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ABSTRACT

In this dissertation I have studied color calibration of a camera, esti-
mation of reflectance spectra, and supervised classification of spec-
tral information, based on reproducing kernel Hilbert space meth-
ods (RKHS). A unifying characteristic of our spectral data was that
imaging was performed with small number of broad-band spec-
tral response functions. We considered reflectance estimation as
a generalized color calibration problem and mainly focused on an
empirical regression approach that assumes relatively large ensem-
bles of training data. The connections of several reflectance esti-
mation and color calibration models to more general RKHS models
are discussed. Several RKHS models and transformations based on
physical a priori knowledge are introduced and evaluated for the
reflectance estimation from responses of an ordinary RGB camera.
The results suggest that new models lead to better accuracy in re-
flectance estimation and color calibration than some classical, more
widely used models. The data classification is discussed in remote
sensing context, where data are simulated to correspond measure-
ments from a multispectral airborne camera. In the classification
of birch (Betula pubescens Ehrh., Betula pendula Roth), pine (Pi-
nus sylvestris L.) and spruce (Picea abies (L.) H. Karst.) trees, a
Support Vector Machine classifier (SVM) and RKHS feature space
mappings were used to validate the performance of several simu-
lated sensor systems. The results indicate a need for careful data
pre-processing, a higher number of sensor bands, decrease in the
bandwidths or new positioning of the bands in order to improve
pixel-based classification accuracy for these tree species.

Universal Decimal Classification: 004.93, 519.6, 535.3, 535.6
PACS Classification: 02.60.-x, 02.60.Ed, 02.70.-c, 07.05.Mh
Keywords: color imaging; machine vision; machine learning; pattern recog-
nition; remote sensing; spectral imaging; supervised learning
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AUTHOR’S CONTRIBUTION

This dissertation consists of a lengthy core text and four publica-
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research papers on reflectance estimation, color calibration and tree
species classification using spectral data.

The ideas for papers [P1], [P2] and [P4] were mainly proposed
by the author in collaboration with the co-authors. The ideas in
[P3] originated from discussions between the author and co-author
Dr. R. Lenz. The author has carried out numerical computations in
[P1]. In [P2], [P3] and [P4] the author has carried out all numerical
computations, the selection of data and selection of optimization
methods. The hyperspectral and characteristic camera data which
were used in [P1]-[P4] were measured by the co-authors.

The author has written parts of [P1] as a co-author and has writ-
ten the papers [P2], [P3] and [P4]. In [P3], the contribution of co-
author Dr. R. Lenz has been especially significant.

The author has written the core text, which is based on exten-
sive discussions with the supervisors prof. J. Alho, prof. M. Hauta-
Kasari, and prof. J. Tuomela. The core text in this dissertation is in
the nature of long introduction and is partly written to be a foun-
dation for future work for several topics in color science research.



CONTENT OF THE DISSERTATION

The core text in this dissertation summarizes the four publications
(see Fig. 1), and explains the physical and mathematical background
of the models more extensively than could have been done in the
four publications. The text is multidisciplinary and its considerable
length has been motivated by the fact that in color science, there ap-
pears not to exist a unified treatment of the types of methods that
have been used in [P1]-[P3].

Chapter 1 gives an introduction to the dissertation. A general
machine vision reflection model is presented in chapter 2 which
links the used reflection model to the standardized physical char-
acteristics of surfaces. Some essential theory of reproducing kernel
Hilbert spaces is presented in chapter 3. It also introduces feature
mappings used for classification and estimation in chapters 4 and
5. Chapters 4 and 5 also discuss and summarize the experimental
results. Chapter 6 gives conclusions and discusses future work.

Figure 1: Content of the publications [P1], [P2], [P3] and [P4]. The arrows explains the
type of data (real measurements and simulated camera responses), which were used in the
publications.



NOTATION

Table 1: Symbols for radiometric quantities and for concepts in color science.

Symbol Meaning
λ wavelength
Λ wavelength domain
ω solid angle
θ zenith angle
ϕ azimuth angle
Φ spectral radiant flux (Table 2: Feature map)
E spectral irradiance
L spectral radiance
LI , LR incident and reflected radiance, respectively
fr Bidirectional Spectral Reflectance Distribution Function
r spectral factor of fr (reflectance spectrum)
g geometrical factor of fr

l spectral factor of spectral radiant power (flux)
LI,2 geometrical factor of spectral radiant power (flux)
r f reflectance factor
k number of spectral response functions
si ith spectral response function of sensor
tg geometrical factor
te exposure time
ν transmittance function
Γ non-linearity of sensor (also Gamma-function)
x multi- or hyperspectral measurement, x ∈ Rk

q hyperspectral measurement, q ∈ Rn

D65 CIE standard illuminant
A CIE standard illuminant
R, G, B Red-Green-Blue color values
L, M, S cone sensitivity functions
x, y, z CIE 1931 color matching functions
X, Y, Z CIEXYZ color coordinates
L∗,a∗,b∗ CIEL∗a∗b∗ color coordinates
C∗

ab CIEL∗a∗b∗ chroma
hab CIEL∗a∗b∗ hue-angle
∆E∗ CIE 1976 color difference
∆E∗

00 CIEDE2000 color difference



Table 2: Mathematical symbols.

Symbol Meaning
R the real numbers
R+ the positive real numbers
Rn n-dimensional real vector space
H real vector space
H Hilbert space
X input space
l2 space of square summable series
L2(X ) space of square integrable functions on X
C(X ) space of continuous functions on X
⟨·, ·⟩ inner product of L2(X )

⟨·, ·⟩H inner product of H
Id identity map Id(x) → x
k dimension of the input space
m number of the training samples
xi the ith training input in Rk

xi the ith coordinate of vector x(
n
k

)
binomial coefficient = n!/(k!(n − k)!)

Φ(x) feature mapping Φ : x → F
N dimension of the finite dimensional feature space
κ(·, ·) kernel function Φ : X ×X → R

X m × k matrix of the training inputs {xi}m
i=1

Φ(X), Ψ(X) matrix X, where rows are mapped to feature space
xT or XT transpose of vector x or matrix X
∥ · ∥ L2 or l2 norm
∥ · ∥H H (semi) norm
∥ · ∥F Frobenius norm of a matrix
I (In) identity matrix (of size n)
1 vector of ones
Σ covariance matrix
|Σ| determinant of matrix Σ
Tr(X) trace of matrix, i.e. ∑i xii

L loss function
σ2 regularization parameter in regression
C penalization parameter in SVM classification
K kernel matrix
k(x), kx vector of kernel evaluations between x

and elements in the training set
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1 Introduction

Spectral imaging gathers information from across the emitted elec-
tromagnetic spectrum of an object in some wavelength range. This
technique has become important part of information gathering in
several real-life applications in medical imaging [40], [75], [154] re-
mote sensing [19], [141], quality control [36], [60], color engineer-
ing [44], [48], [52], [171] etc. Also many applications in cosmetics,
paint, textile and plastics industries use the spectral imaging for
information gathering. A common goal for all these applications
is accurate color measurement and representation or object charac-
terization in radiometric sense. An object characterization can be
critical in medical imaging, whereas in industrial applications, a
color quality control can be important due to economical reasons.
Similarly, accurately measured spectral images can be used for the
purposes of electronic commerce and electronic museums.

Spectral imaging over visible (VIS) wavelength range of 380–
780 nm is sometimes called spectral color imaging and can be seen
as an extension of standard RGB color imaging. Imaging can be
also extended to measure invisible radiation in infrared (IR) and
ultraviolet (UV) ranges. In this dissertation we utilize spectral data
from the visible and near-infrared range of 390–850 nm.

A property which characterizes an imaging sensor spectrally,
is the number and location of the individual wavelength bands
sensed in the electromagnetic spectrum. Every spectral band of
a sensor has a corresponding spectral response function with some
shape and bandwidth. The number of the independent bands de-
fine the dimensionality of the measurement vectors. Current sen-
sor technology allows the capture of spectral data using hundreds
of contiguously positioned narrow spectral bands simultaneously.
This so called hyperspectral data provide a possibility to use well-
known linear methods to extract representative spectral space fea-
tures from the data or to estimate surface reflectance information.
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For example, it has been shown that several identification tasks
based on hyperspectral reflectance data can be carried out accu-
rately and efficiently using linear mappings to a low-dimensional
subspaces for each class [19], [76], [120], [122].

Although the most informative spectral data are obtained with
hyperspectral systems with several spectral bands, the use of such
imaging devices is impractical or expensive in many applications.
Usually a high-dimensional hyperspectral data also involve a high
level of redundancy, implying an inefficient data management and
storage. These issues usually restrict the imaging device to be a
multispectral systems with only small amount of broadband char-
acteristics (e.g. [51], [52], [171]). Usually in these applications, sur-
face reflectance is estimated from the measurements by using phys-
ical or empirical computational models. It has been suggested that
the most widely used multispectral devices, RGB-devices, could be
used for the reflectance estimation for the purposes of color engi-
neering [14], [15], [69] - [72], [108], [112], [113], [148], [152], [153].

RGB devices have several shortcomings due to three spectral
bands with broad bandwidth characteristics. Without any a priori
information, the RGB imaging is considered as an inadequate tech-
nique for measuring reflectance information and rendering between
different illumination or observer conditions. However, due to the
rapid development of color cameras, the RGB technique has also
several benefits which motivate its use for reflectance estimation
purposes. The acquisition system is capable for imaging moving
objects, it is practical, inexpensive and it can produce images with
large spatial resolution. It is also evident, that currently almost all
digital video cameras have three-band spectral characteristics.

Another class of imaging systems which try to maximize the
use of small amount spectral bands are multispectral airborne cam-
eras which were originally designed for photogrammetric appli-
cations [39]. Photogrammetric multispectral sensors can provide
additional benefits over hyperspectral sensors with small spatial
resolution. In this context it is assumed that it is possible to con-
struct all-purpose sensor with small number of spectral response

2 Dissertations in Forestry and Natural Sciences No 31
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functions, which would allow adequate information extraction from
ground objects, both radiometrically and geometrically. In this con-
text, an optimization of sensor spectral bands would increase the
applicability of these imaging systems.

This dissertation concentrates on estimation of reflectance spec-
tra, device color calibration and classification of multispectral data:

• In the reflectance estimation, we are considering the reflectance
measurements obtained via hyperspectral camera as the ob-
jects of interest. Using a priori knowledge, the reflectance
is estimated mainly by using empirical models and measure-
ments via multispectral RGB cameras. Here, the reflectance
estimation task is seen as a generalized color calibration. Es-
timation process is also discussed using different levels of
available knowledge from the measurement conditions and
devices.

• Supervised classification of multispectral data is formulated
for the purposes of remote sensing, where the objects of inter-
est are the spectral signatures of the three main tree species in
Finland. Measurements are simulated to correspond to a pho-
togrammetric airborne digital sensor with four spectral bands.
The classification performance is studied for these simulated
measurements, where an optimization of the spectral bands is
also considered.

In these tasks, we concentrate on using and estimating pointwise
(pixelwise) spectral information from the digital image data.

When the imaging device has a low number of spectral bands,
the available data already reside in a fixed low-dimensional sub-
space defined by spectral response functions of system. Conse-
quently, efficient linear feature extraction might be disrupted due
to the low information content of the measured data. In this study,
the modeling problems due to low information content of the mul-
tispectral measurements is compensated for by means of various
data pre-processing methods and non-linear feature space map-
pings through (conditionally, strictly) positive definite kernel func-

Dissertations in Forestry and Natural Sciences No 31 3
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tions. Kernel techniques do not compensate for the lack of infor-
mation content, but they introduce the tools to model complex data
structures nonlinearly. The features derived from the kernel func-
tion give representations for the data in high-dimensional feature
spaces, where the classification and estimation problems are easier
to solve [50], [143], [151], [155], [163]. Especially, the kernels used
in this dissertation induce a function space, called reproducing ker-
nel Hilbert space (RKHS). The theory of RKHSs was developed by
Aronszajn [5] in 1950s, and it has gained popularity in the field of
machine learning due to the algorithmic developments. The gen-
eralization properties of the RKHS models can be controlled via
regularization functionals, which correspond to the norm or semi-
norm of the induced function space.

In the field of spectral imaging and color engineering, many
reflectance estimation, color calibration and classification models
have been previously introduced, without referring to common con-
text of RKHSs and regularized learning. However, in the field of
statistics and machine learning, it is known that the RKHS the-
ory unifies the regression estimation and classification when using
parametric polynomial expansions and some non-parametric mod-
els such as regularization networks, radial basis function networks,
ridge regression and smoothing splines [33], [41], [127], [128], [167].

This dissertation gives an overview for the physical foundations
of spectral imaging and its implications to reflectance estimation
and data classification. We also present the foundations of RKHSs,
so that reflectance estimation and color calibration models can be
discussed in a unified framework. We evaluate some widely used
techniques for the reflectance estimation by using different sources
of a priori information and present new approaches using the ker-
nel based learning. In data classification, we concentrate on sim-
ulated data, based on a reflection model and evaluate the classifi-
cation performance by using widely used combination of Support
Vector Machine (SVM) and RKHS kernels [151], [163].

4 Dissertations in Forestry and Natural Sciences No 31



2 Physical model for sensa-
tion of electromagnetic signal

In this section we discuss on the physical sensation of electromag-
netic signal reflecting from an object. Especially, we explicitly de-
fine object reflectance as a measurable physical quantity. We mainly
focus on the sensitive wavelength range of human vision system,
which is approximately 380–780 nm and is called as visible range
(VIS). However, in the case of artificial device, like digital camera,
the sensation is formed using photosensitive sensor chip and the
corresponding wavelength range can be extended to ultraviolet (UV)
and infrared (IR) wavelength ranges.

We formulate sensation process for artificial observer, but it can
be assumed that under certain conditions, also biological vision sys-
tems follow same approach (e.g. [73], [88], [168]). We assume that
the sensation process is contributed by four different factors:

1. Illumination and observation geometry.

2. Characteristic reflectance properties of object.

3. Spectral power distribution of illumination.

4. Characteristic sensor properties of the observer.

In addition, a sensation may have significant effects from the medium
where the object and the observer are situated, e.g. the atmosphere
in remote sensing or water in underwater imaging.

2.1 RADIOMETRIC QUANTITIES AND LIGHT REFLECTION
MODEL

In the following we define basic radiometric quantities associated
with a light beam by following [88], [89]. We use λ to denote

Dissertations in Forestry and Natural Sciences No 31 5
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wavelength in nanometers ([nm]) and A to denote area ([m2]) of
a surface. The radiant energy flow per unit time in wavelength λ,
through a point o in surface in a direction (θ, ϕ) is spectral radiant
flux Φ, i.e.

Φ(λ, θ, ϕ, o) [W nm−1] (2.1)

The spectral irradiance E is the incident radiant flux (at a point on
the surface) per unit area and per unit wavelength, i.e.

E(λ, θ, ϕ, o) =
d2Φ(λ, θ, ϕ, o)

dAdλ
[W m−2 nm−1]. (2.2)

The solid angle with unit steradian ([sr]), is defined as the area of
the radial projection Aproj of a surface element to the surface of the
sphere with radius ϱ. Assuming surface element and a sphere with
radius ϱ, the differential solid angle is dω = dAproj/ϱ2. The solid
angle of a full sphere is 4π sr, when viewed from a point inside the
sphere. The spectral radiance L is the radiant flux per solid angle per
projected surface area per unit wavelength, i.e.

L(λ, θ, ϕ, o) =
d3Φ(λ, θ, ϕ, o)
dA cos θdωdλ

[W m−2 sr−1 nm−1], (2.3)

where θ is angle between the surface normal and cone of light
beams. The spectral radiance is the quotient of radiant flux in a
given direction, leaving or arriving at an element of surface (with
area dA) at a point, and propagated through a cone of solid angle
dω in given direction. Incident spectral radiance on a surface inter-
acts with the material, so that it is absorbed, transmitted and reflected
according to properties of material. Fig. 2.1 presents propagation
of incident and reflected radiance through cones of light beams.

In order to model geometrical reflectance properties of an object
the Bidirectional Spectral Reflectance Distribution Function - fr (BSRDF)
is defined as a ratio of differentials (omitting point coordinates)

fr(λ, θI , ϕI , θR, ϕR) =
dLR(λ, θI , ϕI , θR, ϕR)

dEI(λ, θI , ϕI)
[sr−1], (2.4)

where dLR(λ, θI , ϕI , θR, ϕR) is the reflected spectral radiance in the
viewing direction and dEI(λ, θI , ϕI) is the spectral irradiance inci-
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Figure 2.1: Geometry of incident and reflected cones of light beams (Adapted from [117]).
Subscripts i and r are used to denote incidence and reflection angles, respectively.

dent on the illumination direction [88], [117]. Here, the Zenith an-
gles θI and θR are defined with respect to the surface normal and
the azimuth angles ϕI and ϕR with respect to chosen direction in the
surface plane. Quantities dLR and dEI depend on the differential
incident flux from direction (θI , ϕI) within differential solid angle
and over the differential area element dA in the surface (Fig. 2.1).
The differential solid angle can be written as dω = sin θdθdϕ.

Incident spectral irradiance on the surface can be written as

dEI(λ, θI , ϕI) = LI(λ, θI , ϕI) cos θIdωI , (2.5)

where LI(λ, θI , ϕI) is the incident spectral radiance and dωI is the
differential solid angle in the direction (θI , ϕI) (Fig. 2.1). For the
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surface reflected spectral radiance LR, it can be written

LR =
∫

dLR =
∫

frdEI =
∫

ωI

frLI cos θIdωI . (2.6)

The at-sensor spectral irradiance (image spectral irradiance) EP is ob-
tained by integrating (2.6) over the solid angle occupied by the sen-
sor’s entrance aperture

EP =
dA

dAimage

∫
ωR

LR cos θRdωR

=
dA

dAimage

∫
ωR

∫
ωI

frLI cos θIdωI cos θRdωR, (2.7)

where dA is the infinitesimal area in the object surface and dAimage

is the area of image patch, which contains the reflected rays from
the area dA [64].

2.2 SPECTRAL REFLECTANCE FACTORS

In terms of available radiometric information, usually the most
interesting property of the object is a spectral reflectance image,
where every spatial location in the image has information about
surface reflectance. The information from surface reflectance al-
lows us to investigate the inherent object properties, because it is
characteristic property of the object surface and is independent (in
simplified, ideal case) of the illumination conditions. Because of
this, reflectance information is also highly useful in many spec-
tral based pattern recognition applications. For example, in remote
sensing via airborne and satellite imaging, the access to reflectance
information is expected to reduce the need of expensive in situ gath-
ering of at-target field data between flight campaigns and thus im-
prove the cost efficiency [19], [55], [83]– [86], [141]. In general, the
comparison between remotely sensed radiance data from different
flight campaigns is complicated due to changes in atmospheric and
illumination conditions.

The BSRDF fr formulated above is only a conceptual quantity
and for the measurement purposes, a concept of spectral reflectance
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factor is needed. A spectral reflectance factor r f is defined as the
ratio of the radiant flux at a given wavelength actually reflected
by a sample surface to that which would be reflected into the same
reflected beam geometry by an ideal perfectly diffuse (ideal Lambertian)
standard surface irradiated in exactly the same way as the sample
[117]. It can be shown that fr = 1/π for the ideal perfect diffuse
surface [64], [88]. The reflectance factor (biconical) r f is defined as

r f (ωI , ωR, λ) =
dΦ

dΦideal diffuser

=

∫
ωI

∫
ωR

fr(θI , ϕI , θR, ϕR, λ)LI(λ, θI , ϕI) cos θIdωI cos θRdωR∫
ωI

∫
ωR

1
π LI(λ, θI , ϕI) cos θIdωI cos θRdωR

,

(2.8)

where dωI = sin θIdθIdϕI and dωR = sin θRdθRdϕR correspond to
illumination and viewing apertures, respectively.

