of the study

This thesis suffers from four general limitations related to both
the data and methodology. The first concern related to the data
is the reliability of the actual effort. As project team members
feed their own work hours into the work time booking system,
there can be individual variations with the inputs. Moreover,
project team members can be too embarrassed to book all the
non-construction activity time (e.g., orientation, problem
solving, planning, waiting). On the other hand, they may dump
all unclear or non-billable project effort on some non-
construction activity. Furthermore, the work hours are booked
with half-hour precision, which also skews the data. Also,
Hochstein, et al., (2005) note that effort recorded varies
significantly depending on if it is automated (instrumented) or
self-recorded. Hence, self-recorded effort is never quite reliable.
However, as these are universal problems with practical effort
data, this is accepted for this research. To get near-to-total
reliable effort information, the procedure for booking work
hours as well as the effort activities should be unified in the
organization. Moreover, the project team must be committed to
find the correct time-booking entry and record effort on it.

The second concern relates to the data is that they are
provided by only one company. However, since the project
settings, methods, and staffing varied between teams and the 32
projects, the data sample represents heterogenic project
environment.

87

88

The third concern relates to the generalization of the results
of the studies. As the case studies in the research papers deal
with a limited number of cases, they lack statistical significance.
This is very typical to qualitative studies within software
engineering. Kitchenham, et al., (1995, p. 53) point out that case
studies are ”difficult to generalize” and a case study ”cannot be
generalized to every possible situation”. Moreover, our case
study data set did not contain projects applying agile software
development approach, and it can be challenging to apply the
results with management approaches that are based on features
instead of tasks (Cohn, 2008). Keeping these flaws in mind we
conclude with results and promote a cautious approach with the
results.

Moreover, we apply case studies merely from the exploratory
basis while we seek research problems in building solutions.
Hence, the outcomes of this study are emphasized to
exploratory rather than explanatory results (cf. (Yin, 1994)).

4.4 CONTRIBUTION OF THE THESIS

The key contribution of the study is the development and
validation of artifacts for pragmatic effort management. The
outcomes of and the findings for the described effort-related
functions can be used in improving the effort estimation
accuracy of software projects. However, these outcomes and
findings are as important for software project management by
themselves.

This study aggregates the fragmented concepts related to
effort management. Chapter 2 presents and defines the key
effort-related concepts. Two frameworks to be utilized in effort
management are introduced in Chapter 4: a research and SPI
framework for improving effort management and another
framework for managing the effort in software projects.
Moreover, proposals for improving effort-related functions in
order to increase effort estimation accuracy are presented in
Chapter 4. First, the effort of the software project activities, the

non-construction activities in particular, and its impact on
software project effort estimation is examined, and a predictor
for estimating total software project effort is presented. Second,
factors promoting an efficient new project activity adoption are
proposed. An efficient adoption of new activities is essential to
ensure valid effort data for further assessments and re-
estimations. Third, a stepwise effort assessment method is
proposed for analyzing effort in a focused manner. The
analyzed effort information can be used to validate and calibrate
the employed effort estimation method, and to produce
assessments, and final and annual project reports.

Our approach on effort management and its three
improvement proposals are novel. Although there has been a
vast interest in the concepts of software process improvement
and effort in software projects within software engineering,
researchers have, by and large, overlooked a more complete
approach on effort management. Effort has not been seen as an
independent area of management like risk or quality. The
software engineering literature has focused on software
construction and project management, whilst neglecting the
third significant group of project activities, the general non-
construction project activities, as well as ignored the adoption
mechanisms of new project activities. The prior processes for
effort assessments provide general guidelines without a detailed
method to analyze effort. We, on the other hand, propose a
concrete method to analyze software project effort.

This research provided valuable lessons for Tieto Finland Oy
regarding effort management. Furthermore, we believe that the
results are extendable to software industry in general in the
context of software development projects. Moreover, some
results can be in fact applicable in a broader context, ie., in
projects in general, or in cases related to effort.

89

90

5 Conclusions

A software supplier organization strives to estimate the effort
needed in building software as accurately as possible to ensure
the project’s budget and schedules, and the success of resource
allocation. Despite the numerous effort estimation approaches
and applications available, the estimates have remained
inaccurate. The objective of this study was to improve the
management practices of software development project effort,
resulting in increased effort estimate accuracy.

Effort has not been seen as a management area of its own in
software engineering. The software engineering literature
discusses risk management, quality management and
configuration management individually but effort is covered as
an integrated part of software project management. Also, the
consideration has been limited to the actual project phases.

We strive to both broader and more coherent approach on
effort management than that in literature. For instance, we have
extended the consideration from project's phases to phases
before and after project’s phases.

In improving the effort management practices, this study
commenced in Chapter 2 with the theoretical background and
the key concepts and functions related to effort and its
management in software development projects. The focus on the
theoretical background was largely on effort estimation function
since the main research problem in this thesis was to increase
estimation accuracy.

In Chapter 3, we presented our research approach with the
key research problems and the employed methodologies. The
research artifacts were built and evaluated with the constructive
research methodology. The main supportive research
methodology was case study, which was used both for artifact
evaluations and effort data analysis. The data set was comprised

91

92

of 32 software development projects, provided by the research
site, Tieto Finland Oy.

