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described. Furthermore, angiopoi-

etins were measured preoperatively 

in patients with ovarian cancer sug-

gesting that Ang-2 may serve as a 

marker of decreased survival also in 

clinical settings.
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ABSTRACT 

 

Ovarian cancer is the most lethal of all gynaecological malignancies. Despite current treatment approaches, 
surgery and chemotherapy, the prognosis still remains poor. Therefore, new therapies are required to 
improve outcome in this disease. Solid tumours need a vascular supply to grow and metastasise. The aim of 
this study was to evaluate the treatment effects of adenoviral gene therapy with antiangiogenic and 
antilymphangiogenic genes in a human ovarian cancer xenograft model. This new and highly reproducible 
animal model resembled the disease of clinical patients with intraperitoneal tumours and ascites. Finally, we 
explored the circulating levels of angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) in patients with benign, 
borderline or malignant ovarian neoplasms and correlated them with prognosis of patients with epithelial 
ovarian cancer. 
     Human SKOV-3m ovarian carcinoma cells produced intraperitoneal tumours in nude mice within three 
weeks after tumour cell injection. Magnetic resonance imaging (MRI) was used to confirm the existing 
tumours before gene therapy. Soluble vascular endothelial growth factor (VEGF) receptors sVEGFR-1, -2 and 
-3 and their combinations as well as soluble angiopoietin receptors sTie1 and sTie2 were used as treatment 
genes. Gene transfer was done intravenously via the tail vein. It was shown that antiangiogenic and 
antilymphangiogenic gene therapy significantly reduced tumour growth, tumour vascularity and ascites 
formation, as assessed by weekly MRI, histology and immunohistochemistry. Spesifically, combined gene 
therapy with sVEGFR-1, -2 and -3 or combination of sVEGFR-1 and -3 and sTie2 had the most powerful 
antitumour effects.  
     In the clinical setting we found that Ang-1 and Ang-2 levels in the serum of patients with epithelial 
ovarian carcinoma were elevated compared with patients with benign or borderline ovarian tumour or 
compared with healthy women. Moreover, high levels of Ang-2 predicted poor overall survival and 
recurrence free survival in patients with epithelial ovarian carcinoma. In clinic, Ang-2 may serve as an 
angiogenic marker of decreased patient survival in ovarian cancer. 
     In conclusion, the established ovarian cancer animal model was suitable for in vivo gene therapy studies. 
Antiangiogenic and antilymphangiogenic gene therapy appeared to have significant potential in treatment 
of ovarian cancer. These results warrant further studies to define the most efficient and safe dose and 
schedule for such a treatment, and suggest that this approach could be used clinically along with other 
anticancer therapies.  
 
 
 
 
National Library of Medicine Classification: WP 322, QW 165.5.A3, QU 107 
 
 
Medical Subject Headings: Adenoviridae; Angiogenesis Inhibitors; Angiopoietin-1; Angiopoietin-2; Disease Models, 
Animal; Gene Therapy; Humans; Lymphangiogenesis; Magnetic Resonance Imaging; Mice; Ovarian neoplasms; Vascular 
Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2; Vascular Endothelial Growth 
Factor Receptor-3 
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yliopiston julkaisuja. Terveystieteiden tiedekunnan väitöskirjat. 20. 2010. 75 s. 

 

 

 

 

TIIVISTELMÄ 

 
Munasarjasyöpään liittyy suurin kuolleisuus kaikista gynekologisista syövistä. Huolimatta optimaalisesta 
kirurgiasta ja solunsalpaajahoidosta, munasarjasyöpäpotilaiden ennuste on huono ja uusia hoitomuotoja 
tarvitaan. Jotta syöpäkasvain kasvaisi ja leviäisi, se tarvitsee toimivan verenkierron. Tämän tutkimuksen 
tarkoituksena oli selvittää adenovirusvälitteisen veri- ja imusuonten kasvua estävän geenihoidon tehoa 
munasarjasyövän eläinmallissa. Kehittämämme munasarjasyövän eläinmalli muistuttaa ihmisen 
munasarjasyöpää, hiirille kehittyvät vatsaontelonsisäiset syöpäkasvaimet ja askitesta kuten potilaillakin. 
Tutkimme myös, ovatko angiopoietiini-1 (Ang-1) ja angiopoietiini-2 (Ang-2) pitoisuudet verenkierrossa 
erilaiset niillä potilailla, joilla on hyvänlaatuinen, välimuotoinen tai pahanlaatuinen munasarjakasvain ja 
tasoja verrattiin naisiin, joilla ei ollut munasarjakasvainta. Tutkimme myös kuinka verenkierron 
angiopoietiinien tasot korreloivat epiteliaalista munasarjasyöpää sairastavien potilaiden ennusteeseen. 
     Ihmisen SKOV-3m munasarjasyöpäsolut kehittivät hiirille vatsaontelonsisäiset kasvaimet kolmen viikon 
sisällä kasvainsolujen injektion jälkeen. Magneettikuvantamisella varmistimme kasvainten olemassaolon 
ennen geenihoitoa. Hoitogeeneinä käytimme liukoisia endoteelikasvutekijöiden (VEGF) reseptoreita sekä 
liukoisia angiopoietiinireseptoreita ja näiden yhdistelmiä. Geenihoito annosteltiin laskimonsisäisesti hiiren 
häntälaskimoon. Veri- ja imusuonten kasvua estävä geenihoito vähensi merkitsevästi kasvainten kasvua ja 
verisuonitusta sekä askiteksen kehittymistä ja nämä muutokset olivat nähtävissä viikottaisissa 
magneettikuvauksissa sekä kasvainten histologiassa ja immunohistokemiallisissa värjäyksissä. Voimakkain 
kasvainten hoitovaikutus oli nähtävissä hiirillä, joita hoidettiin yhdistelmägeenihoidolla liukoisilla VEGF 
reseptoreilla 1, 2 ja 3 sekä yhdistelmähoidolla liukoisilla VEGF reseptoreilla 1 ja 3 ja liukoisella 
angiopoietiinireseptorilla Tie2.  
     Munasarjasyöpää sairastavilla potilailla seerumin Ang-1 ja Ang-2 tasot olivat korkeammat kuin potilailla, 
joilla oli hyvänlaatuinen tai välimuotoinen kasvain tai ei lainkaan munasarjakasvainta. Korkea Ang-2 taso 
myös ennusti sekä lyhyttä elinikää että lyhyttä tautivapaata aikaa epiteliaalista munasarjasyöpää 
sairastavilla potilailla. Verenkierron Ang-2 pitoisuutta voidaan mahdollisesti käyttää lisätutkimuksena, kun 
selvitetään munasarjakasvaimen pahanlaatuisuutta ja potilaan ennustetta.    
     Yhteenvetona totean, että kehitetty munasarjasyövän eläinmalli soveltui hyvin geenihoitotutkimuksiin ja 
veri- ja imusuoniin kohdistetulla geenihoidolla oli merkitsevä hoitovaikutus munasarjasyövässä. 
Lisätutkimuksia tarvitaan selvittämään tehokkain ja turvallisin hoitoannostelu ennen siirtymistä kliinisiin 
hoitokokeisiin.  
 
 
 
Luokitus: WP 322, QW 165.5.A3, QU 107 
 
 

Yleinen suomalainen asiasanasto: angiopoietiinit, eläinkokeet, geeniterapia, magneettitutkimus, munasarjasyöpä, 
hoitomenetelmät, verisuonet, imusuonet, endoteeli, kasvutekijät 



 

 

VIII 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

IX 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                   

 

                                                                                                 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                            To Eveliina, Alvari and Ville 

 

 

 

 

 

 

 

 



 

 

X 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 



 

 

XI 

ACKNOWLEDGEMENTS 
 
This study was carried out in the Department of Molecular Medicine, A.I.Virtanen Institute, University of Eastern 
Finland and in the Department of Obstetrics and Gynaecology, Kuopio University Hospital during the years 2003-2010. 
 
I am deeply grateful to Professor Seppo Ylä-Herttuala, M.D, Ph.D., for giving me opportunity to be a part of his excellent 
group and introducing me to the field of gene therapy. I admire his extensive knowledge in molecular medicine and 
gene technology and enthusiasm for science. Without his encouragement and always positive way of thinking, especially 
at the moments that I have had my doubts, this thesis would not exist. 
 
I am forever grateful to my other supervisor, Professor Seppo Heinonen, M.D, Ph.D., Head of the Department of 
Obstetrics and Gynaecology, for encouraging me to do scientific work. I believe that science had widened my view of 
life. Seppo’s extraordinary talent as a scientist combined with his long-lasting visions have been irreplaceable. I am 
indebted to his continuous guidance from the beginning to the very end of this thesis.  
 
I want to express my deepest gratitude to my supervisor Docent Maarit Anttila, M.D., Ph.D., for sharing her expertise 
not only in science, but also in the clinic. Her never-ending passion for science and her most logical way of thinking and 
the skill to find the most practical solutions are admirable. Maarit has shared the ups and downs with me and I have 
always been able to count her professional knowledge and support. As a scientist and a colleague she had made a great 
impression on me during these years.  
 
I owe my sincere thanks to emeritus Professor Seppo Saarikoski, M.D., Ph.D., for giving me opportunity to specialise to 
Obstetrics and Gynaecology in Kuopio University Hospital and for his encouragement regarding scientific work. I am 
grateful to Professor Marjo Tuppurainen, M.D, Ph.D., for her excellent guidance in gynaecological malignancies and for 
her support and positive attitude toward my research. 
 
I want to express my sincere thanks to my official reviewers Docent Anne Talvensaari-Mattila, M.D., Ph.D., University of 
Oulu and Docent Jarmo Wahlfors, Ph.D., University of Tampere, for their valuable and expert comments during the final 
preparation of this thesis. I am grateful to Docent David Laaksonen, M.D., Ph.D., M.P.H., for revising the language of 
this thesis. 
 
I am indebted to Professor Kari Alitalo, M.D., Ph.D., University of Helsinki, for collaboration and excellent comments 
during these years. I am very grateful to Veli-Matti Kosma, M.D., Ph.D., Head of the Department of Pathology and 
Forensic Medicine in Kuopio University Hospital for the opportunity to collaborate in his Department and for his 
excellent advices during writing process. Docent Kirsi Hämäläinen, M.D., Ph.D., has reviewed slides with me and her 
knowledge in pathology has been beyond compare. I am thankful to Helena Kemiläinen for the skillful technical 
assistance with immunohistochemistry. I want to express my sincere thanks to Professor Olli Gröhn, Ph.D., Head of 
National MRI-Facility in A.I. Virtanen Institute and to Johanna Närväinen, Ph.D., for the most skillful help with MRI 
imaging. My cordial thanks belong to Maija-Riitta Ordén, M.D., Ph.D, for her kind help with ultrasound and for being 
my tutor in the clinic.  
 
I have been privileged to work in a unique SYH group in A.I.Virtanen Institute. I owe my sincere thanks to my other co-
authors. Jonna Koponen, Ph.D., elaborated most skillfully RT-PCR studies. Docent Ivana Kholová, M.D., Ph.D., helped 
me with analysis of immunohistological stainings, Tommi Heikura, M.Sc., and Svetlana Laidinen, D.V.M., completed 
ELISAs and gave me valuable advices with animal studies. Pyry Toivanen, M.Sc., kindly helped me with Western 
blotting analysis. 
 
I am grateful to my roommates Petra Korpisalo, M.D., Ph.D., Jarkko Hytönen, B.M., and Docent Tuomas Rissanen, M.D., 
Ph.D., for not only help and support but also for the enjoyable athmosphere and many laughs. I am grateful to 
Annaleena Heikkilä, M.D., Ph.D., for introducing me to our research group and providing me a helping hand in the 
beginning. I wish to thank Suvi Heinonen, M.Sc., Jenni Huusko, M.Sc., Ann-Marie Määttä, Ph.D., and Kalevi Pulkkanen, 
M.D., Ph.D., for giving me helpful advice concerning animal studies. I am thankful to Laura Tuppurainen for the kind 
help with the animal work and also for her friendship. My heartfelt thanks belong to Elisa Vähäkangas, M.D., Kati 
Kinnunen, M.D., Ph.D., Maija Päivärinta, M.D., Ph.D., Anniina Laurema, M.D., Ph.D., Sanna-Kaisa Häkkinen, M.Sc., 
Suvi Jauhiainen, M.Sc., Hanna Stedt, M.Sc., Kati Pulkkinen, M.Sc., Mervi Riekkinen, M.Sc., and Docent Anna-Liisa 
Levonen, M.D.,Ph.D., for the friendship and non-scientific discussions during these years. Without technical assistance 



 

 

XII 

by Anneli Miettinen, Seija Sahrio, Anne Martikainen, Tiina Koponen and Sari Järveläinen this study would not have 
been possible. I wish to thank Marja Poikolainen and Helena Pernu for their invaluable secretarial help. The personnel of 
the Experimental Animal Center are acknowledged for the help and excellent care of animals. 
 
I own my sincere thanks to my colleagues in the Department of Obstetrics and Gynaecology in Kuopio University 
Hospital. They have supported me in many ways during this study and I am thankful to them all. I express my warmest 
thanks to Marja Komulainen, M.D., Ph.D., Anna-Mari Heikkinen, M.D, Ph.D., and Marja-Liisa Eloranta, M.D., for 
advising me in gynaecological oncology. Special thanks belong to Kaisa Raatikainen, M.D., Ph.D., Minna Sopo, M.D., 
Nonna Heiskanen, M.D., Ph.D., and Heli Saarelainen, M.D., for their support in science and in other aspects of life. I am 
thankful for all resident colleagues, former and present, for enjoyable moments and friendship, it has been a pleasure to 
work with you. 
 
I am forever grateful to the Isotalo and Heikinheimo families. Their endless support and friendship have been invaluable 
to me and my family. 
 
My loving thanks belong to my parents, Pirjo and Jalo Moilanen, for caring and believing in me. I am thankful for my 
little brother Harri and his spouse Niina for being a part of my life. Without kind help of my parents-in-law, Ritva and 
Veikko Sallinen, completing this thesis would have been much harder. I am thankful to my brother-in-law Kalle-Pekka 
Sallinen for technical assistance with computer and to my sister-in-law Hanna-Maarit Sallinen-Hakala and her spouse 
Kalle for their support. 
 
Finally, I own my deepest thanks to my family. My wonderful children, Eveliina and Alvari, have brought me more love 
and joy that I could ever dream for. I am deeply thankful for my husband Ville for sharing my life. Without his never-
ending love, patience and understanding this thesis would not have been finished. From the day I met you Ville, I knew 
that you were my soul mate, I love you. 
 
 
Kuopio, August 2010 
 

 
 
Hanna Sallinen 
 
 
 
This study was supported by grants from the Finnish Academy, the Sigrid Juselius Foundation, Ludwig Institute for 
Cancer Research, EU Lymphangiogenomics network, EVO funding of Kuopio University Hospital, the Finnish Cultural 
Foundation, the Finnish Cultural Foundation of Northern Savo, the Finnish Medical Foundation, the Foundation of 
Finnish Cancer Institute, the Finnish Gynaecological Association, the Foundation of Kuopio University, the Cancer 
Foundation of Northern Savo, the Research Foundation of Orion Corporation, Schering-Plough, the Emil Aaltonen 
Foundation and the Irja Karvonen Foundation. 
 

 

 

 

 

 

 

 

 

 



 

 

XIII 

LIST OF ORIGINAL PUBLICATIONS 

This thesis is based on the following original publications, which are referred to in the text by their Roman 
numerals I-IV: 
 
 
 
 
 
 
I Sallinen H, Anttila M, Närväinen J, Ordén M-R, Ropponen K, Kosma V-M, Heinonen S,  
  Ylä-Herttuala S.   
                          A highly reproducible xenograft model for human ovarian carcinoma and application of MRI 

and ultrasound in longitudinal follow-up.  
                          Gynecol Oncol 2006; 103(1): 315-20.  
 
II Sallinen H, Anttila M, Närväinen J, Koponen J, Hämäläinen K, Kholová I, Heikura T,  

Toivanen P, Kosma V-M, Heinonen S, Alitalo K, Ylä-Herttuala S.  
   Antiangiogenic gene therapy with soluble VEGFR- 1, -2 and -3 reduces the growth of solid 

human ovarian carcinoma in mice.  
   Molecular Therapy 2009; 17(2): 278-84.  
 
III Sallinen H, Anttila M, Gröhn O, Koponen J, Hämälainen K, Kholová I, Kosma V-M,  

Heinonen S, Alitalo K, Ylä-Herttuala S.  
     Cotargeting of VEGFR-1 and -3 and angiopoietin receptor Tie2 reduces the growth of solid 
    human ovarian cancer in mice. 
    Cancer Gene Therapy, in press. 
 
IV Sallinen H, Heikura T, Laidinen S, Kosma V-M, Heinonen S, Ylä-Herttuala S, Anttila M.  

Preoperative circulating angiopoietin-2 – a marker of malignant potential in ovarian     
neoplasms and poor prognosis in epithelial ovarian cancer. 

                           International Journal of Gynecological Cancer, accepted for publication. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

XIV 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

XV 

Contents 
 
1 Introduction ........................................................................................................................................... 1 
 
2 Review of the literature ........................................................................................................................ 2 
   2.1 OVARIAN CANCER ............................................................................................................ 2 

     2.1.1 Epidemiology and risk factors ..................................................................................................... 2 
     2.1.2 Etiology ...................................................................................................................................... 3 
     2.1.3 Clinical features ......................................................................................................................... 4 
     2.1.4 Current treatments - surgery and chemotherapy ......................................................................... 5 
     2.1.5 Strategies for targeted therapies in ovarian cancer ...................................................................... 7 

     2.5.1.1 Targeting angiogenesis and lymphangiogenesis ................................................................... 7 
      2.5.1.1.1 Vascular endothelial growth factors .............................................................................. 9 
      2.5.1.1.2 VEGF receptors ...........................................................................................................11 
      2.5.1.1.3 Anti-VEGF strategies in clinical trials ........................................................................13 
      2.5.1.1.4 Angiopoietins and their receptors ................................................................................14 
      2.5.1.1.5 Other molecules regulating blood vessel growth in ovarian cancer ...............................16 

     2.5.1.2 Examples of other targeted therapies for ovarian cancer .......................................................17 
   2.2 GENE THERAPY FOR OVARIAN CANCER .............................................................................. 18 

     2.2.1 Principles of gene transfer .........................................................................................................18 
     2.2.2 Vectors ......................................................................................................................................19 

   2.2.2.1 Adenovirus ..........................................................................................................................19 
   2.2.2.2 Other viruses.......................................................................................................................20 
   2.2.2.3 Non-viral vectors.................................................................................................................21 

 2.2.3 Animal models for ovarian cancer.............................................................................................22 
 2.2.4 Pre-clinical in vivo studies .......................................................................................................23 
 2.2.5 Clinical studies.........................................................................................................................25 
 2.2.6 Safety, ethical and regulatory aspects .......................................................................................29 

 
3 Aims of the study .................................................................................................................................31 
 
4 Materials and methods ........................................................................................................................32 
   4.1 CELL LINE (I-III) ............................................................................................................ 32 
   4.2 ANIMAL MODEL (I-III) .................................................................................................... 33 
   4.3 GENE TRANSFER AND VIRAL VECTORS (II-III) .................................................................... 33 
   4.4 IMAGING AND TUMOUR VOLUME MEASUREMENTS (I-III) ...................................................... 34 
   4.5 HISTOLOGY AND MICROVESSEL MEASUREMENTS (I-III)....................................................... 35 
   4.6 RT-PCR (II-III) .............................................................................................................. 35 
   4.7 ELISA (II, IV) AND CLINICAL CHEMISTRY (II-III) ................................................................ 3� 
   4.8 PATIENTS (IV) ............................................................................................................... 37 
   4.9 STATISTICAL ANALYSES (I-IV) ......................................................................................... 37 
 
 
 

 
 
 



 

 

XVI 

5 Results ...................................................................................................................................................38 
    5.1 SKOV-3M CELLS PRODUCE AN AGGRESSIVE OVARIAN CARCINOMA WITH INTRAPERITONEAL 

CARCINOSIS AND ASCITES IN A XENOGRAFT MOUSE MODEL (I) ........................................... 38 
    5.2 ANTIANGIOGENIC AND ANTILYMPHANGIOGENIC GENE THERAPY WITH SOLUBLE VEGF 

