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Interleukin 2 (IL-2) is asignal molecule of the immune system. The protein encoded by IL-
2 gene is a secreted cytokine that is important for the proliferation of T and B lymphocytes.
It stimulates T cell proliferation and potentiates the apoptotic cell death of antigen-activated
T cells. IL-2 is also required for both induction and self-regulation of T cell-mediated
immune responses.

In this study IL-2 gene was found to be regulated by the nuclear hormone 1a,25(0OH).D3 in
Jurkat cells, which are immortalized T lymphocytes. Combined in silico analysis for
putative 1a,25(0H).D3 response elements (VDRES) and ChlP assays with antibody agai nst
vitamin D receptor (VDR) revealed four possible functional VDRESs, which were located
approximately -8400 bp (ER9), -5400 bp (DR3) and -1500 bp (DR4) upstream and +1500
bp (DR4) downstream from transcription start site (TSS) of the IL-2 gene. Expression
assays in combination with RNAi and cycloheximide confirmed that the IL-2 gene is
repressed by 1a,25(0OH),D3. Taken together, this study confirmed that the IL-2 is a primary
la,25(0OH).D3 target gene, which is regulated viadistal VDREs.
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1. INTRODUCTION

The expression of several genes involved in growth, differentiation and metabolism of
higher organisms is regulated by small compounds, such like steroid hormones or vitamins
A or D. These compounds mediate their actions via specific nuclear receptors (NRs). One
member of nuclear receptor superfamily is vitamin D receptor (VDR), which mediates the
actions of 1la,25-dihydroxyvitamin D3 (1a,25(0OH).D3). The vitamin D3 is synthesized in
the human body with the help of sunlight’ s ultraviolet B (UVB) radiation and hydroxylated
to active form, 1lo,25(0OH).;Ds. 1a,25(0OH),D; is involved in cacium and phosphate
homeostasis and it plays a role in the regulation of proliferation, differentiation and
apoptosis (Dusso et al., 2005). Because of this, 1a,25(0OH).D3 is congdered as a potential

agent in prevention of cancer and autoimmune diseases.

In this study the expression of IL-2 gene in Jurkat cells and the effect of 1a,25(0OH).D3
treatment was examined. It has been shown that IL-2 gene is repressed by 10,25(0OH).D3
(Alroy et al., 1995), but it is not known how specific is the 1a,25(0OH).D3 response, what is
its mechanism of action and which proteins are involved. Thisis why IL-2 was selected as a
topic in our study. The protein encoded by IL-2 gene is a secreted cytokine which is
important for the proliferation of T and B lymphocytes. It stimulates T cell proliferation
and potentiates the apoptotic cell death of antigen-activated T cells (Taniguchi et a., 1983).
IL-2 is also required for both the induction and self-regulation of T cell-mediated immune

responses.

IL-2 has three main activation routes. the Jak-STAT, phosphoinositide 3-kinase
(PI3K)/Akt, and RAS-mitogen-activated protein kinase (MAPK) pathways. The
contributions of these pathways to T-cell function and cytokine-induced gene expression

are essential (Kovanen and Leonard, 2004).

Results of this study help to understand how IL-2 gene is regulated by 1a,25(0OH).D3 at

molecular level and what is the mechanism of that regulation.



2. LITERATURE REVIEW

2.1 Vitamin D

Vitamin D is a hormone rather than a vitamin. Vitamin D and its active form 1la,25-
dihydroxyvitamin D3 (1a,25(0OH)2D3) has many functions in human body. It has many
target organs, tissues and cells. The vitamin D target tissues are shown in Table 1 and target
cellsin Table 2.

The principal role of 1a,25(0OH),D3; in the immune system is to act a an
immunosuppressive agent by down-regulating the activity of T and B cells. The main
targets for vitamin D regulation appear to be T helper cells (TH cells), cytokine profiles of
which 10,25(0OH),D3; modulates (Casteels et a., 1995;Hewison and O’'Riordan, 1997;
Lemire, 1995; Manolagas et a., 1994). This immunoregulatory role of 1a,25(0OH).D3 offers
interesting possibilities for development of new medication for severa autoimmune
diseases including type | diabetes and arthritis as well as for prevention of allograft
rejection after transplantation (Lemire, 1997). The 1a,25(0H).D3 plays an essentia role in
cacium homeostasis and bone metabolism, but there are diverse range of biological actions
that include induction of cell differentiation, inhibition of cell growth, immunomodulation,
and control of other hormonal systems (Dusso et al., 2005). Vitamin D analogs have been
used in treatment of inflammatory skin conditions such as psoriasis and atopic lesions
(Lehmann et al., 2004). It has dso been shown that 1a,25(0OH).Ds suppresses IL-2,
interferon-g and tumor necrosis factor-o. (TNF- o) production in Jurkat cells (Lam et d.,
1974).



Table 1. Tissues that express the vitamin D receptor for the steroid hormone 1a,25(0OH),D; (according
to Norman, 2008)

Tissue distribution
Adipose Muscle. embryonic
Adrenal Muscle, smooth
Bone Osteohlast
Bone marrow Ovary
Brain Pancreas 8 cell
Breast Parathyroad
Cancer cells Parotid
Cartilage Pituitary
Colon Placenta
Eggshell gland Prostate
Epididymis Retina
Hair follicle Skin
Intestine Stomach
Kidney Testis
Liver (fetal) Thymus
Lung Thy roid
Lymphocytes (B & T) Ulerus
Muscle, cardiac Yolk sac (bird)

Table2. 1a,25(0H),D; target cells (according to Deluga et al., 2001)

Proven Putanve
1. Intestinal enterocyte 1. Islet cell, pancreas
2. Okteoblast 2. Endocrine cells,
stomach
3. Distal renal cells 3. Pituitary cells
4. Parathyroid cells 4. Owanan cells
5. Keratinocvies of skin 5. Placenta
6. Promyelocvies, monocvies 6. Epicidymas
7. Lymphocytes 7. Brain (hypothalamus)
8. Colon enterocvies 8. Myoblasts (developing)
9, Shell gland 10, Aortic endothehal cells
1. Chick chonoallantoic 11. Skin fibroblasts

membrane
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2.2 Metabolism of vitamin D

The synthesized form of vitamin D in vertebrates is vitamin Ds, known as cholecalciferol,

while in plants the form is vitamin Dz, which is known as ergocalciferol (Fig. 1).