Chapter 4 took an overview on the research publications. The
description of the relation of the research papers to each other
continued with the summaries of the research papers proposing
improvements on effort management. Each of these
improvement proposals relates to phases in the effort
management lifecycle, and is included to the framework for
effort management. First, we introduced our research
framework for improving effort management in software
projects. As a part of the framework, we have proposed
software project effort to be distributed into three main
categories, namely software construction, project management,
and non-construction activities. Second, the non-construction
activities were presented in more details in a data mining
experiment to discover effort predictors to improve effort
estimations. Third, the projects’ effort data quality was
improved by exploring the adoption of the new effort time-
booking entries in order to ensure correct work time recording.
Fourth, a stepwise effort assessment method was introduced to
increase effort accuracy by gaining effort information as a result
from applying the method. This effort information can be used
to adjust the employed effort estimation method, and to
evaluate the estimation method’s weights that adjust the factors
and drivers which are used to derivate the effort estimates.
Fifth, we introduced a framework for effort management in
software projects in which each of these three effort-related
functions (estimation, collection, and assessment) includes into.
Our effort management framework is a process involving a
lifecycle of software project with effort-related and activity-
related functions. Moreover, the framework contains a two-way
view with effort distribution and project phases with relating
effort management functions.

Chapter 4 ended with a four-perspective evaluation on the
research results how they address the research problems, how
well they compare with alternative solutions, how they
correspond with the research evaluation criteria in constructive

research, and how the results have been deployed to practice at
the research site.

Based on the research evaluation, we can conclude that our
six research problems have reached their target states. Once we
have gathered experiences from utilizing the proposed
improvements, new needs may emerge. As future work, a
thorough study on the non-construction activity effort is
endeavored to explore if the effort proportions of software
construction, project management, non-construction activities
can be stabilized within boundaries, which in turn can increase
the estimation accuracy. Moreover, the evolving software
engineering and industry generates interesting topics for further
research. For instance, as agile software development increases
its popularity, replicated case studies are needed to show the
usefulness and applicability of our results in agile projects
which do not utilize effort or tasks in their project planning
(Cohn, 2008). In addition, the interest in software engineering
industry on off-shoring complements the non-construction
activities, in particular, with many supporting activities that are
essential in distributed software engineering. Hence, a further
study on an enhanced work breakdown structure for the non-
construction activities is necessary in producing structure
templates to be applied in effort management.

93

94

REFERENCES

Abdel-Hamid, T., 1984. The dynamics of software development project
management: an integrative system dynamics perspective. PhD thesis:
Massachusetts Institute of Technology. [Online] Available at:
http://dspace.mit.edu/bitstream/handle/1721.1/38235/12536707.pdf?seq
uence=1. [Accessed: 1 June 2010].

Agarwal, R., Kumar, M., Yogesh, Mallick, S., Bharadwaj, R.M. & Anantwar,
D., 2001. Estimating software projects. ACM SIGSOFT Software
Engineering Notes, 26(4), pp. 60-67.

Albrecht, A.J. & Gaffney, J.E., 1983. Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science
Validation. IEEE Transactions on Software Engineering, 9(6), pp. 639-648.

Anquetil, N., de Oliveira, KM., de Sousa K.D. & Batista Dias M.G., 2007.
Software maintenance seen as a knowledge management issue.
Information and Software Technology, 49(5), pp. 515-529.

Armour, P., 2002. Ten Unmyths of Project Estimation. Communications of the
ACM, 45(11), pp. 15-18.

Avison, D., 2002. Action Research: A Research Approach for Cooperative

Work. In: 7th International Conference on Computer Supported Cooperative
Work in Design. Rio de Janeiro, Brazil, 25-27 September 2002. IEEE, pp.
19-24.

Avison, D., Lau, F., Myers, M. & Axel Nielsen, P., 1999. Action Research.
Communications of the ACM, 42(1), pp. 94-97.

Awazu, Y. Desouza, K.C. & Evaristo,]J.R., 2004. Stopping Runaway
Information Technology Projects. Business Horizons, 47(1), pp. 73-80.

Banker, R.D., Kauffman, RJ. & Kumar, R, 1991. An Empirical Test of
Object-based Output Measurement Metrics in a Computer Aided
Software Engineering (CASE) Environment. Journal of Management
Information Systems, 8(3), pp- 127-150.

Banker, R.D., Kauffman, R.J.,, Wright, CW. & Zweig, D., 1994. Automating
Output Size and Reuse Metrics in a Repository-Based Computer-
Aided Software Engineering (CASE) Environment. IEEE Transactions
on Software Engineering, 20(3), pp. 169-187.

95

Basili V. & Rombach, H., 1988. The TAME Project: Towards Improvement-
Oriented Software Environments. IEEE Transactions on Software
Engineering, 14(6), pp. 758-773.

Baskerville, R.L., 1999. Investigating Information Systems with Action
Research. Communication of the AIS, 2(19), pp. 1-32.

Baskerville, R.L. & Wood-Harper, A.T., 1996. A critical perspective on action
research as a method for information systems research. Journal of
Information Technology, 11, pp. 235-246.

Birk, A., Dingseyr, T. & Stalhane, T., 2002. Postmortem: Never Leave A
Project without It. IEEE Software, 19(3), pp. 43-45.

Blackburn, J.D., Scudder, G.D. & Van Wassenhove, L.N., 1996. Improving
Speed and Productivity of Software Development: A Global Survey of
Software Developers. IEEE Transactions on Software Engineering, 22(12),
pp. 875-885.

Boehm, B.W., 1981. Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall.