RECEPTORS AND SOLUBLE ANGIOPOIETIN RECEPTORS (II-III) ............................................. 38 
      5.2.1 Transgene expression (II-III) ....................................................................................................38 
      5.2.2 Intraperitoneal tumour growth (II-III) ......................................................................................39 
      5.2.3 Formation of ascites (II-III) .......................................................................................................40 
      5.2.4 Histology (II-III).......................................................................................................................41 
      5.2.5 Microvessel measurements (II-III) ............................................................................................41 
      5.2.6 Survival and safety (II-III) ........................................................................................................42 

      5.3 PREOPERATIVE SERUM ANG-2 LEVELS ARE ELEVATED AND CORRELATE WITH A POOR   
PROGNOSIS IN PATIENTS WITH EPITHELIAL OVARIAN CANCER (IV) ...................................... 44 

 
6 Discussion .............................................................................................................................................46 
      6.1 ANIMAL STUDIES .......................................................................................................... 46 

      6.1.1 Animal model ...........................................................................................................................46 
      6.1.2 Study protocol and imaging ......................................................................................................47 
      6.1.3 Antiangiogenic and antilymphangiogenic gene therapy ............................................................47 
      6.1.4 Survival and safety ...................................................................................................................49 

      6.2 CLINICAL STUDY .......................................................................................................... 50 
      6.2.1 Patients and study design .........................................................................................................50 
      6.2.2 Ang-2 as a biomarker in epithelial ovarian cancer .....................................................................50 

 
7 Conclusions and future perspectives ................................................................................................52 
 
8 References .............................................................................................................................................53 
 

Appendix: Original Publications (I-IV) 

 
 
 

 

 

 

 

 

 
 
 

 

 

 

 



 

 

XVII 

ABBREVIATIONS 

 
AAV  adeno-associated virus 
Ad adenovirus 
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AKT1 V-akt murine thymoma viral oncogene 

homolog-1 gene 
ALT alanineamino transferase 
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ASO antisense oligonucleotides 
ATP advanced therapeutic products 
AUC area under the curve 
α-SMA       α-smooth muscle actin, pericyte 

marker 
BLI bioluminence imaging  
BRCA breast cancer-associated gene 
BRCA1sv a normal splice variant of the BRCA1 

gene 
CA125 cancer antigen 125 
CAR            coxsackie-virus and adenovirus 
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CCL21 chemocine ligand 21 
CCR7 chemokine receptor 7 
CD31 cluster of differentiation 31, 

endothelial cell marker 
CD34 cluster of differentiation 34, 

endothelial cell marker 
cDNA complementary DNA 
CEA  human carcinoembryonic antigen, 
 marker gene 
c-kit cytokine receptor, proto-oncogene 
CMV cytomegalovirus 
COMP- 
Ang-1          a soluble Ang-1 chimeric protein 
COX-2 cyclooxygenase-2 entzyme 
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CT x-ray computed tomography 
CTNNB1 β-catenin gene, oncogene 
DCE-MRI dynamic contrast-enhanced magnetic 

resonance imaging 
DDP cis-diamminedichloroplatinum 
DIC disseminated intravascular 

coagulation 
DLL4          delta-like 4 ligand 
DNA           deoxyribonucleid acid 
DNase I      deoxyribonuclease I 
DSB             DNA double-strand breaks 
EGF             epidermal growth factor 
EGFR          epidermal growth factor receptor         
 

 
 
ELISA         enzyme-linked immune-sorbent 
            assay 
EMEA European Medicines Agency 
EPC endothelial progenitor cells 
EphA2 ephrin type-A receptor 2, oncoprotein 
ErbB erythroblastic leukemia viral oncogene 
                    homolog 
ETAR           endothelin A receptor 
FAK  focal adhesion kinase 
FDA            Food and Drug Administration 
FIGO          International Federation of 

Gynecology and Obstetrics 
Flk-1 fetal liver kinase-1/ murine VEGFR-2 
Flt-1            fms-like tyrosine kinase-1/ VEGFR-1 
Flt-3 fms-like tyrosine kinase -3, cytocine 

receptor, proto-oncogene 
Flt-4 fms-like tyrosine kinase-4/ VEGFR-3 
FX human coagulation factor X 
GMP good manufacturing practice 
GT gene transfer 
HE4 human epididymis secretory protein 
HER human epidermal growth factor 

receptor 
HIF hypoxia-inducible factor 
HIV human immunodeficiency virus 
HOX homeobox 
HSV-tk herpes simplex virus thymidine kinase 
IFN             interferon 
Ig immunoglubulin 
IL interleukin 
i.m. intramuscular 
i.p. intraperitoneal 
ITR inverted terminal repeat 
i.v. intravenous 
KDR           kinase domain region/  

human VEGFR-2 
Ki-67           cell proliferation marker 
KRAS Kirsten rat sarcoma viral oncogene 

homolog gene 
LacZ β-galactosidase (marker gene) 
LXSN retroviral vector 
LYVE-1      lymphatic vessel hyaluronan receptor- 

1, lymphatic endothelial cell marker 
mda-7 melanoma differentiation-associated 

gene-7 
MLH1 a human homologue of the E. coli 

DNA mismatch repair gene mutL 
MRI magnetic resonance imaging 
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mRNA messenger ribonucleic acid 
MSH2 a human homolog of the E. coli  

DNA mismatch repair gene mutS 
mTor mammalian target of rapamycin 
MV measles virus 
MVD microvessel density 
NRP neuropilin 
p53 nuclear phosphoprotein p53, tumour 

suppressor gene 
PARP a poly-ADP-ribose polymerase 
PD progressive disease 
PDGF platelet-derived growth factor 
PDGFR PDGF receptor 
PET positron emission tomography 
pfu plaque-forming unit 
PIK3CA phosphatidylinositol 3-kinase, 

oncogene 
PlGF           placental growth factor 
PPC synthetic polymeric delivery vehicle 
PR partial response 
PTEN phosphatase and tensin homolog gene, 

tumour suppressor gene 
PTTG pituitary tumour-transforming gene 
ROC receiver operating characteristic 
RT-PCR reverse-transcriptase polymerase 
                    chain reaction 

s.c. subcutaneus 
SCID severe combined immunodeficiency 
SEM standard error of the mean 
SD stable disease 
siRNA small interfering RNA 
SIV simian immunodeficiency viruses 
SKOV-3 human ovarian adenocarcinoma cell 

line 
SKOV-3m primary cell line derived from the 

SKOV-3 cell line 
SPECT single photon emission computed 

tomography 
Src non-receptor tyrocine kinase 
SSB DNA single-strand break 
sVEGFR soluble vascular endothelial growth 

factor receptor 
TATI tumour-associated trypsin inhibitor 
Tie tyrosine kinase with immunoglobulin 

and EGF homology domains 
TNF tumour necrosis factor 
TVA tumour vascular area 
VDA vascular-disrupting agents 
VEGF vascular endothelial growth factor 
VEGFR VEGF receptor 
VPF vascular permeability factor (VEGF)



1 Introduction 

Since the symptoms of ovarian cancer are non-specific, two thirds of patients with ovarian cancer present 

with widely disseminated disease with malignant ascites at the time of diagnosis. Surgical debulking and 

platinum-based chemotherapy are currently the treatments of choice. Although most women benefit from 

first-line therapy, tumour recurrence occurs in almost all these patients. Second-line treatments can improve 

survival and quality of life but are not curative (Hennessy et al., 2009). In Finland, the 5-year survival of 

patients with ovarian cancer is 49% compared with 89% of patients with breast cancer 

(www.cancerregistry.fi). More targeted therapies, such as gene therapy, are currently being evaluated to 

treat ovarian cancer. Gene therapy is defined as the transfer of nucleid acids to somatic cells of an individual 

to achieve a therapeutic effect  (Ylä-Herttuala and Alitalo, 2003). In ovarian cancer several strategies, such as 

suicide genes, targeting oncogenes or restoring tumour suppressor genes have been used in phase I/II 

studies and in one phase III study (Heinonen, 2006). In those studies, which had a limited number of 

patients, gene therapy proved to be safe, but the treatment effects have been modest thus far. Therefore, new 

insights are needed to improve the efficacy of gene therapy. 

     Angiogenesis plays a key role in the growth and dissemination of solid tumours. Neovascularisation is 

controlled by proangiogenic growth factors and anti-angiogenic molecules. In cancer, the balance of these 

factors is disturbed leading to excessive growth and branching of vessels (Carmeliet and Jain, 2000). The 

established tumour vasculature is therefore an attractive target for therapy. We have utilised antiangiogenic 

and antilymphangiogenic gene therapy strategy with soluble VEGFRs and angiopoietin receptors towards 

endothelial cells of tumour blood and lymphatic vessels. The identification of new biomarkers to select the 

most suitable patients to the targeted therapies, such as to antiangiogenic and antilymphangiogenic 

therapies, and to observe a response to the agents is essential (Yap et al., 2009). To this end, we measured 

circulating levels of Ang-1 and Ang-2 in serum of patients with ovarian neoplasms and healthy controls. The 

levels of these growth factors were correlated to the clinical outcomes of the patients with epithelial ovarian 

cancer. 

 

  

 

 

 



 

 

2 

2 Review of the literature 
2.1 OVARIAN CANCER 
 

2.1.1 Epidemiology and risk factors 
Ovarian cancer is the sixth most common cancer in women globally and it accounts for 4.0% of all female 

malignancies (Parkin et al., 2005). The highest incidences are in Northwestern Europe and in Northern 

America, with rates in these areas exceeding 10 per 100 000. The lowest rates are in developing countries. 

The average lifetime risk for women in developed countries is about one in 70. Ovarian cancer is the most 

lethal of all gynecological cancers. Ovarian cancer accounts for 4.2% of deaths from cancer in women 

exceeding five per 100 000 women in developed countries (Sankaranarayanan and Ferlay, 2006). 

     In Finland, 424 new ovarian cancer cases were diagnosed and 288 deaths due to ovarian cancer were 

registered in 2008. In the same year the incidence was 8.4 per 100 000 and the mortality was 4.6 per 100 000. 

Ovarian cancer is uncommon before the age of 40, after which the incidence increases steeply until the age of 

70-74 (www.cancerregistry.fi). 

     The most important risk factor for ovarian cancer is a strong family history of ovarian or breast cancer. 

Even though most ovarian cancers are sporadic, 5-15% of the cases are hereditary (Boyd et al., 2000). Women 

with inherited mutations in tumour suppressor genes BRCA1 and BRCA2 are at increased risk of developing 

ovarian cancer (Eerola et al., 2002). The lifetime risk for ovarian cancer in BRCA1 mutation carriers is 24-39% 

and 8-22% in BRCA2 mutation carriers in population based studies (Chen et al., 2006; Risch et al., 2006). Also, 

approximately 15-30% of sporadic cases show epigenetic hypermethylation of the BRCA-1 promoter leading 

to decreased protein expression. BRCA1 mRNA expression may therefore have a role as a predictive marker 

for survival after chemotherapy in sporadic epithelial ovarian cancer (Baldwin et al., 2000; Quinn et al., 

2007). Patients with Lynch syndrome II, which is caused by inherited germline mutations in DNA mismatch 

repair genes such as MSH2 and MLH1, have an increased risk for colorectal cancer and some extracolonic 

cancers like cancer of the endometrium and ovary (Watson and Lynch, 1993). The lifetime risk for ovarian 

cancer in those women is 12% (Aarnio et al., 1999). 

     Infertility and nulliparity are associated with an increased risk, whereas pregnancy, lactation, oral 

contraceptive use and tubal ligation are associated with a reduced risk of ovarian cancer (Beral et al., 2008; 

Hankinson et al., 1993; Jordan et al., 2010). Whether the use of fertility drugs increases a woman’s risk of 

developing ovarian cancer has been debated. Recently, no overall increased risk of ovarian cancer after the 

use of fertility drugs and no associations between the number of cycles of use, length of follow-up, or parity 

with ovarian cancer were found (Jensen et al., 2009). The use of postmenopausal hormone therapy has been 
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associated with an increased risk of ovarian cancer (Beral et al., 2007; Morch et al., 2009). However, it is 

disputable whether hormonal therapy of less than five years increases the risk of ovarian cancer. In previous 

hormone therapy users, the risk of ovarian cancer declines to the same level as never users two years after 

cessation of hormone therapy (Beral et al., 2007; Danforth et al., 2007; Morch et al., 2009). 

 

2.1.2 Etiology 

The pathogenesis of ovarian cancer is unclear, although several theories have been proposed to explain the 

epidemiology of ovarian cancer. According to incessant ovulation hypothesis (Fathalla, 1971), continuous 

ovulations cause damage to the ovarian epithelium. During the repair process, cell proliferation results 

accumulation of genomic abnormalities and inclusion cysts. This increases the risk of carcinogenesis by 

aberrant stimulation with growth factors, including hormones, phospolipids and VEGF (Hennessy et al., 

2009). The gonadotrophin hypothesis states that excessive gonadotrophin exposure at ovulation and 

persistent high concentrations after menopause increase estrogenic stimulation of the ovarian epithelium, 

leading to malignant transformation (Cramer and Welch, 1983). The hormonal hypothesis suggests that 

androgens may stimulate ovarian cancer formation whereas progestins are protective (Risch, 1998). Factors 

that predispose to inflammation, such as endometriosis, pelvic inflammatory disease, perineal talc use and 

hyperthyroidism, may stimulate ovarian cancer formation (Ness et al., 2000).  

     Although epithelial ovarian cancer has been thought to originate from the single layer of cells 

surrounding each ovary or inclusion cysts, new findings suggest that many of these cancers derive from 

Müllerian epithelium since the major subtypes of epithelial ovarian cancers show morphological features 

that resemble those of the Müllerian duct-derived epithelia of the reproductive tract (Cheng et al., 2005; 

Dubeau, 1999). It has been reported that homeobox (HOX) genes, which normally regulate Müllerian duct 

differentiation in embryos, are not expressed in normal ovarian surface epithelium, but are expressed in 

different epithelial ovarian cancer subtypes according to the pattern of Müllerian-like differentiation (serous, 

mucinous or endometroid) of these cancers (Cheng et al., 2005). Because sex steroids regulate HOX 

expression throughout the menstrual cycle (Taylor et al., 1998), prolonged exposure of ovarian surface 

epithelium cells to these hormones might contribute to inappropriate HOX activation leading to proliferation 

and genomic instability (Hennessy et al., 2009). Somatic, non-germline mutations including mutations in the 

tumour suppressor genes p53 and PTEN and in oncogenes CTNNB1, KRAS, PIK3CA and AKT1 have been 

associated with ovarian carcinogenesis (Hennessy and Mills, 2006). There is also evidence that some ovarian 

cancers might originate from the distal tubes (Crum et al., 2007). 

     According to one model of ovarian carcinogenesis, surface epithelial tumours are divided into two broad 

categories, designated as type I and type II, that correspond to two main pathways of tumorigenesis (Shih 

and Kurman, 2004). Type I tumours are low-grade and progress through a hyperplastic process from 
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ovarian surface epithelium to a benign lesion and further to a low malignant potential tumour and then into 

on invasive form. In contrast, type 2 tumours are mainly high grade serous carcinomas which are thought to 

develop directly from ovarian surface epithelium. Different mutations and chromosomal abnormalities have 

been associated with the two pathways (Bell, 2005; Korner et al., 2005).  

 

2.1.3 Clinical features 

Since the initial symptoms of ovarian cancer are nonspecific (abdominal fullness, nausea, general weakness, 

bloating), in 70% of the ovarian cancer patients the disease is in advanced FIGO (International Federation of 

Gynecology and Obstetrics) stages III or IV at the time of diagnosis (Cannistra, 2004; Runnebaum and 

Stickeler, 2001). Table 1 shows FIGO staging of ovarian cancer and it is based on surgical, cytological and 

histopathological findings in surgery.  

 

Stage Characteristics of ovarian cancer 

I Growth limited to the ovaries 

A Tumour limited to one ovary, no surface involvement or rupture, without ascites or positive peritoneal 
washings 

B Tumour limited to both ovaries, no surface involvement or rupture, without ascites or positive washings 

C Tumour limited to one or both ovaries, surface involvement or rupture, malignant cells in ascites or in 
peritoneal washings 

II Growth limited to one or both ovaries with pelvic extensions 

A Extension to the uterus and/or fallopian tubes, no malignant cells in ascites or peritoneal washings 

B Extension to other pelvic organs like the bladder, rectum or pelvic side wall, no malignant cells in ascites 
or peritoneal washings 

C Pelvic extension with malignant cells in ascites or peritoneal washings 

III Growth involving peritoneal metastasis outside the pelvis or lymph node metastasis 

A Microscopical disease beyond the pelvis 

B Macroscopic tumour nodules ≤2cm beyond the pelvis 

C Macroscopic tumour nodules >2cm and/or lymph node involvement 

IV Distant metastases including pleural space or liver or other visceral organ parenchyma. Pleural effusion 
must be cytologically proven to be malignant. 

 

Table 1. Ovarian cancer staging by International Federation of Gynecology and Obstetrics criteria (2002). 
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Ovarian cancer spreads directly to adjacent pelvic structures, by exfoliation of the cancer cells into peritoneal 

cavity where they are transported with peristalsis and intraperitoneal fluid throughout the peritoneal cavity, 

and via lymphatics to the retroperitoneal pelvic, periaortic, suprarenal, mesenteric and mesocolic lymph 

nodes. Distant metastases in the parenchyma of the liver, lungs and other organs are due to haematological 

spread.    

     The most common histologic type of epithelial ovarian cancer is serous. Other main histological types are 

mucinous, endometroid and clear cell adenocarcinomas. A histological nuclear grading system divides 

ovarian carcinomas to three classes: well, moderately and poorly differentiated carcinomas. However, it is 

proposed that 3-ties grading system of ovarian serous carcinomas should be replaced by a 2-tier grading 

(low grade and high grade) system (Malpica et al., 2004; Vang et al., 2008).  

     Survival rates depend on the stage of the disease. The overall 5-year survival rate is 49.7%. The 5-year 

survival in patients presenting early disease (stage I or II) is 71-90% whereas in patients with advanced 

disease (stage III or IV) it is 19-47% (Heintz et al., 2006). Stage, rupture of ovarian capsule, grade, histological 

type, age and pelvic fluid cytology are prognostic factors in early stage epithelial ovarian cancer. In 

advanced stages, the residual tumour size after surgical debulking is the most important prognostic factor. 

Stage, histological type, age, grade and lymph node involvement predict also patients’ survival (Hennessy et 

al., 2009). Besides these most powerful prognosticators, factors associated with cell adhesion seem to be 

important in the progression of epithelial ovarian cancer (Anttila et al., 2000). 

 

2.1.4 Current treatments - surgery and chemotherapy 

The aims in initial surgery are histological confirmation, staging and tumour debulking (Cannistra, 2004). 

The standard surgical approach includes a total abdominal hysterectomy and bilateral salpingo-

oophorectomy, infracolic omentectomy, lymphadenectomy of pelvic and para-aortic lymph nodes, random 

biopsies, careful inspection of peritoneal cavity and peritoneal washes. An optimum cytoreduction is 

residual tumour 1 cm or less, since those patients have higher survival than those with more extensive 

residual (Bristow et al., 2002; Eisenkop et al., 1998). Tumour reduction prior to chemotherapy may 

synchronise cell division, improve drug availability to metastases, reduce the number of cycles of 

chemotherapy required to eradicate residual disease and diminish development of subsequent drug 

resistance (Eisenkop et al., 1998). 

     Treatment strategies are strongly guided by stage. Therefore, expecially in the cases in which the disease 

seems to be restricted in the ovaries, the systematic evaluation of tissues at the risk is needed to avoid 

overlooking metastatic disease (Trimbos et al., 2003; Young et al., 1983; Zanetta et al., 1998). In selected cases, 

in stage IA carcinoma (only in one ovary and well differentiated) and in young patients, a fertility sparing 

operation is possible (Monk and Disaia, 2005; Zanetta et al., 1997).  
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     If ovarian cancer is suspected on the basis of physical examination, an exploratory laparotomy is usually 

performed. In cases, when the origin of the disease is not otherwise possible to resolve or the potential for 

substantial cytoreduction before laparotomy needs to be evaluated, laparoscopy can be performed (Pomel et 

al., 2005). However, there is a risk for port-site metastasis after laparoscopic surgery (Vergote et al., 2005).  