2.3 SIMPLIFIED REFLECTION MODELS

For some surfaces and illumination conditions, simplifications of
the reflectance factor (2.8) and the at-sensor radiance (2.7) can be
derived. In the following we exclude several causes of light, such
as diffraction, fluorescence, interference, polarization and refraction
[89], [88], pp. 147–150. As an example, usually in a simplified
reflection model, a single light source is assumed and the incident
spectral radiance on a surface has form

LI(λ, θI , ϕI) = LI,1(λ)LI,2(θI , ϕI), (2.9)

which separates geometrical and spectral factors [89]. Similarly, the
BSRDF is assumed to have separation to geometrical and spectral
factor ( [89], [117], p. 31)

fr(λ, θI , ϕI , θR, ϕR) = r(λ)g(θI , ϕI , θR, ϕR). (2.10)

In this case, the at-sensor radiance signal (2.7) is written as

EP = tgLI,1(λ)r(λ) (2.11)

Dissertations in Forestry and Natural Sciences No 31 9



Ville Heikkinen: Kernel methods for estimation and classification
of data from spectral imaging

where

tg :=
dA

dAimage

∫
ωI

∫
ωR

g(θI , ϕI , θR, ϕR)LI,2(θI , ϕI) cos θIdωI cos θRdωR.

(2.12)
The reflectance factor (2.8) is written as

r f (ωI , ωR, λ) = ag(ωI , ωR)r(λ), (2.13)

where

ag(ωI , ωR) =

∫
ωI

∫
ωR

g(θI , ϕI , θR, ϕR)LI,2(θI , ϕI) cos θIdωI cos θRdωR
1
π

∫
ωI

∫
ωR

LI,2(θI , ϕI) cos θIdωI cos θRdωR

(2.14)
Simplifications of the terms ag and tg are discussed in [64], [89]
and [88]. The model (2.10) can be seen as a simplification of Shafer’s
dichromatic model [142] or neutral-interface-reflection model [89], which
include a term for interface reflection.

In the most simplest model, in Lambertian surface model, the func-
tion g(θI , ϕI , θR, ϕR) in (2.10) equals to 1/π, i.e. the BSRDF is written
as

fr(λ, θI , ϕI , θR, ϕR) =
1
π

r(λ). (2.15)

From this it follows that reflected spectral radiance (2.6) for all view
angles (θR, ϕR) is the same and the reflectance factor is written as

r f (ωI , ωR, λ) = r(λ). (2.16)

In this case the values of reflectance factor are in region [0, 1], be-
cause the total amount of reflected radiance (integrated over the
hemisphere above the surface) cannot exceed the amount of the in-
cident irradiance in the surface.

In the following we denote l(λ) := LI,1(λ) in (2.11), and call
function l : Λ → R+ as a (relative) spectral power distribution of light
source and function r : Λ → R+ as a reflectance spectrum (or factor)
of an object. In this dissertation we have usually assumed that sur-
faces are Lambertian (e.g. [P3], [P4]). For a Lambertian surface,
the value r(λ) ∈ [0, 1] can be seen as a probability for the reflection
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of incoming photon of wavelength λ [96]. In case the Lambertian
assumption is not reasonable, computational models can be con-
structed for some specific, fixed viewing geometry. Alternatively,
a more general reflection model as presented above, may provide
reasonable approximation.

2.4 SENSOR

Access to radiometric measurement information is done via some
sensor system, where the signal is converted to electronic in pho-
tosensitive sensor chip (e.g. CCD, CMOS [88]) and quantized to
digital signal.

2.4.1 Properties of a sensor

Let Λ = [λ1, λ2] be a fixed interval of the positive real axis. By us-
ing a fixed geometry, the interaction of a reflected electromagnetic
signal (2.11) with a k-band sensor system, can be modeled as

xi = Γi

(
tgte

∫
Λ

l(λ)r(λ)si(λ)dλ

)
, i = 1, . . . , k (2.17)

where si : Λ → [0, 1] is the ith spectral response function (responsivity)
of the sensor. Value s(λ) defines a probability, that a photon of
wavelength λ will generate an output signal in the sensor [96]. The
domain of integration can be written as Λ =

∪k
i=1 Λi, where Λi

correspond to support of the responsivity si. The scalar te is related
to exposure time and the function Γi collects non-linearity of the
system. The function Γi is usually modelled as

Γi(x) = (x/ai)
γi + bi, (2.18)

where x ∈ [0, 1], γi > 1 and bi is bias due to electrical current in the
device known as ”black current” [88].

In the model (2.17) we assume that the system {si}k
i=1 includes

the combined effects from quantum efficiency of the sensor s (spec-
tral sensitivity), from the transmittance function νo of the optics and
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from the transmittance functions of the filters νi, i.e si = sνoνi. In the
model above, the sensation is free of noise and it is assumed that
the Γ is the only source for non-linearity. Sensor quantizes analog
signals {xi}k

i=1 to digital usually using 8–16 bits. However, the final
quantization level for data might depend on its representation. As
an example for images in JPEG (Joint Photographic Experts Group)
format, the quantization level may be 8 bits.

Ordinary RGB devices have three spectral response functions
and the triplets {xi}3

i=1 are called as RGB-values. For some devices
(typically for RGB devices), imaging is done via a spatial wave-
length filter mosaic (color filter array), and therefore a response
(2.17) for a pixel position is obtained only for some channel si and
response values for other k − 1 channels in this pixel position are
obtained from spatial neighborhood via some interpolation tech-
nique [88]. In spite of this, the model (2.17) (with Γ = Id) has been
successfully used for computational models using data from RGB-
and monochrome devices and interference-, absorption- and Liquid
Crystal Tunable filters [14], [48], [69]– [72], [112], [113].

Sensors sample the electromagnetic spectrum over a range of
wavelengths supported by the spectral response functions. The Full
Width at Half Maximum (FWHM) is used to define the spectral band-
width of a spectral response function. The FWHM is defined as the
distance between points on the spectral curve at which the function
reaches half of its maximum value. A narrower spectral bandwidth
does improve the resolution of closely spaced spectral peaks, but it
also decreases the signal-to-noise ratio of a sensor.

In the field of remote sensing, the labeling of the sensor system
is based on the properties of the sensor system. A monochromatic
spectral imaging system has only one spectral band in the region
Λ. System is called multispectral system, if it has several, narrow
and discretely located wavelength bands in the region Λ. System
is called hyperspectral system, if it has several, narrow wavelength
bands, located over a contiguous spectral range in the region Λ. It is
usually the case for the hyperspectral devices, that the bandwidths
are narrower when compared to the multispectral devices in the
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Figure 2.2: Spectral transmittance functions {νi}30
i=1 of a 30-band interference filter-wheel

system in visible wavelength range. The range correspond to 0-70% transmittance.

same wavelength range. Usually the RGB sensor systems tailored
for color photography are considered as a separate system class, be-
cause they have broadband characteristics, which cover the whole
VIS range. In this dissertation, the class of multispectral devices is
extended to consist of systems with narrow- or broad wavelength
bands in Λ. In the case of publications [P1],[P2] and [P3], the mul-
tispectral systems in interest have three- to six-bands and cover the
whole VIS range. In [P4], a four band multispectral system with
discretely located bands is considered.

An example of real 30-band hyperspectral system with narrow-
band characteristics, is depicted in Fig. 2.2. The filters in this system
have a bandwidth of 10 nm with overlapping supports and they are
almost ”regularly” positioned over the VIS range. As a comparison,
Fig. 2.3 represents the estimated spectral response functions of an
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Figure 2.3: Estimated spectral responsivities {si}3
i=1 of a Nikon D90 RGB-camera. Re-

sponsivities si = sνoνi combine all the elements in the optical path.

RGB camera, which has more broader spectral characteristics than
the hyperspectral system.

Spatially the sensor is discrete grid of elements, pixels, which
have fixed size in the image space and varying size in the object
space. The spatial area covered by one sensor element in the object
space depends on the focal length and distance to the object [141],
p. 21. Large amount of pixels in image sensor are useful and pro-
vide a possibility for large spatial resolution. The spatial properties
of the measurement device are usually characterized by the Point
Spread Function, which defines the response of an imaging system
to a point object [88], p. 234. This function covers all the spatial
convolution effects due to optics, image motion, detector and elec-
tronics [141]. In this dissertation we don’t consider the effects from
the Point Spread Function, but assume that it is spatially uniform
and ideal, infinitely narrow pulse.

The spectral data that are mainly used in this dissertation ([P1]–
[P3]) were measured in laboratory conditions using spectrally ho-
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mogenous and flat color targets. It can be assumed that the pixel
size in object surface was fixed and that the effects of spectral re-
sponse functions and spectral power distributions of light sources
were spatially uniform. Exception to these are the data, that were
used for the classification of tree species in [P4]. Details of these
data are discussed in chapter 5 and [P4].

2.4.2 Reflectance via narrow band sensors

As discussed above, in many practical applications we are inter-
ested on the extraction of surface reflectance information from the
measurements (2.17). The goal of estimating reflectance informa-
tion is often not to obtain an explicit representation of the function
r but to estimate some of its values. Many computational models
assume that the measurements xi can be written as a product of
reflectance r and illumination irradiance l. An example of a class
of algorithms using the product form are the color constancy algo-
rithms [32], [37], [68]. According to model (2.17), the product form
is valid for infinitely narrow-band spectral response functions or
light source (i.e. Dirac delta function [81], p. 124). In reality, by
assuming models (2.11) and (2.17) and narrow bandwidth charac-
teristics {si}k

i=1 respectively ”centered” at {λi}k
i=1, we can estimate

the values of reflectance factor

agr(λi) ≈ ag

∫
Λ l(λ)r(λ)si(λ)dλ
1
π

∫
Λ l(λ)si(λ)dλ

, i = 1, . . . , k. (2.19)

The divisor correspond to the perfect diffuser and ag is the geomet-
rical factor (2.14). In practice, the measured radiance values {xi}k

i=1
from object are divided by the measurements from a calibrated dif-
fuser.

In a measurement, it is required that an adequate amount of
radiant power exists in the wavelength area of interest. Figure 2.4
depicts two standard illuminants, which are approximated in the
laboratory conditions by using some physical light sources. CIE
(Commission Internationale de l’Eclairage, International Commis-
sion on Illumination), illuminant D65 correspond to a Planckian
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radiator with 6500 K correlated color temperature and simulates
the average sunny mid-day daylight in Europe [67], [88]. CIE il-
luminant A has the same relative spectral power distribution as a
Planckian radiator with 2856 K absolute temperature. It is intended
to represent typical, domestic, tungsten-filament lighting [67], [88].
The third curve represents the spectral power distribution of a real
fluorescent light source.
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Figure 2.4: The spectral power distributions of CIE standard illuminants A and D65 and
fluorescent source TLD 18W.

2.4.3 Practical issues in spectral imaging

Spectral color imaging in the field of artwork and cultural heritage
imaging give example of an application where the spectral imaging
has efficient use. This approach has been used e.g. in the Na-
tional Gallery, London, National Gallery of Art, Washington DC,
in the Museum of Modern Art, New York, in the Uffizi Gallery,
Florence and in the National Museum of Japanese History, Sakura,
Chiba, Japan [14], [15], [35], [47], [69]– [72], [109], [157]. In opti-
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mal case, a hyperspectral device with high number of bands can be
used to derive the reflectance properties of the object. The analysis
of measured data gives information about the materials and meth-
ods which were used during the period of artist. Characteristic
reflectance properties allow also the accurate control for the color
rendering in different illumination conditions, detection of counter-
feits, cleaning of the artworks and the restoration of the degraded
colors. The reflectance data is also highly useful in the construction
of databases for digital museums.

Depending on the spectral imaging device, an output of one
measurement is either a point measurement from some spatial lo-
cation, a line scan, or a two-dimensional image. In the line scan-
ning technique (push-broom imaging), a spectral image can be con-
structed from a sequence of scans. In a band-sequential technique,
a set of filters and a monochromatic frame camera are used to pro-
duce multiple measurements from an object. In this approach, a
spectral image is constructed from a sequence of images corre-
sponding to different filters. A similar, but more novel approach
is to consider a light source as a filter [28], [52], [54], [69], [121].

Device manufacturers need to compromise between number of
pixels and number of spectral bands when constructing line scan-
ning and imaging devices. Therefore, some application specific con-
straints guide the choice of a suitable imaging device. In many
cases, the line scanning approach provides the best compromise
between spectral and spatial accuracy [39], [60].

The practical problems associated to the use of line scans or
multiple filters depends on object properties and on the exposure
time for single measurement. In practice, the line scans and im-
ages corresponding to filters are measured separately. The efficient
use of these measurements requires a spatial registration in a post-
processing phase. It is possible that object is moving and short
exposure time is required. Examples of applications where the ob-
ject is not stationary are the medical imaging of the human retina
(e.g. [40], [75], [154]) and quality control applications (e.g. [36], [60]).
Usually fast hyperspectral imaging is possible only with relatively
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high light power levels [87], pp. 38–40. The line scanning ap-
proach is usually more efficient than band-sequential technique in
this sense [60]. However, it is possible that the exposure time (or
light power level) limits the measurement system to be a ”snap-
shot” device, such as RGB camera. Albeit, in the case of ordinary
RGB camera, the measurements are limited to the VIS range.

In order to address the practical issues (imaging speed, light
source restrictions and poor mobility) related to hyperspectral imag-
ing systems for artworks, it has been suggested to construct a sys-
tem consisting of RGB device and a calibration chart with a known
reflectance information (e.g [14], [15], [69]– [72]). This system would
simplify the spectral imaging process and decrease investments. A
detailed discussion of this approach is presented in chapter 4.

A summary of measurement type, number of pixels and bands,
bandwidths (FWHM) and measurement speed (output/second) for
different spectral imaging systems are presented in Table 2.1.

Table 2.1: Suggestive properties of measurement and output data for different spectral
imaging systems (corresponding to single measurement in VIS area).

Device Output No. of pixels Bands FWHM [nm] Outputs/s
Mono Image > 5 · 103 × 5 · 103 1 - ≤ 105

RGB Image 5 · 103 × 5 · 103 3 100 ≤ 103

6-band ( [171]) Image 2 · 103 × 2 · 103 6 50 ≤ 102

Hyperspec. Image 103 × 103 10-60 5 − 10 ≤ 1
4-band ( [39]) Line 1 × 104 4 50 ≤ 103

Hyperspec. Line 1 × 103 100-1000 3 − 0.3 ≤ 102

2.5 COLOR AND RESPONSE SPACES

Spectral reflectance information (as a function of wavelength) in
visual wavelength range is highly useful in color engineering and
colorimetry. This information can be used to represent image data
in any color- and device response space or simulate different illu-
mination conditions for a scene. In color processing chains, several
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devices are used to measure, represent or reproduce information
[171]. A communication between devices is normally dealt with
the use of conversions between light source and device dependent
color spaces. Some color space conversions and light source simula-
tions are difficult to perform with standard trichromatic color data.
In many cases, the access to light source independent reflectance
data would simplify the device communication significantly.

Reflectance information can be used to produce color responses
in device independent color spaces. Currently, CIE spaces are stan-
dard device independent color spaces. These spaces are three-
dimensional and based on characteristic signal processing in the
human visual system. For the color sensation, human retina uses
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Figure 2.5: Estimate of spectral sensitivity of cone cells (Smith-Pokorny).

only three types of cone cells. These cells are named L (Long),M
(Middle) and S (Short) cells according to the location of sensitiv-
ity maxima of 565 nm, 545 nm and 440 nm, correspondingly [168].
Wavelength support of the cells are: L-cells 380-700 nm, M-cells 380-
650 nm and S-cells 380-550 nm. It is assumed that the responses of
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the cone cells can be modeled according to (2.17), where the spectral
response functions si are replaced with the cone sensitivity func-
tions. Smith-Pokorny estimates of the sensitivities of the L,M and S
cone cells are depicted in Fig. 2.5 [150].

2.5.1 CIEXYZ-space

The CIE color spaces (and the estimated cone cell sensitivities in
Fig. 2.5) are based on the so called standard observer, which is an av-
erage human observer derived from empirical psychophysical data
induced by a group of people in the 1920s and 1930s [88]. At that
time, a direct measurement of cone cell sensitivities was impossible.

The CIE tristimulus values X, Y, Z are defined for the spectral
reflectance factor r and for the spectral power distribution of light
source (or illuminant) l as follows:

(X, Y, Z) =
(

t
∫

Λ
rl(λ)x(λ)dλ, t

∫
Λ

rl(λ)y(λ)dλ, t
∫

Λ
rl(λ)z(λ)dλ

)
,

(2.20)
where rl = rl, Λ = [380, 780] nm, t = 100/

∫
Λ l(λ)y(λ) and x(λ),

y(λ) and z(λ) are the CIE 1931 color matching functions of the stan-
dard observer [13], [88], [170]. Normalization term 100/

∫
ly leads

to value Y = 100, when r(λ) ≡ 1 for all λ ∈ Λ. The 1931 color
matching functions are represented in Fig. 2.6.

The measurements depend on the view- and light source an-
gles, and therefore the CIE has defined four standard view- and
light source conditions for laboratory spectral color measurements
[61], [88], [170]. Two of these conditions define the light source and
viewing angles as follows: 45◦/0◦, 0◦/45◦. For example, in 45◦/0◦

condition, a surface is illuminated with one or more beams, whose
axes are at an angle of 45 ± 5◦ from the surface normal. The an-
gle between the view direction and the surface normal should not
exceed 5◦.

There are some limitations in the CIEXYZ space, which need to
be considered, when the tristimulus values are interpreted. First,
the tristimulus values are based on standard observer, although it
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Figure 2.6: CIE 1931 color matching functions.

is known that there are differences to real human observers sensi-
tivity functions. Furthermore, the CIEXYZ space does not take into
account the spatial context of reflecting signal, luminance level or
chromatic adaptation of the eyes, all of which are known to affect
to the color appearance of the object [88]. However, the objective
of many CIE color spaces, such as the CIEXYZ, is only to specify
physical aspects of color stimuli, not the color appearance. The main
goal of these colorimetric spaces is to represent the spectral power
distribution function of color stimulus using small amount of pa-
rameters [88].

In order to allow communication of different devices in a color
reproduction chain, standard color spaces are used. International
Electrotechnical Commission (IEC) and International Standards Or-
ganization (ISO) have accepted standard RGB space (sRGB) as the
default color space for multimedia applications [88]. The sRGB co-
ordinates can be transformed from the CIEXYZ coordinates via lin-
ear transformation and gamma correction. The gamma correction
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is included in order to compensate non-linear characteristic of CRT
(Cathode Ray Tube) monitors. However, only a limited number of
CIE colors can be reproduced additively in the sRGB space. Various
RGB spaces have been defined in order to overcome the limitations
of the sRGB space, such as Adobe RGB, Apple RGB, RIMM/ROMM
RGB [44], [88].

2.5.2 CIEL∗a∗b∗ space and color differences

For psychophysical color spaces, a JND (Just Noticeable Differ-
ence) - value has been defined as the smallest possible distance be-
tween two colors, so that observer is able to discriminate between
the colors. The CIEXYZ color space is not perceptually uniform,
which means that color differences depend on the location of the
space [170].

