
STREPTOMYCETES IN INDOOR ENVIRONMENTS -
PCR BASED DETECTION AND DIVERSITY

Helena Rintala

National Public Health Institute
Department of Environmental Health

Laboratory of Environmental Microbiology
P.O. Box 95, FIN-70701 Kuopio, Finland

and

University of Kuopio
Department of Environmental Sciences

P.O. Box 1627, FIN-70211 Kuopio, Finland

ACADEMIC DISSERTATION

To be presented with the permission of the Faculty of Natural and Environmental Sciences of

the University of Kuopio for public examination in Auditorium L21 in the Snellmania

building, University of Kuopio, on Friday 21st of February 2003, at 12 o’clock noon.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEF Electronic Publications

https://core.ac.uk/display/15167684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Publisher: National Public Health Institute
Mannerheimintie 166
FIN-00300 Helsinki, Finland
Phone + 358 9 47441
Telefax + 358 9 47448408

Author’s address: National Public Health Institute
Department of Environmental Health
P.O. Box 95,
FIN-70701 Kuopio, Finland
Phone + 358 17 201164
Telefax + 358 17 201155
E-mail helena.rintala@ktl.fi

Supervisors: Merja Kontro, Ph.D.
University of Helsinki,
Department of Ecological and Environmental Sciences
Lahti, Finland

Docent Aino Nevalainen, Ph.D.
National Public Health Institute
Department of Environmental Health
Kuopio, Finland

Reviewers: Dr. Richard Haugland
US EPA, National Exposure Research Laboratory
Cincinnati, USA

Emeritusprofessor Pekka Mäntsälä
University of Turku
Department of Biochemistry and Food Chemistry
Turku, Finland

Opponent: Professor Atte von Wright
University of Kuopio
Institute of Applied Biotechnology
Kuopio, Finland

ISBN 951-740-336-4
ISSN 0359-3584

ISBN (pdf-version) 951-740-337-2
ISSN (pdf-version) 1458-6290

Kuopio University Printing Office, Kuopio, Finland, 2003



Rintala, Helena. Streptomycetes in Indoor Environments - PCR Based Detection and
Diversity. Publications of the National Public Health Institute A2/2003. 69 p.
ISBN 951-740-336-4, ISSN 0359-3584
ISBN (pdf-version) 951-740-337-2, ISSN (pdf-version) 1458-6290

ABSTRACT

Streptomycetes are a group of environmental bacteria present in almost all kinds of
environments. They are common in soil, but also found in sediments, composts and fodder,
aquatic habitats, and buildings. In buildings they have been associated with moisture
conditions that enable microbial growth, and thus, considered as indicators of moisture and
microbial damage. Streptomycetes are also potent inducers of inflammatory responses in vitro
and in vivo and therefore, possible causes of adverse health effects in moisture damaged
buildings.

A PCR based detection method was applied and tested with soil, building material and dust
samples. According to the current sequence information, the PCR primers were specific for
streptomycetes. The method proved to be specific also in experiments using potentially
interfering microbes and environmental samples as template DNA. The results were
confirmed by sequencing.

Streptomycetes were detected in 81 % of the dust samples (N=47) by PCR and mesophilic
actinomycetes in 36 % of the samples by culture. The results of culture and PCR did not
correlate well with each other, which may have several reasons. The amount of negative
samples was higher by culture, indicating that the sensitivity of the method is poorer. The
slow-growing streptomycetes were probably overgrown by other microbes and remained
undetected. PCR amplification may have been affected by inhibiting agents present in
environmental samples and co-purified with DNA. The amount of streptomycete -specific
PCR amplification product was higher in dust samples collected from moisture-damaged
houses than in dust from non-damaged residences (p < 0.05, Mann-Whitney test).

The diversity of streptomycetes in indoor environments was investigated by characterising
Streptomyces strains isolated from indoor air (N=9), building materials (N=2), and house dust
(N=15) by 16S rDNA sequencing. In a phylogenetic tree, the majority of these strains (16)
affiliated with the Streptomyces griseus –cluster, which is the largest cluster of the genus,
inhabiting many secondary metabolite-producing species. Another four strains grouped with
members of the Streptomyces albidoflavus –cluster and a third group affiliated with
Streptomyces cyaneus and with the model actinomycete Streptomyces coelicolor A3(2). Two
isolates showed no clear affiliation to known sequences.

The results of a culture-independent approach, which included direct PCR amplification of
the 16S rDNA from template DNA isolated from building materials, sequencing and sequence
analysis, revealed that these sequences generally clustered with the same species than cultured
strains. However, a somewhat broader diversity was detected indicating that this approach
could be useful for detecting strains that are not easily cultured.
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1 INTRODUCTION

Streptomycetes are Gram-positive, filamentous soil bacteria that undergo morphological

differentiation during their life cycle. They normally occur as spores, but in the presence of

sufficient moisture and nutrients, the spores can germinate and form vegetative mycelium. In

response to environmental signals, such as a shortage of nutrients or water, the process of

differentiation is set in motion, and spores resistant to desiccation and starvation are formed

again. At the same time, the production of pigments, antibiotics and other secondary

metabolites is initiated (Kutzner 1986, Williams et al. 1989).

Streptomycetes are common in soil, but also found in composts, fodder and aquatic habitats.

Due to their characteristic life cycle, they are good survivors under the fluctuating growth

conditions predominating in nature (Kutzner 1986). Streptomycetes have also been isolated

from indoor environments, from air, building material and dust samples (Nevalainen et al.

1991, Andersson et al. 1999, Hyvärinen et al. 2002). They are considered as indicators of

moisture conditions in buildings that are favourable for microbial growth (Samson et al.

1994).

Streptomycetes are known to be producers of many secondary metabolites, which have

different biological activities, such as antibacterial, antifungal, antiparasitic, antitumor, and

immunosuppressive actions (Demain 1999). They are not particularly pathogenic, although

some species can also cause infections (Mishra et al. 1980), but they have been shown to be

potent inducers of inflammatory responses in vitro and in vivo (Hirvonen et al. 1997b, Jussila

et al. 2002).

Culture methods are currently used for the exposure assessment of microbes in indoor

environments. However, it has been estimated that only 0.001-15 % of the environmental

microbial population can be cultured (Amann et al. 1995), for indoor environments a value of

1% cultivability has been reported (Toivola et al. 2002). PCR-based detection methods are

culture-independent and potentially more sensitive than culturing, and thus, can provide better

tools for exposure assessment (Alvarez et al. 1994, Zhou et al. 2000, Roe et al. 2001). PCR

based methods for detection of some indoor microbes, though not for streptomycetes, have

been reported (Bartlett et al. 1997, Haugland et al. 1999a, Zhou et al. 2000, Cruz-Perez et al.

2001b). Since streptomycetes are frequently isolated from moisture damaged buildings, their

enhanced detection will facilitate the assessment of their prevalence and possible connection

to adverse health effects experienced by occupants of these buildings.
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2 REVIEW OF LITERATURE

2.1 The genus Streptomyces

The streptomycetes are aerobic, Gram-positive bacteria, which produce extensive branching

vegetative (substrate) mycelium and aerial mycelium bearing chains of arthrospores. The

substrate mycelium and spores can be pigmented, but also diffusible pigments are produced

(Williams et al. 1989). On agar plates, they form lichenoid, leathery or butyrous colonies

(Williams et al. 1989). The GC-content of the DNA is 69-78 % (Williams et al. 1989). L-

diaminopimelic acid is the characteristic compound present in the cell wall peptidoglycan of

streptomycetes (Lechevalier and Lechevalier 1970). The streptomycetes are able to utilise a

wide range of organic compounds as a carbon source, including complex biological materials,

such as cellulose and lignin, and can also utilise an inorganic nitrogen source (Kutzner 1986).

They are also known as producers of many secondary metabolites, such as antibiotics and

other bioactive compounds (Williams et al. 1989, Kutzner 1986). These bacteria are widely

distributed in various habitats, including man-made environments.

2.1.1 Classification

The number of species in the genus Streptomyces is increasing continually. In 1997, 464

validly described species and 45 subspecies were reported (Hain et al. 1997), in September

2002 there were over 650 species listed in the German Collection of Microorganisms and Cell

Cultures (DSMZ). Thus, the genus is the largest of the order Actinomycetales within the class

Actinobacteria (Stackebrandt et al. 1997). The genera Streptoverticillium and Kitasatospora

have been included in the genus Streptomyces (Witt and Stackebrandt 1990, Wellington et al.

1992), although the taxonomic position of Kitasatospora is unclear (Zhang et al. 1997).

