
Publications of the University of Eastern Finland

Dissertations in Health Sciences

isbn 978-952-61-0382-2

Publications of the University of Eastern Finland
Dissertations in Health Sciences

The aim of this doctoral thesis was 

to evaluate potential natural anti-

adhesive agents against meningitis- 

and respiratory infection-associated 

pathogens. The first part describes 

the antiadhesive ability of human 

and bovine milk against Neisseria 

meningitidis. In the second part sev-

eral berries and juices were investi-

gated against N. meningitidis, Strep-

tococcus pneumoniae, Streptococcus 

agalactiae, and Streptococcus suis.

d
issertatio

n
s | 046 | M

a
r

k
o

 T
o

iva
n

en
 |  A

n
tiadh

esive M
olecu

les in
 M

ilk an
d B

erries again
st R

esp
iratory P

ath
ogen

s

Marko Toivanen

Antiadhesive Molecules in 
Milk and Berries against 

Respiratory Pathogens Marko Toivanen

Antiadhesive Molecules in 
Milk and Berries against 
Respiratory Pathogens



MARKO TOIVANEN

Antiadhesive Molecules in Milk and Berries
against Respiratory Pathogens

To be presented by permission of the Faculty of Health Sciences, University of Eastern

Finland for public examination in Auditorium ML3, Medistudia building,

University of Eastern Finland,

on Friday 18th of March 2011, at 12 noon

Publications of the University of Eastern Finland

Dissertations in Health Sciences

46

School of Pharmacy

Faculty of Health Sciences

University of Eastern Finland

Kuopio

2011



ii

Kopijyvä Oy

Kuopio 2011

Editors: Professor Veli-Matti Kosma, Professor Hannele Turunen, Professor Olli Gröhn

Distribution:

University of Eastern Finland

Kuopio Campus Library/Sales of publications

P.O. Box 1627, FI-70211 Kuopio, FINLAND

http://www.uef.fi/kirjasto

ISBN 978-952-61-0382-2

ISBN 978-952-61-0383-9 (PDF)

ISSN 1798-5706

ISSN 1798-5714 (PDF)

ISSNL 1798-5706



iii

Author’s address: School of Pharmacy
University of Eastern Finland
P.O.Box 1627
FI-70211 Kuopio
Finland
Tel. +358 40 355 2962
Fax. +358 17 16 2424
E-mail: marko.toivanen@uef.fi

Supervisors: Docent Carina Tikkanen-Kaukanen, PhD
Institute of Public Health and Clinical Nutrition
University of Eastern Finland
Kuopio, Finland

Professor Seppo Lapinjoki, PhD
School of Pharmacy
University of Eastern Finland
Kuopio, Finland

Professor Seppo Auriola, PhD
School of Pharmacy
University of Eastern Finland
Kuopio, Finland

Reviewers: Docent Anni Virolainen-Julkunen, MD, PhD
Department of Infectious Disease Surveillance and Control
National Institute of Health and Welfare
Helsinki, Finland

Professor Heikki Vuorela, PhD
Division of Pharmaceutical Biology
University of Helsinki
Helsinki, Finland

Opponent: Docent Kirsi-Marja Oksman-Caldentey, PhD
VTT Technical Research Centre
Espoo, Finland



iv



v

Toivanen, Marko
Antiadhesive molecules in milk and berries against respiratory pathogens.
Publications of the University of Eastern Finland.
Dissertations in Health Sciences 46. 2011. 83 p.

ISBN 978-952-61-0382-2
ISBN 978-952-61-0383-9 (PDF)
ISSN 1798-5706
ISSN 1798-5714 (PDF)
ISSNL 1798-5706

ABSTRACT

Bacterial attachment to host mucosal tissues is the essential first step in microbial colonization
and pathogenesis. The strategy behind antiadhesive agents is to block the adhesion of pathogen to
the host cells. Since this reduces the reservoir of bacteria in the human population, it may diminish
the frequency of carriers and ultimately reduce the prevalence of bacterial infections. Thus,
antiadhesives hold the potential for preventing infectious diseases. This is important since new
methods are needed due to shortcomings of effective vaccines and increasing antibiotic resistance.

In the present study, the binding and inhibitory activity of milk, berries and juices were
investigated against meningitis- and respiratory infection-associated bacteria. The binding of
Neisseria meningitidis pili to bovine thyroglobulin was clearly inhibited by human milk neutral and
bovine milk acidic oligosaccharides in a microtiter well assay. In cell culture experiments and the
microtiter well assay, inhibitory and binding activity with N. meningitidis were detected for those
bilberry, cranberry, lingonberry, and crowberry fractions which contained anthocyanins or a
mixture of proanthocyanidins and flavonols. Streptococcus pneumoniae cells bound most extensively
to the low-molecular size fraction of cranberry juice and Streptococcus agalactiae cells  to the high-
molecular size fraction of cranberry. Hemagglutination induced by Streptococcus suis was most
effectively inhibited by the middle-molecular size fraction of cranberry.

In conclusion, it has been possible to identify several previously unknown binding and
inhibitory sources which impair bacterial adherence; their activities depend on both the natural
component and the bacterial species. These results indicate that neutral human milk
oligosaccharides and acidic bovine milk oligosaccharides possess potential value in the
development of functional foods or drugs against meningococcal infections and furthermore, berry
material, especially from the Vaccinium species, may be able to inhibit the attachment of N.
meningitidis, S. pneumoniae, S. agalactiae, and S. suis to epithelial cells. However, clinical trials will
be needed to confirm these in vitro results.

National Library of Medicine Classification: QW 52, QU 75, QU 220, QU 83, WB 430, WB 428,
WC 245, WC 217

Medical Subject Headings: Bacterial Adhesion; Fimbriae, Bacterial; Milk; Oligosaccharides; Fruit;
Vaccinium myrtillus; Vaccinium macrocarpon; Vaccinium vitis-idaea; Flavonoids; Anthocyanins;
Proanthocyanidins; Flavonols; Meningococcal Infections; Neisseria; Pneumococcal Infections;
Streptococcus; Hemagglutination; Cells, Cultured; In Vitro
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TIIVISTELMÄ

Monet infektiotaudit saavat alkunsa bakteerien sitoutumisella isännän limakalvoille. Tätä
sitoutumista voidaan estää antiadhesiivisilla aineilla. Bakteerien sitoutumisen estäminen vähentää
myös kantajien määrää väestössä ja bakteeri-infektioiden yleisyyttä. Näin antiadhesiivisilla aineilla
voisi olla mahdollista ehkäistä infektiosairauksia. Tämä on tärkeää, koska tehokkaiden rokotteiden
puuttuessa ja antibioottiresistenssin lisääntyessä tarvitaan uusia menetelmiä infektioiden
ehkäisyyn ja hoitoon.

Tässä tutkimuksessa selvitettiin maidon, marjojen ja mehujen sitoutumis- ja
inhibitioaktiivisuutta aivokalvontulehdusta ja hengitystieinfektioita aiheuttavia bakteereita
kohtaan. Neisseria meningitidis -bakteerin pilusten sitoutuminen tyroglobuliiniin estyi selvästi
äidinmaidon neutraaleilla ja lehmänmaidon happamilla oligosakkarideilla kuoppalevykokeissa.
Mustikan, karpalon, puolukan ja variksenmarjan fraktioilla, jotka sisälsivät antosyaaneja tai
seoksen proantosyanidiineja ja flavonoleja, todettiin sitoutumis- ja inhibitiovaikutusta N.
meningitidis -bakteeria kohtaan sekä kuoppalevykokeissa että soluviljelmässä. Streptococcus
pneumoniae -bakteeri sitoutui eniten karpalomehun pienimolekyylikokofraktioon ja Streptococcus
agalactiae -bakteeri karpalon suurimolekyylikokofraktioon. Streptococcus suis -bakteerin
aikaansaamaa hemagglutinaatiota esti tehokkaimmin karpalon keskimolekyylikokofraktio.

Tutkimuksessa saatiin selville useita aiemmin tuntemattomia lähteitä molekyyleille, jotka
vaikuttavat bakteerien sitoutumiseen riippuen sekä luonnonainekomponentista että bakteerilajista.
Nämä tulokset viittaavat siihen, että äidinmaidon neutraaleilla ja lehmänmaidon happamilla
oligosakkarideilla voisi olla merkitystä funktionaalisten elintarvikkeiden tai lääkkeiden
kehityksessä meningokokki-infektioita vastaan. Lisäksi marjapohjainen aines, etenkin Vaccinium-
suvun marjoista, saattaa kyetä estämään N. meningitidis, S. pneumoniae, S. agalactiae ja S. suis –
bakteerien tarttumista limakalvosoluihin. Tarvitaan kuitenkin kliinisiä kokeita varmentamaan
näiden in vitro –kokeiden tulokset.

Yleinen suomalainen asiasanasto: bakteerit; sitoutuminen; maito; oligosakkaridit; marjat; mehut;
mustikka; karpalo; puolukka; variksenmarja; polyfenolit; flavonoidit; antosyaanit; flavonolit;
meningokokki; pneumokokki; streptokokit
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1 Introduction

Respiratory illnesses are one of the leading reasons for seeking medical care. These diseases can

evoke both human suffering and considerable financial losses (Waterer and Wunderink 2009).

Though upper respiratory infections are very frequent but seldom life-threatening, meningitis and

lower respiratory infections, such as pneumonia, are responsible for serious diseases that can lead

to acute respiratory failure and death. Neisseria meningitidis is a causative agent of sepsis and

meningitis (Nassif 2000). Meningococcal meningitis remains a major threat to global health,

accounting for an estimated annual 500 000 cases worldwide, with at least 50 000 deaths and as

many cases of neurological disability (Pollard 2004). Streptococcus pneumoniae is the leading cause

of acute bacterial otitis media but responsible also for less frequent, severe infections like

meningitis, septicemia, and pneumonia. It is a major cause of morbidity and mortality among

children all over the world, particularly in the developing countries (Bogaert et al. 2004).

Streptococcus agalactiae is one of the most important infectious causes of neonatal morbidity and

mortality causing meningitis, pneumonia and septicemia in the newborns and their mothers

(Schuchat 2001). Streptococcus suis is a porcine pathogen, but has also recently been described as a

causative agent behind severe meningitis- and septicemia-associated epidemics in humans (Yu et

al. 2006). Only a proportion of these infections are preventable by vaccination, and antibiotic

resistance compicates the treatment of some of these infections. Therefore, there is a clear need to

develop novel means to prevent and treat these infections for instance by antiadhesive agents.

Most bacterial infections begin with molecular ligand-receptor interactions that occur between

the bacterial adhesins located on the surface of the pathogen and the glycoconjugates of host

mucosal cell receptors (Ofek et al. 2003). Adherence initiates colonization of oral, nasorespiratory,

and genitourinary tracts by bacteria and enhances resistance against host cleansing mechanisms,

such as urine flow through the urinary tract or airflow through the lungs. The adhering bacteria

are also able to penetrate into host tissues. If one were able to interfere with this interaction by

using antiadhesive agents, the risk of infections would diminish. Moreover, bacterial spread

between humans and the carrier rate would also be affected, contributing to lower prevalence of

bacterial infections.

Milk has evolved to nourish mammalian offspring. Evolution has led to the appearance in milk

of components that promote health and survival, such as proteins, peptides, lipids, and antibodies
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(German et al. 2002). Certain milk oligosaccharides and glycoconjugates have structures which

resemble those found in epithelial cells which are believed to be receptors for pathogens (Gopal

and Gill 2000). The presence of these structures in milk has evolved most likely to protect infants

from diseases. Several studies have revealed the antiadhesive effect of milk, i.e. that

oligosaccharides and glycoconjugates can act as decoys to prevent binding of pathogens to

epithelial cells (Coppa et al. 2006, Morrow et al. 2004, Newburg et al. 2004, Martín-Sosa et al. 2002).

However, there is lack of information about their effects against N. meningitidis.

Plants have also developed defense mechanisms against microbes in the course of Darwinian

selection. In addition to antimicrobial peptides, essential oils, and terpenoids, phenolic secondary

metabolites can combat pathogens (Cowan 1999). Plant phenolics may also cross-react with human

pathogens, for example, cranberries have been traditionally used to protect women from urinary

tract infections (UTI). In the American cranberry (Vaccinium macrocarpon Ait.), secondary

metabolites such as proanthocyanidins, as well as the high-molecular-weight fraction and fructose

have been claimed to evoke an antiadhesive effect against Escherichia coli in vitro (Di Martino et al.

2006, Foo et al. 2000a, Zafriri et al. 1989). The therapeutic effect of cranberry against UTI has also

been demonstrated in vivo (Ferrara et al. 2009, Bailey et al. 2007, Stothers 2002). American

cranberry has been extensively studied also against Helicobacter pylori (Zhang et al. 2005, Shmuely

et al. 2004, Burger et al. 2000) and oral bacteria (Koo et al. 2010, Yamanaka-Okada et al. 2008, Weiss

et al. 2004). However, the close relatives, European cranberry (Vaccinium oxycoccos L.)  and

lingonberry (Vaccinium vitis-idaea L.), have not been evaluated for their antiadhesion activity except

for one clinical trial which showed some positive effects against UTI caused by E. coli (Kontiokari

et al. 2001).

The main objectives of the present study were to investigate the antiadhesive effects of human

and bovine milk oligosaccharides against N. meningitidis and to screen several berries and juices

made from berries and fruits as possible sources of antiadhesive agents to help combat serious

respiratory- and meningitis-associated pathogens i.e. N. meningitidis, S. pneumoniae, S. agalactiae,

and S. suis.
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2 Review of the literature

2.1 ANTIADHESION

2.1.1 General

Bacterial attachment to host tissues is the initial infection step. This occurs via a ligand-receptor

interaction where bacterial adhesin molecules on the surface of the pathogen bind to

complementary carbohydrates on the host cell surface receptors (Ofek et al. 2003) (Figure 1A).

These initial interactions between the microbe and the host cell are essential for extracellular

colonization and internalization. Normally the oligosaccharide units of host cell surface

glycoproteins and glycolipids are present to bind to other cells and to function as receptors for

hormones and other humoral effectors but many pathogens have specific adhesins that recognize

and bind to host cells through these glycoconjugates (Soto and Hultgren 1999, Newburg 1997). The

binding of the pathogen activates the expression of new genes in the microbe that are important in

the pathogenic process. The binding can also switch on the activation of the innate host defense

systems (Soto and Hultgren 1999).

Mucosal epithelia represent the first line of defence against pathogens so bacterial attachment

requires effective adhesion strategies (Virji 2009). Ciliated and non-ciliated epithelial cells with

overlying mucus layers that are wafted around by the movement of cilia create an unstable

environment for bacterial adhesion. In addition, the net negative charge of the host cell surface

creates a charge barrier against the negative charge present on most bacterial surfaces.

Initial bacterial adherence and subsequent infection may be prevented if adhesin-receptor

interactions can be disrupted or inhibited. Antiadhesion therapy could be used not only for

preventing disease but also for the treatment of infection, to detach bacteria which are already

attached (Ofek et al. 2003). Antiadhesion therapy consists of two strategies. First, soluble adhesin

analogs can bind to the receptor and competitively block adhesion of bacteria (Figure 1B).

Antiadhesive agent of this type may be isolated adhesin molecules or synthetic or recombinant

fragments (Kelly et al. 1999, Lee et al. 1992, Dale et al. 1994). However, careful consideration must

be given to their toxicity, immunogenicity, induction of signalling and interference with the

physiological functions of the receptor when they bind to host receptors. The second strategy is to



5

use soluble receptor analogs that are structurally similar to those of the glycoprotein or glycolipid

receptors  for  the  adhesin  and  which  act  through  competitive  inhibition  (Figure 1C). Even non-

carbohydrate receptor analogues, although not identical to the native carbohydrate, may bind

efficiently to a microbial adhesin (Ofek and Sharon, 1990). If bacteria bind to the receptor analog

they can be cleared by physiological cleansing mechanisms such as mucociliary action in the

respiratory tract or urine flow in the urinary tract. Affinity of the antiadhesive agents for the

bacterial adhesins can be increased by attaching many copies to a suitable carrier, creating a

multivalent adhesin inhibitor. Several receptor analogs have been shown to prevent bacterial

colonization or infection in vivo (Morrow et al. 2004, Ruiz-Palacios et al. 2003, Cywes et al. 2000,

Bryan et al. 1999, Mysore et al. 1999, Idänpään-Heikkilä et al. 1997, Johnson et al. 1994, Mouricout

et al. 1990, Aronson et al. 1979). Soluble carbohydrate receptor analogs are unlikely to be

immunogenic or toxic since these carbohydrates are normal components of human body (Sharon

and Ofek 2000).

