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ABSTRACT 
 
Premature adrenarche (PA) is defined as adrenarcheal levels of adrenal androgens before the age of 8 yrs 
in girls and the age of 9 yrs in boys leading to androgenic signs ranging from pubarche to oily skin and 
adult type body odor. PA has been connected with adverse metabolic features and increased risk for 
ovarian hyperandrogenism. The pathogenesis of PA is considered polygenic. However, underlying genetic 
factors remain largely unknown. 
   We aimed to determine the role of genetic variation of PA candidate genes in a case-control cohort of 
prepubertal PA children (63 girls and 10 boys) and their age- and gender-matched controls (79 girls and 18 
boys). The following candidate genes with previously described polymorphisms were selected based on 
the current knowledge of PA: ACTH receptor (MC2R), androgen receptor (AR), low density lipoprotein 
receptor-related protein 5 (LRP5), transcription factor 7-like 2 (TCF7L2), and fat mass and obesity 
associated gene (FTO). We compared genotype distributions between the PA and control groups, and used 
single marker association analyses to relate genetic variants with clinical phenotype. 
   The minor variant of the single nucleotide polymorphism (SNP) MC2R -2 T>C was more frequent in 
subjects with premature pubarche than in children with milder signs of PA and controls. The minor variant 
was associated with a higher ratio of ACTH to cortisol in the control group, in agreement with previous 
studies that have shown decreased ACTH sensitivity due to the polymorphism. In children with PA, the 
minor variant associated with higher androstenedione level and ratio of androstenedione to cortisol, 
suggesting shifting of steroidogenesis from corticosteroids to androgens. The length of CAGn at X-
chromosomal AR correlates inversely with the activity of AR. Children with PA had a shorter CAGn repeat 
than the controls, and the difference became even stronger when we took the X-chromosome inactivation 
into account. The lean PA children with a BMI below the median of the group had a shorter CAGn than 
the PA children with higher BMI or the controls with the same BMI. More active AR may have a 
significant role in the pathogenesis of PA in these lean children. Minor variants at SNPs A1330V and 
N740N of LRP5 were associated with higher dehydroepiandrosterone sulfate and cholesterol levels in 
control children, but no association between genetic variants at LRP5 and clinical parameters was 
observed in the children with PA. The minor variant at rs7903146 of TCF7L2 was more frequent in lean 
PA children. The minor variant at rs9939609 of FTO was not more frequent in children with PA, 
suggesting that this genetic variant in FTO has no major role in the increased BMI of PA children. The 
power of the study was limited, and the results need to be confirmed in different populations. However, 
the value of the study lies in the use of unbiased controls and in the precise phenotyping of all the children 
from a homogenous population. 
   In conclusion, MC2R -2 T>C may have a role in the pathogenesis of premature pubarche. Lean PA 
children show a different genotype, with a shorter CAGn repeat, indicating a more active AR, and 
increased frequency of the minor variant at rs7903146 of TCF7L2 in comparison to PA children with 
higher BMI. 
 
National Library of Medicine Classification: WS 450 
Medical Subject Headings: Adrenarche/genetics; Adrenocorticotropic Hormone; Androstenedione; Body Mass Index; 
Body Weight; Case-Control Studies; Cholesterol; Dehydroepiandrosterone Sulfate; Genes; Genetic Markers; Genetics; 
Genetic Variation; Genotype; Phenotype; Polymorphism, Genetic; Receptors, Androgen; Receptors, Corticotropin; 
LDL-Receptor Related Proteins; Proteins/genetics; TCF Transcription Factors/genetics; Polymorphism, Single 
Nucleotide/ genetics; Puberty, Precocious/genetics; X Chromosome  
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A   Adenine 
ACTH   Adrenocorticotropic hormone 
Apo   Apolipoprotein  
AR   Androgen receptor 
BMI   Body mass index 
BP   Blood pressure 
C   Cytosine 
CAGn   Cytosine-adenine-guanine repeat length 
CAH  Congenital adrenal hyperplasia 
cAMP   3’,5’-cyclic adenosine monophosphate 
CI   Confidence interval 
CP   Cerebral palsy  
CRH   Corticotropin releasing hormone 
DAX-1  Dosage-sensitive sex reversal, adrenal hypoplasia congenital, critical region 

on the X-chromosome, gene-1 
DHEA   Dehydroepiandrosterone 
DHEAS   Dehydroepiandrosterone sulfate 
DHT   Dihydrotestosterone  
DNA   Deoxyribonucleic acid 
FOH  Functional ovarian hyperandrogenism  
FTO   Fat mass and obesity-associated gene 
G   Guanine 
GAD2   Glutamate decarboxylase 2 
GnRH   Gonadotropin-releasing hormone 
GWA   Genome wide association 
HDL   High-density lipoprotein 
HSD17B5  Hydroxysteroid 17β-dehydrogenase 5 
HOMA-IR Homeostasis model assessment for insulin resistance 
IGF   Insulin-like growth factor 
IGFBP   Insulin-like growth factor binding protein 
IGF-1R   Type 1 IGF receptor  
ISIcomp  Insulin sensitivity index 
LDL   Low-density lipoprotein 
LD   Linkage disequilibrium 
LRP5   Low density lipoprotein receptor-related protein 5 
MAF   Minor allele frequency 
MC2R   Melanocortin-2 receptor 
mRNA   Messenger ribonucleic acid 
mwCAGn Methylation weighted biallelic means of CAGn 
OGTT   Oral glucose tolerance test 
PA   Premature adrenarche 
PAI-1   Plasminogen activator inhibitor-1  
PCOS   Polycystic ovary syndrome 
PP   Premature pubarche 



 
  

SDS   Standard deviation score 
SERKAL Sex reversal, female, with dysgenesis of kidneys, adrenals and lungs 
SF-1   Steroidogenic factor-1 
SHBG   Sex hormone-binding globulin 
SNP   Single nucleotide polymorphism 
SORBS1  Sorbin and SH3 domain containing 1 gene  
SULT2A1  DHEA sulfotransferase 
T   Thymine 
TCF7L2  Transcription factor 7-like 2 
T2DM  Type 2 diabetes mellitus  
UGT2B   Uridine diphospho-glucorunosyltransferase 2B 
Vmax   Maximum velocity of the enzyme catalytic activity 
VNTR   Variable number of tandem repeats  
Δ4-A   Androstenedione 
17OHP   17-hydroxyprogesterone 
3βHSD   3β-hydroxysteroid dehydrogenase 
3’ UTR  3’ untranslated region 
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1 INTRODUCTION 
 

Adrenarche is unique to humans and higher primates in whom the production of adrenal 

androgens follows an age- and gender-dependent pattern (Parker 1999). During fetal 

development, the fetal cortex of the adrenal gland secretes large amounts of androgens which 

act as precursors for the estrogen production in the placenta (Siiteri and MacDonald 1966). 

After birth, the fetal cortex disappears and the levels of adrenal androgens decrease. Adrenal 

androgens stay low until adrenarche, the rise in adrenal androgen levels after the age of 6 yrs, 

preceding the activation of central puberty (de Peretti and Forest 1976, Mesiano and Jaffe 

1997). At puberty, the adrenal androgen levels rise to a higher level in men than in women, and 

dehydroepiandrosterone sulfate (DHEAS) has the highest circulating plasma level of all steroid 

hormones in adults with a slow decline during aging (Rosenfield et al. 1982, Labrie et al. 1997, 

Nafziger et al. 1998). Adrenocorticotropic hormone (ACTH) stimulates adrenal androgen 

secretion, but no change in circulating ACTH levels is seen during adrenarche (Nieschlag et al. 

1973, Apter et al. 1979). It is not known which factors awaken the reticular zone of the adrenal 

cortex to secrete androgens at adrenarche. 

   Premature adrenarche (PA) is defined as the adrenarcheal levels of adrenal androgens 

(DHEAS above 1 µmol/l) in girls before the age of 8 yrs and in boys before the age of 9 yrs, 

resulting in androgenic signs ranging from growth of pubic hair (premature pubarche, PP) and 

axillary hair (Silverman et al. 1952, Thamdrup 1955) to oily hair and skin (Rosenfield et al. 

1982), adult-type sweating and body odor (Voutilainen et al. 1983, Kaplowitz et al. 1986, 

Likitmaskul et al. 1995). PA was long considered a benign variant of pubertal development 

until it was connected in the '90s with adverse metabolic features and a possible risk for ovarian 

hyperandrogenism (Rosenfield 1994, Dimartino-Nardi 1999, Ibáñez et al. 2000a). The 

pathogenesis of PA is considered polygenic, and possible associations have been investigated in 

genes participating in steroidogenesis (Witchel et al. 2001, Petry et al. 2005), androgen action 

(Ibáñez et al. 2003b, Vottero et al. 2006), and in the functions of insulin and insulin-like growth 

factors (IGF) (Ibáñez et al. 2002, Roldan et al. 2007). However, the pathogenesis of PA remains 

largely unknown.   

   Predispoding genetic factors for adrenarche remain to be identified in the human genome. The 

development of genetic analyses made it possible to construct the sequence of the whole human 



  
 14 

genome, also revealing the millions of single nucleotide polymorphisms and other structural 

variants within the genome (International Human Genome Sequencing Consortium 2004). 

Genotype-phenotype associations have been studied, but the mechanisms between genetic 

variants and clinical phenotype are difficult to solve. By searching for associations between 

genetic variants and phenotype, we can gain insight into the mechanisms behind PA. This was 

the aim of the thesis. 
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2 REVIEW OF THE LITERATURE 
 

2.1 ADRENARCHE 

 

2.1.1 Physiology of adrenal androgen production 

 

The adrenal cortex secretes androgens androstenedione (Δ4-A), dehydroepiandrosterone 

(DHEA) and its sulfated form DHEAS in age- and gender-dependent pattern (Parker 1999). 

During the fourth week of gestation, coelomic epithelial cells and underlying mesonephric 

mesenchymal cells migrate to form the adrenogonadal primordium, of which the primitive 

adrenal and gonadal primordial cells separate by the eight week of gestation (Mesiano and Jaffe 

1997). The key regulators of adrenal development are the orphan nuclear receptors DAX-1 

(dosage-sensitive sex reversal, adrenal hypoplasia congenital, critical region on the X-

chromosome, gene-1) and steroidogenic factor-1 (SF-1). Mutations in these transcription factors 

have also been found in patients with adrenal hypoplasia (Muscatelli et al. 1994, Zanaria et al. 

1994, Achermann et al. 1999, Lin et al. 2006). During fetal development, the fetal cortex of the 

adrenal gland secretes huge amounts of adrenal androgens for the placental estrogen production 

(Siiteri and MacDonald 1966). Soon after birth, the fetal cortex regresses by apoptosis and 

adrenal androgen levels decrease, remaining low until the time of adrenarche, the reactivation 

of adrenal androgen production (de Peretti and Forest 1976, Mesiano and Jaffe 1997, Lashansky 

et al. 1991). Adrenarche occurs slightly earlier in girls than in boys (Sizonenko and Paunier 

1975, Ducharme et al. 1976), but DHEAS levels in boys exceed those in girls around the age of 

20 years (Rosenfield et al. 1982). DHEAS has the highest circulating plasma level of all steroid 

hormones in adults. With aging, DHEAS levels decline on average 2% per year from the 

highest levels in the twenties through the sixties (Labrie et al. 1997, Nafziger et al. 1998) 

   Adrenal androgens are considered weak androgens, which can be converted to stronger 

androgens and estrogens by target tissues, and their effects are mediated by nuclear hormone 

receptors. The visible signs of adrenarche include growth of pubic and axillary hair, oily hair, 

comedones, acne, and the development of adult type sweat secretion and body odor in children. 
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Adrenal androgens also participate in growth and bone maturation. As adrenal androgens are 

also neurosteroids (Goodyer et al. 2001), adrenarche may have a role in brain development 

(Suzuki et al. 2004). It has been proposed that adrenarche promotes changes in behavior and 

cognition preparing children for the challenges of puberty (Campbell 2006, Hochberg 2008). 

   Adrenarche results from the formation of continuous innermost layer of adrenal cortex called 

zona reticularis which secretes mainly DHEA and DHEAS (Dhom 1973, Reiter et al. 1977). 

The medullary capsule separating the cortex and medulla of the adrenal gland breaks down, and 

the focal development of zona reticularis starts at the age of 5 yrs. A continuous zone is usually 

present by the age of 8 yrs (Dhom 1973). The first appearance of zona reticularis cells is 

detected at the age of 3 yrs, and some studies have shown a gradual rise in adrenal androgen 

levels already from that age (Palmert et al. 2001, Remer et al. 2005). The outer layers of the 

adrenal cortex, the zona glomerulosa and fasciculata, secrete mineralocorticoids and 

glucocorticoids, respectively. The adrenal medulla secretes catecholamines. The zones of the 

adrenal cortex are formed by migration of undifferentiated cells from the gland periphery under 

the gland capsula toward the medulla. As the cells migrate, they differentiate to have zone 

specific steroidogenic capacities (Kim and Hammer 2007).  

   Like all steroid hormones, also adrenal androgens are produced from cholesterol (Figure 1). 

Cholesterol enters the mitochondria with the assistance of the steroidogenic acute regulatory 

protein (StAR). Within the mitochondria, cholesterol is converted to pregnenolone by the 

cholesterol side chain cleavage enzyme (P450scc). Pregnenolone undergoes 17α-hydroxylation 

by microsomal P450c17, and 17-hydroxypregnenolone is further converted to DHEA by the 

17,20-lyase activity of the same P450c17 enzyme (Miller 2002). Sulfotransferase (SULT2A1) 

catalyzes the sulfonylation of DHEA to DHEAS, which has a more stable plasma level due to 

the longer half-life in blood and less fluctuating secretion (Rosenfeld et al. 1975). DHEAS is 

secreted by the adrenal cortex only and not by the gonads (Nieschlag et al. 1973). 
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Figure 1. Steroidogenesis in the human adrenal cortex. Cholesterol enters the mitochondia 

with assistance of the steroidogenic acute regulatory protein (StAR). The horizontal and vertical 

lines represent enzymes that are expressed in a zone-specific pattern. Arrows indicate the 

direction of the metabolic pathway. P450scc, cholesterol side-chain cleavage enzyme; P450c17, 

17α-hydroxylase/17,20-lyase; SULT2A1, dehydroepiandrosterone sulfotransferase; 3βHSD, 

3β-hydroxysteroid dehydrogenase; P450c21, 21-hydroxylase; P450c11, 11β-hydroxylase/18-

hydroxylase/18-oxidase; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone 

sulfate. Modified from (Miller 1988).  
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The levels of enzymes needed for steroid production directly regulate the secretion of adrenal 

androgens, which cannot be stored as lipid-soluble steroids in the adrenal cortex (Miller 2008). 