The classification of streptomycetes was originally based on morphological and biochemical

characterisation, later on physiological tests (Kutzner 1986, Williams et al. 1983, Goodfellow

et al. 1987, Kämpfer et al. 1991, Goodfellow et al. 1992). Serological methods (Ridell et al.

1986), phage typing (Korn-Wendish and Schneider 1992) and protein profiling (Ochi 1995,

Taguchi et al. 1997) have also been used in their classification. The application of genetic

methods, such as DNA-DNA reassociation (Labeda 1992, Kim et al. 1999) and 16S rRNA

gene sequence analysis (Gladek et al. 1985, Stackebrandt et al. 1992, Kim et al. 1996,
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Takeuchi et al. 1996, Hain et al. 1997, Kataoka et al. 1997, Kim et al. 1999) has partly

confirmed the phenotypic classification, but this approach has also provided new information.

The review by Anderson and Wellington (2001) summarises all of the approaches to clarify

the taxonomy of streptomycetes; however, this field remains somewhat confused.

According to all classifications, the streptomycetes can be divided into major, minor and

single member clusters. The major clusters consist of six or more type strains and are

considered as species groups and the minor clusters of two to five type strains could be

considered as one species. The number and composition of clusters vary to a greater or lesser

extent depending on the approach used, but the major clusters seem to be quite consistent

(Anderson and Wellington 2001). The largest is the Streptomyces albidoflavus –cluster, which

consists of 71 strains and has been divided into subclusters.  The most important of these are

S. albidoflavus, Streptomyces anulatus and Streptomyces halstedii subclusters (Williams et al.

1983).

2.1.2 Identification

A probabilistic identification matrix for streptomycetes, based on 41 characters like spore

chain and spore morphology, pigmentation, physiological abilities, antibiosis and resistance to

antibiotics, was developed by Williams et al. (1983). This scheme was applied to unknown

isolates, 80 % of which could be assigned to a cluster. Kämpfer et al. (1991) revised the data

using more characters and testing more strains and comparing the data with published genetic

and chemotaxonomic data. Goodfellow et al. (1992) supplemented the method with rapid

enzyme tests using fluorogenic substrates. Phage sensitivity and serological as well as cellular

fatty acid characterisation can be useful for assigning an unknown isolate to the genus

Streptomyces, however, these methods have difficulties to discriminate the species at the

intragenus level (Anderson and Wellington 2001).

DNA based molecular methods have been used for species differentiation and the

identification of streptomycetes. DNA-DNA reassociation is a method measuring the DNA

relatedness of two organisms and has proved to be suitable for the investigation of

relationships between closely related taxa, such as species (Stackebrandt and Goebel 1994).

Strains belonging to the same species will generally have greater than 70 % DNA-DNA

relatedness (Stackebrandt and Goebel 1994). The method has been used in numerous studies
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dealing with streptomycetes; in some cases it has shown good correlation with the

identification based on morphology and physiology, but in other cases there was no apparent

correlation (Healy and Lambert 1991, Doering-Saad et al. 1992, Labeda 1992, Labeda and

Lyons 1992, Kim et al. 1999, Bouchek-Mechiche et al. 2000). While DNA-DNA

reassociation has shown to be useful in the identification of Streptomyces species, because of

the instability of the genome, it should not be used alone, but in connection with other tests

(Anderson and Wellington 2001).

The sequence analysis of the genes coding for the ribosomal subunits (16S, 23S, and 5S

rRNA), in particular the 16S rRNA gene, has become an important tool in bacterial

identification, since it provides information about the phylogenetic placement of species

(Woese 1987, Brenner et al. 2001). The DNA sequences of the ribosomal genes are highly

conserved, but the genes also contain variable regions, which sometimes can be useful for

species discrimination (Stackebrandt and Goebel 1994, Rosselló-Mora and Amann, 2001).

Kataoka et al. (1997) utilised the hypervariable region of the 16S rRNA gene to create an

index for Streptomyces species identification. However, the 16S rDNA sequence information

alone is not sufficient for species identification (Rosselló-Mora and Amann, 2001). Also

repetitive intergenic DNA sequences (rep-PCR) (Sadowsky et al. 1996), and PCR-RFLP of

the 65-kDa heat shock protein gene (Steingrube et al. 1997) have been used for the

classification and identification of pathogenic and other clinically important Streptomyces

species.

2.1.3 Isolation methods

There is no single correct way to selectively isolate streptomycetes from environmental

samples. Some pre-treatment methods have been used for the enrichment, such as heating or

treating with ammonia and sodium hypochlorite, chloramine or CaCO3, these being based on

the fact that streptomycete spores are more resistant to these treatments than Gram-negative

bacteria (Kutzner 1986, Goodfellow and Simpson 1987).

Further selectivity can be achieved by using selective nutrient sources in the cultivation

media. In contrast to many other bacteria, streptomycetes are able to utilise many biopolymers

and are satisfied with an inorganic nitrogen source like nitrate (Kutzner 1986, Goodfellow and

Simpson 1987, Williams et al. 1989). Isolation media containing starch or glycerol as the
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carbon source and nitrate, casein or arginine as the nitrogen source have proven to be the most

effective growth media for selective isolation of streptomycetes (Kutzner 1986).

The addition of antifungal agents to the isolation media suppresses the growth of fungal

species on the plates, however antibacterial antibiotics cannot be used to reduce the amount of

other bacterial isolates because they will also inhibit the growth of many streptomycetes.

Cycloheximide (50-100 µg/ml), as well as pimaricin and nystatin (10-50 µg/ml) have been

used (Kutzner 1986).

Mesophilic streptomycetes are usually cultivated at temperatures from 22 to 37 °C for 14 days

and thermophilic species at 40 to 55 °C for 5 days (Kutzner 1986, Goodfellow and Simpson

1987, Williams et al. 1989). Most streptomycetes are neutrophilic, and the isolation media

commonly have a neutral pH, thus, if acidophilic strains are to be isolated, the pH of the

medium can be adjusted to 4.5, and for alkalophilic strains to pH 10-11. However, some

species may also show remarkable adaptation to a wide pH range (Suutari et al. 2000).

2.1.4 Molecular detection methods

Stackebrandt et al. (1991) and Mehling et al. (1995) used 16S rDNA sequencing to determine

those regions suitable for detection of streptomycetes, and proposed a genus-specific probe

and primers targeting the 16S rRNA gene. However, all of them do not perfectly match all of

the streptomycete sequences currently available. Huddleston et al. (1997) described a method

for the molecular detection of streptomycin-producing streptomycetes in soil with DNA

probes targeting the streptomycin biosynthetic genes. Roberts and Crawford (2000) applied

randomly amplified polymorphic DNA (RAPD) PCR for the development of a strain-specific

DNA probe for Streptomyces lydicus.

2.1.5 Occurrence of streptomycetes in natural and man-made environments

Streptomycetes are able to produce extracellular enzymes (Morosoli et al. 1997), which can

decompose various materials. As reviewed by Williams (1985), streptomycetes have been

implicated in the biodeterioration of silicone and natural rubber, wool, PVC plastic, cotton,

jute fibre, wood, hay and grain. Jendrossek et al. (1997) isolated 50 rubber-degrading
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actinomycetes, from which 33 were identified as streptomycetes. Mesophilic actinomycetes,

many of which belong to the genus Streptomyces, have been frequently isolated from all kinds

of building materials, especially from ceramic materials, paints and glues (Hyvärinen et al.

2002). They are able to grow and proliferate on plasterboards (Murtoniemi et al. 2002).

Soil

Soil is the most common habitat of streptomycetes, those bacteria can be found in all kinds of

soils (Kutzner 1986, Williams et al. 1989). It has been observed that the streptomycetes in soil

grow attached to surfaces, such as plant residues or fungal hyphae (Mayfield et al. 1972), and

they may have an important ecological role in the degradation of litter in soil (Khan and

Williams 1975, Kutzner 1986, Goodfellow and Simpson 1987). The largest concentrations of

streptomycetes can be found in the organic horizon (Hagedorn 1976).

In most soils, streptomycetes comprise 1-20 % of the total viable count (Kutzner et al. 1986),

and 64-97 % of the cultivable actinomycetes (Xu et al. 1996, Wang et al. 1999). The more

arid the soil and cooler the climate, the higher the percentage of the streptomycetes in the total

count of actinomycetes (Xu et al. 1996). In coniferous forest soil in Finland, streptomycetes

represented 5 % of the viable count (Elo et al. 2000). Plate counts of streptomycetes in acidic

soils, peat and mine waste ranged from 103-106 cfu / g dry wt soil (Khan and Williams 1975).