Figure 1. Schematic illustration of bacterial adherence to host cell (A) and action of antiadhesive agents

inhibiting bacterial adherence: adhesin analogs (B) and receptor analogs (C).

Antiadhesion therapy has attracted attention as it is considered to be more gentle and

ecologically sound compared to tradional antibiotic treatments (Karlsson 1998) and some of the

antiadhesive agent candidates are naturally found in foods. Furthermore, although some

resistance to antiadhesive agents may occur, the spread of resistant bacterial strains is likely to

appear at a significantly lower rate compared to antibiotic-resistant strains (Ofek et al. 2003).
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Carbohydrates having antiadhesion activity do not possess bactericidal activity and so the

selection of resistant strain is unlikely (Sharon and Ofek 2000). Furthermore, if bacteria lose their

affinity to an antiadhesive agent acting as receptor analogue, they will simultaneously lose their

ability to bind to the native receptor on host cells.

However, antiadhesion therapy has also some limitations. Pathogenic bacteria often encode

genes for more than one type of adhesin and express adhesins on either a random basis or by

adapting to different environmental conditions via phase variation (Meyer and van Putten 1989).

Therefore a mix of different antiadhesive agents that target several adhesins or a single agent that

has a broad spectrum of antiadhesion activity may be necessary (Ofek et al. 2003). Delivery and

maintenance of effective concentrations of inhibitor particularly at less accessible mucosal sites is

also challenging.

In addition to bacteria, some viruses, fungi, and protozoa bind to oligosaccharide receptors

(Olofsson and Bergström 2005, Calderone 1993, Pasvol 1984) and could become targets for

antiadhesion therapy.

2.1.2 Milk

Evolutionary pressure has led to the appearance of components in milk that promote health and

survival of newborn whose immune system is immature. Milk delivers a defensive capability to

the newborns through immunoglobulins, oligosaccharides, and glycoconjugates (Newburg 1997).

Human milk contains high concentrations of oligosaccharides and thus the nasopharyngeal and

gastric mucosas of the suckling infant are effectively bathed in antiadhesive oligosaccharides.

Human milk is composed mainly of lactose, fat, oligosaccharides, and proteins, but also several

other molecules are present in milk (Ebringer et al. 2008). The oligosaccharide fraction is the third

largest solid component in milk and represents over 12 g/l in mature milk and even higher, 22 g/l,

in colostrum (Newburg 1997). Oligosaccharides are composed of 3 to 10 carbohydrate residues,

covalently linked through glycosidic bonds  and their  composition  is  very  complex.  Human milk

oligosaccharides are composed of D-glucose (Glc), D-galactose (Gal), N-acetylglucosamine

(GlcNAc), L-fucose (Fuc), and, there are also acidic oligosaccharides, N-acetyl neuraminic acid
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(sialic acid, Neu5Ac, NANA), (Boehm and Stahl 2003, Rivero-Urgell and Santamaria-Orleans

2001). The oligosaccharides are synthesized in breast, starting with lactose at the reducing end, and

they have a core structure of polylactosamine with repetitive galactose and N-acetylglucosamine

units attached to lactose via a ß-glycosidic linkage (Boehm and Stahl 2003). The neutral

oligosaccharides are primarily fucosylated at the nonreducing terminus, while most of the acidic

oligosaccharides contain a terminal sialic acid conferring a negative charge on the molecule. The

lactose at their reducing end can be elongated at the non-reducing galactose (Gal) terminus by the

attachment of N-acetylglucosamine (GlcNAc) via �-1-3 or �-1-4 linkages, and further addition of

galactose (Gal) also by �-1-3 or �-1-4 linkages (Kunz et al. 2000). This results in a multiplicity of

polylactosamine core structures. Further variations result from the attachment of fucose (Fuc) (by

�-1-2, �-1-3, or �-1-4 linkages), and/or sialic acid (NANA) (by �-2-3, �-2-6, or �-2-8 linkages) to the

core structures and to core elongation chains (Newburg et al. 2005). These processes all result in

the extensive isomerism of oligosaccharides in human milk and it has been estimated to contain

potentially several thousand of such oligosaccharides which could be present and more than 200

oligosaccharides have been found in human milk (Ninonuevo et al. 2006). Concentrations and

types of human milk oligosaccharides vary between individuals and change during the course of

lactation as the expression of specific glycosyltransferases varies according to the genotype of the

mother and by the stage of lactation (Chaturvedi et al. 2001).

The glycoconjugates and oligosaccharides in bovine milk have not been investigated as

extensively as those in human milk. Bovine milk has one order of magnitude less oligosaccharides,

mostly they are present in colostrum. Their concentration in colostrum is approximately 0.7–1.2 g/l,

i.e. 20-fold lower than the corresponding values in human colostrum (Veh et al. 1981).

Almost 40 oligosaccharides have been shown to be present in bovine milk (Tao et al. 2008).

When compared to human milk oligosaccharides, the extent of fucosylation in bovine milk

oligosaccharides is either totally absent or very low. Bovine milk oligosaccharides are significantly

more acidic, with over 70% containing at least one sialic acid. Sialic acid residues include both N-

acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the former type being

significantly more abundant (Tao et al. 2008). Bovine milk has less diversity with fewer structures

per composition compared to human milk oligosaccharides. Bovine milk oligosaccharides are

generally composed of shorter oligomeric chains than those present in human milk and they
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consist primarily of tri- and tetrasaccharides. Bovine milk oligosaccharides are built around two

core disaccharides: lactose and lactose amines. A trisaccharide core composed of a Gal�(1–3) or

�(1–6) linked to a lactose is also present, but, at very low abundance. This core structure can be

either sialylated or branched with an additional lactose amine. The most abundant

oligosaccharides are sialyllactose and sialyllactosamine (Tao et al. 2008).

The oligosaccharide fraction, fucocylated oligosaccharides, siallyllactose, gangliosides, mucin,

mannosylated glycopeptides, macromolecule-associated glycans, and glycoproteins in milk have

been shown to possess antiadhesive effects against both gram-negative and gram-positive bacteria

(Table 1). Addition of oligosaccharides to infant food or formulas or adult food may have benefits

beyond the nutritional effects, since it may reduce the risk of infections at mucosal sites. This kind

of application could be economically feasible by employing milk whey, which is an abundant by-

product in the manufacture of cheese (Manso and Lopez-Fandino 2004), as inexpensive source of

oligosaccharides.

In addition to inhibition of bacterial attachment, milk glycans have been shown to inhibit the

action of toxins secreted by various bacteria (Idota et al. 1995, Newburg et al. 1992, Newburg et al.

1990, Schengrund et al. 1989, Otnaess et al. 1983) as well as viruses such as HIV (Viveros-Rogel

2004, Newburg et al. 1995) and noroviruses (Jiang et al. 2004).

Table 1. Oligosaccharides and glycoconjugates in milk with antiadhesive effect against bacterial pathogens.

I In vitro studies

Bacteria Inhibitor Reference

enterohemorrhagic
E.coli (EHEC)

mannosylated glycopeptide Ashkenazi et al. 1991

enteropathogenic
E.coli (EPEC)

oligosaccharides Coppa et al. 2006

gangliosides Idota and Kawakami 1995

oligosaccharides Cravioto et al. 1991

enterotoxigenic
E.coli (ETEC)

oligosaccharides Martín et al. 2002

sialyloligosaccharide fraction Martín-Sosa et al. 2002
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uropathogenic
E.coli (UPEC)

sialyloligosaccharide fraction Martín-Sosa et al. 2002

E. coli (S-fimbriated) sialyllactose Stins et al. 1994

mucin Schröten et al. 1992

H. pylori glycoproteins Hirmo et al. 1998

3’-siallyllactose Simon et al. 1997

fucose-containing carbohydrate part of �-
casein

Strömqvist et al. 1995

L. monocytogenes oligosaccharides Coppa et al. 2003

M. pneumoniae sialyllactose Roberts et al. 1989

P. aeruginosa macromolecule-associated glycans Lesman-Movshovich et al.
2003

sialyllactose Devaraj et al. 1994

S. fyris oligosaccharides Coppa et al. 2006

S. mutans glycoproteins Vacca-Smith et al. 1994

S. pneumoniae sialyllactose Barthelson et al. 1998

oligosaccharides Andersson et al. 1986

S. suis sialyl oligosaccharides Liukkonen et al. 1992

V. cholerae oligosaccharides Coppa et al. 2006

II in vivo studies

Disease Inhibitor Reference

C. jejuni diarrhea on
infants

2’-linked fucosylated oligosaccharides Morrow et al. 2004

C. jejuni diarrhea on
mice

fucosylated oligosaccharides Ruiz-Palacios et al. 2003

E. coli diarrhea on
infants

2’-linked fucosylated oligosaccharides Newburg et al. 2004

H. pylori infection on
monkeys

siallyllactose Mysore et al. 1999

H. pylori infection on
mice

milk glycoconjugates Wang et al. 2001
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2.1.3 Berries

In plants, secondary metabolites have developed as one part of the defense mechanism during

the course of Darwinian selection. These molecules are produced in response to environmental

stress and microbial infections (Scalbert 1991). There is a wide spectrum of phenolic secondary

metabolites typically found in berries and in addition to acting against plant pathogens they may

also cross-react with human pathogens.

If one considers all berries then it seems that the antiadhesion activities of cranberries

(Vaccinium macrocarpon Ait.) have been studied most intensively. This may be attributed to their

traditional use for the prevention of urinary tract infections. Cranberry preparations have been

shown to prevent the adhesion of E. coli to different cells, adhesion of H. pylori to  human

gastrointestinal cells, and adhesion or coaggregation of various oral bacteria in vitro (Table 2).

With respect to the other fruits, orange and pineapple juice (Zafriri et al. 1989), guava lectins

(Coutiño-Rodríguez et al. 2001), and blueberry proanthocyanidins (Schmidt et al. 2004) are known

to prevent the binding of E. coli in vitro and the polysaccharides from black currant seeds were

active against H. pylori (Lengsfeld et al. 2004) in situ. Recently, the adhesion of S. pneumoniae to

human  bronchial  cells  was  shown  to  be  inhibited  by  bilberry,  cranberry,  and  crowberry  juice

fractions (Huttunen et al. 2011).

The high-molecular weight (>15 kDa) non-dialysable material (referred to as NDM) of cranberry

juice has been shown to possess antiadhesion activity (Table 2). This fraction is highly soluble in

water, devoid of proteins, carbohydrates, and acids and it contains 0.35% anthocyanins and 65.1%

proanthocyanidins (Labrecque et al. 2006, Ofek et al. 1996).

In cranberries, two specific compounds have been shown to possess an antiadhesive effect.

Fructose was reported to inhibit the adhesion of mannose sensitive type 1 fimbriated E. coli to

uroepithelial cells (Zafriri et al. 1989). Proanthocyanidins could inhibit the adhesion of P-

fimbriated E. coli, which adhere to oligosaccharide receptor sequences (�-Gal(1�4)�-Gal)

(Källenius et al. 1980), to uroepithelial cells (Gupta et al. 2007, Foo et al. 2000a, Foo et al. 2000b,

Howell et al. 1998). Proanthocyanidins, or condensed tannins which is their trivial name, are plant

phenolic compounds that have a wide array of potential health benefits (Cos et al. 2004).

Proanthocyanidins from different food sources account for the majority of flavonoids consumed in
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the Western diet (Gu et al. 2004). One characteristic property of proanthocyanidins is their ability

to bind proteins (Hagerman and Butler 1981).

Proanthocyanidins are composed of dimeric to polymeric chains of flavan-3-ols, such as

cathechin or epicathechin (Harborne 1994). The universal B-type proanthocyanidins are present in

common food sources of proanthocyanidins, such as apples and cocoa (Gu et al. 2003) and the

structural  units  are  linked through a  single  bond (Figure  2). The rare A-type proanthocyanidins

are double-linked since there is a second ether bond between the A-ring of the lower unit and the

C-2  ring  of  the  upper  unit  (O7�C2)  (Figure  2). Proanthocyanidins in cranberries consist

predominantly of epicatechin units with at least one A-type linkage (Foo et al. 2000a, Foo et al.

2000b). The antiadhesion activity of cranberry has been associated with proanthocyanidins having

at least two A-type linkages and the structures of A-linked dimers and trimers that prevent the

adhesion of P-fimbriated E. coli to uroepithelial cells have been determined (Foo et al. 2000a, Foo et

al. 2000b). A-type linkages have also been detected in plums, avocados, and peanuts (Gu et al.

2003) as well as in Finnish Vaccinium species, lingonberry, cranberry, bog whortleberry, and

bilberry (Määttä-Riihinen et al. 2005).

Figure 2. Structures of B-type proanthocyanidins (Dimer B) and A-type proanthocyanidins (Dimer A).

Cranberry may influence bacterial adhesion also by inducing conformational changes in the

surface molecules of bacteria (Liu et al. 2006) and by reducing fimbrial expression at the genetic

level as well as altering the shape of the bacteria (Ahuja et al. 1998). However, it is unclear how

these morphological changes influence adhesion ability. In addition, cranberry NDM has been

shown to inhibit enzyme activity which is involved in biofilm formation (Steinberg et al. 2004).



12

Table 2. Berry and fruit material with antiadhesive effect against bacterial pathogens in vitro and ex vivo.

Bacteria Disease Berry material Reference

E. coli (type 1
fimbriated)

urinary tract
infections
(UTI)

cranberry cocktail,
cranberry, orange, and
pineapple juice

Zafriri et al. 1989

E. coli (type P
fimbriated)

UTI blueberry oligomeric PACs Schmidt et al. 2004

cranberry juice cocktail Howell and Foxman 2002

cranberry PACs Foo et al. 2000a/b

cranberry PAC extract Howell et al. 1998

cranberry cocktail NDM Zafriri et al. 1989

Enterohemorrhagic
E. coli (EHEC)

gastrointestinal
infections

guava lectin Coutiño-Rodríguez et al.
2001

Uropathogenic E.
coli (UPEC)

UTI cranberry powder capsules Howell et al. 2010

cranberry juice Di Martino et al. 2006

cranberry and blueberry
juice

Ofek et al. 1991

cranberry juice cocktail Sobota 1984

H. pylori gastric ulcer black currant seed high-
molecular weight
polysaccharides

Lengsfeld et al. 2004

cranberry juice NDM Shmuely et al. 2004

cranberry juice NDM Burger et al. 2000

Oral bacteria dental decay molecular size fractions of
berry juices

Riihinen et al. 2011

cranberry polyphenol
fraction

Yamanaka-Okada et al. 2008

cranberry juice Yamanaka et al. 2004

cranberry and blueberry
juice NDM

Weiss et al. 2002

cranberry juice NDM Weiss et al. 1998

P. gingivalis periodontitis cranberry juice NDM Labrecque et al. 2006

S. mutans dental decay cranberry PACs Koo et al. 2010
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cranberry PACs and
FLAVs

Duarte et al. 2006

cranberry juice Koo et al. 2006

S. pneumoniae respiratory
infections

bilberry, cranberry, and
crowberry juice fractions

Huttunen et al. 2011

S. sorbinus dental decay cranberry juice NDM Steinberg et al. 2005

cranberry juice NDM Steinberg et al. 2004

cranberry NDM Weiss et al. 2004

Clinical trials have shown the efficacy of cranberry in women with recurrent urinary tract

infection  (UTI)  (Table 3),  but  not  in  other  groups  of  patients  such  as  people  with  spinal  cord

injuries or neuropathic bladder needing cathedrisation (Lee et al. 2007, Linsenmeyer et al. 2004,

Waites et al. 2004, Schlager et al. 1999, Foda et al. 1995). Consumption of cranberry juice may not

be acceptable over long periods of time as the drop-out rates have been quite high (Weites et al.

2004, Foda et al. 1995, Haverkorn 1994). For example the optimum dosage or method of

administration (e.g. juice, tablets or capsules) remains unclear.

Table 3. Berry and fruit material with antiadhesive effect against bacterial pathogens in vivo.