Another color space, the CIEL∗a∗b∗ 1976, have been formulated
in order to calculate color differences which correlate to color differ-
ences sensed by human observer. The CIEL∗a∗b∗ is pseudouniform
color space where the JND is almost independent of the location
in the space. The CIEL∗a∗b∗ coordinates are obtained using the
following transformation from the CIEXYZ coordinates [88]:

L∗ = 116 f (Y/YN − 16), (2.21)

a∗ = 500 [ f (X/XN)− f (Y/YN)] , (2.22)

b∗ = 200 [ f (Y/YN)− f (Z/ZN)] , (2.23)

where

f (α) =

{
3
√

α , α > 0.008856
7.787α + 16/116 , α ≤ 0.008856

(2.24)

In the CIEL∗a∗b∗ space coordinate a∗ represent the redness - green-
ness, b∗ yellowness - blueness and L∗ is the psychometric 1976
lightness of the stimulus. The CIEL∗a∗b∗ coordinates include ad-
justment for the illuminant via normalization with respect to the
tristimulus values XN , YN , ZN of a perfect reflecting diffuser under
the same lightning condition. For this perfect reflecting diffuser,
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called reference white, we have (L∗, a∗, b∗) = (100, 0, 0). Color dif-
ference in the CIEL∗a∗b∗ space is calculated using the Euclidean
distance

∆E∗
ab =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (2.25)

According to the literature the JND - value in this space varies from
0.5 to 1 [87], [88], [119].

In the CIEL∗a∗b∗ space, the chroma C∗
ab and the hue-angle hab are

defined as

C∗
ab =

√
a∗2 + b∗2, hab = arctan(b∗/a∗). (2.26)

Updated version of the ∆E∗
ab is the CIE ∆E∗

00, which is still based
on the CIEL∗a∗b∗ coordinates, but includes the contribution from
chroma and hue-angle differences [88], pp. 113–115. It has been
reported that the CIE ∆E∗

00 especially improves the prediction of
small color-differences and differences for ”blue” colors [98].

Accuracy in terms of colorimetric error doesn’t guarantee spec-
tral similarity of two spectral signals. According to Wyszecki’s hy-
pothesis (dating back to 1953 [170]), in fundamental color space we
can represent the signal as a combination of visual components [22],
[23]. The components invisible to the observer are called as visually
inactive components. In the context of fundamental color space, the
equivalence classes defined by a sensor system are known as the
metameric sets. In this set, spectrally different functions produce
equal cone responses. The difference in the functions is only due
to difference in observer null-space components. Fig. 2.7 gives an
example of metameric reflectance with equal color stimulus values
under the CIE D65 illumination, but significantly different repre-
sentation in spectral space. Therefore, when the illumination is
changed, the colorimetric error may increase significantly.

2.5.3 Simulated device dependent responses

By using the reflectance factor measurements, we are also able
to simulate arbitrary color and device responses using the sensor
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Figure 2.7: Simulated metameric pair of reflectance spectra for the L,M,S system when
using the CIE D65 illumination. Dashed line corresponds to hyperspectral measurement
of sample from Munsell Matte collection.

model (2.17). Simulated sensor models are highly beneficial in en-
gineering and scientific calculation for constructing or optimizing
sensor systems (e.g. [47], [48], [49], [51], [52], [58], [71], [110], [147],
[164]). An example of this is presented in publication [P4], where
we numerically simulated device response values of a multispec-
tral sensor, which is tailored for photogrammetric airborne appli-
cations. These simulations employed hyperspectral reflectance en-
sembles for pine, spruce, and birch trees measured in the ground-
level in conjunction with approximated spectral response functions
and hemispheric daylight measurement.

The purpose of the simulation was to study classification perfor-
mance of the multispectral measurements from these tree species.
It is expected, that the results give indication about the suitability of
this sensor for remote sensing purposes. The classification was for-
mulated by using the kernel based learning and a Support Vector
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Machine algorithm and is summarized in chapter 5.

2.5.4 Spectral color calibration of devices

In the case of digital cameras and scanners, device dependent values
describe the response to incoming spectrum of light. A color calibra-
tion (or characterization [6], [44], [48], [63]) of a multispectral device,
is defined as a construction of transformation from the device re-
sponse values to the corresponding values in device independent
CIE color spaces [34], [88], [165]. Due to the light source depen-
dence of CIE values, it has been discussed that a spectral color cali-
bration would provide significant benefits [34]. In color engineering
applications, the idea is to calibrate the device responses values to
reflectance spectra and then calculate some CIE color values by us-
ing this data.

A spectral color calibration can be seen to belong to a class of
spectral estimation problems, which includes estimation of spectral
transmittance [156] and illumination characteristics [37], [56], [58],
[68], [93], [96] and estimation of camera characteristics [2], [7], [130].
Especially, a spectral color calibration can be identified as the sur-
face reflectance estimation problem (see section 2.4.2) in the VIS
range via multispectral responses (with broadband characteristics).
Usually in this context the reflectance information correspond to
reflectance factor measurements from a hyperspectral device.

A reflectance estimation process can be based on empirical mod-
eling or on theoretical physical modeling. In physical modeling the
spectral characteristics {si}k

i=1, the non-linearities {Γi}k
i=1 and the

light source l are utilized in the inversion of (2.17) (e.g. [29], [47],
[52], [59], [112]– [115], [121], [145]– [149], [162]). In some models, the
light source can be unknown [99]. This dissertations mainly con-
siders the empirical model, where all the above characteristics are
unknown. In this case, a priori calibration data is used to construct
the calibration transform via interpolation and regression models.
The empirical approach can be motivated by the fact that the phys-
ical characterization of the measurement device or light source can
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be inaccurate, laborious or it may require expensive devices, such
as monochromators. The same approach can be used in reversed
sense, i.e. in the estimation of device dependent multispectral re-
sponse for a given hyperspectral input [6].

Empirical models for calibration transform can be roughly di-
vided to following categories: a) Local interpolation methods (by
using triangulation- and tetraedrization) [3], [6], [66] b) Neural net-
works [4], [6], [20], [78], [101], [135], [136], [159], [166], c) Spline
interpolation [6] and d) regression models. In regression, models
are optimized with respect to some loss function for data fit. By
far, the most widely used regression models in color science have
been least squares polynomial fittings [6], [14], [15], [24], [48], [69]–
[71], [88], [152], [153].

In the following we concentrate on methods from categories (b)–
(d), and mainly concentrate on global approach in a sense that all
training samples are included in model construction [50]. Due to
computational costs, these methods are mainly suited for off-line
estimation and construction of look-up-tables for faster calibration
methods e.g. from category (a) [6], [44], [88].

In chapter 4 and [P1]–[P3], we consider the estimation of hyper-
spectral reflectance factors from the responses of ordinary RGB de-
vices. We concentrate on reproducing kernel Hilbert space (RKHS)
methods, which unify several methods from the categories (b)–(d).
Currently, it seems that the categories (b)–(d) are considered as sep-
arate in color calibration and spectral estimation contexts. In [P2],
we evaluate some RKHS models, which have not been used previ-
ously for the reflectance estimation. We also generalize and evalu-
ate some previous approaches and also emphasize connections be-
tween previously proposed models in [P3]. Furthermore, in [P3] we
make a connection to physical models by using an empirical kernel
model with the sensor and light source characteristics. In [P1]–[P3],
we evaluate several kernel functions, light sources, color ensembles
and sensor systems in order to give information about color- and
spectral accuracy of the kernel methods. The results are discussed
and summarized in chapter 4.
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3 Function spaces defined by
a kernel

In the following we concentrate on kernel defined spaces, which
give the functional form for the regression function in reflectance
estimation and color calibration in chapter 4 and the form of deci-
sion function in spectral data classification in chapter 5.

Sometimes models in regression, classification and inverse prob-
lems lead to formulations which require a solution of a non-linear
optimization problem. In some cases the non-linearity can be dealt
by a ”feature map” Φ, which defines a map from the original input
space to a larger ”feature space” F after which a linear representa-
tion is appropriate. Consider regression

y = f (x) + ε, where E[ε] = 0. (3.1)

In many cases a linear representation f (x) = cTx is not adequate.
However, if we define a feature map

Φ(x) = (x1, . . . , xk, x2
1, . . . , x2

k , x1x2, . . . , x1xk, . . .) (3.2)

we may be justified using f (x) = cTΦ(x). Using the feature map
we can formulate a class of functions

{ f | f (x) = cTΦ(x), c ∈ F}. (3.3)

This is the space of functions from which the solutions for optimiza-
tion problems are searched. The solution for some specific problem
is found by selecting the coefficient vector c that has some optimal-
ity properties.

As an example of (3.3) we define a kernel induced function
space and demonstrate its properties. In particular we consider the
properties of Reproducing Kernel Hilbert Spaces (RKHS) by mainly
following [5], [26], [33], [41], [107], [138], [143], [151], [163], [167]. It
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turns out that the kernel defines an inner product between the ele-
ments of feature space, a property which is sometimes called a ”ker-
nel trick” in the machine learning literature. This property enables
the use of infinite dimensional RKHSs with continuous elements in
algorithmic implementations.

In this dissertation we focus on regression, interpolation and
classification models to estimate (approximate) multivariate func-
tions. A common feature of the methods we use is that there is a
training set S = {(x1, y1), ..., (xm, ym)} ⊂ Rk × R and we minimize

V[ f ] =
m

∑
j=1

L(yj, f (xj)) + σ2∥ f ∥2
H, (3.4)

over f ∈ H, where H is a RKHS induced by a kernel. The first
term on the right hand side measures the fit of the function to the
training data under some loss function L. The squared error loss
L(y, f (x)) = (y − f (x))2, is used in all regression and interpolation
models (reflectance estimation and color calibration). Classification
(with binary valued function f : x → {−1, 1}) is considered via
L(y, f (x)) = |1 − y f (x))|+, with |a|+ = a if a > 0 and |a|+ = 0
otherwise. The term ∥ f ∥2

H in (3.4) is the square of a norm or a
semi-norm of f and σ2 is a scalar parameter, which allows us to
control the balance between lack of fit and the RKHS norm of the
solution. The term σ2∥ f ∥2

H is called as a regularization functional and
its purpose is to reduce wiggliness of f and improve generalization
properties of models.

The purpose of this chapter is to give some examples of the
RKHS space H in (3.4), which are not well known in color science.
The RKHS framework allows us to construct kernels and feature
maps, in a way that provides a link between several models that
have been used previously in reflectance estimation and color cal-
ibration. We will see that the models are independent of the di-
mension of data and their spacing in the input domain. These are
significant benefits in spectral imaging, when the dimension of the
input space may vary or the spacing of the data points cannot be
controlled.
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Let X be a closed and bounded subset of Rk. In most of our
applications it will be assumed that X = [0, 1]k. We will denote H a
Hilbert space of real functions defined on X and endowed with an
inner product ⟨·, ·⟩H and a corresponding norm ∥ · ∥H. The notation
∥ · ∥ is used for the usual Euclidean norm.

3.1 HILBERT SPACE

Let H be a real vector space. An inner product (or scalar product [81])
on H is function ⟨·, ·⟩: H × H → R, with properties

1. ⟨ f , g⟩ = ⟨g, f ⟩

2. ⟨a f + bg, v⟩ = a⟨ f , v⟩+ b⟨g, v⟩

3. ⟨ f , f ⟩ ≥ 0 and ⟨ f , f ⟩ = 0 iff f = 0,

for f , g, v ∈ H [82]. A pre-Hilbert space (inner product space) is a
vector space that has an inner-product ⟨·, ·⟩ and norm ⟨ f , f ⟩ = ∥ f ∥2

induced by the inner product. A pre-Hilbert space H is called a
Hilbert-space, if all Cauchy sequences { fn}n≥1 (∥ fn − fm∥ → 0, as
n, m → ∞), converge to some element in H (i.e. ∥ fn − f ∥ → 0 for
some f ∈ H, as n → ∞). For all f , g ∈ H we have Cauchy-Schwarz
inequality

|⟨ f , g⟩| ≤ ∥ f ∥∥g∥. (3.5)

In the following, the integration is assumed in the sense of Lebesgue
( [82]), although questions concerning measurability are neglected.
Two well known infinite dimensional Hilbert spaces are presented
below.

• Space L2(X ) is a space of square integrable real valued func-
tions ∫

X
f 2(x)dx < ∞, for all f ∈ L2(X ). (3.6)

The L2(X ) is a Hilbert space with inner product

⟨ f , g⟩ =
∫
X

f gdx, (3.7)
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and a norm
∥ f ∥ = ⟨ f , f ⟩ 1

2 . (3.8)

• Space l2 is a space of square summable series

∞

∑
i=1

a2
i < ∞, for all {ai}∞

i=1 ∈ l2. (3.9)

The l2 is the Hilbert space of sequences a = {ai}∞
i=1, with an

inner product

aTb = ⟨{ai}∞
i=1, {bi}∞

i=1⟩ =
∞

∑
i=1

aibi, (3.10)

and a norm
∥a∥ = (aTa)

1
2 . (3.11)

In the following C(X ) is the complete normed space (i.e. Banach
space) of continuous functions, with norm

∥ f ∥∞ = sup
x∈X

| f (x)|. (3.12)

3.2 REPRODUCING KERNEL HILBERT SPACE

A function κ : X ×X → R of two variables is symmetric if

κ(x, y) = κ(y, x), (3.13)

for all x, y ∈ X . It is positive definite if for all finite collections
{xi}l

i=1 ⊆ X and real numbers {ai}l
i=1

l

∑
i,j=1

aiajκ(xi, xj) ≥ 0, (3.14)

Defining a vector a = (a1, . . . , al) ∈ Rl and a matrix K ∈ Rl×l with
elements Kij = κ(xi, xj), we can write (3.14) as

aTKa ≥ 0, (3.15)
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and identify K as positive semi-definite. Function κ is strictly positive
definite, if matrix K is positive definite, i.e. aTKa > 0 for a ̸= 0.
Function κ(·, ·) ∈ H is said to be continuous if

|κ(x, z)− κ(v, y)| → 0, when ∥(x, z)− (v, y)∥ → 0 . (3.16)

A Hilbert space H is called a reproducing kernel Hilbert space
(RKHS) if there exists a symmetric function κ : X × X → R and
an inner-product ⟨·, ·⟩H such that for all f ∈ H and for all x ∈ X

κ(x, ·) ∈ H (3.17)

and
⟨ f (·), κ(x, ·)⟩H = f (x). (3.18)

It follows that
⟨κ(x, ·), κ(z, ·)⟩H = κ(x, z). (3.19)

The properties (3.18) and (3.19) are called reproducing properties and
the function κ is called the kernel of the space H.

The kernel of RKHS is positive definite, because by (3.19) and
the bilinearity of the inner-product

l

∑
i,j=1

aiajκ(xi, xj) =
l

∑
i,j=1

aiaj⟨κ(xi, ·), κ(xj, ·)⟩H

= ⟨
l

∑
i=1

aiκ(xi, ·),
l

∑
j=1

ajκ(xj, ·)⟩H = ∥
l

∑
i=1

aiκ(xi, ·)∥2
H ≥ 0,(3.20)

where ∥ · ∥H is the norm induced by ⟨·, ·⟩H.
It can be shown, that for every RKHS there is a unique positive

definite kernel κ : X ×X → R such that κ(x, ·) ∈ H for all x and the
reproducing properties hold. Conversely, for every positive definite
kernel there exists a unique RKHS of real valued functions on X [5].

To construct an example of a RKHS, let {φi}∞
i=1 be a set of lin-

early independent functions such that every finite subset of {φi}∞
i=1

is linearly independent. A finite set {φi}N
i=1 is linearly independent

if
N

∑
i=1

ci φi(x) = 0, only if c1 = · · · = cN = 0. (3.21)
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Define a function

κ(x, y) =
∞

∑
i=1

γi φi(x)φi(y), (3.22)

where γi > 0 for all i, such that

sup
x,y∈X

κ(x, y) < ∞. (3.23)

Suppose the series converges uniformly on X × X [33], i.e. for
every ϵ > 0 there exist N′ such that for all x, y ∈ X and N ≥ N′

|κ(x, y)−
N

∑
k=1

γk φk(x)φk(y)| < ϵ. (3.24)

Now, consider a class of functions

H =

{
f | f (x) =

∞

∑
i=1

ci
√

γi φi(x),
∞

∑
i=1

c2
i < ∞

}
(3.25)

The elements are well-defined, since by the Cauchy-Schwarz in-
equality

|
∞

∑
i=1

ci
√

γi φi(x)| ≤
(

∞

∑
i=1

c2
i

)1/2

κ(x, x)1/2, (3.26)

for all f ∈ H and x ∈ X . This is finite by (3.23) and (3.25). It
follows from (3.23) and (3.26) that the series ∑N

i=1 ci
√

γi φi converges
uniformly to f ∈ H, when N → ∞ [26], p.26.

An inner product between functions f = ∑ ci
√

γi φi and g =

∑ di
√

γi φi is defined

⟨
∞

∑
i=1

ci
√

γi φi(x),
∞

∑
i=1

di
√

γi φi(y)⟩H =
∞

∑
i=1

cidi. (3.27)

The function ⟨·, ·⟩H defined in (3.27) is an inner-product, because
it is real-valued, symmetric, i.e. ⟨ f , g⟩H = ⟨g, f ⟩H and bilinear, i.e
⟨a1 f1 + a2 f2, g⟩H = a1⟨ f1, g⟩H + a2⟨ f2, g⟩H. Furthermore

⟨ f , f ⟩H =
∞

∑
i=1

c2
i ≥ 0 (3.28)
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with equality only if ci = 0 for all i.
It can be seen that H is a RKHS. Firstly, to show that κ(·, x) ∈ H,

note that by (3.22) κ(x, y) = ∑∞
i=1

√
γidi φi(y), where di =

√
γi φi(x).

It follows that
∞

∑
i=1

(
√

γi φi(x))2 = κ(x, x) < ∞, (3.29)

and therefore κ(x, ·) ∈ H. Secondly, to show (3.18) pick an f ∈ H
as defined in (3.25). Using the above representation of κ(x, y), we
get

⟨ f (·), κ(x, ·)⟩H =
∞

∑
i=1

cidi =
∞

∑
i=1

ci
√

γi φi(x), (3.30)

where di =
√

γi φi(x). It follows that function in (3.22) is the kernel
of H and positive definite by (3.20).

Some examples of kernels follow. Recall that we have X ⊂ Rk.
Probably the most widely used kernel can be defined as

κ(x, y) = xT Ay, (3.31)

where A is some symmetric positive definite matrix. Using the
eigenvalue decomposition A = VΛVT, where V = [v1, . . . , vk] is an
orthogonal matrix and Λ is a diagonal matrix with elements λi > 0,
i = 1, . . . , k. The kernel can be written

xT Ay =
k

∑
i=1

λixTvivT
i y, (3.32)

which is a positive definite and symmetric quadratic form.
As a second example, consider

κ(x, y) = g(x)g(y), (3.33)

where g : X → R is some function. In this case it can be assumed
that φi(x) = g(x) and γi = 1 for i = 1 and φi(x) ≡ 0 for i > 1. The
elements in the space H are now scalings of function φ1.