Streptomycetes may play a role in promoting plant growth, through control of root pathogens

or in some indirect way, since some species are able to produce antifungal compounds (Yuan

and Crawford 1995, Hamby and Crawford 2000). Streptomycetes are commercially used as

biocontrol agents (Raatikainen 1995). On the other hand, Streptomyces spp. are the causative

agents of potato scab, a plant disease, which causes significant financial losses to the

agricultural community (Takeuchi et al. 1996).

Composts and fodder

Streptomycetes are found in composts and fodder, especially in self-heated hay or grain

(Lacey and Crook 1988). During the early stages of composting or self-heating, mesophilic

species are present, but these are replaced by thermotolerant species like Streptomyces albus

or Streptomyces griseus, and with increasing temperature, the real thermophilic species take

their place (Goodfellow and Simpson 1987). Thermophilic strains were isolated from
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composts in numbers ranging from 103 to 105 cfu / g dry weight, and in mouldy hay from 105

to 107 cfu / g dry weight (Goodfellow et al. 1987). The strains were assigned to clusters

Streptomyces thermovulgaris, Streptomyces thermoviolaceus, Streptomyces macrosporus,

Streptomyces megasporus and Streptomyces thermolineatus (Goodfellow et al. 1987).

Aquatic habitats

Streptomycetes have been isolated from fresh water as well as marine environments,

although, it has been a subject of debate, whether they are indigenous, or have been washed

off from the surrounding soils (Cross 1981, Goodfellow and Simpson 1987). Moran et al.

(1995) showed that in coastal marsh sediment, streptomycetes accounted for 2-5 % of the

microbial community, and were an indigenous population.

Occasionally, streptomycetes also grow in drinking water reservoirs affecting the water

quality by causing earthy odours, which are due to their production of volatile secondary

metabolites, such as geosmin and methyl iso-borneol (Bentley and Meganathan 1981, Cross

1981, Wood et al. 1985).

2.1.6 Secondary metabolites

According to one definition, microbial secondary metabolites are substances that are not

needed for the growth or other essential processes in the cell (Vining 1990). Secondary

metabolites are mainly produced by microbial genera inhabiting soil and undergoing

morphological differentiation, such as actinobacteria, bacilli and fungi (Vining, 1990). There

are over 23 000 known microbial secondary metabolites, 42 % of which are produced by

actinobacteria, 42 % by fungi, and 16 % by other bacteria (Lazzarini et al. 2000).

The streptomycetes are very potent producers of secondary metabolites. Out of the

approximately 10 000 known antibiotics, 45-55 % are produced by streptomycetes (Demain

1999, Lazzarini et al. 2000). The secondary metabolites produced by them have a broad

spectrum of biological activities; e.g. antibacterial (streptomycin, tetracycline,

chloramphenicol), antifungal (nystatin), antiviral (tunicamycin), antiparasitic (avermectin),

immunosuppressive (rapamycin), antitumor (actinomycin, mitomycin C, anthracyclines),

enzyme inhibitory (clavulanic acid), diabetogenic (bafilomycin, streptozotocin). Spore
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pigments also have structures similar to those of other secondary metabolites and are

synthesised by the same kinds of mechanisms (Metsä-Ketelä et al. 1999, Nakano et al. 2000).

Some of the important secondary metabolites are listed in Table 1.

The genes coding for the proteins responsible for the synthesis of secondary metabolites are

often clustered. These clusters include the genes for the actual biosynthesis, but also

determinants for regulation and self-resistance (Pissowotzki et al. 1991). Sometimes the genes

are located in plasmids and it is apparent that horizontal transfer of genes coding for

secondary metabolites can take place, even in soil (Egan et al. 1998, Omura et al. 2001). At

present, there are at least two completely sequenced Streptomyces genomes, the genome of

Streptomyces coelicolor (Bentley et al. 2002) and that of Streptomyces avermitilis (Omura et

al. 2001). Both species possess several secondary metabolite gene clusters that are spread

over the whole genome, although a remarkable part of them is located near the ends of the

chromosome (Omura et al. 2001). The ends of the streptomycete chromosome are less stable

than the core region around the replication origin (Volff and Altenbuchner 1998), which

means that the characteristics coded by genes at the end regions are more often subject to

change.

The production of secondary metabolites is affected by the availability of nutrients. In

fermentation experiments, the production of antibiotics is increased by the presence of a non-

preferred carbon source, or by phosphate starvation (Aharonowitz and Demain 1978,

McDowall et al. 1999). The source and availability of nitrogen can also influence the

production of secondary metabolites (Aharonowitz 1980). The regulation mechanisms of the

production of secondary metabolites are not yet fully understood, but they seem to be linked

to the regulation of sporulation. Both processes are induced by hormone-like regulatory

factors, such as A-factor by S. griseus (Horinouchi and Beppu 1992). The streptomycetes

have a complex regulatory apparatus, 12 % of the proteins coded by the genes of S. coelicolor

are predicted to have regulatory functions (Bentley et al. 2002).
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Table 1. Examples of secondary metabolites produced by streptomycetes, their biological

activities and the producing species known so far.

Compound Biological activity Species Reference

Avermectin Antiparasitic S. avermitilis Burg et al. 1979

Anthracyclines Antitumor S. galileus Fujii and Ebizuka 1997

Bafilomycin ATPase-inhibitor of
micro-organisms, plant
and animal cells

S. griseus
S. halstedii

Werner et al. 1984
Frändberg et al. 2000

Chloramphenicol Antibacterial, inhibitor of
protein biosynthesis

S. venezuelae Bewick et al. 1976

Hygromycin Antimicrobial,
immunosuppressive

S. hygroscopicus Omura et al. 1987
Uyeda et al. 2001

Lincomycin Antibacterial, inhibitor of
protein biosynthesis

S. lincolnensis Peschke et al. 1995

Mitomycin C Antitumor, binds to
double-stranded DNA

S. lavendulae Mao et al. 1999

Rapamycin immunosuppressive,
antifungal

S. hygroscopicus Vezina et al. 1975

Streptomycin Antimicrobial S. griseus Egan et al. 1998

Streptozotocin Diabetogenic S. achromogenes Herr et al. 1967

Tetracyclines antimicrobial S. aureofaciens
S. rimosus

Saleh et al. 1985
Hansen et al. 2001

Valinomycin Ionophor, toxic for pro-
and eukaryotes

S. griseus Andersson et al. 1998
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2.1.7 Adverse effects on human health

Infections

Streptomyces somaliensis has been identified as one of the causal agents of actinomycetoma

in different parts of the world (McNeil and Brown 1994). Also the species S. griseus, S. albus,

S. rimosus, S. lavendulae, S. violaceoruber, and S. coelicolor, have been isolated from clinical

samples (Mishra et al. 1980, McNeil and Brown, 1994). Streptomycetes have been isolated

from sputum, wounds, skin, blood, brain, tonsils, and dental caries (McNeil and Brown,

1994). Streptomyces species have been isolated from patients with acquired

immunodeficiency syndrome; this may represent an increasing problem in today’s world

(Holtz et al. 1985, Ahmed et al. 1996).

Inflammatory disorders

A serious pulmonary disease, hypersensitivity pneumonitis, or extrinsic allergic alveolitis,

with farmer’s lung disease being the most well-known example, can be caused by

thermophilic actinomycetes, including some members of the genus Streptomyces (Lacey and

Crook 1988, Kotimaa 1990). Skin reactions have also been reported in farmers who have

become sensitised to these microorganisms (Spiewak et al. 2001).

An epidemic of a respiratory disease, resembling allergic alveolitis, took place in a small

community in Finland in 1978. Repeated exposures to tap water aerosols that were heavily

contaminated with actinomycetes, including streptomycetes was discovered to have been

responsible for the disease (Ojanen et al. 1983).

Inflammation potency of streptomycetes in vitro and in vivo

In vitro experiments with mouse and human macrophages and human epithelial cells have

shown that spores of different fungi and bacteria isolated from moisture damaged buildings

are potent inducers of inflammatory responses (Hirvonen et al. 1997b, Jussila et al. 1999,

Huttunen et al. 2002). Streptomycetes induced the highest responses in a comparison with

fungi or other bacteria (Huttunen et al. 2002). The biological activity was not dependent on

the viability of the spores (Hirvonen et al. 1997c). Damp building material, which supports
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streptomycete growth, also appears to have an effect on the induction of inflammatory

responses (Murtoniemi et al. 2001, Roponen et al. 2001).

Mice exposed to Streptomyces californicus spores via intratracheal instillation show both

acute inflammation of the lungs and systemic immunotoxicity, especially in the spleen

(Jussila et al. 2002).