P450c17 has both 17α-hydroxylation and 17,20-lyase activities, of which only 17α-

hydroxylation is required for glucocorticoid synthesis, and neither of them is needed for 

mineralocorticoid production (Figure 1). The discrimination between 17α-hydroxylation and 

17,20-lyase activities is regulated by serine phosphorylation of P450c17 (Zhang et al. 1995) and 

the allosteric action of cytochrome b5 (Auchus et al. 1998, Akhtar et al. 2005), both of which act 

to optimize the interaction of P450c17 with its electron donor, P450 oxidoreductase. The 

abundant expression of P450 oxidoreductase and cytochrome b5 increases the 17,20-lyase 

activity in the zona reticularis, whereas the low expression of 3β-hydroxysteroid dehydrogenase 

(3ßHSD), which competes for substrates with P450c17 diverts the steroidogenesis further to the 

production of androgens (Kelnar and Brook 1983, Endoh et al. 1996, Gell et al. 1998, Dardis et 

al. 1999, Suzuki et al. 2000). The activity of SULT2A1 also increases in the zona reticularis by 

the time of adrenarche (Suzuki et al. 2000). In vitro studies on mouse Y-1 adrenocortical cells 

have shown that SF-1 regulates the expression of several steroidogenic genes, e.g. P450scc, 

StAR and 3ßHSD (Parker and Schimmer 1997), whereas DAX-1 represses their expression 

(Zazopoulos et al. 1997, Lalli et al. 1998). 

 

2.1.2 Regulation of adrenarche 

 

Adrenarche precedes gonadarche, i.e., the activation of gonadal hormone secretion, and these 

events are regulated separately (Dhom 1973, Rosenfield et al. 1982, Apter and Vihko 1985). 

Patients with precocious puberty exhibit gonadarche in the absence of adrenarche (Sklar et al. 

1980, Counts et al. 1987), and adrenarche progresses normally despite the treatment aiming at 

the pituitary-gonadal suppression in these children (Wierman et al. 1986, Palmert et al. 2001). 

In addition, patients with gonadal dysgenesis or isolated gonadotropin deficiency have a normal 

onset of adrenarche (Albright et al. 1942, Sizonenko and Paunier 1975, Sklar et al. 1980, 

Counts et al. 1987). The regulation of adrenal androgen production has been summarized in 

simplified form in figure 2. 

   The pituitary gland secretes ACTH, which stimulates adrenal glucocorticoid and androgen 

production in a circadian rhythm (Nieschlag et al. 1973, de Peretti and Forest 1976). Without  
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Figure 2. The regulation of adrenal androgen production from the zona reticularis and 

the target tissues of circulating adrenal androgens. The transcription factors DAX-1 and SF-

1 are essential for the development of the adrenal gland. Genes and environmental factors form 

the basis for the regulation of adrenal androgen production, in which factors such as Wnt4, 

adrenocorticotropic hormone (ACTH), insulin, insulin-like growth factor 1 (IGF-1) and leptin 

participate. The innermost layer of the adrenal cortex, called the zona reticularis, secretes 

adrenal androgens that have effects on e.g. the pilosebaceus unit, bone and brain. 

 

the action of ACTH, a rise in the adrenal androgen secretion cannot happen. The lack of 

adrenarche in the patients with familial glucocorticoid deficiency syndrome due to ACTH 

resistance provides evidence for a significant role of ACTH in the regulation of adrenarche 

(Sizonenko and Paunier 1975, Weber et al. 1997). ACTH mediates the effects on 

steroidogenesis through a membrane receptor called melanocortin-2 receptor (MC2R), the 

activation of which increases intracellular cAMP level, leading to the stimulation of synthesis 

and activity of StAR and the steroidogenic enzymes:P450c17, 3βHSD, SULT2A1 (McAllister 

and Hornsby 1988, McCarthy and Waterman 1988). Besides these effects on steroidogenesis, 
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ACTH is essential for the maintenance and growth of steroidogenic cells in the adrenal cortex 

(Dallman 1984). The hypothalamo-pituitary-adrenal axis regulates its own functions by a long 

feedback; glucocorticoids inhibit the secretion of corticotropin releasing hormone (CRH) in the 

hypothalamus, and this inhibits the secretion of ACTH from pituitary gland (Watts 2005). 

However, there are no significant changes seen in the circulating cortisol and ACTH levels 

during adrenarche (Apter et al. 1979). In addition, DHEA and DHEAS levels are normal for 

both chronological and bone age in most children and adolescents with Cushing's disease 

(Hauffa et al. 1984). It has been proposed that factors like prolactin, estrogens, or CRH could 

modulate the actions of ACTH in the zona reticularis cells (Ibáñez et al. 1999b, Baquedano et 

al. 2007), but no convincing mechanisms for these hypotheses have been found. Intra-adrenal 

factors such as the sympatho-adrenal system and cytokines have also been suggested to 

participate in the initiation of adrenarche (Ehrhart-Bornstein et al. 1998, l'Allemand and Biason-

Lauber 2000). 

   An interaction between adrenal androgens and serum cytokines, IGF-1, and insulin has been 

postulated in adrenarche (Belgorosky et al. 2009), as all these factors have gender-dependent 

changes during puberty. In cultured fetal adrenocortical cells, IGF-2 is expressed in response to 

ACTH, and it promotes the production of cortisol and DHEAS by increasing the expression of 

P450scc and P450c17 (Voutilainen and Miller 1987, Mesiano et al. 1997), whereas IGF-1 

increases the expression of P450c17 and 3βHSD in cultured adult adrenocortical cells 

(l'Allemand et al. 1996, Kristiansen et al. 1997). Serum DHEAS levels correlate positively with 

serum IGF-1 in prepubertal girls, whereas no correlation has been found in girls during puberty 

or in boys before and during puberty (Guercio et al. 2002, Guercio et al. 2003). These results 

have been suggested to indicate sexual dimorphism in the regulation of adrenarche, in which 

IGF-1 may regulate adrenal progenitor cell proliferation and migration (Baquedano et al. 2005). 

On the other hand, insulin resistance and compensating hyperinsulinemia occur during puberty 

(Moran et al. 1999), and plasma insulin concentrations correlate positively with IGF-1 levels 

(Bloch et al. 1987). Plasma insulin levels also correlate with serum DHEAS levels in pubertal 

children, but not in prepubertal children with adrenarche (Bloch et al. 1987, Smith et al. 1989). 

Decreased insulin sensitivity is related to serum growth hormone concentrations and body fat 

during puberty (Amiel et al. 1986, Travers et al. 1995, Moran et al. 1999). The possible role of 
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insulin sensitivity and BMI in adrenarche is not straightforward and may be gender-dependent 

(Guercio et al. 2002, Guercio et al. 2003).  

   Obese children have elevated adrenal androgen levels compared to lean children (Denzer et 

al. 2007), and body weight correlates positively to adrenal androgen levels in normal-weighted 

prepubertal children (Ong et al. 2004). The timing of adrenarche has been connected with the 

most rapid rise in BMI during longitudinal follow-up (Remer and Manz 1999). Leptin 

stimulates 17,20-lyase activity of P450c17 in vitro, possibly by affecting on the 

phosphorylation of the enzyme (Biason-Lauber et al. 2000), but no relationship between leptin 

and DHEAS levels are found in boys during puberty (Mantzoros et al. 1997). In contrary to the 

current body weight, adrenal androgen levels are inversely related to birth weight in both boys 

and girls. It has been suggested that higher adrenal androgen secretion could contribute to the 

links between early catch-up growth and adult disease risks, possibly by enhancing insulin 

resistance and central fat deposition (Ong et al. 2004).   

   Many studies have indicated a role of genetic regulation in adrenal androgen secretion. A 

significant genetic component has been determined with a heritability of 58% in the weight-

adjusted adrenal androgen excretion rate in a study on monozygotic and dizygotic twins with 

the mean ages of 11.3 and 8.7 yrs, respectively. Environmental factors account for 17% of the 

variation in the adrenal androgen production, and their role may be more important in girls than 

in boys (Pratt et al. 1994). Besides the age- and gender-dependent variation of adrenal androgen 

levels, there is a significant genetic component in the residual variation of serum DHEAS levels 

in adults (Rotter et al. 1985, Yildiz et al. 2006). In addition, there is significant heterogeneity in 

the secretion of DHEA in response to ACTH, whereas there is little inter-subject variability in 

the cortisol secretion (Azziz et al. 2001).  

   It may be speculated that the expression patterns of many genes are different between the 

zona fasciculata and reticularis. The first microarray study on 750 genes found 17 genes whose 

expression differed significantly between the two zones. Several genes that are expressed at 

higher levels in the zona reticularis encode components of the major histocompatibility 

complex and enzymes involved in peroxide metabolism. The same study confirmed earlier 

results: 3βHSD is expressed at a very low level in the zona reticularis, whereas the expression 

of SULT2A1 is higher in the zona reticularis than in the zona fasciculata (Wang et al. 2001). In 

comparison of the adult adrenal cortex with the fetal cortex, the microarray study on thousands 
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of transcripts showed higher expression of IGF-1 and 3βHSD in the adult cortex, in addition to 

many genes with an unknown role in the adrenocortical function (Rainey et al. 2001). The 

search for factors regulating the expression of steroidogenic enzymes is continuing. For 

example, transcription factors such as the orphan nuclear receptor called estrogen related-

receptor α, SF-1 and GATA-6 have been found to enhance the expression of SULT2A1 (Saner 

et al. 2005, Seely et al. 2005). 

   From an evolutionary perspective, genes must have a central role in the regulation of 

adrenarche. Adrenarche is a recent event in human evolution, as only the chimpanzee exhibits 

adrenarche comparable to that of man (Cutler et al. 1978). Rhesus macaques experience 

morphological changes parallel to fetal zone regression during the first three months of life, 

resulting in the differentiation of the innermost zona reticularis which lacks 3ßHSD, but 

exhibits increased cytochrome b5 expression (Nguyen et al. 2008). Interestingly, female rhesus 

macaques exposed in utero to exogenous androgen excess developed features of 

hyperandrogenism and metabolic disorders that are similar to polycystic ovary syndrome 

(PCOS) in humans (Abbott et al. 2005). Variation in the CYP17 gene encoding P450c17 has 

been examined as an explanation of the evolution of adrenarche in higher primates, but such 

variation does not exist (Arlt et al. 2002). The lack of appropriate animal models has hampered 

the research on the regulation of adrenarche (Abbott and Bird 2009).  

 

2.2 PREMATURE ADRENARCHE 

 

2.2.1 Definition, clinical features and long-term sequelae 

 

The clinical phenotype varies in subjects with PA. The androgenic signs include premature 

pubarche and axillary hair (Silverman et al. 1952, Thamdrup 1955), oily hair and skin 

(Rosenfield et al. 1982), adult-type sweating and body odor (Voutilainen et al. 1983, Kaplowitz 

et al. 1986, Likitmaskul et al. 1995) (Table 1). Most studies have shown only transient effects 

of PA on growth and maturity. The growth of children with PA may be accelerated, which can 

be seen already before other androgenic signs (Silverman et al. 1952, Likitmaskul et al. 1995, 

Pere et al. 1995). The bone age is often slightly advanced (Silverman et al. 1952, Ibáñez et al. 
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1992, Balducci et al. 1994, Likitmaskul et al. 1995), and PA subjects have higher bone mineral 

content and density than controls when adjusted for age, weight, height, and fat mass (Sopher et 

al. 2001). The final height of PA subjects is not significantly reduced, however (Pere et al. 

1995), and it may be even above midparental height (Ibáñez et al. 1992). PA is followed by 

normal-timed gonadarche (Silverman et al. 1952, Ibáñez et al. 1992), or PA girls may reach 

menarche somewhat earlier than the maternal and population menarcheal age (Pere et al. 1995).  

 

Table 1. Clinical features of premature adrenarche. 
 

Symptoms Growth of pubic or axillary hair 

Oily hair 

Comedones and acne 

Adult-type sweating and body odor 

Age Girls < 8 yrs and boys < 9 yrs 

Findings Adrenal androgens elevated for chronological age  

     e.g. serum DHEAS ≥ 1 µmol/l 

Growth may be accelerated 

Bone age may be slightly advanced 

Prevalence 0.8 – 2.8% 

Differential diagnosis Adrenal tumors 

Steroidogenic enzyme defects 

Precocious central puberty 

  

   PA is caused by the early maturation of zona reticularis resulting in increased adrenal 

androgen secretion for chronological age (Dhom 1973). The adrenarcheal minimum level of 

DHEAS has been set at 1 µmol/l (40 µg/dl) (Rosenfield et al. 1982). However, pubic hair 

appears at variable DHEAS levels above that and even at lower levels, while the other adrenal 

androgens may be elevated (Rosenfield et al. 1982, Kaplowitz et al. 1986, Lashansky et al. 

1991, Likitmaskul et al. 1995). Some investigators have defined exaggerated adrenarche by the 

basal or ACTH-stimulated adrenal androgen levels above the normal adrenarcheal levels 

(Granoff et al. 1985, Lucky et al. 1986, Likitmaskul et al. 1995, Rosenfield 2007).  
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   The incidence of premature adrenarche is unknown. It can be assumed that many children 

with PA do not visit the doctor or child welfare clinics. The prevalence of pubic hair before the 

age of 8 yrs is 2.8% in white American girls (Herman-Giddens et al. 1997), whereas it is only 

0.8% in Lithuanian girls (Zukauskaite et al. 2005). The prevalence of PA is higher among girls 

than boys with a ratio around 10:1 (Silverman et al. 1952, Thamdrup 1955). The prevalence 

varies in different populations, and PA is more common in black people (Kaplowitz et al. 