H,y

i

i
"rll":.'?n Ty,

HOW HO
Vitamin D3 vitamin D2
(Cholecalciferol) {Ergocalciferol)

Figure 1. Nutrional forms of Vitamin D. Two different forms of vitamin D.

The synthesis of vitamin D3 occurs in the skin (Fig. 2), with the aid of sunlight. Vitamin D
can be obtained from the diet, either as D, from plant or D3 from animd products (Fig. 1).
These compounds can be part of normal diet or from supplements. The importance of
vitamin D to normal growth as well as to the overall biology of mammalsis stressed by the
fact that its sufficient supply is normally ensured by the above independent sources. This

feature makes vitamin D unique among other hormones (Jones et a., 1998; Dusso et dl.,
2005).
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Figure 2. Vitamin D3 synthesis, activation and catabolism (adapted from Dusso &t al., 2005).

Vitamin D3 is normally inactive and two hydroxylation steps are needed for its activation.
First, Vitamin D3 is hydroxylated in liver by 25-hydroxylase resulting in 25-
hydroxyvitamin Ds. Next step takes place in kidney by la-hydroxylase resulting in 1la,25-
dihydroxyvitamin Ds. The physiologically most active form, 1a,25-dihydroxyvitamin Ds, is
inactivated by 24-hydroxylase (Dusso et ., 2005).

2.3. Nuclear receptor superfamily

Gene transcription is controlled by specific transcription factors, which bind directly to
DNA. Those proteins bind to specific sequences and recruit cofactors (Kadonaga, 2004).
Some of these proteins form a nuclear receptor (NR) superfamily. Human genome encodes

48 members of this superfamily (Maglich et ., 2001).

Nuclear receptors can be divided in three mgor groups (Fig. 3). These groups are classical
endocrine receptors, adopted orphan receptors and orphan receptors. The endocrine

receptors include estrogen (ER), androgen (AR), retinoic acid (RAR) and vitamin D

12



receptor (VDR) (Chawla et a., 2001). Ligands for these receptors are produced mostly in
human body e.g. vitamin Ds3 is produced in the skin by the photolytic cleavage of 7-
dehydrocholesterol followed by therma isomerization (Dusso et a ., 2005).

The adopted orphan receptors include liver X receptors (LXRs), constitutive androstane
receptor (CAR), peroxisome proliferator activated receptors (PPARS o, B, g) and the
retinoid X receptor (RXR) subtypes a, p and g Many of these receptors are thought to be
nutritional sensors for lipids, fatty acids and cholesterol. These orphan receptors are
considered adopted, because they can bind physiological ligands and display physiological
effects. (Chawlaet al., 2001; Wang and Wan, 2008)

Third group is orphan receptors (Chawla et al., 2001). They are called orphan receptors
because their ligands are unknown (Mangelsdorf et a., 1995). This subgroup is not only the
largest, but also the least characterized of al NRs. Some orphan receptors have genetic

association with different human diseases.

13



Adopted

Endocrine Orphan Orphan
Receptors Receptors Receptors
Ligands: High-affinity, Low-affinity, Unknown

hormonal lipids dietary lipids

RXR o,B,y SF-1
PPAR a,B,y LRH-1
LXR o, DAX-1
FXR SHP
PXR/SXR TLX
CAR PNR
NGFI-B a,B,y

ROR o,f,y
ERR 0,8,y
RVRa,B,y
GCNF

TR 2,4

HNF-4
COUP-TFa,B,y

Figure 3. The Nuclear receptor superfamily (according to Chawla et al., 2001). Human nuclear receptors

can be sorted into three groups.

Nuclear receptors can also be divided according to their binding to DNA. Steroid hormone
receptors can be divided into receptors which form homodimers at response elements (RES)
that have inverted repeat structures (class I), and receptors which form heterodimers with
RXR a REs that have directly repeated structures (class Il). Orphan receptors can be
divided into proteins which bind to DNA as monomers (class 111), and receptors which
form homodimers (class V) or heterodimers with RXR (class V) at REs formed by direct
repeats (Carlberg, 1999).
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2.4 Structure of NRs

Structural organization of nuclear receptors is very similar (Fig. 4A). With just few
exceptions, these proteins contain an NHx-terminal region that harbors a ligand-
independent transcriptional activation function (AF-1); acore DNA-binding domain (DBD)
which contains two highly conserved zinc finger motifs that target the receptor to specific
DNA sequences known as hormone response elements (REs); a hinge region which permits
protein flexibility to allow for simultaneous receptor dimerization and DNA binding; and a
large C-termina region which encompasses the ligand-binding doman (LBD),
dimerization interface, and a ligand-dependent activation functions (AF-2) (Dusso et al.,
2005). Without ligand, the NRs can be associated with corepressor (CoR) proteins and this
way suppress gene activity. After ligand binding, the LBD of NR undergoes a
conformational change which leads to the dissociation of corepressor (CoR) proteins and
association of coactivator (CoA) proteins. This ultimately leads to transcriptional activation
(Sutton et al., 2003) (Fig. 4B).

15



Figure 4. Domain structure of NRs and two step modd of VDR-mediated transcription (adapted from
Sutton et al., 2003). (A) NRs consigt of six domains. The N-terminus (A/B) is variable, the DNA binding
domain DBD isthe most conserved region and contains two zinc fingers. Therole of the hinge region isto be
the connection between the DBD and the ligand-binding domain (LBD). The LBD is mainly responsible for
ligand binding and dimerization and contains the activation function 2 (AF-2). (B) Tempord association of
coactivators during VDR-mediated transcription. The liganded VDR-RXR complex recruits SRCs and
CBP/p300, resulting in the acetylation of histones. The open chromatin template alows binding of the DRIP
complex and entry of the core transcription machinery.
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2.5 Function of NRs

NRs act as transcription factors (TFs) in the cell. They can be located either in the
cytoplasm or in the nucleus and can be activated in many ways. An activated ligand or
hormone, e.g. vitamin Dj, is generated from a pre-cursor or pro-hormone. The ligand for
NRs can be generated either inside or outside of the cell. After synthesis, a hormone or
ligand enters the cytoplasm or the nucleus where it binds to a specific receptor. The ligand
can be also a metabolite which is formed in the cell. There are also aternative ligand
independent pathways for activation of NRs (Aranda and Pascual, 2001). NRs can either
activate or repress target genes by binding directly to response elements (RE) or other
classes of DNA-bound TFs (Glass and Rosenfeld, 2000).