2.2 Molecular methods for the investigation of environmental microbes

With currently used cultivation methods, only a small part of the microbial diversity is

detected. The cultivability values reported range from 0.001 to 15%, depending on the

environment (Amann et al. 1995). On the other hand, PCR amplification of 16S rRNA genes

from environmental samples has revealed that 7-64 % of the amplified sequences originated

from uncultured microorganisms (Kuske et al. 1997, Zhou et al. 1997). Comparisons of

amounts of total and cultivable microbes in the indoor environment have shown that the

cultivable part of the microbial community ranges from 1 to 10% (Palmgren et al. 1986,

Toivola et al. 2002).

2.2.1 Bacterial 16S rRNA genes as a target

The 16S rRNA gene has been widely used for phylogenetic and diversity studies for several

reasons. It consists of conserved and variable regions, which allows the development of

primers and probes with variable levels of specificity (Woese 1987). The conserved regions

carry information about phylogenies at the higher taxonomic levels, since they have evolved

slowly and are highly similar among the different taxa, whereas the variable regions have

undergone more mutations during evolution, and are more useful for classification at the

intraspecies level (Woese 1987). The rRNA genes are essential, and therefore present in all

organisms. Finally, after many years of intensive sequencing, the current sequence databases

comprise a huge amount of ribosomal DNA sequences, encompassing cultured but also many

uncultured species. There were about 65 000 bacterial 16S rDNA sequences in the European

Molecular Biology Laboratory (EMBL) database and 16 000 in the Ribosomal Database

Project (RDP) in September 2002 (Stoesser et al. 2002, Maidak et al. 2001).
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2.2.2 DNA isolation from environmental samples

Target DNA isolation is the first step in DNA-based applications and the isolation method

used should meet the following criteria: lysis of target cells, and sufficient yield of high

molecular weight DNA free from contaminants that could affect the subsequent applications

(Wilson 1997). There are two possible strategies to isolate the microbial DNA: direct DNA

extraction, or isolation of the microbial fraction, and subsequent DNA extraction. Direct DNA

isolation may yield higher quantities of DNA (Kozdrój and van Elsas, 2000). Cell lysis can be

achieved by different enzymatic (lysozyme), physico-chemical (heating, chemicals like SDS,

freeze-thaw) or mechanical (bead-beating, grinding in liquid nitrogen) treatments (Frostegård

et al. 1999, Miller et al. 1999). Different types of microbes possess different sensitivities to

the lysis methods, with spores of bacteria and fungi being more resistant than vegetative cells

or mycelium (von Wintzingerode et al. 1997). Bead beating has been shown to be the most

effective method for the disruption of bacterial and fungal spores (Kuske et al. 1998,

Haugland et al. 1999b, Haugland et al. 2002). Environmental samples but also microbes

themselves contain many different substances, which are co-isolated and can interfere with

the subsequent analyses (Frostegård et al. 1999, Cruz-Perez et al. 2001a). The inhibitory

substances are efficiently removed with different gel filtration resins, spin columns and

agarose gel electrophoresis (von Wintzingerode et al. 1997, Miller 2001).

2.2.3 PCR based applications

PCR based applications intended for the analysis of microbial communities include PCR

amplification of environmental DNA with universal, group or species -specific primers and

subsequent separation of the products using one technique or another.  Restriction fragment

length polymorphism (RFLP), amplified ribosomal DNA restriction analysis (ARDRA), and

terminal restriction fragment length polymorphism (T-RFLP) are based on the length

polymorphism of PCR amplified and restriction enzyme digested DNA fragments. In the T-

RFLP, only the fluorescently labelled 5'-terminal fragment is detected. The separation of PCR

amplified DNA sequences with denaturing gradient gel electrophoresis (DGGE) is based on

the decreased mobility of the partially molten DNA fragments in a linear gradient of

denaturants, such as urea and formamide, in polyacrylamide gel. Temperature gradient gel

electrophoresis (TGGE) utilises the same principle in a temperature gradient. DNA fragments
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that differ in their sequences have different motilities. These methods have been widely used

for the analysis of microbial community structure and diversity, with the studies being mainly

focused on natural environments, such as soils, sediments and water. These techniques have

been reviewed by Head et al. (1998), Muyzer (1999), Tiedje et al. (1999), Hill et al. (2000).

Few applications for the PCR based detection of a single species in indoor environments have

been reported. They have targeted bacteria in air (Alvarez et al. 1994, Alvarez et al. 1995,

Stärk et al. 1998) and surface (Buttner et al. 2001) samples, or fungi in air or dust samples

(Bartlett et al. 1997, Roe et al. 2001). There are a few publications dealing with the PCR

detection of streptomycetes in environmental samples, targeting streptomycin biosynthesis

genes (Huddleston et al. 1997) or other genomic sequences (Roberts and Crawford 2000).

However, PCR methods have their own limitations and problems to be solved, the most

important of which is probably the inhibition of the PCR reaction due to co-purified

substances (von Wintzingerode et al. 1997, Cruz-Perez et al. 2001a,b). DNA isolated from an

environmental sample is usually highly multi-template, demanding high primer specificity.

Even with careful design of the primers, the PCR amplification may be biased by favourable

amplification of certain templates due to the properties of the genes themselves, or their

flanking sequences (Hansen et al. 1998, Polz and Cavanaugh 1998). This can be minimised

by addition of chemicals, such as acetamide (Reysenbach et al. 1992). Another problem in

multi-template PCR is the formation of chimeric DNA molecules. These are DNA molecules

that are combined from different initial sequences. It has been reported that up to 32 % of

PCR products may be chimeric (Wang and Wang 1997, von Wintzingerode et al. 1997). This

is a problem especially with the highly conserved ribosomal genes (von Wintzingerode et al.

1997).

2.2.4 In situ -techniques

Whole cell in situ hybridisation is based on the detection of whole cells with fluorogenic

probes targeting the rRNA genes. The cells are fixed with alcohol or formaldehyde to allow

the probe to access the cell and hybridise to its target, and the fluorescence is measured. Both

the amount of target cells and their spatial distribution can be recorded (Amann et al. 1995,

Head et al. 1998). In situ -PCR applies the PCR technique to fixed and permeabilised cells.

Fluorescent nucleotides are used for the amplification to facilitate the detection of the PCR
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products. The advantage of this technique is that low copy number genes can be detected

(Hodson et al. 1995, Vaid and Bishop 1999). In situ RT-PCR can be similarly used for

investigation of gene expression in situ.

2.2.5 Phospholipid fatty acid (PLFA) analysis

Phospholipid fatty acids are components of the microbial cell membrane and are present in

most living cells. After cell death, phospholipids are rapidly metabolised, so they can serve as

indicators for active biomass. In addition, certain fatty acids are indicative of specific groups

of microbes. PLFA profiling provides a culture-independent approach for determining the

composition and changes in microbial populations (Zelles 1999, Hill et al. 2000)

2.3 Moisture-damaged buildings

2.3.1 Microbes in moisture-damaged buildings

Moisture damage in buildings can result from leakage of roofs or water pipelines, and

condensation, among other reasons. Once a building material becomes wet, it provides a basis

for microbial growth, which starts if the water activity (aw) of the material reaches

approximately 0.7 (Flannigan et al. 1996). There is hardly any material that will not support

microbial growth if it is moist enough; the essential nutrients are provided by the material

itself, organic dust, or other microbes. A wide variety of microbes, including filamentous

fungi, yeasts and bacteria, have been isolated from building material, air, and dust samples

from moisture damaged buildings (Hyvärinen et al. 2002).

Building materials

The fungal genera frequently found in moisture-damaged building materials are Acremonium,

Aspergillus, Aureobasidium, Chaetomium, Cladosporium, Penicillium, Phialophora, and

Stachybotrys (Hyvärinen et al. 2002). Yeasts are also present. The bacteria include different

Gram-negative bacteria, such as Agrobacterium, Gram-positive bacteria, such as Bacillus and

Arthrobacter, actinobacteria, such as Mycobacterium, Nocardiopsis, Micrococcus and

Cellulomonas (Andersson et al. 1997, Vuorio et al. 1999, Peltola et al. 2001a). Spore-forming
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actinomycetes, mostly Streptomyces spp. have also been isolated from moisture-damaged

building materials (Andersson et al. 1997, Hyvärinen et al. 2002). With respect to the

different material types, actinobacteria seem to occur more frequently on ceramic materials,

paints and glues (Hyvärinen et al. 2002). They often coexist with Acremonium and

Aspergillus versicolor on these materials.