One can gain additional insight into kernels by considering in-
terpretations from probability theory. Let us consider a real random
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vector c = (c1, . . . , ck)
T, covariance matrix Cov(c) = A and real ran-

dom variables xTc and yTc. The kernel (3.31) can be interpreted as
a covariance of random variables, i.e. cov(xTc, yTc) = xT Ay. Fur-
thermore, it follows that a random vector z = (xT

1 c, . . . , xT
l c) has

covariance matrix Cov(z) = K, Kij = κ(xi, xj). This is a useful point
of view for deriving rule 2 below.

Let positive definite kernels κ1 and κ2 be defined on X ×X . The
following algebraic rules lead to new positive definite kernels:

1. κ(x, y) = aκ1(x, y) + bκ2(x, y), a, b ∈ R+.

2. κ(x, y) = κ1(x, y)κ2(x, y).

3. κ(x, y) = P+(κ1(x, y)), where P+ is polynomial with positive
coefficients, i.e. P+(z) = {∑d

i=1 αizi, α1, . . . , αn ∈ R+}.

4. κ(x, y) = exp(κ1(x, y)).

The fact that rule 1 defines a kernel is easily proven using the prop-
erties of κ1 and κ2. To verify the rule 2 (proved originally in [124]
and [151]), assume zero-mean random variables s = (s1, . . . , sl)

T

and v = (v1, . . . , vl)
T with associated covariance matrices K1(i, j) =

E[sisj] and K2(i, j) = E[vivj] in Rl . Element-wise product of the ran-
dom variables is written as s · v = (s1v1, . . . , slvl)

T with covariance
matrix K(i, j) = E[sivisjvj]. Assuming that the random variables are
independent, we have K(i, j) = E[sisj]E[vivj] = K1(i, j)K2(i, j). The
positive definite matrix K is now associated to the product kernel
in rule 2. The rule 3 directly follows from the rules 1 and 2. Rule 4
is also valid because the exponential function can be written using
the Taylor expansion

exp(z) =
∞

∑
i=0

1
i!

zi, (3.34)

and therefore the kernel can be defined as the limit of kernels in
rule 3, when d → ∞ [143], p. 77.

As a third example of a well-known kernel, consider first kernels
κ1(x, y) = exp(−xTx/2σ2) exp(−yTy/2σ2) and κ2(x, y) = xTy/σ2,
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where σ2 > 0. Using the rule 2. and rule 4. above, we can construct
a Gaussian kernel in the following way

κ(x, y) =
exp(xTy/σ2)

exp(xTx/2σ2) exp(yTy/2σ2)
= exp(−∥x − y∥2/2σ2).

(3.35)

Decomposition of the Gaussian kernel on R × R can be written as

κ(x, y) = exp(−(x − y)2/2σ2)

= exp(−x2/2σ2) exp(−y2/2σ2)
∞

∑
i=0

(xy/σ2)i

i!
, (3.36)

where γi = (1/σ2)i/i! and φi(x) = xi exp(−x2/2σ2).

3.3 MERCER KERNELS

A set of functions {ψi}i in a Hilbert space H is called orthonormal
basis, if

1. ⟨ψi, ψj⟩H = 0, when i ̸= j (orthogonality),

2. ⟨ψi, ψi⟩H = 1, for all i,

3. f = ∑∞
i=1⟨ f , ψi⟩Hψi, for all f ∈ H,

Properties 1. and 2. define orthonormal set in space H. It can be
shown that {√γi φi}∞

i=1, where ψi =
√

γi φi, is orthonormal basis
of H in (3.25) with respect to the inner product ⟨·, ·⟩H in (3.27).
Properties 1. and 2. are valid, since ⟨√γi φi,

√
γj φj⟩H = 1, iff i = j.

Property 3. follows, since for all f ∈ H, f = ∑∞
i=1 ci

√
γi φi and

ci = ⟨ f ,
√

γi φi⟩H.
If a (symmetric) kernel κ : X × X → R is continuous with

property ∫
X

∫
X

κ2(x, y)dxdy < ∞. (3.37)

then it is called a Mercer kernel. Let us define a linear operator
Lκ : L2(X ) → C(X ) as a mapping

(Lκ f )(x) =
∫
X

κ(x, y) f (y)dy. (3.38)
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The continuity of the values of the operator Lκ follows from the
continuity of the kernel κ [26], p. 33. A scalar γ is an eigenvalue
and function φ is the corresponding eigenfunction of the operator
Lκ, if

(Lκ φ)(x) =
∫
X

κ(x, y)φ(y)dx = γφ(x). (3.39)

It is known from the Spectral theorem ( [26], p. 27.) and Mercer
theorem ( [26], p. 34.), that the Mercer kernel can be decomposed
to uniformly and absolutely convergent series (3.22), where γ1 ≥
γ2 ≥ . . . ≥ 0 are the eigenvalues and {φi}∞

i=1 ⊂ L2(X ) is a set
of orthonormal (in space L2(X )) eigenfunctions of the operator Lκ.
Using (3.37) it follows that

∫
X

∫
X

κ2(x, y)dxdy =
∞

∑
i=1

γ2
i < ∞. (3.40)

The eigenfunctions corresponding to Mercer kernel are continuous,
because the kernel κ in (3.38) is continuous. The RKHS H of (3.25) is
now defined by the set {√γi φi}∞

i=1 consisting of continuous func-
tions. The functions in H are linear combinations of continuous
eigenfunctions and therefore continuous by the uniform conver-
gence of the series in (3.25).

In the following it is assumed that γi > 0 for i = 1, 2, . . .. If
some of the eigenvalues are zero, the RKHS is a linear subspace
of L2(X ) spanned by the eigenvectors corresponding to non-zero
eigenvalues [26].

For Mercer kernels, the RKHS H in (3.25) is a subspace of L2(X ),
and by the uniqueness of the Fourier coefficients ⟨ f , φi⟩, we can
identify di = ⟨ f , φi⟩ = ci

√
γi. The RKHS in (3.25) can now be

characterized as follows:

H =

{
f ∈ L2(X ) | f (x) =

∞

∑
i=1

di φi(x),
∞

∑
i=1

d2
i /γi < ∞

}
. (3.41)

This shows that the squared coefficients d2
i → 0 faster than γi → 0.
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3.3.1 Function space identified by a Mercer kernel

Let κ be a Mercer kernel on X × X . Let us now consider a set H0,
where the elements are defined as a linear combination of Mercer
kernels

H0 =

{
f | f (x) =

l

∑
i=1

aiκ(xi, x) : xi ∈ X , i = 1, ..., l

}
(3.42)

Inner product between functions f = ∑l
i=1 aiκ(xi, ·) ∈ H0 and g =

∑k
j=1 biκ(zj, ·) ∈ H0 is defined as

⟨ f , g⟩H =
l

∑
i=1

k

∑
j=1

aibjκ(xi, zj). (3.43)

This is inner product since it is real valued, symmetric, bilinear and
the property ⟨ f , f ⟩H ≥ 0 follows from the positive definiteness of
the kernel. Furthermore, assuming that ⟨ f , f ⟩H = 0, then

| f (x)|2 = |⟨ f , κ(x, ·)⟩H |2 ≤ ⟨ f , f ⟩H⟨κ(x, ·), κ(x, ·)⟩H = 0 (3.44)

for all x ∈ X using Cauchy-Schwartz inequality. Clearly for any
f ∈ H0, we have the reproducing property

⟨ f (·), κ(x, ·)⟩H = f (x). (3.45)

Norm induced by this inner product is written as ∥ f ∥H =
√
⟨ f , f ⟩H.

By completing H0 with respect to limits of converging sequences,
we obtain a unique Hilbert space H with the inner product ⟨·, ·⟩H,
such that: (1) For all z ∈ X , κ(x, z) belongs to H as a function of
x, (2) For all x ∈ X and f ∈ H we have the reproducing properties
with respect to the inner product ⟨·, ·⟩H and the kernel κ, (3) The
set {κ(x, ·) | x ∈ X} is dense in H, (4) The space H consists of con-
tinuous functions. Detailed proof of 1.-4. can be found from [26],
pp. 35–36.

From the discussion above we see that the elements in H and H
can be defined using two different representations

f = ∑
j

ajκ(·, xj) = ∑
i

ci
√

γi φi, (3.46)

if we identify ci =
√

γi ∑j aj φi(xj). Following result can be proved
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Theorem 1. ( [26], p. 37.) The Hilbert spaces H and H are identical.

3.3.2 Feature map associated to the kernel

This section was started with a discussion of a ”feature map” Φ
and a ”feature space” F , which would allow a modeling approach
for different machine learning tasks. The kernel based machine
learning literature usually associates two feature maps to the kernel
as follows [151]

• The kernel decomposition (3.22) induces a feature space of square
summable series l2 and the corresponding feature map

Φ : X → l2 : x 7→ Φ(x) = (
√

γi φi(x))∞
i=1 (3.47)

The property Φ(x) ∈ l2 is valid, because the sum ∑i γi φ
2
i (x)

converges to κ(x, x) by (3.22). Now the representation for the
function can be written in a primal form

f = cTΦ(·). (3.48)

• A reproducing kernel feature map is defined as

Φκ : X → RX : x 7→ κ(x, ·), (3.49)

where RX := { f : X → R}. Now the representation for the
function can be written in a dual form

f = aTk, (3.50)

a = (a1, a2, . . .)T and k = (Φκ(x1), Φκ(x2), ...)T by (3.46).

By using the above feature maps, we can use complex non-linear
algorithm in input space via simple linear representation (3.48) or
(3.50) in feature spaces. The feature space associated to kernels is
a Hilbert space, which allows the formulation of geometric rela-
tionships between the elements. In the RKHS framework the fea-
ture space corresponding to map Φ can be infinite dimensional,
so that we cannot implement the primal form representation (3.48)
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explicitly in practical computations, e.g. in regression and classifi-
cation. For example, this is the case for the Gaussian kernel with
decomposition (3.36). The information from a feature map Φ can
be efficiently exploited in the learning algorithms by using the cor-
responding kernel κ(., .) in closed form, which corresponds to an
inner product in the feature space via the decomposition (3.22)

κ(x, y) = Φ(x)TΦ(y) = ⟨Φ(x), Φ(y)⟩l2 . (3.51)

The property (3.51) is called as a ”kernel trick” in the machine learn-
ing context and in practical calculations leads to the dual form func-
tion representations (3.50) using finite kernel spans. In fact, every
algorithm which can be transformed to consider only inner prod-
ucts between data points, can be also ”kernelized” using the dual
form representation via kernel [151]. The ”kernelization” in this
context means that the inner product in the original data domain
X is replaced with the kernel evaluation (3.51) between the data
points.

In many cases, only the kernel is defined explicitly without con-
sideration of the feature map Φ. Furthermore, the feature map
associated to the kernel is not unique. For example, the decompo-
sition given in (3.36) doesn’t correspond to the eigendecomposition
of the Gaussian kernel. However, for a given domain X , the feature
maps from X into Hilbert spaces are essentially equivalent. There
is isometric isomorphism between the subspaces of different feature
spaces, i.e. a linear bijective mapping between spaces exists which
preserves inner products [107], p. 8.

In the following, we introduce kernels which are used in this
dissertation. For a detailed discussion about kernels and their con-
struction, see [106], [107], [127]– [129], [133], [139], [143], [151], [163],
[169].

3.3.3 Gaussian kernel

The Gaussian kernel was defined as

κ(x, z) = exp
(
−∥x − z∥2

2
2ς2

)
, (3.52)
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where x, z ∈ X and ς ̸= 0 is the length-scale parameter. It can be
shown that the Gaussian kernel is strictly positive definite in X for
all ς2 > 0 [26], [106]. This kernel is isotropic, i.e.

κ(x, z) = g(∥x − z∥). (3.53)

From isotropy it follows that the function is translation invariant (sta-
tionary), i.e. κ(x + s, z + s) = κ(x, z) for all s ∈ X and unitary
invariant, i.e. κ(Ux, Uz) = κ(x, z) for all UT = U−1. Due to
unitary invariance, representations of data in different orthonormal
bases lead to same kernel values. Isotropy is a natural property in
contexts, in which the origin and the coordinate directions are arbi-
trary. A possible feature map for the Gaussian kernel in scalar case
was presented in (3.36).

A Gaussian kernel can more generally be defined as ( [1], [127])

κ(x, z) = exp
(
−∥x − z∥2

A
2ς2

)
, (3.54)

where ∥x − z∥2
A = (x − z)T A(x − z) and A is some symmetric, pos-

itive semi-definite matrix. If A ̸= I, the kernel is called anisotropic.

3.3.4 Polynomial kernel

A polynomial kernel of degree d is defined as

κ(x, z) = (axTz + b)d, (3.55)

where x, z ∈ X ⊂ Rk, a > 0, b ≥ 0 and d = 0, 1, 2, . . . are free
parameters. In the following, we use notation xα = xα1

1 · · · xαk
k , α! =

α1! · · · αk! and |α| = α1 + . . . + αk for α = (α1, . . . , αk). For a = 1,
b = 1 an inhomogenous polynomial feature map of total degree d
consists of N monomial terms {xα||α| ≤ d} and is written as ( [26])

Φ : X → RN : x →
(

1, (xαi(Cd
αi
)1/2)N−1

i=1

)
, (3.56)

where αi ∈ Rk and 1 ≤ |αi| ≤ d, for i = 1, . . . , N − 1 and

N =

(
k + d

k

)
=

(k + d)!
k!d!

, Cd
αi
=

d!
αi!

. (3.57)
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The monomials xα, α ∈ Nd
0, are linearly independent [169], p. 20.

For example, if we choose a = 1, b = 1 and d = 2 for X ⊂ R3,
we have ten dimensional feature space and the components of the
feature map are represented as

(1, (xαi)9
i=1) = (1, x1, x2, x3, x2

1, x2
2, x2

3, x1x2, x1x3, x2x3), (3.58)

with weights

(1, ((Cd
αi
)1/2)9

i=1) = (1,
√

2,
√

2,
√

2, 1, 1, 1,
√

2,
√

2,
√

2). (3.59)

The feature map above, however, does not necessarily correspond to
the eigendecomposition of integral operator. The properties of the
feature map depend on the domain X . In the unit sphere X = Sk−1

in Rk and a = 1, b = 1 and d = 2, we have eigenfunctions [107]

{φi(x)}5
i=1 =

(
1√
2π

,
x1√

π
,

x2√
π

,
2x1x2√

π
,

x2
1 − x2

2√
π

)
, (3.60)

eigenvalues

{γi}3
i=1 =

(
3π, 2π,

π

2

)
(3.61)

and the feature map

Φ(x) =

(√
3
2

,
√

2x1,
√

2x2,
√

2x1x2,
x2

1 − x2
2√

2

)
. (3.62)

The polynomial feature map is widely used in regression due
to its practicality. The usage of polynomial kernel can be moti-
vated by its efficiency to compute the combinatorially large number
of monomial features. Some possible ”drawbacks” for polynomial
kernels are listed as: (1) the RKHS induced by polynomial kernel
of finite degree d is finite dimensional and not dense in C([0, 1]k),
so it is not possible to approximate continuous functions arbitrarily
well [26], [129]; (2) although convenient in practice, increase in the
degree of polynomial kernel is defined in discrete steps and cannot
be controlled continuously; (3) the kernel is not translation invari-
ant; (4) interpolation of data becomes difficult, because the high
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degree polynomials leads to oscillation in the regions between the
interpolation points [102], [125]. This well known phenomenon is
called as polynomial wiggle [102], p. 278.

The smoothing properties of RKHS norms ∥ f ∥2
H induced by

the Gaussian kernel and polynomial kernels have been discussed
in [107] and [151], pp. 99–101. In this context, the spectral de-
composition (Mercer decomposition) of a kernel has a significant
role. Especially, under certain conditions, explicit decompositions
(3.22) with L2(X )-orthonormal eigenfunctions {φi}i and eigenval-
ues {γi}i have been presented for these kernels [107]. For both
kernels, eigenvalue spectra γi decreases and the eigenfunctions φi

have decreasing smoothness properties. The Gaussian kernel has
more sharper smoothing properties, with exponentially decaying
eigenvalues [107].

3.4 SPLINE KERNELS

In the following polynomial feature map of total degree d is de-
noted as

Ψd(x) = (ψ1(x), . . . , ψNk
d
(x)), (3.63)

where ψi are monomial terms of total degree less or equal than
d and Nk

d = (k + d)!/k!d! is the binomial coefficient. Kernel κ is
defined as d-conditionally (strictly) positive definite (d-cpd kernel) in
X iff it is symmetric and if for all finite collections {xi}l

i=1 ⊆ X , real
numbers {bi}l

i=1 and for Ψd−1, we have ∑l
i,j bibjκ(xi, xj) ≥ 0, when

l

∑
i=1

biψj(xi) = 0 (3.64)

for j = 1, . . . , Nk
d−1 and x1, . . . , xl ∈ X . According to the constraint

(3.64), the coefficients b = (b1, . . . , bl) annihilate all the polynomials
of total degree less than d, i.e.

l

∑
i=1

bicTΨd−1(xi) = 0. (3.65)
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Using matrix notation, the d-cpd property (3.64) of a kernel can be
written as

bTKb ≥ 0, when Ψd−1(X)Tb = 0, (3.66)

where Kij = κ(xi, xj) and the matrix Ψd−1(X) consists of all the
polynomial terms up to total degree d − 1

Ψd−1(X) = [Ψd−1(x1), . . . , Ψd−1(xl)]
T ∈ Rl×Nk

d−1 . (3.67)

It is assumed that the points {xi}l
i=1 are distinct and define matrix

Ψd−1(X) with full column rank. In this case a least squares regres-
sion with the points {xi}l

i=1 and a polynomial of total degree of
d − 1 is unique.

3.4.1 Natural cubic spline

Assume that a < x1 < · · · < xl < b, for [a, b] ⊂ R and f (xi) = g(xi)

for i = 1, . . . , l. A cubic spline f is defined as a twice continuously
differentiable function, that interpolates the data {xi, g(xi)}l

i=1, so
that f (xi) = g(xi) for i = 1, . . . , l. The cubic spline is a third-
order polynomial in each interval [xi, xi+1], i = 1, . . . , l − 1 and is
called a natural cubic spline, if it is a linear polynomial on outer
intervals [a, x1] and [xl , b] [169], pp. 8–11. In this case, its second
and third derivatives vanish at x1 and xl , i.e. f ′′(x1) = f ′′′(x1) = 0
and f ′′(xl) = f ′′′(xl) = 0. A natural cubic spline minimizes the
squared L2 norm of the second derivative

∥ f ∥2
H2 =

∫ b

a
| f ′′(x)|2dx. (3.68)

It is known that every natural cubic spline can be alternatively writ-
ten as a combination of parametric and non-parametric part

f (x) = c1 + c2x +
1

12

l

∑
i=1

bi|x − xi|3, s.t.
l

∑
i=1

bi =
l

∑
i=1

bixi = 0. (3.69)

The parametric part of the natural cubic spline is a first order poly-
nomial and the non-parametric part is defined by the kernel span,
where the kernel of the spline is defined as

κ(x, z) =
1
12

|x − z|3. (3.70)
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3.4.2 Thin plate splines

In space Rk, the interpolating function is defined as function which
passes through the given data points {xi, g(xi)}l

i=1. It is assumed
that {xi}l

i=1 is such that least squares regression on monomials
ψ1, . . . , ψNk

d
of total degree less than d is unique (see (3.63)). In the

following Hd is a space of functions whose partial derivatives of
total order d are in L2(Rk) [167]. A natural thin plate spline of degree d
(or Duchon’s spline or Meinguet’s surface spline) [31], [45], [104], [167],
leads to an unique interpolating function in Hd which minimizes
the following functional

∥ f ∥2
Hd = ∑

α1+...+αk=d

d!
α1!...αk!