     A secondary cytoreductive surgery after three cycles of chemotherapy does not seem to prolong survival 

(Rose et al., 2004) even though favorable results have been previously reported (van der Burg et al., 1995). 

According to recent results, neoadjuvant chemotherapy followed by debulking surgery did not improve 

overall survival or progression free survival, but morbidity was lower with interval debulking than with 

primary debulking surgery (Vergote et al., 2008). A benefit of secondary cytoreduction after the first relapse 

has been shown in patients with local recurrence, complete resection and a prolonged previous platinum-

free interval (Harter et al., 2006; Oksefjell et al., 2009; Pfisterer et al., 2005a). Intravenous administration of 

taxane- and platinum-based chemotherapy is the current standard of postoperative care for patients with 

advanced ovarian cancer (McGuire et al., 1996). Since carboplatin shows less side effects than cisplatin and 

has comparable efficacy, it is preferred (Greimel et al., 2006; Ozols et al., 2003). Platinum analogues mediate 

their effects through the formation of intrastrand cross-links with DNA (Barry et al., 1990) and taxanes 

through a mechanism of action involving binding to and stabilisation of the tubulin polymer (Nogales et al., 

1998). 

     If the patient has a platinum-sensitive disease, i.e. recurrence has occurred more than six months after the 

last platinum treatment, it is probable that combined platinum-based chemotherapy compared with 

paclitaxel or gemcitabine improves the progression free survival compared with single agent platinum 

(Parmar et al., 2003; Pfisterer et al., 2005b). If remission lasts less than six months, patients usually have 

platinum-resistant disease (Markman et al., 1998), and the recommended treatment is a single-agent regimen 

that does not include platinum, like liposomal doxorubisin, topotecan, gemcitabine, paclitaxel, oral 

etoposide and vinorelbine. Since the response rates for these drugs is 10-25% in patients with platinum 

resistant disease, side effects and ease of administration may lead the choices (Agarwal and Kaye, 2003; 

Cannistra, 2004). 

     Intraperitoneal administration of cisplatin has shown efficacy in prolonging progression-free and overall 

survival in patients with optimally debulked stage III ovarian cancer (Alberts et al., 1996; Armstrong and 

Brady, 2006; Markman, 2001). However, it has not gained full acceptance due to its toxic effects, technical 

challenges, poor quality of life during the treatment and complications. The standard treatment for the 

patients with stage III ovarian cancer is intravenous carboplatin and paclitaxel (du Bois et al., 2003; Ozols et 

al., 2003). However, a randomised trial, that compares intraperitoneal chemotherapy to standard 

intravenous carboplatin and paclitaxel therapy is lacking. 
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2.1.5 Strategies for targeted therapies in ovarian cancer 

The optimal primary cytoreduction and platinum- and taxane-based chemotherapy generates response rates 

of 60-80% with 40-60% complete responses. Despite this, the majority eventually recurs with chemoresistant 

tumours and platinum-resistant tumours are fatal. Approximately 20-30% of patients have progressive 

disease during treatment (McGuire et al., 1996). The cause of recurrence is unknown, but may involve 

cancer-initiating cells that survive chemotherapy and enter a period of dormancy (Kusumbe and Bapat, 

2009). The 5-year survival has not substantially improved with current treatment strategies. New therapies 

targeting not only the tumour cells directly, but also the surrounding stroma, vasculature and immune 

response are now under development. 

 

2.5.1.1 Targeting angiogenesis and lymphangiogenesis 

Angiogenesis, defined as new blood vessel formation, is crucial for tumour growth and metastatic 

dissemination. Tumours can grow to a size of 1-2 mm3 by diffusion. Beyond that limit neovascularisation is 

needed for the tumour to get nutrients and oxygen (Folkman, 1971; Gimbrone, Jr. et al., 1972). In cancer, the 

balance between pro-angiogenic and antiangiogenic factors is flipped in favour of angiogenesis, with 

excessive growth and branching of new vessels (Hanahan and Weinberg, 2000). Endothelial sprouting is a 

dominant mechanism of vessel growth.  

      During sprouting some endothelial cells differentiate into tip cells, and stalk cells that follow the tip cells 

and proliferate to form a vascular network. The growing endothelial cell sprout is guided by a VEGF 

gradient (Gerhardt et al., 2003). It has been shown recently that VEGF induces Notch ligand Delta-like 4 

(DLL4) in the tip cells, which leads to suppression of excess sprouts in adjacent endothelial cells (Hellstrom 

et al., 2007; Lobov et al., 2007). At sites where angiogenesis is initiated, angiopoietin-2 (Ang-2), a ligand of 

endothelial receptor tyrosine kinase Tie2, is commonly induced, whereas angiopoietin-1 (Ang-1) seems to 

promote vascular stabilisation via a distinct signalling mechanism (Augustin et al., 2009). Tumour vessels 

are distinct from the normal vasculature, since they are highly tortuous and organisised in a chaotic fashion 

(Pasqualini et al., 2002).  They are leakier than normal vessels, because the tumour-associated endothelial 

cells are loosely connected to each other and to the covering pericytes (Morikawa et al., 2002). In addition, 

the basement membrane is loosely attached to endothelial cells and pericytes, and has broad extensions 

away from the vessel wall (Baluk et al., 2003). Endothelial cells in solid tumours are cytogenetically 

abnormal, since they are aneuploid with multiple chromosomes and multiple centrosomes and inherently 

unstable unlike normal diploid endothelial cells (Hida and Klagsbrun, 2005). The role of endothelial 

progenitor cells (EPCs) originating from bone marrow is controversial in tumour growth. Initially, EPCs 

seemed to be necessary for tumour angiogenesis (Lyden et al., 2001), and differentiation of EPCs into 

endothelial cells and incorporation luminally into sprouting tumour neovessels in various tumours at the 
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early stages of tumour growth was also demonstrated (Nolan et al., 2007). However, low contributions of 

EPCs in tumour growth have been reported (Gothert et al., 2004). Recently, Purhonen et al. documented that 

no precursors of endothelial cells contribute to the vascular endothelium, and tumour growth does not 

require bone marrow-derived endothelial progenitors (Purhonen et al., 2008).  

     Other mechanisms in tumour neovascularisation include vasculogenic mimicry and mosaic vessels, co-

option of pre-existing vessels and mobilisation of latent vessels (Holash et al., 1999; Maniotis et al., 1999; 

Spannuth et al., 2008). In ovarian cancer, Sood et al. have shown that aggressive ovarian cancer cells are able 

to form tumour cell-lined vasculature (Sood et al., 2001). The existence of tumour cell-lined vasculature was 

found in approximately 30% of invasive ovarian tumours and had an impact on the survival of patients 

(Sood et al., 2002).  

     In 1971, Folkman proposed that antiangiogenesis might be an effective approach to treat human cancer 

(Folkman, 1971). To date, there are three FDA (Food and Drug Administeration) -approved antiangiogenic 

agents targeting VEGF pathway. These agents include the humanised anti-VEGF-A monoclonal antibody 

Bevacizumab (Hurwitz et al., 2004) and two small molecule inhibitors, Sorafenib (Escudier et al., 2007) and 

Sunitinib (Motzer et al., 2007), targeting VEGFR and PDGFR (platelet-derived growth factor receptor) 

kinases. In addition to inhibition of new blood vessel growth and induction of endothelial cell apoptosis, 

anti-angiogenic therapies are suggested to normalize the tumour vasculature (Jain, 2005). The normalisation 

of tumour vessels allows more efficient delivery of drugs, which in turn enhance the outcome of 

chemotherapy. Antivascular strategies in clinical development for ovarian cancer includes antiangiogenic 

therapies (binding to VEGF or VEGFRs, inhibiting receptor tyrosine kinase activation and downstream 

molecules) and vascular-disrupting therapies (Spannuth et al., 2008). 

     Lymphatic vessels are part of the vascular circulatory system. The molecular mechanisms regulating 

lymphangiogenesis, the growth of lymphatic vessels, is much less explored than those of angiogenesis. 

Lymphangiogenesis occurs during inflammation, wound healing and tumour metastasis. Lymphatic vessels 

regulate tissue fluid homeostasis, immune cell trafficking and absoption of dietary fats (Tammela and 

Alitalo, 2010). In cancer, metastasis of malignant tumours to regional lymph nodes is one of the early signs of 

cancer spread in patients (Achen et al., 2005; Karpanen and Alitalo, 2008). The structure of lymphatics is 

more suitable for the entry of invasive tumour cells than that of blood vessels, since lymphatic vessels have 

loose overlapping cell-cell junctions without pericytes or an intact basement memrane (Saharinen et al., 

2004). Tumours interact with the lymphatic vasculature in several ways, including vessel co-option, 

chemotactic migration and invasion into lymphatic vessels and induction of lymphangiogenesis via growth 

factors (Sleeman and Thiele, 2009). Mechanistic studies have demonstrated that lymphatics in the periphery 

of tumours are functional (Achen et al., 2005; Alitalo et al., 2005; He et al., 2005; Padera et al., 2002). In 

contrast, intratumoural lymphatic vessels that are probably nonfunctional due to high intratumoural 
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pressure and are not required for lymphatic metastases (Padera et al., 2002; Wong et al., 2005). In ovarian 

cancer, the lymphatic vessel density measured in the hotspots of both intra-and peripheral areas has been 

found to be a significant prognostic factor for progression free and overall survival (Li et al., 2009a; Sundar et 

al., 2006). 

     The induction of lymphangiogenesis by tumours is mediated by growth factors and cytokines that can be 

produced by the tumour cells or by stromal cells, tumour-associated macrophages or platelets (Alitalo et al., 

2005; Joyce and Pollard, 2009; Wartiovaara et al., 1998). The most widely studied growth factors concerning 

lymphangiogenesis are the VEGF family members VEGF-C and –D and their receptors. Overexpression of 

angiopoietins promotes lymphangiogenesis, with Ang-1 being the most potent lymphangiogenic factor 

where as Ang-2 is needed for lymphatic vessel stabilisation (Gale et al., 2002; Kim et al., 2007; Morisada et al., 

2005; Tammela et al., 2005). In a mouse cornea model fibroplast growth factor-2 (Chang et al., 2004) and  

platelet-derived growth factor (PDGF)-BB (Cao et al., 2004) stimulated the lymphangiogenesis. Cytokines 

have been demonstrated to play a role in promoting the entry of tumour cells into the lymphatics. For 

instance, lymphatic endothelial cells producing dendritic cell chemocine CCL21 attract tumour cells that 

express its receptor CCR7 (Issa et al., 2009; Shields et al., 2007). In an ovarian cancer model, a high stimulus 

by the luteinising hormone and follicle-stimulating hormone resulted in enhanced lymphangiogenesis 

(Sapoznik et al., 2009). 

2.5.1.1.1 Vascular endothelial growth factors 

Vascular permeability factor (VPF), which is secreted by tumours and capable of promoting accumulation of 

ascites, was identified in 1983 (Senger et al., 1983). Six years later the cDNA sequence of VEGF was 

published (Keck et al., 1989; Leung et al., 1989; Plouet et al., 1989), which turned out to be the same VPF 

molecule (Keck et al., 1989). After the discovery of VEGF (also called VEGF-A), four other members of 

human VEGF family have been identified: VEGF-B, VEGF-C, VEGF-D and placental growth factor 

(PlGF)(Achen et al., 1998; Joukov et al., 1997a; Maglione et al., 1991; Olofsson et al., 1996). Also, viral VEGF 

homologues (VEGF-E) and snake venom VEGFs (VEGF-F) have been found (Ogawa et al., 1998; Yamazaki et 

al., 2003). The human VEGF gene has been mapped to chromosome 6p21.3. (Vincenti et al., 1996). VEGF is a 

glycoprotein that has at least four molecular isoforms consisting of 121, 165, 189 and 206 aminoacid residues 

as a result of alternative mRNA splicing of the same gene (Houck et al., 1991; Tischer et al., 1991). These 

isoforms have distinct heparin binding propeties and diffusibility. VEGF121 is freely soluble and does not 

bind to heparin, whereas VEGF 189 and VEGF206 have a high affinity towards extracellular matrix. VEGF 165 is 

the most common form, it binds to heparin and can be either secreted or bound to the cell surface and 

extracellular matrix (Houck et al., 1992). The corresponding mouse and rat isoforms have one aminoacid less 

than those of human proteins. 
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     VEGF-A is regulated by several mechanisms, including hypoxia, acidosis, mechanical stress, and 

alterations in the expression of oncogenes and tumour suppressor genes (Ferrara et al., 2003). While in most 

circumstances VEGF-A functions in a paracrine manner, for example in progression of angiogenesis in 

tumour growth, autocrine VEGF-A is required for the homeostasis and survival of blood vessels and  

hematopoietic stem cells (Gerber et al., 2002; Lee et al., 2007). The effect of VEGF-A on vascular permeability 

is believed to be crucial for malignant ascites formation (Hasumi et al., 2002; Lee et al., 2007; Mesiano et al., 

1998; Takei et al., 2007).  

     VEGF-A has been shown to be expressed in epithelial ovarian tumour samples (Sowter et al., 1997; 

Yamamoto et al., 1997). The angiogenesis related gene profile, including VEGF-A, is increased in ovarian 

cancer samples (Mendiola et al., 2008), VEGF-A levels seem to be elevated in ascites (Rudlowski et al., 2006) 

and in the circulation (Chen et al., 1999; Cooper et al., 2002; Tempfer et al., 1998; Yamamoto et al., 1997) and 

associated with poor prognosis (Chen et al., 1999; Mendiola et al., 2008; Rudlowski et al., 2006; Tempfer et 

al., 1998; Yamamoto et al., 1997). However, conflicting results have also been presented (Hata et al., 2004; Lee 

et al., 2006; Sonmezer et al., 2004). 

      VEGF-B has structural similarities to VEGF-A and PlGF (Olofsson et al., 1996). The role of VEGF-B in 

pathological angiogenesis including tumour growth remains elusive, although VEFG-B levels are increased 

in malignant tissues, including ovarian tumours (Fischer et al., 2008; Sowter et al., 1997). 

     PlGF was identified shortly after the discovery of VEGF-A (Maglione et al., 1991). It stimulates 

angiogenesis and vascular permability and mobilises endothelial progenitor cells and hematopoietic stem 

cells (Gerber et al., 2002; Hattori et al., 2002; Luttun et al., 2002). PlGF is naturally expressed in the blood 

vessel endothelium in the human placenta, and a low placental PlGF level is associated with a high risk of 

pre-eclampsia (Levine et al., 2004). In tumours, PlGF is not only produced by malignant cells, but also by 

endothelial cells, smooth-muscle cells, pericytes, cancer-associated fibroblasts, tumour-associated 

macrophages and various other inflammatory cells in the tumour stroma. Tumour cells can also induce PlGF 

expression by fibroblasts via crosstalk between tumour cells and the stroma (Fischer et al., 2008). Although 

PlGF has been shown to be expressed in many tumours and is correlated with a poor prognosis (Fischer et 

al., 2008), studies on ovarian cancer are sparse. In one ovarian cancer study, however, PlGF was not detected 

(Sowter et al., 1997). 

     VEGF-C and VEGF-D are produced as large precursors forms, which are then proteolytically processed 

into mature forms (Achen et al., 1998; Joukov et al., 1997b). Both VEGF-C and –D promote tumour 

angiogenesis and lymphangiogenesis. In ovarian cancer, expression levels of VEGF-C in tumour tissues have 

correlated with worse overall and progression free survival (Nishida et al., 2004; Sinn et al., 2009) Expression 

of VEGF-D, intratumoral lymphatics and lymphatic invasion have also been shown to have an impact on the 

survival of patients with ovarian cancer (Li et al., 2009a; Yokoyama et al., 2003).
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2.5.1.1.2 VEGF receptor 
VEGF family members mediate their effects through VEGF -receptors 1, 2 and 3, also known as Flt-1, 

KDR/Flk-1 and Flt-4, respectively (Ferrara, 2004; Petrova et al., 1999) (Figure 1.). VEGFRs are mostly 

expressed in endothelial cells, but also in other cells. They have seven extracellular immunoglobulin-like 

domains, a single transmembrane region and an intracellular tyrosine kinase domain. Ligand binding results 

in receptor dimerisation and sequential activation of the intrinsic kinase activity (Dixelius et al., 2003). 

Neuropilins 1 (NRP-1) and 2 (NRP-2) function as co-receptors in specific VEGFs.          

    
 
Figure 1. Schematic representation of VEGFs and VEGF receptors. VEGFRs are composed of seven immunoglobulin-like domains 
and a split tyrosine kinase part. The fourth and sixth Ig-loops of VEGFR-3 are attached by a disulfide bond (SS).Various strategies to 
inhibit VEGF signalling is also presented. VEGF = vascular endothelial growth factor, VEGFR = vascular endothelial growth factor 
receptor, sVEGFR = soluble VEGFR, VEGF-Trap = VEGFR-1/VEGFR-2/IgG1 fusion protein, PlGF = placental growth factor, NRP 
= neuropilin 

 

VEGFR-1 binds VEGF-A, VEGF-B and PlGF. It is expressed in endothelial cells, but also in monocytes, 

macrophages, pericytes subpopulations of bone marrow progenitors and in some tumour cells (Fischer et al., 

2008). Homozygous VEGFR-1 deletion permits an overgrowth of endothelial cells but the vascular channels 

that form are grossly abnormal. Moreover, the animals die in utero, suggesting that VEGFR-1 has a negative 

regulatory role in vascular development during early embryogenesis (Fong et al., 1995). Since VEGFR-1 also 

exists as a soluble decoy receptor (sVEGFR-1) that traps excess circulating VEGF (Shibuya et al., 1990), it was 

initially thought that VEGFR-1 functions solely as a negative regulator of angiogenesis. In adulthood,
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VEGFR-1 is a positive regulator of macrophage functions and monocyte chemotaxis and stimulates 

inflammation and cancer metastasis (Shibuya, 2006). VEGFR-1 has 10-fold higher affinity to VEGF-A than 

VEGFR-2, but relatively weak tyrosine kinase activity and its downstream signalling is poorly understood, 

although VEGF-A and PlGF appear to induce distinct phosphorylation patterns (Autiero et al., 2003).  

     Selective activation of VEGFR-1 by PlGF seems to result in an indirect VEGFR-2 stimulation causing 

angiogenic and vascular permeability effects. Thus, it appears that signalling via VEGFR-1 is ligand-

dependent; it is a negative modulator of VEGF-A induced angiogenesis but in response to PlGF binding, it is 

capable of promoting proangiogenic effects via indirect VEGFR-2 activation. Soluble VEGFR-1 is abnormally 

over-expressed in pre-eclamptic placentas, and suggested to cause the major pathological symptoms on the 

maternal side such as hypertension and renal dysfunction, most likely by blocking the physiological VEGF-

A (Shibuya, 2006). In ovarian cancer, VEGFR-1 is detected not only in vascular endothelial cells, but also in 

tumour cells at malignant sites and in the circulation (Artini et al., 2008; Inan et al., 2006; Secord et al., 2007). 

In several tumour models sVEGFR-1 has reduced tumour growth. 

      Binding of VEGFR-2 by VEGF-A and processed forms of VEGF-C and –D, results in activation of many 

intracellular mitogenic signalling cascades, producing angiogenesis by inducing proliferation, survival, 

sprouting and migration of endothelial cells and also increases endothelial permeability. Thus, VEGFR-2 

pathway is considered to be the main mediator of VEGFs (Ferrara et al., 2003; Olsson et al., 2006). In addition 

to expression of VEGFR-2 in blood vessels, it is also found in the lymphatics (Hirakawa et al., 2005; Nagy et 

al., 2002). Expression of VEGFR-2 has been demonstrated also in tumour cells of human ovarian cancer 

samples (Inan et al., 2006; Nishida et al., 2004; Spannuth et al., 2009). A naturally occuring sVEGFR-2 that 

may have regulatory effects on angiogenesis has also been detected in human plasma (Ebos et al., 2004).  

      VEGFR-3 is stimulated by VEGF-C and VEGF-D, which can also activate VEGFR-2 after proteolytic 

processing. VEGFR-3 is able to form heterodimers with VEGFR-2 in response to processed VEGF-C (Dixelius 

et al., 2003). VEGFR-3 is mainly expressed in lymphatic vessels promoting lymphangiogenesis, but is also 

up-regulated in tumour angiogenesis (Valtola et al., 1999). Specifically, expression of VEGFR-3 has been 

localised to endothelial tip cells in the tumour vasculature (Tammela et al., 2008). In cancer, by inhibiting the 

VEGFR-3 pathway either by the VEGF-C/D Trap or VEGFR-blocking antibodies suppresses approximately 

60-70% of lymph node metastasis in a variety of tumour models (Tammela and Alitalo, 2010).  