NRs regulate transcription mostly via binding to specific DNA sequences within target
genes. These sequences are RES which contain the consensus sequence RGKTCA (R =A
orG,K=GorT,Y=TorC,M=AorC,N=A,G,CorT)(Fig. 5). NRscan bind to REs
as monomers, homodimers or heterodimers. The retinoid X receptor (RXR) subtype acts as
a common partner for other NRs, such as VDR. Heterodimeric RXR-VDR complex binds
to direct repeat (DR) or everted repeat (ER) type REs (Calberg et al., 2007).

RGKTCA RGKTCA

CKTC » (N)n GKTC » Direct Repeat (DR)
. TGAMCY (N)n RGKTCA » Everted Repeat (ER)

RGKTCA TGAMCY

GKTC » (N)n < GAMC Inverted Repeat (IR)

Figureb. Different typesof NRREs. (R=AorG,K=GorT,Y=TorC,M=AorC,N=A,G,CorT).
Dependingon NR, ncanbe1, 2, 3....ec
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2.6 VDRE and E-box elements

The VDR mediates biological actions of 1a,25(0OH).Ds and its anaogues. VDR forms
heterodimer with RXR. Activation of VDR-RXR complex by ligand allows its binding to
the DNA (Cheskis and Freedman, 1994). There are suggestions that RXR could have an
activerole in 1a,25(0OH).D3-mediated regulation (Bettoun et al., 2003).

The VDR-RXR heterodimer binds to Vitamin D3 Response element (VDRE) which
consists of two half-sites separated by three to four nucleotides (Fig. 5). VDR-RXR
heterodimer preferably binds to direct repeats (DR) with three spacing nucleotides (DR3),
but also DR4 type response elements are common (Wang et al., 2005). It can also bind
everted repeat with 6, 7, 8, or 9 spacing nucleotides (Tavera-mendoza et al., 2006). The
non-liganded form of VDR-RXR complex can also bind DNA, but liganded form gives
stronger DNA-protein interaction (Ross et d., 1993).

E-box-like motif (CANNTG) is an another class of nVDRE in the human loa(OH)ase
promoter. The VDR, activated by 10,25(0OH),D3, does not directly bind to the negative
VDRE, but instead associates with designated VDR interacting repressor (VDIR). VDIR
transactivates through direct binding to this E-box-type element (LanVDRE). However, the
VDIR transactivation function is transrepressed through ligand-induced protein-protein
interaction of VDIR with VDR/RXR (Kim et d., 2007).

18



2.7 Cytokine superfamily

Cytokines are essential mediators of the interactions between activated immune cells and
non-immune cells, including epithelia and mesenchymal cells (Fantini et a ., 2007).

Cytokines are polypeptides produced in response to microbes and other antigens, and they
mediate and regulate immune and inflammatory reactions. Although cytokines are
structurally diverse, they share severa properties. For example, cytokines are characterized
by considerable "redundancy” in that many cytokines appear to share similar functions
(Ozaki and Leonard, 2002).

Cytokines are signaling- and glycoproteins which main function is cell-cell signaling.
While hormones are secreted from specific organs to the blood, and neurotransmitters are
related to neurd activity, the cytokines are a more diverse class of compounds in terms of
origin and purpose. They are produced by a wide variety of hematopoietic and non-
hematopoietic cells and can have autocrine, paracrine and endocrine effects, sometimes

strongly dependent on the presence of other chemicas (Wang et al., 2008).
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The cytokine family consists mainly of small water-soluble proteins and glycoproteins with
a molecular mass between 8 and 30 kDa. Each cytokine binds to a specific cell-surface
receptor (Fig. 6). Subsequent cascades of intracellular signalling then alter cellular
functions. This may include upregulation and/or downregulation of several genes, resulting
in production of other cytokines, an increase in the number of surface receptors for other
molecules or suppression of their own effect by feedback inhibition (Wang et d., 2008).

The effect of a particular cytokine in a given cell depends on the cytokine, its extracellular
abundance, the presence and abundance of the complementary receptor on the cell surface,
and downstream signals activated by receptor binding; these last two factors can vary by
cell type (Ozaki and Leonard, 2002).

Cytokines are critica to the development and function of both innate and adaptive immune
responses. They are often secreted by immune cells that have encountered a pathogen or
chemical compound, such as lipopolysaccaride (LPS), thereby activating and recruiting
further immune cells to increase the system's response to the pathogen (Schmelzer et a.,
2009). Interleukins are one group of cytokines. Other groups are |ymphocines and

chemokines.

2.7.1 Interleukin 2

Interleukin 2 (IL-2) is a signaling molecule of the immune system. It is a 15-kDa a-helical
cytokine produced predominately by activated CD4" and CD8" T cells (Taniguchi et al.,
1983). The protein encoded by this gene is a secreted cytokine that is important for the
proliferation of T and B lymphocytes and it stimulates T cell proliferation and potentiates
the apoptotic cell death of antigen-activated T cells (Taniguchi et d., 1983). IL-2 is also
required for both the induction and self-regulation of T cell-mediated immune responses.
Activation of T cells through the T cell receptor (TCR) and costimulatory molecules such
as CD28 lead to the production of IL-2 and the expression of the IL-2 receptor (IL-2R)
(Willerford et a., 1995).
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The IL-2R is a heterotrimeric protein complex, gamma chain of which is common for all
hematopoietic cells and is also shared by the receptorsfor IL-4, IL-7, IL-9, IL-15, and IL-21
(Leonard, 2001; Nelson et al., 1998). The expression of this gene in mature thymocytesis
monoallelic, which represents an unusua regulatory mode for controlling the precise
expression of a single gene. The transent nature of IL-2 secretion depends on
transcriptiona induction by TCR signals and stabilization of IL-2 mRNA by costimul atory
signals, followed by transcriptional slencing of the IL-2 gene and rapid degradation of the
IL-2 MRNA (Fraser et a., 1991).