∫
Rk

(
∂d f

∂xα1
1 ...∂xαk

k

)2

dx (3.71)

This functional defines a semi-norm in the space Hd, i.e. ∥ f ∥Hd ≥ 0,
∥a f ∥Hd = |a|∥ f ∥Hd and ∥ f + g∥Hd ≤ ∥ f ∥Hd + ∥g∥Hd , for all scalars
a and f , g ∈ Hd. The space Hd endowed with a semi-norm ∥ f ∥Hd

is a RKHS [167]. A more detailed discussion on space Hd is given
in [104].

The functional (3.71) has a null space of multivariate polyno-
mial functions of total degree less than d that evaluate to zero, i.e.
∥cTΨj(x)∥2

Hd = 0, for j = 1, . . . , d − 1. For R2 and d = 2 the func-
tional is

∥ f ∥2
H2 =

∫
R

∫
R

(
∂2 f
∂x2

1

)2

+

(
∂2 f
∂x2

2

)2

+ 2
(

∂2 f
∂x1∂x2

)2

dx1dx2 (3.72)

and the null-space consist of C(R2) functions

f (x) = c0 + c1x1 + c2x2 = cTΨ1(x). (3.73)

Writing fx for the partial derivative of f with respect to x, we can
write the functional for R3 and d = 2 as

∥ f ∥2
H2 =

∫
R3
( f 2

x1x1 + f 2
x2x2 + f 2

x3x3 + 2[ f 2
x1x2 + f 2

x1x3 + f 2
x2x3 ])dx. (3.74)

The null space consists of C(R3) functions of the form

f (x) = c0 + c1x1 + c2x2 + c3x3 = cTΨ1(x). (3.75)
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A natural thin plate spline of degree d is written as

f (x) = cTΨd−1(x) + ∑l
i=1 bjκi(x, xi)

s.t. Ψd−1(X)Tb = 0,
(3.76)

where κ is a d-conditionally strictly positive definite function and
the matrix of Ψd−1(X) polynomial terms of total degree d − 1 has
full column rank [31], [104], [167]. For d = 2 the spline in Rk is
the analog of natural cubic spline in one dimension and is called
as natural thin plate spline. The function κ is isotropic on Rk and is
defined for odd 2d − k > 0:

κ(x, z) = cd,k∥x − z∥2d−k, cd,k =
Γ(k/2 − d)

22dπk/2(d − 1)!
(3.77)

and for even 2d − k > 0:

κ(x, z) = cd,k∥x − z∥2d−k log(∥x − z∥), (3.78)

where

cd,k =
(−1)k/2+1+d

22d−1πk/2(d − 1)!(d − k/2)!
, (3.79)

and Γ denotes Gamma-function [45], [167], not to be confused with
Γ in (2.17). In this dissertation, κ is called thin plate spline kernel of
degree d. The requirement 2d − k > 0 means that the form of regu-
larization functional that can be allowed depends on the dimension
of the space Rk [31], [104]. For example the regularization func-
tional based on second derivatives can be only used, when k ≤ 3.

As an example, for R2 and d = 2, the kernel is written as

κ(x, z) =
1

16π
∥x − z∥2 log(∥x − z∥) (3.80)

and for R3 and d = 2

κ(x, z) = −
√

π

4π3/2 ∥x − z∥. (3.81)
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3.4.3 Splines with infinite number of knots

Vapnik has introduced splines with infinite number of knots [163].
A spline of order d with infinite number of knots in (0, a), 0 < a <

∞, can be defined as

f (x) =
d

∑
i=0

aixi +
∫ a

0
a(t)(x − t)d

+dt, (3.82)

where a0, . . . , ad, a(t) ∈ R, (x − tk)
d
+ = (x − tk)

d, if x > tk and
(x − tk)

d
+ = 0 otherwise. This is a generalization of a piecewise

polynomial function with finite number of knots

f (x) =
d

∑
i=0

a∗i xi +
m

∑
i=1

ai(x − ti)
d
+ (3.83)

where t = (t1, . . . , tm), ti = ia/m and i = 1, . . . , m.
A one dimensional spline kernel corresponding to (3.82) is de-

fined as ( [163], p. 465.)

κ(x, z) =
∫ a

0
(x − t)d

+(z − t)d
+dt +

d

∑
i=0

xizi

=
d

∑
i=0

(
d
i

)
2d − i + 1

min(x, z)2d−i+1|x − z|i +
d

∑
i=0

xizi. (3.84)

A multidimensional spline kernel for x = (x1, . . . , xk)
T and z =

(z1, . . . , zk)
T in X ⊆ Rk can be defined as a product

κ(x, z) =
k

∏
i=1

κi(xi, zi), (3.85)

where κi’s are one-dimensional kernels [163], p. 463.
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4 Kernel based reflectance es-
timation and color calibration

We will estimate the reflectance information pixelwise, using a sim-
ulated or real multispectral digital camera with response functions
{si}k

i=1, where k < 10. We mainly concentrate on three-channel
multispectral responses, which are obtained using one or two il-
lumination sources. The reflection model is assumed to be (2.11)
and imaging is based on sensor model (2.17), where Λ = [λ1, λ2]

denotes the wavelength interval. In the following ⟨·, ·⟩ denotes the
inner-product of L2(Λ).

The goal of estimating reflectance properties from multispectral
measurements is to estimate the vectorial representation for mea-
sured reflectance factors that are obtained from a hyperspectral de-
vice with narrow-band characteristics. It is assumed, that the multi-
and hyperspectral devices cover the same wavelength interval Λ
and the same spatial area on the object surface.

Let x = (x1, . . . , xk)
T denote the vector of measured multispec-

tral responses according to model (2.17), i.e

xi = Γi(tgte⟨r, lsi⟩), i = 1, . . . , k, (4.1)

where si ∈ L2(Λ) is the ith spectral response function, Γi is a typi-
cally non-linear function, tg and te are fixed scalars corresponding
to illumination and view geometry and exposure time according
to (2.12) and (2.17), r ∈ L2(Λ) is the reflectance spectrum, and
l ∈ L2(Λ) is the spectral power distribution of the light source.

By ignoring the non-linear functions of the channels, the cor-
responding hyperspectral reflectance factors q = (q1, . . . , qn)T via
system {s̃j}n

j=1 according to model (2.17) and (2.19) are written as

qj = ag⟨r, ls̃j⟩/⟨l, s̃j⟩, j = 1, . . . , n, (4.2)
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where ag is (possibly) a term corresponding to illumination and
viewing geometry according to (2.14).

From one point of view, we are looking for a mapping x → q
between two spectral representations, where the hyperspectral rep-
resentation is normalized with the measurement from diffuse stan-
dard. Standard CIEXYZ color calibration of multispectral responses
is closely related to the reflectance estimation. In CIEXYZ cali-
bration, the response functions s̃j of hyperspectral device are re-
placed in (4.2) with the three CIEXYZ color matching functions
{s̃j}3

j=1 = {x, y, z} and the normalization term is defined by the
color matching function y according to equations in (2.20).

In the following we focus mainly on the case of reflectance esti-
mation (specifically spectral color calibration), when n >> k, and it
is assumed that

qj ≈ r(λj), j = 1, . . . , n, (4.3)

where {λj}n
j=1 corresponds to a partition of a interval Λ into n

subintervals of equal length. We make the assumption (4.3) in or-
der to calculate CIEXYZ color values (2.20) from the hyperspectral
data. Especially, we assume that functions r, l, si and s̃i are defined
pointwise and continuous. In this case, a more natural spectral
space would be a RKHS space rather than L2(Λ) [122]. However, in
this dissertation we don’t investigate this further. A functional ana-
lytic framework for spectral color spaces has been discussed in [96].

We consider the case of empirical reflectance estimation, where
the system {si}k

i=1, non-linearities {Γi}k
i=1 and light source l are

unknown, but fixed. Empirical modeling will be performed using
training data consisting of m samples. First, the training samples
are measured with the hyper- and multispectral devices keeping
the measurement geometry and the illuminations fixed. Then, a re-
gression model is constructed to empirically describe the relation-
ship between the measurements {xi}m

i=1 and {qi}m
i=1. The calculated

model coefficients are then used to infer the reflectance data q in fu-
ture data, from multispectral responses x that have been measured
under the same lighting and measurement geometry.

As an example, in the painting imaging, the reflectance esti-

48 Dissertations in Forestry and Natural Sciences No 31



Kernel based reflectance estimation and color calibration

mation has been performed by training a regression model by us-
ing multispectral and hyperspectral measurements of samples from
a color palette (e.g a palette used by an artist) or samples from
some color calibration chart [72], [70]. These training measurements
can be also obtained from the painting itself, so that m amount of
pointwise (pixelwise) measurements from appropriately chosen lo-
cations are performed. After the measurements are performed and
the regression model is formulated, the obtained model parameters
can then be used to estimate the spectral reflectance image of the
whole painting, by using the multispectral images. By spectral re-
flectance image we mean an image, where each pixel is represented
by a spectral reflectance vector q. As a final application, the es-
timated reflectance image can be used in the digital archiving for
museums or in the artwork reproduction and restoration.

The multispectral devices usually have large amount of pixels
in the sensor chip and therefore they can be used to estimate re-
flectance images (with high spatial resolution) of objects faster that
would be possible via hyperspectral devices (see Table 2.1 in chap-
ter 2). For example, it has been suggested that a system, which com-
bines an RGB color camera (Sinarback 54H) and a pair of absorp-
tion filters, is a practical choice for imaging cultural heritage [14].
The reflectance estimation results for GretagMacbeth ColorChecker
target by using this 6-band system were found to provide equal
accuracy with a hyperspectral 31-band LCTF system [14].

In the following we introduce the kernel based regression mod-
els for scalar valued case. The reflectance estimation and color cali-
bration are presented as a vector valued regression in 4.1.6.

4.1 KERNEL BASED REGRESSION

In this section we consider a regression model, which relies on the
feature space map Φ induced by a kernel as defined in (3.47). As-
sume that we have a training set of scalar outputs y and vector
inputs x

S = {(x1, y1), ..., (xm, ym)} ⊂ Rk × R, (4.4)
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obtained from a random sampling of some density. The purpose of
the regression is to estimate the conditional expectation of y given
x using the data in S, or y = f (x) + ε, where the expectation of
the residual is zero; formally E[y|x] = f (x). A natural assumption
is that the function of interest has some smoothness properties, so
that similar inputs map to similar outputs. Intuitively, smoothness
refers to the lack of wiggliness of the function [41], [50], [127], [128].

Recall that H denotes a RKHS space induced by a kernel κ as
defined in chapter 3. We assume that f is an element of H. In other
words, the regression function is assumed to be of the form

f (x) = cTΦ(x), (4.5)

where c = (c1, c2, . . .) and Φ(x) = (
√

γ1φ1(x),
√

γ2φ2(x), . . .)T, see
(3.47). It is assumed that the feature map Φ is induced by a kernel
function κ, so that the coefficients γ and functions φ correspond to
the decomposition (3.22) with linearly independent set {φi}∞

i=1. For
Mercer kernels this decomposition can correspond to the eigenval-
ues and eigenvectors of operator associated to the kernel κ accord-
ing to (3.38).

The coefficients {ci}∞
i=1 can be found by using the available train-

ing set S and minimizing the empirical error via some loss function
L

arg min
f∈H

m

∑
j=1

L(yj, f (xj)). (4.6)

Clearly, if the number of coefficients ci with ci ̸= 0, is infinite or
exceeds m, it is possible that there is no unique solution to (4.6).
Even if the number of non-zero coefficients is less than or equal to
m, but large, the minimizing function function may be close to an
interpolator of the training data, i.e. f (xj) = yj, for j = 1, . . . , m
and it may overfit. The estimated curve can be quite wiggly and
therefore generalize poorly in some regions. For such reasons addi-
tional restrictions need to be put on the minimizing function. This
is called regularization and is done by constraining the smoothness
properties of the minimizing function. RKHSs allow us to do this
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in a powerful way by using the norm of the H as the measure for
function smoothness.

We formulate an empirical minimization problem with regular-
ization functional

arg min
f∈H

V[ f ] =
m

∑
j=1

L(yj, f (xj)) + σ2∥ f ∥2
H. (4.7)

The term in the right hand side measures the fit of the function
to the training data under the loss function L. The regularization
functional ∥ f ∥2

H in this case is the norm or semi-norm of the func-
tion in the RKHS space H.

In applications, the kernel κ is typically chosen in such a way
that for smooth functions this regularization functional gives small
values. The explicit form of the regularization functional was shown
for the thin plate spline kernel in chapter 3. It was shown that this
functional includes calculation of differentials, which measure the
smoothness properties. The parameter σ2 controls the trade-off be-
tween data fit and smoothness. A large value of σ2 imposes a large
penalty for function with a large norm.

4.1.1 Form of the regression estimator

For an arbitrary nonnegative and differentiable loss function L, the
solution of (4.7) can be written using the dual form f = ∑m

j=1 ajκ(xj, .)
[151], pp.90-91. To show this, first note that for all f ∈ H,

f (x) =
m

∑
j=1

ajκ(x, xj) + f⊥, (4.8)

where f⊥ ∈ H and ⟨ f⊥, κ(xj, ·)⟩H = 0 for all j = 1, . . . , m. By using
the reproducing property (3.18), f (xi) = ⟨ f , κ(xi, ·)⟩H. Substituting
(4.8) into this and using (3.19), we get that f (xi) = ∑m

j=1 ajκ(xi, xj),
for i = 1, . . . , m and therefore the loss function term in (4.7) is inde-
pendent of f⊥. Second, ∥ f ∥2

H = ∥∑m
j=1 ajκ(xj, .)∥2

H + ∥ f⊥∥2
H due to

the orthogonality of ∑m
j=1 ajκ(xj, .) and f⊥. Therefore the minimum

of (4.7) can be obtained by choosing f⊥ = 0.
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Consider the special case of quadratic loss, i.e L(yj, f (xj)) =

(yj − f (xj))
2. Using the dual form we have

f =
m

∑
j=1

ajκ(·, xj), ∥ f ∥2
H =

m

∑
i=1

m

∑
j=1

ajaiκ(xi, xj) (4.9)

and the minimization problem (4.7) is written as

arg min
a

∥y − Ka∥2
2 + σ2aTKa, (4.10)

where matrix K ∈ Rm×m is the kernel matrix of training data, with
Kij = κ(xi, xj). To find the solution of (4.10), take the partial deriva-
tives with respect to aj for j = 1, . . . , m and set to zero

∂

∂a
(yTy − 2aTKy + aTK2a + σ2aTKa) = 0. (4.11)

For the solution, we have

K(Ka + σ2a − y) = 0, (4.12)

or equivalently
(K + σ2 Im)a = y, (4.13)

where Im is m × m identity matrix. Matrix K + σ2 Im is positive def-
inite when σ2 > 0 and the unique dual form solution is

a = (K + σ2 Im)
−1y. (4.14)

Function evaluation for a new test point x is formulated as

ŷ = kT
x a = kT

x (K + σ2 Im)
−1y, (4.15)

where kT
x is a row vector containing the kernel evaluations between

the training set and test point, with element i, (kT
x )i = κ(xi, x).

The properties of the calculated regression function depend on
the chosen kernel. For polynomial kernel (3.55) with d < m, the
matrix K doesn’t have full rank and the model approaches least
squares polynomial fit, when σ2 → 0. It has been proven that the
matrix K is invertible for distinct {x}m

i=1, when the elements have
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representation Kij = κ(∥xi − xj∥), and function κ is chosen to be
a radial basis function with some properties [106]. This result is
known as a Micchelli’s Theorem, and it applies to many radial ba-
sis functions such as Gaussian kernel (3.52), Hardy’s Multiquadrics
and Inverse Multiquadrics [53]. For example, for the Gaussian ker-
nel with non-zero scale parameter, the solution approaches the in-
terpolator of the data, when σ2 → 0. The regularization parame-
ter σ2 > 0 guarantees, that the system (4.14) is numerically well-
conditioned for every kernel. Regardless of chosen kernel, the so-
lution approaches zero, when σ2 → ∞.

Previously in (4.5) we formulated the regression function in pri-
mal form by using the coefficients ci, i = 1, 2, . . . and the feature
map Φ in l2 space. By using the decomposition (3.22) of the kernel,
the regression function can be formulated in this infinite dimen-
sional form

f (x) =
m

∑
j=1

aj

∞

∑
i=1

γi φi(xj)φi(x) =
∞

∑
i=1

ci
√

γi φi(x), (4.16)

where

ci =
m

∑
j=1

aj
√

γi φi(xj). (4.17)

Consider the matrix Φ(X) = [Φ(x1) . . . Φ(xm)]T ∈ Rm×∞ and with
a = (a1, . . . , am)T and c = (c1, c1, . . .)T ∈ l2. Then, (4.17) can be
written as

c = Φ(X)Ta. (4.18)

This shows that the practical solution in this infinite dimensional
space can be given in terms of aj and the coefficients ci are only
used implicitly.

For the quadratic loss in (4.7), the coefficients ci can also be
viewed as a solution to

arg min
c

∥y − Φ(X)c∥2
2 + σ2cTc, (4.19)

The usual least squares solution for σ2 > 0 is ŷ = Φ(x)Tc, where

c = (Φ(X)TΦ(X) + σ2 I∞)
−1Φ(X)Ty. (4.20)
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One can show that primal form solution (4.20) is equivalent to
(4.18), where a is as in (4.14) ([P3], appendix ).

4.1.2 Semi-parametric form

The model for the regression function can be generalized to semi-
parametric form as follows [151], [167].

Let Ψ(x) = (ψ1(x), . . . , ψN(x))T denote some feature map in
X ⊂ Rk, with linearly independent elements. Let us formulate a
space H with elements

f = g1 + g2, g1 ∈ H1, g2 ∈ H2, (4.21)

where H1 = span{ψ1, . . . , ψN} is Hilbert space and H2 denotes a
RKHS induced by positive definite kernel κ. As an example, the
most widely used semi-parametric model is formulated by using
only constant feature, i.e. N = 1 and Ψ(x) = 1. For a detailed
discussion of this case, see [129]. In the case of Ψ(x) = 1 and
quadratic loss, the minimizer of (4.7) has been called a Least Squares
Support Vector Machine [155].