Bacteria Disease Berry material Effect Reference

E. coli urinary tract
infections
(UTI)

cranberry juice
concentrate

prevention of
recurrent
symptomatic UTI

Ferrara et al. 2009

cranberry extract
capsules

no difference on
risk to develop UTI
between cranberry
and antibiotic
profylaxis

McMurdo et al.
2009

concentrated cranberry
extract capsules

prevention of
recurrent UTI

Bailey et al. 2007

cranberry tablets no preventative
effect on UTI

Lee et al. 2007

cranberry juice no effect on
incidence of
symptomatic UTI

McMurdo et al.
2005

cranberry tablets no preventative
effect on UTI

Linsenmeyer et
al. 2004
continues on page 14
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continued from page 13

concentrate cranberry
juice capsules

no reduction in
bacteriuria or
pyuria

Waites et al. 2004

cranberry juice and
concentrated cranberry
tablets

decrease in the
incidence of
symptomatic UTI

Stothers 2002

cranberry-lingonberry
juice

decrease in the
incidence of
recurrent UTI

Kontiokari et al.
2001

cranberry juice reduced biofilm
formation

Reid et al. 2001

cranberry concentrate no effect on
bacteriuria

Schlager et al.
1999

cranberry capsules prevention of
recurrent UTI

Walker et al. 1997

cranberry juice cocktail no preventative
effect on UTI

Foda et al. 1995

cranberry juice cocktail decrease in the
incidence of
recurrent UTI

Avorn et al. 1994

cranberry juice fewer occurrence of
UTI

Havernkorn et al.
1994

H. pylori gastric ulcer cranberry juice suppression of
helicobacter
infection

Zhang et al. 2005

cranberry juice clearance of
helicobacter
infection in mice

Xiao and Shi 2003

S. mutans dental decay cranberry PAC reduced dental
caries development
in rats

Koo et al. 2010

mouthwash with
cranberry juice NDM

reduced salivary
mutans counts

Weiss et al. 2004

cranberry reduced salivary
mutans counts

Weiss et al. 2002

Respiratory
pathogens
and colonic
bacteria

respiratory
and enteric
infections

cranberry juice no effects on
infection rates or
nasopharyngeal
carriage

Kontiokari et al.
2005
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Only a few clinical trials for other bacterial infections have been conducted though there are

some positive results for H. pylori and S. mutans (Table 3).

2.2 Neisseria meningitidis

2.2.1 Neisseria meningitidis as pathogen

Neisseriae are extracellular gram-negative diplococcal bacteria. Neisseria meningitidis,

meningococcus, and Neisseria gonorrhoeae, gonococcus, are significant human pathogens but also

the non-pathogenic species such as Neisseria lactamica, Neisseria mucosa, Neisseria polysaccharea,

Neisseria sicca, Neisseria subflava, Neisseria perflava, Neisseria flava and Neisseria flavescens may cause

opportunistic infections in immunosuppressed individuals (Feder et al. 1984).

Humans are the only carriers of N. meningitidis and bacteria may colonize the nasopharynx of

up to 10% of healthy individuals without evoking any symptoms (Stephens 1999). The duration of

carriage varies from transient of a few months to persistent, and it is likely that most individuals

are colonized with meningococci at some period during their life. Since there are those

asymptomatic carriers, bacteria can spread person to person in close contact through droplets of

respiratory or throat secretions. In a small proportion of people, probably due to genetic

predisposition, meningococci can invade the bloodstream and cause meningococcal septicemia.

Fulminant meningococcal septicemia is a very acute infection with a mortality rate as high as 20–

80% (van Deuren et al. 2000). Patients with fulminant meningococcal septicemia may develop

septic shock, multiorgan failure, hypotension, purpuric rash (petechiae), and disseminated

intravascular coagulation (Namork and Brandtzaeg 2002, Riedo et al. 1995). In this disease, the

endotoxin (LPS) levels in plasma can be very high.

Bacteria are also able to cross the blood-brain-barrier. They can gain access to cerebrospinal

fluid, CSF, invade the subarachnoid space of brain (Hardy et al. 2000, Nassif 2000), and cause

meningococcal meningitis (Nassif 1999, Nassif and So 1995). The classical symptoms of meningitis

are acute high fever, stiff neck, and headache (Riedo et al. 1995). A mortality rate of 5 to 15% is

associated with meningococcal meningitis even if treated with antibiotics and intensive care (Riedo

et al. 1995). Sensorineural hearing loss or impaired vestibular functions are comparatively frequent

after meningococcal disease (Naess et al. 1994). Since acute meningococcal diseases can be fatal

within a few hours after the appearance of the first symptoms in previously healthy subjects
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(Namork and Brandtzaeg 2002, van Deuren et al. 2000, Riedo et al. 1995) rapid diagnosis and

prompt antibiotic treatment are important.

Encapsulated N. meningitidis is clinically the most important meningococcal phenotype. During

dissemination from the site of colonization, polysaccharide capsule expression is switched off and

once in blood it is switched on again to protect the bacterium from phagocytosis and to allow the

micro-organism to survive in the bloodstream (Nassif 1999). The outer membrane containing

lipopolysaccharides and outer membrane proteins (OMP) lies beneath the capsule. There is a

cytoplasmic membrane situated under the peptidoglycan cell wall. Based on the structure of

capsular polysaccharide, meningococci are grouped into 13 serogroups: A, B, C, D, 29E, H, I, K, L,

Y, W-135, X, and Z and more than 90% of meningococcal diseases are caused by serogroups A, B,

C, W-135, X, and Y (Brigham and Sandora 2009).

Serogroups B and C are the most likely cause of meningococcal disease in the developed

countries, especially in Europe. Serogroup B is the most common, accounting for about 2/3 of all

meningococcal invasive diseases in the European Union and approximately 1/3 of disease in the

United States (Pillai et al. 2005). In North America, serogroups Y and W-135 are responsible for

most of the infections (Riordan 2010). Epidemic meningococcal disease in developing countries is

mainly due to serogroup A. The largest and most frequently recurring outbreaks have occurred in

the semi-arid area of sub-Saharan Africa, known as the African meningitis belt stretching from

Senegal to Ethiopia (Greenwood 1999). Within the meningitis belt, meningococcal disease occurs in

epidemic cycles which last between 5 to 10 years.

Due to the rapid progression of meningococcal disease, rapid diagnosis and immediate

antibiotic treatment are crucial. In most cases, patients are treated with parenteral administration

of �-lactam antibiotics (Chaudhuri et al. 2008). Chloramphenicol may be used for patients allergic

to penicillins (Ferguson et al. 2002). However, decreased susceptibility or resistant strains have

been reported for penicillin (van Deuren et al. 2000, Dillon et al. 1983), chloramphenicol (Galimand

et al. 1998), ciprofloxacin (Shultz et al. 2000), rifampicin (Yagupsky et al. 1993), and tetracycline

(Winterscheid et al. 1994).

Antibiotics are also used for prophylaxis for high-risk contacts to eradicate any nasopharyngeal

carriage of N. meningitidis. One dose of ciprofloxacin, cetriaxone or azithromycin, or rifampicin for

two days is recommended for household contacts, persons in day care, individuals with direct
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exposure to the secretions of an index case, persons who have been frequently exposed to an index

patient by eating or sleeping with the patient or health care professionals who have been exposed

to mouth or throat secretions (Ruotsalainen et al. 2009).

Meningococcal diseases caused by serogroups A, C, Y, and W-135 can be readily prevented by

monovalent or multivalent polysaccharide vaccines and conjugate vaccines. However, the

polysaccharide vaccines which are based on high-molecular-weight capsular polysaccharides

(Gotschlich et al. 1969) do not induce T cell-dependent immunity. They are poorly immunogenic in

children less than two years old (Al-Mazrou et al. 2005) and fail to elicit an immunological

memory. However conjugate vaccines using diphtheria or tetanus toxoid as a carrier of

polysaccharide antigens can provide immunological protection also for infants and they have been

shown to elicit significantly higher and more persistent serum bactericidal antibody responses

than the polysaccharide vaccine (Snape et al. 2008).

No effective vaccine is available against serogroup B meningococci which are responsible for

the majority of meningococcal diseases in the developed countries. The poor immunogenicity and

its similarity to glycosylated antigens on human cells have complicated the development of an

effective and safe vaccine. The polysaccharide capsule of serogroup B is a homolinear polymer of

�(2�8) linked N-acetylneuraminic acid (poly�2-8NeuAc) (Finne et al. 1983) and it has been found

to be non-immunogenic (in men, rabbit or mice) even when conjugated to a protein carrier most

likely due to its similarities to the polysialic acid units of the neural cell-adhesion molecule (N-

CAM). Additionally, monoclonal IgG antibodies against the polysaccharide capsule of serogroup B

cross-react with neural and extraneural tissues (Finne et al. 1987). Therefore, vaccination based on

polysaccharide of N. meningitidis serogroup B may lead to autoimmune reactions and have serious

unwanted effects (Finne et al. 1987). Several group B vaccine candidates, mainly based on bacterial

outer membrane vesicles or proteins, have been investigated in clinical and preclinical trials as

recently reviewed by Granoff (Granoff 2010). However, these vaccines seem to elicit only narrow

strain-specific complement-mediated bactericidal activity directed against the strain which had

been used to prepare the vaccine.
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2.2.2 Adhesion mechanisms

Human specificity poses a problem if one wishes to develop animal tests to model the

pathogenic mechanisms behind meningococcal diseases. Although the molecular mechanisms of

the attachment of N. meningitidis to the cells are not yet fully understood, the major adhesins of N.

meningitidis include type IV pili which provide specific interactions with non-ciliated cell of the

nasopharyngeal epithelium in encapsulated strains (Nassif 1999, Pujol et al. 1997, Pinner et al.

1991) and the outer membrane opacity proteins, Opa and Opc (Figure 3). Type IV pili are widely

found in gram-negative bacteria and they play an important role also in the movement of

bacterium on solid surfaces referred to as twitching motility (Mattick 2002) These proteins are also

involved in extracellular protein secretion (Lu et al. 1997), in the transfer of genetic material

(Mattick 2002), and in bacteriophage adsorption (Soto and Hultgren 1999).

Figure 3. The possible attachment mechanisms of N. meningitidis: outer membrane proteins (A), pilin

protein (B) or tip-located PilC protein (C) bind to the oligosaccharide structures of surface receptor of host

cell. According to Nassif 1999.

Type IV pili are long and flexible filamentous, hair-like protein structures comprising of

thousands of copies of a single subunit, pilin (Craig et al. 2006). N. meningitidis type IV pilus is 500–
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6000 nm in length and approximately 4–6 nm in diameter (Stephens et al. 1985). The major

structural subunit is a 17-21 kDa pilin protein (PilE) (Stephens et al. 1985). Genetic analyses have

identified 15 proteins involved in the biogenesis, assembly, and disassembly of meningococcal pili

(Carbonnelle et al. 2006). The mechanical stability that is an essential property of the type IV pili is

achieved by pilus central layer �-sheet hydrogen bonding (Forest and Tainer 1997). Subunits are

assembled such that only the hypervariable and sugar-binding regions are exposed and this kind

of assembly of pilin subunits is considered to account for the antigenic variation of pilin (Soto and

Hultgren 1999). This antigenic variation due to the amino acid changes in the hypervariable

regions and phase variation, i.e. a reversible switching of gene expression on and off (Meyer and

van Putten 1989), are devices to modulate surface antigenic make-up and they can occur very

quickly to evade the host immune responses and control the expression of adhesins.

Pilin undergoes various post-translational modifications, such as glycosylation which

potentially affect its cellular interactions (Virji 1997). The two common post-translational

modifications of N. meningitidis pilin are the rather unusual O-linked trisaccharide Gal�1-4Gal�1-

3[2,4-diacetamido-2,4,6-trideoxyhexose] attached to Ser or Thr (Stimson et al. 1995) and �-

glycerophosphate, a unique substituent at Ser93 (Stimson et al. 1996). Ser68 may also be modified

with phosphoethanolamine or phosphorylcholine (Hegge et al. 2004, Weiser et al. 1998). These

modifications lie within negative patches in the assembled pili and their variations are belived to

modulate the adhesion properties of the pilus (Craig et al. 2006).

Certain pilin variants contribute to high-adhesive phenotype by enhancing interbacterial

interactions via pilus bundling (Marceau et al. 1995). Groups of 8-10 pili may associate in a bundle

and act as coordinated retractable units. The successive extension, binding and retraction of type

IV pili enable bacteria to move by twitching motility and spread on the apical surface of the host

cells.

In addition to pilin, N. meningitidis pili consist of 110 kDa pilus associated protein, PilC, located

at the tip of the pili (Rudel et al. 1995). Most pathogenic Neisseria express two PilC variants, PilC1

and PilC2, which are independently expressed from separate loci and distinctly regulated (Taha et

al. 1998, Jonsson et al. 1995). Both PilC proteins play a role in piliation as both PilC1–/PilC2+ and

PilC1+/PilC2– strains are piliated and a null mutation to both pilC genes can abolish piliation

(Nassif et al. 1994). PilC proteins also play a crucial role in adherence as major regulators of
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meningococcal adhesion and pilus retraction (Morand et al. 2004). PilC protein has been postulated

to carry the cell binding domain as inhibition of adhesion was achieved using purified PilC

molecules (Rudel et al. 1995). However, non-adhesive non-piliated isolates of serogroup B strain

meningococci with high PilC expression and piliated adhesive isolates with barely detectable PilC

expression have been described as well (Virji et al. 1995). The most recent results show that both

PilC1 and PilC2 are capable of mediating adhesion independently (Morand et al. 2009). PilC1

enables meningococcal attachment to many epithelial or endothelial cells whereas PilC2 selectively

mediates adhesion to a more restricted range of cell types. They also elicit different structural and

signalling responses in the host cell. The independent regulation of both PilC variants in wild type

bacteria could enable meningococci to sequentially modulate the host cell response in a controlled

manner depending on the cellular diversity of each ecological niche.

CD46 is a transmembrane glycoprotein which regulates complement activation. CD46 has been

proposed to be involved in binding of type IV pili of pathogenic Neisseriae to host cells (Källström

et al. 1997) and mediating N. meningitidis passage through blood-brain barrier assisting the

bacterium gain access to the meninges (Johansson et al. 2003). However, these observations are not

supported by some reports (Kirchner et al. 2005, Tobiason and Seifert 2001) suggesting that other

cellular components in addition to CD46 are likely to be responsible for the interactions between

pili and human barrier cells.

N. meningitidis is capable of modulating host cell signalling machinery through pili (Opitz et al.

2009). Pili-mediated adhesion induces cytoskeleton re-arrangements as well as modification of

global intracellular signalling networks (Lambotin et al. 2005, Hoffmann et al. 2001). This

exploitation of the host-cell signalling pathways could be pivotal in promoting intimate

attachment to the cell surface, avoiding bacterial detachment under flow conditions in the

nasopharynx as well as in the blood (Mikaty et al. 2009, Mairey et al. 2006). Signalling leads to the

formation of microvilli-like structures, cortical plaques, at the site of bacterial attachment (Merz et

al. 1999) and it facilitates the invasion process. Extension and cellular attachment followed by

retraction or disassembly of the pili may decrease the distance between the bacterial and

eukaryotic membranes, thereby enabling more intimate cellular interactions via integral outer

membrane adhesins.
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In addition to pili which mediate adhesion in encapsulated strains, several other meningococcal

adhesins have been described (Table 4). The most widely studied are the meningococcal integral

outer membrane opacity proteins, Opa and Opc, which further aid pili-facilitated adhesion to host

cells. These proteins are basic in nature and that may enable better targeting of the host receptors

as the net negative charge of the host cell surface creates a charge barrier against the negative

charge present on most bacterial  surfaces.  Both of  these adhesins are also known to bind to host

glycans and proteins through specific interactions that are not entirely dependent on electrostatic

charge. Capsule decreases Opa- and Opc-mediated adhesion and invasion which may be due to

the physical masking of adhesins, or to modifications of charge or hydrophobicity. The

inaccessibility of these adhesins in the meningococcal cell surface may become important during

the later stages of the infection as strains isolated from the blood or the CSF are usually

encapsulated.

Opa proteins are transmembrane molecules forming eight-stranded �-barrel structures with

two hypervariable, one semivariable and one invariant surface-exposed loops (Malorny et al.

1998). Several complete copies of opa genes have been found in N. meningitidis. Each opa gene is

expressed independently giving rise to Opa antigenic variation (Hobbs et al. 1998, Aho et al. 1991),

generating an enormous number of Opa variants. However, only specific Opa variants seem to be

prevalent in N. meningitidis isolates (Callaghan et al. 2006).

Opc (OpcA) is encoded by a single gene and is relatively invariant in structure. It is a 10-

stranded �-barrel protein with five surface exposed loops (Zhu et al. 1999, Olyhoek et al. 1991,

Achtman et al. 1988). The levels of Opc expressed may be modulated by a transcriptional control

mechanism (Sarkari et al. 1994). The expression of Opc has been speculated to be associated with

the ability of N. meningitidis to cause meningitis (Unkmeir et al. 2002).