1986). African-Americans also enter puberty earlier than white children. Black girls reach 

Tanner stage II for breast development at the mean age of 8.9 yrs, compared with white girls at 

10.0 yrs, and boys reach Tanner stage 2 for genital growth at the mean age of 9.5 and 10.1 yrs, 

respectively. Similarly, the mean ages at stage II for pubic hair development in Africa-

American and white girls are 8.8 yrs and 10.5 yrs, respectively, and in boys, 11.2 yrs and 12.0 

yrs (Herman-Giddens et al. 1997, Herman-Giddens et al. 2001).  

   In the differential diagnosis of PA, adrenal tumors, steroidogenic enzyme defects and central 

precocious puberty are to be kept in mind (Silverman et al. 1952). The first papers describing 

PA reported a high proportion of PA children having cerebral dysfunction (Silverman et al. 

1952, Thamdrup 1955, Rosenfield et al. 1982), while later reports have concentrated on 

otherwise healthy children. Children with moderate to severe cerebral palsy (CP) have earlier 

pubarche (at a mean age of 8.2 yrs) than healthy girls (10.5 yrs), and to a lesser extent this can 

also be seen in boys (10.7 yrs vs. 11.9 yrs, respectively). Advanced sexual maturation associates 

with high body fat in girls with CP, but with low body fat in boys with CP (Worley et al. 2002). 

   In last decades, PA has been connected with adverse features. Children with PA have been 

found to have hyperinsulinemia, alterations in the IGF system, an unfavorable lipid profile and 

higher BMI. Lean Catalan girls with PP have higher mean serum insulin values during an oral 

glucose tolerance test (OGTT) before and throughout puberty than controls. Furthermore, 

increased IGF-1 levels and decreased SHBG and IGF binding protein 1 (IGFBP-1) levels have 

been reported in most of these girls (Ibáñez et al. 1997a). A study on Caribbean Hispanic and 

African-American girls with PA showed nearly half of them to have reduced insulin sensitivity 

in response to an intravenous glucose tolerance test with tolbutamide. ACTH-stimulated 

androgen levels were higher in those girls with reduced insulin sensitivity, most of whom were 

also obese and had acanthosis nigricans (Vuguin et al. 1999). In line with these two studies, 

predominantly obese Hispanic prepubertal PA girls had elevated free IGF-1 levels, that 
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correlate with adrenal androgens in the insulin-resistant subset of these girls (Silfen et al. 

2002a). Many studies have indicated clearly increased BMI in PA children in comparison to 

age-matched healthy controls (Vuguin et al. 1999, Silfen et al. 2002a, Charkaluk et al. 2004), 

and a study on normal weighted Catalan PP girls has shown increased central fat mass in 

comparison to selected controls with similar BMI (Ibáñez et al. 1998a, Ibáñez et al. 2003a). 

Independently of BMI, Catalan PP girls had higher triglycerides levels and higher ratio of low-

density lipoprotein (LDL) to high-density lipoprotein (HDL) (Ibáñez et al. 1998a). Other 

studies, however, have failed to find significant differences in the lipid pattern (Meas et al. 

2002). Furthermore, prepubertal PA children have differences in their psychological and 

cognitive functions compared with children who have normal-onset adrenarche, which suggest 

them to be more vulnerable to various psychopathologies (Dorn et al. 1999).  

   Already in the 1960s, PA was described in the literature to precede PCOS (Wilkins 1965). 

This concept was supported by studies on postmenarcheal PP girls with oligomenorrhea and 

increased incidence of functional ovarian hyperandrogenism (FOH) determined by higher 

gonadotropin-releasing hormone (GnRH) agonist-stimulated 17-hydroxyprogesterone (17OHP) 

levels (Ibáñez et al. 1993). In addition, increased 17-hydroxypregnenolone and DHEA 

responses to GnRH agonist stimulation have been observed during pubertal development in 

Catalan PP girls, suggesting increased ovarian activity of P450c17 (Ibáñez et al. 1997b). On the 

other hand, increased 17-hydroxypregnenolone response to ACTH stimulation has been found 

in premenarcheal Caribbean Hispanic and African American girls with PA (Banerjee et al. 

1998), as well as in a small group of white and black American PP girls, in whom no difference 

in the response to GnRH agonist stimulation was observed (Mathew et al. 2002). The results 

have been interpreted to mean that PA increases the risk for PCOS, suggesting common 

pathogenic mechanisms (Kousta 2006, Witchel 2006, Ibáñez et al. 2009). In a heterogeneous 

group of PA girls, exaggerated adrenarche was suggested to carry an increased risk for PCOS, 

although the risk may vary with the clinical and hormonal characteristics of the particular study 

population (Rosenfield 2007). No large longitudinal studies with efficient power have been 

conducted to confirm the theory that PA precedes PCOS. 

   Endocrine programming during fetal life may play a role in the regulation of adrenarche. 

There is an inverse correlation between birth weight and prepubertal adrenal androgen levels in 

healthy children, whereby the catch-up growth is correlated with serum adrenal androgens 
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(Francois and de Zegher 1997, Ong et al. 2004). The mean birth weight of Catalan PP girls has 

been reported to be about 1 SDS lower than in healthy controls, and the difference is even 

larger in postmenarcheal PP girls with and without FOH (Ibáñez et al. 1998b). A retrospective 

study on Australian PA girls revealed an increased proportion of subjects with a history of 

prematurity or being born small for gestational age (SGA) (Neville and Walker 2005). Studies 

on SGA children show higher DHEAS levels at the age of 12 yrs and after menarche (Ibáñez et 

al. 1999c, Tenhola et al. 2002). A continuum of adverse development rabging from prenatal 

programming to premature adrenarche and later on to PCOS has been postulated (van 

Weissenbruch 2007, Ibáñez et al. 2009). However, a French study on post-menarcheal PP girls 

failed to find a link between PP and either low birth weight or insulin resistance, although a 

higher risk for hirsutism and modest hyperandrogenism in girls with PP was shown (Meas et al. 

2002). 

   The incidence of PA is lower in boys, and the clinical outcomes seem to differ in comparison 

to girls with PA. A small study on Hispanic boys with PP did not find any difference in insulin 

sensitivity, IGF-1 or SHBG levels or in birth weight between PP boys and their bone age- and 

pubertal stage-matched controls before and during puberty (Potau et al. 1999). However, a 

small study on an ethnically heterogeneous group of prepubertal boys found higher IGF-1, but 

lower SHBG levels and decreased insulin sensitivity in PA boys independent of BMI (Denburg 

et al. 2002). 

   It has been debated whether PA children should be followed routinely into adulthood and 

would they benefit from therapeutic interventions (Rosenfield 2007, Ibáñez et al. 2009). PA 

children have some metabolic characteristics that imply a higher risk for the impaired glucose 

metabolism and cardiovascular complications. Furthermore, PA girls may be at a higher risk for 

developing PCOS and infertility. Both anti-androgen flutamide and insulin-sensitizing 

metformin have been used with success in preliminary studies on PA girls during and after 

puberty to reduce androgen levels, fat mass, hyperinsulinemia and cholesterol levels, and 

further improve the features of FOH (Ibáñez et al. 2000b, Ibáñez et al. 2000c, Ibáñez et al. 

2008). There are no studies on the benefits of interventions such as exercise and diet in children 

with PA, which could be essential in preventing the increase of BMI and the worsening of 

glucose metabolism.  
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2.3 GENETIC VARIATION 

 

The genetic code is stored in genomes, which vary between species and between individuals, 

and are differently regulated from cell to cell. Resolving the whole genome sequences of 

different species has made it possible to determine how evolution has shaped the human 

genome. Determining the genetic variation between individuals has opened up the possibility to 

associate genotype with phenotype. Finding out the mechanisms behind the regulation of gene 

expression is opening our eyes to the complexity of gene expression in different organs, tissues 

and cells at different time points in the lifespan in response to different stimuli from the inner 

and outer world. 

 

2.3.1 Variation of the human genome 

 

The structure of the human genome offers the platform for genetic variation. The size of the 

human genome reaches three billion base pairs, and only around one percent of it represents the 

22500 genes coding proteins (International Human Genome Sequencing Consortium 2004). 

When the sequence of nearly the whole human genome was reported for the first time in 2001, 

a surprising amount of non-coding elements was revealed (Lander et al. 2001, Venter et al. 

2001). The factors that have separated humans from other eukaryotes, multicellular organisms 

and vertebrates lie not in the number of base pairs or in the number of protein coding genes, but 

in the non-coding sequences, including introns, regulatory elements and transposable elements. 

Segmental duplications, gene duplications, recombinations and mutations during replication 

have been driving forces in genetic evolution.  

   Genetic variation makes every human genome individual, leading to an ever-different 

phenotype. The human genome project and the sequencing of three individual human genomes 

have revealed up to four million single nucleotide polymorphisms (SNPs) and a huge amount of 

structural variants (Levy et al. 2007, Bentley et al. 2008, Wheeler et al. 2008). A SNP is defined 

as a change of one nucleotide to another of the three possibilities in at least 1% of all humans. 

Common SNPs have a minor allele frequency (MAF) of more than 5%. The density of SNPs 

varies in the sequence. On average, human genome has a SNP in every 1–1.9 kb 

(Sachidanandam et al. 2001, Bentley et al. 2008). Structural variation covers insertions, 
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deletions, inversions, duplications and translocations, encompassing copy-number variants. 

Structural variants range from small insertion/deletion events to segmental duplications, and 

from more than one base pair to a few million base pairs in length. An integrated map of genetic 

variation for eight human genomes defines the location of 1695 sites of structural variation (> 6 

kb in length) and 796273 small insertion/deletions (1-100 bp in size) (Kidd et al. 2008). 

Structural genetic variation covers a much larger proportion of the whole human genome than 

SNPs. SNPs result in different amino acids of encoded proteins, different regulation of gene 

expression and different splicing sites for RNA processing, or they may have no effect (Hull et 

al. 2007). Structural genetic variation can confer phenotypes through many mechanisms, 

including gene dosage and unmasking functional SNPs on the remaining allele (Human 

Genome Structural Variation Working Group et al. 2007). The goal of mapping all the sequence 

variation in the human genome is the understanding of the genotype-phenotype associations, the 

mechanisms of diseases and the individual responses to treatments. 

   Candidate gene analyses have been used to determine a possible association between the 

phenotype or disease and variation in a gene that is important for the condition. However, many 

reported associations have never been replicated after the first reports (Lohmueller et al. 2003). 

The international HapMap project was established in 2003 to determine the amount and linkage 

of common human sequence variation (International HapMap Consortium 2003). Since then, 

most of the SNPs have been described, and information on linkage disequilibrium patterns of 

the SNPs has been collected in the public databases. Tagging SNPs are used to locate genetic 

variation behind complex traits in genome wide association studies (GWA), which have 

successfully discovered loci and genes that could have never been suspected to be associated 

with disease when using the candidate gene approach based on the biochemical and molecular 

knowledge of the day. Population isolates, like the Finns, have higher linkage disequilibrium 

with less variation in the genome between subjects, offering advantages for GWA studies on 

complex traits (Varilo and Peltonen 2004). New biochemical and bioinformatics methods are 

needed not only to determine more precisely the biochemical basis of mechanisms between 

genetic variation and molecular networks, but also to evaluate gene-environment 

interconnections. 
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2.3.2 Variation in gene expression 

 

Every somatic cell has the same genome with all the variants in an individual combination 

characteristic in each human being. Gene expression is regulated in every cell in a tissue-

specific manner. Thus, genetic variants may have different effects in different cells based on the 

cell-specific regulation. 

 All the steps of gene expression are regulated by multiple mechanisms (Orphanides and 

Reinberg 2002). Gene expression begins with chromatin structure modifications, enabling 

transcription initiation and ends with posttranslational modifications of encoded proteins. 

Humans have around 3000 transcription factors that participate in the regulation of transcription 

and interact with each other by silencing and enhancing the transcription. The promoter regions 

for the binding of transcription factors may be large and located far from the coding exons 

(Levine and Tjian 2003). For example, steroid hormones bind to nuclear receptors, and these 

complexes works as transcription factors by binding with DNA response elements and altering 

the transcription rate of the target genes (Perissi and Rosenfeld 2005). Transcribed mRNA is 

processed before translation, introns are spliced out, and alternative splicing sites may be used 

to get different proteins. At this stage, microRNA molecules can silence gene expression by 

degradation of mRNA molecules.  

   In addition, epigenetics involve heritable mechanisms that regulate gene expression. 

Epigenetic mechanisms are not stored in the genomic sequence, but in the chromatin structures 

and histone modifications (Bjornsson et al. 2004). X-chromosome inactivation involves 

epigenetic mechanisms that mostly silence one of the two X-chromosomes into transcriptionally 

inactive highly condensed heterochromatin in each female cell to compensate for gene dosage. 

X-inactivation occurs shortly after the implantation of female embryos or during the induction 

of cell differentiation, and the maintenance of stable X-inactivation requires synergistic actions 

of several epigenetic mechanisms: coating of the X-chromosome by Xist RNA, DNA 

methylation and histone modifications (Heard and Disteche 2006).   

   Interaction of promoter region, genes, microRNAs, chromatin remodeling and other factors 

form complex networks (Phillips 2008). We are still at the beginning on our way to understand 

the genetic regulation of complex traits and polygenic diseases. 
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2.4 GENES IN PREMATURE ADRENARCHE 

 

The pathogenesis of PA was discussed in the literature before physiological adrenarche was 

described. It is unequivocal nowadays that premature adrenarche results from the early 

development of the zona reticularis, secreting increased amounts of androgens for the 

chronological age (Silverman et al. 1952, Thamdrup 1955, Conly et al. 1967). Like the 

regulation of physiological adrenarche, the pathogenesis of premature adrenarche remains 

obscure. Factors such as obesity, hyperinsulinemia and increased IGF-1 levels may participate 

in the regulation of PA, and the process may begin with prenatal programming.  