The IL-2R heterotrimeric protein complex induces IL-2 signaling that depends on the
cytoplasmic tails of CD122 and yc (Fig. 7). When in close proximity, Jak-3 viayc and Jak-
1 via CD122 phosphorylate key tyrosine residues on CD122, leading to the association of
the adapter Shc and either Stat5 or, to a lesser extent, Stat3. Shc provides a platform to
activate the mitogen-activated protein kinase (MAPK) and the phosphatidylinositol 3-
kinase (P13K) pathways, important for cell growth and surviva (Nelson et al., 1998; Gaffen
et al., 2001; Kovanen and Leonard, 2004). The associated Stats are further phosphorylated,
allowing their dimerization and translocation into the nucleus. In activated T cells Stat5 is
the main IL-2-induced Stat which regulates genes important for the effector function and T
cell growth. Although activation of the MAPK, PI3K, and Stat5 pathways are important for
conventional activated T cells, Stat5 is the main pathway by which IL-2R contributes to the
regulatory T cell (Treg) production and maintenance (Fig. 7) (Kovanen and Leonard,
2004).
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Figure 7: A schematic representation of the major signaling pathways activated by IL-2 (adapted from
Kovanen and Leonard, 2004). Main routes in IL-2 activation are Stat5, PI3-K, MAPK and PTK pathways.
‘PTK’ stands for protein tyrosine kinases activated by IL-2. Some of the PTKs reported to be activated by IL-
2 include Syk, Pyk2, p56lck, p53/p56lyn, and p59fyn.

IL-2 is an autocrine growth factor for T-cells (Bemisset a., 2002). It has been reported that
proliferation of lymphocytes activated with mitogen is inhibited by 1a,25(0OH).D3 and that
the lymphocytes exhibit reduced IL-2 activity (Lam et a., 1974, Tsoukas et a., 1984). In
addition, the 10,,25(0OH).D3 inhibites IL-2 transcription (Alroy et a., 1995).
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Figure 8. TheautocrinelL-2 auto-inhibition loop (according to M alek, 2008).

This autoregulatory loop depends on activation of Stat5 and IL-2-dependent induction of
the transcriptional repressor B lymphocyte maturation protein-1 (Blimp-1) (Fig. 8). Thus,
after antigen-activation of a naive T cell, IL-2 is produced and the high-affinity IL-2R is
expressed. Then the secreted IL-2 binds to the IL-2R leading to Stat5 activation and Blimp-
1 induction and ultimately to the repression of the IL-2 gene (Villarino et a., 2007; Gong et
al., 2007). Blimp-1 is a key downstream mediator of IL-2 repression because ectopic
expression of Blimp-1 in activated T cells inhibits IL-2 production and the 8.4 kb IL-2/GFP
reporter (Martins et al., 2006), and Blimp-1-deficient T cells produce increased 1L-2 (Gong
et al., 2007; Kallies et a., 2006). For example, mice with T cell specific knockout of
Blimp-1 exhibit severe inflammatory bowel disease leading to early death (Gong et al.,
2007; Kallies et al., 2006).

The activation of naive T cells leads to very high expression levels of CD25, which isa part
of IL-2R (Dendrou and Wicker, 2008), through a two-step process (Fig. 8). First, moderate
levels of CD25 are rapidly induced by TCR and costimulatory signals, in part by activation
of NF-xB, NFAT, AP-1, and CREB/AFT. Subsequently, IL-2 binds to the IL-2R and
increases the initia level of CD25 through a Stat5-dependent positive feedback loop. Such
a mechanism increases IL-2 binding and hence signaling by activated T cells through
enhanced capture of IL-2 by CD25 (Kim et al., 2006).

24



3. AIMS OF THE STUDY

This study aims to investigate the mechanism behind the 1a,25(0OH),D3; dependent down-

regulation of the IL-2 gene. More specific aims are as follows:

1. To use actinomycin-D, cycloheximide and RNAI in combination with RT-PCR in
order to study the effect of 1a,25(0OH).D3 to the expression of the IL-2 gene.

2. To identify possible, previously unknown 1a,25(0OH),D3 responding regions within
the distal regions of the IL-2 gene by using in silico and ChlP methods.

3. To monitor the importance of these specific regions to the overall regulation of the

IL-2 gene.

25



4. MATERIALS AND METHODS

4.1 Cell culture

Human immortalized T lymphocytes (Jurkat) were cultured in RPMI-1640 medium
containing 10 % fetal bovine serum (FBS), 2 mM L-glutamine, 0.1 mg/ml streptomycin
and 100 U/ml penicillin in a humified 95 % air / 5 % CO, incubator at 37°C. In the
experiments, FBS was stripped by stirring it with 5 % activated charcoa for 3 h at RT.
Charcoa were removed by centrifugation and sterile filtration. Prior to total RNA,
chromatin extraction and RNAI, the cells were grown overnight in phenol red-free
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 5 % charcoal -stripped
FBS, 2 mM L-glutamine, 0.1 mg/ml streptomycin and 100 U/ml penicillin in a humidified
95 % air / 5 % CO; incubator at 37°C. For expression assays the cells were treated with
phytohemagglutinin  (PHA) (Sigma-Aldrich, St. Louis, MO, USA) and 12-O-
Tetradecanoyl-phorbol-13-acetate (TPA) (Sigma-Aldrich, St. Louis, MO, USA) for 24 h,
followed by an exposure to the ligand. Next the cells were treated either with solvent
(EtOH 0.1 % final concentration) or 10 nM 1a,,25(0OH),D5 (diluted in ethanol).