Both Opa and Opc bind to two common negatively charged molecules, heparan sulphate

proteoglycans (HSPG) and sialic acids (Moore et al. 2005, de Vries et al. 1998) but they also show a

degree of  receptor specificity towards pyranose saccharides and maltose,  lactose,  and sialic  acid-

containing oligosaccharides (Moore et al. 2005). Opa can also interact with carcinoembryonic

antigen-related cell adhesion molecules (CEACAM) which belongs to the immunoglobulin

superfamily (Virji 1996). One of the responses to inflammatory cytokines is the up-regulation of

CEACAM1 and this may increase Opa-mediated binding and promote bacterial invasion of human
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epithelial cells (Griffiths et al. 2007). Opc can also bind to vitronectin and fibronectin, which are

proteins present in the extracellular matrix (Unkmeir et al. 2002, Virji et al. 1994).

The recent genome sequencing of N. meningiditis has revealed several additional minor adhesins

and related proteins (Table 4). They are generally expressed at low levels in vitro and are several

orders of magnitude less effective in mediating interactions with target cells compared with pili or

the opacity proteins. Nonetheless, they may be important in vivo as they may operate

simultaneously to increase the avidity of bacterial binding to the host cell surface.

Autotransporter proteins include NhhA (Neisseria hia homologue A) and App (adhesion and

penetration protein). The capsule has no interfering effect on adhesion mediated by NhhA or App

(Scarselli et al. 2006, Serruto et al. 2003). NhhA-mediated adhesion has been described to epithelial

cells, heparan sulphate proteoglycans, and laminin (Scarselli et al. 2006). App is believed to aid

bacterial colonization by contributing to the initial adherence to eukaryotic cells or by helping to

achieve a more intimate contact between the meningococcus and the cell surface (Serruto et al.

2003).

Outer membrane-localized FBA (fructose-1,6-bisphosphate aldolase) is a highly conserved

protein that is required for optimal adhesion of meningococci to human cells (Tunio et al. 2010).

HrpA/HrpB (haemagglutin/haemolysin-related proteins) is a two partner secretion system

found in all meningococcal strains which favour bacterial adhesion to some epithelial cell lines

(Schmitt et al. 2007) and which are essential for intracellular survival of N. meningitidis (Talà et al.

2008).

MspA (meningococcal serine protease A) mediates adhesion to both epithelial and endothelial

cells (Turner et al. 2006) and it is expressed by several virulent strains.

NadA (neisserial adhesin A) has an N-terminal globular region that interacts with an

unidentified protein receptor on epithelial cells (Capecchi et al. 2005). It is expressed in several

hyper-virulent lineages and its expression is phase variant (Comanducci et al. 2004).

NspA (neisserial surface protein A) is a highly conserved basic �-barrel protein with four

surface exposed loops. It is a homolog of Opa proteins but not phase variable (Vandeputte-Rutten

et al. 2003). These potential binding sites for hydrophobic ligands such as lipids are still to be

characterized in detail.
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Table 4. Adhesins of Neisseria meningitidis.

Adhesin Mass Receptor Reference

Pilus adhesins:

Pilin (PilE) 17–21 kDa CD46? Nassif et al. 1994,
Källström et al. 1997

PilC 110 kDa CD46? Taha et al. 1998,
Källström et al. 1997

Non-pilus adhesins:

Opa 24–35 kDa CEACAM1, HSPG, sialic
acid

Aho et al. 1991, Moore
et al. 2005, de Vries et
al. 1998, Virji 1996

Opc 24–35 kDa HSPG, sialic acid,
vitronectin, fibronectin

Olyhoek et al. 1991,
Moore et al. 2005,
Unkmeir et al. 2002, de
Vries et al. 1998, Virji
et al. 1994

NhhA (Neisseria hia
homolog A)

57 kDa Laminin, HSPG Scarselli et al. 2006

App (adhesion and
penetration protein)

160 kDa uncharacterized protein Serruto et al. 2003

FBA (fructose-1,6-
bisphosphate aldolase)

38 kDa unknown Tunio et al. 2010

HrpA
(haemagglutin/heamolysin-
related protein A)

180 kDa unknown Schmitt et al. 2007
Talà et al. 2008

MspA (meningococcal
serine protease A)

157 kDa unknown Turner et al. 2006

NadA (neisserial adhesin
A)

38 kDa uncharacterized protein Capecchi et al. 2005
Comanducci et al. 2004

NspA (neisserial surface
protein A)

18 kDa uncharacterized lipid Vandeputte-Rutten et
al. 2003
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2.3 Streptococci

2.3.1 General

Streptococci are gram-positive bacteria of which over 100 species have been characterized so far

(Nobbs et al. 2009). Different streptococcal species adhere selectively to different sites in the human

body, this being based on the expression of various adhesins. The diseases caused by streptococci

range from middle ear infections, pharyngitis, and dental caries to meningitis and necrotizing

fasciitis (Nobbs et al. 2009). However, many streptococcal species are members of the commensal

microflora, present on mucosal surfaces and generally causing no harm.

Streptococcal adherence and colonization are complex multilevel processes. Gram-positive

bacteria, like streptococci, have a more extensive and complex surface proteome than gram-

negative bacteria. This enables multiple interactions with different host components. Due to the

diverse adhesin-receptor interactions with their different affinities, it has been difficult to

characterize involved the adhesins in these processes. Antibodies generated to specific surface

proteins may only have a minor effect on streptococcal adherence and single-gene knockouts may

reveal very little about mechanisms of adhesion.

It has been postulated that multiple streptococcal adhesins with differing affinities for the

eukaryotic cells act in two steps (Hasty et al. 1992). The first interaction is relatively weak and

reversible and it is mediated by components of the cell wall. The second interaction involves

proteins and this leads to a firm adhesion of bacteria to eukaryotic cells.

Several streptococcal surface proteins are known to be involved in binding to various

extracellular matrix (ECM) proteins (Nobbs et al. 2009). These proteins attach bacteria to the ECM,

which acts as a bridge between streptococci and host cells. The ECM is a stable macromolecular

structure underlying epithelial and endothelial cells and surrounding connective tissue cells

(Westerlund and Korhonen 1993). Its composition varies in the different organs, but the main

components are fibronectin, collagen, elastin, laminin, and glycosaminoglycans. Many of these

proteins can potentially serve as surface receptors for bacterial binding to host cells via their

adhesins (Westerlund and Korhonen 1993). The most widely described interaction is the binding

with fibronectin (Joh et al. 1999), which is a large dimeric glycoprotein present in the ECM in a

fibrillar form. All streptococci express fibronectin binding proteins (Nobbs et al. 2009).
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 2.3.2 Streptococcus pneumoniae

Streptococcus pneumoniae, pneumococcus, is a facultative anaerobic diplococcal human pathogen

which causes severe infections such as meningitis, septicemia, pneumonia as well as the less severe

but more frequent otitis media, sinusitis or recurrent bronchitis (Bogaert et al. 2004).

Pneumococcus is transmitted through respiratory droplets between individuals. From the

nasopharynx, pneumococci gain access to the sinuses and middle ear cavity or to the lungs.

Invasive pneumococcal disease occurs after the bacteria pass into the blood and/or the blood-

brain-barrier.

Pneumococcus  is  a  leading  cause  of  morbidity  and  mortality  among  children  worldwide,

particularly in the developing countries. Pneumococcal infections are considered as only second to

malaria in importance in the World Health Organization´s list of serious infectious diseases. It is

estimated that 10.6 million children less than 5 years suffer pneumococcal disease every year and

these infections kill about one million children in the world annually (Bogaert et al. 2004, Black et

al. 2003).

Like many other species of streptococci, S. pneumoniae is also part of the commensal microflora

found on mucosal surfaces. The bacterium is frequently carried asymptomatically in the

nasopharynx of small children, and even as high carriage rates as 60% have been described

although the carriage rate varies greatly for instance with age, seasonality, and geography (Bogaert

et al. 2004). The highest frequency of pneumococcal colonization is found in crowded communities

such as in hospitals and day-care centres with young children being considered to be the most

important vector for horizontal spread of pneumococcal strains within the community (Principi et

al. 1999, Reichler et al. 1996). Therefore, prevention of nasopharyngeal colonization especially in

children is an important part of any strategy to prevent pneumococcal disease.

The encapsulated strains of S. pneumoniae are virulent as they are able to invade lungs and they

are not easily removed by phagocytosis (Jonsson et al. 1985). The capsular polysaccharides on the

surface of pneumococcus are highly heterogenous and 40 serogroups consisting of over 90

capsular serotypes have been described (Joloba et al. 2010). The most common serogroups

worldwide are 6, 14, 19, and 23 (Hausdorff et al. 2000); 20 serotypes are responsible for more than

80 % of invasive pneumococcal disease (Lynch and Zhanel 2009). The cell wall under the capsule

consists of polysaccharides and teichoic acid.
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The two types of currently licensed vaccines (Bridy-Pappas et al. 2005) are the pneumococcal

polysaccharide vaccine which is based on purified capsular polysaccharides, and the

pneumococcal conjugate vaccine in which the capsular polysaccharides are chemically conjugated

to a protein carrier. The 23-valent pneumococcal vaccine contains 23 serotypes that comprise

approximately 90 % of the most frequent isolates. Since September 2010, the 10-valent conjugate

vaccine has been included in the national vaccination program of children in Finland. Surface

protein based newer vaccine approaches have been developed and animal and clinical trials have

been promising (Hamel et al. 2004, Briles et al. 2000).

Penicillins have been the main antibiotics used for the treatment of pneumococcal infections.

However, the development of antibiotic resistance has complicated the treatment of pneumococcal

infections. Resistance to essential antimicrobials such as the penicillins and other �-lactam

antibiotics, fluoroquinolones, tetracyclines, trimethoprim, cephalosporins, and macrolides is a

serious and rapidly spreading problem worldwide (Whitney et al. 2000). High-dose �-lactam

antibiotics (penicillins, second or third generation cephalosporins) are used to overcome resistance

mechanism (Yu et al. 2003).

Different pneumococcal strains vary in the composition, expression, and exposure of their

surface-associated proteins and this has been shown to associate with variation in colonization and

invasion capabilities between the strains. Reversible phenotypic variation within pneumococcal

strains has a role in host interactions; the transparent phase variants have been demonstrated to

show increased colonisation compared to the opaque variants (Weiser et al. 1994). The variation is

associated with lower expression of capsule polysaccharides and higher expression of certain cell-

surface proteins and carbohydrate-containing cell-wall structures (Weiser and Kapoor 1999,

Weiser et al. 1996).

The capsule of Streptococcus pneumoniae is crucial during colonization, invasion, and

dissemination from the respiratory tract. Surface proteins contribute to the hydrophobic and

electrostatic surface characteristics of pneumococci and might facilitate adherence to host cells

partly through non-specific, physicochemical interactions (Swiatlo et al. 2002). Pneumococcal

neuraminidase improves pneumococcal colonisation by cleaving N-acetylneuraminic acid (sialic

acid) from mucin and decreasing the viscosity of the mucus (Tong et al. 2000). It also cleaves

glycolipids, glycoproteins, and oligosaccharides, and exposes the N-acetyl-glycosamine receptors
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on the non-inflamed resting host epithelial cells which can interact with pneumococcal surface-

associated proteins leading to asymptomatic colonization (Tong et al. 2000). Glycoconjugates

containing the disaccharide units Gal�1-4GlcNAc�1-3Gal, GalNAc�1-4Gal, and GalNAc�1-3Gal

have been proposed as pneumococcal cell receptors, which exist on normal resting respiratory

epithelial cells, type 2 lung cells, and endothelial cells (Tuomanen 1997, Cundell et al. 1995,

Andersson et al. 1983). The conversion of asymptomatic colonization to invasive disease may be

due to the local generation of inflammatory factors such as interleukin 1 and tumour necrosis

factor, as seen in the presence of viral infections (Tuomanen 1997). The inflammatory cascade may

change the type and number of receptors on target epithelial and endothelial cells.

Pneumococcal cell-wall phosphorylcholine (ChoP) (Table 5)  has  been  shown  to  bind  to  the

platelet-activating-factor receptor (PAFr) that is upregulated by cytokine stimulation during the

inflammatory response and viral infections, and this might explain the increased occurrence of

pneumococcal pneumonia following viral infection (Cundell et al. 1995). The adherence of

pneumococci to lung epithelial cells increases in the presence of human IgA. Pneumococcal IgA1

protease cleaves IgA, which results in neutralisation of the surface charge and increases the

physical proximity of ChoP to the PAFr (Weiser et al. 2003, Ring et al. 1998). This binding process

promotes the transcellular migration of pneumococci through respiratory epithelium and vascular

endothelium, resulting in invasion of living bacteria (McCullers and Rehg 2002, Cundell et al.

1995).

CbpA (also referred to as PspC or SpsA), one of the choline-binding proteins on the

pneumococcal cell-surface, is involved in the adhesion of bacteria to the nasopharynx (Rosenow et

al. 1997). CbpA directly interacts with the polymeric immunoglobulin receptor (pIgR) in a human-

and cell-specific manner and mediates translocation of pneumococci across mucosal respiratory

epithelial cells (Brock et al. 2002, Hammerschmidt et al. 2000, Zhang et al. 2000). CbpA gene

expression is upregulated in pneumococci during attachment to nasopharyngeal epithelial cells

(Orihuela et al. 2004). CbpA has increased affinity for immobilised sialic acid and lacto-N-

neotetraose in cytokine-activated human cells (Rosenow et al. 1997). There are also other choline-

binding proteins, CbpD, CbpE, CbpG, LytB, and LytC, which promote colonization of the

nasopharynx (Gosink et al. 2000).

Pneumococcal adherence and virulence factor A (PavA), a protein present on the surface of

pneumococcus, has been shown to bind to the immobilized form of the adhesive glycoprotein
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fibronectin (van der Flier et al. 1995). PavA is also essential for fibronectin-independent adherence

of pneumococci (Pracht et al. 2005). Instead of acting directly as an adhesin, PavA has been

proposed to be involved in modulating other unidentified virulence determinants of pneumococci.

However, another surface-exposed pneumococcal adherence and virulence factor, PavB, which

interacts with fibronectin and plasminogen, was recently postulated as being a pneumococcal

adhesin since it contributes to pneumococcal colonization and infections of the respiratory airways

(Jench et al. 2010).

It has been suggested that pneumococcal surface antigen A (PsaA), a metal-binding lipoprotein,

functions directly as an adhesin (Zhang et al. 2000). PsaA is upregulated in pneumococci which are

attaching to nasopharyngeal cells as shown in microarray analysis (Orihuela et al. 2004) and it

binds to nasopharyngeal cells through an interaction with E-cadherin, a transmembrane

glycoprotein involved in calcium-dependent associations between cells (Anderton et al. 2007).

Sortase A (SrtA) is a membrane-anchored transpeptidase which anchors surface proteins

containing the LPXTG (Leu-Pro-X-Thr-Gly) motif to the bacterial cell wall peptidoglycan (Paterson

and Mitchell 2004). S. pneumoniae SrtA has been claimed to play a role in attachment to pharyngeal

cells (Kharat and Tomasz 2003) and in nasopharyngeal colonization (Paterson and Mitchell 2006).

Pili in gram-positive bacteria have been discovered only recently and investigations are still in

their infancy. Gram-positive pili are extended polymers assembled from covalently cross-linked

pilin subunits and tethered to the cell wall peptidoglycan (Telford et al. 2006). Pneumococci

encode at least two types of pili that play a role in the initial host cell contact to the respiratory

tract. Pili of S. pneumoniae serotype 4 are approximately 6 nm wide flexible filaments that can be

over 1 μm long and they consist of three structural proteins (Hilleringmann et al. 2009). RrgB is the

major pilin subunit, RrgA and RrgC are present at the distal and the proximal ends respectively.

RrgA mediates the adhesion to host cells and RrgC has a putative role of cell wall anchoring. In

addition to pilus-mediated adherence, RrgA mediates adhesion even in the absence of polymeric

pilus  production  (Nelson  et  al.  2007).  The  second  pilus  found  in S. pneumoniae is composed of

polymers of the major pilus protein PitB which have been shown to mediate adhesion to

eukaryotic cells. Sortase SrtG1 and the signal peptidase-related protein SipA are necessary for

assembly and polymerization of the pilus (Bagnoli et al. 2008).
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Table 5. Adherence molecules of Streptococcus pneumoniae.