     In addition to the three tyrosine-kinase receptors, two co-receptors for VEGFs have been identified, called 

neuropilins (NRPs). NRP-1 has been implicated in the activity of VEGF-A, VEGF-B, and PlGF, thereby 

regulating angiogenesis by activating VEGFR-1 and VEGFR-2. NRP-2 has been implicated in modulating 

VEGF-C and VEGF-D biology through VEGFR-3 and VEGFR-2, primarily promoting lymphangiogenesis 

(Karpanen et al., 2006). It is suggested that these receptors can signal independently of the receptor tyrosine 

kinases (Wang et al., 2007). Recent evidence has shown that manipulating neuropilin function can regulate 
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tumour growth and metastasis through effects on vascular biology in the case of NRP-1 and lymphatic 

biology in the case of NRP-2. In addition, both receptors have been implicated in directly modulating 

tumour cell behaviour (Bagri et al., 2009). Higher expression of NRP-1 and NRP-2 has been shown in tissue 

samples of ovarian cancer than in benign tumours (Osada et al., 2006). 

 

2.5.1.1.3 Anti-VEGF strategies in clinical trials 

The most widely investigated anti-VEGF agent is bevacizumab, a recombinant humanised monoclonal 

antibody that binds and neutralises all biologically active isoforms of VEGF-A. Bevacizumab was the first 

antiangiogenic agent to be approved for the treatment of cancer (Hurwitz et al., 2004; Miller et al., 2007; 

Sandler et al., 2006). Response rates in two phase II trials in patients with recurrent ovarian cancer, the 

majority of them with platinum-resistant disease, were 16 and 21% and the median progression-free survival 

was 4.4 and 4.7 months, which is significantly higher than usual in this kind of patient group (Burger et al., 

2007; Cannistra et al., 2007). Side effects were hypertension, vascular trombosis and gastrointestinal 

perforations. However, these perforations were not experienced in one study, probably because of less 

extensive prior chemotherapy (Burger et al., 2007). Currently, the combination of carboplatin-paclitaxel 

chemotherapy and bevacizumab compared with chemotherapy alone is being under investigation as a first 

line treatment in two large phase III trials (GOG-218 and ICON7). 

      Aflibercept (VEGF-Trap) is a soluble decoy receptor consisting of extracellular VEGF-binding domains of 

both VEGFR-1 and -2 linked to human immunoglobulin G1 (IgG1) (Holash et al., 2002). It binds to PlGF in 

addition to VEGF-A and has a higher affinify for VEGF than native VEGFRs. In phase II study with recurrent 

platinum-resistant disease it yielded 11% partial response. Toxicities were similar to the toxicity reported 

with bevacizumab with a low incidence of bowel perforation (Tew et al., 2007). 

     Ramucirumab (IMC-1121B), a full IgG1 human monoclonal antibody targeting VEGFR-2, has been utilised 

in a phase I study consisting patients with advanced solid cancers including ovarian cancer (Spratlin et al., 

2010). Four of 27 patients with a measurable disease had a partial response and 11 of 37 patients had either a 

partial or stable disease lasting at least 6 months. The patient with ovarian cancer achieved partial response 

lasting over 86 months. It was mentioned that this patient had received other anti-VEGF therapy. 

Hypertension, deep venous thrombosis, abdominal pain, nausea and proteinuria were for example reported 

side effects in this study. 

     Several small molecule tyrosine kinase inhibitors that target the intracellular tyrosine kinase components 

of tyrocine kinases VEGFRs, PDGFRs, c-kit and Flt-3 have been assessed in phase II settings in ovarian 

cancer (Biagi et al., 2008; Friedlander et al., 2007; Hirte et al., 2008; Matei et al., 2008; Matulonis et al., 2008). 

In preliminary reports, response rates of up to 19% and stable disease in up to 63% have been described. 
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Dose-dependent grade 3-4 toxicities consisted of hypertension, fatigue, diarrhoea and venous 

thromboembolism, but not gastrointestinal perforations. With cediranib, which targets VEGFR-1, -2 and -3, 

the median progression-free survival was 4.1 months (Hirte et al., 2008), similar to that with bevacizumab. is 

Cediranib is now being tested in a phase III trial in combination with carboplatin-paclitaxel (ICON6). 

Synergistic effects of combined anti-VEGF therapies have also been explored in a clinical phase I study. 

Sorafenib and bevacizumab demonstrated a partial response in six of 13 ovarian cancer patients, but toxicity 

appeared higher than for single agent anti-VEGF therapy, including hypertension, hand-foot syndrome and 

enteral fistulas (Azad et al., 2008). 

 

2.5.1.1.4 Angiopoietins and their receptors 

The angiopoietin family consists of four ligands, Ang-1, Ang-2 and Ang-3/4, and two corresponding tyrosine 

kinase receptors, Tie1 and Tie2 (Figure 2.). Ang-1 and Ang-2 bind to Tie2 with a similar affinity (Fiedler et 

al., 2003), and also bind to integrin receptors (Carlson et al., 2001; Cascone et al., 2005; Imanishi et al., 2007). 

Tie2 activation promotes vessel assembly and maturation by regulating the recruitment of mural cells 

(pericytes and smooth muscle cells) around endothelial cells. Ang-1 is expressed in pericytes, smooth muscle 

cells and fibroblast. Ang-1 also promotes vascular maturation in a paracrine manner by attracting  pericytes 

and smooth muscle cells to the developing vessels (Suri et al., 1996) and contributes to tumour dissemination 

and metastasis (Holopainen et al., 2009). Ang-2, on the contrary, functions as an autocrine controller of 

endothelial cells in a context- dependent manner promoting either blood vessel growth or regression 

depending on the levels of other growth factors, such as VEGF-A (Holash et al., 1999; Zhang et al., 2003).  

     In the early stage of the angiogenic switch, invasive tumour cells grow along pre-existing vessels. This 

results in endothelial cell activation and strong Ang-2 expression, leading to endothelial cell apoptosis and 

regression of co-opted blood vessels. Increased intratumoural hypoxia up-regulates VEGF expression and 

robust angiogenesis at the tumour margin (Holash et al., 1999). Ang-2 is mostly expressed by endothelial 

cells where it is stored in Weibel-Palade bodies and released rapidly after cytocine activation (Fiedler et al., 

2004). Under physiological conditions it is weakly expressed. Both Ang-1 and Ang-2 expression have been 

demonstrated also in tumour cells (Koga et al., 2001; Stratmann et al., 1998) including ovarian cancer cells 

(Hata et al., 2002). Circulating Ang-1 and Ang-2 levels have been associated with tumour angiogenesis in 

several cancers (Caine et al., 2003; Detjen et al., 2010; Helfrich et al., 2009; Jo et al., 2009; Kopczynska et al., 

2009; Kuboki et al., 2008; Niedzwiecki et al., 2006; Park et al., 2009; Park et al., 2007; Scholz et al., 2007; 

Srirajaskanthan et al., 2009; Szarvas et al., 2009). Mouse Ang-3 and human Ang-4 are diverging gene 

counterparts (Valenzuela et al., 1999), whose functions have not yet been clarified. 
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     Tie1 and Tie2 tyrosine kinase receptors are expressed by vascular and lymphatic endothelial cells. They 

have Ig-like and epidermal growth factor (EGF) -like extracellular homology domains and smaller 

intracellular domain consisting of a split kinase domain which can bind different molecules after 

autophosphorylation (Figure 2.). Tie1 and Tie2 receptors have a 76% sequence identity in cytoplasmic 

region, but only 33% similarity in the extracellular part.    

     Tie2 expression is upregulated in tumour angiogenesis and it is also found in hematopoietic cells, 

endothelial precursor cells and tumour cells. The receptor dimerises by ligand binding. The function of Tie1 

is less well characterised than that of Tie2 due to the lack of its own specific ligands. It is suggested that 

COMP-Ang-1, a designed pentameric form of Ang-1, can bind to Tie1 (Saharinen et al., 2005). It has been 

recently shown that Tie1 receptor can interact with Tie2 and signal as a heterodimeric complex (Marron et 

al., 2007).  

             
 

 

 

 

 

Figure 2. Schematic representation of angiopoietins and Tie 
receptors. The extracellular domain of Tie receptors is composed of 
two immunoglobulin (Ig)-like domains, followed by three epidermal  
growth factor (EGF)-like repeats, another Ig-like domain and three 
fibronectin-like repeats (Augustin et al., 2009). Tie2 meditates 
endothelial cell survival, migration, permeability and maturation. 
The specific ligand and function of Tie1 is still unknown. 

 

 

      

 

 

  

 

     

    An investigational peptide-Fc fusion protein (AMG 386) that inhibits angiogenesis by preventing the 

interaction of Ang-1 and Ang-2 with their receptor Tie2, has been utilised in phase I trial (Herbst et al., 2009). 

Three ovarian carcinoma patients were enrolled in that study. The greatest tumour reduction (32.5%) of the 

study was observed in a patient with advanced, refractory ovarian cancer. She achieved a partial response 

(PR) and patients' CA125 remained 20-40 U/mL for longer than 2 years. The safety profile was distinct from 

that of anti-VEGF therapies, because no bleeding or thromboembolic events were observed. 
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2.5.1.1.5 Other molecules regulating blood vessel growth in ovarian cancer 

Platelet-derived growth factors (PDGFs) exert their effects by activating two structurally related protein 

tyrosine kinase receptors, α and β located on pericytes (Heldin et al., 1988). PDGFs are crucial for pericyte 

and smooth muscle cell recqruitment, thus, promoting vascular maturation. PDGF is expressed in 73% of 

ovarian carcinomas, and over-expression of PDGFR is associated with poor prognosis (Dabrow et al., 1998). 

In phase I-II trials imatinib, which targets both PDGFR and c-kit, has  been shown to be ineffective (Schilder 

et al., 2008). 

     The family of epidermal growth factor receptors (EGFRs) is composed of four structurally similar 

receptors: ErbB1 (EGFR), ErbB2 (Her2/neu), ErbB3 (Her3) and ErbB4 (Her4). EGFR is over-expressed in up to 

70% of advanced epithelial ovarian cancers and increased level has been correlated with poor overall 

survival (Bartlett et al., 1996; Psyrri et al., 2005). In clinical settings, treatment effects of EGFR inhibitors 

(tyrosine kinase inhibitors or monoclonal antibodies) have been modest (Gordon et al., 2006; Posadas et al., 

2007). The combination with EGFR tyrosine kinase inhibitor erlonitib and bevacizumab did not show any 

additional benefits over bevacizumab alone (Nimeiri et al., 2008). 

      Mammalian target of rapamycin (mTor) controls the levels of hypoxia-inducible factor-1α (HIF-1α), 

which in turn activates multiple target genes including VEGF (Kurmasheva et al., 2007). Temsirolimus is an 

inhibitor of mTOR and that has been used in a phase II study in recurrent ovarian cancer (GOG-01701). 

Thalidomide downregulates the expression of tumour necrosis factor-α and VEGF and modulates the 

activity of other cytokines, leading to antiangiogenic and antitumoural effects (Gasparini et al., 2005). In a 

randomised phase II trial patients with recurrent epithelial ovarian carcinoma were treated with topotecan 

or topotecan combined with thalidomide. The overall response rate was 47% in the thalidomide arm versus 

21% in the topotecan arm only (Downs et al., 2008). Currently carboplatin and thalidomide with carboplatin 

alone are being investigated in a randomised phase II trial.  

      Other molecules and targets that have shown antiangiogenic and antitumoural effects in preclinical 

studies of ovarian cancer and are now being investigated in clinical trials include, non-receptor tyrosine 

kinase (Src) inhibitors, an agonistic antibody to ephrin type-A receptor 2 (EphA2), endothelin A receptor 

(ETAR) antagonists, endostatin and cyclooxygenase-2 (COX-2) inhibitors  (Han et al., 2006; Landen et al., 

2006; Rosano et al., 2003; Xin et al., 2007a; Xin et al., 2007b; Yokoyama et al., 2007). Vascular-disrupting 

agents (VDAs) are a relatively new class of drugs that cause a pronounced shutdown in blood flow to solid 

tumours, resulting in extensive tumour-cell necrosis, while leaving the blood flow in normal tissues 

relatively intact (Tozer et al., 2005). In a xenograft model of ovarian carcinoma, VDAs have shown an 

increased tumour response after cisplatin chemotherapy (Siemann et al., 2002). 
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2.5.1.2 Examples of other targeted therapies for ovarian cancer 

A poly-ADP-ribose polymerase (PARP) enzyme is involved in repair of DNA single-strand breaks (SSBs) 

using the base excision repair pathway. Tumours with a compromised ability to repair double-strand DNA 

breaks by homologous recombination, including those with defects in BRCA1 and BRCA2, are highly 

sensitive to blockade of the repair of DNA single-strand breaks via the inhibition of PARP. PARP binds to 

areas of DNA damage, where it produces long chains of poly-adenosine diphosphate (ADP) ribose and 

catalyses the addition of these ADP ribose units to DNA. It also requires other proteins for repair. Inhibition 

of PARP leads to the accumulation of SSBs, which may lead to DNA double-strand breaks (DSBs), collapsed 

replication forks and eventual cell death (Ashworth, 2008). Olaparib, an oral small molecule PARP inhibitor, 

was well tolerated and antitumour activity was reported in BRCA1 or BRCA2 mutation carriers in a phase I 

trial (Fong et al., 2009).  

      A high-affinity murine monoclonal antibody specific for cancer antigen 125 (CA125) administered as a 

monoimmunotherapy after front-line therapy in a selected ovarian cancer population proved to be well 

tolerated, but ineffective in a phase III trial (Berek et al., 2009). 

     The folate receptor-α, which is reported to be over-expressed in about 70 % of epithelial ovarian 

carcinoma cases, has also been a target in epithelial ovarian cancer. Folate receptor-α is a tumour antigen 

against which a majority of patients exert an immune response (Knutson et al., 2006). A monoclonal 

antibody (MORAb-003) towards folate receptor-α combined with carpoplatin–paclitaxel normalised CA12-5 

and significantly increased overall response rates in a phase II trial (Armstrong et al., 2008).  

     DNA methylation is an epigenetic modification that leads to an alteration of gene expression (Holliday, 

2005). One strategy used to overcome drug resistance is to reverse the methylation-induced silencing of the 

tumour suppressor or proapoptotic genes (Li et al., 2009b). Azadicitidine, a methylation inhibitor, has 

demonstrated the ability to reverse platinum resistance in phase II trial according to initial results (Bast et al., 

2008). Examples of other targeted therapies than antiangiogenic therapies are summarised in Table 2. 

 

Study Target Drug Example Phase n Response 

Fong et al. 
2009 PARP inhibition Olaparib I 21 38% of ovarian cancer patients with BRCA1 or 

BRCA2 mutation had radiologic CR or PR 

Berek et al. 
2009 CA125 Oregovomab 

(antibody) III 371 ineffective in prolonging TTR compared with 
placebo 

Armstrong 
et al. 2008 Folate receptor-α MORAb-003 

(antibody) I 52 MORAb with P/T increases ORR 

Bast et al. 
2008 

Methylation 
inhibition Azadicitidine II 30 RR14%, able to reverse platinum resistance 

CR=complete response, PR=partial response, TTR=time to relapse, P=platinum, T=taxane, ORR= overall response 
rate 
Table 2. Examples of other targeted therapies for ovarian cancer 
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2.2 GENE THERAPY FOR OVARIAN CANCER 

 

2.2.1 Principles of gene transfer 

Gene therapy is a promising strategy for the treatment of several cancers including ovarian cancer. In all, 

65% of clinical trials of gene therapy are targeted to cancer patients 

(http://www.wiley.co.uk/genetherapy/clinical/). In therapeutic gene transfer, nucleid acids are transfered to 

somatic cells, resulting in a therapeutic effect (Yla-Herttuala and Alitalo, 2003). The effectiveness of gene 

therapy is determined by the efficacy of gene delivery to the target tissue, the entry of genetic material into 

cells and the expression level of the transduced gene in target cells (Yla-Herttuala and Alitalo, 2003). For 

effective gene therapy it is also necessary to express the gene for a suitable period. Strategies used in ovarian 

cancer gene therapy can generally be divided as follows: molecular gene therapy, mutation compensation, 

immunopotentiation and virotherapy and in the pre-clinical setting also antiangiogenesis (Raki et al., 2006). 

Molecular gene therapy causes tumour cell death by a suicide gene, which makes a cell sensitive to an 

otherwise harmless prodrug like ganciclovir. The aim of mutation compensation is to replace a mutated 

tumour suppressor gene by a functional one. In immunopotentiation strategy, tumour cells are modified to 

enhance the response of the host’s immune system. In virotherapy replication-competent viruses specifically 

proliferate in tumour cells and cause cell death. 

     Vectors play a key role in cancer gene therapy by transfering the treatment gene to the target cells. The 

ideal vector can be produced in high titers, targets the desired type of cells, can be modified, expression time 

is suitable for the particular disease to be treated and it does not elicit a harmful immune response (Verma 

and Somia, 1997). However, the ideal vector containing all these desirable features does not exist yet. The 

vectors can be divided to viral and non-viral vectors. Viral vectors utilized in ovarian cancer gene therapy 

are adenoviruses, retroviruses, lentiviruses and adeno-associate viruses and they are in general considered 

more efficient vectors than non-viral vectors. Those sequences that are fundamental for virus replication are 

replaced by treatment and regulatory sequences. Depending on the type of the virus, transduction can be 

either extra-chromosomal or the transgene may be integrated into the host’s genome leading to transient or 

permanent expression, respectively. The first therapeutic gene transfer was performed using retroviral-

mediated transfer of adenosine deaminase gene into the T cells of two children with severe combined 

immunodeficiency in 1990 (Blaese et al., 1995). In Finland, the first gene transfer was performed in Kuopio to 

a patient with malignant glioma (Puumalainen et al., 1998). 
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2.2.2 Vectors 

2.2.2.1 Adenovirus 

Adenoviruses belong to a group of non-enveloped icosahedral DNA viruses in size of about 70-90 nm with 

an outer protein shell surrounding an inner nucleoprotein core (McConnell and Imperiale, 2004). Human 

adenoviruses cause for example mild respiratory infections, gastroenteritis, cystitis and conjuctivitis. To 

date, 51 serotypes divided into six subgroups (A-F) have been identified (Douglas, 2004). In cancer gene 

therapy studies, the adenovirus serotype 5 of group C is widely used. Gene therapy trials with modified 

adenoviruses covered about one quarter of all gene therapy studies worldwide 

(http://www.wiley.co.uk/genetherapy/clinical). Many properties of adenovirus make it well suited for cancer 

gene delivery. They can efficiently transduce both dividing and non-dividing cells, can be produced in high 

titers and have tropism for multiple cell types. The extra-chromosomal position of the virus genome results 

in transient gene expression for few weeks in immunocompetent host (Hiltunen et al., 2000) and 

adenoviruses lack the risk of insertional mutagenesis and inappropriate activation of oncogenes (Hacein-

Bey-Abina et al., 2003). Disadvantages of adenoviruses are their ability to cause immune responses, which 

might be faced when repeating the gene therapy for the same individual (Bessis et al., 2004). However, 

strategies for facilitating the treatment effect of re-administration are for example changing the serotype 

(Mastrangeli et al., 1996; Parks et al., 1999), minimising viral gene content (gutless Ad)(Alba et al., 2005), 

creating chimeric vectors substituting the receptor-binding proteins with retargeting ligand or domains of 

alternate human adenovirus serotypes (Kanerva and Hemminki, 2004; Noureddini et al., 2006), combining 

immunosuppressive agents for temporary abrogation of neutralising antibodies (Christ et al., 1997) or 

physical removal of neuralizing antibodies (Chen et al., 2000).  

     The wild type adenoviral genome can be divided into five early transcription regions (E1A, E1B, E2, E3 

and E4) and late late transcription regions (L1-5) (Kootstra and Verma, 2003). The early gene products 

participate in initiation and activation of adenoviral replication, suppression of endogenous host gene 

expression and activation of late adenoviral gene expression. Late adenoviral gene expression results in high 

production of the virion structural proteins. In the adenoviruses of the first generation, regions E1 or E1 and 

E3 are deleted. The treatment gene is usually inserted into the deleted E1 region of the adenovirus genome. 