Boehm, B., Clark, B., Horowitz, E., Westland, E., Madachy, R. & Selby, R,,
1995. Cost Models for Future Life Cycle Processes: COCOMO 2. Annals
of Software Engineering, 1, pp. 57-94.

Boehm, B., Horowitz, E.,, Madachy, R., Reifer, D., Clark, B., Steece, B,
Brown, A., Chulani, S. & Abts, C., 2000. Software Cost Estimation with
COCOMO II. Upper Saddle River, NJ: Prentice-Hall.

Brady, S. & DeMarco, T., 1994. Management-Aided Software Engineering.
IEEE Software, 11(6), pp. 25-32.

Briand L.C., El Emam, K., Surmann, D., Wieczorek, 1. & Maxwell, K.D.,
1999. An Assessment and Comparison of Common Software Cost
Estimation Modeling Techniques. In: 21st International Conference on
Software Engineering (ICSE’99), Los Angeles, California, USA, 16-22
May 1999. ACM, pp. 313-322.

Briand, L.C., Langley, T. & Wieczorek, I., 2000. A replicated Assessment and
Comparison of Common Software Cost Modeling Techniques. In: 22nd
International Conference on Software Engineering (ICSE’00). Limerick,
Ireland, 4-11 June 2000. ACM Press, pp. 377-386.

Brooks, F.P. Jr., 1975. The Mythical Man-Month. Essays on Software
Engineering. Reading, MA: Addison-Wesley Publishing Company.
Chatters, B., Henderson, P. & Rostron, C., 1999. An Experiment to Improve

Cost Estimation and Project Tracking for Software and Systems

96

Integration Projects. In: 25th Euromicro Conference (EUROMICRO ‘99).
Milan, Italy, 8-10 September 1999. IEEE Computer Society, pp. 2177-
2184.

Chen, Z., Menzies, T., Port, D. & Boehm, B., 2005. Finding the Right Data for
Software Cost Modeling. IEEE Software, 22(6), pp. 38-46.

Clarke, B.K., 1997. The Effects of Software Process Maturity on Software
Development Effort. PhD thesis: University of Southern California.

Cohn, M., 2008. Agile Estimating and Planning. Upper Saddle River, NJ:
Prentice Hall.

Collier, B., DeMarco, T. & Fearey, P., 1996. A Defined Process for Project
Post-Mortem Review. IEEE Software, 13(4), pp. 65-72.

Conte, S.D., Dunsmore, H.E. & Shen, V.Y., 1986. Software Engineering Metrics
and Models. Menlo Park, CA: Benjamin/Cummings Publishing
Company.

Desouza, K.C.,, Dingseyr, T. & Awazu, Y. 2005a. Experiences with
Conducting Project Postmortems: Reports vs. Stories and Practitioner
Perspective. In: 38th Annual Hawaii International Conference on System
Sciences (HICSS "05). Hawaii, USA, 3-6 January 2005, pp. 233c.1-10.

Desouza, K.C., Dingseyr, T. & Awazu, Y. 2005b. Experiences with
conducting project postmortems: reports versus stories. Software
Process: Improvement and Practice, 10(2), pp. 203-215.

Dingseyr, T., 2005. Postmortem reviews: purpose and approaches in
software engineering. Information and Software Technology, 47(5), pp.
293-303.

Dingseyr, T., Moe, N.B. & Nytrg, ., 2001. Augmenting Experience Reports
with Lightweight Postmortem Reviews. In: Lecture Notes in Computer
Science, vol. 2188, F. Bomarius & S. Komi-Sirvio (eds.), Third
International Conference on Product Focused Software Process Improvement
(PROFES 2001). Kaiserslautern, Germany, 10-13 September 2001.
Springer Verlag: Kaiserslautern, Germany, pp. 167-181.

Dyba, T. & Dingseyr, T. 2008. Empirical studies of agile software
development: A systematic review. Information and Software Technology,
50(9-10), pp. 833-859.

Fairley, R.E., 1992. Recent Advances in Software Estimation Techniques. In:
14th International Conference on Software Engineering. Melbourne,
Australia, 11-15 May 1992. ACM Press, pp. 382-391.

97

Fenton, N.E. & Pfleeger, S.L., 1997. Software Metrics: A Rigorous & Practical
Approach. 274 ed. Boston, MA: PWS Publishing Company.

Finnie, G.R. & Wittig, G.E., 1996. Al Tools for Software Development Effort
Estimation. In: 1996 International Conference on Software Engineering:
Education and Practice (SE: E&P ‘96). Dunedin, New Zealand, 24-27
January 1996. IEEE, pp. 346-353.

Fioravanti, F. & Nesi, P., 2001. Estimation and Prediction Metrics for
Adaptive Maintenance Effort of Object-Oriented Systems. IEEE
Transactions on Software Engineering, 27(12), pp. 1062-1084.

Garmus, D. & Herron, D., 2001. Function Point Analysis: Measurement
Practices for Successful Software Projects. Upper Saddle River, NJ:
Prentice-Hall.

Garrick, J.,, Chan, A. & Lai, J.,, 2004. University-industry partnerships.
Implications for industrial training, opportunities for new knowledge.
Journal of European Industrial Training, 28(2/3/4), pp. 329-338.

Glaser B. & Strauss A., 1967. Discovery of Grounded Theory: Strategies for
Qualitative Research. Chicago, IL: Aldine Transaction.