   Genes have been demonstrated to have an essential role in PA, with polygenic effects on 

heterogeneous phenotypes. A linkage analysis study on three families with either PP or 

adolescent hyperandrogenism found difficulties in classifying family members as affected or 

unaffected, and ended with conclusions that the condition is multifactorial, with several genes 

contributing to the condition and distinct susceptibility genes may be present in various families 

(Sanders et al. 2002). Several candidate gene studies have searched for susceptibility variants in 

genes involved in steroidogenesis, androgen action and metabolism (Table 2).  

 

2.4.1 Genes in steroidogenesis and androgen action 

 

The genes encoding steroidogenic enzymes have been tempting targets as candidates for the 

genetic regulation of PA. Defects in CYP21 and CYP11 encoding P450c21 and P450c11, and in 

3βHSD can cause a PA-like condition with variable signs of virilization (Marui et al. 2000). 

Before the development of sequencing methods, enzyme activities were calculated from 

responses to ACTH stimulation, and many more defects in steroidogenesis were found than 

could be confirmed by sequencing the coding regions of CYP21 and 3βHSD later on (August et 

al. 1975, Morris et al. 1989, Oberfield et al. 1990, del Balzo et al. 1992, Hawkins et al. 1992, 

Siegel et al. 1992, Balducci et al. 1994, Chang et al. 1995, Sakkal-Alkaddour et al. 1996). Non-

classical congenital adrenal hyperplasia (CAH) due to mutations in CYP21 and 3βHSD can be 

ruled out in PA children by measurements of basal 17OHP and 17-hydroxypregnenolone levels, 

respectively, and if those are moderately elevated, by performing an ACTH stimulation test 

(Leite et al. 1991, Likitmaskul et al. 1995, Mermejo et al. 2005). The frequency of CYP21 
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mutations leading to non-classical CAH varies between populations, and is relatively high in 

Hispanics and Italians (Speiser et al. 1985). In Finland, non-classical CAH due to CYP21 

mutations is rare (Jääskeläinen et al. 1997). 

   All the polymorphisms and mutations reported in children with PA have been shown in Table 

2. Heterozygote carriers of CYP21 mutations have been reported with an increased frequency 

varying from 35% to 37.5% in PA subjects of American and Hellenic origin, whereas no 

increased frequency has been reported in Catalan PP girls. However, no clinical parameter has 

been linked to the heterozygosity of CYP21 mutations in subjects with PA (Dacou-Voutetakis 

and Dracopoulou 1999, Witchel et al. 2001, Potau et al. 2002). Heterozygous carriers of 3βHSD 

mutations have been found in 7.5% of the American PA children, but the mutations did not 

associate with the phenotype, either. Forty two % of these American PA children had mutations 

in either or both of the CYP21 and 3βHSD genes, whereas only 6.6% of a sample of women 

without PA had a variant in these genes. Surprisingly, five of the six PA boys were 

heterozygous carriers of CYP21 mutations (Witchel et al. 2001).  

   Adrenal steroids are synthesized in the zona reticularis, but peripheral target tissues 

metabolize them. DHEAS can be converted back to DHEA and further to Δ4-A, testosterone 

and dihydrotestosterone (DHT), and from Δ4-A to estrogens. 17β-Hydroxysteroid 

dehydrogenase (HSD17B5) catalyzes reactions including the conversion of Δ4-A to 

testosterone and DHEA to androstenediol. No HSD17B5 genotype was associated with PP or 

testosterone levels, when one SNP in the promoter region of HSD17B5 and three exonic SNPs 

were analyzed (Petry et al. 2007). CYP19 encodes aromatase enzyme that catalyzes the 

conversion of androgens to estrogens. The genotype distribution is different according to 

SNP50 in the coding region of CYP19 between Catalan PP girls and controls. The major variant 

homozygote A/A is more frequent in the PP girls, in whom the A/A genotype is associated with 

higher testosterone and DHEAS levels and decreased insulin sensitivity when adjusted for 

pubertal stage (Petry et al. 2005). However, the haplotype with G allele in the SNP50 was 

associated with an increased probability of PP and further development of FOH in the 

haplotype analysis that was based on four tagging SNPs, suggesting that another variant in the 

haplotype may be the causal variant (Petry et al. 2005). In the distal promoter region of CYP19, 

SNP43 was associated with testosterone levels in the same Catalan cohort, but no genotype was 

associated with an increased risk for PP (Petry et al. 2006). Increased 5α-reductase and 11β-
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hydroxysteroid dehydrogenase activities could influence adrenal androgen levels in target 

tissues by producing DHT from testosterone and by reducing the conversion of cortisol to 

inactive  cortisone, respectively, but no differences in their activities based on urinary steroid 

metabolites have been observed in prepubertal PA girls (Silfen et al. 2002b). Glucuronidation 

by the UDP-glucuronyltransferase 2B (UGT2B) is one mechanism through which androgens 

are inactivated, but no differences have been found between PP children and healthy controls in 

the allele frequencies of UGT2B variant associated with lower Vmax of the enzyme (Tomboc and 

Witchel 2003). Recently, Noordam et al. identified heterozygous inactivating mutations in the 

gene encoding human 3’-phosphoadenosine-5’-phosphosulfate (PAPS) synthase 2 in a girl with 

PP, hyperandrogenic anovulation, very low DHEAS levels, and increased androstenedione and 

testosterone levels. PAPS is required for the catalytic activity of SULT2A1 that converts DHEA 

to DHEAS, and the observations on the patient highlighted the crucial role of DHEA sulfation 

as a gatekeeper to human androgen synthesis (Noordam et al. 2009). 

   Increased sensitivity of hair follicles to adrenal androgens has been postulated as a possible 

pathogenic mechanism for PA since Silverman et al. reported in the first paper on PA that PA 

subjects have variable levels of adrenal androgens, overlapping with those in normal children 

(Silverman et al. 1952). The androgen receptor gene (AR) contains a highly polymorphic region 

with a variable number of CAG repeats (CAGn) encoding a polyglutamine tract, the length of 

which has an inverse relationship with the transcriptional activity of AR (Chang et al. 1988, 

Lubahn et al. 1988, Chamberlain et al. 1994, Beilin et al. 2000). Two studies have demonstrated 

that Mediterranean girls with PP have a mean CAGn about one repeat shorter than healthy 

controls, indicating that they have more active ARs (Ibáñez et al. 2003b, Vottero et al. 2006). In 

addition, the shorter AR gene CAGn has been associated with an increased risk of subsequent 

FOH in the Catalan PP girls (Ibáñez et al. 2003b). Vottero et al. studied AR gene methylation 

and found that the methylation pattern in the pubic hairs of Italian prepubertal PP girls was 

similar to girls with Tanner stage II (Vottero et al. 2006), but the role of AR gene methylation in 

the receptor activation and androgen sensitivity has not been examined in more detail. 
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2.4.2 Genes in metabolism 

 

Children with PA have hyperinsulinemia, higher BMI and an impaired lipid profile, and their 

first-degree relatives often have cardiovascular risk factors. The parents of Catalan PP girls 

have an increased prevalence of type 2 diabetes mellitus (T2DM) and impaired glucose 

tolerance accompanied with an unfavorable lipid profile, compared with the overall prevalence 

of T2DM and impaired glucose tolerance in Catalonia. Furthermore, hyperandrogenism and 

gestational diabetes mellitus are frequent among the mothers of PA girls (Ibáñez et al. 1999a). 

Interesting theories about the connection between hyperinsulinemia and hyperandrogenemia 

suggest that hyperinsulinemia may precipitate hyperandrogenemia in vulnerable individuals by 

unmasking latent abnormalities in the regulation of steroidogenesis, or it may be a marker of a 

more fundamental abnormality that affects multiple systems (Rosenfield 1996). 

   Genetic variation in several genes participating in insulin-IGF signaling or body weight 

regulation has been studied mainly in two cohorts of PA children: Catalan PP girls during and 

after puberty, and American PP girls and boys. Variation has been explored in genes encoding 

proteins at various steps of insulin-IGF-signaling: insulin, insulin receptor substrate-1 (IRS-1), 

sorbin and SH3-domain-containing protein (SORBS1) involved in insulin-mediated glucose 

uptake, and type 1 IGF receptor (IGF-1R). Genetic variation associating with insulin resistance 

and higher BMI has been studied in genes encoding plasminogen activator inhibitor-1 (PAI-1), 

glutamate decarboxylase 2 (GAD2), glucocorticoid receptor, and β3-adrenergic receptor and 

melanocortin-4 receptor (Table 2). A polymorphism in IGF-1R has a different genotype 

distribution between PA children and controls. Variants in the insulin gene and IRS-1 have been 

associated with differences in the PA phenotype, but variation in SORBS1 has not been 

associated with PA or phenotype of PA (Ibáñez et al. 2001, Witchel et al. 2001, Ibáñez et al. 

2002, Tomboc and Witchel 2003, Roldan et al. 2007). 

   The minor variant G at SNP E1013E in IGF-1R has been associated with higher circulating 

IGF-1 levels (Bonafe et al. 2003). In PP children, the frequency of this minor variant is 

increased (Roldan et al. 2007). The variant does not relate to clinical measures, however, 

although IGF-1 was not measured in the study (Roldan et al. 2007). Interestingly, all six PP 

boys studied were either heterozygotes or homozygotes for the minor variant at SNP E1013E 

(Roldan et al. 2007).  
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   A variable number of tandem repeats (VNTR) in the insulin gene relates to the transcription 

levels of the insulin gene (Le Stunff et al. 2000). In Catalan PP girls, the class I genotype of 

VNTR has been associated with lower birth weight and reduced insulin sensitivity in agreement 

with previous studies, but there was no difference in the genotype distribution between PP girls 

and age- and BMI-matched controls. VNTR class I allele and low birth weight had additive 

effects on hyperinsulinemia and dyslipidemia in these PP girls (Ibáñez et al. 2001).  

   The minor variant at G927R of IRS-1 impairs insulin signaling (Almind et al. 1993). Among 

the Catalan PP girls heterozygous for the minor variant of G927R, SHBG concentrations were 

lower than in those homozygous for the major variant. The frequency of the minor variant was 

twice as high in PP girls who later developed FOH as in healthy control girls, although IRS-1 

genotype was not a significant predictor for the development of FOH in the regression model 

with significant effects of age, insulin, LDL cholesterol and IGFBP-1 levels (Ibáñez et al. 

2002). In the American PP cohort, the G927R variant in IRS-1 and T228A at SORBS1 have not 

shown significantly different genotype distributions from controls, nor have there been 

associations with clinical parameters (Witchel et al. 2001, Tomboc and Witchel 2003).  

   The 4G/5G insertion/deletion polymorphism in the promoter of PAI-1 has been related to 

circulating PAI-I levels and inconsistently with insulin resistance and cardiovascular disease 

(Eriksson et al. 1995, Panahloo et al. 1995, Viitanen et al. 2001). The genotype distribution of 

the 4G/5G polymorphism did not differ between Catalan PP girls and controls. In post-

menarcheal PP and control girls, the 5G allele was associated with insulin resistance (Lopez-

Bermejo et al. 2007). The minor variant of rs2236418 in the promotor of GAD2 was associated 

with morbid obesity in the initial case-control study of 1200 subjects (Boutin et al. 2003), but 

further studies have not been able to replicate the result (Swarbrick et al. 2005, Groves et al. 

2006). In the American PP girls, the minor G variant was associated with an increased BMI at 

both initial and follow-up visits, but the genotype distribution of PP girls was not compared 

with that of healthy controls (Witchel et al. 2009). Genetic variations in the genes encoding the 

glucocorticoid receptor, β3-adrenergic receptor, and melanocortin-4 receptor have not shown an 

association with PA (Table 2) (Witchel et al. 2001, Martin et al. 2004).  

   Taken together, the minor variants of SNP E1013E at IGF-1R and G927R at IRS-1 may 

underlie PP by increasing IGF-1 levels and decreasing SHBG levels, respectively, whereas the 
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VNTR genotype of insulin gene may provide a link between low birth weight and 

cardiovascular risk factors in PP girls.  

 

2.4.3 Candidate genes in the current study 

 

The hypotheses for associations of PA with following candidate genes were based on the 

knowledge of PA and earlier described genetic variants in these genes (Figure 3). 

 

2.4.3.1 MC2R 

 

ACTH has an essential role in the regulation of adrenarche (Weber et al. 1997). Genetic factors 

may explain heterogeneity in adrenal secretion of DHEA in response to ACTH  (Azziz et al. 

2001). The ACTH receptor is a G protein-coupled membrane receptor that belongs to the 

melanocortin receptor family and is called the melanocortin-2 receptor (MC2R) (Buckley and 

Ramachandran 1981, Gantz and Fong 2003). In the human MC2R gene, one intron separates the 

coding exon 2 from the upstream untranslated exon 1 (Naville et al. 1997). A SNP has been 

described within the transcription initiation site at position – 2 bp, altering the consensus 

sequence from T to C (MC2R -2 T>C). The minor variant of MC2R -2 T>C results in lower 

promoter activity in vitro due to changes in transcription initiation, and it is associated with 

lower cortisol and DHEA secretion in response to ACTH stimulation in vivo (Slawik et al. 

2004, Reisch et al. 2005).  

 

2.4.3.2 AR 

 

The development of pubic hair is dependent on the interplay between the plasma androgen level 

and other biologic factors that affect the response of the pilosebaceous unit to androgens 

(Rosenfield 1994). One of the suggested biologic factors is the androgen receptor (AR), through 

which the androgens mediate their effects. The ligand-bound AR binds to regulatory DNA 

elements in the promoter region of target genes to influence the transcription rate through 

interaction with cofactors and transcription machinery (Perissi and Rosenfeld 2005). The length 
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of the CAGn repeat in exon 1 of the X-chromosomal AR gene has an inverse relationship with 

the transcriptional activity of AR (Chamberlain et al. 1994, Beilin et al. 2000). Previous studies 

have demonstrated that girls with PP have a shorter mean CAG repeat in the AR than healthy 

controls (Ibáñez et al. 2003b, Vottero et al. 2006), but none of these studies has taken X-

chromosome inactivation into account. Methylation of HpaII sites close to the AR gene CAGn 

region correlates with X-inactivation (Allen et al. 1992).  

 

 
Figure 3. The positions of the candidate genes in the regulation of adrenarche. The 

melanocortin 2-type receptor (MCR2R) mediates the effects of adrenocorticotropin (ACTH). 