4.2 PCR-primers

PCR-primers for ChIP analysis (Table 3) were designed with Oligo software (Molecular
Biology Insights, Inc., Cascade, USA) and ordered from Oligomer (Oligomer, Helsinki,
Finland). The PCR conditions were optimized with My-1Q-cycler (BioRad, California,
USA). The PCR cycling conditions used were 5 min at 95°C, 45 cycles for 30 s at 95°C, for
30 sat 50-60°C and for 30 sat 72°C.
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Table3: IL-2 PCR-primersused in ChlP scanning

Sequence Name L ocation Size of amplicon
from TSS (bp)
5 -TTCTACCACCCCCTAAAT-3’ IL-2 proml 1898
5'-TGCCAGGGTGAATCCAA-3 IL-2 prom2 1506 391
5 -TTGGATTCACCCTGGCA-3' IL-2 prom3 1523
5 -GAGGCAGCATAACACTAA-3 IL-2 promd 999 523
5-TTAGTGTTATGCTGCCTC-3 IL-2 prom5 1017
5 -GATGGGACTAATAGCAGC-3 IL-2 prom6 662 354
5'-GCTGCTATTAGTCCCATC-3’ IL-2 prom7 680
5'-TCAACTCCTGCCACAATG-3 IL-2 prom8 272 408
5'-CATTGTGGCAGGAGTTGA-3' IL-2 prom9 290
5 -TCTTGCTCTTGTCCACCA-3 IL-2 prom10 -138 428
5'-TGGTGGACAAGAGCAAGA-3 IL-2 prom11 -574
5'-CCAGGTGATTTAGAGGAT-3’ IL-2 prom12 -120 450
5'-ATCCTCTAAATCACCTGG-3’ IL-2 prom13 -957
5'-TAGACTAAGTGCCTGCCT-3' IL-2 prom14 -552 405
5'-AGGCAGGCACTTAGTCTA-3 IL-2 prom15 -1285
5'-CACCCTCCTCAAAATCCA-3 IL-2 prom16 -939 346
5 -TGGATTTTGAGGAGGGTG-3' IL-2 prom17 -1676
5'-GCCTGAGTGATGATGCTG-3' IL-2 prom18 -1267 409
5'-CAGCATCATCACTCAGGC-3 IL-2 prom19 -2058
5 -CAGGGGGTATGACACAC-3 IL-2 prom20 -1658 400
5'-GTGTGTCATACCCCCTG-3’ IL-2 prom21 -2452
5 -TCTCTGGATGGTGTGGAA-3' IL-2 prom22 -2041 411
5'-TTCCACACCATCCAGAGA-3 IL-2 prom23 -2899
5'-ATGTAGCCTAATGGGTCC-3 IL-2 prom24 -2434 465
5'-GGACCCATTAGGCTACAT-3 IL-2 prom25 -3622
5'-GAAGTCAGTATGGCGATT-3’ IL-2 prom26 -2899 740
5'- AATCGCCATACTGACTTC-3 IL-2 prom27 -4035
5 -AATCTGACAAAAGGGCTA-3 IL-2 prom28 -3604 430
5'- TAGCCCTTTTGTCAGATT-3 IL-2 prom29 -4461
5'-GGAACAAAACAGTGCCC-3 IL-2 prom30 -4017 443
5-GGGCACTGTTTTGTTCC-3 IL-2 prom31 -4846
5'-GAATCCAACTCACAAGGG-3 IL-2 prom32 -4444 402
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5-CCCTTGTGAGTTGGATTC-3 IL-2 prom33 -5251
5'-GACCAACCCACAGCCAA-3 IL-2 prom34 -4828 423
5-TTGGCTGTGGGTTGGTC-3 IL-2 prom35 -5682
5-CTGGTACGATTCCTTCTG-3 IL-2 prom36 -5234 458
5'-CAGAAGGAATCGTACCAG-3 IL-2 prom37 -6520
5-AAAGCACTCCTCAGCAAA-3 IL-2 prom38 -5674 846
5-TTTGCTGAGGAGTGCTTT-3 IL-2 prom39 -7075
5'-AGACTGGCAAACTGGATA-3 IL-2 prom40 -6502 563
5'-TATCCAGTTTGCCAGTCT-3 IL-2 promdl -4792
5'-AGCCCATCAGATTAACAG-3 IL-2 promd2 -7057 435
5-CTGTTAATCTGATGGGCT-3 IL-2 prom43 -8046
5'-GAACCCACGGCAAAGAA-3 IL-2 promd4 -7475 571
5-TTCTTTGCCGTGGGTTC-3 IL-2 promd5 -8493
5'-ATGGCTGGGTACTCCTC-3 IL-2 prom46 -8029 464
5'-GAGGAGTACCCAGCCAT-3 IL-2 promd? -8935
5'-GCACACCACCAAGAGATT-3 IL-2 prom48 -8476 459
5-AATCTCTTGGTGGTGTGC-3 IL-2 prom49 -9380
5'-CATCAAGTGTGCTGGTGT-3 IL-2 prom50 -8917 463
5'-ACACCAGCACACTTGATG-3 IL-2 prom51 -9988
5-AAAGCCACTACAGGAGAA-3 IL-2 prom52 -9362 626

4.3 Total RNA extraction and cDNA synthesis

Tota RNA was extracted usng mini RNA isolation Il kit (Zymo Research, Hiss
Diagnostics, Freiburg, Germany) according to the instructions of the manufacturer. Before
collection, the cells were treated with phytohemagglutinin (PHA) (Sigma-Aldrich, St.
Louis, MO, USA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) (Sigma-Aldrich, St.
Louis, MO, USA) for 24 h, followed by exposure to the ligand. Next, the cells were treated
either with solvent (EtOH 0.1 % fina concentration), 10 nM 1a,25(0OH).D3 (diluted in
ethanol) or with the actinomycin D (Sigma-Aldrich, St. Louis, MO, USA) and incubated
for 3,6 and 24 h. To ensure that IL-2 isaprimary 1a,25(0OH),D3 target gene the cells were
treated simultaneoudy with 10 mM cycloheximide (CHX) (Sigma-Aldrich, St. Louis, MO,
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USA) and 10 nM 1a,25(0OH).Ds. Purity and concentration of RNA were measured by a
NanoDrop ND-1000 (NanoDrop, Wilmington, DE, USA).

Complementary DNA synthesis was performed with Roche Transcriptor First strand cDNA
synthesis kit (Roche Diagnostics GmbH, Mannheim, Germany) according to the

instructions of the manufacturer using 1 pg of total RNA.

4.4 1L-2 expression assays

Red time PCR was performed using a Roche Lightcycler 480 (Roche Diagnostics GmbH,
Mannheim, Germany), TagMan® probes (Applied Biosystems Inc, USA) and TagMan®
Gene Expression Master Mix (Applied biosystems Inc., USA). Each reaction was
performed using specific assay (for IL-2: #4331182; for ribosomal protein, large, PO
(RPLPO): #4333761F), cDNA template and Master mix. PCR cycling conditions were: pre-
incubation for 10 min at 95°C, 45 cycles of 30 sat 95°C and 1 min at 60°C.