Gray, A.R, MacDonell, S.G. & Shepperd, M.]., 1999. Factors systematically
associated with errors in subjective estimates of software development
effort: the stability of expert judgment. In: Sixth International Software
Metrics Symposium. Boca Raton, FL, USA, 4-6 November 1999. IEEE,
pp. 216-227.

Gray, C.F. & Larson, E.W., 2006. Project Management: The Managerial Process.
3rd ed. Singapore: McGraw-Hill.

Greenwood, D.J. & Levin, M., 1998. Introduction to Action Research. Social
Research for Social Change. Thousand Oaks, CA: Sage Publications, Inc.

Grimstad, S., Jergensen, M. & Molekken-Ustvold, K., 2005. Software effort
estimation terminology: The tower of Babel. Information and Software
Technology, 48, pp. 302-310.

Gruschke, T.M. & Jorgensen, M., 2008. The Role of Outcome Feedback in
Improving the Uncertainty Assessment of Software Development
Effort Estimates. ACM Transactions on Software Engineering and
Methodology, 17(4), pp. 20.1-34.

Haapio T., 2004. The Effects of Non-Construction Activities on Effort
Estimation. In: 27th Information Systems Research in Scandinavia
(IRIS’27). Falkenberg, Sweden, 14-17 August 2004.

98

Haapio, T., 2006. Generating a Work Breakdown Structure: A Case Study on
the General Software Project Activities. In: International Proceedings
Series 6, Tukiainen, M., Messnarz, R., Nevalainen, R. & Koinig, S.
(eds.), University of Joensuu, 13th European Conference on European
Systems & Software Process Improvement and Innovation (EuroSPI’2006),
Joensuu, Finland, 11-13 October 2006, pp. 11.1-11.

Haapio, T. & Eerola, A., 2006. Post-Project Effort Analysis Method. In: Vol. I
(Organizational Models and Information Systems), M. Cunha & A.
Rocha (eds.), 1st Iberic Conference on Information Systems and
Technologies (CISTI). Ofir, Portugal, 21-23 June 2006. Portugal:
Microsoft, pp. 3-19.

Haapio, T. & Menzies, T., 2009. Data Mining with Software Industry Data:
A Case Study. In: Vol. I, H. Weghorn & P. Isaias (eds.), IADIS
International Conference Applied Computing 2009 (AC'2009). Rome, Italy,
19-21 November, 2009. IADIS Press, pp. 33-38.

Heijstek, W. & Chaudron, M.R.V,, 2008. Evaluating RUP Software
Development Processes Through Visualization of Effort Distribution.
In: 34th Euromicro Conference Software Engineering and Advanced
Applications (SEAA “08). Parma, Italy, 3-5 September 2008, pp. 266-273.

Henderson-Sellers, B., 2003. Method Engineering for OO Systems
Development. Communications of the ACM, 46(10), pp. 73-78.

Herzum P. & Sims O., 2000. Business Component Factory. A Comprehensive
Overview of Component-Based Development for the Enterprise. New York:
Wiley Computer Publishing.

Hevner, AR, March, S.T., Park, J. & Ram, S., 2004. Design Science in
Information Systems Research, MIS Quarterly, 28(1), pp. 75-105.

Hihn, J. & Habib-agahi, H., 1991. Cost Estimation of Software Intensive
Projects: A Survey of Current Practices. In: 13th International Conference
on Software Engineering. Austin, Texas, USA, 13-16 May 1991. IEEE, pp.
276-287.

Hochstein, L., Basili, V. R., Zelkowitz, M. V., Hollingsworth, J. K. & Carver,
J., 2005. Combining self-reported and automatic data to improve
programming effort measurement. In: 10th European software
engineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering. Lisbon, Portugal, 5-9
September 2005. ACM, pp. 356-365.

99

Holmes, G., Donkin, A. & Witten, LH., 1994. WEKA: A Machine Learning
Workbench. In: 1994 Second Australian and New Zealand Conference on
Intelligent Information Systems. Brisbane, Australia, 29 November - 2
December 1994, pp. 357-361.

lacovou, C.L. & Dexter, A.S., 2005. Surviving IT project cancellations.
Communications of the ACM, 48(4), pp. 83-86.

livari, J., 1991. A Paradigmatic Analysis of Contemporary Schools of IS
Development. European Journal of Information Systems, 1(4), pp. 249-272.

ISO, 1993. ISO/IEC TR2 15504, Part 1 - Part 9, Information Technology -
Software Process Assessment. Geneva, Switzerland: ISO.

ISO, 1994. Quality management and quality assurance standards. Geneva,
Switzerland: ISO.

ISO, 1995. ISO/IEC 12207, Information Technology - Software Life Cycle
Processes. Geneva, Switzerland: I1SO.

Jalote, P., 2000. CMM in Practice: Processes for Executing Software Projects at
Infosys. Reading, MA: Addison-Wesley.

Jones, C., 1995. Backfiring: Converting Lines of Code to Function Points.
IEEE Computer, 28(11), pp. 87-88.

Juristo, N. & Moreno, A., 2001. Basics of Software Engineering Experimentation.
Boston, MA: Kluwer Academic Publishers.

Jarvinen, P., 2001. On Research Methods. Tampere, Finland: Opinpajan kirja.

Jarvinen, P., 2007. Action Research is Similar to Design Science. Quality and
Quantity, 41, pp. 37-54.

Jorgensen, M., 2004a. A review of studies on expert estimation of software
development effort. Journal of Systems and Software, 70, pp. 37-60.