Indoor air

Fungal genera dominating in indoor air are Penicillium, Cladosporium and Aspergillus

(Waegemaekers et al. 1989, Verhoeff et al. 1992, Flannigan 2001). Both Gram-negative and

Gram-positive bacteria have been isolated from indoor air (Ross et al. 2000, Flannigan 2001).

The genera frequently found are Micrococcus, Staphylococcus, Bacillus, Pseudomonas and

various actinobacteria, including Streptomyces (Hameed et al. 1999, Pastuszka et al. 2000,

Flannigan 2001). Toxin producing strains of Bacillus, Streptomyces and Nocardiopsis have

been isolated (Andersson et al. 1998, Peltola et al. 2001b). Streptomycetes are found in the

indoor air of moisture-damaged buildings but not in urban reference buildings, and thus they

can be considered as indicators for moisture damage (Nevalainen et al. 1991, Samson et al.

1994).

Indoor dust

The same fungal genera as found in indoor air, such as Alternaria, Aspergillus,

Cladosporium, Eurotium and Penicillium are frequently found in indoor dust (Miller et al.

1988, Wickman et al. 1992, Beguin 1995, Beguin and Nolard 1996, Koch et al. 2000). In

addition, species not so often found in air samples, such as Aureobasidium, Fusarium, Mucor,

Phoma and Wallemia have been detected (Miller et al. 1988, Beguin 1995, Beguin and

Nolard 1996, Ren et al. 1999). Bacteria have also been cultivated from indoor dust. The

genera Bacillus, Pseudomonas, Paenibacillus, Staphylococcus, Streptomyces, Nocardiopsis

and other actinomycetes have been identified (Andersson et al. 1999, Smedje and Norbäck

2001, Macher 2001a, Peltola et al. 2001a).
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2.3.2 Health effects

Moisture and microbial damage in buildings has been associated with different adverse health

effects. They include irritation of eyes and mucous membranes, infections of the upper

respiratory tract, increased risk of asthma, and unspecific symptoms, such as headache and

tiredness (Husman 1996,Verhoeff and Burge 1997, Peat et al. 1998, Bornehag et al. 2001).

Some individuals may also develop allergies (Waegemaekers et al. 1989, Husman 1996,

Garrett et al. 1998, Reijula 1998). Chronic diseases like allergic alveolitis are reported from

occupational environments where there is heavy exposure to the spores of fungi and

actinomycetes (Lacey and Crook 1988, Husman 1996). The exposure to moisture damage in

the work place has been shown to increase the production of proinflammatory cytokines and

nitric oxide in nasal lavage fluid, and the levels of those compounds decrease during absence

from the work place (Hirvonen et al. 1999). Moisture damage has also been associated with

clusters of autoimmune diseases (Myllykangas-Luosujärvi et al. 2002). In one case study,

occupants of a dwelling heavily contaminated with actinomycetes suffered from rheumatoid

symptoms, which became less severe when they left the building (Lorenz et al. 2002).

Although the association between moisture damage in buildings and the adverse effects on the

health of the occupants is evident, the causal agents of the health effects remain obscure.

People living or working in buildings with moisture damage are exposed to microbial spores

and cells, and to parts of the cell envelopes, such as endotoxin or β - 1,3 -glucan (Rylander et

al. 1998). Microbes also can produce secondary metabolites, some of which are volatile

(MVOC, microbial volatile organic compounds) (Sunesson et al. 1997). Some metabolites are

toxic or otherwise biologically active and can be associated with the microbial particles

(Hirvonen et al. 1997a, Hintikka and Nikulin 1998). However, the relative importance of

these different exposing agents in relation to the adverse health effects is not known.

2.3.3 Exposure assessment

A proper exposure assessment is necessary for the risk evaluation of the health effects of

environmental agents. This includes environmental sampling and quantitative determination

of the agents of interest. Samples of airborne particles can be taken with impactors, where the

microbes are impacted on the surface of agar, and cultivated for enumeration and

identification. Also impingers that collect the air sample in a liquid, or different kinds of
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filtering devices can be used. The performance and application of the various samplers has

been reviewed e.g. by Willeke and Macher (1999).

According to Flannigan (1997), dust reflects the microbial flora of the building, although the

viable counts are higher in dust than in the air. Dust samples can be collected with vacuum

cleaners from carpets, mattresses, floors or other surfaces, or from the dust bag of the cleaner.

Settled dust can also be collected with other techniques (Macher 2001b).

Microbes associated with building materials can be collected with swab sampling or by

pressing adhesive tape on the material if it is not possible to take a sample from the material.

Microbial growth has traditionally been assessed by direct microscopy or cultivation (Macher

1999).

Cultivable microbes can be identified to the genus or species level using standard

microbiological methods. These include microscopical examination of colony morphology

and colour, diffusible pigments and the characteristics of reproductive forms, such as conidia

and spores. Under standardised growth conditions, many isolates can be identified to the

genus level with this approach. However, species identification often requires more laborious

methods, including physiological testing, analysis of biochemical markers and DNA

sequencing (Rosselló-Mora and Amann 2001).

However, a substantial part of the microbes in environmental samples are not cultivable, and

therefore, cannot be identified by methods based on culturing of the strains. Methods based on

DNA techniques are not dependent of the viability of the microbes, and they can be designed

to work at different levels of specificity, detecting a whole group of microbes, a genus, or for

example, a biosynthetic gene. PCR based methods for the detection and identification of

microbes are widely used in clinical microbiology and food hygiene (Tang and Persing 1999).

Applications in environmental microbiology, especially in the soil environment are also

increasing (Tiedje et al. 1999, Hill et al. 2000, Ranjard et al. 2000). A few methods have been

published for applications in indoor environments, aiming at the detection of major fungal

species, such as Stachybotrys chartarum and Aspergillus fumigatus (Haugland et al. 1999a,

Cruz-Perez et al. 2001b, Roe et al., 2001, Zhou et al. 2000).
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Need for non-culture detection methods for streptomycetes

Streptomycetes are bacteria, which have an enormous capacity for the production of

secondary metabolites that have a broad spectrum on biological activities (Demain 1999).

They are saprophytic and not highly pathogenic, but are associated with inflammatory

disorders of the airways, and possibly other symptoms of an autoimmune character (Lacey

and Crook 1988, Ojanen et al. 1983, Lorenz et al. 2002, Huttunen et al. 2002). They are non-

fastidious in their growth requirements and well adapted to life under fluctuating

environmental conditions (Kutzner et al. 1986), such as those present on building materials.

They are considered as indicators of moisture damage, since they have been isolated from

moisture damaged buildings, but not from reference buildings (Nevalainen et al. 1991). Their

reported concentrations in the indoor air have not been especially high, < 10-150 cfu / m3

(Nevalainen et al. 1991), but this may be a methodological artefact.

About 0.001-15 % of the environmental microbes can be detected by cultivation (Amann et

al. 1995), but their potential bioactivity is not dependent on their viability (Hirvonen et al.

1997c). Therefore, culture-independent methods are needed for the proper assessment of the

microorganisms to which people living or working in moisture damaged buildings are

exposed. PCR based methods have been shown to be sensitive and specific tools for the

detection of microbes in different matrices (Zhou et al. 2000, Buttner et al. 2001, Roe et al.

2001). However, applications for the detection of streptomycetes in samples from indoor

environments have not been previously reported.
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3 AIMS OF THE STUDY

This study was conducted to develop a PCR-based method for the detection of streptomycetes

in moisture-damaged buildings and to investigate the diversity of Streptomyces species found

in these indoor environments. It consists of four component studies that are also addressed in

the four original publications listed on page 7. The objectives of these component studies

were as follows:

1. To develop a PCR-based detection method specific for streptomycetes and applicable to

environmental samples taken from moisture-damaged buildings.

2. To compare culture and PCR methods in the detection of streptomycetes in indoor

environments.

3. To characterise Streptomyces species isolated from moisture-damaged buildings.

4. To investigate the diversity of streptomycetes in moisture-damaged buildings using DNA-

based techniques.
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4 MATERIALS AND METHODS

4.1 Samples

4.1.1 Building materials

The building materials analysed in studies I and IV were collected during study visits to

moisture damaged buildings by the personnel of the Laboratory of Environmental

Microbiology of the National Public Health Institute (KTL), Kuopio, Finland. Two materials,

which were culture-positive for actinobacteria, were selected for further testing. The materials

were painted plaster from an interior wall of a dwelling and linoleum floor tile from the

ground floor of an office building.