Adherence molecule Target Receptor Reference

ChoP
(phosphorylcholine)

epithelial cells PAFr Cundell et al. 1995

CpbA (choline-
binding protein)

nasopharynx choline, pIgR, sialic acid,
lacto-N-neotetraose

Zhang et al. 2000
Rosenow et al. 1997

PavA (pneumococcal
adherence and
virulence factor A)

fibronectin van der Flier et al.
1995

PavB (pneumococcal
adherence and
virulence factor B

respiratory
epithelia

fibronectin
plasminogen

Jench et al. 2010

PsaA (pneumococcal
surface antigen A)

nasopharynx E-cadherin Anderton et al. 2007
Orihuela et al. 2004

SrtA (sortase A) pharyngeal cells unknown Kharat and Tomasz
2003

Pilus respiratory
epithelia

unknown Hilleringmann et al.
2009
Bagnoli et al. 2008

2.3.3 Streptococcus agalactiae

Streptococcus agalactiae, also named as group B streptococcus or GBS, is an aerobic gram-positive

diplococcus that causes meningitis, pneumonia, and septicemia in newborns and their mothers

(Schuchat 2001). It is one of the most important infectious causes of neonatal morbidity and

mortality and the main cause of neonatal sepsis, pneumonia, and meningitis in Western Europe

and the United States, and an emerging pathogen in immunocompromised adults (Schuchat 2001).

S. agalactiae is also a significant cause of mastitis in dairy cattle being responsible for financial

losses for the farmers and the dairy industry (Jain 1979).

S. agalactiae is a member of the gastrointestinal normal flora in some humans (Mhalu 1976) and

it can spread to secondary sites such as the vagina and rectum of a pregnant woman and thus
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cause infections of the amniotic cavity. Rectovaginal GBS colonization has been reported to occur

in about 30% of women of childbearing age (Bliss et al. 2002, Votava et al. 2001). Infants are

colonised through aspiration of contaminated amniotic fluid or acquisition of the organism during

delivery and the bacteria can spread systemically to cause sepsis. This micro-organism can invade

both alveolar and epithelial cells (Gibson et al. 1993, Rubens et al. 1992).

Invasive GBS disease also has been frequently reported in adults with diabetes, neurological

impairment, breast cancer, and cirrhosis (Jackson et al. 1995). Its manifestations in adults include

soft tissue infections, bone and joint infections, pneumonia, or more infrequently endocarditis and

meningitis (Edwards and Baker 2005). Adults over 65 years of age are at the highest risk of death

from invasive GBS disease (Farley 2001).

There  are  currently  nine  known  serotypes  (Ia,  Ib,  II–VIII)  of  which  the  serotype  III  is

particularly important because it causes the majority of infections in neonates (Schuchat 1998). Five

GBS types (Ia, Ib, II, III and V) account for 96% of cases of neonatal and 88% of cases of GBS

invasive disease in adults (Phares et al. 2008).

One major difficulty in developing vaccines against S. agalactiae is the variety of serotypes

which seems to have distinct geographical distributions (Johri et al. 2006). In addition,

administration of the vaccine to pregnant women may be difficult because of the fear of causing

birth defects. Polysaccharide-protein conjugate vaccines have been developed for each of the major

disease-causing group B streptococcus capsular types (Ia, Ib, II, III, and V), and their safety and

immunogenicity have been evaluated in healthy nonpregnant adults and also in pregnant women

(Baker et al. 2007, Baker et al. 2003a, Baker et al. 2003b, Baker et al. 1999).

During the 1990s, the increased use of intrapartum antibiotic prophylaxis led to a notable

reduction in the incidence rate of early-onset disease which occurs before seven days of life (Schrag

et al. 2000). Intravenous penicillin is the first-line antibiotic for intrapartum prophylaxis as well as

for the treatment of infection (Schuchat 2001).  Clindamycin and erythromycin are recommended

for individuals who are allergic to penicillin, however, up to 32% of isolated strains have been

shown to be resistant to these agents (Phares et al. 2008).
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Adherence to the host pulmonary epithelium is the first step in GBS pathogenesis. The

polysaccharide capsule is the major virulence factor and the size of the capsule is subject to phase

variation (Sellin et al. 1995). Since the interactions of S. agalactiae with host  cells  are complex,  the

specific molecular interactions that are responsible for the adhesion and colonization of S. agalactiae

are still not fully understood.

The presence of Lmb, laminin-binding protein (Table 6), a surface-exposed lipoprotein

ubiquitous in all serotypes of S. agalactiae, has been shown to be a prerequisite for adherence of

GBS to human laminin, which is the major component of the basement membrane (Timpl 1989).

This binding is claimed to be essential for the bacterial colonization of damaged epithelium

(Spellerberg et al. 1999).

S. agalactiae surface proteins belonging to the Alp (�-like protein) family have been postulated

to bind human host cell glycosaminoglycans (Baron et al. 2004).

The FbsA protein promotes the binding of S. agalactiae to human fibrinogen, and fibrinogen-

binding epitopes within FbsA are involved in the adherence of S. agalactiae to epithelial cells

(Schubert et al. 2004).

Streptococcal C5a peptidase (ScpB), which is a surface-localized serine protease that inactivates

human C5a, a component of the human complement system, was reported to bind to fibronectin

and human epithelial cells (Beckmann et al. 2002, Cheng et al. 2002).

Spb1, surface protein of group B streptococcus 1, a protein expressed on the surface of S.

agalactiae, has been shown to contribute to the ability of S. agalactiae to adhere to epithelial cells

(Adderson et al. 2003).

Streptococcus agalactiae also interacts with keratin. Srr-1, the serine-rich repeat protein, is

localized on the surface of S. agalactiae cells. This protein was shown to be involved in adherence to

epithelial cells and there may also be an interaction with human keratin 4, a protein present also in

human saliva (Samen et al. 2007). Bacteria also bind to cytokeratin 8 (Tamura et al. 2000). It was

suggested that adherence of S. agalactiae to cytokeratin may be important for the maintenance of

colonization at sites of keratinized epithelium, such as the vagina, or for adherence to damaged

epithelial cells at other sites.

S. agalactiae pilus is composed of three structural subunit proteins: PilA (pilus associated

adhesin located at intervals along the pilus backbone), PilB (major pilus component), PilC (minor

pilus associated component mainly localized at the base of the pilus) (Dramsi et al. 2006). Recent
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results indicate that the pilus structure is necessary for optimal display of the PilA subunit at the

bacterial surface (Konto-Ghiorghi et al. 2009). However, PilA remains a functional adhesin even in

the absence of a pilus fiber. The von Willebrand adhesion domain of PilA is essential for its

adhesive function and it recognizes some specific, yet unidentified, ligand on epithelial cells.

Table 6. Adherence molecules of Streptococcus agalactiae.

Adherence molecule Target Receptor Reference

Lmb (laminin-binding
protein)

epithelial cells laminin Spellerberg et al. 1999

Alp (�-like protein)
family

epithelial cells glycosaminoglycans Baron et al. 2004

FbsA epithelial cells fibrinogen Schubert et al. 2004

ScpB (streptococcal
C5a peptidase)

epithelial cells fibronectin Beckmann et al. 2002

Spb1 (surface protein
of group B
streptococcus 1)

epithelial cells unknown Adderson et al. 2003

Srr-1 (serine-rich
repeat protein 1)

epithelial cells keratins Samen et al. 2007
Tamura et al. 2000

Pilus epithelial cells unknown Konto-Ghiorghi et al. 2009

2.3.4 Streptococcus suis

Streptococcus suis is a gram-positive facultative anaerobic pathogen which causes a wide variety

of infections in pigs such as meningitis, bronchopneumonia, pericarditis, arthritis, polyserositis,

septicemia, and abortion (Sanford and Tilker 1982). These bacteria can also be isolated from other

animals, such as ruminants, cats, dogs, and horses, and this strain is believed to be a commensal in

the intestinal flora (Devriese et al. 1992, Devriese et al. 1990, Hommez et al. 1988). S. suis can also

infect humans who are in contact with pigs or raw pork and cause meningitis (Agass et al. 1977),
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septicemia (Büngener and Bialek 1989), arthritis (Cheng et al. 1987) or endocarditis (Trottier et al.

1991) in these individuals.

S. suis can colonize tonsils (van Leengoed et al. 1987), upper respiratory tract (Brisebois et al.

1990) or nose (Flores et al. 1993), and transmission occurs via the respiratory route (Williams et al.

1973). The highest carrier rates occur in piglets between four and ten weeks of age, and it may

persist in the tonsils of carrier pigs for over one year and thus these carriers are infectious to other

pigs for a long time and they are a significant factor in the transmission of the disease (Clifton-

Hadley et al. 1984).

Thirty-five capsular serotypes (types 1–34 and 1/2) have been identified, but only a limited

number are responsible for infections in pigs, including serotypes 1–9 and 14 (Gottschalk et al.

2007). Serotype 2 is prevalent and most commonly associated with clinical disease (Wisselink et al.

2000).

The prevalence of morbidity and mortality from S. suis vary between herds. Morbidity can

range from less than 1% to more than 50%, although it rarely exceeds 5% (Guise et al. 1985,

Windsor 1977). With prompt and appropriate treatment, mortality in swine herds is usually low,

0–5% (Windsor 1977) but without treatment, mortality approaches 20% (Guise et al. 1985).

S. suis has frequently caused diseases all over the world; the most recent and largest recorded

epidemics ocurred in China in 2005 with 647 pig deaths and 215 reported cases of human disease,

39 of which were fatal (Yu et al. 2006).

Various types of vaccines have been developed for pigs, with varying protective efficacies.

Inactivated autogenous vaccine generated from virulent strains isolated from sick pigs is

commonly used in the pig industry (Haesebrouck et al. 2004). Due to the lack of safety and efficacy

data each new batch of an autogenous vaccine needs to be tried out on animals and critically

assessed before it can be released on a larger scale. Although the use of inactivated autogenous

vaccine is empirical, it can protect healthy pigs from S. suis infection and prevent the spread of this

disease in herds during outbreaks of S. suis infection. However, because of the large number of

capsular types, overall success with commercial vaccines may be difficult to achieve until specific

virulence factors contributing to the pathogenicity of the organisms are better characterized. At

present, there is no S. suis vaccine for humans.
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The treatment of choice for Streptococcus suis infections is penicillin (Gottschalk et al. 1991).

However, penicillin-resistant strains have been isolated (Gottschalk et al. 1991). S. suis is  also

sensitive to ampicillin, amoxicillin, ceftriaxone, and cephalosporin but strains highly resistant to

these antibiotics have also been reported (Aarestrup et al. 1998). Tiamulin has been used as

prophylaxis, and its addition to drinking water or feed can decrease the incidence of S. suis type 2

infection (Chengappa et al. 1990). However, in spite of treatment with antimicrobial agents, total

recovery of affected pigs is rarely achieved, and many die or suffer from deafness, blindness or

purulent arthritis (Windsor 1977). Prophylactic antibiotic treatment may select for resistant strains,

making the treatment of subsequent outbreaks much more difficult. Furthermore, most

antimicrobial therapies will not eliminate the S. suis carrier state in pigs (Spicer 2002).

Streptococcus suis is able to bind to endothelial and epithelial cells of porcine and human origin

(Benga et al. 2005, Lalonde et al. 2000). However, the specific mechanisms involved in these

interactions remain unknown. In addition, S. suis can use ECM proteins to potentiate its virulence

and it is able to adhere to fibronectin, fibrin, vitronectin, and laminin and different types of

collagens (Esgleas et al. 2005).

A fibronectin-fibrinogen-binding protein  (FBPS)  with  binding  capacity  for  these  two  host

proteins (Table 7) has been described for S. suis (de Greeff et al. 2002). However, the role of FBPS in

pathogenesis is not totally understood and it was proposed that FBPS may have a role in S. suis

colonization of various organs but not of the tonsils (de Greeff et al. 2002).

Enolase, a multifunctional glycolytic enzyme, can be localized also in bacterial cell surface and

it has been shown to play a critical role in the adherence of S. suis type 2 to epithelial cells (Feng et

al. 2009). Enolase binds to fibronectin (Esgleas et al. 2008).

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of S. suis is able to bind to different host

proteins  such  as  plasminogen  and  albumin  (Jobin  et  al. 2004, Quessy et al. 1997). The GAPDH

protein of S. suis seems to be involved in the first steps of the bacterial adhesion to host cells as

observed in an adherence assay with porcine tracheal rings (Brassard et al. 2004).

The S. suis cell wall surface protein, 6-phosphogluconate dehydrogenase (6PGD), has also been

shown to be involved in adhesion of S. suis type 2 to host epithelial cells (Tan et al. 2008).
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Streptococcus suis, like S. pneumoniae, possesses sortases. Sortase A (SrtA) in S. suis plays an

important role in bacterial colonization of host cells and adhesion to ECM proteins, fibronectin and

collagen type I (Vanier et al. 2008).

Galactose-(�1-4)-galactose terminating oligosaccharides have been shown to be optimal

receptors for S. suis and one galabiose-binding adhesin protein has been described (Tikkanen et al.

1995, Tikkanen et al. 1996). Two adhesin variants have been described, one which can be inhibited

by galactose and N-acetylgalactosamine (type PN) and the other blockable by galactose only (type

PO) (Haataja et al. 1994).

Recent results have revealed the presence of at least four discrete gene clusters in S. suis

encoding putative pili, and highly virulent invasive S. suis serotype 2 isolates express pili from this

cluster. However, it was postulated that pili might be redundant for the critical steps of the S. suis

pathogenesis of infection (Fittipaldi et al.  2010).

Table 7. Adherence molecules of Streptococcus suis.

Adhesin molecule Target Receptor Reference

FBPS (fibronectin-
fibrinogen-binding
protein)

fibronectin
fibrinogen

de Greeff et al. 2002

Enolase epithelial cells fibronectin Esgleas et al. 2008

GAPDH
(glyceraldehyde-3-
phosphate
dehydrogenase)

tracheal cells albumin
plasminogen

Jobin et al. 2004
Quessy et al. 1997

6PGD (6-
phosphogluconate
dehydrogenase)

epithelial cells unknown Tan et al. 2008

SrtA (sortase A) collagen
fibronectin

Vanier et al. 2008

Gal�1-4Gal –specific
adhesins

Gal�1-4Gal
terminating
oligosaccharides

Haataja 1994

Pilus unknown Fittipaldi et al.  2010
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3 Aims of the study

The general aim of the present study was to investigate milk, berries, and juices as sources of

antiadhesive agents against respiratory and meningitis-associated pathogens. The specific aims

were:

1. To develop an assay for studying the binding activities of Neisseria meningitidis pili to

glycoproteins, to isolate oligosaccharides from milk and to investigate their ability to

inhibit the binding of Neisseria meningitidis pili to glycoproteins. (I)

2. To prepare molecular-size fractions from several berries and berry and fruit juices and

analyze their sugar and polyphenol contents. (II, III)

3. To screen the binding activity of Neisseria meningitidis pili to berry and berry and fruit juice

fractions and to subfractionate the most active fractions. To study the antiadhesive effect of

selected berry or fruit material against meningococcal binding to human epithelial cells

under cell culture conditions. (II, IV)

4. To screen the binding activity of Streptococcus pneumoniae and Streptococcus agalactiae to

berry and berry and fruit juice fractions. (III)

5. To screen the hemagglutination inhibition activity of Streptococcus suis by berry fractions.

(III)
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4 Experimental

4.1 Chemicals

Details of commercially available chemicals are given in the original articles (I-IV). Bovine

thyroglobulin and chicken ovalbumin were purchased from Sigma Chemical (St. Louis, USA) and

agglutinin was purified from human parotid saliva as described in I.

4.2 Bacteria

4.2.1 Bacterial strains and culture

The bacterial strains and their pathogenic characteristics used in the present studies are

described in Table 8. Strains were maintained in 15% glycerol in Brain Heart Infusion at –80 °C.

For the experiments the bacteria were cultivated overnight as described in detail in the original

publications.

Table 8. Bacterial strains and their pathogenic characteristics.

Bacterial strain Origin Pathogenic characteristics Studies

I Human pathogens:

Neisseria meningitidis

C I 8013
isolated from blood meningitis, septicemia I, II, IV

Streptococcus pneumoniae

SB 53845
isolated from lung

acute otitis media,

meningitis, pneumonia,

sinusitis

III

Streptococcus agalactiae

B 133 IIIR
isolated from wound neonatal meningitis III

II Human and animal pathogen:

Streptococcus suis 836 isolated from lung septicemia, meningitis III
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4.2.2 Isolation and biotinylation of Neisseria meningitidis pili (I-II)

Isolation and biotin labelling of the meningococcal pili was carried out at 0 °C. Briefly, five

plates of the cultivated N. meningitidis were suspended in 10 mM Hepes buffer at neutral pH. After

vigorous mixing and centrifugation (8000 × g at 4 �C for 20 min), the supernatant was loaded onto

a 100 kDa cut-off Biomax Ultrafree-15 centrifugal filter device and centrifuged (1000 × g at 4 �C).