Fold inductions were calculated using the formula 2“2, where AACt is the ACt (stimulus)
- ACt(solvent), and ACt is Ct(IL-2) - Ct(RPLPO). Ct is the cycle were the signal crosses the
threshold value and RPLPO is a housekeeping gene.

4.5 In silico screening for putative VDRES

The in silico screening of the VDR binding sites to the 5’-flanking sequence of the IL-2
gene was done by using the RESearch program. Screening was based on the hexameric
coresequence RGKTCA (R=AorG K=GorT,Y=TorC,M=AorC,N=A,G,Cor
T) for VDREs (Fig. 5) and CANNTG for E-box elements (Kim et al., 2007). Only DRS,
DR4, ERG6, ER7, ER8 and ER9 were considered for VDREs.
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4.6 Chromatin immunoprecipitation (ChlP assays)

ChIP assays were performed as previously described (Véisanen et al., 2005). The
antibodies against VDR (sc-1008), NCoR (sc-8994) and pPol 11 (sc-13583) were obtained
from Santa Cruz Biotechnologies (Heidelberg, Germany). The unspecific 1gG was from
Upstate Biotechnology (Upstate Biotechnology Inc, Lake Placid, NY, USA). The DNA
yield and purity were determined by NanoDrop ND-1000 (NanoDrop, Wilmington, DE,
USA). The ChIP templates were analyzed by semi-quantitative real-time PCR. For each of
the 26 regions of the human IL-2 promoter, primer pairs were designed (Table 3),
optimized and controlled by running PCR with 25 ng genomic DNA (input) as a template.
When running immunoprecipitated DNA (output) as a template, the following PCR profile
was used: pre-incubation for 5 min at 95°C, 38 cycles of 30 s at 95°C, 30 s a a primer-
specific annealing temperature and 30 s a 72°C, and one final incubation for 10 min at
72°C. The PCR products were separated by electrophoresis through 2 % agarose gels. Gel
images were scanned on a FL A-3000 reader (Fuji, Tokyo, Jgpan) and analyzed using Image
Gauge software (Fuji, Tokyo, Japan).

4.7 RNA interference

Before siRNA transfections the Jurkat cells were split to 500 000 cells/ml/well in 6-well
plates. The cells were transfected with Stealth™ siRNAs targeting the VDR mRNA
(Invitrogen, Carlsbad, California, USA) or non-specific sSIRNA oligomers (Invitrogen,
Carlsbad, California, USA) with Interferin reagent (Poly-Plus-transfection, Illkirch, France)
according to the instructions of the manufacturer. The transfection reagent and oligos were
diluted within GIBCO™ Opti-MEM (Invitrogen, Carlsbad, CA, USA) and pipetted onto
the cells. Total protein extraction for Western blot was performed 72 h after the onset of the

transfection.
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4.8 Western Blot

The cells were collected and suspended to a lysis buffer. Tota protein concentration was
measured with Victor® (Perkin Elmer, Massachusetts, USA) at wave length 595 nm using
Bio-Rad protein assay (BioRad, California, USA). Bovine serum albumin (BSA) (2 mg/ml)
was used as a standard.

Silencing of VDR at the protein level was verified using 25 pg of whole cell extract from
Jurkat cells and anti VDR antibody (sc-1008, Santa Cruz Biotechnologies, Heidelberg,
Germany). Anti -actin antibody (Sigma Aldrich, St. Louis, MO, USA) was used to control
for equal protein loading. Cellular proteins were separated using 9% SDS polyacrylamide
gel electrophoresis. The blotted proteins were blocked and incubated with antibodies by
using SNAP i.d. Protein Detection System (Millipore Corporation, Billerica, MA, USA)
according to the manufacturer’s instructions. DyLight™ 800 conjugated goat anti-rabbit
IgG (Thermo Fisher Scientific Inc, Rockford, IL, USA) was used for detection. Detected
proteins were visudized using the Odyssey Infrared Imaging System (LI-COR
Biotechnology, Nebraska, USA).
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5. RESULTS

5.1 Cell line selection

At the beginning of the study, severa cell lines tested for IL-2 expression. Reverse
transcriptase PCR was performed to measure basal expression of I1L-2. Best cdll line was
Jurkat (Fig. 9). Primers used for PCR were 5'-CAAGAATCCCAAACTCACCAG-3 and
5-GTTTCAGATCCCTTTAGTTCCA-3 for IL-2 and 5'-
GTGGTGATACCTAAAGCCTG-3 and 5-AGATGCAGCAGATCCGCA-3' for control
36B4. The PCR cycling conditions used were 5 min at 95 °C, 45 cycles for 30 s at 95 °C,
for 30 sat 60 °C and for 30 sat 72 °C.

a¥

=

] 1
£ O O 36B4
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B HEK293

Figure9. IL-2 basal expression in variouscell lines.
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5.2 RT-PCR

The expression levels of IL-2 gene and its response to 1a,25(0H).D3 in Jurkat cells were
monitored by real-time quantative PCR in relation to the control gene RPLPO (Fig. 10). The
expression of IL-2 gene decreased significantly after 3 and 6 h treatment and returned back
to the basal level after 24 h treatment. The lowest fold change (0.5-fold) could be observed
6 h after onset of 1a,25(0OH),D3 treatment.

Relative /IL-2 mRNA
expression

0 3 6 24
10,25(0OH),D5 treatment time (h)

Figure 10. The effect of 1a,25(0OH).D; to the expression of the IL-2 gene in Jurkat cdls. RT-PCR was
used to determine the ratio of the 10,25(0OH),D3 induced mRNA expression of the IL-2 gene relative to the
control gene RPLPO. Fold changes relative to basal leve (0 h) were determined after 3, 6 and 24 h treatments
with 10,25(0H),D;. Stetistical significance was calculated with the 2-tailed unpaired Student’s t-test
(*p<0.05, **p<0.01) using GraphPad Prism software (GraphPad Software Inc., La Jolla, CA, USA).
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5.3 RNAI