4.1.2 House dust samples

The house dust samples for study II were collected from regular dust bags of vacuum cleaners

in a study investigating the connection between microbial condition and moisture damage in

homes. Subsamples were taken for the evaluation of the streptomycete-PCR method and

analyses of streptomycete diversity in house dust. The homes were visited by a civil engineer

trained to look for moisture damage, and visible signs of moisture and microbial damage were

recorded according to a checklist (Nevalainen et al. 1998). Based on the severity of the

moisture damage, the homes were divided into moisture-damaged or non-damaged residences

(Haverinen et al. 2001).

4.1.3 Soil samples

Soil samples used for the determination of primer specificity in study I originated from a

Norway spruce forest stand in south-east Finland (soil A) and from a Scots pine forest stand

in central Finland (soil B). The samples were taken from the humus layer, stored at 4 °C for 2-

4 weeks, and then at –20 °C until DNA isolation.
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4.2 Microbial strains and cultivation

4.2.1 Microbial strains

Microbial strains used in studies I - III and their sources are listed in Table 2. Streptomyces

strains VTT E-99-1326 - 1336 were obtained from the culture collection of the Laboratory of

Environmental Microbiology, KTL. These strains were originally isolated from the indoor air

of moisture damaged buildings using an Andersen six-stage impactor, or from building

materials with moisture and microbial damage. These and other strains were used for

specificity testing of the streptomycete-PCR in study I, for the preparation of standard spore

suspension in study II, and for the characterisation of Streptomyces strains isolated from

moisture damaged buildings in study III as indicated in Table 2.

4.2.2 Cultivation of pure strains

Streptomyces isolates from the VTT collection used in studies I - III were maintained and

grown on tryptone-yeast extract-glucose (TYG) agar (Bacto Plate Count Agar, Difco).

Streptomyces strains obtained from the DSMZ and other microbial strains used for PCR

specificity testing in study I were maintained and grown on the cultivation media

recommended by their sources.

For the isolation of chromosomal DNA in studies I - III, the microbes were grown in 10 ml of

the appropriate medium at the given temperature (Table 1., Study I) under agitation (200

rpm). The fungi were cultivated for 72 h, the streptomycetes and other bacteria for 48 h,

except M. lylae, B. megaterium, B. subtilis, B. fermentas, E. coli, P. aeruginosa and P.

oleovorans that were cultivated for 16 h. The Streptomyces-strains isolated from dust in study

II were grown on TYG agar at 20 - 23 ºC for 14 days for the chromosomal DNA extraction.
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Table 2. Microorganisms used in this study.

Species Strain* Study

Streptomycetes
  Streptomyces albus DSM 40313 I
  Streptomyces anulatus VTT E-99-1331 I, III
  Streptomyces californicus VTT E-99-1326 I, II, III
  Streptomyces thermovulgaris DSM 40444 I
  Streptomyces thermoalkalitolerans DSM 41741 I
  Streptomyces sp. VTT E-99-1327 I, III
  Streptomyces sp. VTT E-99-1328 I, III
  Streptomyces sp. VTT E-99-1329 I, III
  Streptomyces sp. VTT E-99-1330 I, III
  Streptomyces sp. VTT E-99-1332 I, III
  Streptomyces sp. VTT E-99-1333 I, III
  Streptomyces sp. VTT E-99-1334 I, III
  Streptomyces sp. VTT E-99-1335 I, III
  Streptomyces sp. VTT E-99-1336 I, III

Other actinobacteria
  Amycolatopsis methanolica DSM 44096 I
  Cellulomonas uda DSM 20108 I
  Kineococcus aurantiacus DSM 7487 I
  Kitasatospora setae DSM 43861 I
  Micrococcus lylae DSM 20315 I
  Mycobacterium murale DSM 44340 I
  Mycobacterium novocastrense DSM 44203 I
  Promicromonospora citrea DSM 43110 I
  Saccharopolyspora spinosa DSM 44228 I
  Thermocrispum municipale DSM 44069 I

Microbes used for the DNA mixture
  Bacillus megaterium VTT E-70007 I
  Bacillus subtilis ATCC 4944 I
  Brevibacterium fermentas NCIB 9943 I
  Escherichia coli 89M I
  Pseudomonas aeruginosa ATCC 10145 I
  Pseudomonas oleovorans W16 I
  Aspergillus niger VTT D-77020 I
  Lipomyces starkeyi DSM 70295 I
  Penicillium chrysogenum VTT D-74021 I

* DSMZ, German Collection of Micro-organisms and Cell Cultures, ATCC, American
Type Culture Collection, NCIB, National Collection of Industrial Bacteria, VTT, Culture
Collection of the Technical Research Centre, Finland, Biotechnology and Food Research.



35

4.2.3 Cultivation of microbes from environmental samples

Microbes from building materials (study IV) were cultivated as described earlier (Hyvärinen

et al. 2002). The samples were weighed, and dilution buffer solution (42.5 mg ml-1 KH2PO4,

250 mg ml-1 MgSO4 x 7 H2O, 8 mg ml-1 NaOH, 0.02 % (v/v) Tween 80) was added. The

samples were sonicated for 30 minutes (FinnSonic M03/m, FinnSonic Ltd, Lahti, Finland),

and shaken in a reciprocal shaker (KS125 basic, IKA Laboteknik), 400 rpm, for 60 min.

Serial ten-fold dilutions were made and plated out on TYG agar supplemented with 0.05 %

cycloheximide for bacteria. The plates were cultivated at room temperature (20 - 25 ºC) for 5

days for the total bacterial count and for 14 days for mesophilic actinomycetes.

The dust samples in study II were treated as follows. To 5 g of dust, 45 ml of dilution buffer

was added, and the sample was shaken as described above without sonication. After removal

of hair and other fibrous material by sieving, serial dilutions were plated out on TYG agar

supplemented with 200 mg l-1 natamycin for the cultivation of bacteria. The remaining

suspension was stored at –20 ºC until DNA isolation. The agar plates were incubated as

described for the material samples. Presumptive actinomycete colonies were picked on the

basis of basis of colony morphology with a sterile needle and streaked out on TYG agar to

obtain pure cultures.

4.3 Molecular methods

4.3.1 DNA isolation

Pure cultures

Cells used in studies I and III were harvested from a 10 ml culture by centrifugation (3000 ×

g, 20 min) and suspended in 2 volumes of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH

8.0), 1 mg wet weight of microbial cells corresponding to 1µl of TE. The suspension was

incubated at 65 °C (bacteria) or 100 °C (fungi) for 20 min for cell lysis. The cell debris was

removed by centrifugation (10 000 × g), and the supernatant was extracted once with buffered

phenol and once with chloroform: isoamylalcohol (24:1 v/v). After centrifugation, the

aqueous phase was collected in a clean tube, and the DNA was precipitated by adding 1/10
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volume of 3 M potassium acetate (pH 4.8) and two volumes of ethanol. The DNA precipitate

was collected by centrifugation at 10 000 × g, dissolved in sterile, deionised water and stored

at –20 °C. An aliquot was analysed by agarose gel electrophoresis (1.5 %) with known
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In study II, the spores from 2 TYG agar plates were suspended in two ml of sterile deionised

water with a sterile loop. The spore suspension was stored at –20 ºC until DNA isolation. The

DNA was isolated as follows. The spores were suspended in 300 µl of TENS buffer (50 mM

Tris, 20 mM EDTA, 100 mM NaCl, 1 % SDS, pH 8.0), (Kuske et al. 1998) and 300 mg of

quartz beads were added. The mixture was incubated 10 min at 65 °C, and shaken in a

laboratory shaker (Vortex genie-2, Scientific Industries Inc., New York, USA) at maximal

speed for 20 minutes. The cell debris was removed by centrifugation (5 min, 10 000 × g) and

the supernatant was extracted with chloroform-isoamylalcohol (24:1). Then the DNA was

purified with the Wizard DNA Clean up System spin column (Promega, Madison, WI, USA).

Environmental samples

In studies I and IV, 2 g of 0.2-0.8 mm glass beads (Merck, Darmstadt, Germany), and 2.1 ml

lysis solution (0.33 M Tris-HCl pH 8.0, 1mM EDTA, 70 mM NaCl, 1 % (w/v) CTAB, 1 %

(w/v) SDS) were added to 2 g of building material. After 20-min incubation at 65 °C, the tube

was shaken in a laboratory shaker (Vortex genie-2, Scientific Industries Inc., New York,

USA) at maximal speed for 30 minutes. The cell debris was removed by centrifugation (10

000 × g) and the supernatant was extracted with chloroform-isoamylalcohol (24:1).

Thereafter, the DNA was purified with the Wizard DNA Clean up System spin column

(Promega, Madison, WI, USA) and agarose gel electrophoresis.