The concentrated solution was washed twice with 15 ml of 10 mM Hepes and concentrated by

centrifugation to a volume of 1 ml as described above.

Biotin labelling of the isolated pili was performed in PBS (pH 7.4) by using D-biotinoyl-�-

aminocaproic acid-N-hydroxysuccinimide ester according to the instructions of the manufacturer.

The biotin-labeled pili were stored at 4 �C.

4.2.3 Isolation and biotinylation of Streptococci (III)

S. pneumoniae and S. agalactiae were harvested from ten or three plates, respectively, and

suspended in 40 ml of PBS (pH 7.4) at 0 °C. The suspension was centrifuged at 2000 � g at 4 �C for

10 min and washed three times with cold PBS (pH 7.4). The density of the bacterial suspension was

standardised to an absorbance value 0.6 at A600.

For biotin labeling the bacteria were centrifuged (2000 � g at 4 �C for 10 min) and suspended in

2 ml of PBS (pH 7.4). Biotin labeling of the isolated bacteria was performed in PBS (pH 7.4) using

D-biotinoyl-�-aminocaproic acid-N-hydroxysuccinimide ester (Roche Diagnostics, Germany)

according to the instructions of the manufacturer. The biotin-labeled bacteria were suspended in

10 ml of PBS (pH 7.4) and stored at 4 °C.

4.3 HEC-1B cells (II, IV)

The human epithelial cell line, HEC-1B, was kindly provided by Prof. X. Nassif (INSERM U570,

France) and used between passages 5 and 28. The cells were cultured on cell culture dishes

(Costar®, Corning Inc., USA) in high-glucose DMEM supplemented with 10% heat-inactivated FBS

and 4 mM L-glutamine at 37 °C in humidified 5% CO2/ 95% air incubator. In the dot assay (II), cells

from one confluently grown plate were harvested using trypsin-EDTA, washed and suspended in

PBS. In the adhesion inhibition assay (IV), HEC-1B monolayers were prepared in six-well tissue
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culture plates (Costar®,  Corning  Inc.,  USA)  by  inoculating  105 cells per well and cultivating

overnight to obtain confluence.

4.4 Milk oligosaccharides

4.4.1 Isolation of milk oligosaccharide fractions (I)

Human milk was obtained from Kuopio University Hospital, Centre for Human Milk, Kuopio,

Finland. Pasteurized low-fat bovine milk was purchased from local supermarket. Acidic and

neutral oligosaccharide fractions were isolated from milk at 4 °C using the method described by

Kobata (1972). Briefly, milk was defatted by centrifugation and filtered through glass wool.

Ethanol was added to obtain a final ethanol concentration of 68% and the mixture was incubated

overnight to precipitate proteins and lactose. After centrifugation and washings of the precipitate,

the supernatants were concentrated using a rotary evaporator. Next, the syrup was diluted with

water and centrifuged to separate the insoluble material. The fractionation was done using a

Sephadex G-25 column (102 × 1.6 cm) and water elution.

4.4.2 Analysis of total hexose and sialic acids in milk fractions (I)

Total hexose content of milk fractions was determined using the phenol-sulphuric acid method

(Kobata 1972).  Briefly, 50 μl of fractions were diluted with distilled water and 200 μl of 5%

aqueous phenol and 1000 μl concentrated sulphuric acid were added. After incubation (37 °C, 30

min), the absorbances were measured at 490 nm.

Periodate-resorcinol method for sialic acids (Jourdian et al. 1971) was used to determine acidic

oligosaccharides in milk fractions. In brief, 250 μl of fractions were mixed with 50 μl of 0.04 M

periodic acid and incubated on ice for 20 min. Subsequently, 625 μl of 0.6% resorcinol reagent was

added, incubated on ice for 5 minutes and at 95 °C for 15 min. After cooling to room temperature,

the absorbances were measured at 630 nm.

After the analysis of total content of hexose and sialic acids in the fractions, they were pooled

into neutral and acidic oligosaccharide fractions, respectively, and freeze-dried (ModulyoD,

ThermoSavant, USA).
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4.5 Berries and juices

The berries and juices (as concentrates) investigated in the present studies are described in

Table 9.  All  berries  and  juices  were  purchased  from  Finnish  suppliers.  Wild  berries  were

harvested at maturity in northern Finland as also were the berries used in the production of

bilberry, cranberry, lingonberry and crowberry juice. Apple (mix of cultivars), black currant,

raspberry, sour cherry and tomato juice were of European Union origin. Pineapple and red grape

juice were imported from outside the European Union. Berries and juices were received frozen and

they were used as such without any additives.

Table 9. Berries and juices investigated in studies II-IV.

Latin name Trivial name °Brix Studies

Vaccinum myrtillus L. bilberry, wild

bilberry juice

-

65

II, III

II, III, IV

Vaccinium oxycoccos L. cranberry, wild

cranberry juice

-

65

II, III

II, III, IV

Vaccinium vitis-idaea L. lingonberry, wild

lingonberry juice

-

65

II, III

II, III, IV

Empetrum nigrum and hermaphroditum L. crowberry juice 65 II, III, IV

Rubus chamaemorus L. cloudberry, wild - II, III

Rubus idaeus L. raspberry juice 65 II, III

Ribes nigrum L. black currant juice 65 II, III

Ananas comosus L. pineapple juice 60 II, III

Citrus paradise L. red grapefruit juice 63 II, III

Malus domestica L. apple juice 70 II, III

Prunus cerasus L. sour cherry juice 65 II, III

Solanum lycopersicum L. tomato juice 30 II, III
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4.6 Fractionation and subfractionation of berries and juices (II-IV)

Berries and the juice concentrates were fractionated into three different fractions according to

their molecular size, i.e. <10 kDa fraction (referred as FI), 10–100 kDa fraction (FII), and >100 kDa

fraction  (FIII)  (II, III). Briefly, thawed berries were crushed and diluted with water (1:1). After

removing skins and seeds by centrifugation (8000 × g at 4 ºC for 10 min), the berry juice was

filtered through a gauze and filter paper. The filtered juice (15 ml) was loaded onto a 100 kDa cut-

off centrifugal filter device (Biomax Ultrafree-15, Millipore Corp., USA) and centrifuged (2000 × g

at 4 ºC) to a volume of 1.5 ml. The retentate was fraction FIII. The filtrate was loaded onto a 10 kDa

cut-off centrifugal filter device (Biomax Ultrafree-15, Millipore Corp., USA) and centrifuged as

described above to a volume of 1.5 ml to obtain fraction FII (the retentate) and fraction FI (the

filtrate). The berry and fruit juice concentrates were diluted with water (1:4 and 1:3 – 1:5,

respectively) and fractionated as described above. The concentrations of the fractions were

analyzed by determining the content of soluble solids (°Brix value) in a refractometer (ATAGO

NAR-1T, Japan). The fractions were stored frozen at �20 °C before analyses.

The polyphenolic compounds were subfractionated for further analysis and activity testing,

with solid-phase extraction being employed (II) by modifying the method previously described by

Sun et al. (2006). The molecular size fraction mixed 1:1 with phosphate buffer was passed through

a C-18 SPE cartridge (Waters Corp., USA). Diluted phosphate buffer was used to remove phenolic

acids before the elution of molecules was done using ethyl acetate, water and methanol. Solvents

were removed using rotary evaporator and the solids were reconstituted with water before

analyses.

4.7 Purification of anthocyanins (II)

Anthocyanins were purified from bilberry juice concentrate using ethyl acetate extraction to

remove flavonol glycosides and oligomeric proanthocyanidins from the juice followed by HPLC

separation as described in detail in II.
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4.8 Determination of sugar, proanthocyanidin and anthocyanin content in berries and juices

(II)

A  colorimetric  method  using  phenol  and  sulphuric  acid  (Dubois  et  al.  1956)  was  used  to

determine the content of reducing sugars in molecular size fractions of berries and juices.

Total proanthocyanidin contents of berry and juice molecular size fractions were determined

using the HCl–butanol method (Porter et al. 1986, Waterman and Mole 1994) with modifications.

HCl catalyses depolymerization of colorless proanthocyanidins in butanol (here: in methanol) to

yield red-colored anthocyanidins. Semiquantification was done against a lingonberry-derived

mixture of oligomeric proanthocyanidins (Määttä-Riihinen et al. 2005).

In the estimation of total anthocyanins, berry and juice molecular size fractions were diluted

and mixed with acidified methanol. The absorbance values were measured at 520 nm against

acidified methanol (Strack and Wray 1989). A mixture of six anthocyanin glycosides was used to

construct a calibration curve.

4.9 Nuclear magnetic resonance spectroscopy (NMR) (III)

For NMR spectroscopy the molecular size fractions were freeze-dried, dissolved into D2O and

lyophilized again. Finally, the samples were dissolved to D2O and 50 mM TSP in D2O was added

to the samples. Routine proton, diffusion edited and T2-filtered NMR spectra of molecular size

fractions were measured using a Bruker Avance DRX 500 spectrometer (Bruker BioSpin GmbH,

Germany) operating at 500.13 MHz equipped with a 5 mm TXI probe head as described in detail in

III.

4.10 Analysis of polyphenolic subfractions by RP-HPLC (II)

Polyphenolic subfractions were analyzed using RP-HPLC with on-line diode array detector (II).

In the HPLC analysis, the subfractions were mixed 1:1 with methanol and filtered through a 0.45

μm syringe filter before injection into the HPLC. The HPLC-DAD apparatus consisted of a

Hewlett-Packard instrument with a 1100 series quaternary pump, an autosampler, and an on-line

diode array detector linked to an HP-ChemStation data handling system. HPLC separation of

compounds was achieved on a  LiChroCART Purospher Star RP-18e column (150× 4.6 mm i.d., 5
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μm) (Merck) protected with a guard column of the same material (4 × 4 mm). The method utilized

a binary gradient with mobile phases containing 0.1% v/v aqueous formic acid (mobile phase A)

and acetonitrile/methanol 85:15 (mobile phase B). Eluting peaks were monitored in the wavelength

range of 190�550 nm (2 nm step). The elution conditions were 10% B for the first 8 min, a linear

gradient from 10 to 25% B for 8�12 min, 12�18 min with 25% B, 18�22 min with 25�40% B, 22�26

min with 40% B, 26�43 min with 40�90% B, 43�52 min with 90% B, and 52�57 min with 90�10% B

followed by an isocratic elution for 3 min before the next injection. The flow rate of the mobile

phase was 0.5 ml/min for 0�12 min, 0.4 ml/min for 18�43 min, and 0.5 ml/min for 52�57 min.

Chromatographic peaks were identified on the basis of the on-line UV�visible spectra (Määttä-

Riihinen et al. 2005, Bartolomé et al. 1996).

4.11 Solid phase binding and binding inhibition assays (I-III)

A microtiter plate method was developed for the testing of the inhibitory effect of milk

oligosaccharides on meningococcal binding (I). First, the binding of purified pili to glycoproteins

coated in microtiter wells was studied. Aliquots of 100 μl of bovine thyroglobulin (100 μg/ml),

chicken ovalbumin (100 μg/ml), human salivary agglutinin (1 μg/ml) and 5 % dry milk powder

solution [5% (w/v), 0.05% (v/v) Tween 20 in PBS, pH 7.4] were incubated overnight in

polyvinylchloride microtiter plate wells (Falcon Flexible Plate, Becton Dickinson Labware) at 4 °C.

After the non-specific binding sites were saturated with the dry milk powder solution biotin-

labeled pili corresponding to isolated pili from 1:8 plate were further diluted 1:8 with PBS and 100

μl of  the  diluted  pili  was  added  to  the  wells and incubated for one hour at room temperature.

Streptavidin–POD conjugate (diluted 1:4000) and ABTS-substrate were used for detection and the

absorbances were measured at 405 nm (Victor2 1420 Multilabel counter, Wallac, Finland). The

wells were washed five times with the washing buffer [0.05% (v/v) Tween 20 in PBS, pH 7.4] after

each incubation step.

The pili binding inhibition assay was performed by preincubating the biotin-labeled pili

(diluted 1:4 with PBS) with 0.01 – 40 mg/ml milk oligosaccharide fractions (mixed 1:1) for 60 min at

room temperature with gentle rocking on the rocking platform. Control biotin-labeled pili were

diluted 1:8 with PBS and incubated identically. After preincubation, 100 μL of the 1:1 mixed

solutions and control biotin-labeled pili were added to the glycoprotein-coated microtiter plate
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wells and the binding assay procedure was carried out as described above. The inhibitory activity

of milk oligosaccharides was calculated using Equation 1.

%100%
)(405

)(405)(405 x
A
AA

Inhibition
PILI

SAMPLEPILIPILI ��
�

Equation 1

To screen the binding activity of N. meningitidis pili, S. pneumoniae and S. agalactiae bacteria to

molecular size fractions of berries and juices and the binding activity of meningococcal pili to

polyphenolic subfractions, the microtiter well binding assay described above was modified as

follows (II, III). Aliquots of 100 μl of berry and juice samples and 5% dry milk powder solution as

control were incubated in polyvinylchloride microtiter plate wells (Falcon Flexible Plate, Becton

Dickinson Labware, NJ, USA) at 4 °C overnight. After the non-specific binding sites were saturated

with 5% dry milk powder solution, 100 μl of biotin-labeled meningococcal pili diluted 1:4 in PBS or

106 CFU of biotin-labeled bacteria were incubated on the berry fractions in the wells for one hour at

room temperature or two hours at 37 °C, respectively. Streptavidin–POD conjugate (diluted

1:4000) and ABTS-substrate were used for detection and the absorbances were measured at 405 nm

(Victor2 1420 Multilabel counter, Wallac, Finland). The wells were washed five times with the

washing buffer [0.05% (v/v) Tween 20 in PBS, pH 7.4] after each incubation step. All the assays

were carried out in triplicate. The binding activity was calculated using Equation 2.

Binding activity = (A405(sample) – A405(control)) × 100 Equation 2

4.12 Binding of Neisseria meningitidis pili to epithelial cell dots (II)

Adhesion of N. meningitidis has been studied using human epithelial cell line HEC-1B as a

model (Nassif et al. 1994). The ability of selected juice FII fractions to inhibit the adhesion of N.

meningitidis pili to HEC-1B cells was tested in a dot assay which was developed in study II. HEC-

1B cells derived from one plate were suspended in 200 μl of PBS and diluted 1:10 with PBS. Two-

microliter dots of cell suspension were pipetted onto a nitrocellulose membrane (Protran,

Schleicher & Schuell BioScience, Germany) and allowed to dry. Nonspecific binding sites were

saturated by incubating the membrane in 5% dry milk powder solution for two hours at room
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temperature. The diluted FII fractions (1:2, in water) and the biotin-labeled diluted pili (1:10, in

PBS) were mixed 1:1, and the solution was incubated for one hour at room temperature. The

mixtures (1.5 ml) were loaded on a 100 kDa cutoff Biomax Ultrafree-15 centrifugal filter device and

washed with PBS by centrifugation (1000 × g at 4 °C). Finally, the pili�FII aggregates were diluted

to 1.5 ml with the dry milk powder solution. The pili�FII aggregates or pili (positive control) in the

dry milk powder solution diluted 1:20 were added onto the membrane and incubated for 90 min at

room temperature. Streptavidin�POD conjugate (diluted 1:4000) in the dry milk powder solution

was added to the membrane and incubated for one hour at room temperature. After each

incubation step, the membrane was washed three times with PBS. The membrane was treated with

Super Signal solution (Pierce, USA) and exposed to Hyperfilm (Amersham Pharmacia Biotech,

U.K.) for 1 min, after which the film was developed.

4.13 Hemagglutination and hemagglutination inhibition (III)

The slide hemagglutination assay for S. suis (III) was done as described by Korhonen and Finne

(1985). Erythrocytes obtained from healthy adults were treated with sialidase and used at 4%

concentration. In the hemagglutination inhibition assay, the molecular size fractions of berries

were used and the minimum inhibitory concentration was defined as the lowest dilution achieving

full inhibition of hemagglutination. Escherichia coli PapGII was used as control.