Jorgensen, M., 2004b. Top-down and bottom-up expert estimation of
software development effort. Information and Software Technology, 46,
pp- 3-16.

Jergensen, M., 2005. The "Magic Step” of Judgment-Based Software Effort
Estimation. In: International Conference on Cognitive Economics. New
Bulgarian University, Sofia, 5-8 August 2005, pp. 105-114.

Jorgensen, M., 2007. Estimation of software development work effort:
evidence on expert judgment and formal models. International Journal
of Forecasting, 3(3), pp. 449-462.

Jorgensen, M. & Sjeberg, D., 2001. Impact of effort estimates on software
project work. Information and Software Technology, 43(15), pp. 939-948.

100

Jorgensen, M. & Sjoberg, D.I.K., 2004. The impact of customer expectations
on software development effort estimates. International Journal of
Project Management, 22, pp. 317-325.

Kemerer, C.F., 1987. An Empirical Validation of Software Cost Estimation
Models. Communications of the ACM, 30(5), pp- 416-429.

Kemerer, C.F. & Porter, B.S., 1992. Improving the Reliability of Function
Point Measurement: An Empirical Study. IEEE Transactions on Software
Engineering, 18(11), pp. 1011-1024.

Kemmis, S. & McTaggart, R., 2005. Participatory Action Research:
Communicative Action and the Public Sphere. In: N.K. Denzin & Y.S.
Lincoln (eds.) 2005. The Sage Handbook of Qualitative Research. 3 ed.
Thousand Oaks, CA: Sage Publications, Inc. pp. 559-604.

Kerth, N.L., 1998. An approach to postmorta, postparta and post project review.
[Online] Available at: http://c2.com/doc/ppm.pdf. [Accessed: 4 August
2010].

Kerth, N.L., 2001. Project Retrospectives: A Handbook for Team Reviews. New
York: Dorset House Publishing.

Kinoshita, F., 2008. Practices of an Agile Team. In: G. Melnik, P. Kruchten &
M. Poppendieck (eds.), Agile Conference (AGILE ‘08). Toronto, Ontario,
Canada, 4-8 August 2008. IEEE Computer Society, pp. 373-377.

Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J. &

Linkman, S., 2009. Systematic literature reviews in software

engineering - A systematic literature review. Information and Software
Technology, 51, pp. 7-15.

Kitchenham, B., Pfleeger, S.L., McColl, B. & Eagan, S., 2002. An empirical
study of maintenance and development estimation accuracy. Journal of
Systems and Software, 64(1), pp. 57-77.

Kitchenham, B., Pickard, L. & Pfleeger, S.L., 1995. Case Studies for Method
and Tool Evaluation. IEEE Software, 12(4), pp. 52-62.

Klein, H. K. & Myers, M. D., 1999. A Set of Principles for Conducting and
Evaluating Interpretive Field Studies in Information Systems. MIS
Quarterly, 23(1), pp. 67-93.

Koivisto, M., 2007. Development of Quality Expectations in Mobile
Information Systems. In: International Joint Conferences on Computer,
Information, and Systems Sciences, and Engineering. University of
Bridgeport, CT, USA, 3-12 December 2007. Springer, pp. 336-341.

101

Kumar, K., 1990. Post Implementation Evaluation of Computer-Based
Information Systems: Current Practices. Communications of the ACM,
33(2), pp- 203-212.

Lee, A, Green, B. & Brennan, M., 2000. Organisational knowledge,
professional practice and professional doctorate at work. In: J. Garrick
& Rhodes, C. (eds.). 2000. Research and Knowledge at Work. Perspectives,
case-studies and innovative strategies. London, UK: Routledge. Pp. 117-
136.

Lyytinen, K. & Robey, D., 1999. Learning Failure in Information Systems
Development. Information Systems Journal, 9(2), pp. 85-101.

MacDonell, S.G. & Shepperd, M.]J., 2003. Using Prior-Phase Effort Records
for Re-estimation During Software Projects. In: Ninth International
Software Metrics Symposium (METRICS’03). Sydney, Australia, 3-5
September 2003. IEEE Computer Society, pp. 1-13.

Maham, M., 2008. Planning and Facilitating Release Retrospectives. In: G.
Melnik, P. Kruchten & M. Poppendieck (eds.), Agile Conference (AGILE
‘08). Toronto, Ontario, Canada, 4-8 August 2008. IEEE Computer
Society, pp. 176-180.

March, S.T. & Smith, G.F., 1995. Design and Natural Science Research on
Information Technology. Decision Support Systems, 15(4), pp. 251-266.

McBride, T., Henderson-Sellers, B. & Zowghi, D., 2004. Project management
capability levels: An empirical study. In: 11th Asia--Pacific Software
Engineering Conference (APSEC’04). Washington, DC, USA, 30
November — 3 December 2004. IEEE Computer Society, pp. 56-63.

Menzies, T., Port, D., Chen, Z., Hihn, J. & Stukes, S., 2005. Validation
Methods for Calibrating Software Effort Models. In: 27th International
Conference on Software Engineering (ICSE’05). St. Louis, Missouri, USA,
15-21 May 2005. ACM Press, pp. 587-595.

Milicic, D. & Wohlin, C., 2004. Distribution Patterns of Effort Estimations.
In: 30th EUROMICRO Conference (EUROMICRO’04). Rennes, France, 1-
3 September 2004. IEEE Computer Society, pp. 422-429.