The effect of silencing of the VDR mRNA to the IL-2 gene expression was studied using
the sSIRNA technique. The cells were transfected with unspecific control SSRNA oligomers
or with specific sSIRNAs against the VDR mRNA. The siRNA treatment time was 72 h.
After SIRNA treatment, the cells were further treated with 10 nM 1a,25(OH).D3 for 6 h.
Western blot confirmed that the VDR protein was down-regulated by VDR siRNA
treatment (Fig. 11A). Quantitative rea-time PCR analysis showed that siVDR treatment
increased 1L-2 mRNA expression in Jurkat cells. When unspecific SRNA was used,
la,25(0OH).D3 was able to down-regulate IL-2 mMRNA expression 0.5-fold (Fig. 11B).

e

siCTRL siVDR 1.75+

Figure 11. The effect of slencing of the VDR to the ligand dependent IL-2 expression. RT-gPCR and
western blot were used to determine effect of VDR-specific SRNA on the mRNA expression of IL-2 genein
Jurkat cels. (A) Silencing of VDR at protein level. Representétive blots are shown. (B) Relative IL-2 mRNA
expresson after silencing of the VDR. Columns represent the means of at least three independent treatments
and the bars represent standard deviations. Statistica significance was calculated with the 2-tailed unpaired
Student’ s t-test (*p<0.05, **p<0.01) using GraphPad Prism software (GraphPad Software Inc., La Jolla, CA,
USA).
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5.4 Effect of actinomycin-D and cycloheximide to the IL-2 mRNA
expression

The stability of IL-2 mRNA was determined with actinomycin-D treatment. The expression
of IL-2 mRNA decreased significantly after 1 h treatment with actinomycin-D (Fig. 12A).
The primary 1a,25(0OH).D3 target gene IL-2 mRNA levels decreased significantly after 3 h
of 10 mM CHX and 1a,25(0OH).D3 treatment. The lowest fold change (0.6-fold) was
observed 3 h after CHX and 1a,25(0OH),D3 treatment (Fig. 12B).

A

1.0

0.8+

EC50=1.185

0.6+

0.4+

expression

0.24

Relative IL-2 mRNA

—

L
0.0 T T T 1l 1
0 2 4 6 823 24

Actinomycin-D treatment time (h)

0.84

0.6+ * Xk

0.4+

expression

0.24

Relative IL-2 mRNA

0.0<
0 3 6 24

1a,25(0OH),D; treatment time (h)

Figure 12. Expression profiles of the human IL-2 gene. (A) PHA and TPA induced Jurkat cells were
treated with 20 nM actinomycin-D for indicated times. EC50=1.185 (B) The IL-2 mRNA expression after 3 h,
6 h and 24 h trestments with 10 nM 10,25(0OH),D3 in the presence of 10 mM CHX. Columns represent the
means of at least three independent treatments and the bars represent standard deviations. Statistical
significance was cal cul ated with the 2-tailed unpaired Student’s t-test (* p<0.05, **p<0.01, ***p<0.001) using
GraphPad Prism software (GraphPad Software Inc., La Jolla, CA, USA).
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5.5 In silico and ChIP scanning results for putative VDRESs

In silico screening of the IL-2 gene reveaded four putative VDREs when the consensus
hexameric sequence RGKTCA was used and four possible E-box elements when the
consensus sequence CANNTG was used (Fig. 13A). Three VDRESs located upstream and
one downstream of the IL-2 TSS. All E-box elements located upstream of the IL-2 TSS. All
of the putative VDRES contain one motif with one nucleotide mismatch compared to
VDRE consensus sequence RGKTCA. Two of the REs were DR4-types, one DR3-type and
one ER9-type (Fig. 13 A).

In order to find out whether VDR is associated with the found putative VDREs, ChIP
assays were performed using chromatin that was extracted from PHA and TPA treated
Jurkat cells which were stimulated for 60, 120 and 180 min with 1a,25(0OH).D3 (Fig 13B).
Results suggest that the VDR associates with regions 23 (-8493 to -8029), 21 (-7492 to -
7057), 20 (-7075 to -6502), 17 (-5251 to -4828), 14 (-4035 to -3604), 9 (-1676 to -1267), 8
(-1285 to -939) and 1 (1506 to 1898) (Fig. 13B). Strongest binding of VDR was observed
after 60 min, 120 min and 180 min treatments.
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Figure 13. Putative VDRESs and ligand dependent recruitment of VDR within the IL-2 gene. (A) Four putative VDREs were revealed by in silico

Chromatin was extracted from Jurkat cells, which were treated with 10 nM 1a,25-dihydroxyvitamin D3 for indicated times. ChlP assays were performed

screening. Three of the V DRE candidates are located upstream and one downstream, and four E-box elements are located upstream of the IL-2 TSS. (B)
using anti-V DR antibody or nonspecific IgG.



5.6 ChlIP results for selected VDREs

According to the ChIP scanning results, regions 23, 21, 20, 17, 14, 9, 8 and 1 (Fig. 13B)
recruited VDR. These were thus studied further to clarify if NCoR and pPol Il were also
present. The results suggest that NCoR associates with regions 23, 21, 20, 17, 14 and 8
after 30 min and disappears after 120 min of treatment (Fig. 14). pPol Il associates with
regions 21, 14 and 8 at 60 min treatment. The strongest recruitment of NCoR was observed
with 30 min and 120 min ligand treatments while the strongest recruitment of pPol 1l was
observed without ligand (Fig 14).

NCoR pPol II IgG
Time (min) Time (min) Time (min)
0 30 60 120 180 0 30 60 120 180 0 30 60 120 180

Regions

Figure 14. Association of VDR containing regions with NCoR and pPoal 11. Chromatin was extracted from
Jurkat cells which were treated with 10 nM 10,25(0OH),D; for indicated times. ChlP assays were performed
using anti-NCoR or anti-pPol |1 antibodies.
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6. DISCUSSION

This study confirms previous findings that the expression of the IL-2 gene is down-
regulated by the nuclear hormone 1a,25(0OH).D3 in Jurkat cells (Lam et al., 1974; Tsoukas
et a., 1984; Alroy et al., 1995). Different repression mechanisms have been proposed for
steroid/nuclear receptor family members. In some cases, DNA binding is required
(Diamond et al., 1990), while in other examples protein-protein interactions appear to be
sufficient in conferring repression (Kerppola et al., 1993, Jonat et al., 1990). Therefore, it

was interesting to try to clarify the repression mechanism of 1L-2 by VDR.