4.14 Adhesion inhibition assay in cell culture (IV)

The inhibitory effect of polyphenolic subfractions on the adhesion of living encapsulated

meningococcal cells to epithelial cells (HEC-1B) was studied in a human epithelial cell culture

model  (IV). The subfractions were diluted with cell culture medium and added to HEC-1B cells

which had been cultured overnight. The incubation with the subfractions was for one hour at 37 °C

in  a  humidified  5% CO2/ 95% air incubator. The control wells were prepared by adding culture

medium without the subfractions. The bacterial suspension was added to the wells (approx. 10

CFU per one HEC-1B cell) and they were incubated for one hour at 37 °C. Non-adherent bacteria

were removed by washing the wells twice with PBS. The cells were detached with trypsin-EDTA

solution from the bottom of the wells and diluted with PBS. Aliquots of 100 μl of cell samples were



47

plated on the GCB agar plates. The plates were cultured overnight at 37 °C in a CO2 atmosphere.

The amount of the attached bacteria to the epithelial cells was determined by counting the bacterial

colonies. The inhibitory activity of the berry juice polyphenolic subfractions was calculated using

Equation 3.

%100% x
CFU

CFUCFU
Inhibition

control

samplecontrol �� Equation 3

where CFU is a colony forming unit

4.15 Antibacterial activity assay (IV)

Antibacterial activity of polyphenolic subfractions studied in the cell culture experiment was

tested against N. meningitidis using  the  microtiter  broth  microdilution  assay  (IV). Bacterial

suspension  was  mixed  with  berry  juice  subfractions,  CG  broth  or  ampicillin  (100  μg/ml)  and

incubated in wells of the microtiter plate (NuncTM,  Brand  Product,  Denmark)  at  37  °C  in  a  CO2

atmosphere for two hours. An aliquot of 100 μl of the diluted mixtures was plated on GCB agar

plates and the plates were cultured overnight at 37 °C in a CO2 atmosphere. The surviving colony

forming units were counted on the next day and the survival of N. meningitidis was calculated

using Equation 4.

%100% x
CFU
CFU

survivalBacterial
control

sample� Equation 4

where CFU is a colony forming unit

4.16 Statistical analysis (I-IV)

A 2-tailed paired Student’s t test from Microsoft Excel was used to compare the differences of

the means (I). GraphPad Prism 4.03 for Windows was used for one-way ANOVA followed by

Tukey’s multiple comparison test to compare the pili or bacterial binding between the fractions

and the control (II, III) or one-way ANOVA followed by Dunnett’s multiple comparison test to

compare the amount of bacterial colonies between the samples and the control (IV).
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5 Results and discussion

5.1 Milk (I)

Neisseria meningitidis pili bound to bovine thyroglobulin and human salivary agglutinin in the

microtiter well binding assay (I: Figure 1A). Binding to chicken ovalbumin was not significant and

did not differ from background (dry milk powder as control).

In the inhibition experiments, fixed concentrations (20 mg/ml) of acidic BMO inhibited pili

binding to bovine thyroglobulin by 85–90% and binding to human salivary agglutinin by 46% (I:

Figure 1). At this concentration (20 mg/ml), 84% inhibition was achieved with neutral HMO, 61%

inhibition with acidic HMO and only 18% inhibition with neutral BMO to bovine thyroglobulin (I:

Figure 1B). The high inhibitory activity of  pili  binding  by  acidic  BMO  and  neutral  HMO  was

confirmed when serial dilutions of these saccharides still exhibited 50% inhibition at concentrations

of 1–2 mg/ml (I: Figure 2).

Endothelial and epithelial carbohydrate receptors for N. meningitidis remain unknown. In order

to characterize the interaction between N. meningitidis and carbohydrates, an assay for the binding

of biotinylated pili to glycoproteins coated on microtiter plate wells was developed. Since type IV

pili mediate adhesion in encapsulated N. meningitidis strains (Nassif 2000), isolated meningococcal

pili were used in the assays. Both chicken ovalbumin and bovine thyroglobulin are well-

characterized glycoproteins which are commonly used to characterize carbohydrate receptors for

microorganisms (Haataja et al. 1993, Hytönen et al. 2000). Human salivary agglutinin, a complex of

the scavenger receptor cysteine-rich protein gp-340 and sIgA (Prakobphol et al. 2000), was selected,

because it aggregates and adheres to a wide range of commensal and pathogenic microorganisms

(Loimaranta et al. 2005) and contains domains for multiple host innate or immune defenses. Saliva

also represents the first line of defense. Moreover, immobilized and fluid bovine thyroglobulin

bind N. meningitidis wild-type cells, and fluid bovine thyroglobulin inhibits their hemagglutination

by human erythrocytes (unpublished data). Purified pili do not hemagglutinate human

erythrocytes, and a low-avidity pili binding to glycoproteins was anticipated.

The carbohydrate components of bovine thyroglobulin are composed of nearly the same

monosaccharide residues (Vali et al. 2000, Arima et al. 1972) as human milk oligosaccharides

(Kunz and Rudloff 1993). Bovine thyroglobulin contains N-linked complex and hybrid
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(oligomannosidic) glycans (Dorland et al. 1984), and human salivary agglutinin O- or N-linked

(poly)lactosamine and hybrid oligosaccharides (Loimaranta et al. 2005, Oho et al. 1998), serving as

potential receptors. N. meningitidis pili did not bind to ovalbumin, which mainly consist of high-

mannose–type glycans (Harvey et al. 2000). Therefore it was speculated that the receptor structures

possibly did not contain mannose, and binding to bovine thyroglobulin could thus be mediated by

a complex type of bovine thyroglobulin carbohydrate chains. Evidence for carbohydrate receptors

for N. meningitidis also emerge from the ability of milk oligosaccharides to inhibit pili binding.

These observations offer preliminary information on the carbohydrate composition of the possible

receptor structure.

Human milk contains 5.0–13 mg/ml oligosaccharides, in colostrum, the values can be as high as

22 mg/ml; interference with adhesion may therefore occur at a physiologically feasible level (Gopal

and Gill 2000, Kunz et al. 2000, Newburg 1997). Human milk contains diverse and complex neutral

and acidic oligosaccharide structures (Brand Miller and McVeagh 1999), whereas bovine milk

(Gopal and Gill 2000) is less complex and contains mainly sialylated oligosaccharides. The receptor

epitope on bovine thyroglobulin may be an internal core rather than a terminal sialic acid sequence

because both neutral HMO and acidic BMO inhibited pili binding effectively.

Two other bacteria of genus Neisseria, N. subflava and N. gonorrhoeae use  sialyl  (Nyberg  et  al.

1990) and neutral (Strömberg et al. 1988) oligosaccharides, respectively, for adhesion in vitro.

However, the corresponding adhesins are not known. At present it is not known whether

meningococcal pili binding to bovine thyroglobulin or human salivary agglutinin involves tip-

located PilC1 (Rudel et al. 1995) or pilin subunit proteins (Nassif et al. 1994) differentially, in

particular because acidic BMO almost completely inhibited binding to bovine thyroglobulin but

inhibited only partially binding to human salivary agglutinin.

5.2 Analysis of sugars, proanthocyanidins and anthocyanins in berry and juice fractions

5.2.1 Molecular size fractions (II, III)

Sugar concentrations of the molecular size fractions of berries and juices varied from 20 mg/ml

(black currant juice FII) to 258 mg/ml (pineapple juice FIII) (II:  Table  1).  The  highest

proanthocyanidin concentrations were found in juice fractions FIII of cranberry (30 mg/g) and

crowberry  (27  mg/g)  and  in  lingonberry  juice  fraction  FII  (22  mg/g)  (II: Table 1). Bilberry and
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crowberry juice fractions FIII contained the highest amount of anthocyanins, 39 mg/g and 38 mg/g,

respectively (II: Table 1). Fractions of cloudberries or red grapefruit, apple, pineapple, and tomato

juice did not contain detectable amounts of proanthocyanidins or anthocyanins or contained only

trace amounts.

In general, berries contain sugars 4-11 g/ 100 g and in imported fruits sugar content is 20-25 %

higher (National Institute for Health and Welfare 2009, Viljakainen et al. 2002). Strongly coloured

berries contain 300-800 mg anthocyanins/ 100 g fresh fruit (Määttä-Riihinen et al. 2004a, Määttä-

Riihinen et al. 2004b). Several berries and fruits included in the present study are known to contain

proanthocyanidins (Hellström et al. 2009, Gu et al. 2004, Määttä-Riihinen et al. 2004b), whereas

pineapple, red grapefruit, and tomato contain no detectable amounts of these compounds

(Hellström et al. 2009, Gu et al. 2003).

Based on NMR spectroscopy, the main component (>90%) in the molecular size fractions was

glucose and it was used in the scaling of the standard proton NMR spectra (III: Figure 2A, D and

G). The intensities of the signals in the edited spectra reflect the relative amounts of high (III:

Figure 2B, E, H) and low (III: Figure 2C, F, I) molecular components in the fractions. NMR analysis

revealed that only low-molecular-weight molecules were present in fractions FI (III: Figure 2A–C).

The high-molecular-size fractions (FII and FIII) contained high-molecular-weight compounds but

also lower molecular weight compounds were present (III: Figure 2D–I). In addition to glucose,

some fractions contained benzoic acid and its derivatives (signals at around 8.1 ppm and 7.5–7.7

ppm, e.g. lingonberry juice, III: Figure 2A and C). No other common low molecular weight

compounds could be identified from the spectra. The signals below 7 ppm at low aromatic and

double bond regions indicate that fractions FII and FIII contain polyphenolic compounds (e.g.

lingonberry, III: Figure 2D). The broad signal at 6–7.5 ppm in the diffusion edited spectra for the

FII  and FIII  fractions  (e.g.  bilberry  juice, III: Figure 2H) arises from polyphenol macromolecular

complexes, including proanthocyanidins and, possibly, polyhydroxy flavonoids which do not

have signals above 7.5 ppm. The profile of the signal (III: Figure 2E and H) resembles that of

malvin (Santos et al. 1993), a diglucoside of malvidin, an anthocyanin found also in some berries.
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5.2.2 SPE subfractions (II)

Four berry juice fractions showing high activities in meningococcal pili binding experiments

were chosen to be subjected to solid-phase extraction. Cranberry juice FIII and lingonberry juice FII

had high levels of proanthocyanidins and low levels of anthocyanins, bilberry juice FIII had a high

level of anthocyanins and a low level of proanthocyanidins, and crowberry juice FIII had high

levels of both (II: Table 1). Solid phase extraction was used to subfractionate the polyphenols and

RP-HPLC with UV-DAD was used to analyze the polyphenolic subfractions.

In the ethyl acetate subfraction, the peaks refer to mainly flavonol glycosides and

proanthocyanidins (II: Figure 2). According to the literature, monomeric flavanols as well as

oligomeric proanthocyanins can be eluted with ethyl acetate, leaving anthocyanins, polymeric

proanthocyanidins, and other pigmented complexes fixed on the column (Sun et al. 2006). In the

present study, anthocyanins were detected in water and methanol subfractions (eluted after ethyl

acetate), especially in crowberry and bilberry juice FIII (II: Figure 2), as expected. Polymeric

proanthocyanidins and other high-molecular-weight constituents cannot be separated by RP-

HPLC, but polymeric proanthocyanidins may cause a drift in chromatographic baseline (Rohr et

al. 2000). The chromatograms of water and methanol subfractions of cranberry and crowberry

juices show a drift in the baseline around 25�30 min, and a drift is also seen in the methanol

subfraction of bilberry (II: Figure 2). These findings together with those previously reported data

(Sun et al. 2006, Rohr et al. 2000) support the presence of polymeric proanthocyanidins or other

polymerized structures at least, in the cranberry, bilberry, and crowberry juice fractions.

5.3 Biological activity of berry and juice fractions against Neisseria meningitidis

5.3.1 Binding activity of pili (II)

Biological activity of molecular size fractions was first measured by screening the binding

activity of N. meningitidis pili to the fractions using solid phase assay. The most active binding of

meningococcal pili was found to lingonberry juice fractions FII and FIII and to the high-molecular-

size juice fractions of other Vaccinium species (II: Table 2). Significant binding activity was found

also to high-molecular-size fraction of crowberry juice (FIII) and black currant juice (FII). In
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addition to berry juice fractions, N. meningitidis pili  bound  to  all  of  the  fresh  bilberry  fractions

(FI�FIII) as well as to fresh cranberry fractions FII and FI.

Previous studies with cultivated cranberry (V. macrocarpon Ait.) have indicated that for various

bacteria, the high-molecular-weight, nondialyzable material and proanthocyanidins are effective in

inhibiting bacterial adhesion and coaggregation (Foo et al. 2000a, Foo et al. 2000b, Shmuely et al.

2004, Steinberg et al. 2004, Weiss et al. 2004). In the present study, berry proanthocyanidins, as well

as anthocyanins, were present in the fractions of high-molecular-size to which N. meningitidis pili

showed high binding activity (II:  Table  1,  Table  2).  In  addition,  there  was  no  binding  activity  to

any of the fractions derived from cloudberries or apple, pineapple, raspberry, or tomato juice (II:

Table 2). Apple, pineapple, and raspberry fractions had high sugar contents, but none of the apple,

pineapple, and tomato juice fractions contained detectable amounts of proanthocyanidins or

anthocyanins. Cloudberry fraction FI contained only trace amounts of anthocyanins, and raspberry

juice contained small amounts of proanthocyanidins or anthocyanins compared to juices of

Vaccinium species  (II: Table 1). As reported earlier, the levels of high-molecular-weight

proanthocyanidins in raspberries are smaller than in berries of Vaccinium species (Gu et al. 2004).

Furthermore, in raspberries and cloudberries, the main phenolic compound is ellagitannins

(Määttä-Riihinen et al. 2004b). As also seen in NMR spectra, there were no detectable amounts of

polyphenols in raspberries or cloudberries (III: Figure 2). The NMR spectra of fractions FIII, which

were those most active in meningococcal pili binding, display the strongest phenolic and also

polyphenolic signals (cranberry, lingonberry, bilberry, and crowberry juice, III: Figure 2G and H).

Differences were seen in binding activities between fresh berry and berry juice fractions. They

may result from the manufacturing process of commercial juice concentrates, e.g. these may

include heating, evaporation, and enzyme treatment. Oxidation or thermal degradation from

particular processing techniques can alter the composition of phenolic compounds and induce

high levels of structural variation, which may positively or negatively impact on bioactivity

(Koponen et al. 2008, Landbo and Meyer 2004). Additionally, °Brix values in juice fractions derived

from commercial berry juice concentrates were higher than in fractions prepared from fresh

berries.

Based on the screening results, four berry juice molecular size fractions with high binding

activity were selected for further evaluation. After solid-phase extraction, the binding activities of
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N. meningitidis pili over a range of concentrations of the polyphenolic subfractions were studied in

microtiter well binding assay. In general, dose-dependent increase in binding activity to a constant

level was seen and significant binding was detected at very low concentrations of the subfractions

(II: Figure 3; Table 10). Binding was associated with different subfractions (ethyl acetate, water, or

methanol) depending on the species of the studied berry. This points to differences in the profiles

of active components between the berries as also seen in the chromatographic profiles of the berry

juice subfractions (II: Figure 2).

For both bilberry and crowberry juice, the pili binding was highest with the components of the

water subfraction (II: Figure 3), which contained anthocyanins and especially in the case of

crowberry, the polymeric proanthocyanidins. The binding activity reached a higher level with

crowberry subfractions and also significant binding was seen at almost 10 times lower

concentrations to crowberry than to bilberry juice in the case of water subfraction (Table 10).

For  cranberry,  the  highest  binding  activity  was  achieved  with  anthocyanins  and

proanthocyanidins in the methanol subfraction (II: Figure 3). With ethyl acetate subfraction the

binding was significant down to lower concentrations (Table 10). However, the highest achievable

binding activity level remained considerably lower compared with that which could be attained

with methanol and water subfrations (II: Figure 3).

For lingonberry, both the highest binding activity and the lowest concentration with significant

binding was detected in the ethyl acetate subfraction containing flavonol glycosides and

proanthocyanidins (Table 10; II: Figure 3). The highest binding activity level was lower compared

with other berry juices and it was achieved with a much lower concentration of subfraction (Table

10).

Table 10. Binding of meningococcal pili to berry juice polyphenolic subfractions.