By replacing ∥ f ∥2
H with ∥g2∥2

H2
in (4.7), the form of the mini-

mizer can be found as follows. For distinct {xj}m
j=1, the functions in

H can be written as

f =
N

∑
j=1

cjψj +
m

∑
j=1

bjκ(·, xj) + f2, (4.22)

where f2 ∈ H2, g2 := ∑m
j=1 bjκ(·, xj) + f2 and ⟨ f2, κ(·, xj)⟩H2 =

0, for j = 1, . . . , m. By using the reproducing property (3.18) in
H2, f (xi) = ∑N

j=1 cjψj(xi) + ⟨g2, κ(xi, ·)⟩H. Substituting g2 from
(4.22) into this and using (3.19), we have f (xi) = ∑N

j=1 cjψj(xi) +

∑m
j=1 bjκ(xi, xj), i = 1, . . . , m. This shows that the loss function term

in (4.7) is independent of f2. Second, ∥g2∥2
H2

= ∥∑m
j=1 bjκ(xj, .)∥2

H2
+

∥ f2∥2
H2

due to the orthogonality of ∑m
j=1 bjκ(xj, .) and f2 in H2. There-

fore, by choosing f2 = 0, the minimizer of (4.7) can be written as

f (x) =
m

∑
j=1

bjκ(x, xj) +
N

∑
j=1

cjψj(x). (4.23)
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In general, the regularization functional in (4.7) can be modified to
take into account also the parametric part, e.g. by using a sum of
two regularization functionals σ2

1∥g1∥2
H1

+ σ2
2∥g2∥2

H2
. In the follow-

ing we concentrate on the regularization of g2 only.
By using (4.23), the minimization problem (4.7) with quadratic

loss and regularization functional ∥g2∥2
H2

, can be written as

arg min
{b,c}

V[b, c] = ∥y − Kb − Ψ(X)c∥2
2 + σ2bTKb, (4.24)

where the matrix Ψ(X) ∈ Rm×N with full column rank has elements
[Ψ(X)]ji = ψi(xj), m > N and K is kernel matrix with (i, j) elements
κ(xi, xj). To find the solution, take the partial derivatives of (4.24)
with respect to bj, j = 1, . . . , m and ci, i = 1, . . . , N and set to zero
to get

(K + σ2 I)b + Ψ(X)c − y = 0,

ΨT(X)Ψ(X)c + ΨT(X)Kb − ΨT(X)y = 0
(4.25)

By multiplying the upper equation in (4.25) with ΨT(X) from the
left, it can be written ΨT(X)(K + σ2 I)b + ΨT(X)Ψ(X)c = ΨT(X)y.
Substituting the ΨT(X)y to the lower equation in (4.25), it simplifies
to σ2ΨT(X)b = 0. The solution can now be calculated from the
equations

(K + σ2 I)b + Ψ(X)c = y,

Ψ(X)Tb = 0
(4.26)

4.1.3 Semi-parametric form via d-cpd kernels

The kernel in semi-parametric form (4.24) can be modified to be
d-conditionally (strictly) positive definite (d-cpd) according to con-
ditions (3.64). Specifically, we concentrate on the d-cpd thin-plate
spline kernel (3.77) (or (3.78)) in Rk. The parametric part H1 above
is now chosen to be spanned by the polynomials of maximal de-
gree d − 1, so that the H := Hd is a RKHS of functions whose
partial derivatives of total order d are in the L2(Rk) [31], [167].
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In this case, the space H is a direct sum of Nk
d−1-dimensional

space H1 and a RKHS H2 [104], [167], p. 34. In the following N :=
Nk

d−1 and Ψ(X) := Ψd−1(X). The regularization functional in (4.7) is
(3.71), which is a norm in H2 and semi-norm in H. The polynomials
in H1 now belong to the null space of the regularization functional,
i.e. ∥g1 + g2∥2

H = ∥g2∥2
H. The minimization (4.7) with quadratic

loss is written as

arg min{b,c}
(
∥y − Kb − Ψ(X)c∥2

2 + σ2bTKb
)

,

s.t. Ψ(X)Tb = 0
(4.27)

where Ψ(X) = [Ψ(x1) . . . Ψ(xm)]T ∈ Rm×N , m > N is the matrix
(3.67) of polynomial terms corresponding to the H1 and K is the
kernel matrix with (i, j) elements κ(xi, xj). The solution is unique
and can be calculated by using the equations (4.26) [31], [167].

The spline model above can be generalized to partial spline mod-
els, the same way as the generalization to semi-parametric model
was done above. In this case two parametric spaces are used in
addition to kernel induced space: one correspond to some well-
defined functions and the other is the polynomial part. These para-
metric spaces can be constrained to be in the null space of the kernel
induced regularization functional as above [167], p. 75.

4.1.4 Calculation of semi-parametric solution

The coefficients in (4.27) can be calculated from a block matrix equa-
tion with full rank ( [44], p. 148)(

K + σ2 I Ψ(X)

Ψ(X)T 0

)(
b
c

)
=

(
y
0

)
. (4.28)

The coefficients b and c in (4.27) can be expressed by separating
the residual to orthogonal directions (For original calculation via
QR-decomposition, see [167], p. 33.). Let Ψ(X) ∈ Rm×N be a matrix
of rank N. From singular value decomposition

Ψ(X) = USVT = [U1U2]

(
S1 0
0 S2

)(
V1

V2

)T

, (4.29)
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where U ∈ Rm×m, V ∈ RN×N , S ∈ Rm×N , U1 ∈ Rm×N , U2 ∈
Rm×(m−N), S2 is zero matrix and S1 ∈ RN×N is diagonal with non-
negative entries σi, where σ1 ≥ σ2 ≥ . . . ≥ σN > 0 [17]. The matrices
V and U are orthonormal and therefore VTV = I and UTU = I.

By (4.27) Ψ(X)Tb = VSUTb = 0, and therefore b = U2d, for
some d ∈ Rm−N . Due to orthogonality, for any z ∈ Rm, we can
separate the norm, i.e. ∥z∥2 = ∥U1UT

1 z + U2UT
2 z∥2 = ∥UT

1 z∥2 +

∥UT
2 z∥2. By using this separation for (4.27), it simplifies

∥UT
2 y − UT

2 KU2d))∥2
2 + ∥UT

1 y − UT
1 KU2d − S1VT

1 c)∥2
2

+ σ2dTUT
2 KU2d. (4.30)

For the minimizers d̂, ĉ we can write{
UT

2 y = (UT
2 KU2 + σ2 I)d̂ ⇔ d̂ = (UT

2 KU2 + σ2 I)−1UT
2 y,

S1VT
1 ĉ = UT

1 y − UT
1 KU2d̂ ⇔ ĉ = V1S−1

1 (UT
1 y − UT

1 KU2d̂)
(4.31)

By using b̂ = U2d̂, the estimate for x is obtained as

ŷ = b̂Tkx + ĉTΨ(x). (4.32)

For σ2 → ∞, we have that b̂ → 0 and ĉ → V1S−1
1 UT

1 y and the
solution approaches to the polynomial least squares fit. For σ2 → 0
and full rank K, the solution approaches to interpolating model.

4.1.5 Connections to Gaussian processes and other models

We have presented models for reflectance estimation using func-
tional analytic RKHS framework. These methods are well-known
in the context of approximation and interpolation with irregularly spaced
data [3], [8], [31], [104], [106], [140], [169]. However, the models are
known in several fields of statistics and machine learning. Espe-
cially, the dual form regression (4.15) has been referred e.g. as
Regularization Network [16], [126]– [128], Radial Basis Function net-
work [53], Gaussian process regression [133] , ridge regression in dual
variables [139] and Least Squares Support Vector Machine (with the ad-
ditional constant term) [155]. Discussion about these connections
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has been presented e.g. in [33], [128]. Gaussian process framework
for semi-parametric models is discussed in [118], [133].

In particular, Gaussian processes are related to RKHS models
since (strictly) positive definite kernels correspond to the covari-
ance of the Gaussian process [133]. In the following we provide
alternative derivation of the result (4.15), which is classical in the
field of Gaussian processes.

Theorem 2. ( [132], p. 522) Let u1 and u2 be two normal random vectors.
Then the probability distribution of u = [uT

1 uT
2 ]

T is defined as

u =

[
u1

u2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, (4.33)

and the conditional distribution of u2 given u1, is

u2|u1 ∼ N (µ2 + Σ21Σ−1
11 (u1 − µ1), Σ22 − Σ21Σ−1

11 Σ12), (4.34)

provided that the inverses exist.

Let us consider scalar valued regression

y = f (x) + η, f (x) = Φ(x)Tc (4.35)

where
c ∼ N (0, Σc), η ∼ N (0, σ2

η). (4.36)

A Gaussian process f (x) ∼ GP(E[ f (x)], E[( f (x)−E[ f (x)])( f (x)−
E[ f (x)])]) is defined as a collection of random variables with a joint
Gaussian distribution. Consider a training set {(xi, yi)}m

i=1 with
function values y = (y1, . . . , ym)T, where yi = f (xi) + ηi, and the
ηi’s are independently and identically distributed (i.i.d.). Suppose
such m values are jointly Gaussian. Then, we have the mean and
covariance

E[ f (x)] = Φ(x)TE[c] = 0, (4.37)

E[yiyt] = Φ(xi)
TΣcΦ(xt) + σ2

η δit = κ(xi, xt) + σ2
η δit, (4.38)

where δit denotes Kronecker delta and κ is the covariance function
of the process. Covariance matrix of vector y is

Cov(y) = Φ(X)ΣcΦ(X)T + σ2
η I = K(X, X) + σ2

η I, (4.39)
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where Kij = κ(xi, xj).
We can define the joint distribution of training points and test

point y as(
y
y

)
∼ N

(
0,

(
K(X, X) + σ2

η I k(x)
k(x) κ(x, x)

))
, (4.40)

where (k(x))i = Φ(x)TΣcΦ(xi), i = 1, . . . , m. Using Theorem 2 we
have

y|Φ(x), Φ(X), y ∼ N (y, Cov(y)) (4.41)

where the mean value correspond to (4.15)

y = k(x)T(K + σ2
η I)−1y (4.42)

and
Cov(y) = κ(x, x)− k(x)T(K + σ2

η I)−1k(x). (4.43)

This framework allows to consider positive semi-definite RKHS ker-
nels as a covariance function κ(xi, xt) of the process. Especially,
kernel with 0 < κ(xi, xt) ≤ 1 can be considered as a correlation of
function values f (xi) and f (xt). As an example, we can consider
the Gaussian kernel (3.52), where the correlation approaches to 1
for ς → ∞ and vanishes for ς → 0.

4.1.6 Estimation as a vector valued kernel regression

Next we continue the discussion of reflectance estimation and (spec-
tral) color calibration. Assume that x ∈ Rk and q ∈ Rn correspond
to multi- and hyperspectral measurements (4.1) and (4.2), and that
we have a training set of size m

{(x1, q1), ..., (xm, qm)} ⊂ Rk × Rn. (4.44)

In color calibration, {qi}m
i=1 ⊂ R3 correspond to some arbitrary

color coordinates, such as CIE colors. The goal is to estimate a
mapping x → q by using a regression model. Let us define a matrix
Q = [Q1 . . . Qn] ∈ Rm×n with column vectors Qs ∈ Rm as

Q = [q1 . . . qm]
T = [qjs], j = 1, . . . , m, s = 1, . . . , n. (4.45)
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In the simplest case, a vector valued regression model for mapping
x → q is formulated with independent scalar regressions (4.7) for
components of vector q = (q1, . . . , qn)T. We focus on this approach
by using the squared error loss and same model for all the n compo-
nents ([P1]–[P3]). In this case, there are n minimization problems
(4.10) to find as ∈ Rm, s = 1, . . . , n, for components of q. These
minimizations can be concatenated for s = 1, . . . , n and written as

arg min
A∈Rm×n

V(A) =
n

∑
s=1

(∥Qs − Kas∥2 + σ2aT
s Kas), (4.46)

where A = [a1 . . . an]. The minimization above is equivalent to

arg min
A∈Rm×n

V(A) = ∥Q − KA∥2
F + σ2Tr(ATKA), (4.47)

where Tr(·) is the trace and ∥ · ∥F is the Frobenius norm, i.e. ∥Q∥2
F =

∑m
j=1 ∑n

s=1 |qjs|2. The solution for (4.47) is written as

Â = [â1 . . . ân] = (K + σ2 Im)
−1Q (4.48)

and estimate for x is evaluated as

q̂ = ÂTkx = QT(K + σ2 Im)
−1kx. (4.49)

The estimate (4.49) is a linear combination of training spectra, i.e.
q̂ = ∑m

j=1 pj(x)qj, where p(x) = (K + σ2 Il)
−1kx ∈ Rm denotes coef-

ficient vector corresponding to measurement x.
For semi-parametric models, the minimization problems (4.27)

concatenated for s = 1, . . . , n are written as

arg min
B∈Rm×n,C∈RN×n

(
∥Q − KB − Ψ(X)C∥2

F + σ2Tr(BTKB)
)

s.t. Ψ(X)TB = 0,

(4.50)

with solutions

B̂ = U2[d̂1 . . . d̂n] = U2(UT
2 KU2 + σ2 I)−1UT

2 Q,
Ĉ = [ĉ1 . . . ĉn] = V1S−1

1 (UT
1 Q − UT

1 KB̂),
(4.51)

where matrices U1, U2, V1 and S1 correspond to (4.29). Estimate for
x is

q̂ = B̂Tkx + ĈTΨ(x). (4.52)
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4.1.7 Computational cost

In 4.1.1, the primal and dual formulations for the estimation model
with positive definite kernels were presented. If the RKHS in (4.7)
is finite dimensional (e.g. consists of polynomials) and if we can
explicitly evaluate the finite dimensional feature map Φ, the primal
form calculation can be used. Coefficients in primal form (4.20)
and dual form (4.14) can be calculated using standard least squares
techniques ( [17]) and computationally, the most efficient form de-
pends on the feature space, cost of the kernel evaluation and the
number of training samples.

Assume T(n) is the number of operations needed in computa-
tion. The computational cost is denoted as T = O(t) by assuming
that there is C > 0 and function t, such that T(n) ≤ Ct(n) for
n → ∞. Let us assume that x ∈ Rk, Φ(x) ∈ RN , the size of the
training is m, the evaluation cost of Φ is O(N), the evaluation cost
of κ(·, ·) is O(k) (in worst case O(N)) and the inversion cost of
m × m matrix with a naive implementation is O(m3). In a general
vector valued regression, there are totally n scalar regression esti-
mations fs(x) = cT

s Φ(x), s = 1, . . . , n, corresponding to dimension
of vector output. In primal form, the computational cost for one
scalar regression is

solve cs : O(N3 + mN), evaluate fs(x) : O(N) (4.53)

In dual form fs(x) = ∑m
j=1 asjκ(xj, x), s = 1, . . . , n with asj ̸= 0, for

j = 1, ..., m. The cost of one scalar regression in dual form is

solve as : O(m3 + m2k), evaluate fs(x) : O(mk) (4.54)

Several approximation methods for the solution (4.14) have been
presented (e.g. [46], [53], [127], [133], [155]). As an example, the
system in (4.14) is positive definite and iterative conjugate gradient
method can be used to approximate as with computational cost
O(vm2), where v is the number of iteration steps of the algorithm
[46], p. 78.
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For conditionally positive kernels, the solutions fs, s = 1, . . . , n,
have representation fs(x) = cT

s Ψ(x) + ∑m
j=1 bsjκ(xj, x), and the com-

putational cost is

solve cs, bs : O(N3
p +mNp +m3 +m2k), evaluate fs(x) : O(mk+ Np),

(4.55)
where Np correspond to dimension of the polynomial feature Ψ(x).
In this form, the computational cost of solving the coefficients is
usually dominated by the inversion of kernel matrix. It has been
shown for the thin plate splines that the solution can be approxi-
mated using O(m log m) operations [8].

As an practical example, the color calibration of RGB device
consists of two phases. First, the measured data are used as a
training data to formulate a model. The size m of the training
set is often 9 × 9 × 9 samples and consists of measured color tar-
gets with known color characteristics [88], p.395. The formulated
estimation model is then used to populate a 3-D look-up-table e.g
with 33 × 33 × 33 samples [66], [88]. For final image processing,
the look-up-table is used to interpolate color values for image. The
population of look-up-table can be done off-line with the presented
methods, but the calibration of all pixels in an image has to be fast
and is performed with some interpolation method.

Similarly, reflectance estimation model in artwork imaging might
have several minutes or even hours for image processing. However,
there are also applications where high computational efficiency is
needed. One example is the spectral video imaging for real-time
transmission [171].

4.1.8 Measurement noise in camera responses

In practice, the measurements x and q from multispectral and hy-
perspectral devices contain also noise, which has effect on the es-
timation. Lack of control over the noise is one shortcoming of the
empirical models (4.49) and (4.52), since no explicit assumptions
about noise are included in these models.

One standard assumption for the noise in multispectral values
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is that of additive normally distributed noise with independently
distributed over different channels [43], [113], [148]. In this case the
noise can be filtered with two simple ways: 1) spatial averaging over
pixels in the image, when the measured sample contains spatially
homogeneous material or 2) in the measurement phase, by using
temporal averages of multiple measurements of the same spatial
position, when the measurement object is not moving. These are
the approaches which were used for the data in this dissertation.

It is also possible to extend the spatial averaging in case 1) by
using filtering techniques [115], [162]. For empirical reflectance es-
timation models, spatial noise removal filtering can be considered
as a separate preprocessing step. It has been suggested, that pre-
processing via a spatial filter is efficient for images where the SNR
of the image channels is at moderate level (> 35 dB) [115].

4.1.9 Model training for regression estimation

In the models (4.15) and (4.32), the kernel parameters and the reg-
ularization parameter need to be chosen carefully to achieve good
accuracy and generalization properties. In the limiting case, we
can choose the parameters to construct interpolators, which may be
numerically ill-conditioned or overfit. Similarly we don’t want to
choose parameters that underfit the data.

For some applications, it is useful if the parameters can be cho-
sen by using automatic techniques. For example, in the case of
empirical reflectance estimation, we might be tempted to decom-
pose the estimation to separate scalar regressions for every output
dimension, so that the complete model is too complex to fine tune
with subjective choices. In this dissertation, we promoted the sim-
plicity of the models and focused on the use of (4.49) and (4.52),
which lead to optimization of a single pair of kernel and regular-
ization parameters. Similarly, automatic techniques are needed if
there are several data sets, possibly measured with different de-
vices, in which the estimations are applied.

Structural risk minimization (SRM) is a principle for model selec-
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tion using finite data sets, which has been presented in the frame-
work of statistical learning theory by V. Vapnik [163]. An overview
of the statistical learning theory and SRM are presented in [33].
The idea of SRM is that the best model needs to be constrained
to some appropriate hypothesis space (RKHSs) via regularization
functionals, so that the minimizer of (4.7) is close to the minimizer
of expected risk. In the SRM, the regularization parameter σ2 is
optimized as a function of finite training data set. If the hypothe-
sis space corresponding to parameter σ2 is too ”large” with respect
to properties of training data, the SRM theory indicates that model
has poor generalization properties.

According to [33], there are practical difficulties of implement-
ing the SRM framework. In practice, the search of the model param-
eters is done using approximative methods, such as cross-validation
[44], [50], [167]. In N-fold cross validation, the training set is first
separated into N equal-sized parts. The model is then trained using
N − 1 parts and tested with remaining portion. This procedure is
repeated for all the N parts separately, by changing the training and
test data. By using the search grids for model parameters, the av-
erage values of the chosen error value is calculated from all N test
set separations. The parameters corresponding to the minimum
average error are chosen to be the optimal values.

4.2 TRANSFORMATIONS OF REFLECTANCE SPECTRA

It is useful to include a priori knowledge to the estimation by using
known physical properties of the reflectance spaces.

4.2.1 Logit function

In many cases it is reasonable to expect that the values of the re-
flectance spectrum q are constrained to region [0, 1]. Especially, for
the Lambertian surfaces and measurements with viewing solid an-
gle of 2π, all the measurements are in this range due to physical
reasons. However, also in many other cases for practical measure-
ments and surfaces, the data seem to have the values in region [0, 1].
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It is possible that for the presented reflectance estimation mod-
els (4.49) and (4.52), the q̂ may contain values, which are outside the
region [0,1]. In order to address this issue, we introduce a transfor-
mation for the output training data {qi}m

i=1 using the logit function

q̃ = log
(

q
1 − q

)
, (4.56)

where log : ]0,+∞[→ R is the natural logarithm and can be evalu-
ated elementwise for q ∈]0, 1[n. The inverse transformation, i.e. the
restoration from non-linear features is performed after the evalua-
tion of the regression models and is defined using componentwise
logistic function

q =
exp(q̃)

1 + exp(q̃)
. (4.57)

In [P3], the experimental results were calculated using the trans-
formation q̃ = arctanh(2q − 1), where arctanh : [−1, 1] → R is
calculated elementwise. The inverse transformation is written as
q = (1 + tanh(q̂))/2. However, since we can write arctanh(2q −
1) = 1/2 log(q/(1 − q)) this is equal to (4.56) up to a scalar.
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Figure 4.1: Left: Logit function (4.56), Right: Logistic function (4.57).