Mohagheghi, P., Anda, B. & Conradi, R., 2005. Effort Estimation of Use
Cases for Incremental Large-Scale Software Development. In: 27th
International Conference on Software Engineering (ICSE’05). St. Louis,
Missouri, USA, 15-21 May 2005. ACM Press, 303-311.

102

Mukhopadhyay, T. & Kekre, S., 1992. Software Effort Models for Early
Estimation of Process Control Applications. IEEE Transactions on
Software Engineering, 18(10), pp. 915-924.

Niessink, F. & van Vliet, H.,, 1997. Predicting Maintenance Effort with
Function Points. In: 1997 International Conference on Software
Maintenance (ICSM *97). Bari, 1-3 October 1997. IEEE, pp. 32-39.

Nolan, A J., 1999. Learning from Success. IEEE Software, 16(1), pp. 97-105.

Nunamaker, J.F. Jr. & Chen, M., 1990. Systems Development in Information
Systems Research. In: Vol. 3, 23rd Annual Hawaii International
Conference on System Sciences. Hawaii, USA, 2-5 January 1990. pp. 631-
640.

Nunamaker, J.F. Jr, Chen, M. & Purdin, T.D.M., 1991. Systems
Development in Information Systems Research. Journal of Management
Information Systems, 7(3), pp. 89-106.

O'Regan, G., 2002. A Practical Approach to Software Quality. Secaucus, NJ:
Springer-Verlag New York, Inc.

Paulk, M.C., Curtis, B., Chrissis, M.B. & Weber, C.V., 1993. Capability
Maturity Model for Software, Version 1.1. Technical Report, CMU/SEI-93-
TR-024, ESC-TR-93-177. Pittsburgh, PA: CMU/SEL

Petter, S., Mathiassen, L. & Vaishnavi, V., 2007. Five Keys to Project
Knowledge Sharing. IT Professional, 9(3), pp. 42-46.

Pressman, R.S., 2005. Software Engineering: A Practioner’s Approach. 6™ ed.
New York: McGraw-Hill.

Pyle, D., 1999. Data Preparation for Data Mining. San Francisco, CA: Morgan
Kaufmann Publishers.

Rask, R., 1992. Automating Estimation of Software Size During the Requirements
Specification Phase - An Application of Albrecht’s Function Point Analysis
within Structured Methods. PhD thesis: Joensuu, Finland: University of
Joensuu.

Rautianen, K., Lassenius, C., Vdhaniitty, J., Pyhdjarvi, M. & Vanhanen, J.,
2002. A tentative framework for managing software product
development in small companies. In: Vol. 8, 35th Annual Hawaii
International Conference on System Sciences (HICSS’02). Washington DC,
USA, 7-10 January 2002. IEEE Computer Society, pp. 3409-3417.

Robertson, S. & Robertson, J., 1999. Mastering the Requirements Process.
Harlow, UK: Addison-Wesley.

103

Royce, W., 1998. Software Project Management: A Unified Framework. Reading,
MA: Addison-Wesley.

Rus, 1. & Lindvall, M. 2002. Knowledge Management in Software
Engineering. IEEE Software, 19(3), pp. 26-38.

Sawyer, S., 2001. A Market-Based Perspective on Information Systems
Development. Communications of the ACM, 44(11), pp. 97-102.

Schwaber, K., 1995. Scrum Development Process. In: J. Sutherland, D. Patel,
C. Casanave,]. Miller & G. Hollowell (eds.), Business Object Design and
Implementation: OOPSLA’95 Workshop Proceedings. London: Springer.

SEI, 2006. CMMI for Development, Version 1.2, CMMI-DEV, V1.2. Technical
Report CMU/SEI-2006-TR-008, ESC-TR-2006-008. Pittsburgh, PA:
CMU/SEL

SEI, 2010. CMMI for Development, Version 1.3, CMMI-DEV, V1.3. Technical
Report CMU/SEI-2010-TR-033, ESC-TR-2010-033. Pittsburgh, PA:
CMUY/SEL

Sertic, H., Marzic, K. & Kalafatic, Z., 2007. A Project Retrospectives Method
in Telecom Software Development. In: Z. Car & M. Kusek (eds.), 9th
International Conference on Telecommunications (ConTel 2007). Zagreb,
Croatia, 13-15 June 2007. IEEE, pp. 109-114.

Shepperd, M.]. & Schofield, C., 1997. Estimating Software Projects Effort
Using Analogies. IEEE Transactions on Software Engineering, 23(12), pp.
736-743.

Shepperd, M.J.,, Schofield, C. & Kitchenham, B., 1996. Effort Estimation
Using Analogy. In: Proceedings of the 18th International Conference on
Software Engineering (ICSE--18). Berlin, Germany, 25-29 March 1996.
IEEE Computer Society Press, pp. 170-178.

Smith, R.K., Hale, J.E. & Parrish, A.S., 2001. An Empirical Study Using Task
Assignment Patterns to Improve the Accuracy of Software Effort
Estimation. IEEE Transactions on Software Engineering, 27(3), pp. 264-
271.

Solingen, R. van & Berghout, E., 1999. The Goal/Question/Metric Method.
London, UK: McGraw-Hill Education.

Sommerville, 1., 2001. Software Engineering. 6t ed. Harlow, UK: Pearson
Education.