Value of the highest
binding

Conc. of the lowest significant binding
Subfraction

(conc., subfraction) Ethyl acetate Water Methanol

Bilberry FIII 41    (50 μg/ml, H2O) 6.25 μg/ml 3.125 μg/ml 12.5 μg/ml

Cranberry FIII 51    (50 μg/ml, MeOH) 1.56 μg/ml 12.5 μg/ml 3.125 μg/ml

Crowberry FIII 52    (50 μg/ml, H2O) 0.781 μg/ml 0.39 μg/ml 3.125 μg/ml

Lingonberry FII 37    (3.125 μg/ml, EtAc) 0.195 μg/ml 0.78 μg/ml 50 μg/ml
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Since HPLC analysis showed that anthocyanins were abundant in water subfractions, a pure

anthocyanin fraction from the bilberry juice concentrate was isolated using a semipreparative

HPLC system. The binding activity testing of meningococcal pili to purified anthocyanins

displayed lower binding compared to the bilberry juice subfractions and it was not so clearly dose-

dependent (II: Figure 3E). This indicates that the binding effect of meningococcal pili to berries is

not solely induced by anthocyanins but also by other polyphenols or other associated compounds.

It has been shown that anthocyanins can coexist in the proanthocyanidin fraction (Kennedy et al.

2001). Proanthocyanidins can also associate with pectin (Kennedy et al. 2001), polysaccharides

(Matthews et al. 1997), and proteins (Hagerman and Butler 1980), and the association potential is

significantly affected by the degree of their polymerization (Schmidt et al. 2004). It is also known

that berry polyphenols can work synergistically (Sasaki et al. 2004; Seeram et al. 2004).

5.3.2 Adhesion inhibition (II, IV)

A dot binding assay was developed in the present study in order to study the inhibitory effect

of selected molecular size fractions. N. meningitidis pili bound to HEC-1B epithelial cells (II: Figure

1). In general, the FII juice fractions that showed binding activity in the microtiter well assay also

inhibited the pili binding to epithelial cells. Bilberry, cranberry, lingonberry, crowberry, and black

currant juice FII fractions containing proanthocyanidins and anthocyanins totally inhibited the

binding of meningococcal pili to HEC-1B cells (II: Figure 1). The FII fraction of raspberry juice,

which contained small amounts of proanthocyanidins and anthocyanins compared to juice

fractions of Vaccinium species  and  crowberry,  inhibited  the  binding  of  meningococcal  pili  to  the

HEC-1B cells to some extent. Tomato, red grapefruit, or apple juice did not have the antiadhesive

effect (II: Figure 1) and they had neither proanthocyanidins nor anthocyanins present (II: Table 1).

An adhesion inhibition assay based on human epithelial cell line HEC-1B and living

encapsulated meningococcal cells was employed in order to test the inhibitory activity of berry

juice polyphenolic subfractions eluted with water and mainly containing anthocyanins on whole

bacterial cells. Significant antiadhesion activity was achieved with relatively low concentrations of

polyphenolic fractions: 1 μg/ml of cranberry (74 % inhibition) and lingonberry (57 % inhibition),
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and 5 μg/ml of bilberry (41 % inhibition) and crowberry juice subfraction (47 % inhibition) (IV:

Figure 1). None of the studied berry juice polyphenolic fractions achieved total inhibition for the

attachment of meningococci and the highest inhibition achieved was 75% with the cranberry juice

polyphenolic fraction at 5 μg/ml. Although different methodologies were used in the experiments,

the effective concentrations of the inhibition were at the same level as the concentrations in the

microtiter well assay studies, where the isolated pili bound significantly to 0.39–12.5 μg/ml of these

fractions (Table 11; II, Figure 3).

Table 11. Inhibitory effects of juice polyphenolic subfractions (eluted with water) in cell culture experiments

and their concentrations giving significant pili binding in microtiter well assay studies.

Inhibition %
Conc.of  max.

inhibition

Conc. of significant

inhibition

Conc. of significant

pili binding

Bilberry 27–63% 10 μg/ml 5–50 μg/ml 3.125 μg/ml

Cranberry 60–75% 5 μg/ml 1–50 μg/ml 12.5 μg/ml

Crowberry 37–63% 50 μg/ml 5–50 μg/ml 0.39 μg/ml

Lingonberry 48–57% 1–5 μg/ml 1–50 μg/ml 0.78 μg/ml

Encapsulated N. meningitidis has complex adhesion mechanisms and it interacts with host cells

in a multistep process (Nassif 1999, Pujol et al. 1997). Meningococcus carries two potential

adhesins in its type IV pili, the tip-located PilC (Rudel et al. 1995) and pilin (PilE) subunit proteins

(Nassif et al. 1994). Although pili have an important role in colonization and infection in

encapsulated N. meningitidis strains (Nassif 2000), the interactions of whole bacterial cells with

epithelial cells are much more complicated than interactions of purified pili as meningococci can

affect cellular signalling of host cells (Morand et al. 2009). Moreover, the concept of two different

binding specificities located in two different components of the pilus is complicated by the fact that

PilE can undergo antigenic variation (Meyer and van Putten 1989), which may influence the

epithelial cell-specific adherence (Virji et al. 1993). Some pilin variants are more efficient than

others in enhancing bacterial interactions and forming large bundles with enhancement of

adhesiveness (Marceau et al. 1995). The inhibition of the adhesion achieved in the present study by

the berry juice polyphenolic fractions may result either from pilin and/or PilC mediated adhesion.
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Studies with milk pointed to carbohydrate recognition for N. meningitidis as the binding of

meningococcal pili to glycoproteins was prevented by milk oligosaccharide fractions (I: Figure 1).

However, results with berries do not rule out a possible role of carbohydrates as receptors for N.

meningitidis. Carbohydrate-recognizing adhesins may be blocked by berry fraction compounds

such as proanthocyanidins. Thus, the results achieved are concordant with studies on mannose-

resistant P-fimbriated Gal-Gal-recognizing E. coli. The adherence of these bacteria to human

erythrocytes and latex beads coated with synthetic P receptor analog was inhibited by the

proanthocyanidins present in cranberry juice (Foo et al. 2000a, Foo et al. 2000b).

These positive in vitro results need to be confirmed in clinical trials, as under laboratory

conditions one fails to mimic the host-generated molecular signals and adaptation to changes in

environmental conditions which bacteria are able to utilize in their colonization.

5.3.3 Antibacterial activity (IV)

In the present study with polyphenolic subfractions eluted with water, the meningococcal

survival rates were above 90% for all samples with the exception that cranberry juice polyphenolic

fraction at 1 μg/ml induced 85% survival and at 50 μg/ml induced 75% survival (IV: Table 1). The

lowest survival rates were detected with the cranberry juice polyphenolic fraction (75–90%

survival). Only slight or no antibacterial activity was seen when incubating meningococci with the

polyphenolic fractions of the other berry juices.

The adhesion inhibition of cranberry juice polyphenolic fraction at 1 μg/ml and at 50 μg/ml was

74% and 60%, respectively. Therefore, the adhesion inhibition effect of cranberry juice

polyphenolic fraction can partly result from the killing effect of the fraction. For the other samples,

the inhibitory effect achieved did not result from an antibacterial effect but rather from inhibition

of bacterial attachment.

Berries and their phenolics have been previously shown to possess antimicrobial activity

against human pathogenic bacteria such as Campylobacter, Clostridium, Helicobacter, Salmonella, and

Staphylococcus (Nohynek et al. 2006, Puupponen-Pimiä et al. 2005, Rauha et al. 2000). However,

cranberry NDM and juice concentrate, anthocyanin or proanthocyanidins-rich fractions of

cranberry had no antibacterial activity against P. gingivalis (Labrecque et al. 2006) or E. coli, P.

aeruginosa, and S. mutans (Ahuja et al. 1998).
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5.4 Binding activity of Streptococcus pneumoniae to berry and juice fractions (III)

Screening results for S. pneumoniae differed from the results with other bacteria as it bound

significantly only to the low-molecular-size fraction FI of cranberry and bilberry juices (III: Table

1). Non-significant binding was observed for Vaccinium species and crowberry juice. Bacteria did

not bind to black currant, tomato, pineapple, red grapefruit, apple, sour cherry or raspberry juice

fractions or fractions of lingonberries and cloudberries.

Results of screening do not refer to proanthocyanidins or anthocyanins as binding molecules for

S. pneumoniae. Active fractions did not contain any considerable amounts of proanthocyanidins or

anthocyanins compared to non-active fractions. In addition, inspection of the NMR spectra

revealed that low-molecular-size fractions do not contain polyphenolic compounds. However, the

activity of S. pneumoniae detected only in FI juice fractions may be related to lower molecular

weight phenolic compounds. They are visible in the spectra of bilberry and cranberry juices and

bilberry FI fractions (Fig. 2A, C, aromatic signals below 7 ppm) in relatively small amounts. This

may point to an altered configuration in juices and highly specific components for S. pneumoniae.

5.5 Binding activity of Streptococcus agalactiae to berry and juice fractions (III)

Screening of binding activity of Streptococcus agalactiae to molecular size fractions showed that

the binding activity of S. agalactiae was also mainly directed towards the high-molecular-size berry

and juice fractions of Vaccinium species  (III: Table 2). The most active binding was towards

cranberry fraction FIII and to all fresh lingonberry fractions. S. agalactiae bacterial cells could bind

also to fractions FII and FIII of bilberry juice and FII fraction of fresh cranberries and to all fractions

of  cranberry  juice.  In  addition  to  the  binding  to  the  berries  and  juices  of Vaccinium species, S.

agalactiae bound significantly to sour cherry juice fraction FII and fresh cloudberry fraction FIII. No

binding was detected for tomato, pineapple, red grapefruit, apple or raspberry juice fractions

which all contained at best only small amounts (or even the complete absence) of

proanthocyanidins or anthocyanins. On the other hand, fractions of crowberry and lingonberry

juice were not active towards S. agalactiae although they contained high amounts of

proanthocyanidins and/or anthocyanins (II, Table 1).

According to NMR spectra, the biologically active fractions for S. agalactiae most probably

contain proanthocyanidins and/or other phenolic compounds as they emitted signals in the
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aromatic regions (e.g. cranberry and lingonberry, III Figure 2D, 6.5–7.2 ppm). Some of the active

fractions had polyphenol macromolecular complexes in the NMR spectra (e.g. bilberry and

cranberry juices, III Fig. 2H). The highest binding activity was achieved with the cranberry fraction

FIII but in the NMR spectra, no signals for any polyphenol macromolecular complexes were seen.

This indicates that the polyphenol macromolecular complexes are not responsible for the binding

activity present in cranberries, but may be for bilberry juice FIII.

In conclusion, differences in phenolic profiles between different berries and processing

conditions in manufacturing of juice concentrates seem to be responsible for the variation in the

binding activity of S. agalactiae.

5.6 Hemagglutination inhibition of Streptococcus suis by berry fractions (III)

Both S. suis and E. coli are known to bind galabiose (Haataja et al. 1993, Strömberg et al. 1990).

Streptococcus suis 836 hemagglutinates human neuraminidase treated erythrocytes (Tikkanen et al.

1996, Kurl et al. 1989) and the hemagglutination inhibition assay has been successfully employed

with S. suis to analyze the molecular interactions of the binding ligand (Haataja et al. 1993).

Fractions prepared from fresh berries were tested with S. suis. Both cranberries and lingonberries

inhibited the hemagglutination induced by S. suis or E. coli (III: Table 2). Cranberry fractions FII

and FIII had the highest inhibitory power followed by lingonberry fractions FII and FIII. Cranberry

fractions FI and FII and lingonberry fraction FII also were able to inhibit E. coli induced

hemagglutination. Neither bilberry nor cloudberry fractions inhibited S. suis or E. coli

hemagglutination, though cloudberry fractions FII and FIII impaired the hemagglutination

induced by E. coli.

This ability to inhibit hemagglutination may indicate that there is a galactose containing

inhibitor in berry fractions and, in fact, galactose is one of the most common sugar moieties in

flavonoids (Määttä-Riihinen et al. 2004a). Alternatively, inhibition may result from unspecific

receptor mimicking (Das and Devaraj 2006) blocking the galabiose-recognizing adhesin in S. suis

and E. coli. The results are thus consistent with previous studies on E. coli in which

proanthocyanidins from cranberry juice could inhibit mannose-resistant P-fimbriated Gal-Gal-

recognizing E. coli (Foo et al. 2000a) while fructose inhibited mannose-sensitive type 1 fimbriated

E. coli (Zafriri et al. 1989). The NMR revealed that in the biologically highest active fractions
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against S. suis (cranberry and lingonberry FII) there were polyphenol macromolecular complexes

(III: Fig. 2E). These complexes were not present in the cranberry and lingonberry fractions FIII,

which evoked weaker hemagglutination inhibition as compared with the FII fractions of the berry.

Furthermore, the measured proanthocyanidin and anthocyanin concentrations (II: Table 1) were

higher in those fractions inhibiting the hemagglutination by S. suis.
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6 Summary and conclusions

Evolutionary pressure has led to the appearance of certain molecules in milk and berries which

can combat pathogens. Oligosaccharides, glycoconjugates, and phenolic secondary metabolites

work as antiadhesive agents. These molecules offer an alternative method to control infectious

diseases which lack of effective vaccines and antibiotics. Since these molecules can inhibit the

initial attachment of pathogen to the human body, this could minimize the spread of bacteria from

person to person. In this way, the prevalence of bacterial infections can be reduced by affecting the

carrier status. In the present study, human and bovine milk as well as berries and juices were

investigated as sources of preventive antiadhesive material against serious meningitis- and

respiratory infection-associated pathogens.

In this study, neutral human milk oligosaccharides and acidic bovine milk oligosaccharides

showed antiadhesive activity against binding of Neisseria meningitidis to bovine thyroglobulin

which was used as model glycoprotein. In addition, a novel interaction of meningococci and

human salivary agglutinin was described. The binding of N. meningitidis to salivary agglutinin was

inhibited by up to 50% by acidic bovine milk oligosaccharides. This binding and inhibition

constitute an interesting target for further studies, especially when considering the feasibility of

using bovine milk oligosaccharides as protective food additive against meningococci. Additional

studies including desialylation of acidic bovine milk oligosaccharides as  well  as  purification  and

analysis of individual binding oligosaccharides are also justified to characterize the receptor active

sequences for N. meningitidis pili. Milk carbohydrates do not have bactericidal activity and thus

may not increase antibiotic resistance by selection of resistant strains of bacteria (Sharon and Ofek

2000). In conclusion, the present observation with N. meningitidis together with previous reports

(Ruiz-Palacios et al. 2003, Martín et al. 2002, Martín-Sosa et al. 2002, Kunz et al. 2000, Barthelson et

al. 1998, Simon et al. 1997, Kunz and Rudloff 1993, Schengrund and Ringler 1989, Andersson et al.

1986, Kolstø Otnæss et al. 1983) indicate that milk oligosaccharides have potential use as

preventive antiadhesive agents.

In addition to the milk oligosaccharides, the study revealed novel interactions between berry-

based material and N. meningitidis, Streptococcus pneumoniae, Streptococcus agalactiae, and

Streptococcus suis. Berries and juices manufactured from Vaccinium species proved to be the most
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effective in bacterial binding. S. pneumoniae bound to low-molecular-size fractions whilst all other

bacteria studied, N. meningitidis, S. agalactiae, and S. suis, underwent significant interactions with

high-molecular-size fractions. Further investigations were focused on N. meningitidis. The

inhibitory effect of berry material was localized to phenolic compounds. The results of cell culture

experiments and antimicrobial studies showed that the inhibitory effect of berry juice polyphenols

was due to antiadhesive effect and partly from an antimicrobial effect in the case of cranberry juice

polyphenols. Berry molecules may provide multiple binding sites for N. meningitidis pili adhesins

and thus inhibit adhesion.

Applications of the results could be in the development of preventive antiadhesive drugs or

nutritional products. The populations most at risk for developing a fatal respiratory disease are the

very young, the elderly, and the immunocompromised. Molecular size fractions as well as

polyphenolic water extracts could be easily utilized by the food industry. Novel preventive and

protective antiadhesion agents may have significance also in the developing countries, where

needle-based vaccination and the preservation of vaccines are difficult. Clinical trials will be

needed to prove the effect of berry juice components on the carrier rate in healthy people to control

of spread of infectious diseases. Further purification of active molecules will be needed to

determine if the antiadhesive effect can be associated to a single molecule or the effect needs the

synergic activities of several berry molecules.

On the basis of results from the present study it can be concluded that:

1. Acidic bovine milk oligosaccharides and neutral human milk oligosaccharides have anti-

adhesion potential against meningococcal infections.

2. Berry polyphenols could possibly be used as antiadhesive agents against Neisseria

meningitidis.

3. Low-molecular-size fractions of Vaccinium species may have potential in inhibiting the

attachment of Streptococcus pneumoniae.
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4. High-molecular-size fractions of Vaccinium species may have binding inhibitory potential

against Streptococcus agalactiae and Streptococcus suis.
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