4.2.2 Principal component analysis

Principal component analysis (PCA) is a classical, statistically moti-
vated method for data transformation and analysis [74]. It is widely
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used method also in the analysis and approximation of spectral
data (e.g. [21], [57], [79], [94], [95], [100], [120], [123], [137]). PCA
can be considered as a unsupervised method, in a sense that the
data are projected to directions, which are not based on some fixed
basis, but on the available data set itself. – From the point of view of
matrix theory, the Singular Value Decomposition leads to the same
representation of data as the PCA.

In PCA, we search for the direction u (unit vector), which max-
imizes the variance of the data {qi}m

i=1

arg max
u

Var(uTq) ≈ arg max
u

m

∑
i=1

(uT(qi − q′))2 = arg max
u

uTΣ̂u,

(4.58)
where q′ is the estimated mean vector and Σ̂ is the m-sample covari-
ance matrix of the available data. It can be shown that the direction
that maximizes the variance is given by the eigenvector correspond-
ing to the largest eigenvalue of the covariance matrix [74]. Similarly,
the second largest variance direction is defined by the eigenvector
corresponding to second largest eigenvalue, and so on. Assuming
that the rank of Σ̂ is n, the coordinates of vector q ∈ Rn in orthonor-
mal PCA eigenvector basis {ui}n

i=1 are defined as

qTu1, . . . , qTun, (4.59)

and are called as principal components (PCs). In data approximation,
only the k << n largest eigenvalues and corresponding eigenvec-
tors are chosen. Assuming zero mean data set, the approximation
for element q is formulated as an orthogonal projection to the k-
dimensional subspace

q̂ =
k

∑
i=1

uiqTui. (4.60)

The effective PCA dimension of hyperspectral reflectance data
is usually significantly lower than the dimension of measurements.
This has been empirically validated for several reflectance ensem-
bles and hyperspectral images (e.g. [21], [77], [79], [92], [123], [158]).
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Thererefore, PCA approximation is widely used in spectral data
compression and noise removal applications, but also in the re-
flectance estimation to reduce large number of hyperspectral di-
mensions in vector valued regression. In the latter case, the re-
flectance measurements in Rn are replaced with corresponding trun-
cated vectors of PCs. The representation in terms of PCs improves
the practicality and computational efficiency, especially when vec-
tor valued regression is calculated via separate scalar regressions.
In this case, the dual forms (4.15) and (4.32) lead to construction
and storage of kernel matrices Ki ∈ Rm×m, i = 1, . . . , n for every
reflectance dimension, which may be impractical for large n.

Furthermore, the logit-logistic transformations (4.56)-(4.57) can
be combined with PCA approximation to constrain the approxi-
mated reflectance values to the region [0,1]. In this case the data
{qi}m

i=1 is logit transformed via (4.56) before the calculation of co-
variance matrix. Inverse transformation (4.57) is calculated for the
orthogonally projected subspace elements (4.60) in Rn.

4.3 EXPERIMENTAL RESULTS AND DISCUSSION

First we give results for PCA approximation of Munsell reflectance
ensemble (1269 samples in 400–700 nm, 5 nm sampling [161]) [116].
The approximation is calculated for logit transformed data as dis-
cussed above. The approximations were evaluated, by using the
∆E color errors (2.25) under D65 illumination and spectralwise root
mean square error (RMSE). The RMSE between hyperspectral re-
flectance measurement q ∈ Rn and estimate q̂ ∈ Rn is defined as

RMSE(q, q̂) =
√
∥q − q̂∥2/n. (4.61)

These color and spectral errors are presented in Figures 4.2 and 4.3
as average and maximal values for the Munsell set. The results
indicate fast improvement in accuracy, when the subspace dimen-
sion increases. The results for logit transformed data show that the
average and maximal RMSE and ∆E color errors are lower when
compared to standard PCA approximation. The RMSE errors are
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approximately 5-10% lower, when compared to standard PCA ap-
proximation for fixed dimensionality. The ∆E errors indicate even
larger reduction from the errors for standard PCA approximations.
The ∆E results for 3- and 4-dimensional subspaces show significant
improvement, when compared to the standard PCA.
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Figure 4.2: Average and maximum of CIELAB error as a function of subspace dimension.
Data: Munsell Matte collection.
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Figure 4.3: Average and maximum of RMS error as a function of subspace dimension.
Data: Munsell Matte collection.

As a second experiment, we calculated reflectance estimation
results by using model (4.49) with the Gaussian kernel and model
(4.52) with the thin plate spline (TPS). The estimations were calcu-
lated by using real RGB data {xi}1164

i=1 ⊂ R3 of the Munsell Matte
collection and corresponding reflectance data {qi}1164

i=1 ⊂ R61. The
same data was used in [P1]–[P3]. The sets were separated randomly
to training set (669 samples) and test set (495 samples) ten times.
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Table 4.1 presents the average results with different pre-processing
methods for reflectance outputs (logit, PCA and PCA+logit). In all
cases, the RGB data was scaled to [0, 1]3 and the pre-processed re-
flectance data was centered to have zero mean in training set. The
parameters of the models were optimized using 10-fold cross vali-
dation (10-fold CV) and minimization of average RMSE. In the case
of Gaussian kernel (3.52), the kernel parameter ς and regulariza-
tion parameter σ2 were both found by using the 10-fold CV. The
degree (d in (3.77)) of the TPS kernel was fixed to 2 and only the
regularization parameter σ2 was optimized by 10-fold CV.

The results in Table 4.1 show, that the logit transformation and
truncation to PCs leads to similar performance when compared to
the use of measurements q in regression. Therefore, via these two
transformations, the estimations are in [0, 1]n and can be computed
independently of the dimension n of (4.2). The average RMSE accu-
racies for these kernels are close to the accuracy of four dimensional
PCA approximation of the complete Munsell set (Fig. 4.3).

It can be seen that the TPS leads to improved performance over
the Gaussian kernel, although the degree of TPS kernel was not op-
timized. This property of the TPS model can be found to be appeal-
ing from the practical point of view. As a comparison, Kang and
Anderson have reported that CIEXYZ color calibration model based
on a neural network (Cascade Correlation Network) is difficult to
train and may lead to overfitting [78]. Those evaluations were done
for a flatbed scanner by using a Kodak Q60-C target (236 color sam-
ples were used) and several training- and test set separations. They
also reported that a least squares polynomial fit was able to provide
good generalization properties for the same color set [78].

As an example of a computation time (by using a simple MAT-
LAB implementation), an evaluation for 1 × 5000 pixel line of six-
channel data was calculated in 0.39 seconds. In this calculation we
used the dual form (4.49) with the Gaussian kernel, pre-calculated
model coefficients, training set of 600 samples and a post processing
with PCA projection (10 components) and logistic transformation.
The spectral dimension (n) of the estimated output was 61 samples.
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Table 4.1: RMSE errors for the measured Munsell matte multispectral data from Fujifilm
S1 RGB-camera under fluorescent light source. Kernel and regularization parameters
were chosen using 10-fold CV and intervals ς2 ∈ [2−8, 23] and σ2 ∈ [2−10, 23] for the
Gaussian kernel. For the TPS kernel d = 2 and σ2 ∈ [2−10, 23]. In table, (logit): logit
transformation for regression targets, (PCA): Regression targets are vectors of 10 most
significant principal components calculated using the training set.

Train: Munsell I, Test: Munsell II.
Model Avg. Std. Max.

Gaussian 0.0143 0.0103 0.0821
Gaussian (logit) 0.0141 0.0104 0.0846
Gaussian (PCA) 0.0144 0.0103 0.0818

Gaussian (logit+PCA) 0.0142 0.0104 0.0843
TPS 0.0137 0.0107 0.0757

TPS (logit) 0.0134 0.0106 0.0764
TPS (PCA) 0.0139 0.0106 0.0755

TPS (logit+PCA) 0.0135 0.0105 0.0763

In this case, a six-channel image with 5000 × 5000 pixels could be
evaluated (linewise) in 32 minutes. With a training set of 100 sam-
ples, the evaluation time reduces to 6 minutes.

In addition to the above results, we summarize the reflectance
estimation and color calibration results, which are presented in
[P1]–[P3]. All the experimental results for reflectance estimation
from multispectral data have been calculated using the standard
least squares polynomial regression (primal form), dual form (4.49)
for the Gaussian, polynomial and spline (3.85) kernel and model
(4.52) for the TPS kernel. In [P1]–[P3], we evaluated the models
by using four data ensembles: Munsell Book of Color - Matte Fin-
ish Collection (1269 color samples), Natural Color System (NCS)
atlas (1750 color samples), Pantone (922 color samples), Macbeth
chart (24 color samples). These are widely used ensembles in color
science and their properties have been discussed in several works
(see [79], [80], [91], [92] for references). We used four sensor sys-
tems (Fujifilm Finepix S1, Canon A20 Powershot, simulated Canon
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EOS 10D and simulated Gaussian six-band system) and two light
sources (Fluorescent Philips DeLuxe 90 TLD 18W/965 6300K source
and Tungsten 100W source (see Fig. 2.4)). The error evaluations
were done by using the RMSE (4.61), CIE ∆E∗ (2.25) and CIE ∆E∗

00
( [88], pp. 113–115.) by using CIE D65 illuminant.

4.3.1 Estimation with polynomials (P1)

In [P1], the estimation of reflectance spectra and CIE L∗a∗b∗ values
are performed using regularized polynomial least squares fitting
and real multispectral data from two RGB cameras. The estimation
models were evaluated by using model parameters which mini-
mized the average CIE ∆E∗ error in a subset of Munsell set. The
final evaluation of models was done for a separate set, which was
not used in the parameter optimization.

The results suggest that for color engineering purposes, the re-
flectance estimation may provide good alternative over the estima-
tion CIE L∗a∗b∗ coordinates. Although the average CIE color ac-
curacy in reflectance estimation for Fujifilm Finepix S1 camera is
31.3% lower than in direct CIE L∗a∗b∗ calibration, the results sug-
gest that the degradation might be tolerable when the light source
independence of the data is taken into account. Interestingly, it was
also found that the average color error for reflectance estimation
using Canon A20 camera were 19.2% lower than the average color
error in direct CIE L∗a∗b∗ estimation.

4.3.2 Estimation with kernel methods (P2)

In [P2], the reflectance estimation procedure is represented by using
the kernel based framework, where regularized regression models
were proposed, consisting of Thin plate spline (TPS), tensor splines,
polynomials and Gaussian kernel regression. The estimation was
performed by using the Munsell Matte collection, RGB data under
D65 illumination and training sets with 100 and 600 samples. The
training, parameter optimization and the final evaluation of models
were done by using separate sets.
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The differences between regularized polynomial model and poly-
nomial and tensor spline (3.85) kernel models were found to be
small for both training set sizes. These results suggest that the
model choice in these cases should be based on computational effi-
ciency. The Gaussian kernel (avg. RMSE of 0.0165, max. RMSE of
0.0688) and TPS kernel with degree 3 (avg. RMSE of 0.0154, max.
RMSE of 0.0699) improved the results from other models for train-
ing set with 600 samples. When the TPS results for test set were
compared to the best performing polynomial model (avg. RMSE
of 0.0172, max. RMSE of 0.0855), the relative improvement in av-
erage RMSE accuracy was 10.5% and the relative improvement in
maximal RMSE accuracy was 18.5%. In the case of training set with
100 samples, it was found that the regularized TPS (avg. RMSE of
0.0207, max. RMSE of 0.0883) gave similar performance in test set
with the positive definite kernels in terms of average RMSE. How-
ever, the maximal RMSE of test set was smallest for the TPS kernel.
As an example, in this case the average RMSE of 0.0214 and the
maximal RMSE of 0.0981 were obtained for the Gaussian kernel.

It was found that the regularization of the solution is highly ben-
eficial in order improve the generalization properties of the models.
In the case of TPS, an interpolator (avg. RMSE of 0.0184, max.
RMSE of 0.1074) and a model with regularization term (avg. RMSE
of 0.0154, max. RMSE of 0.0699) were compared, in favor of the lat-
ter. The regularization also improves the numerical stability of pri-
mal and dual formulations, when the matrices in estimation models
would otherwise be effectively ill-conditioned.

In a related work, Sharma and Shaw constructed a TPS model
for color calibration of printer [144]. They suggested that a TPS
model can slightly improve accuracy of a local regression model.
Zhang, et.al. [172] generalized (4.7) with a different loss function.
They presented reflectance estimation results by using a Support
Vector Machine regression (SVR), which is based on (4.7) with ep-
silon insensitive loss function, i.e. L(y, f (x)) = |y − f (x)|ϵ, where
|y − f (x)|ϵ = max{0, |y − f (x)| − ϵ}. However, only small dif-
ferences were found between the model (4.49) and a SVR model
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by using a training set with 600 Munsell samples and several test
sets [172]. For a training set with 100 samples, it was found that a
SVR model can improve the performance of (4.49) for some sets.

4.3.3 Evaluation and unification of methods (P3)

In publication [P3], we evaluated the reflectance estimation for real
and simulated RGB data under multiple light sources by using
RKHS models and the transformation in (4.56), (4.57). The simu-
lations were based on numerical approximation of (4.1). An effort
was made to emphasize the connections between different estima-
tion models. Properties of the used data sets and some previously
proposed estimation methods, such as locally defined regression,
were also discussed and evaluated in this publication.

We presented estimation results by using kernel model (4.49)
with the Gaussian kernel, different training data and different re-
sponse systems. In the evaluation of training sets and response sys-
tems, we used the same kernel- and regularization parameters in
the training of the model (4.49). The parameters were fixed in order
to show that there exists parameters that can be used for different
data sets and different multispectral sensors systems to obtain ac-
curate, albeit suboptimal, reflectance estimation performance. The
goodness of the estimation was evaluated relative to the perfor-
mance of standard linear methods and PCA approximation. The
logit transformation (4.56) was introduced and shown to lead to
physically realistic estimations with good accuracy.

In the simulated case, the kernel matrix K in (4.48) was con-
structed by using the response functions of multispectral camera
and spectral power distribution of light source. In this case, the
estimates (4.48) with a linear kernel are identical to estimates from
widely used linear physical model and the regularization param-
eter corresponds to the variance of normal i.i.d. noise in the re-
sponses. In this context, significant improvements can be obtained
by replacing the linear kernel with a non-linear one. In terms of the
relative increase in mean accuracy, the Gaussian kernel improved

Dissertations in Forestry and Natural Sciences No 31 73



Ville Heikkinen: Kernel methods for estimation and classification
of data from spectral imaging

the RMSE results for linear kernel by 38.3%, when the training and
test data were from the Munsell set.

The usage of multiple light sources improves the estimation ac-
curacy significantly in simulated case. In a noise-free case, the av-
erage RMSE decreased 61.2% relative to the single light source, in a
case where the training and test set were from the Munsell ensem-
ble. In the simulated noisy case with 43 dB SNR gaussian noise,
the improvement reduced to 23.0%. As a comparison, it was shown
that the robustness to noise increased by using a another simulated
six-band system instead of the RGB-two-light source system. The
real RGB-two-light source system gave improvement of 14.0% rela-
tive to results with single tungsten source. The results indicate that
in practice, a careful choice of light sources is important. The dif-
ferences between the real and simulated data are partly explained
by the use of non-optimal jpeg format for real measurements.

In Table 4.1, we reported estimation results for the real Munsell
Matte RGB data by using the Gaussian kernel, logit transforma-
tion and 10-fold cross-validation routine in parameter optimization.
The results in Table 4.1 suggest that the average RMSE accuracy
improves 18% with fluorescent source (relative to the comparable
results with fixed model parameters in [P3], Table 8.).

The model choice, optimization and performance are dependent
on properties of training set. In [P3], we heuristically analyzed dif-
ferences between training and test reflectance data by using princi-
pal angles between PCA subspaces [164], [42], pp. 603–604. It was
found that the estimation results were significantly more accurate
for sets with similar reflectance subspaces. In order to optimize the
accuracy, the training targets may need to be tailored via a priori
hyperspectral imaging for object or scene of interest. This can be
seen as a spectral colorization (cf. [9], [114], [131]). The term coloriza-
tion usually refers to estimation of complete RGB color image from
a monochromatic image with partial color areas.
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of spectral data

In this chapter we focus on the classification of multispectral mea-
surements from pine, spruce and birch tree species by using the
kernel based feature spaces, presented in chapter 4. The idea of
classification is to use a decision function to label a given feature
vector to some predefined class. The construction of the decision
function is done in a supervised way, i.e. by using a training set
with known feature-label pairs. In the following, the multispectral
measurements are simulated from hyperspectral data to correspond
to measurements from photogrammetric airborne camera tailored
for remote sensing applications.

5.1 REMOTELY SENSED TREE DATA

Remote sensing is an information acquisition technique where satel-
lites or airborne vehicles are used to derive information about ob-
jects in the ground, properties of the earth surface itself or the at-
mosphere. Measurement of surface reflected electromagnetic spec-
trum in some wavelength region is one possible approach for the
information extraction for objects in the ground. This is usually per-
formed using recording device attached to the vehicle, such as digi-
tal multispectral or hyperspectral camera [19], [141]. If we compare
the remote sensing to spectral measurements in laboratory condi-
tions, it is evident that remote sensing data is affected by several
parameters that are difficult to control, such as the atmospheric
state and solar irradiance incident on the ground.

Tree species classification is an evident bottleneck in current re-
mote sensing of forests, in spite of the ample research carried out
into the use of airborne laser scanning and the digital aerial multi-
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spectral cameras [83]– [86]. It has been realized that in acquired im-
ages there exist severe radiometric normalization problems because
trees are geometrically complex surface elements with varying re-
flectance behaviour (e.g. [27]). The structural effects of reflectance
are due to branches, shoots and needles (or leaves), which result in
illumination- and view geometry dependent surface Bidirectional
Spectral Reflectance Distribution Function (BSRDF) [97]. The spec-
tral mixing from some spatial neighborhood and background are
also causing significant amount of normalization problems. The
mutual shading and height variation of trees prevent from observ-
ing all trees in direct light and most of the smaller trees remain
undetected. The constantly changing sunlit-shadow variation due
to self- and neighbour shading causes the radiometric characteriza-
tion of trees to be a difficult problem [83]– [86].

Recently, it has been suggested that multispectral sensors tai-
lored originally for photogrammetric applications could be used
also in quantitative remote sensing [39], [62]. Multispectral sensors
can provide additional benefits over hyperspectral sensors owing
to their high spatial resolution. In this context it is assumed that it
is possible to construct an all-purpose sensor with small number of
spectral response functions, which would allow adequate informa-
tion extraction from the ground objects, both radiometrically and
geometrically. The ADS40 sensor systems by the Leica Geosystems
are constructed to follow this philosophy [11], [12], [39]. The push-
broom architecture of ADS40 reduces the variations in viewing di-
rection and therefore should provide a good foundation for imag-
ing of ground objects with viewing geometry dependent BSRDF.
The ADS40 provides absolutely calibrated measurements in two
fixed viewing directions with four spectral bands per direction (Fig.
5.1). The absolute calibration can be utilized in estimation of band-
averaged reflectance values and BSRDF normalization [10], [12].