The androgen receptor (AR) mediates the effects of adrenal androgens on target tissues. Low-

density liporotein receptor-related protein 5 (LRP5) and transcription factor 7-like 2 (TCF7L2) 

participate in Wnt signaling. The fat mass and obesity associated (FTO) gene has been 

connected with obesity, and body weight is correlated with increased circulating adrenal 

androgen levels. 
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2.4.3.3 LRP5 and TCF7L2 

  

Both low density lipoprotein receptor-related protein 5 (LRP5) and transcription factor 7-like 2 

(TCF7L2) are factors in WNT signaling that is essential for embryogenesis, postnatal 

development and tissue homeostasis (He et al. 2004), and which has an active role in the 

development and function of adrenal glands (Kim et al. 1998, Suwa et al. 2003, Kim et al. 

2008). In humans, loss-of-function mutations in WNT4 have been described in the autosomal 

recessive SERKAL syndrome with female to male sex reversal and renal, adrenal and lung 

dysgenesis (Mandel et al. 2008), and also in women with the Mayer-Rokitansky-Küster-Hauser-

like syndrome associated with Müllerian-duct regression, virilization and high androgen levels 

(Biason-Lauber et al. 2004, Philibert et al. 2008). Wnt4 represses steroidogenesis in the adrenal 

cortex and gonads based on the studies on transgenic Wnt4 mice (Jordan et al. 2003, Heikkilä et 

al. 2005). 

   LRP5 is a single-span transmembrane receptor belonging to the low-density lipoprotein 

receptor family (Hey et al. 1998). LRP5 and its homologue LRP6 act as Wnt co-receptors (He 

et al. 2004). Common polymorphic variants in LRP5 have been shown to contribute to bone 

density in different populations and various age groups (Koay et al. 2004, Mizuguchi et al. 

2004, Ferrari et al. 2004, Kiel et al. 2007, Koay et al. 2007, Saarinen et al. 2007). In the 

canonical WNT signaling, Wnt molecules bind to their receptors co-acting with LRP5 on cell 

membrane, which leads to the inactivation of β-catenin degradation intra-cellularly, resulting in 

increased the amounts of β-catenin. Downstream in the canonical WNT signaling pathway are 

TCF transcription factors that together with β-catenin activate WNT target gene expression. In 

the absence of β-catenin, TCFs bind to target gene promoters and repress their expression (Jin 

2008). The genetic variants of TCF7L2 have been previously associated with type 2 diabetes 

(Grant et al. 2006, Cauchi et al. 2007, Wang et al. 2007) and an increased risk for early 

impairment of glucose metabolism in obese children (Körner et al. 2007). 

 

2.4.3.4  FTO 

 
PA is associated with increased BMI (Vuguin et al. 1999, Silfen et al. 2002a, Charkaluk et al. 

2004), and it is well known that healthy obese children have elevated adrenal androgen levels 
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compared with lean children (Denzer et al. 2007). Genetic variants in the fat mass and obesity 

associated gene (FTO) have been associated consistently with obesity (Dina et al. 2007, 

Frayling et al. 2007, Grant et al. 2008). Each risk allele increases weight around 1.5 kg in 

adults, and the homozygote carriers of the risk alleles have 1.67-fold increased odds of obesity 

(Frayling et al. 2007). The association reflects an increase in fat mass that is observed from 

early infancy on, but not at birth (Frayling et al. 2007, Grant et al. 2008, Lopez-Bermejo et al. 

2008). The FTO risk genotype correlates with dysregulation of glucose and lipid metabolism to 

an extent consistent with its effect on BMI (Frayling et al. 2007, Do et al. 2008, Freathy et al. 

2008). The effect of genetic variants at FTO can be compensated by regular sports (Rampersaud 

et al. 2008), whereas low physical activity accentuates the effect of the risk variant on body fat 

accumulation (Andreasen et al. 2008). In addition, FTO is expressed in the human 

hypothalamus, pituitary and adrenal gland, suggesting a potential role in the hypothalamic-

pituitary-adrenal axis implicated in body weight regulation (Su et al. 2004, Dina et al. 2007). 

However, the function of FTO remains largely unknown. 
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3 AIMS OF THE STUDY 
 

The study was conducted to determine the role of genetic variation of PA candidate genes in a 

case-control cohort of prepubertal PA children and their age- and gender-matched controls. 

Genotype distributions between the groups were compared and single marker association 

analyses were used to relate genetic variants with the clinical phenotype. 

 

Five candidate genes were studied: 

 

1) MC2R gene encoding the ACTH-receptor, which has an essential role in 

adrenarche and the individual response of adrenal androgen production to ACTH 

(I) 

 

2) AR gene and X-chromosome inactivation, because low adrenal androgen levels 

have been observed in PA children, suggesting higher androgen sensitivity (II) 

 

3) LRP5 and TCF7L2 genes, because of their role in Wnt signaling in adrenal cortex 

and in metabolic functions (III, IV) 

 

4) FTO gene, because it is associated with obesity, and body weight correlates 

positively with adrenal androgen levels in healthy prepubertal children (IV). 
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4 SUBJECTS AND METHODS 
 

This study on genetic variation in prepubertal PA is a part of a longitudinal follow-up study on 

a case-control cohort of PA children with the entire clinical spectrum of androgenic signs and 

their age- and gender-matched controls collected by Pauliina Utriainen, MD, Jarmo 

Jääskeläinen, MD, PhD, and Raimo Voutilainen, MD, PhD (Utriainen et al. 2007, Utriainen et 

al. 2009a, Utriainen et al. 2009b). The clinical evaluation of study subjects, hormonal 

assessments and genotyping methods have been described in detail in the original publications 

(I-IV).   

 

4.1 CASE-CONTROL COHORT 

 

The study group was comprised of 171 prepubertal Caucasian children from the Northern Savo 

district in Eastern Finland. For the subjects with PA, the criteria for entry into the study were 

any clinical sign(s) of adrenarche, including pubic or axillary hair, acne, adult-type body odor 

or oily hair before the age of 8 yrs in girls and 9 yrs in boys independent from the DHEAS 

levels. All eligible children were invited to the study between October 2004 and January 2006. 

Seventy-six eligible children were found, and 74 (97.4%) of them were willing to participate 

(64 girls and 10 boys). One girl with signs of central puberty in addition to PA was included in 

the analysis of genotype distribution of the polymorphism in MC2R promoter (I), but excluded 

from all the other analyses (63 girls and 10 boys; I, II, III and IV). Steroidogenic enzyme 

defects and virilizing tumors were excluded biochemically and by adrenal ultrasonography. 

Altogether 97 healthy age- and gender-matched healthy controls (79 girls and 18 boys) were a 

random sample of children from the same district, obtained from the Finnish population 

register, and approximately 20% of the control children invited were willing to participate. At 

examination, girls in both groups had to be less than 9 yrs and boys less than 10 yrs of age. 

Children with central puberty, any endocrine disorder or long-term medication were excluded 

from both groups. The study protocol was approved by the Research Ethics Committee of 

Kuopio University Hospital. Informed written consent from parents and assent from children 
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were obtained for participation in the study, including collection and genotyping of DNA 

samples. 

   The appearance time of the adrenarcheal signs was obtained by interviewing the parents. 

Clinical examination of all the children was performed by the same physician (Pauliina 

Utriainen) to determine the androgenic signs and exclude centrally activated puberty. Birth 

weight, birth length and gestational age data were obtained from hospital records. The birth 

measures were converted to SD scores (SDS) by plotting them on the growth charts and 

adjusting the birth measures for gender and duration of gestation (Pihkala et al. 1989). Height 

was measured with a calibrated Harpenden stadiometer to the nearest 0.1 cm. Weight was 

measured in thin underwear to the nearest 0.1 kg and converted to percentages in relation to the 

median weight-for-height according to the national reference values (Sorva et al. 1990). BMI 

was calculated according to the formula [weight (kg) / height2 (m)], and BMI SDS was 

determined by British reference values (II) (Cole et al. 1995). Blood pressure (BP) was 

measured with a standard sphygmomanometer from the left arm in supine position after a 30-

min rest in bed and recorded as the average of three repeated measurements. 

   For the endocrine-metabolic assessment, baseline levels of plasma glucose, triglycerides, total 

cholesterol, LDL and HDL cholesterol, and serum insulin, cortisol, DHEAS, DHEA, Δ4-A, and 

SHBG were measured after an overnight fast between 0900 and 1000 h from all subjects. For 

all the children, ACTH stimulation tests were performed administering synthetic ACTH 1-24 

(Synacthen; Novartis Pharma GmbH, Nürnberg, Germany) 1 ug/1.73 m2 i.v. Serum samples for 

cortisol, DHEA, Δ4-A, and 17OHP were taken 30 min after the ACTH administration. An oral 

glucose tolerance test (OGTT) was performed by administering 1.75 g/kg glucose (max 75 g) to 

each subject with samples for plasma glucose and serum insulin analyses taken at 30, 60, 90 

and 120 min.  Hormonal assays are described in the original publications (I and II). For the 

evaluation of insulin sensitivity, homeostasis model assessment for insulin resistance (HOMA-

IR) was calculated according to the formula: fasting plasma glucose (mmol/l) * fasting serum 

insulin (mU/l) / 22.5 (Allard et al. 2003), and insulin sensitivity index (ISIcomp) was calculated 

according to the formula: 10 000 / √ [fasting glucose (mg/dl) * fasting insulin (µU/l) * mean 

glucose (mg/dl) * mean insulin (µU/l)] (Matsuda and DeFronzo 1999). 
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4.2 GENOTYPING METHODS 

 

DNA was isolated from whole blood samples using the Wizard Genomic DNA Purification Kit 

(Promega, Madison, WI). The genetic variants were genotyped using restriction fragment 

length analysis (I), TaqMan Allelic Discrimination Assays® (IV) and by direct sequencing of 

the gene (III). The variants and genotyping methods are described in Table 3. 

 

Table 3. Genetic polymorphisms analyzed and the methods used in genotyping. 
 

Gene Chromo-
somal 
location 

Polymorphism Position Genotype Genotyping 
method 

Orig. 
publ. 

MC2R 18p11.2 MC2R -2 T>C -2 from the 
transcription 
initiation site  

T/C RFLP I 

AR Xq11.2 CAGn Exon 1 CAGn PCR, automated 
electrophoresis 

II 

LRP5 11q13.4 19 SNP Exons, introns, 
3’UTR 

 Direct 
sequencing 

III 

TCF7L2 10q25.3 rs7903146 Intron 3 C/T TaqMan Assay® IV 
TCF7L2 10q25.3 rs12255372 Intron 4 G/T TaqMan Assay® IV 
FTO 16q12.2 rs9939609 Intron 1 T/A TaqMan Assay® IV 

MC2R, melanocortin-2 receptor; LRP5, lowdensity lipoprotein receptor-related protein 5, TCF7L2 transcription factor 
7-like 2; FTO, fat mass and obesity associated gene; SNP, single nucleotide polymorphism; UTR, untranslated region; 
RFLP, restriction fragment length polymorphism based on polymerase chain reaction (PCR) and SacI enzyme 
digestion. 
 

CAG repeat length was determined by automated fluorescence detection, and the X-

chromosome inactivation assay was based on the AR gene methylation (II) (Allen et al. 1992). 

HpaII sites close to the AR gene CAGn are methylated on the inactive X-chromosome. 

Methylation-sensitive restriction enzyme HpaII digests only the unmethylated (active X-

chromosome) DNA, which is thereby unavailable for the following PCR amplification. Both 

digested and undigested DNA samples were amplified by PCR, and the PCR products were run 

on denaturing gel as in the genotyping analysis. To compensate for the unequal amplification of 

alleles, values for the digested samples were normalized with those for the undigested samples 

with calculations for shorter allele with formula (p1d/p1u) / (p1d/p1u + p2d/p2u), in which p1d 

and p2d represent the peak areas (p) of HpaII-digested (d) alleles (1 and 2), and p1u and p2u are 

the corresponding peak areas of the undigested (u) alleles (Lau et al. 1997). Methylation 

weighted biallelic means of CAGn (mwCAGn) were achieved by multiplying each allele in a 
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genotype pair by its percentage of total expression (100 minus inactivity %) and summing the 

two adjusted repeat values (Hickey et al. 2002). Individuals homozygous at the AR gene CAGn 

locus (9 controls and 1 PA subject) and boys were included in the mwCAGn analyses, because 

variation in the allele expression would not alter the mean value of alleles of equivalent repeat 

number or the mean of one allele. Skewing of X-chromosome inactivation was determined as 

80% or higher for the activity of one allele (Naumova et al. 1996).  

 

4.3 STATISTICAL ANALYSES 

 

Fisher's exact test (I-III) and test for equality of proportions (IV) were used to test for 

differences in genotype groups and MAFs between the control and PA groups. For single 

marker association analyses Student's t-test (II, IV), Mann-Whitney U-test (I-IV), ANOVA (IV) 

and Kruskall-Wallis (IV) tests were used to compare clinical parameters between genotype 

groups, while univariate linear model (III, IV) and multiple linear regression (II) were used to 

test for differences adjusted for age and gender, or other factors. The difference between the 

arithmetic mean of CAGn and the mwCAGn was tested with paired samples t-test (II). The 

strength of the relationship between mwCAGn and the clinical measurements was estimated by 

Kendall's rank correlation, because it offers both a meaningful estimate of the strength of the 

relationship and the statistical significance (II). The results are presented as means with 95% 

confidence intervals (CI), if not otherwise stated. In the case of skewed distribution, raw data 

were log-transformed prior to using the tests with assumptions of normal distribution, and 

results are presented as geometric means with 95% CI. For measures remaining non-normally 

distributed after log-transformation, non-parametric tests were used. No corrections for multiple 

testing were performed. We tried to limit the problem of multiple testing by restricting the 

analyses to the most important measures only. P < 0.05 was considered statistically significant. 