The cytomegalovirus (CMV) promoter is most often used to drive the expression of treatment gene (Figure 

3.). Compared with the > 7 kbp capacity of the first generation adenovirus for the expressed gene, the high 

capacity “gutless” adenoviruses (E1, E3 and E2 or E4 deleted) have a capacity over 30 kbp for a foreign gene 

incorporation. Gutless vectors are associated with longer transgene expression times and reduced 

inflammation than the first generation vectors, since they do not contain any residual viral genes (Morsy et 

al., 1998). However, these improvements have been questioned, and inflammation caused by the viral 
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capside proteins itself cannot be avoided (Kafri et al., 1998; Wen et al., 2000). Adenoviruses enter cells 

through the coxsackie-adenovirus receptor (CAR) (Bergelson et al., 1997) and through αvβ3  and αvβ5 

intergrins (Wickham et al., 1993).  After internalisation, adenoviruses escape from endosomes and are 

released to the cytoplasm and transported into the nucleus. 

                                                                                                                                        

                                

 

 Figure 3. First generation adenovirusvector. Cytomegalovirus (CMV) promoter is most often used to drive the expression of the 
foreign gene. ITR=inverted terminal repeat. 
 

    It is thought that expression of adenovirus receptors CAR and integrins mostly determine the transduction 

efficacy (Wickham et al., 1993). However, when administered intravenously, the liver traps a large 

proportion of the delivered adenoviruses and a highlevel transgene expression is seen in hepatocytes in vivo. 

It has been demonstrated that the mechanism behind that high liver tropism might be a pathway that is 

mediated by the vitamin K-dependent blood coagulation factors, including factors VII, IX, X and protein C 

(Parker et al., 2006; Shayakhmetov et al., 2005). Furthermore, it was shown that the major Ad5 capsid 

protein, hexon, binds human coagulation factor X (FX) with 40-fold higher affinity than the adenovirus 

receptor CAR (Kalyuzhniy et al., 2008). Various strategies, such as transductional targeting using an adapter 

molecule that can retarget the adenovirus binding to the alternative receptor or genetic modifications of the 

viral capsid and transcriptional targeting restricting gene expression to target cells with tissue or tumour 

specific promoters, have been tested to increase transduction of tumour cells and reduce normal tissue 

tropism (Kanerva and Hemminki, 2004). Conditionally replicating adenoviruses i.e. oncolytic adenoviruses 

may only infect a small proportion of tumour cells but are designed to allow spread of the virus to 

neighboring cells. Modifying the virus genome by deletions or promoters may allow virus replication in 

cancer cells, but not in normal tissue (Kanerva et al., 2008). Replication of oncolytic adenoviruses causes cell 

destruction, a process called oncolytic virotherapy (Vähä-Koskela et al., 2007).  

2.2.2.2 Other viruses 

Integrating gene vectors such as retroviruses (usually the murine leukaemia virus), lentiviruses (human 

immunodeficiency virus) and adeno-associated viruses (AAVs) cause long-lasting transgene expression, 
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which is an advantage when treating genetic diseases. Retroviral transgene expression is low, and a major 

limitation in the use of oncoretroviral vectors is their inability to transduce non-dividing cells (Kootstra and 

Verma, 2003). Another concern in retroviruses is their non-specific integration in to the genome causing a 

risk for oncogene activation.  This was shown to be a considerable safety issue in a clinical trial of severe 

combined immunodeficiency (SCID) in which children developed leukaemia after activation of a gene that 

was associated with T-cell leukaemias (Hacein-Bey-Abina et al., 2008; Marshall, 2003). Retroviruses have 

been used intraperitoneally in clinical phase I and II trials of ovarian cancer when targeting overexpression 

of tumour suppressor gene BRCA1 (Tait et al., 1999; Tait et al., 1997). However, the retrovirus vector was a 

disappointment because of a lack of stability and development of neutralising antibodies. 

     Lentiviruses, which are related to oncoretroviruses and have more complex genomes, are capable of 

transducing proliferative and quiescent cells, and induce smaller inflammatory responses. The most studied 

lentiviruses are HIV (human immunodeficient virus) and SIV (simian immunodeficient virus). Because HIV-

1 is a human pathogen there is some concern about the use of HIV-based lentiviral vectors. To overcome 

that, the HIV-1 lentiviral vector system is deprived of all accessory proteins, and viral sequences in the 

vectors have been minimised (Kootstra and Verma, 2003). Lentiviruses are considered to a have role as 

vehicles for dendritic cell-based cancer immunotherapy (Dullaers and Thielemans, 2006). In a preclinical 

ovarian cancer study, intraperitoneally administered SIV-based lentiviruses delivered the transgene 10-fold 

more efficiently to ovarian cancer cells growing intraperitoneally than retroviruses (Indraccolo et al., 2002). 

     The great advantages of AAVs, such as its non-pathogenicity and low immunogenicity, stability and the 

potential to integrate site–specifically at chromosome 19, have made it one of the most used viral vectors in 

gene therapy (Buning et al., 2008; Daya and Berns, 2008). Different serotypes of AAV with differences in 

cellular tropism have been identified. Thus, the use of different AAV serotypes may allow targeting of the 

vector to tissue specific transduction (Kootstra and Verma, 2003).  Problems with AAV are related to the 

difficulties in production and a small transgene capacity (<5kbp). In preclinical in vivo ovarian carcinoma 

studies mainly AAV-2 but also AAV-1-based vectors have been administered intramuscularly. Expression of 

the gene construct has been detected up to four months with an antitumoural effect (Isayeva et al., 2005; 

Subramanian et al., 2005; Subramanian et al., 2006; Takei et al., 2007). 

 

2.2.2.3 Non-viral vectors 

Non-viral gene therapy systems are used less frequently than viral vectors due to their lower transcriptional 

efficacy. Carrier molecules like liposomes or polymer complexes have been used to improve the plasmid-

based gene transfer efficasy (Ylä-Herttuala and Martin, 2000). Non-viral vectors have some advantages like 

easy production, unlimited transgene capacity and minor immunogenicity, and they have been approved for 
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clinical cancer trials. In phase I ovarian cancer trials cationic liposomes have been used as vectors 

intraperitoneally, and expression of transgene in patients' tumour samples has been detected (Hortobagyi et 

al., 2001; Madhusudan et al., 2004). Recently, nanoliposomes have been developed to enhance gene delivery, 

expecially for the delivery of small interfering RNAs (siRNAs) in cancer, including ovarian cancer (Ozpolat 

et al., 2010). 

 

2.2.3 Animal models for ovarian cancer 

Pre-clinical in vivo studies are fundamental in testing in vitro findings and strategies in animals before 

moving experiments to the clinic. Pre-clinical animal models offer valuable information about the treatment 

effects and safety profiles of new approaches. It is highly important to study new techniques and agents in 

an environment that resembles human disease as closely as possible. 

     Several animal models of ovarian cancer have been developed. Davy et al. described the first 

subcutaneous (s.c.) heterotransplants of ovarian cancer tissue into the nude mouse in 1977 (Davy et al., 1977). 

Since then continuous human tumour cell lines (Fogh et al., 1977) and  xenografts from human ovarian 

cancer tissue (Kullander et al., 1978) have been implanted subcutaneously (s.c.). Because the subcutis is not 

the natural environment of the ovarian cancer and evaluation of the treatment effect on ascites accumulation 

is missing, a number of studies have described intraperitoneal xenograft models of human ovarian cancer in 

nude mice (Fu and Hoffman, 1993; Hamilton et al., 1984; Massazza et al., 1989; Molpus et al., 1996; Ward et 

al., 1987) or severe combined immunodeficient mice (SCID) (Elkas et al., 2002; Schumacher et al., 1996; Xu et 

al., 1999). In addition, there are also models in rats (Rose et al., 1996; Sekiya et al., 1979) and even hens 

(Rodriguez-Burford et al., 2001).  

     Nude mice lack a thymus. The subsequent defect in T-cell function allows heterotransplantation of human 

tumours, including human ovarian cancer, without tissue rejection. A recessive autosomal mutation in the 

nu gene is responsible for the athymic and hairless condition. Intra-abdominal carcinomas in nude mice have 

been developed by intraperitoneal injection of tumour cells derived from continuous cell lines (Hamilton et 

al., 1984), human tumour slurry (Massazza et al., 1989), or ascites (Massazza et al., 1989). Orthotopically 

transplanted surgical specimens of ovarian tumour to the nude mouse ovary (Fu and Hoffman, 1993)  and 

subrenal capsule xenografts of primary human ovarian tumours have been reported (Bogden, 1985; Fiebig et 

al., 1984; Griffin et al., 1983; Lee et al., 2005; Mäenpää et al., 1985; Stratton et al., 1986). However, human 

heterotransplant models are more difficult to use than cell lines.  
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2.2.4 Pre-clinical in vivo studies 

Pre-clinical in vivo gene therapy studies in ovarian cancer are summarised according to the treatment gene in 

Table 3. Antiangiogenic gene therapy studies are in the pre-clinical phase for ovarian cancer. Soluble 

VEGFRs (sVEGFRs) lack transmembrane domain and intracellular tyrosine kinase-containing parts and 

therefore they do not initiate signal transduction. Further, they can form inactive heterodimers with full 

length receptors. sVEGFRs trap specific VEGF ligands from attaching to their full length receptors. Soluble 

VEGFR-1 has reduced tumour growth and accumulation of ascites in ovarian cancer mouse models when 

using adenoviruses or AAVs as vectors (Hasumi et al., 2002; Mahasreshti et al., 2003; Mahasreshti et al., 2001; 

Mahendra et al., 2005; Takei et al., 2007). Limitations of these studies have been that the gene therapy has 

been administered either at the cell injection time or so early that macroscopic tumours do not exist 

(Mahasreshti et al., 2001; Mahasreshti et al., 2003), or in the case of AAV vectors even before tumour cell 

injection (Mahendra et al., 2005; Takei et al., 2007) or the transduction was made before tumour cell injection 

ex vivo (Hasumi et al., 2002). Also, tumour cells were injected subcutaneously instead of intraperitoneally 

(Mahendra et al., 2005) which might have impacted the results.  

      Gene therapy studies with sVEGFR-2 and sVEGFR-3 are sparse in ovarian cancer. When adenoviral sFlk-

1 (the murine homologue of sVEGFR-2) was administered intravenously at two intervals it induced the 

presense of sFlk-1 in serum and reduced tumour growth in the subcutis of mice (Wu et al., 2006). Results in 

an intraperitoneal model of ovarian cancer suggested that dysfunctional and leaky lymphangiogenesis may 

contribute to chylous ascites formation and can be inhibited by adenoviral sVEGFR-3 combined with the 

VEGF-trap (Jeon et al., 2008). In general, adenoviral sVEGFRs therapys may have potencial for clinical use 

since they do not depend on the quantitative transduction of the tumour cells as opposed to gene therapy 

strategies relying on mutation compensation or molecular chemotherapy. Furthermore, with these anti-

VEGF molecules it may be possible to treat accumulation of ascites. 

     Other molecules used in pre-clinical in vivo studies are endostatin and angiostatin. Endostatin, a 

fragment of collagen XVIII, and angiostatin, an internal fragment of plasminogen, have shown in 

combination antitumoural effects and have also reduced ascites in an intraperitoneal ovarian cancer mouse 

model when AAV was used as a vector (Isayeva et al., 2005). The treatment effect was impaired when 

adjuvant paxlitaxel was combined (Isayeva et al., 2007). A mutant endostatin that binds more efficiently to 

the endothelium than native endostatin has also had a marked inhibitory effect on peritoneal carcinosis and 

survival, particularly when combined with carboplatin (Subramanian et al., 2006). 
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Study Vector Treatment  Protocol Response 

Hasumi et al. 
2002 AAV sVEGFR-1 sVEGFR-1 expressing cells  were inoculated 

i.p. into nude mice 
Reduced amount of ascites 
and prolonged survival 

Mahasreshti 
et al. 2001 Ad sVEGFR-1 

GT (i.p.) was done one day after 
inoculation of tumour cells and repeated 
after two weeks 

Prolonged survival 

Mahasreshti 
et al. 2003 Ad sVEGFR-1 GT (i.v. or i.p.) was done two days after 

inoculation of tumour cell  

i.v. delivery of the sVEGFR-1 
leads to shortened survival 
and hepatotoxicity 

Mahendra et 
al. 2005 AAV sVEGFR-1 GT (i.m.) was done three weeks before s.c. 

inoculation of tumour cells  

Reduced tumour growth and 
prolonged tumour-free 
survival 

Takei et al. 
2007 AAV sVEGFR-1 

sVEGFR-1 expressing cells were injected 
s.c. or i.p. into nude mice or GT (i.m.) was 
done nine days before s.c. or i.p. 
inoculation of tumour cells 

Reduced tumour growth in 
both s.c. and i.p. models 

Wu et al. 
2006 Ad sVEGFR-2 

GT was done i.v. or combined with i.p. DDP 
eight days after s.c. injection of tumour 
cells  

Reduced tumour growth 

Isayeva et al. 
2005 AAV 

endostatin 
and 
angiostatin 

GT (i.m.) was done three weeks before 
inoculation of tumour cells (i.p.) 

Prolonged tumour-free 
survival and reduced amount 
of ascites 

Isayeva et al. 
2007 AAV 

endostatin 
and 
angiostatin + 
paclitaxel 

GT (i.p.) was done three weeks before 
inoculation of tumour cells (i.p.), paclitaxel 
was administered on days 11 and 14 after 
inoculation of tumour cells  

Reduced amount of ascites, 
reduced tumour growth and 
prolonged tumour-free and 
overall survival 

Subramanian 
et al. 2006 AAV 

P125A-
endostatin+ 
carboplatin 

GT (i.m.) was done two days after    
inoculation of tumour cells (i.p.), 
carboplatin was administered s.c. every 
third day 

Reduced tumour growth and 
prolonged long-term survival 

Mahasreshti 
et al. 2006 Ad mda-7/IL-24 GT (i.p.) was done four days after 

inoculation of tumour cells (i.p.) 
Reduced tumour growth and 
prolonged survival 

Landen et al. 
2005 liposomal 

EphA2 
targeted 
siRNA+ 
paclitaxel 

siRNA  was given i.v. or combined with 
paclitaxel seven days after inoculation of 
tumour cells (i.p.)  

Reduced tumour growth 

Shahzad  et 
al. 2009 liposomal 

EphA2 and 
FAK targeted 
siRNA 

siRNAs were given i.v. seven days after 
inoculation of tumour cells and treatments 
continued twice weekly for 3–4 weeks 

Reduced tumour growth 

El-Naggar et 
al. 2007 plasmid 

PTTG 
targeted 
siRNA 

Tumour cells transfected with PTTG siRNA 
were inoculated s.c. into mice 

Reduced the incidence of 
tumour development 
and tumour growth 

Merritt et al. 
2008 liposomal 

IL-8 targeted 
siRNA+ 
docetaxel 

siRNAs and docetaxel were given i.p. seven 
days after inoculation of tumour cells (i.p.) Reduced tumour growth 

Wang et al. 
2008 liposomal 

HIF1A  
targeted ASO 
+ 
doxorubicin 

Tumour cells were inoculated s.c. and 
treatment was administered i.p. 15-20 days 
after inoculation of tumour cells 

Prevented the development 
of chemoresistance 

Fewell  et al. 
2009 PPC 

pmIL-12 
+paclitaxel 
and 
carboplatin 

Chemotherapy was initiated 14 days after 
tumour cell inoculation and pmIL-12/PPC 
treatment was started 
18 days after tumour cell inoculation 

Delayed the onset of ascites 
formation and improved 
survival in a dose-dependent 
manner 

Indraccolo et 
al. 2005 Lentivirus IFN-α 

GT (i.p.) was done 2, 8, or 14 days after 
tumour cell inoculation (i.p.) and repeated 
every second day four times or GT was 
done four days before inoculation of tumour 
cells 

Reduced formation of ascites 
and prolonged survival 

Murugesan et 
al. 2007 Ad TNF-α GT (i.p.) was done 4,7 and 11 days after 

inoculation of tumour cells (i.p.) Reduced tumour burden 

GT= gene transfer, DDP= cis-diamminedichloroplatinum, ASO= antisense oligonucleotides, PPC=synthetic polymeric 
delivery vehicle  
 
Table 3. Summary of in vivo preclinical gene therapy studies of ovarian cancer. 
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     Melanoma differentiation- associated gene-7 (mda-7) is a multifunctional tumour suppressor gene that 

induces apoptosis, anti-angiogenesis and immunostimulation functions. Due to its homology with IL-10 and 

its immunostimulatory functions, it is also designated as IL-24. mda-7/IL-24 transported by modified 

adenoviruses increased survival in mice bearing human ovarian cancer xenograft (Mahasreshti et al., 2006). 

Repeated intratumoural injections of mda-7/IL-24 induced apoptosis in a large volume of tumour and 

elicited immune-activating events in patients with melanoma or solid cancers in a phase I trial (Tong et al., 

2005).      

      In recent years, siRNA mediated gene silencing has shown efficacy in ovarian cancer models (Ozpolat et 

al., 2010). siRNA silencing has been targeted to EphA2 and focal adhesion kinase (FAK) (Landen, et al., 2005; 

Shahzad et al., 2009), pituitary tumour transforming gene (PTTG) (El-Naggar et al., 2007) and IL-8 (Merritt et 

al., 2008) with antitumoural effects in mice. Antisense oligonucleotides targeting to suppress HIF-1α and 

simultaneous delivery of doxorubicine have been reported to prevent the development of chemoresistance 

in a mouse model of ovarian cancer (Wang et al., 2008). 

     Immunotherapy-based strategies enhance local and systemic immune responses against cancer cells. In a 

mouse model, non-viral intraperitoneal IL-12 gene therapy improved survival and led to a reduction of 

ascites by inhibiting VEGF (Fewell et al., 2009). Also,  interferon-α (IFN-α) and tumour necrosis factor-α 

(TNF-α) have shown antitumoural effects in gene therapy models of ovarian cancer (Indraccolo et al., 2005; 

Murugesan et al., 2007). 

 

2.2.5 Clinical studies 

Clinical trials can be divided into four phases (I-IV). In phase I studies a new drug of a treatment is tested for 

the first time to evaluate its safety, determine a safe dosage range, and identify side effects. In phase II, the 

drug or treatment is given to a larger group of patients to see if it is effective and to further evaluate its 

safety. In phase III, the drug or treatment is given to large groups of patients to confirm its effectiveness and 

to compare it with commonly used treatments, monitor side effects and collect information that will allow 

the drug or treatment to be used safely. Phase IV studies are done after the drug or treatment has been 

marketed to get information on the drug's effect in various populations and on any side effects associated 

with the long-term use. A numeric scale of 1-4 rates the severity of toxicities from the treatment. Grade 1 

means relatively a minor side effect, grade 2 means a moderate side-effect, and grade 3 means a severe side-

effect, and 4 means that side-effect is potentially life threatening. The exact definition of each number in the 

scale depends on the particular side-effect.    

     Strategies used in gene therapy clinical trials include the suicide gene therapy approach, replacement of 

tumour suppressor genes and inhibition of growth factors and regulators. Two phase I trials with oncolytic 

viruses have been reported, oncolytic adenovirus ONYX-015 and oncolytic measles virus (MV) have been 
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used in those studies. Given that the disease usually remains within the peritoneal cavity, gene delivery has 

been performed intraperitoneally via a catheter. Clinical gene therapy trials for ovarian cancer are 

summarised according to the treatment gene in Table 4.   

     In suicide–based gene therapy used in ovarian cancer studies, herpes simplex virus thymidine kinase 

(HSV-tk) converts the prodrug ganciclovir or valaciclovir into a toxic metabolite. A bystander effect further 

leads to the destruction of neighboring cells that lack the transgene. Alvarez et al. treated 14 patients with 

recurrent ovarian cancer using an intraperitoneally delivered single injection of adenoviral HSV-tk coupled 

with a systemic administration of ganciclovir in phase I trial. Analysis of ascites samples demonstrated the 

presence of transgene in tumour cells in most patients. The level of maximum tolerated toxicity was not 

reached; 10 out of 14 patients had transient vector-associated side effects including fewer, abdominal pain 

and gastrointestinal symptoms. In thirteen evaluable patients, 38% experienced stable disease and the 

remaining 62% had progression (Alvarez et al., 2000b). 