In this dissertation, the objects of interest are single trees in the
ground. In Finland, there are three tree species, that are commer-
cially significant: Scots pine (Pinus sylvestris L.), Norway spruce
(Picea abies (L.) H. Karst.) and birch (Betula pubescens Ehrh., Be-
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Figure 5.1: Illustration of the view-illumination geometry of trees in the focal plane of a
nadir-looking aerial camera. The flying direction is upwards and the direction of the Sun
is 26◦ to the left of the upward direction. The white rectangles depict the nadir- (0◦ along-
track) and backward-viewing (16◦ along-track) CCDs in the ADS40 line sensor. (Figure:
Ilkka Korpela).

tula pendula Roth). It has been suggested that the species classifica-
tion accuracy should reach 90–95% to be adequate for stand man-
agement and local wood procurement planning [84]. Photogram-
metric cameras are not customized for forestry applications but for
surveying and mapping purposes. There is still a substantial lack of
basic research into the spectral characteristics distinguishing given
forest objects, and such information would be valuable for specify-
ing optimal sensors designed for forest use [83]– [86].

The classification of objects in images is based on their geomet-
rical or spectral features. At the single-tree level, important struc-
tures contribute to image textures only at high spatial resolutions,
and due to low flight altitude, such images are often too expensive
to acquire over large areas [83], [84]. As an example, the Ground
Sampling Distance (GSD) of ADS40 system is 40 cm from the al-
titude of 4 km and suggests that this sensor is suitable for single
tree imaging in a cost efficient way. In the following, we will focus
entirely on features derived from pointwise multispectral measure-
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ments (pixel-based classification). These measurements are simu-
lated from hyperspectral data to correspond to a ADS40 system.

5.2 CLASSIFICATION USING SEPARATING HYPERPLANES

Let us consider a two-class classification problem with training data

S = {(x1, y1), ..., (xm, ym)} ⊂ X × {−1, 1}. (5.1)

We concentrate on the hyperplane classifier and assume that the rep-
resentation of the decision function f : X → {−1, 1} is

f (x) = sign(cTΦ(x) + b), (5.2)

where c = (c1, c2, . . .) and Φ(x) = (
√

γ1φ1(x),
√

γ2 φ2(x), . . .)T cor-
respond to RKHS feature map (3.47).

An affine hyperplane P which is associated to the decision func-
tion has the representation

P = {Φ(x)|cTΦ(x) + b = 0, x ∈ X}. (5.3)

In the following we formulate the Support Vector Machine (SVM)
algorithm for finding a separating hyperplane P which maximizes
the margin between two classes [163].

5.2.1 Hard margin Support Vector Machine

If the data can be separated by using a hyperplane in the fea-
ture space, it can be written that f (xi) ≥ +1, when yi = +1
and f (xi) ≤ −1, when yi = −1, for all i = 1, . . . , m. In other
words, we have a decision function which correctly classifies all
the training points. The hyperplane P is called as a canonical hy-
perplane with respect to {Φ(xi)}m

i=1, when the points closest to the
hyperplane have |cTΦ(xi) + b| = 1, [151], p. 190. The unit nor-
mal vector of the surface is cT/∥c∥2 and has orthogonality property
cT/∥c∥2(Φ(x) − Φ(z)) = 0 for the all the points Φ(x), Φ(z) ∈ P .
Furthermore cTΦ(x) = −b for all Φ(x) ∈ P . Now for a point Φ(v)
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not in P , we can define distance to the point Φ(x) in P as the dif-
ference of the projections of these two points to the unit normal of
the hyperplane∣∣∣∣ cT

∥c∥2
(Φ(v)− Φ(x))

∣∣∣∣ = 1
∥c∥2

|cTΦ(v) + b| = 1
∥c∥2

, (5.4)

where the last equality is obtained when the point Φ(v) from the
class is closest to the hyperplane. The distance above is equivalent
to the perpendicular distance of the point Φ(v) from the hyper-
plane P . Therefore we have that the margin (i.e. smallest distance)
between the two classes is 2/∥c∥2.

If the data can be separated by a hyperplane, it can be written
that

yi(cTΦ(xi) + b) ≥ 1, i = 1, . . . , m. (5.5)

The idea of SVM is to construct a hyperplane P , so that Eq. (5.5)
is satisfied and the margin between the two classes is maximized.
Equivalently, by using (5.4), it is possible to minimize ∥c∥2/2, which
is the squared RKHS norm (3.27) of the decision function. The
minimization problem is written as

minc,b
1
2 cTc,

s.t. yi(cTΦ(xi) + b) ≥ 1 i = 1, . . . , m,
(5.6)

5.2.2 Soft margin Support Vector Machine

A more widely used variant of SVM (by Cortes and Vapnik [25]) is
based on the assumptions that the two classes cannot be separated
by a hyperplane, but they have some overlap in the feature space l2.
In this case the SVM model (C-SVM, Soft margin SVM) is derived as
the solution to [33]

min
c,b

1
2

cTc +
C
m

m

∑
i=1

|1 − yi(cTΦ(xi) + b)|+, (5.7)
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where the loss function is

|x|+ =

{
x, x > 0;
0, otherwise.

(5.8)

This minimization problem corresponds to (3.4), with σ2 = m/2C.
The (5.7) is equivalent to a quadratic optimization problem

minc,b,ξ
1
2 cTc + C

m ∑m
i=1 ξi,

s.t. yi(cTΦ(xi) + b) ≥ 1 − ξi i = 1, . . . , m,

and ξi ≥ 0 i = 1, . . . , m,

(5.9)

where the parameter C controls the penalization of the samples
located on the incorrect side of the decision boundary, and {ξi}m

i=1
are slack variables which indicate misclassification of sample xi when
ξi > 1 [33]. Since cTΦ(xi) + b is proportional to the distance of the
point Φ(xi) from the hyperplane, it can be seen that the points far
away from the decision boundary have small effect for the shape
of the boundary, if they are on the correct side of the hyperplane
(the distance to hyperplane is larger or equal than the margin and
ξi = 0). The points which are on the wrong side of the margin have
more effect to the optimization functional and to the final form of
the decision boundary. For C → ∞, this model approaches to the
separable case (5.6), where misclassifications are not tolerated.

By following [151], the Lagrangian for this problem is written as

L(c, b, ξ; α, ν) =
1
2

cTc +
C
m

m

∑
i=1

ξi −
m

∑
i=1

αi(yi(cTΦ(xi) + b)− 1 + ξi)

−
m

∑
i=1

νiξi, (5.10)

with Lagrange multipliers αi ≥ 0 and νi ≥ 0. For this Lagrangian we
have saddle point

max
α,ν

min
c,b,ξ

L(c, b, ξ; α, ν), (5.11)
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which gives the solution for the problem. By taking the partial
derivatives with respect to components of c, b and ξi, i = 1, . . . , m
and setting them to zero, we have

c = ∑m
i=1 αiyiΦ(xi),

∑m
i=1 αiyi = 0,

0 ≤ αi ≤ C/m i = 1, . . . , m.

(5.12)

By identifying cTc = ∑m
i,j=1 αiαjyiyjΦ(xi)

TΦ(xj), the solution is ob-
tained from the convex quadratic optimization problem using the
dual space of Lagrange multipliers

minα
1
2 αTQα − 1Tα,

s.t. yTα = 0

and 0 ≤ αi ≤ C/m i = 1, . . . , m,

(5.13)

where Qij = yiyjKij and for the i, j entries of kernel matrix K we
have κ(xi, xj) = Φ(xi)

TΦ(xj) by kernel property (3.51). In this way
decision boundaries in the input space are defined without having
to make explicit use of the possibly infinite dimensional features
in space l2. The slack variables vanish from the dual problem and
only the constant C constrains the Lagrange multipliers. The term b
can be derived from Karush-Kuhn-Tucker conditions [151], p. 206.

The decision function for the SVM can be written as a sparse
dual representation of training points

f (x) = sign(
ms

∑
i=1

αiyiκ(x, xi) + b), (5.14)

where {αi}ms
i=1 are the calculated Lagrange multipliers and κ is the

selected positive definite kernel function [151]. In the summation
ms < m, because the coefficients αi are non-zero only for some
training points. The training points i = 1, . . . , ms with the above
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property are called as support vectors. The sparse representation can
be a significant property in some applications, where fast evalua-
tion is needed. Also the memory requirements for large training
sets can be alleviated by this property.

In our case, the motivation to use the C-SVM was that there is
large amount of empirical evidence that they produce excellent clas-
sification results for remotely sensed data. For example in case of
hyperspectral AVIRIS data, it has been suggested that an SVM pro-
vides higher accuracy when compared to Regularized Radial Ba-
sis Function Networks (Including optimization of centers, variances
and weights for units in hidden layer), kernel Fisher Discriminant
and Regularized Ada-boost classifiers [18]. Also other studies in
the remote sensing field suggest that SVMs compete well with the
best available classifiers [18], [38], [65], [103], [105]. It has been sug-
gested that SVM classifiers are suitable for remote sensing applica-
tions, since they are robust to noise and high-dimensional data [18].
Recent review arcticle shows that SVM models are currently one of
the most actively studied methods in the field of remote sensing
with over one hundred published works (April, 2010) [111].

5.3 SIMULATED MULTISPECTRAL RESPONSES

In order to study the classification of single trees, we simulated
ADS40 responses by using the sensor model (2.17), available hy-
perspectral data of tree species and a daylight spectral power dis-
tribution [P4]. By considering only the nadir scan line (Fig. 5.1),
the ADS40 is a four band system with wavelength supports in 428–
492, 533–587, 608–662 and 833–887 nm [11], [90]. The correspond-
ing spectral response functions (SRFs) were approximated by using
rectangular functions.

The hyperspectral data were ground level reflectance factor mea-
surements collected from Finland and Sweden. These measure-
ments were carried out by Jääskelainen et. al, by using a PR 713/702
AM spectroradiometer in the range of 390–1070 nm with 4 nm sam-
pling [76]. They report, that each radiance measurement repre-
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sented an average spectrum of thousands of leaves (or needles) on
a growing tree at a distance of 50 m. The measured crowns were
thick in order to minimize effects of background illumination. In
the measurement setting the sun was always behind the measure-
ment direction, with a clear path towards to object. The solar vector
had almost constant zenith angle, but the azimuth angle with re-
spect to measurement direction had variation (see Fig. 2.1).

5.4 SVM CLASSIFICATION RESULTS FOR SIMULATED TREE
DATA (P4)

In [P4], we performed the classification of spectral measurements
from the canopy of pine, spruce and birch trees using the RKHS fea-
ture space mappings and the C-SVM. The C-SVM is a binary classi-
fier and the ”one against one” classification was used for this multi-
class classification case ([P4], [103]). The McNemar’s test was used
to test statistical significances between classification results [30].
The data were simulated to corresponded to a: (1) 4-band ADS40
sensor, (2) 5-band sensor and (3) 93-band hyperspectral sensor. We
compared the predictive power of the non-linear Gaussian- (3.52)
and Mahalanobis kernels to the linear first degree polynomial ker-
nel (3.55). The Mahalanobis kernel is an anisotropic kernel (3.54),
where A = Σ−1 and Σ is a covariance matrix. This kernel can be
identified as the Gaussian kernel (3.52), with data whitened in input
domain. In whitening, the data are first represented in orthogonal
directions defined by the eigenvectors of Σ (training set) and scaled
to have equal variance in this representation.

The results for the simulated 4-band ADS40 sensor suggested
that it is highly beneficial to use a non-linear kernel. The use of
a non-linear kernel compensated for the poor spectral accuracy of
the system, and led to an improvement of 5–23 percentage points in
the misclassification performance when it was compared to the first
degree polynomial kernel. However, the high information content
of 93-band data allowed accurate classification also with the use of
linear kernel. In this case it may be advisable to avoid the use of
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non-linear kernels, in order to avoid over-fitting effects.
We studied how an additional SRF would improve the classi-

fication performance of the ADS40 system. In the first case, an
additional SRF located in 705–755 nm was chosen to correspond to
a existing 5-band system [11]. In the second case, the band selection
was considered by using maximal average distance between proba-
bility density functions of simulated responses. The band selection
method was based on the maximization of average Jeffries-Matusita
distance between the three tree classes [160]. In this method, it is
assumed that the class conditional probability density functions are
normal. During the calculations, two fixed bandwidths, 15 nm and
30 nm were used and the position of new SRFs were constrained to
be in the 662–833 nm region, which is not supported by the 4-band
ADS40. The band selection led to two positions: (1) 695–725 (30 nm
bandwidth) nm and (2) 710–725 nm (15 nm bandwidth). The calcu-
lations led to the same positions for the two bands, if the constraint
for wavelength region was removed, but it was assumed instead,
that there was no overlap with the original bands. The locations of
all the SRFs were in the ”red edge”, which refers to the 680–730 nm
region of change in reflectance of chlorophyll [134].

The results suggested that significant improvements for classi-
fication performance can be obtained by using an additional fifth
SRF. In our case, the band in 710–725 nm region gave the best re-
sults, with an average misclassification ratio of 15%.

It was assumed that the classification performance in simulated
ADS40 response space decreased due to outliers in the class sam-
ples. It can be assumed that some outliers in data were due to
the varying measurement conditions (e.g. variable sensor-object-
sun geometry) or measurement errors, for instance. However, the
set of outliers include also samples due to natural BSRDF varia-
tion within- and between species. In practice it may be difficult to
remove disrupting data variation automatically in an way that no
essential information is removed from training sets. In our case, the
results suggested that the Mahalanobis kernel with ς = 1 processed
the outliers automatically and increased the classification accuracy.
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6 Discussion and conclusions

In this dissertation we have studied (1) the color calibration of a
camera, (2) the estimation of reflectance spectra, and (3) the super-
vised classification of spectral information, based on reproducing
kernel Hilbert space methods (RKHS). We considered reflectance
estimation as a generalized color calibration problem and mainly
focused on an empirical regression approach that assumes rela-
tively large ensembles of training data. Although the physical char-
acteristics of the camera and the light source are not explicitly used
in model construction, the empirical approach can be motivated for
many applications by its simplicity, cost-efficiency and practicality.

The performance of the estimation and classification models de-
pends on the number of spectral response functions, spectral prop-
erties of the objects, properties of the available training data, and on
measurement conditions. A unifying characteristic of our data was
that there was only a small number of individual broad-band spec-
tral response functions available. It was shown that non-linear fea-
ture maps via RKHS kernels improved the accuracy of estimation
and classification markedly as compared to standard linear models.
The latter usually work well for measurement devices with a high
number of spectral bands with narrow-band characteristics.

In [P1] we started with the evaluation of polynomial models for
reflectance estimation and color calibration. Using machine learn-
ing terminology, these correspond to primal form kernel models.
These were the starting point for the dual form kernel models in
publications [P2] and [P3]. The regularization of polynomial mod-
els was found to be important, when the training sets were small
and the degree of polynomials increased. In [P2] we introduced
and evaluated the performance of several kernel functions in esti-
mation and interpolation. We found that the spectral and CIE color
accuracies of regularized kernel models with the Gaussian and thin
plate splines (TPS) were higher than the accuracies of widely used
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polynomial models. In [P3] we discussed the connections between
several empirical and physical reflectance estimation models. It was
shown that the kernel based models can effectively utilize the spec-
tral characteristics of measurement devices and information from
measurements under multiple light sources. The evaluations in
[P3] suggested that the accuracy of kernel methods were higher
than the accuracies of classical, physical and empirical linear esti-
mation models. Here, the evaluations of models were performed
by using real or simulated data (based on simple BSRDF model)
of widely used Munsell Matte, NCS, Pantone and Macbeth color
ensembles. The real RGB data of Macbeth and Munsell data in
[P1]–[P3] were utilized by using the JPEG format due to the limi-
tations of utilized RGB devices. It is expected that the estimation
accuracy improves further if RGB devices capable to produce raw
sensor measurements are utilized.

The RKHS based regression and interpolation models include
subclasses that have previously been used for reflectance estimation
and color calibration, such as linear and polynomial least squares
fits and radial basis function networks. Despite this, their connec-
tion to the more general RKHS model has not been discussed ade-
quately. A central aim of the core text of the dissertation has been
to fill this gap.

Similarly, regularization is not currently used in most reflectance
estimation and color calibration applications. Based on our calcu-
lations, it can be concluded that regularized learning has a high
potential in these areas to produce accurate and numerically stable
estimates. As an example, the regularized thin plate splines (TPS)
were shown ([P2]) to lead to better accuracy in reflectance estima-
tion than the interpolating TPS. To the best of our knowledge this
is also the first study, that investigates the use of TPS for reflectance
estimation.

Physical a priori knowledge of reflectance data was also intro-
duced in order to improve the efficiency and accuracy of reflectance
estimation. We presented details of how combination of logit trans-
formation and Principal Component Analysis (PCA) can be used as
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preprocessing tool in reflectance estimation.

The kernel models have primal and dual formulations, that can
both in principle be used in practical computation. In most cases
the dual form is simpler to solve. However, if the feature map is
finite dimensional, the primal form can also be effectively solved
using least squares. We have primarily intended the reflectance
estimation methods for off-line applications, but they may also be
used to form Look-Up-Tables for fast on-line computing.

The pixel-based classification of tree species (Birch, Pine and
Spruce) was carried out using simulated data based on multispec-
tral airborne camera in [P4]. A significant amount of redundancy
exists in spectral radiance from natural objects and intelligent sig-
nal measurement is appropriate. This was achieved using 4-band
and 5-band systems based on an ADS40 sensor. The classifier was a
Support Vector Machine (SVM) combined with RKHS feature space
mappings. It was shown that large differences in performance ex-
ist between linear, Gaussian and Mahalanobis kernels. Our results
suggest that a higher number of bands, or new positioning and
modification of the bands are needed to improve the accuracy of
classification.

Our findings suggest several topics for future work. (1) In re-
flectance estimation, we concentrated on the use of squared error
loss function. Overall, it can be concluded that the kernel methods
with squared error loss are relatively simple to implement in prac-
tice. In this case only the solution of linear equations are needed.
However, it is known that the squared error loss may have problems
with robustness. (2) The Gaussian process formulation can also be
utilized to derive confidence intervals for the estimated spectra and
classification probabilities. (3) It seems possible to include spatial
and textural information to estimation and classification in order
to reduce noise and improve accuracy (cf. [114], [115] and [162]).
(4) In simulated tree species classification and sensor optimization,
future work is needed to improve the quality of reflectance data
sets and to model the atmosphere more accurately. The simulations
were based on ground-level measurements, and a natural exten-
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sion is to repeat the simulations with real airborne hyperspectral
data. (5) It is also important to investigate differences between the
performance of simulated and real multispectral measurements in
reflectance estimation and classification. We are currently compar-
ing the tree species classification results obtained for simulated data
to results for real ADS40-SH52 multispectral data [55], [86].
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Ville Heikkinen

Kernel methods for estimation 
and classification of data from 
spectral imaging

This study concentrated on color

calibration of a camera, estimation of

reflectance spectra, and supervised

classification of spectral information,

based on reproducing kernel Hilbert 

space (RKHS) methods. We mainly 

focused on an empirical regression 

approach that assumes relatively 

large ensembles of training data. 

Several RKHS models and transfor-

mations were introduced and evalu-

ated in these tasks.
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