Srinivasan, R. & Fisher, D., 1995. Machine learning approaches to estimating
software development effort. IEEE Transactions on Software Engineering,
21(2), pp. 126-137.

104

Standish Group, 1999. Chaos: A Recipe for Success.

Stringer, E.T., 1999. Action Research. 24 ed. Thousand Oaks, CA: Sage
Publications, Inc.

Symons, C.R., 1988. Function Point Analysis: Difficulties and
Improvements. IEEE Transactions on Software Engineering, 14(1), pp. 2-
11.

Szyperski C., 1999. Component Software: Beyond Object-Oriented Programming.
Harlow, UK: ACM Press.

Takeuchi, H. & Nonaka, I., 1986. The new new product development game.
Harvard Business Review, 64(1), pp. 137-146.

Tiedeman, M.J., 1990. Postmortems — Methodology and Experiences. IEEE
Journal on Selected Areas in Communications, 2(8), pp. 176-180.

Tsoi, H.L, 1999. A Framework for Management Software Project
Development. In: 1999 ACM symposium on Applied computing (SAC’99).
San Antonio, Texas, USA, 28 February — 2 March 1999. ACM Press, pp.
593-597.

Verner,].M. & Evanco, W.M., 2005. In-House Software Development: What
Project Management Practices Lead to Success? IEEE Software, 22(1),
pp- 86-93.

Vesterinen, P., 1998. A framework and process for effort estimation. In: 9th
European Software Control and Metrics Conference, 1999 ACM symposium
on Applied computing. Rome, Italy, 27-29 May 1998.

Virtanen, P., 2003. Measuring and Improving Component-Based Software
Development. PhD thesis: Turku, Finland: University of Turku.

Wilson, D.N. & Sifer, M.J.,, 1988. Structured Planning: Project Views.
Software Engineering Journal, 3, pp. 134-140.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B. & Wesslén, A,
2000. Experimentation in Software Engineering: An Introduction. Boston,
MA: Kluwer Academic Publishers.

Yin, R. K., 1994. Case Study Research: Design and Methods. 2 ed. Thousand
Oaks, CA: Sage Publications.

Young, M.R., 1995. A new paradigm for IS development: Effort
management. In: 26th Annual Seminar/Symposium. New Orleans, LO,
16-18 October 1995. Project Management Institute.

Zahran, S., 1998. Software Process Improvement. London, UK: Addison-
Wesley.

105

106

APPENDICES

APPENDIX A: EFFORT DISTRIBUTION 1IN
ANALYZED 32 SOFTWARE PROJECTS

The median, mean, minimum, first quartile, third quartile,
maximum, and standard deviation values of the software
construction, project management, and non-construction activity
effort of total project effort in 32 analyzed software projects are
presented in Table A.1.

Table A.1. The proportion values of the software construction, project management

and non-construction activity effort of total project effort (N=32)

Software Project Non-
construction management construction
activities

Median 76.7% 11.3% 11.2%
Mean 74.7% 11.7% 13.6%
Min 52.1% 2.6% 3.2%
Q1 69.6% 8.1% 8.1%
Q3 80.5% 14.9% 20.6%
Max 90.8% 23.5% 31.1%
SD .0901 .0490 .0768

107

108

The median, mean, minimum, first quartile, third quartile,

maximum, standard deviation, number, and frequency values
(frequency of an activity appearing in a project) of the non-
construction activity effort of total project effort in 32 analyzed
software projects are presented in Table A.2.

Table A.2. The proportion and frequency values of the non-construction activity effort
of total project effort (N=32)

CM Cus Doc Ori Pro QM Misc.
Md 3.3% 1.6% 2.3% 2.1% 3.0% 0.8% 0.9%
Mean 3.3% 3.8% 3.0% 3.6% 3.4% 1.6% 3.1%
Min 0.2% 0.2% 0.1% 0.2% 0.4% 0.0% 0.3%
Q1 1.5% 0.6% 1.4% 1.0% 2.0% 0.5% 0.4%
Q3 4.8% 3.8% 4.0% 3.3% 4.0% 2.3% 6.1%
Max 7.8% 20.5% 8.1% 15.8% 10.2% 5.8% 7.6%
SD .0223 .0558 .0230 .0424 .0224 .0170 .0312
n 29 17 23 18 23 21 9
p 90.6% 53.1% 71.9% 56.3% 71.9% 65.6% 28.1

%

Note: CM = configuration management, Cus = customer-related activities, Doc =
documentation, Ori = orientation, Pro = project-related activities, QM = quality
management, Misc = miscellaneous activities.

APPENDIX B: NON-PARAMETRIC EFFORT AND
COST ESTIMATION MODELING TECHNIQUES

Table B.1. Non-parametric effort and cost estimation techniques (applied from Briand,
et al., 1999, 2000) with selected publications

Technique Selected publications
Artificial intelligence [2][4]

Artificial neural networks [2][71[12][17][18]
Case-based reasoning [91[14][15][18][19]
Inductive learning (or, rule induction) [1][11][13][14]
CART algorithm and regression trees [2][4][17][18]
Optimized set reduction [31[18]

Bayesian analysis [51[6]

Machine learning [9][10][14]
Analogy [4][15][16]
Stepwise regression [15]

Fuzzy logic [81[9][10]

[1] de Almeida, M.A., Lounis, H. & Melo, W.L., 1998. An Investigation on the Use
of Machine Learned Models for Estimating Correction Costs. In: IEEE
International Conference on Software Engineering. Kyoto, Japan, 19-25
April 1998, IEEE Computer Society.