     In another phase I trial ten patients were treated with intraperitoneal HSV-tk gene therapy and 

intravenous acyclovir and topotecan. After secondary debulking, patients underwent intraperitoneal vector 

delivery followed by administration of aciclovir or valacyclovir. Intravenous topotecan was given for five 

days starting 24 h after vector delivery, and then at 3-week intervals until progression. The most common 

adverse effect was myelosuppression; anemia, neutropenia and up to grade 4 thrombocytopenia were 

encountered. Generally, the treatment was well tolerated without significant prolonged toxicity. In second-

look surgery, performed on five patients four weeks after gene therapy, two patients were free of tumour. At 

the same time point, none of the peritoneal biopsies showed residual vector DNA. The median overall 

survival was 18.5 months, which was one third longer than in previously reported second- and third-line 

chemotherapy trials, and comparable to studies with secondary cytoreductive surgery combined with 

chemotherapy (Hasenburg et al., 2000; Hasenburg et al., 2001). 

     Almost 60 % of advanced ovarian cancers present wth a mutation of the p53 tumour suppressor gene 

(Shahin et al., 2000). Buller et al. treated 36 patients with recurrent ovarian cancer harbouring mutant or 

aberrant p53, using a single or multiple dosing of an adenoviral p53 (SCH 58500), delivered intraperitoneally 

alone, and sequentially in combination with platinum-based chemotherapy. Transgene expression was 

documented in cells from both ascitic fluid and tissue biopsies. The most common side-effects were fever, 

hypotension, abdominal complaints, nausea and vomiting (Buller et al., 2002). Due to the promising results, 

a randomised phase II/III trial was initiated as the first-line therapy with advanced p53 mutated ovarian 

cancer. After cytoreductive surgery, patients with no or residual disease (<2 cm) were randomly assigned to 

receive either standard therapy of six cycles of carboplatin and paclitaxel, or the same regimen plus five 

cycles of intraperitoneal adenoviral p53 gene therapy. However, the first interim analysis showed no 

therapeutic benefit in the gene therapy arm, but increased treatment morbidity, and the study was 
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consequently closed (Zeimet and Marth, 2003). After the phase III trial, a phase I study in which safety and 

feasibility of multiple doses of adenoviral p53 were evaluated, was published (Wolf et al., 2004). Multiple 

dosing was well tolerated, grade 3 toxicities comprised fatigue, fever, abdominal pain and nausea. 

Neutralising antibodies were not measured in that study. Six out of eleven patients had stable disease. 

     Vasey et al. treated 16 patients with irresectable or resectable recurrent/refractory ovarian cancer using 

ONYX-015, a conditionally replicating adenovirus, delivered via an intraperitoneal catheter seven days after 

laparotomy/laparoscopy. Significant toxicity was not experienced even at the highest dose level; the most 

common side effects were flu-like symptoms, emesis and abdominal pain. Treatment responses were not 

detected (Vasey et al., 2002). 

 

Study Construct Phase n 
                        Response rates 

     CR                  PR               SD          CA-125 

toxicity 

(3-4) 

 

Alvarez et al. 

2000 

 

Ad HSV-tk 
I 14 0/13 0/13 5/13 NR 0/14 

Hasenburg et 

al. 

2000,2001 

Ad HSV-tk + 

Topotecan 
I 10 0/10 0/10 3/10 NR 4/10 

Buller et al. 

2002 

Adp53+Carpoplatin 

and Paclitaxel i.v. 

or Cisplatin i.p. 

I/II 36 0/36 0/36 4/36 15/36 17/36 

Wolf et al. 

2004 
Ad p53 I 17 0/11 0/11 6/11 1/11 6/15 

Vasey et al. 

2002 
Ad ONYX-015 I 16 0/16 0/16 4/16 0/16 4/16 

Tait et al. 

1997,1999 

Retroviral LXSN-

BRCA1sv 

I 

II 

12 

6 

0/12 

      0/6 

3/12 

0/6 

8/12 

0/6 

NR 

NR 

3/12 

4/6 

Alvarez et al. 

2000 
Ad Anti-erb-2 I 15 0/13 0/13 5/13 NR 2/15 

Hortobagyi et 

al. 2001 
Liposomal E1A I 12 0/12 0/12 0/12 

transient 

3/12 
4/12 

Madhusudan 

et al. 2004 
Liposomal E1A I 15 0/6 0/6 1/6 1/7 5/12 

Anwer et al. 

2010 
phIL-12/PPC I 13 0/13 4/13 9/13 

stable or 

decreased 

6/13 

5/13 

Galanis et al. 

2010 
MV-CEA virus I 21 0/21 0/21 14/21 5/21 0/21 

CR= complete response, PR= partial response, SD= stable disease, NR =no response, PPC= synthetic polymeric 
delivery vehicle 
  
 
Table 4. Summary of clinical gene therapy trials for ovarian cancer. 
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      Over-expression of the BRCA1 gene has been shown to inhibit tumour growth both in vitro and in vivo 

(Holt et al., 1996). Tait et al. treated 12 patients with advanced ovarian cancer using intraperitoneal BRCA1sv 

gene therapy mediated by the retroviral vector. Minimal antibody response and tumour reduction were 

reported. The phase II trial was conducted to treat minimal residual disease after first-line chemotherapy. 

Patients received three cycles of four daily intraperitoneal injections of LXSN-BRCA1sv four weeks apart. No 

response or disease stabilisation was achieved. The trial was terminated due to vector instability and rapid 

antibody development. It was concluded that the discrepancy between the outcomes of phases I and II was 

most likely due to severe suppression of the immune system in the phase I patients (Tait et al., 1997; Tait et 

al., 1999). 

     Over-expression of the erbB2 (HER-2/neu) gene in ovarian carcinoma is associated with aggressive tumour 

behaviour and poor survival (Slamon et al., 1989). Alvarez et al. conducted a phase I study in 15 patients 

with recurrent ovarian cancer harbouring erbB2 over-expression. Patients were treated using intraperitoneal 

administration of a recombinant adenovirus encoding an anti-erbB-2 single chain antibody. The most 

common side effects were fever and gastrointestinal symptoms, but no dose-limiting vector-related toxicity 

occurred. However, 38% of patients had stable disease and 61% progressive disease (Alvarez et al., 2000a). In 

another phase I study, Hortobagyi et al. delivered intraperitoneally liposomal E1A gene that counteracts 

HER-2 protein and inhibits growth (Hortobagyi et al., 2001). Twelve heavily treated ovarian cancer patients 

with advanced disease were enrolled in that study. Stable disease was noticed in 17% of patients.  

Abdominal pain was a side effect. Down-regulation of erbB2 was detected in peritoneal samples. Similarly, 

in another phase I study 15 patients received a cationic liposome mediated E1A gene therapy. Gene 

expression was detected in all patients, but 11 had progressive disease during therapy (Madhusudan et al., 

2004). 

     Recently, gene transfer using human IL-12 plasmid (phIL-12) formulated with a synthetic lipopolymer, 

polyethyleneglycol-polyethyleneimine-cholesterol (PPC), was conducted intraperitoneally on 13 women 

with chemotherapy-resistant recurrent ovarian cancer (Anwer et al., 2010). Properties of IL-12 include T-

lymphocyte and natural killer cell proliferation and cytotoxic activation and secretion of IFN-γ leading also 

to antiangiogenic activation. Administration of phIL-12/PPC was generally safe and well-tolerated. The most 

common adverse effects were fever and abdominal pain. There was an overall clinical response of 31% stable 

disease and 69% progressive disease.  

     An oncolytic engineered strain of measles virus with a marker gene CEA (human carcinoembryonic 

antigen) has been been used in a phase I ovarian cancer trial (Galanis et al., 2010). A total of 21 heavily 

pretreated platinum refrctory recurrent ovarian cancer patients were enrolled in the study. Intraperitoneal 

treatment was well tolerated with no severe side effects. The most commonly achieved response was stable 

disease in 14 patients. 
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     Taken together, most clinical gene therapy studies have been based on a very limited number of patients 

who have had advanced and heavily pretreated disease. Only one trial has reached to the phase III level, 

with disappointing results. There might be several reasons for these poor outcomes. Since results from clinic 

have been less efficacious than expected on the basis of preclinical studies, treatment protocols in animals 

should better mimic the clinical situation. Also, it is likely that for example correcting only one gene is not 

sufficient to treat genetically diverse malignant tumours. The gene delivery has been performed 

intraperitoneally which might not be the most efficient delivery method. When targeting tumour cells, better 

targeting of vectors and strategies to circumvent host immunity may improve results.   

2.2.6 Safety, ethical and regulatory aspects 

As mentioned above, clinical gene therapy studies of ovarian cancer have been performed intraperitonelly 

using mostly adenoviruses, but also cationic liposomes and retroviruses. Gene therapy has been well 

tolerated; fewer, gastrointestinal symphtoms, nausea and pain for example have been reported. Some side 

effects have been due to the intraperitoneal catether. The first gene therapy related death occurred when 

high dose of adenovirus was given intraportally into a patient who had a genetic defect causing ornithine 

transcarbamylase deficiency (Lehrman, 1999). In that case, an immunocompromised patient received more 

massive amounts of adenoviruses that preclinical data recommended causing a systemic inflammatory 

response, dysfunction of the lungs and disseminated intravascular coagulation (DIC) -syndrome. However, 

since 1993, adenoviruses have been used in more than 300 gene therapy protocols (Shirakawa, 2008). The 

safety profile of adenoviruses is well documented, and no gene therapy-related deaths have occurred with 

cancer patients. With non-integrating vectors like with adenoviruses, random integration of the treatment 

gene to the genome is avoided and for the treatment of cancer, a transient expression is sufficient. Liver 

toxicity has been associated with the intravenous administration of adenoviruses serotype 5 due to high 

tropism to liver tissue. Nonetheless, with reasonable dosages grade 3 or higher increase in transaminases has 

not been observed when adenoviruses were administered intravenously to cancer patients (Pesonen et al., 

2010; Small et al., 2006). 

     Ovarian cancer is an aggressive disease that disseminates throughout the peritoneal cavity and to more 

distant organs. Thus, systemic administration might be the most relevant way to ensure the transportation of 

treatment molecule to all tumour cells or endothelial cells related to cancer and to avoid side effects and 

technical issues related to intraperitoneal catether. Current first-line chemotherapy for ovarian cancer 

consists of carboplatin and paxlitaxel, which are also administered intravenously. Unfortunately, also for 

first- and second line chemotherapy, systemic side effects are present. It is not plausible that a treatment that 

can treat invasive and advanced cancer will not cause any adverse effects. When ovarian cancer relapses, it is 

fatal. Therefore, more severe side-effects can be acceptable in the treatment of aggressive cancer than in the 
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treatment of benign disease. However, every attempt should be made to avoid causing more inconveniences 

to patients than the cancer itself already does. 

     Development of gene therapies is regulated by several directives of European Union and national 

directives. In Finland, a law on gene technology (Geenitekniikkalaki 1995) controls the issues related to the 

vectors including laboratory space and other general requirements, such as waste handling. Committees for 

experimental animal studies also control preclinical studies. The National Agency for Medicine and a law on 

medicines (Lääkelaki 1987) regulate clinical trials. The EMEA (European Medicines Agency) authorizes 

marketing. Manipulation of germ cells is not allowed. Gene therapy drugs belong to the ATPs (advanced 

therapeutic products), like for example monoclonal antibodies and stem cells, placing them in a strictly 

regulated category. 

     The two first commercial gene therapy drugs have been launched recently in China. Gencidine consists of 

replication-defective adenoviral vector engineered to express p53 (Peng, 2005). Replication-selective 

adenovirus, H101, is the first commercial oncolytic virus product (Yu and Fang, 2007). The efficiency of these 

drugs was demonstrated in head and neck cancer combined with chemotherapy or radiotherapy. Cerebro, 

which contains adenovirus-mediated herpes simplex virus-thymidine kinase, is in phase III for the treatment 

of malignant glioma in the EU and USA (Immonen et al., 2004). In the context of ovarian cancer, no 

commercial gene therapy drug exists. 
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3 Aims of the study 
The aim of this thesis was to explore the antitumour effect and safety of antiangiogenic and 

antilymphangiogenic gene therapy in a xenograft model of human ovarian cancer. Another aim was to 

evaluate the biomarker potential of circulating Ang-1 and Ang-2 in patients with ovarian neoplasms. 

 

The specific aims were as follows: 

 

I To establish a reproducible xenograft model of human ovarian cancer that mimics the situation in the 

clinic as closely as possible and to use MRI and ultrasound to detect intraperitoneal tumours and 

measure tumour volumes. 

 

II To evaluate the treatment effect and safety of adenoviral antiangiogenic and antilymphangiogenic 

gene therapy with three soluble VEGFRs in an ovarian cancer mouse model in vivo. 

 

III To evaluate the treatment effect and safety of combined adenoviral gene therapy with soluble  

VEGFRs and angiopoietin receptors sTie1 and sTie2 in an ovarian cancer mouse model in vivo. 

 

IV To explore the significance of preoperative serum angiopoietin levels of patients with benign, 

borderline or malignant epithelial ovarian tumours and compare them with those of healthy women. 

Another aim was to evaluate how serum angiopoietin levels are associated with clinicopathological 

factors and prognosis of ovarian cancer patients. 

 

 

 

 

 

 

 

 

 

 

 



 

 

32 

4 Materials and methods 
4.1. CELL LINE (I-III) 

The human ovarian adenocarcinoma cell line SKOV-3 was obtained from the American Type Culture 

Collection (HTB-77, ATCC, Manassas, USA). Cells were cultured in McCoy`s 5A medium (Gibco, Invitrogen, 

Life technologies). Before in vivo inoculation the cells were trypsinised. After centrifugation the cell pellet 

was suspenced in 1 ml Optimem and cells were counted. 2 x 106 cells were injected subcutaneously to the 

flank of a nude mouse and after tumour development pieces of the tumour were then transplanted into the 

peritoneal cavity of another nude mouse. The primary cell line SKOV-3m was established by culturing 

explants of the mouse intraperitoneal tumour. SKOV-3m cell line was passaged ten times before the 

transplantation to mice. Growth characteristics of SKOV-3m cell line showed an epithelial phenotype and 

resembled that of the original cell line. The immunophenotype of SKOV-3 and SKOV-3m cells resembled 

each other and was similar to developed SKOV-3 and SKOV-3m tumours (i.e. cytokeratin and vimentin 

stainings were positive). Chromosome analysis using G-banding showed that SKOV-3m cells were human in 

origin (Figure 4.). The established SKOV-3m cell line was further used in gene therapy studies II-III. 

     

                         
 

Figure 4. Karyogram of a near-triploid SKOV-3m cells. Cells are human in origin. The abnormalities of chromosome numbers seen 
in both SKOV-3 and SKOV-3m cells are commonly known genetic aberrations in cancer (Gagos and Irminger-Finger, 2005). Mar- 
chromosomes are transformed marker chromosomes. 
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4.2. ANIMAL MODEL (I-III) 

Eight to ten-weeks old Balb/cA-nu female nude mice (n=114) were used for the studies. The mice were kept 

at the National Experimental Animal Centre of the University of Kuopio in a pathogen-free isolated unit. 

The mice received chow and water ad libitum. Food, water and sawdust bedding were autoclaved. Ovarian 

carcinoma was created by inoculating 1 x 107 SKOV-3m cells (I-III) or 2 x 109 cells (I) into the peritoneal cavity 

of nude mice with 22 G needle. Development of the ovarian carcinoma tumours was followed by sequential 

MRI and also with ultrasound in animal model study (I). Gene transfer was performed intravenously (i.v.) 

via tail vein in the final volume of 200 μl in 0.9% saline. The follow-up time was to the death of the mouse or 

the mouse was sacrificed when it showed significant wasting symptoms. At the time of death, all tumour 

tissue, liver, spleen, kidneys and lungs were harvested and tumour masses were weighed. In animal model 

study (I), also bowel, diaphragm and peritoneum were harvested to evaluate metastasis. Ascites fluid was 

collected with a syringe. For the gene transfer, MRI or ultrasound imaging and blood sample collection, mice 

were anesthetised with a s.c. injection of a mixture of fentanyl-fluanisone (Jansen Pharmaceutica, Hypnorm, 

Buckinghamshire, UK) and midazolame (Roche, Dormicum 5 mg/ml, Espoo, Finland). All animal studies 

were approved by the Experimental Animal Committee of the University of Kuopio. 

 

4.3. GENE TRANSFER AND VIRAL VECTORS (II-III) 

The study protocol is summarised in Figure 5 and study groups are shown in Table 5. 

 

 

 
 

Figure 5. When the first solid, measurable tumour was detected in MRI, gene transfer (GT) was done the following day via the tail 
vein. MRI was done weekly after gene transfer and tumour volumes were assessed. Plasma samples were collected at day 3, 6 and  13 
after the gene transfer and when the mice were sacrificed. 
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n 21 7 6 8 12 9 5 6 8 8 

Adenoviral 

vector 

LacZ sR-11 sR-22 sR-33 sR-1 

sR-3 

sR-1 

sR-3 

sR-3 

sTie1 sTie2 sTie1 

sTie2 

sR-1 

sR-3 

sTie2 

viral dose 

(pfu) 
2x109 1x109 1x109 1x109 2x109 2x109 1x109 1x109 2x109 2x109 

1sVEGFR-1 
2sVEGFR-2 
3sVEGFR-3 
 
Table 5. Characterisation of the study groups. 

 

 

Replication-deficient E1-E3 deleted clinical GMP-grade adenoviruses were produced in 293 cells. 

Adenoviruses were analyzed to be free from helper viruses, lipopolysaccharides and bacteriological 

contaminants (Laitinen et al., 1998; Puumalainen et al., 1998). Characterisation of the study groups is 

summarised in table 3. For Western blotting, SKOV-3m cells were plated on 12-well plates at a density of 

100,000 cells per well. Details are described in article II. 

 

4.4. IMAGING AND TUMOUR VOLUME MEASUREMENTS (I-III) 

MRI was performed using a 9.4 T vertical magnet (Oxford Instruments, Oxford, UK) equipped with actively 

shielded field gradients (Magnex Scientific Ltd, Abdington, UK) interfaced to an s.m.i.s. console (Surrey 

Medical Imaging Systems Ltd, Guolford, UK). For signal transmission and reception a single loop surface 

coil (diameter 28 mm) was used. Multislice T2-weighted images were taken in horizontal orientation 

(repetition time= 2.5 seconds, echo time= 11 milliseconds, field of view= 35 x 35 mm2, resolution = 256 x 128). 

Slice thickness was 1mm and 25 slices were aquired. Fat suppression was used (3 gaussian pulses, at – 1320 

Hz offset from water signal). Tumour volumes were measured manually using Image Display software 

(Surrey Medical Imaging Systems Ltd, Guildford, UK). The tumour masses differed from surrounding non-

tumour soft tissue with intensity and location. To measure tumour volume (mm³), area of tumour (mm²) was 

calculated from each slide and then multiplied with summation of the areas by the slice thickness. If more 

than one tumour nodule was detected from the MRI scan, the tumour volume was taken as a sum of all 

nodules. 

     Ultrasound images were acquired with Acuson Sequoia 512 and 15L8-S transducer (Siemens) in the 

animal model study (I). Contrast agent was not used.  
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4.5. HISTOLOGY AND MICROVESSEL MEASUREMENTS (I-III) 

Tissue samples were immersed in 4% paraformaldehyde for 4-6 h, followed by overnight immersion in 15% 

sucrose (Ylä-Herttuala et al., 1990). The specimens were embedded in paraffin and 5μ thick sections were 

processed for hematoxylin-eosin, Ki-67 (DakoCytomation, Glostrup, Denmark), apoptosis (ApopTag 

Peroxidase Kit S7101, USA), CD31 (DakoCytomation, Denmark), CD34 (HyCult biotechnology b.v., AA 

Uden, The Netherlands), LYVE-1 (ReliaTech GmbH, Braunschweig, Germany) and α-SMA 

(DakoCytomation, Glostrup, Denmark) stainings.  