In this study, 1a,25(0H),Ds-dependent responses of IL-2 were studied in Jurkat cells. The
observed 0.6-fold repression by 10,25(0OH).D3 is not a very strong downregulation. We
tested the basal expression levels of IL-2 aso in other cell lines (MonoMac, THP and
HEK293), but detected hardly any (Fig. 9). In addition, the Jurkat cells had to be activated
by PHA and TPA before IL-2 expression could be observed. Our data confirms the
previous findings of Alroy and co-workers that Jurkat is the only cell line which expresses
IL-2 genein high levels (Alroy et a., 1995).

When the VDR was silenced in Jurkat cells by usng siRNA, the 1a,25(0OH).D3 treatment
had no effect on the IL-2 expression. When unspecific SRNA was used, 1a,25(0OH).D3; was
able to down-regulate 1L-2 mRNA expression 0.5-fold (Fig. 11). This confirms that IL-2
geneisregulated by 1a,25(0OH).Ds.

Actinomycin D is a cyclic polypeptide-containing antibiotic that inhibits RNA synthesis. It
binds to B-DNA found within the boundaries where double-stranded DNA connects with
single-stranded DNA in the transcriptional complex. This immobilizes the complex,
interfering with the elongation of growing RNA chains. Nucleolar (ribosomal) RNA
synthesis is particularly sensitive to the presence of actinomycin, and this probably
accounts for its pharmacological activity as well as its extreme toxicity to mammalian cells
(Sobell, 1985). In this study actinomycin D was used to determine the stability of IL-2
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MRNA. The expression of IL-2 mRNA decreased significantly after 1 h treatment with
actinomycin-D and IL-2 mRNA half-life was determined to be 1.185 hours (Fig. 12A).

Cycloheximide is an inhibitor of protein biosynthesis. Cycloheximide exerts its effect by
interfering with the translocation step in protein synthesis and blocking trandational
elongation. It works rapidly and its effects are rapidly reversed by simply removing it from
the culture medium. It may be used to distinguish between genes expressed in organelles
and genes expressed in the nucleus. Genes expressed in the eukaryotic nucleus will not be
expressed in the presence of cycloheximide (Kay and Korner, 1966) and thus
cycloheximide can be used to determine if the gene of interest is a primary target gene for a
given treatment. In this study IL-2 was confirmed to be a primary 1a,25(0H).D; target
gene (Fig 13B).

In this study, we have shown that the expression of IL-2 was increased by PHA and TPA
treatments and repressed by 1a,25(0OH).D3 treatment. Our data is in agreement with
previously published data (Alroy et a., 1995). IL-2 repression induced by 1a,25(0H),D3
seems to be transient, because 24 h after the onset of 10,25(0OH),D3 treatment the mRNA
levels of IL-2 returned to basal level (Fig 10).

In silico scanning revealed four putative VDRESs and four candidate E-box binding sitesin
our standard 10 000 bp upstream and 2 000 bp downstream promoter search. Three VDRES
and four E-box binding elements located upstream from TSS and one downstream from
TSS. We also performed ChlP scanning for the whole region and found three more possible
VDR binding sites. According to Carlberg and co-workers (2007) the expression of
la,25(0OH).D3-induced genes relies on multiple REs. Therefore it is possible that the REs
can work together. However this possibility cannot be ruled out until ChlP experiments are
performed. Finaly it is possible that in isolation the regions containing the REs are
suppressive in isolation, and rely on other elements to drive positive transcriptional
response. It was shown by Murayama et a. (2004) that the bHLH-type transcriptional
activator (VDIR) binds the suppressing element in the CYP27B1 gene. In the presence of
ligand VDR binds to VDIR and causes the recruitment of CoRs. Subsequently it has been
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shown by Turunen and colleagues (2007) that additional classical V DREs participate in this
process as well. These elements contain traditional structures that bind VDR-RXR
heterodimers. Therefore in their model these additional VDREs help in the execution of the
response and there is a master regulator that does not necessary require direct DNA binding
of VDR.

A more detailed ChlIP analysis of the seven pre-scanned VDRES showed the strongest
recruitment of VDR at regions 23, 21, 20, 17, 9 and 8 a 60 min after the onset of
la,25(0OH),D3 treatment, and 21 and 20 at 120 min after the onset of 10,25(0OH).D3
treatment. It is possible that there are some binding sites that are not found. There are some
E-box binding sites or other binding sites which associate with VDR (Kim et d., 2007). It
isalso possible that I1L-2 gene is regulated via multiple VDREs (Saraméki et d., 2006, Kim
et a., 2007).

The ChIP data is in agreement with the mRNA expression profile of the IL-2 where
significant fold change can be seen after 3 h treatment. We aso used antibodies against
other transcription factors, such as NCoR and pPol Il, to identify true transcriptional
activity. Rising intensity of the binding of NCoR indicates that the IL-2 gene was repressed
after 1a,25(0OH),D3 treatment. The disappearance of pPol Il binding, thus indicating
reduced polymerase activity, corroborates the repression of 1L-2 gene upon 1a,25(0H),D3

treatment.

In conclusion, this study demonstrates that the IL-2 is a primary 1a,25(0OH).D3 target gene,
containing seven possible VDR associated regions. Four of these regions contained
classical VDRES and the other three E-box elements. Real time PCR demonstrated that 1L-2
is negatively regulated by 10,25(0OH).D,. This was confirmed by ChIP which showed
arrested transcriptional activation of IL-2 upon 1a,25(0OH),D3; treatment. SIRNA results
confirmed that I1L-2 is indeed regulated via VDR. This study provided insight into the
mechanism of transcriptional downregulation by 1a,25(0OH).Ds, which is at the moment
poorly understood, although according to recent micro array data approximately 50 % of all
la,25(0OH),D3 responding genes are downregulated this VDR ligand (Swami et al., 2003).
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Further studies are thus needed to understand the mechanisms of how VDR-RXR regulates
IL-2. For example, a 3C analysis would be required to see whether these relatively distal
elements loop to the TSSs and what are the kinetics of this possible looping. In the future,
discovery of TF binding sites over the whole genome in vivo by ChiP-seq analysis would
help in the identification of response element networks that regulate genes upon a particular
stimulus. This would narrow down the number of sequences in which to search for REs by
computer methods and thus improve this method considerably. There are lots to be done
before we can fully understand the whole mechanism behind the transcriptional regulation
of IL-2.
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