Statistical analyses were performed with SPSS 14.0 statistical package (SPSS Inc., Chicago, IL) 

and test for equality of proportions and power calculations were conducted with R statistical 

program, version 2.7.2 (IV) (http://www.r-project.org/). Hardy-Weinberg equilibrium was 

calculated according to standard procedures using χ2 test (I, III, IV). Linkage disequilibrium 

between the LRP5 or TCF7L2 polymorphisms was analyzed with Haploview4.0 (III, IV) 

(Barrett et al. 2005). 
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5 RESULTS AND DISCUSSION 
 

5.1 CHARACTERISTICS OF THE CASE-CONTROL COHORT 

 
Pauliina Utriainen et al. have reported the clinical data of the cohort (Utriainen et al. 2007, 

Utriainen et al. 2009a, Utriainen et al. 2009b). Thirty-five (48%) of the 73 PA children were 

recorded to have PP with the presence of pubic or axillary hair (PP), whereas 38 PA children 

(52%) had other androgenic signs (nonPP). Nine PA subjects had serum DHEAS concentrations 

below 1 µmol/l, and 36 of the 97 control subjects had DHEAS at or above 1µmol/l at the time 

of evaluation. Only one PA subject had exaggerated adrenarche defined as basal serum DHEAS 

concentration exceeding 6 µmol/l. None of the PA subjects had non-classical 21-hydroxylase 

deficiency based on the baseline and ACTH-stimulated 17OHP levels (Utriainen et al. 2009a). 

 
Table 4. Clinical and hormonal characteristics in children with premature adrenarche (PA) as 
compared to healthy age- and gender-matched controls. 
 

Mean (95% CI) Variable 

Control 
n = 97 

PA  
n = 73 

P value* 

Gender (boys/girls) 18/79 10/63  
Age (yr) 7.5 (7.3-7.7) 7.5 (7.2-7.7)        0.8 
Birth weight (SDS) 0.2 (-0.04-0.4) -0.03 (-0.3-0.2)        0.2 
Birth length (SDS) 0.3 (0.1-0.5) -0.05 (-0.3-0.2) 0.04 
Weight-for-height (%)  102 (93-111)** 108 (93-123)**       0.004** 
BMI (SDS) 0.4 (0.2-0.6) 1.0 (0.7-1.3)   0.001 
Height (SDS) 0.3 (0.1-0.5) 1.2 (0.9-1.4) <0.001 
DHEAS (µmol/L)† 0.8 (0.7-0.9) 1.7 (1.5-2.0) <0.001 
Δ4-A (nmol/L)† 1.3 (1.2-1.5) 2.4 (2.1-2.7) <0.001 
SHBG (nmol/L) † 102 (96-108) 82 (73-90) <0.001 
Cholesterol (mmol/L)  4.2 (4.1-4.4) 4.2 (4.1-4.4)        0.9 
HOMA-IR† 0.9 (0.8-1.0) 1.1 (1.0-1.2)   0.002 
ISIcomp 1.1 (1.0-1.2) 0.8 (0.7-0.9) <0.001 
Systolic BP (mmHg) 100 (98-102) 105 (102-107)   0.004 

CI, confidence interval; SDS, SD score; BMI, body mass index; DHEAS, dehydroepiandrosterone sulfate; Δ4-A, 
androstenedione HOMA-IR; homeostasis model assessment for insulin resistance according to the formula: fasting 
plasma glucose (mmol/l) x fasting serum insulin (mU/l) / 22.5; ISIcomp, insulin sensitivity index according to the 
formula: 10 000 / √ [fasting glucose (mg/dl) x fasting insulin (µU/l) x mean glucose (mg/dl) x mean insulin (µU/l)]; BP, 
blood pressure  
* Values taken from Student’s t-test unless indicated otherwise 
** Median (interquartile range), analyzed with Mann-Whitney U-test 
† Raw data were log-transformed prior to using the t-test, and results are presented as geometric means with 95% CI. 
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   Gender distribution and mean age were similar between the PA and control groups (Table 4). 

PA subjects had higher weight-for-height, BMI and current height, whereas there were no 

significant differences in the birth measures. Adrenal androgens were significantly higher in the 

PP subjects and nonPP subjects than in the control subjects (Utriainen et al. 2007). There was 

no difference in the lipid profile between the groups. The differences in the androgen and 

SHBG levels and in ISIcomp remained significant when adjusted for BMI, whereas the 

significance of the difference in HOMA-IR and systolic BP disappeared (P = 0.06 and 0.2, 

respectively). 

5.2 GENOTYPE DISTRIBUTIONS 

 

5.2.1 MC2R, LRP5, TCF7L2 and FTO 

 

SNP MC2R -2 T>C, SNPs rs7903146 and rs12255372 in TCF7L2 and rs9939609 in FTO were 

genotyped in the 73 PA children and the age- and gender matched 97 control subjects (I, IV, 

Table 5). Nineteen SNPs were found in LRP5 in the total group of 170 children. Eleven SNPs in 

LRP5 were synonymous and four were non-synonymous exonic variants, of which five SNPs 

had MAF over 5% in either group (Figure 1 in III, Table 5). Three intronic SNPs and one SNP 

in the 3’ untranslated region of LRP5 were also identified. Eleven SNPs in LRP5 had MAF 

lower than 5% in both control and PA group, but none were found to be a likely disease-causing 

mutation (III). All of the genotyped SNPs were in Hardy-Weinberg equilibrium with a P-value 

> 0.05 (I, III, IV). 

   There were no statistically significant differences in the genotype distributions or in the 

MAFs of the SNPs in MC2R, LRP5, TCF7L2 and FTO between the PA and control groups (I, 

III, IV, Table 5). However, the minor variant in MC2R -2 T>C was more frequent in the PP 

children than in nonPP and control children, suggesting its role in the development of PA 

[controls n = 97, nonPP n = 38 vs. PP n = 36; combined T/C&C/C frequency; 10%, 11% vs. 

28%, P = 0.04, I]. The obesity risk-conferring variant at rs9939609 of FTO was not more 

frequent in the PA children despite their higher BMI, compared with healthy controls. 

Furthermore, the 95% CI for differences in the minor allele proportions showed a tendency for 
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the risk variant of rs9939609 to be less frequent in the PA children than in the population-based 

age-matched prepubertal controls (IV, Table 5). 

 

Table 5. The genotype distributions and differences in minor allele frequencies of common 
single nucleotide polymorphisms (SNP) among prepubertal children with premature adrenarche 
(PA) and healthy age- and gender-matched controls. 
  

Gene SNP Genotype distribution  
(A/A, A/a, a/a; %) 

P 

  Control  
(n = 97) 

PA 
(n = 73) 

Difference in MAF  
(95% CI) 

*/** 

MC2R MC2R -2 
T>C 

90, 10, 0 81, 18, 1# 0.05 (-0.01 - 0.11) 0.2/0.1 

LRP5 F549F 94, 6, 0 86, 14, 0 0.04 (-0.02 - 0.09) 0.1/0.2 
 E644E 89, 11, 0 90, 10, 0 -0.01 (-0.06 - 0.04) 0.8/0.9 
 N740N 91, 9, 0 86, 14, 0 0.02 (-0.03 - 0.08) 0.5/0.5 
 V1119V 74, 25, 1 64, 36, 0 0.05 (-0.03 - 0.13) 0.2/0.3 
 A1330V 91, 9, 0 88, 12, 0 0.02 (-0.04 - 0.07) 0.6/0.7 
TCF7L2 rs7903146 73, 26, 1 67, 30, 3 0.03 (-0.05 - 0.12) 0.5/0.4 
 rs12255372 72, 26, 2 70, 27, 3 0.01 (-0.07 - 0.10) 0.9/0.8 
FTO rs9939609 32, 50, 18 41, 45, 14 -0.06 (-0.18 - 0.05) 0.5/0.3 

MC2R, melanocortin-2 receptor; LRP5, low density lipoprotein receptor-related protein 5, TCF7L2 transcription factor 
7-like 2; FTO, fat mass and obesity associated gene.  
*, P value from Fischer’s exact test on the differences in the genotype distributions; **, P value for the difference in 
minor allele proportions; #, total n = 74. 
 

Reliable haplotype analyses expanding the whole LRP5 gene could not be performed, because 

the haploview analysis revealed only one small LD block (D' 1.000, r2 0.30) between the 

intronic rs4988322 and the exonic V1119V. However, the control children with the minor 

variant at A1330V also had the minor variant at N740N, whereas there was one PA subject with 

the minor variant at N740N but not at A1330V (III). LD between the rs7903146 and 

rs12255372 at TCF7L2 was high (r2 = 0.82, D' 0.90). Therefore, we tested only rs7903146 in 

the single marker association analyses (IV). 

   Although our PA group is among the largest ones reported, the power of our study to 

demonstrate small differences in the genotype distributions was limited. The two groups with a 

total of 170 children provided only 14% and 11% power to detect the observed differences in 

the proportions of minor alleles at rs9939609 of FTO and rs7903146 of TCF7L2, respectively 

(α = 0.05). To show a statistical difference at the observed differences in the proportions of 
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minor alleles at rs9939609 and rs7903146 with 80% power (α = 0.05), we would have needed 

892 and 1383 subjects in the PA and control groups, respectively (IV).  

 

5.2.2 Length of CAG repeat in the androgen receptor gene and X-
inactivation 

 

Children with PA had an arithmetic mean AR CAGn 0.72 repeats shorter than the controls (95% 

CI for the difference; 0.09-1.34, P = 0.025), and the mean difference in mwCAGn was even 

larger [0.76  (0.14-1.38), P = 0.017), II]. None of the PA subjects had mwCAGn longer than 25 

repeats, whereas nine controls had (Figure 1 in II). The arithmetic mean and mwCAGn differed 

significantly from each other in the whole group of children, indicating the importance of 

considering X-inactivation in the analyses of X-chromosomal genes (II). The results confirmed 

the finding of a similar difference in the arithmetic mean of CAGn between the Catalan PP girls 

and controls (Ibáñez et al. 2003b). Although the difference of 0.8 repeats in AR gene mwCAGn 

between the PA and control groups is small, its clinical relevance may be considerable. The 

meta-analysis of the studies on the association of male infertility with AR gene CAGn has 

revealed a statistically significant difference of 0.3 repeats between the cases and controls 

(Davis-Dao et al. 2007). The longitudinal follow-up of our PA girls will show whether the 

length of AR gene CAGn is inversely related to the risk of ovarian hyperandrogenism as 

observed in the Catalan PP girls (Ibáñez et al. 2003b). 

   We did not find any differences between our control and PA groups in the incidence of 

nonrandom X-inactivation (proportion of subjects with either maternal or paternal allele being 

inactive in ≥ 60% of cells; 35% controls vs. 39% PA, P = 0.7) or skewed X-inactivation 

(inactive ≥ 80%; 1.7% controls vs. 3.3% PA, P > 0.9), suggesting no significant role of X-

inactivation itself in the pathogenesis of PA (II). In contrast, a small previous study in Italian 

women with idiopathic hirsutism has shown skewing of X-inactivation, leading to preferential 

expression of the AR gene with shorter CAGn (Vottero et al. 1999). The results on Italian 

women with hirsutism also conflict with a larger Spanish study demonstrating neither skewing 

of X-inactivation nor difference in mean CAGn length between women with hyperandrogenic or 

idiopathic hirsutism and healthy controls (Calvo et al. 2000). We were not able to investigate X-

inactivation in peripheral target tissues, but an excellent study comparing the X-inactivation 
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between different tissues has shown a similar X-inactivation pattern in blood cells and other 

tissues (Bittel et al. 2008).  

   We observed a weak correlation between the mwCAGn and subject’s age in the PA group (τ = 

0.27, P = 0.026, II). X-inactivation offers a possible epigenetic mechanism through which 

environmental factors may influence gene expression (Heard and Disteche 2006), but the 

mechanisms leading to secondary skewing of X-inactivation are not fully understood. A 

previous study has shown greater variability in X-inactivation in women older than 60 yr (Bittel 

et al. 2008). In addition, X-inactivation patterns have been shown to differ between sister pairs 

having the same genotype, but different clinical presentation in the families with PCOS (Hickey 

et al. 2006).  

 

5.3  ASSOCIATIONS BETWEEN GENOTYPE AND PHENOTYPE 

 

The associations between genotype and phenotype were searched by single marker association 

analyses on the common genetic variants at MC2R, AR, LRP5, TCF7L2 and FTO in the PA and 

control groups. In the following, the results will be presented and discussed according to 

adrenocortical functions, anthropometric data and metabolic parameters. Of the SNPs in LRP5, 

SNP E644E was not associated with any clinical measures in the control or the PA group (III). 

As the control children with SNP A1330V also had the SNP N740N, their results for the SNP 

N740N were the same as for SNP A1330V that leads to an amino acid change (III). 

   The value of these studies lays in the precise phenotyping of PA subjects and unbiased 

controls, that all come from a homogenous population. However, our results should be 

confirmed in other populations with different genetic backgrounds and different environments, 

and by large genome-wide association studies. It is possible that some of the observed 

associations are by chance only, as the number of children in our study was relatively small. 

Further studies are required to determine the functional significance of the polymorphisms 

genotyped. The biochemical mechanisms are not fully understood for them, i.e., how they affect 

the gene expression or the functions of encoded proteins. 
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5.3.1 Adrenocortical function 

 

The circulating levels of adrenocortical hormones and SHBG of the PA children have been 

summarized according to genotype groups in Table 6. There was no difference in the age 

between the genotype groups (I, III, IV).  

 

5.3.1.1 MC2R 

 

PA children with minor variant at MC2R -2 T>C had higher baseline plasma ACTH, serum 

DHEA and Δ4-A levels in comparison to the PA subjects with the T/T genotype (I). The 

statistically significant difference remained in the baseline Δ4-A level when the difference was 

adjusted for age and gender (P = 0.02, Table 6) Among the controls, the baseline hormone 

levels did not differ between the MC2R genotype groups. As an indicator of ACTH sensitivity, 

the baseline ACTH/cortisol ratio was calculated and it was significantly higher in the subjects 

with the T/C or C/C genotype than in the T/T subgroup of control children (I), which is in 

accordance with the previously reported higher ACTH/cortisol ratio among healthy adult men 

with C allele (Slawik et al. 2004). Recently, the minor variant at MC2R -2 T>C was shown with 

increased frequency in patients with infantile spasms, and it was associated with poor response 

to the ACTH therapy (Liu et al. 2008). 