[2] Briand L.C., El Emam, K., Surmann, D., Wieczorek, I. & Maxwell, K.D., 1999.
An Assessment and Comparison of Common Software Cost Estimation
Modeling Techniques. In: 21st International Conference on Software
Engineering (ICSE’99), Los Angeles, California, USA, 16-22 May 1999. ACM,
pp. 313-322.

[3] Briand, L.C., Basili, V.R. & Hetmanski, C.J., 1993. Developing interpretable
models with optimized set reduction for identifying high-risk software
components. IEEE Transactions on Software Engineering, 19(11), pp. 1028-
1044.

[4] Briand, L.C., Langley, T. & Wieczorek, I., 2000. A replicated Assessment and
Comparison of Common Software Cost Modeling Techniques. In: 22nd
International Conference on Software Engineering (ICSE’00). Limerick,
Ireland, 4-11 June 2000. ACM Press, pp. 377-386.

[5] Chulani, S., Boehm, B. & Steece, B., 1999. Bayesian Analysis of Empirical
Software Engineering Cost Models. IEEE Transactions on Software
Engineering, 25(4), pp. 573-583.

[6] Devnani-Chulani, S., 1999. Bayesian Analysis of Software Cost and Quality
Models. PhD thesis: University of Southern California.

[7] Gray, A. & MacDonell, S., 1997. A Comparison of Techniques for Developing
Predictive Models of Software Metrics. Information and Software

109

110

Technology, 39, pp. 425-437.

[8] Gray, A.R. & MacDonell, S.G., 1999. Fuzzy Logic for Software Metric Models
throughout the Development Lifecycle. In: 18th International Conference of
the North American Fuzzy Information Processing Society (NAFIPS). New
York, USA, 10-12 June 1999. IEEE, pp. 258-262.

[9] Mendes, E., Mosley, N. & Watson, I., 2002a. A Comparison of Case-Based
Reasoning Approaches to Web Hypermedia Project Cost Estimation. In:
WWW2002. Honolulu, Hawaii, USA, 7-11 May 2002. ACM, pp. 272-280.

[10] Mendes, E., Watson, I., Triggs, C., Mosley, N. & Counsell, S., 2002b. A
Comparison of Development Effort Estimation Techniques for Web
Hypermedia Applications. In: Eight IEEE Symposium on Software Metrics
(METRICS’02). Ottawa, Canada, 4-7 June 2002. IEEE Computer Society, pp.
131-140.

[11] Quinlan, J.R., 1996. Learning Decision Tree Classifiers. ACM Computing
Surveys, 28(1), pp. 71-72.

[12] Schofield, C., 1998. Non-algorithmic effort estimation techniques. Technical
Report ESERG: TR98-01, Bournemouth University, Department of
Computing.

[13] Selby, R.W. & Porter A.A., 1988. Learning from Examples: Generation and
Evaluation of Decision Trees for Software Resource Analysis. IEEE
Transactions on Software Engineering, 14(12), pp. 743-757.

[14] Shepperd, M. & Kadoda, G., 2001. Using Simulation to Evaluate Prediction
Techniques. In: 7th International Software Metrics Symposium
(METRICS’01). London, England, 4-6 April 2001. IEEE, pp. 349-359.

[15] Shepperd, M.]. & Schofield, C., 1997. Estimating Software Projects Effort
Using Analogies. IEEE Transactions on Software Engineering, 23(12), pp.
736-743.

[16] Shepperd, M.J., Schofield, C. & Kitchenham, B., 1996. Effort Estimation Using
Analogy. In: 18th International Conference on Software Engineering (ICSE-
18). Berlin, Germany, 25-29 March 1996. IEEE Computer Society Press, pp.
170-178.

[17] Srinivasan, R. & Fisher, D., 1995. Machine learning approaches to estimating
software development effort. IEEE Transactions on Software Engineering,
21(2), pp. 126-137.

[18] Stensrud, E., 2001. Alternative approaches to effort prediction of ERP
projects. Information and Software Technology, 43, pp. 413-423.

[19] Vicinanza, S., Prietula, M.]). & Mukhopadhyay, T., 1990. Case-Based
Reasoning in Software Effort Estimation. In: 11th International Conference
on Information Systems, 1990, pp. 149-158.

Tor1i HaAriO

Improving Effort
Management in Software
Development Projects

\p

Software supplier organizations
strive to estimate the effort need-
ed in building software as accu-
rately as possible to ensure the
project’s budget, schedule and op-
timal resource allocation. Despite
the numerous effort estimation so-
lutions available, the estimates are
frequently inaccurate. To increase
the effort estimation accuracy,
this thesis introduces a framework
with novel methods and manage-
ment practices for software project
management professionals to esti-

mate, collect and assess effort.

UNIVERSITY OF
EASTERN FINLAND

PUBLICATIONS OF THE UNIVERSITY OF EASTERN FINLAND

Dissertations in Forestry and Natural Sciences

ISBN 978-952-61-0493-5

	Osajulkaisu_5_kuvana.pdf
	sivu1.pdf
	sivu2
	sivu3
	sivu4
	sivu5
	sivu6
	sivu7
	sivu8
	sivu9
	sivu10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.16667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.08333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF004b006f00700069006a0079007600e4006e0020007000610069006e006f006b0065006c0070006f0069006e0065006e0020007000640066002d0074006900650064006f00730074006f>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