     Photographs of histological sections were taken and processed using an Olympus AX70 microscope 

(Olympus Optical, Japan), and analySIS (Soft Imaging System, GmbH, Germany) and PhotoShop (Adobe) 

softwares. Mean microvessel area (μm2), microvessel density (MVD) and total microvascular area (TVA) (%) 

of the tumours were measured from CD34-immunostained sections using analySIS software at 100 x 

magnification in a blinded manner. Ten different fields that represented maximum microvessel areas were 

selected from each tumour. Necrotic areas were avoided. The pericyte coverage was assessed as missing 

(0%), covering less than 50% of the vessel wall circumference, more than 50% of the vessel wall 

circumference and fully (100%) covered. All vessels in 5 different fields from tumour serial sections were 

evaluated under a 20× objective in CD34 and α-SMA immunostained sections (III).  The total number of 

LYVE-1 positive lymphatic vessels per section was counted (II-III). 

     Ki-67 was quantified semiquantitatively by two observers who counted the number (%) of Ki-67 positive 

cells in the epithelial tumour tissue in a blinded manner. 

 

4.6 RT-PCR (II-III) 

RT-PCR was used to confirm the transgene expression in mouse liver samples. The liver tissue was snap-

frozen at the sixth day after the gene transfer in liquid nitrogen and stored at -70 OC for RT-PCR analysis. 

Total RNA was extracted using Trizol Reagent (Gibco BRL, Grand Island, USA) according to manufacturer’s 

instructions. Total RNA was treated with DNaseI (Promega, Madison, USA) to remove any contaminating 

DNA and cDNA synthesis was performed with 2 �g of RNA with random hexamers. Specific primers for the 

amplification of sVEGFR-1, sVEGFR-2, sVEGFR-3, sTie1 and sTie2 cDNA and conditions are described in 

details in articles II and III.  

 

4.7. ELISA (II, IV) AND CLINICAL CHEMISTRY (II-III) 

Enzyme-linked immunosorbent assays (ELISA) (Quantikine; R&D Systems, Minneapolis, MN) were used to 

detect the presence of soluble VEGFRs in plasma samples of nude mice (II) and to measure the levels of Ang-

1 and Ang-2 in preoperative serum samples of the patients (IV). All samples were examined in duplicate and 

the mean values were used for statistical analysis. Alanine aminotransferase (ALT) (II-III) and creatinine 
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(crea) (II) were monitored using routine clinical chemistry assays at Kuopio University Hospital Central 

Laboratory. 

 

 

Variable Normal Benign Borderline Carcinoma 
Metastasis 

in ovary 
Endometroid 

carcinoma 

 
Total 

 
34 (100) 

 
41 (100) 

 
14 (100) 

 
95 (100) 

 
10 (100)c 

 
19 (100)d 

Median age at  
diagnosis (years) 

59 [36-81] 53 [16-81] 58 [20-76] 59 [29-88] 57 [37-76] 65 [37-76] 

Histologic subtype       
  Serous  16 (39) 7 (50) 59 (62)   
  Mucinous  23 (56) 7 (50) 11 (12)   
  Endometroid    16 (17)   
  Clear cell    5 (5)   
  Other  2 (5)a  4 (4)b   
Histological grade       
  1    14 (15)   
  2    36 (38)   
  3    45 (47)   
Stage       
  I   13 (93) 12 (13)   
  II    10 (10)   
  III   1 (7) 53 (56)   
  IV    20 (21)   
Primary residual tumor       
  None    42 (44)   
  </= 1cm    10 (11)   
  > 1cm    41 (43)   
  No data    2 (2)   
Chemotherapy response       
  Complete response    63 (67)   
  Partial response    5 (5)   
  Stable disease    2 (2)   
  Progressive disease    5 (5)   
  No chemotherapy    5 (5)   
  No data    15 (16)   
Tumour recurrence       
  No recurrence    21 (22)   
  Recurrence    46 (49)   
  No data    28 (29)   
Patient status       
  Dead, ovarian cancer    32 (34)   
  Alive    59 (62)   
  Dead, other cause    1 (1)   
  Unknown    3 (3)   
Median follow-up time, 
months 

   43 [0-114]   

Values are n (%) unless stated otherwise.Values in square brackets indicate range. (a) fibroma and leiomyoma, (b) 
adeno carcinoma not otherwise specified, transitiocellular carcinoma, adenosquamous carcinoma, undifferentiated 
carcinoma, (c) 4 colorectal carcinomas,  3 gastric and  3 breast carcinomas 

 
Table 6. Clinicopathological characteristics of the patients. 
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4.8 PATIENTS (IV) 

A total of 213 patients were enrolled in the clinical study. The characteristics of the patients are summarised 

in Table 6. Patients with nonepithelial neoplasms and all patients treated before operation or unoperated 

patients were excluded from this study. Epithelial ovarian borderline tumours and carcinomas were staged 

operatively according to International Federation of Gynecology and Obstetrics (FIGO) criteria. All cancer 

patients were treated by platinum-based chemotherapy. 

 

4.9. STATISTICAL ANALYSES (I-IV) 

SPSS for Windows was used for the analysis. Values are presented as means ± SEM or as median (25-75 

quartiles) as stated. In animal studies, Kruskall-Wallis test, followed by Mann-Whitney U-test with 

appropriate correction for multiple comparisons was used. Kaplan-Meier plots and log rank test was used 

for the analysis of survival. For the analysis of ovarian cancer patients’ clinicopathological associations and 

for the survival analysis serum Ang-1 and Ang-2 levels were dichotomised into two classes of low and high 

values using the median value as a cutoff (30.8 ng/mL for Ang-1 and 2.7 ng/mL for Ang-2). A chi-squared 

test was used in analysing frequency tables. The correlations between Ang-1-, Ang-2 and CA125 levels were 

tested by the Spearman correlation coefficient test. ROC (receiver operating characterist) curves were 

calculated to analyze area under the curve (AUC) values of CA125, Ang-1 and Ang-2. Univariate survival 

analyses were based on Kaplan-Meier method. The survival curves were compared analyzed using the log-

rank test. Multivariate survival analysis was calculated using the Cox’s proportional hazards model. Only 

significant variables from the univariate analysis were entered in a stepwise manner into Cox regression 

analysis. Overall survival was defined as the time interval between the date of surgery and the date of death 

or end of follow-up. Recurrence free-survival was defined as the time interval between the date of surgery 

and the date of recurrence was identified. Values < 0.05 were regarded as significant. 
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5 RESULTS 
5.1. SKOV-3M CELLS PRODUCE AN AGGRESSIVE OVARIAN CARCINOMA WITH 

INTRAPERITONEAL CARCINOSIS AND ASCITES IN A XENOGRAFT MOUSE MODEL (I) 
In the animal model study (I), all mice developed intraperitoneal tumours in both 1x107 and 2x107 SKOV-3m 

cells within 18 days. Six out of eight mice in the group inoculated with a lower amount of cells had ascites 

and peritoneal carcinosis. All mice in the group inoculated with the higher amount of cells had carcinosis 

and six out of nine mice also bloody ascites. In the cases of carcinosis, the peritoneal cavity and internal 

organs were surrounded by numerous adherent tumour nodules. Althought metastases were found in the 

liver and diaphragm, more distant metastases outside the peritoneal cavity were not detected. 

Iintraperitoneal tumours were also detected by MRI and ultrasound non-invasively without contrast agent 

prior to autopsy. Specifically, the smallest tumours were measured by MRI when they were not palpable 

and while the mice were still in good condition. With ultrasound, one major blood vessel and a thin capsule 

around tumours were detected. 

     Histologically tumours were poorly differentiated (grade 3) serous cystadenocarcinomas with variable 

nuclear size and limited stroma. They formed cystic structures with papillary projections. Only a few 

apoptotic cells were present in SKOV-3m tumours. In peripheral parts of tumours, the proliferation was 

higher than in central parts, in Ki-67 stained tumours proliferation varied between 30-80%. 

     Mean survival was 42±14 and 21±2 days in groups of either 1x107 or 2x107 SKOV-3m cells, respectively. All 

mice in the study were dead 60 days after the tumour cell inoculation.  

 

5.2 ANTIANGIOGENIC AND ANTILYMPHANGIOGENIC GENE THERAPY WITH SOLUBLE VEGF 
RECEPTORS AND SOLUBLE ANGIOPOIETIN RECEPTORS (II-III) 

5.2.1. Transgene expression (II-III) 
Western blotting showed that sVEGFR-1, -2 and -3 were expressed at comparable level after adenovirus 

transductions in the medium of SKOV-3m cells in vitro. In vivo, plasma levels of these receptors were 

measured with ELISAs at the day 3, 6 and 13 after adenoviral gene transfer and at the time of sacrifice. 

Plasma levels were highest 13 days after the gene transfer, after which levels started to decline. The levels 

were higher than 1 ng/ml throughout the follow-up and plasma level of sVEGFR-2 was higher than 8400 

ng/ml at each time point. In AdLacZ control mice sVEGFRs were not detected at any time points. Figure of 

plasma levels is shown in article II. RT-PCR confirmed mRNA expression of all transgenes, including sTie1 

and sTie2, in liver samples six days after the gene transfer. 
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5.2.2. Intraperitoneal tumour growth (II-III) 

Mice developed intraperitoneal tumours 6-21 days after the inoculation of the SKOV-3m cells. The 

intravenous gene transfer was done day after the first tumours were detected in MRI. Mice received single 

injections of the treatment gene or their combinations as showed in table 3. In the third MRI (two weeks after 

the gene transfer) tumours were significantly smaller both in combination groups of sVEGFR-1, -2 and -3 

and in combination group sVEGFR-1 and -3 and sTie2 compared with control AdLacZ mice (866 ± 270 mm3 

vs. 2026 ± 369 mm3, P= 0.035 and 763 ± 222 mm3 versus 2227 ± 532 mm3, P= 0.032) (Figure 6.). Further, the 

final tumours at the end of the follow-up were also clearly smaller in the two combination groups than 

controls (2.3 g ± 0.38 g vs. 4.5 g ± 0.42 g, P=0.001 and 2.3 ± 0.25 g versus 5.0 ± 0.77 g, P=0.020) (Figure 7.). In 

both studies, the tumour volumes on MRI before gene therapy or the final tumour volumes of control mice 

did not differ significantly.  

 

Figure 6. Horizontal MRI pictures of the development of intraperitoneal tumours. At the time of the first MRI a day before gene 
therapy (GT), there was no difference in tumour volumes, but in the third MRI two weeks after gene therapy tumours were 
significantly smaller in combination group of sVEGFR-1, -2 and -3 (C-D) and in combination group of sVEGFR-1 and -3 and sTie-2 
(E-F) than in control group (A-B). Tumours are marked with arrows and boroken lines, and ascites with arrow heads. 
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Figure 7. At the end of the follow up the weights of the tumours were significantly smaller in combination groups of sVEGFR-1, -2 
and -3 and in group of sVEGFR-1 and-3 and sTie2 and in the mice treated with sVEGFR-3 than in controls. *, P< 0.05 vs. LacZ, 
Mean ± SEM. 

       

Figure 8.  sVEGFR-2 treated mice did not form any ascites in the peritoneal cavity. *, P< 0.05 vs. LacZ, Mean ± SEM. 

 

5.2.3. Formation of ascites (II-III) 

Antiangiogenic gene therapy with sVEGFR-2 completely blocked the accumulation of ascites, and the 

difference was statistically significant when compared with control mice (1.9 ml ± 0.42 ml, P= 0.005) (Figure 

8.). In a combination group of all three sVEGFRs, a trend towards less ascites was noted, but it did not reach 
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statistical significance. When targeting both VEGF and Tie pathways, a tendency towards a greater amount 

of ascitic fluid was seen. In control mice of both gene therapy studies the amount of ascites was similar. 

 

5.2.4. Histology (II-III) 

As shown already in the animal model study (I), intraperitoneal tumours were grade 3 serous 

cystadenocarcinomas, which consisted of variable size of the nucleus and limited stroma (Figure 9). 

However, after antiangiogenic and antilympangiogenic gene therapy with sVEGFR-1, -2 and -3, tumour 

tissue was partly replaced by connective tissue and the morphology was disturbed (Figure 9.). That was also 

noted after the combination gene therapy with sVEGFR-1 and -3 and Tie2. Also, in the same combination 

groups, proliferation measured from Ki-67-stained tumour samples were significantly smaller than in 

control mice (5-40% vs. 70-80%, P=0.003 and 10-60% versus 70-80% in the controls, P=0.001). 

 

5.2.5. Microvessel measurements (II-III) 

To explore the effects of antiangiogenic and antilymphangiogenic gene therapies on intratumoural 

microvessels, MVD, TVA and mean microvessel area were calculated in CD34 stained tumour tissue 

samples. In the group that received the combination therapy of sVEGFR-1, -2 and -3, MVD (42.3 ± 6.4) and 

TVA (0.83 ± 0.14%) were significantly smaller than those of control mice (86.1 ± 6.5, P= 0.0005 and 2.6 ± 

0.24%, P=0.005) (Figure 9.). In another gene therapy study with sVEGFR-1 and -3 and sTie2 the mean area of 

CD34 stained microvessels (248 ± 29 μm2) and TVA (1.42 ± 0.09%) were significantly smaller than in controls 

(512 ± 178 μm2, P=0.036 and 3.48 ± 1.4%, P=0.040) (Figure 9.).  

     In tumours of the group targeting both sVEGFR-1 and-3 and sTie2 a significant decrease in pericyte 

coverage (i.e. pericytes covered less than 50% of the vessel circumference) in comparison to LacZ group (P= 

0.008) were noted. Furthermore, also in the group of sTie1+sTie2 together and sTie1 alone, less than 50% of 

the vessel circumference was covered in most cases. On the contrary, in LacZ and sTie2 groups no vessels 

without pericytes were detected. 

     The majority of LYVE-1 positive intratumoural lymphatic vessels were located in the periphery of the 

tumours. After sVEGFR-3 gene therapy only 2-3 lymphatic vessels per section were detected. In the 

combined group that received all three sVEGFRs, no LYVE-1 stained lymphatics were detected (Figure 9.). In 

the sVEGFR-1, -3 and sTie2 group the mean number of lymphatic vessels was 3.0 ± 0.7 compared with 

controls which had 6.3 ± 2.3 vessels per section, P= 0.077 (Figure 9.).  
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Figure 9. Histology of intraperitoneal ovarian tumours. (A-B) Hematoxylin-eosin (HE) staining of serous adenocarcinoma. (C) 
Focal necrosis (arrowhead) and connective tissue (arrow) were present in the tumour tissue in group that received the combination of  
sVEGFR-1, -2 and -3. (D-F) CD34 positive microvessels in tumour tissue. (E) Total vascular area (TVA) and microvessel density 
(MVD) were lower in combination group of sVEGFR-1, -2 and -3 than in controls (D). (F) In the group that received sVEGFR-1 
and-3 and sTie2 the mean microvessel area and TVA of tumours were lower than in controls. (G, I) LYVE-1 positive lymphatic 
vessels in tumour tissue. (H) In the group that received all three sVEGFRs, no LYVE-1 stained lymphatics were detected. (I) In the 
combination group of sVEGFR-1, -3 and sTie2 a trend for the lower mean number of lymphatic vessels than in controls (G) was 
noted. Bar 100μm. 

5.2.6. Survival and safety 
Survival of mice in both gene therapy studies (II-III) is shown in Figure 10. A non-significantly prolonged 

survival after combined gene therapy of sVEGFR-1 and sVEGFR-3 was noted (mean survival 55 ± 16 vs. 32 ± 

2 days in controls) (Figure 10B). Interestingly, one animal was cured, having no detectable tumour in MRI 56 

days after the gene therapy (Figure 10A) or on autopsy, and another had a clearly prolonged survival with a 

prolonged dormancy in tumour growth in that group. Surprisingly, after combination gene therapy with 

sTie1 and sTie2, survival was significantly shorter than in controls (Figure 10C). 
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Figure 10. (A) MRI pictures of the cured mouse in group of sVEGFR-1 and sVEGFR-3.  An intraperitoneal ovarian tumour (arrow) 
was visible in MRI 18 days after the tumour cell injection. 28 days after the gene therapy, the tumour was shrunken (arrow) and 56 
days after the gene therapy the tumour was not visible in MRI. (B) A trend for prolonged survival was seen in gene therapy group of 
sVEGFR-1 and sVEGFR-3. (C) Survival was significantly shorter in gene therapy group of sTie1 and sTie2 compared with controls. 

     Safety was assessed by clinical examination, investigating histological samples of liver, spleen, kidneys 

and lungs and by the analysis of plasma ALT and crea levels. In groups where only a single gene was 

transferred, the therapy was well tolerated. The mice did not show any side effects and histological samples 

of the organs harvested were considered normal. However, at the end of the follow-up, 25% of mice treated 

with combination gene therapy of sVEGFR-1, -2 and -3 showed macroscopic alterations in liver which were 

histologically local necrosis. A total of 38% of the mice treated with combination of angiopoietin receptors 

sTie1 and sTie2 had local necrosis, regenerative changes in hepatocytes and lymphocytic infiltrations in the 

liver. One mouse in this group had blood in the peritoneal cavity and another had bleeding from the rectum. 

In the mice treated with the combination of sVEGFR-1, -3 and sTie2 liver cell architecture was well-

preserved and only mild lymphocytic infiltrates around hepatocytes in portal tract were noted. However,  

63% of the mice had edema beneath the skin. There were no histological alterations in other organs. Plasma 

ALT levels were elevated at the advanced stages of the disease in both treatment and control groups. 

However, ALT values were clearly increased already at earlier time points in combined sTie1 and Tie2 
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treated animals compared with others. Creatinine levels were within normal range in all mice. Tables of 

clinical chemistry are shown in articles II and III. 

5.3. PREOPERATIVE SERUM ANG-2 LEVELS ARE ELEVATED AND CORRELATE WITH A POOR 
PROGNOSIS IN PATIENTS WITH EPITHELIAL OVARIAN CANCER (IV) 

Ang-2 levels were significantly higher in patients with ovarian carcinoma than in healthy controls (2.7 [1.8-

3.5] vs. 1.5 [1.1-2.2] ng/mL, P< 0.0005) or patients with benign or borderline ovarian tumour (2.7 [25-75 

quartile 1.8-3.5] vs. 1.9 [1.4-2.2] ng/mL, P<0.0005 and 2.7 [1.8-3.5] vs. 1.6 [1.3-3.1]ng/mL, P=0.011, respectively) 

(Figure 11). Ang-2 levels were also elevated in patients with metastasis of other cancer in the ovary 

compared with those of controls (2.8 [1.8-3.6] vs. 1.5 [1.1-2.2]ng/mL, P= 0.03) and compared with patients 

with benign ovarian tumour (3.8 ± 4.2 vs. 1.9 ± 0.7, P= 0.039). Among patients with endometrial carcinoma 

Ang-2 levels were clearly lower than in ovarian cancer patients (1.8 [1.2-2.4] vs. 2.7 [1.8-3.5], P= 0.002). In 

ovarian cancer patients, high Ang-2 levels were correlated with a high stage of cancer (P=0.042) and was 

associated also with primary residual tumour size >1 cm (P= 0.012). 

     Ang-1 levels were significantly elevated in serum samples of ovarian carcinoma patients compared with 

normal controls (30.8 [22.8-42.0] vs. 22.5[19.9-32.8]ng/mL, P= 0.0005). In patients with metastasis of other 

cancer in the ovary Ang-1 levels were significantly lower compared with those with ovarian cancer (23.5 

[12.6-29.6] vs. 30.8 [22.8-42.0], P= 0.028). Ang-1 levels did not correlate with overall or recurrence-free 

survival and were not associated with clinicopathological factors. 

     A total of 53% of patients with a high level of Ang-2 were alive at the end of the follow up compared with 

73% of ovarian cancer patients with low Ang-2 level. Thus, elevated Ang-2 level (> 2.7 ng/mL) was a 

significant predictor of poor overall survival (Figure 11D). Also, a serous type of histology and elevated 

Ang-2 level predicted poor overall survival (50% vs. 79%, P= 0.05). However, in a Cox multivariate analysis, 

Ang-2 did not maintain its significance. 

     Patients with high levels of Ang-2 had shorter recurrence-free survival than those of low levels (37 ± 7 vs. 

54 ± 7 months, P= 0.033) (Figure 11E). Furthermore, patients with serous ovarian cancer and an elevated 

Ang-2 level had shorter recurrence-free survival than patients with other histological subtypes of ovarian 

cancer (P= 0.042). In the subgroup of patients with serous ovarian cancer, high Ang-2 level predicted poor 

recurrence free survival (21 vs. 42%, P= 0.042). 