From the soil samples in study I, the DNA was isolated as from the building materials, with

the exception that the samples were first washed with 2 % sodium hexametaphosphate, pH

8.5, and Crombach buffer (0.33 M Tris-HCl, 1 mM EDTA, pH 8.0) to reduce the levels of

humic compounds.

The dust samples in study II were processed as follows. The sieved 1:10 dilution (5 g dust in

45 ml of dilution buffer) was filtered through a Ultipor N66 nylon filter (Pall), pore size 0.45

µm. One quarter of the filter was taken to the DNA isolation, and the rest was stored in a
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sterile petri-dish at –20 ºC. The filter was cut to small pieces with a sterile knife. The pieces

were placed in a 2 ml tube; 800 mg quartz beads and 600 µl TENS buffer were added. After

that, the sample was treated as described above for pure cultures in study II.

4.3.2 PCR

Primer design

PCR primers targeting the Streptomyces -16S rRNA gene were designed in study I.

Streptomyces 16S rDNA sequences were obtained from public sequence databases, aligned

with GCG-Pileup (Wisconsin Package, version 10.0, Genetics Computer Group, Madison,

WI, USA), and suitable primer candidates were searched for manually. Candidate primer

sequences were evaluated by the Fasta sequence comparison algorithm (Pearson and Lipman

1988) against EMBL (Stoesser et al. 2002) and GenBank (Benson et al. 2002) databases, and

by the probe_match option of the Ribosomal Database Project (RDP) (Maidak et al. 2001).

Primers having a perfect match only to streptomycete sequences were further tested for their

PCR performance with the Oligo® v. 5.0 primer analysis package (National Biosciences Inc.,

Plymouth, MN, USA). The primers used in this study are listed in Table 3.

Table 3. Primers used in this study.

Primer Sequence (5’ ���� Position* Purpose Reference

StrepB ACA AGC CCT GGA AAC GGG GT 139-158 PCR Study I

StrepE CAC CAG GAA TTC CGA TCT 640-657 PCR Study I

StrepF ACG TGT GCA GCC CAA GAC A 1194-1212 PCR Study I

PA AGA GTT TGA TCC TGG CTC AG 7-26 PCR Edwards et al.1989

PH AAG GAG GTG ATC CAG CCG CA 1506-1525 PCR Edwards et al.1989

M13/pUC fw GTA AAA CGA CGG CCA GT sequencing MBI Fermentas

fw488 TGC CAG CAG CCG CGG TAA TA 488-507 sequencing Study III

fw1055 TGT TGG GTT AAG TCC CGC AA 1055-1074 sequencing Study III

M13/pUC rev CAG GAA ACA GCT ATG AC sequencing MBI Fermentas

rev560 CCG CCT ACG AGC TCT TTA 543-560 sequencing Study III

rev1074 TTG CGG GAC TTA ACC CAA CA 1055-1074 sequencing Study III

* numbers refer to Streptomyces ambofaciens 16S rRNA gene sequence (Pernodet et al. 1989)
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PCR amplifications

PCR reaction components used in the different studies are summarised in Table 4. The PCR

reactions in studies I, III, and IV were carried out in 0.5 ml reaction tubes in a final volume of

50 µl overlaid with 50 µl of sterile mineral oil (Sigma Chemical Co., St. Louis, MO, USA) or

in 0.2 ml reaction tubes in a volume of 25 µl in study II. The PCR amplifications were

performed in a PTC-100 Programmable Thermal Controller (MJ Research Inc., Watertown,

MA, USA) in studies I, III, and IV or TGradient thermocycler (Biometra GmbH, Goettingen,

Germany) in study II. Negative controls containing no template DNA and positive controls

were included in each set of PCR amplifications. All reactions in studies I and II were run in

duplicate and repeated twice.

The cycling parameters for the primer specificity testing and PCR amplification from

environmental samples using the Pfu DNA polymerase and PTC-100 thermal cycler in studies

I, III and IV were: an initial denaturation of 5 min at 98 °C, 30 cycles of 45 s denaturation at

95 °C, 40 s primer annealing, and 2 min primer extension at 72 °C, followed by a final

extension at 72 °C for 10 min. The annealing temperature used was 54 °C for the primers

StrepB/StrepE and 58 °C for the primer pairs StrepB/StrepF and PA/PH. Primer extension

times of 2 min for the Strep-primers and 3 min for the PA/PH primers were used. For the

DyNazyme™ DNA polymerase in study I, the cycling was performed as follows; after an

initial denaturation of 5 min at 98 °C, 30 cycles of 1 min denaturation at 95 °C, 40 s primer

annealing at 52 °C, and 2 min primer extension at 72 °C were performed, followed by a final

extension at 72 °C for 10 min.

The PCR amplifications from dust samples using the TGradient thermocycler and Pfu DNA

polymerase in study II were performed according to following scheme; the initial denaturation

step of 2 min at 95 ºC was followed by 35 cycles of 45 s denaturation at 95 ºC, 30 s annealing,

and 2 min 10 s (StrepB/StrepF) or 1 min 10 s (StrepB/StrepE) primer extension at 72 ºC, and

a final extension of 5 min at 72 ºC. The annealing temperature was set at 64 ºC for the primers

StrepB/StrepF and 54 °C for the primers StrepB/StrepE.
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Table 4. PCR reaction components used.

Template DNA Study Primers Conc. of
nucleotides

Reaction
conditions

Additives Enzyme

DNA from pure
cultures

I, II 0.2 µM StrepB
0.2 µM StrepE
0.2 µM StrepF

100 µM Pfu reaction
buffer*

Pfu DNA
polymerase

Microbial DNA
mixture

I 0.6 µM StrepB
0.6 µM StrepE
0.6 µM StrepF

100 µM DyNazyme™
reaction
buffer**

10% DMSO DyNazyme™ II
DNA
polymerase

DNA from
environmental
samples

I, II, IV 0.2 µM StrepB
0.2 µM StrepE
0.2 µM StrepF

100 µM Pfu reaction
buffer*

Pfu DNA
polymerase

DNA from pure
cultures

III 0.6 µM PA
0.6 µM PH

100 µM Pfu reaction
buffer*

10% DMSO Pfu DNA
polymerase

* 1 x Pfu reaction buffer contained 20 mM Tris-HCl, pH 8.2, 10 mM KCl, 10 mM (NH4)2SO4, 2 mM MgSO4,

1.0% Triton X-100, 100 ng ml-1 BSA.

** 1 x DyNazyme™ II DNA polymerase reaction buffer contained 10 mM Tris-HCl, pH 8.8, 50 mM KCl, 1.5

mM MgCl2, 0.1% Triton X-100.

4.3.3 BstYI restriction enzyme digestion

PCR amplification products obtained with StrepB/StrepF in studies I and II were subjected to

restriction endonuclease digestion. 5 U of BstYI (New England Biolabs, Beverly, MA, USA)

����������������������� ���	�����������������������������������°C for 3 h.

Plasmid DNA carrying the StrepB/StrepF PCR fragment (study I) was digested with BstYI in

a reaction mixture containing 10 mM Tris-HCl, pH 7.4, 10 mM MgCl2, 1 mM DTT and 2 U

Bst !������������"������	���� ���#��������������
�	�����������°C for 2 hours. The results

were analysed in 1.5 % agarose gels that were run for 60 min at 80 V.

4.3.4 Cloning and sequencing

The PCR products obtained from environmental samples in studies I and IV were purified

from 1 % agarose gels with the QIAquick gel extraction kit (Qiagen, Hilden, Germany). The
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fragments were ligated into SmaI digested and dephosphorylated pUC19 vector (MBI

Fermentas, Hanover, MD, USA) using T4 DNA ligase (MBI Fermentas).  The ligation

mixture was transformed into Escherichia coli XL10-Gold Ultracompetent Cells (Stratagene,

Amsterdam, The Netherlands) according to the manufacturer’s instructions.

For the sequencing of the 16S rRNA gene of the Streptomyces spp. VTT E-99-1326 - 1336 in

study III, the PCR-amplified gene fragments were purified from agarose gel, ligated as

described for the environmental PCR products, and transformed into E. coli��$% �

In studies I, III and IV, plasmid DNA from transformants was isolated with the Wizard Plus

SV minipreps kit (Promega, Madison, WI, USA). Sequencing was performed in the

A.I.Virtanen Institute, University of Kuopio, Finland, using the Thermosequenase Fluorescent

Labeled Primer Cycle Sequencing kit with 7-deaza-GTP, RPN 2538 (Amersham Pharmacia

Biotech, Uppsala, Sweden), and A.L.F. or A.L.F. express DNA sequencer (Amersham

Pharmacia Biotech) according to the manufacturer's instructions. The sequencing primers

(A.I.Virtanen Institute) used are listed in Table 3.