   As an indicator of shifting steroidogenesis from glucocorticoids to adrenal androgens, we 

calculated the ratio of cortisol level to Δ4-A level, which was lower in the children with the T/C 

or C/C genotype than in those with the T/T genotype when all children were analyzed together 

[T/T n = 147 vs. T/C&C/C n = 23; ratio of cortisol level to Δ4-A level; mean (95% CI); 169 

(152-185) vs. 114 (86-142), P = 0.008, I]. Indicated by the altered cortisol/Δ4-A ratios in the 

children with the C allele, it is possible that decreased ACTH sensitivity due to MC2R -2 T>C 

polymorphism shifts the adrenal steroidogenesis from the cortisol synthesis to the androgen 

pathway. It has been postulated that in times of critical or chronic illness, steroid synthesis is 

diverted from adrenal androgens to glucocorticoids to allow maintenance of high glucocorticoid 

levels that are crucial for coping with the illness (Parker et al. 1985, Bornstein and Chrousos 

1999). Thus, the mechanism in PA would be the opposite to the stressful states in critical and 

chronic illness, and even in functional hypothalamic amenorrhea, in which plasma adrenal 
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androgens are decreased and cortisol levels are increased (Luppa et al. 1991, Beishuizen et al. 

2002, Bomba et al. 2007, Dimopoulou et al. 2007).  

 

5.3.1.2 AR mwCAGn 

 

One of our hypotheses was that increased androgen sensitivity would be a mechanism for PA in 

children with adrenal androgen levels normal for their age. However, we did not find any 

inverse correlation between AR mwCAGn and androgen or SHBG levels, nor did we find any 

significant difference in mwCAGn between the children with DHEAS level below 1µmol/l or 

above that level, representing biochemical adrenarche (II). Our results are in contrast to the 

study on post-menarcheal Catalan PP girls in whom higher testosterone levels and more 

pronounced signs of hyperandrogenism were observed in girls with a mean CAGn of less than 

20 repeats (Ibáñez et al. 2003b). Our results suggest that AR gene CAGn has no role in the 

feedback regulation of adrenal androgen secretion in prepubertal children with PA. 

 

5.3.1.3 LRP5, TCF7L2 and FTO 

 

No minor variant of the SNPs at LRP5, TCF7L2, or FTO were associated with adrenal androgen 

levels in the PA children when adjusted for age and gender. The baseline serum cortisol level 

was lower in the PA subjects with the minor variant of F549F at LRP5 than in those without, 

but no differences were found in serum cortisol concentrations measured after ACTH 

stimulation, and no similar association was observed in the control group (III). In the control 

children, the minor variants of A1330V and N740N at LRP5 were associated with higher 

DHEAS level (A/A vs. A/a; mean, 0.8 vs. 1.4 µmol/l, P = 0.01), but no association with other 

androgen levels or the cortisol level was observed (III). Even though the control children with 

both minor variants of SNPs A1330V and N740N did not have clinical signs of PA, their mean 

serum DHEAS concentration was > 1.0 µmol/L, which can be considered an adrenarcheal level. 

   The association between the minor variants at A1330V and N740N and serum DHEAS level 

suggests that LRP5 in the lipid metabolism of adrenocortical cells or in the canonical Wnt 

signaling may modulate the adrenal hormone profile during childhood. LRP5 in the lipid intake 
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of adrenocortical cells has not been studied, while previous studies have confirmed its role in 

the metabolism of lipoproteins (Kim et al. 1998, Magoori et al. 2003, Fujino et al. 2003). Wnt 

signaling has been suggested to play a role in the regulation of adrenal steroidogenesis. ACTH 

increases WNT4 expression in primary cultures of adrenocortical cells (Kuulasmaa et al. 2008), 

and adenovirus mediated WNT4 expression increases steroidogenesis and the expression of 

steroidogenic genes in cultured adrenocortical cells (Chen and Hornsby 2006). Adipocytes 

secrete Wnt molecules which induce the transcription of StAR and stimulate the steroidogenesis 

of adrenocortical cells in vitro (Schinner et al. 2007). Furthermore, the adrenal development is 

significantly compromised in the embryos with SERKAL syndrome due to a WNT4 mutation, 

indicating an important role of Wnt signaling in the adrenal development (Mandel et al. 2008). 

In transgenic mice, targeted disruption of ß-catenin impairs development and maintenance of 

adrenal cortex (Kim et al. 2008). 

   Although we did not find any association between LRP5 sequence variants or the TCF7L2 

variants and PA, Wnt signaling may nonetheless participate in the regulation of adrenarche. 

Recently, LRP5 has been shown to participate in the regulation of serotonin synthesis in 

duodenal heterochromatin cells via Wnt signaling, and serotonin acts in an endocrine fashion to 

regulate bone cell metabolism in mice (Yadav et al. 2008). On the other hand, WNT4 may 

antagonize the canonical Wnt signaling in the adrenal cortex, as Wnt4 over-expression inhibits 

testosterone synthesis in mouse testes by repressing synergism between ß-catenin and SF-1 

(Jordan et al. 2003). SF-1, in turn, is essential for the adrenal development (Luo et al. 1994, 

Achermann et al. 1999). The mechanisms of Wnt signaling may be more complicated in the 

regulation and development of adrenocortical cells than known today. 
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5.3.2 Anthropometric data 

 

The birth measures and the current weight adjusted for height of the children with PA according 

to various genotype groups have been summarized in Table 7. None of polymorphisms in LRP5 

was associated with either birth measures or current weight-for-height (Table 7, III). 

 

5.3.2.1 MC2R and birth measures 

 

The minor variant at MC2R -2 T>C was associated with lower birth weight SDS in the children 

with PA (I, Table 7). Previous studies have found an inverse correlation between birth weight 

and adrenal androgen levels in healthy children (Francois and de Zegher 1997, Ong et al. 2004), 

whereas PA and subsequent FOH have been connected with low birth weight (Ibáñez et al. 

1998b, Neville and Walker 2005). The PA children with the minor variant at MC2R -2 T>C had 

higher ACTH stimulated cortisol levels than the control children with the same genotype (I). A 

meta-analysis has demonstrated an inverse connection between birth weight and circulating 

cortisol levels at adulthood (Montfoort et al. 2005). Birth weight can be considered to picture 

the intrauterine milieu, in which some factors have restricted the intrauterine growth and well 

being of developing fetus. It can be speculated that the minor variant at MC2R -2 T>C may 

have had an influence on the stress responses of the PA children during fetal development. 

According to the Barker hypothesis, intrauterine growth restraint reprograms the development 

of cardiovascular disease risk profile at adulthood (Barker et al. 1993, Eriksson et al. 1999). The 

follow-up of our PA children will show whether the minor variant at MC2R -2 T>C is 

associated with adverse metabolic features later in life. The association between birth weight 

and MC2R -2 T>C may also reflect the higher proportion of PP children in the group of PA 

children that have the minor variant, although no statistically significant differences in birth 

weight SDS between PP, nonPP and control girls were found (Utriainen et al. 2007). 
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Table 7. Anthropometric data according to various genotype groups in the children with 
premature adrenarche. 
 

Mean (95% CI) Median (IQR) Gene 
  Polymorphism 

Genotype (n) 
Birth weight  
(SD score)* 

Birth length 
(SD score)* 

Weight-for-height 
(%)** 

MC2R T/T (60) 0.1 (-0.2 - 0.4) 0.1 (-0.2 - 0.4) 111 (94 - 128) 
  MC2R -2 T>C T/C&C/C (13) -0.6 (-1.0 - -0.2) -0.6 (-1.1 - -0.02) 104 (89 - 119) 
 P 0.04 0.06 0.5 
     
LRP5 C/C (63) -0.1, (-0.4 - 0.1) -0.1 (-0.3 - 0.2) 108 (95 - 122) 
  F549F C/T (10) 0.4 (-0.8 - 1.7) 0.1 (-1.2 - 1.3) 121 (105 - 138) 
 P 0.2 0.8 0.3 
     
  V1119V A/A (47) -0.05 (-0.4 - 0.3) -0.1 (-0.4 - 0.2) 108 (93 - 123) 
 A/G (26) -0.02 (-0.6 - 0.5) 0.1 (-0.4 - 0.6) 110 (94 - 126) 
 P >0.9 0.4 0.9 
     
  A1330V C/C (64) 0.01 (-0.3 - 0.3) -0.1 (-0.3 - 0.2) 108 (91 - 125) 
 C/T (9) -0.4 (-1.2 - 0.4) 0.1 (-0.6 - 0.9) 111 (101 - 121) 
 P 0.3 0.6 0.8 
     
TCF7L2 C/C (49) -0.04 (-0.4 - 0.3) 0.04 (-0.4 - 0.3) 112 (94 - 130) 
  rs7903146 C/T&T/T (24) -0.02 (-0.5 - 0.4) -0.05 (-0.5 - 0.4) 103 (93 - 113) 
 P >0.9 >0.9 0.2 
     
FTO T/T (30) -0.1 (-0.5 - 0.3) -0.1 (-0.5 - 0.3) 108 (94 - 122) 
  rs9939609 T/A (33) -0.1 (-0.4 - 0.3) -0.1 (-0.4 - 0.3)  107 (94 - 120) 
 A/A (10) 0.4 (-0.8 - 1.6) 0.3 (-0.8 - 1.3) 130 (116 - 144) 
 P 0.4 0.6 0.2 

CI, confidence interval; IQR, interquartile range; MC2R, melanocortin-2 receptor; LRP5, low density lipoprotein 
receptor-related protein 5, TCF7L2 transcription factor 7-like 2; FTO, fat mass and obesity associated gene. P values 
from *Student’s t-test or One-Way ANOVA, **Mann-Whitney U-test or Kruskall-Wallis non-parametric test.  
 

5.3.2.2 TCF7L2 and weight-for-height 

 
No difference in birth measures or weight-for-height between genotype groups according to 

rs7903146 of TCF7L2 was shown (Table 7). However, the frequency of minor variant at 

rs7903146 of TCF7L2 was higher in the lean PA subjects (weight-for-height under the median 

of the PA group) than in the controls with the same BMI [weight-for-height <108% respecting 

BMI < 0.79 SDS; controls, n = 65 vs. PA, n = 37; difference in MAF (95%CI); 0.12 (-0.001, 

0.23), P = 0.038, IV]. A recent GWA study on nearly 2000 diabetic patients and 3000 controls 

has found the risk variants at TCF7L2 to associate with increased risk for T2DM in the subjects 

with a lower BMI than the median BMI of the cases, whereas the risk ratio was lower in the 
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subjects with a higher BMI (Timpson et al. 2009). The study demonstrates a substantial 

etiological heterogeneity within T2DM, which is also evident within PA. 

 

5.3.2.3 FTO and weight-for-height 

 

Increased weight-for-height was evident in our PA children compared with healthy age- and 

gender matched controls. Of all genetic factors found so far, the polymorphisms at FTO have 

been connected most strongly with higher BMI (Li and Loos 2008). The difference in the 

current weight-for-height between FTO rs9939609 genotype groups was significant only in our 

healthy prepubertal children [mean weight-for-height; T/T, T/A vs. A/A; 99%, 109% vs. 112%, 

P = 0.001], but not in the children with PA (IV). The lack of association in the PA group may 

result from insufficient group size, but may also suggest that the role of genetic variation in 

FTO is minor in the regulation of increased weight-for-height in PA children. A previous study 

has found an association between increased BMI and the minor variant at rs2236418 of GAD2 

in PP children, but whether the association was present in healthy subjects was not tested 

(Witchel et al. 20098). 

   The role of FTO can be considered to be primary in the accumulation of weight, affecting 

eating behavior. In the pathogenesis of PA, the increased weight-for-height may be secondary 

or just one factor among others. The obesity-associated genetic variation at FTO has been 

connected with reduced satiety responsiveness (Wardle et al. 2008) and increased energy intake 

in prepubertal children (Cecil et al. 2008, Wardle et al. 2009). In mice, FTO is expressed most 

abundant in hypothalamic nuclei governing energy balance, and the expression is down-

regulated by fasting (Gerken et al. 2007). FTO shares sequence motifs with non-heme 

dioxygenases with a potential role in nucleic acid demethylation and epigenetic regulation 

(Gerken et al. 2007, Sanchez-Pulido and Andrade-Navarro 2007). Although associated with 

increased energy intake, the risk variants in FTO may not be connected with energy expenditure 

(Berentzen et al. 2008, Cecil et al. 2008, Speakman et al. 2008). Nonetheless, a recent extensive 

metabolic study on healthy non-obese young men showed increased energy efficiency in 

oxidative muscle fibers after exercise in homozygous carriers of the obesity-related risk allele at 

rs9939609 of FTO, suggesting that increased energy efficiency with potential mitochondrial 
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coupling could represent a key defect linking FTO to obesity (Grunnet et al. 2009).  

Furthermore, the expression of FTO is reduced in the adipocytes of transgenic obese db/db mice 

(Qi et al. 2008) and the risk variants have been associated with signs of cerebro-cortical insulin 

resistance (Tschritter et al. 2007), suggesting that other possible mechanisms in the actions of 

FTO. In contrast, the retrospective analysis of the growth pattern of our PA children has 

revealed increased height velocity during the first two years of life, which precedes the 

accumulation of weight compared with controls. These findings suggest that increased weight-

for-height is not a primary event in PA (Utriainen et al. 2009b). 

 

5.3.2.4  AR mwCAGn and BMI 

 

In our PA children, mwCAGn correlated positively to BMI SDS (II, Figure 3). After dividing 

the PA group by the median BMI (0.79 SDS), the PA children with lower BMI had a shorter 

mwCAGn than those with higher BMI, with a mean difference of 1.13 repeats (95% CI, 0.38-

1.87, P = 0.004). A similar difference in mwCAGn was found between the PA children with 

lower BMI compared with controls having the same BMI SDS (II). The results demonstrate that 

PA children with lower BMI have more active AR, which offers a tempting mechanism to 

explain PA in lean children. Hyperinsulinemia is more evident in the PA subjects with higher 

weight-for-height, and may be the key inducer of PA in them. 

   In previous studies, a positive correlation between the CAGn and body fat mass has been 

found in healthy males (Zitzmann et al. 2003, Stanworth et al. 2008), whereas no correlation 

between mwCAGn and BMI has been seen in the Australian women with PCOS (Hickey et al. 