     The AUC values of CA125 and Ang-2 were statistically significant when assessing ROC curves to identify 

benign, borderline and cancerous ovarian tumours (AUC 0.95, P< 0.0005 and 0.77, P<0.0005, respectively) 

(Figure 11B). Interestingly, when combining CA125 with Ang-2, the AUC value was higher than with CA125 

alone (0.92, P=0.001 and 0.89, P=0,001, respectively) when including borderline tumours and ovarian 

carcinoma (Figure 11C). 
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Figure 11. (A) Ang-2 levels were significantly higher in ovarian carcinoma patients than in healthy controls and patients with 
benign or borderline ovarian tumour or endometrial carcinoma. Ang-2 was also elevated in patients with ovarian metastasis of 
another cancer compared with controls and compared with patients with benign ovarian tumour. * P<0.05, ** P< 0.01, *** P< 0.001. 
(B) AUC values of CA125 and Ang-2 were significant in distinguishing ovarian carcinoma from benign or borderline ovarian 
tumours.(C) When combining CA125 with Ang-2 the AUC value was higher than with CA125 alone when including borderline 
tumours and ovarian carcinoma. Elevated Ang-2 level (>2.7 ng/mL) was associated with shorter overall (D) and recurrence free (E) 
survival. 
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6 DISCUSSION 
6.1. ANIMAL STUDIES 

6.1.1. Animal model 

The first report of the growth of a human tumour in an immunodeficient athymic nude mouse came in 1969 

(Rygaard and Povlsen, 1969). Since then, human tumour xenografts grown in nude or SCID mice have 

covered the major tumour types and represent the mainstream of preclinical anticancer drug development 

testing in vivo (Kelland, 2004). The preclinical phase in the development of a new cancer drug is fundamental 

to demonstrate the antitumour efficacy as well as to ensure safety of the drug before clinical phases. In 

ovarian cancer, cell lines derived from ascites and primary cell lines have been extensively used, but also 

genetically engineered mice have been used. However, the low incidence and lenght of time required for the 

appearance of tumours suggest that their value might be low in studying the early pathogenic events of 

ovarian cancer (Connolly et al., 2003; Dinulescu et al., 2005; Flesken-Nikitin et al., 2003; Orsulic et al., 2002). 

Cell line xenografts are relative easy to produce, and they usually are more reproducible compared with the 

human tissue xenorgafts (Elkas et al., 2002) that are also used in preclinical ovarian cancer studies. With 

intraperitoneal injection of cancer cells, it is possible to induce a widely disseminated disease in its natural 

environment. Tumour location may have significant effects on the cancer cell gene expression according to 

microarray studies (Hao et al., 2004; Yanagawa et al., 2001). Thus, it could be argued that intraperitoneal 

cancer cell line inoculation mimics the clinical situation as closely as possible. The major reason for 

discrepancies between cell line and tumour tissue engraftment studies is probably the lack of tumour 

stromal cells in cancer cell line xenograft models (Agarwal and Kaye, 2003; St Croix and Kerbel, 1997). In 

ovarian cancer, ascites plays a major role. With subcutaneous tumour models, the evaluation of treatment 

effect on ascites is lacking. 

     In our study we characterised a SKOV-3m cell line that was derived from the commercial SKOV-3 cell 

line. SKOV-3 cells were first injected in the flank of a nude mouse. The tumour that developed was 

transplanted intraperitoneally in to another nude mouse. Finally, we cultured the intraperitoneal tumour 

that grew. SKOV-3m cells injected intraperitoneally produced highly repeatable and aggressive disease that 

resembled human ovarian cancer with peritoneal carcinosis and ascites. The tumours were serous 

adenocarcinomas, which are also the most common ovarian cancers also clinically. 1x107 turned out to be the 

most practical cell amount compared with 2x107 since survival of the mice were more suitable for therapeutic 

studies. Also the amount of 5x106 cells was tested, but the tumour take rate was conciderable lower, and 

despite the smaller cell amount the life span of the mice was similar as with 1x107 cells. The cell line 

SKOV3ip1 derived from ascites in a SKOV-3-injected mouse is widely used in ovarian cancer cancer studies 
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(Yu et al., 1993). Also in that model the more rapid tumour growth and shorter survival of mice have been 

demonstrated than in the original cell line and that is in line with our study and others (Mujoo et al., 1996). 

The disadvantage of immunodeficient mouse models, like ours, is that a full immunoresponse towards 

therapies is lacking. Thus, immunocompetent animals should be used for toxicological studies. Although 

antitumour effects showed in an aggresive cancer model with short survivals might reflect efficacy also in 

man, in such animal models studying repeated doses is difficult because the survival time is so short. 

 

6.1.2. Study protocol and imaging 

Preclinical models should mimic the human disease as well as possible. Despite that, most preclinical animal 

studies of ovarian cancer are made in models, in which treatment has been given right after tumour cell 

injection before the establishment of cancer. To overcome this, we used MRI and ultrasound to confirm the 

presence of the intraperitoneal tumours before gene therapy. Indeed, the smallest tumour nodule detected in 

MRI was 2.4 mm3 which like other tumours measured initially were not palpable or otherwise visible. The 

sizes of tumours at the time of gene therapy did not significantly differ between treatment groups. 

Ultrasound easily detected the intraperitoneal tumours, and the volumes could be measured. However, MRI 

was chosen to measure the tumours in gene therapy studies, because with MRI the growth of even the 

deepest intraperitoneal tumours was more accurately measured and tumour volumes were more easily 

compared with those measured at previous imaging time especially in advanced stages of the disease when 

the peritoneal cavity was filled with tumour nodules. In both approaches, tumour volumes were measured 

noninvasively without contrast agent and imaging did not harm mice. Although MRI and ultrasound were 

adequate for our ovarian cancer studies, several other applications for imaging cancer have been reported in 

mice models, such as CT (x-ray computed tomography), PET (positron emission tomography), SPECT 

(single photon emission computed tomography), BLI (bioluminence imaging) and fluorescence imaging, 

depending in part on the tumour type and location and the tumour-related parameter to be measured 

(Weissleder, 2002). 

 

6.1.3. Antiangiogenic and antilymphangiogenic gene therapy 

As clinical trials of gene therapy for ovarian cancer have shown, the optimal treatment strategy or route of 

administration has not yet been discovered. Instead of targeting tumour cells, we decided to target the 

vasculature of tumours. To grow beyond a certain size, solid tumours need blood supply to provide 

nutrients and to maintain continuous growth and metastasis. Lymphatic vessels are in key role in the 

dissemination of cancer. Antiangiogenic and antilymphangiogenic therapies inhibit new blood and 

lymphatic vessel growth, induce endothelial cell apoptosis and normalise the vasculature (Martin and 
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Schilder, 2007; Tammela and Alitalo, 2010). Therapies targeting angiogenesis have shown efficacy in clinical 

trials, and bevacizumab is likely to be part of standard therapy for advanced ovarian cancer in the future 

(Yap et al., 2009). Antilymphangiogenic gene therapies are currently in the preclinical phase. 

    In our studies, targeting VEGF pathways by soluble VEGFR 1, 2- and -3 showed efficacy as assessed by 

reduced tumour volume and weight but they did not significantly prolong survival. To further test new 

treatment options, we targeted both endothelial cells and pericytes by using VEGFs/VEGFRs and 

angiopoietins/Tie2 pathways with sVEGFR- 1 and -3, sTie1 and sTie2 and their combinations. Pericytes 

provide structural support to endothelial cells. Protecting signals from pericytes have been hypothesised to 

limit the efficacy of antiangiogenic therapies targeting only the endothelial cells. With a combination of 

sVEGFR-1 and -3 and sTie2, tumour growth was reduced with a marked effect on pericyte covering. In the 

context of cancer, other gene therapy studies using all three sVEGFRs or sTie1 and sTie2 or their 

combinations have not been carried out before.  

     Expression of mRNA of all used treatment genes were confirmed by RT-PCR. In the case of sVEGFRs 

differencies in the plasma levels of each soluble receptor was seen. Serum levels might reflect different 

pharmacokinetics, which is an in vivo phenomenon. In our cell culture studies, each virus transduction with 

the same MOI yielded roughly equal amount of transgene products. Different soluble receptors have very 

different tissue binding properties. They may also form heterodimers with VEGFRs expressed in tissues 

which may also be a reason for different levels in plasma. As has been shown in other studies, different 

VEGFs have different plasma levels (Leppänen et al., 2005). 

     It seems that combination therapy has a more potent antitumour effect than single gene therapy judged 

by tumour growth on sequential MRI and, at the time of sacrifice, by tumour vascularity, histology and 

immunohistochemistry. Also, the fact that one mouse was cured in combination group of sVEGFR-1 and 

sVEGFR-3 and another mouse had a notably prolonged survival with dormancy in tumour growth supports 

the greater efficacy of combination therapy. For this reason, these two soluble receptors were later combined 

with sTie2. The formation of ascites was completely blocked with sVEGFR-2, and sVEGFR-1 showed also a 

trend towards reduced formation of ascites. This is in line with previous studies reporting that VEGF-A is a 

major factor in development of ascites. Interestingly, in mice treated by sVEGFR-2 causing high plasma 

levels had significantly smaller MVD, but tumour weights were not smaller at the end of the follow-up. In 

fact, preclinical studies with A4.6.1 (VEGF antibody) also showed the same effect in an intraperitoneal cancer 

model, in which ascites was completely blocked but no reduction of tumour growth was observed (Mesiano 

et al., 1998). Despite the antitumour efficacy noted also with the combination of sVEGFR1, -3 and sTie2, the 

larger amount of ascites was a disadvantage. Thus, our results suggest that the combination of all three 

sVEGFRs is the most effective treatment of ovarian cancer in mice. It seems that with antiangiogenic and 
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antilymphangiogenic gene therapy reduced tumour growth or dormancy could be achieved, but to achieve 

cure, an antiangiogenic approach should be combined with, for example, to chemotherapy.  

     In comparison with other antiangiogenic approaches like antibodies, gene therapy offers many 

advantages. The genetically modified gene transfer vectors create cell-specific therapeutic effecs and a 

treatment molecule is produced in the patient’s own body. Multiple treatment genes can be incorporated in 

the same vector, and different vectors can create transient or long-lasting expression of the treatment gene 

depending on the situation. Furthermore, the production of e.g. adenoviruses in high titres for clinical 

purposes is easier and cheaper than the production of antibodies. As with other approaches, gene therapy 

can be combined with radiation or chemotherapeutics.  

6.1.4. Survival and safety 

As mentioned before, treatment with sVEGFR-1 and sVEGFR-3 seemed to have the most potent effect on 

survival. It can be speculated that if more mice were included in the studies, the effect on survival may have 

been significant. A trend for lengthened survival was also seen in mice receiving combination of sVEGFR-1 

and sVEGFR-3 and sTie2. In addition, as shown in other antiangiogenic gene therapy studies, chemotherapy 

added to gene therapy has improved survival in animal models.  

     It was a surprise that combination treatment with sTie1 and sTie2 significantly decreased survival. 

Adverse effects in mice which were not noted when using these receptors alone. Massive liver toxicity 

probably explained the reduced survival. The cause for that is unknown since with other combinations no 

such effect was seen, and the total dose of adenoviruses was similar to the other adenoviral gene transfers. It 

is plausible that combined sTie1 and sTie2 therapy might have some unknown biological effects on liver 

cells, and this needs further studies. In our studies we have used the maximum levels of adenoviral 

sVEGFRs and sTie1 and sTie2, but lower levels of expression of these transgenes might reduce liver toxicity 

without compromising the treatment effect. Liver samples after single gene transfer were considered normal 

After combined gene therapy of VEGFs, some liver samples showed regenerative changes and local necrosis 

contrast to the massive necrosis seen in combined therapy of sTie1 and sTie2. ALT and crea levels in plasma 

were evaluated to further explore the effects on liver and kidneys. ALT values were higher after combined 

gene transfers when mice also showed advanced ovarian cancer disseminated around peritoneal cavity. That 

is why interpretation of the ALT values is difficult, since high values might be due to the disease itself. 

However, after combined gene therapy with sTie1 and sTie2, the ALT values increased earlier than in other 

mice.  

     All measured crea levels were normal, which was line with histological samples of the kidneys. Other 

organs that were harvested were also normal. Intravenous administration is still considered the most potent 
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route to give antiangiogenic gene therapy that reaches all multifocal tumour nodules, but further toxicity test 

are clearly needed. 

 

6.2. CLINICAL STUDY 

6.2.1. Patients and study design 

Tumour of the ovary is a common finding in women. To discriminate benign tumours from malignant ones 

is not simple by clinical examination or by ultrasound, even if some serum markers of malignant potential 

like CA125 or TATI (tumour-associated trypsin inhibitor) or most recently HE4 (human epididymis 

secretory protein 4) (Anastasi et al., 2010; Galgano et al., 2006) are available. In our prospective study, the 

serum samples of tumour patients were taken preoperatively before laparoscopy or laparotomy with 

patient’s permission. Both pre- and postmenopausal women were included in the study groups of ovarian 

neoplasms. Patients with epithelial ovarian cancer were enrolled in this study because this histological group 

comprises the most ovarian cancer cases. All cancer patients received the standard platinum and paclitaxel- 

based chemotherapy after the operation. Thus, patients represented the standard patient material seen in 

clinical work. Although levels of Ang-1 and Ang-2 have been explored in other cancers, ours is the first to 

assess soluble Ang-1 and Ang-2 in patients with ovarian neoplasms. To explore the levels of Ang-1 and Ang-

2 in other gynaecological malignancies we also enrolled ten patients with endometrial carcinoma into this 

study. We used commercially available ELISA kits to evaluate serum Ang-1 and Ang-2 levels of the patients, 

as has been done also in other cancer studies.  

 

6.2.2 Ang-2 as a biomarker in epithelial ovarian cancer 

When developing new targeted therapeutics the identification of new biomarkers is also essential. These 

biomarkers may be used in selecting the most suitable patients to target therapies and to assess the response 

to agents that target the pathways (Yap et al., 2009). Thus, it is important that new biomarkers are developed 

at the same time as developing new therapies. The ideal biomarker should differentiate the patients with 

benign and malignant disease without any overlap. However, that is highly challenging. In ovarian cancer, a 

range of potential biomarkers have been proposed, such as the plasma levels of VEGF-A and the blood 

concentrations of circulating endothelial cells or progenitor cells, but none of these have showed to be better 

than others currently used (Spannuth 2008). Recently, an evaluation of 65 ovarian cancer-related biomarkers 

in the circulation of women diagnosed with an adnexal mass was published (Nolen et al., 2010). As 

individual markers, HE4 and CA125 provided the greatest level of discrimination between benign and 

malignant cases, and the combination of these two biomarkers provided a higher level of discriminatory 

power than either marker alone. 
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     Circulating Ang-1 and Ang-2 levels have been associated with tumour angiogenesis in several cancers 

(Caine et al., 2003; Detjen et al., 2010; Gu et al., 2006; Helfrich et al., 2009; Jo et al., 2009; Kopczynska et al., 

2009; Kuboki et al., 2008; Niedzwiecki et al., 2006; Park et al., 2009; Park et al., 2007; Scholz et al., 2007; 

Srirajaskanthan et al., 2009; Szarvas et al., 2009), but still the role of Ang-1 and Ang-2  is controversial. Both 

elevated and reduced circulating levels of angiopoetins have been reported in relation to cancer, and studies 

on their prognostic value are sparse. In our study, Ang-2 showed some potential in differentiating normal 

ovaries from serous epithelial carcinoma, and further from benign or borderline tumours. Ang-2 also 

predicted overall survival and recurrence-free survival in ovarian cancer patients. With Ang-1 the results 

were more modest. Even though the Ang-1 could differentiate normal ovaries from ovarian carcinomas, it 

did not have an impact on prognosis in patients with epithelial ovarian cancer. In contrast, Ang-1 seems to 

be of prognostic value in lung cancer (Park et al., 2009). 

     Ang-2 levels seemed to be high in ovarian cancer, indicating highly vascularised disease. High Ang-2 

levels were associated with advanced ovarian cancer with distant metastases, suggesting that the active 

neovascularisation of invasive and metastatic ovarian carcinoma produces higher amount of growth factors 

like Ang-2 and VEGF in the circulation. Serum Ang-2 levels were also higher in ovarian cancer than in 

endometrial carcinoma and at a similar level as in patients with metastasis of other cancers to the ovary. In 

recent population-based study, Ang-2 levels were associated with age and cardiovascular risk factors in 

women before menopause (Lieb et al., 2010). However, in our study Ang-2 was not associated with age or 

state of menopause. 

     CA125 is an accepted indicator of epithelial ovarian cancer response and it is used to monitor patients 

treated with cytotoxic chemotherapy (Bast, et al., 1998). However, recently it has been reported that there is 

no survival benefit from early treatment based on a raised CA125 level alone (Rustin and van der Burg, 

2009). Changes of CA125 concentrations in patients with epithelial ovarian cancer have not yet been well 

reported in response to molecularly based therapy. A study of 42 patients with ovarian cancer treated with 

the antiangiogenic drugs sorafenib or bevazicumab suggests that CA125 may not correspond to the seen on 

imaging for epithelial ovarian cancer (Azad et al., 2008). In the present study, 95% of the ovarian cancer 

patients had CA125 levesl above normal. Although the AUC value of CA125 was higher than that of Ang-2 

in ROC curves, the AUC value of Ang-2 also showed statistical significance. Interestingly, combining CA 125 

with Ang-2 resulted in a higher AUC value than CA125 alone when identifying borderline tumours from 

ovarian carcinoma suggesting that Ang-2 could offer additional diagnostic value in certain circumstances.  
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7 Conclusions and future perspectives 
I SKOV-3m cells provide a highly reproducible ovarian cancer model that resembles human disease 

in many respects. This xenograft model was shown to be suitable for studies on antiangiogenic and 

antilymphangiogenic gene therapy with sequential MRI follow-up.  

 

II Combined gene therapy with soluble VEGFR-1, -2 and -3, showed antitumour efficacy as 

demonstrated by intraperitoneal tumour growth, microvessel measurements, histology and 

immunohistochemistry. In our aggressive model, survival after gene therapy was not significantly 

increased. Gene therapy with sVEGFRs was relatively well tolerated. 

 

III        Combined gene therapy with soluble VEGFR-1 and -3 and soluble Tie2 also showed antitumour 

efficacy but the amount of ascites was increased in those mice. Gene therapy with combination of 

sTie1 and sTie2 showed surprisingly massive liver toxicity. 

 

IV           Ang-2 showed potential as a predictor of decreased overall and recurrence-free survival of epithelial 

in ovarian cancer patients. Ang-2 may offer additional diagnostic value under certain 

circumstances, whereas Ang-1 was of no clinical use. 

 

     Combination gene therapy with sVEGFRs seems to be the most potential therapy for clinical phase I trial 

in the future. To enhance the antitumour effects and survival, chemotherapy should be added to the 

treatment schedule. Further pre-clinical studies with chemotherapy combined to antiangiogenic and 

antilymphangiogenic gene therapy in our ovarian cancer xenograft model and toxicological studies in 

immunocompetent animals must be done to ensure the safety of the treatment and to explore the most 

effective and safe doses that may be used in a clinical phase I trial. In the future, it may be possible to 

initially create a powerful short-term antiangiogenic effect with adenoviruses followed by a prolonged effect 

with lentiviruses, but this needs further studies. To select those patients who might benefit most from 

antiangiogenic gene therapy and to monitor treatment effects, measurement of circulating Ang-2 may be 

useful. New angiogenic biomarkers such as circulating soluble VEGRs should also be explored in the future. 

To monitor responses such as changes in blood volume or tumour endothelial permeability to 

antiangiogenic treatment in patients with ovarian cancer, DCE-MRI (dynamic contrast-enhanced magnetic 

resonance imaging) may be used in the near future. 
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Despite current treatment approach-

es, the prognosis of ovarian cancer 

remains poor. In this thesis, promis-

ing antitumoural effects of adenovi-

ral gene therapy with antiangiogenic 

and antilymphangiogenic genes in a 

new and highly reproducible human 

ovarian cancer xenograft model are 

described. Furthermore, angiopoi-

etins were measured preoperatively 

in patients with ovarian cancer sug-

gesting that Ang-2 may serve as a 

marker of decreased survival also in 

clinical settings.
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