2002). Furthermore, treatment with low-dose flutamide in combination with metformin has 

achieved a greater reduction in the adiposity of post-menarcheal PP girls with a shorter mean 

CAGn than in subjects with a mean CAGn longer than 20 repeats (Ong et al. 2007). A recent 

study on over 3300 men with age of 40-79 yrs, showed a positive correlation between CAGn 

and serum testosterone and estradiol levels. Weaker transcriptional activity of AR was 

interpreted as compensation for higher testosterone levels, and the residual phenotypic 

differences in e.g. body weight were postulated to reflect differences in the estrogen levels after 

aromatization of higher testosterone levels (Huhtaniemi et al. 2009). We cannot state whether 

adrenal androgens are metabolized to estrogens in our children with PA. 
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Figure 3. Scatter plot of BMI SDS by mwCAGn. As can we see from scatter plot figure, there 

was a positive correlation between methylation-weighted biallelic mean of the CAG repeat 

number (mwCAGn) in androgen receptor gene and body mass index SD scores (BMI SDS) with 

a coefficient of 0.19 in prepubertal children with premature adrenarche (n = 71, τ = 0.19, P = 

0.02 with Kendall’s rank correlation test). 

 

5.3.3 Metabolism  

 

Insulin and IGF-1 functions have been postulated to participate in the pathogenesis of PA. 

Adverse metabolic features have been shown in prepubertal PA children and in PA subjects 

after puberty (Ibáñez et al. 1998a, Vuguin et al. 1999, Silfen et al. 2002a, Ibáñez et al. 2003a, 

Charkaluk et al. 2004). We tested whether the polymorphisms at AR, LRP5, TCF7L2 and FTO 

are associated with measures of glucose metabolism, lipid profile and BP in prepubertal PA 

children and in healthy age- and gender-matched controls (II-IV). We did not find any 

associations between FTO rs9939609 and metabolic parameters either in the PA or the control 

group (IV). 
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5.3.3.1 AR mwCAGn and insulin sensitivity 

 

An inverse correlation between the insulin sensitivity index ISIcomp and AR gene mwCAGn was 

shown in the PA subjects (τ = -0.30, P = 0.014), but the statistical significance disappeared 

when corrected for BMI (II). The previous study in Catalan postmenarcheal PP girls has shown 

greater hyperinsulinemia in response to an OGTT in girls with a biallelic mean of CAGn shorter 

than 20 in than in those with a mean CAGn longer than 20, but no difference in HOMA was 

observed between the groups. (Ibanez et al. 2003b). In healthy adult men, CAGn has been 

positively associated with fasting insulin concentrations, independently of BMI, suggesting a 

protective role of short CAGn for cardiovascular risk factors (Zitzmann et al. 2003). The 

discrepancy between the studies may reflect population differences and the difference in age 

and sex among the studies. 

 

5.3.3.2 TCF7L2 and glucose metabolism 

 

In the lean PA subjects, there were weak trends for higher insulin resistance index HOMA-IR 

and lower ISIcomp in the subjects with the diabetes-related risk allele at rs7903146 of TCF7L2, 

suggesting a possible role of the risk variant in glucose metabolism (IV). The genetic variants at 

TCF7L2 have been associated with decreased insulin secretion, which is linked to impaired 

incretin effects and β-cell proliferation (Jin 2008). The biochemical mechanisms by which the 

genetic variation in the intron region influences the expression of TCF7L2 or WNT signaling in 

glucose metabolism remain largely unknown. The risk allele of rs7903146 was associated with 

higher fasting and 120-min blood glucose in OGTT in a cohort of 283 obese children with a 

mean age of 11.9 yr and mean BMI 2.8 SDS (Körner et al. 2007). In children and young adults 

with age at the onset of diabetes less than 25 yrs, the risk variants at rs7903146 and rs12255372 

of TCF7L2 were more frequent in the autoantibody-negative subjects than in autoantibody-

positive diabetic patients (Yu et al. 2009). The risk variant at rs7903146 was also more frequent 

in the glutamate acid decarboxylase antibody (GADA) -negative subjects with age of 15-34 yrs 

at the onset of type 1 diabetes mellitus, whereas no difference in the genotype distribution was 

found between older GADA-negative and -positive patients (Bakhtadze et al. 2008). Neither of 

the studies on autoantibody-negative and -positive diabetes patients found associations between 
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the risk variants of TCF7L2 and clinical measures at the onset of diabetes mellitus (Bakhtadze 

et al. 2008, Yu et al. 2009).  

 

5.3.3.3 LRP5, blood pressure and lipid profile 

 

The weight-for-height-adjusted BP and lipid levels did not differ between our girls with PA and 

the control girls (Utriainen et al. 2007). The previous reports on lipoprotein levels and lipid 

pattern in PA come from different populations with different ages (Ibáñez et al. 1998a, Meas et 

al. 2002, Guven et al. 2005, Andiran and Yordam 2008). The only associations between genetic 

polymorphisms and systolic BP in our series were found with the minor variant at V1119V of 

LRP5 in the PA children [A/A n = 47 vs. A/G n = 26; mean systolic BP (95% CI); 103 mmHg 

(100-105) vs. 108 mmHg (104-112), P = 0.02] and the minor variant at F549F of LRP5 in the 

control children [C/C n = 91 vs. C/T n = 6; 100 mmHg (98-102) vs. 108 mmHg (95-121), P = 

0.04, III]. LRP5 is expressed in the muscular component of large developing blood vessels, and 

the canonical Wnt signaling through LRP5 has been suggested to play a unique role in 

cardiovascular development (Wang et al. 2005). In a previous Japanese study, homozygosity for 

A1330V was associated with lower diastolic and mean BP in males (Suwazono et al. 2006b), 

but we found no association between A1330V and systolic BP in prepubertal children. 

   Higher total and LDL cholesterol levels were associated with the minor variants at A1330V, 

N740N and V1119V of LRP5 in the healthy control children (III). This finding is in line with 

the previous study in a Japanese population suggesting that the risk variant at A1330V is an 

independent risk factor for hypercholesterolemia (Suwazono et al. 2006a). LRP5 knockout mice 

display diet-induced hypercholesterolemia due to decreased hepatic clearance of chylomicron 

remnants (Fujino et al. 2003). Our results show that the association between the minor variant at 

A1330V and plasma cholesterol levels is already apparent in prepubertal children. In the PA 

children, the single marker analysis with LRP5 SNPs showed no similar associations with lipid 

profile. It is likely that the determinants of metabolic characteristics and lipid profile in children 

with PA are more complex than in healthy children. 
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5.3.4 Future perspectives and associations between androgen action, 
body weight and glucose metabolism 

 

In children with PA, androgen levels, body weight and glucose metabolism may influence each 

other. Overweight contributes to androgen levels possibly via hyperinsulinemia. On the other 

hand, androgens may alter adipose tissue mass deposition through site-specific modulation of 

preadipocyte differentiation as well as lipid synthesis and lipolysis in mature adipocytes (Blouin 

et al. 2008). In PCOS patients, who resemble PA children, a vicious circle has been suggested 

to exist whereby androgen excess favoring the abdominal deposition of fat further facilitates 

androgen secretion by ovaries and adrenals (Escobar-Morreale and San Millan 2007). Besides 

being a target of hormonal actions, adipose tissue is a major site for metabolism of sex steroids, 

including adrenal androgens (Kershaw and Flier 2004, Blouin et al. 2009). The adrenal 

androgens in PA children may be metabolized by adipose tissue to stronger androgens or 

estrogens with more potent local effects. .  

   Analysis of gene expression patterns of adipose cells in PA children would give insight to the 

role of increased weight-for-height in the pathogenesis of PA. Unfortunately, the techniques of 

adipose tissue biopsy do not currently offer ethically suitable methods to study dozens of 

prepubertal children. Recently, new gene loci associated with BMI were identified. Likely 

causal genes with unknown function are highly expressed in the central nervous system, e.g. 

transmembrane protein 18 (TMEM18) and glucosamine-6-phosphate deaminase 2 (GNPDA2) 

genes (Willer et al. 2009, Zhao et al. 2009). It could be interesting to clarify possible regulation 

of PA and adrenarche through genetic factors acting on the central nervous system. Until now, 

there have been no candidate gene studies on the role of genes acting primarily in the brain in 

children with PA. 

   Androgen action, weight regulation and insulin action do not all need to be disturbed for the 

clinical manifestation of PA. There are also lean PA subjects with higher androgen sensitivity 

and milder hyperinsulinemia (II). The retrospective analysis of the growth pattern of our girls 

with PA showed accelerated linear growth before the rise in weight-for-height when compared 

with healthy controls. At the time of PA presentation, the IGF-1 levels in these girls were 

increased compared with controls (Utriainen et al. 2009b). It may be speculated that PA 

children have hyperinsulinemia and higher IGF-1 levels already before the rise in weight-for-

height and adrenal androgen levels, but no prospective study on the development of PA has 
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been conducted. The mechanism for development of androgenic signs in children with PA, but 

with DHEAS levels below the adrenarcheal level remains to be identified. We did not find any 

difference in androgen sensitivity as estimated by AR gene mwCAGn between subjects with 

DHEAS level below and above the adrenarcheal level (II).  

   Genotype-phenotype associations may be different between girls and boys. A study on 

monozygotic and dizygotic twins revealed a significant genetic component in the weight-

adjusted adrenal androgen excretion rate. The study also suggested that the role of genetic 

regulation may be bigger in boys, whereas the role of environmental factors may be bigger in 

girls (Pratt et al. 1994). The number of boys with PA in our series is insufficient to test gender-

dependent differences in the regulation of adrenarche, but we did adjust all the associations for 

gender. Androgens are known to have gender-dependent effects, for example on adipose tissue 

in pubertal children and adults. The only longitudinal study, investigating the effects of weight 

loss on the adrenal androgen levels within 1 yr on obese children suggested that the role of body 

weight is possibly larger in girls. In that study, obese prepubertal girls losing substantial weight 

demonstrated no significant change in DHEAS levels, whereas girls without weight loss 

showed an increase. Obese prepubertal boys demonstrated a significant increase of DHEAS 

levels regardless of their weight change over the 1-yr study period (Reinehr et al. 2005). 

   Different settings and research methods are needed to clarify the regulation of PA and the 

genetic and environmental factors behind it. Larger study groups and international collaboration 

could confirm our results and define more precisely genotypes behind different phenotypes of 

PA. It is important to study the whole clinical spectrum of PA and to use unbiased controls. 

Otherwise, significant results could be missed, and wrong conclusions could be drawn. Each 

polymorphism has only a minor role in the polygenic pathogenesis, and the necessary group 

sizes will be at least ten times bigger than in our study. The large GWA studies have shown that 

the combined power of several genetic variants, including TCF7L2 and FTO, to predict the 

development of diabetes is only minor (van Hoek et al. 2008, Lyssenko et al. 2008). 

Furthermore, genetic variation explained less than 10% of the phenotypic variation in T2DM 

(Ruchat et al. 2008).  

   Although genetic studies on PA may not find strong predictors for the development of PA, 

they may be useful tools to identify factors in the genetic regulation of adrenarche. GWA 

studies and case reports of extreme types of adrenarche may find new genes behind adrenarche. 
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In addition to SNPs, structural variants and RNA interference are possible factors in the genetic 

regulation of adrenarche. To define more precisely the nature of on-time adrenarche, healthy 

children with varying age, adrenal androgen levels and androgenic signs as well as children 

with no adrenarche due to e.g. ACTH resistance may provide fruitful cohorts to explore. On the 

other hand, the pathways of steroid and glucose metabolism, the regulation of growth and the 

central regulation of puberty will be defined in more detail revealing possible factors in the 

regulation of adrenarche. Although the lack of appropriate animal model has hampered the 

research on adrenarche, the future may offer us new approaches e.g. with genetic engineering 

and stem cell cultures. 

   The clinical significance of our results on genetic variation in candidate genes MC2R, AR, 

LRP5, TCF7L2 and FTO in PA is minor, because the results do not help clinicians to estimate 

the risk of developing PA or to make decisions about the follow-up or treatments of PA 

children. Even the clinical relevance of PA itself is not clear. Although in previous studies PA 

has been associated with risks of cardiovascular disease and hyperandrogenism, large follow-up 

studies are needed to confirm the long-term sequelae. However, we have succeeded in defining 

some factors behind different phenotypes of PA. For example, the results in PA subjects with 

BMI less than the group median showed that higher androgen sensitivity and a higher 

prevalence of a diabetes-related risk variant in TCF7L2 may play a role in the pathogenesis of 

PA. The role of genetic factors in the pathogenesis may be larger in lean PA subjects.  

   Behind different phenotypes of PA, there are different genetic factors to be found together 

with different environmental factors. Follow-up studies on PA children will show how the 

different genotypes and phenotypes are related with risks of consequent disturbances in 

hormonal functions or metabolism in adulthood.  
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6 CONCLUSIONS 
 

We genotyped ten polymorphisms in the MC2R, AR, LRP5, TCF7L2 and FTO genes, and 

determined X-chromosome inactivation patterns in 73 PA children and 97 age- and gender-

matched controls. Based on the differences in genotype distributions and single marker 

association analysis, we can make the following conclusions about the role of genetic variation 

in adrenarche, bearing in mind the limited power of the study. 

 

1) The minor variant of MC2R -2 T>C is more frequent in PP children and is 

associated with higher Δ4-A/cortisol ratio, suggesting a shift in adrenal 

steroidogenesis from corticosteroids to androgens (I). 

2) X-chromosome inactivation plays no major role in the pathogenesis of PA (II). 

3) PA children with a BMI less than the median of the group have a shorter 

mwCAGn in AR, indicating higher androgen sensitivity (III).  

4) PA children with a lower BMI than the median of the group have a higher 

frequency of the diabetes risk-conferring variant of rs7903146 in TCF7L2 (IV).  

5) The obesity-related risk variant of rs9939609 in FTO was found in similar 

frequency in PA and control children, and was not associated with increased 

weight-for-height in PA children (IV). 

6) Genetic variation in LRP5 was not associated with PA, but the minor variants 

were associated with serum DHEAS levels and lipid measures in healthy 

prepubertal children (III). 
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