In study II, the PCR fragments of the actinomycete strains isolated from dust were purified

from agarose gels and directly sequenced using the primers StrepB and StrepE. The

sequencing was performed in the DNA Synthesis and Sequencing Laboratory, Institute of

Biotechnology, University of Helsinki, Finland.

4.3.5 DNA sequence analysis

The DNA sequences were compared to other prokaryotic sequences in the EMBL database

with the fasta program (Pearson and Lipman 1988) available from the EBI homepage

(www.ebi.ac.uk/services/ index.html). The sequences obtained in this work were aligned with

the 16S rDNA sequences of Streptomyces type strains obtained from databases by using

GCG-Pileup. The Phylip package (Felsenstein 1989) was used for the construction of

phylogenetic trees. Distance matrices were calculated with the Kimura-2-parameter (Kimura

1980) algorithm of the dnadist-programme, and phylogenetic trees were constructed with the

neighbor-joining method (Saitou and Nei 1987). Arthrobacter globiformis was used as an

outgroup. Bootstrap analysis (500 replicates) was done to assess the significance of the

obtained tree by using the programs seqboot, dnadist, neighbor and consense of the Phylip

package. Treeview (Page 1996) was used to display the trees.
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5 RESULTS

5.1 Development and evaluation of the PCR detection method for streptomycetes

Three primers were selected for further testing, the forward primer StrepB, and the reverse

primers StrepE and StrepF. The target areas of the primers along the 16S rRNA gene are bp

139 – 158 (StrepB), bp 640 – 657 (StrepE), and bp 1194 – 1212 (StrepF). The size of the

amplification product is 519 bp for StrepB/StrepE, and 1074 bp for StrepB/StreF.

5.1.1 Specificity

There were 386 Streptomyces sequences in the databases containing all three primer sites (last

search November 2002). Of these sequences, 370 (96 %) matched perfectly to all primers.

The results of the sequence comparisons and experimental PCR analyses of selected

Streptomyces strains with the primer sets are summarised in Table 5. All streptomycetes

identified to the species level and having mismatches to the primers are listed. In addition, the

searches revealed four sequences of Streptomyces sp. having 2 - 7 mismatches to StrepB, and

one sequence having one mismatch to StrepE and one to StrepF. Table 5 also shows similar

sequence comparison and PCR analysis results for a number of closely related actinobacterial

species identified in the database searches as well as other common indoor micro-organisms.

The primer specificity was further investigated using DNA isolated from two soil and two

moisture-damaged building materials as the template. The amplified PCR fragments were

cloned in a pUC19 vector and sequenced. Ten clones from each material amplified with

StrepB/StrepE were sequenced, and all of them showed greater than 96 % sequence similarity

with Streptomyces 16S rDNA. The sequencing results of the StrepB/StrepF fragment were

more variable. All the sequences amplified from the building material RM1, and 58 % of the

RM2-sequences had greater than 95 % sequence similarity with streptomycetes and tested

positive for the BstYI digestion. The other 42 % of the sequences showed similarity to

Cellulomonas 16S rDNA sequences, and were BstYI negative. Of the soil sequences, 73 %

showed similarity to streptomycete rDNA, and produced positive results with BstYI, and 27

% were BstYI negative, showing 90 - 92 % sequence similarity to either uncultured organisms

or other actinomycetes than streptomycetes.



Table 5. Sequence comparison and PCR analysis results for selected streptomycetes, related actinobacteria and other common indoor microbes.

Mismatches / position (5’ &'( PCR amplification BstYI

Strain StrepB StrepE StrepF StrepB/E StrepB/F digestion

Streptomyces californicus VTT E-99-1326* 0 0 0 + + +

Streptomyces albus DSM 40313 0 1 /14 0 + + +

Streptomyces thermovulgaris DSM 40444 1 /2 0 0 + + +

Streptomyces thermoalkalitolerans DSM 41741 1 /2 0 0 + + +

Streptomyces thermonitrificans DSM 40579 1 /2 0 0 n.t. n.t. n.t.

Streptomyces thermosacchari K122 1 /5 0 0 n.t. n.t. n.t.

Streptomyces thermoviolaceus AB106 1 /12 0 1 /11 n.t. n.t. n.t.

Streptomyces cattleya JCM 4925 6 /2,5,6,9,16,20 0 0 n.t. n.t. n.t.

Streptomyces thermolineatus DSM 41451 6 /5,8,9,16,17,20 0 0 n.t. n.t. n.t.

Streptomyces megasporus DSM 41476 7 /2,5,6,9,16,19,20 0 0 n.t. n.t. n.t.

Streptomyces macrosporus DSM 41449 7/ 2,5,6,9,16,19,20 0 0 n.t. n.t. n.t.

Streptomyces ushikuensis KM 4927 8 /2,5,6,7,9,16,19,20 3 /6,15,16 0 n.t. n.t. n.t.

Amycolatopsis methanolica DSM 44096 2 /2,10 2 /14,15 4 /2,8,14,15 - - -

Cellulomonas uda DSM 20108 1 /2 3 /14,15,18 3 /2,4,8 - + -

Kineococcus aurantiacus DSM 7487 2 /5,7 2 /14,15 4 /8,16,17,19 - - -

Kitasatospora setae DSM 43861 2 /8,17 0 0 + - -

Micrococcus lylae DSM 20315 2 /2,8 2 /14,15 3 /2,4,8 - + +a

Mycobacterium murale DSM 44340 4 /2,8,9,16 2 /14,15 4 /2,8,14,15 - - -



Mycobacterium novocastrense DSM 44203 4 /2,8,9,16 2 /14,15 4 /2,8,14,15 - - -

Promicromonospora citrea DSM 43110 2 /2,8 2 /14,15 3 /2,4,8 - + -

Saccharopolyspora spinosa DSM 44228 2 /2,8 2 /14,15 5 /2,8,14,15,17 - - -

Thermocrispum municipale DSM 44069 1 /2 2 /14,15 3 /2,8,15 - - -

Bacillus megaterium VTT E-70007 8b 4b 3b -c - c n.t.

Bacillus subtilis ATCC 4944 6 b 4 b 3 b -c -c n.t.

Brevibacterium fermentas NCIB 9943 5 b 2 b 3 b -c -c n.t.

Escherichia coli 89M 7 b 6 b 5 b -c -c n.t.

Pseudomonas aeruginosa ATCC 10145 8 8 5 -c -c n.t.

Pseudomonas oleovorans W16 12 b 7 b 7 b -c -c n.t.

Aspergillus niger VTT D77020 12 b 11 b 12 b -c -c n.t.

Lipomyces starkeyi DSM 70295 n.a. n.a. n.a. -c -c n.t.

Penicillium chrysogenum VTT D-74021 n.a. n.a. n.a. -c -c n.t.

* representative of the 370 out of 386 sequences from Streptomyces spp. found in a search of the EMBL and GenBank databases in

November 2002 that were 100% homologous to all three primers
a digestion revealed different fragment lengths
b no sequence available, deduced from the sequence of another strain of the same species
c determined by PCR amplification from a mixture of DNA isolated from pure cultures of these strains

n.a. not available

n.t. not tested
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5.1.2 Detection limit

The detection limit of the PCR reaction determined with serial ten-fold dilutions of DNA

isolated from Streptomyces sp. VTT E-99-1328 in study I was 10 pg / reaction for

StrepB/StrepE and 1 pg / reaction for StrepB/StrepF.

The detection limit of the primers StrepB/StrepF in the slightly modified PCR protocol in

study II, was determined using DNA isolated from serial ten-fold dilutions of a spore

suspension of Streptomyces sp. VTT E-99-1326. The DNA was isolated in the same way as

from the environmental samples resulting in 50 µl of DNA solution, 1 µl of which was used

for the PCR. The lowest amount of spores that produced a visible band in agarose gel

electrophoresis was 30 spores in the sample.

5.2 Comparison of PCR and cultivation methods for the detection of streptomycetes

in house dust

The presence of mesophilic actinomycetes including streptomycetes in dust samples (n = 47)

was determined by culture and PCR. Of the samples, 38 (81 %) tested positive in the PCR,

and 17 (36 %) were actinomycete-positive by culture. The cultivation and PCR methods did

not correlate with each other in their abilities to detect streptomycetes. Three of the 9 PCR-

negative samples were culture-positive, and 24 of the 30 culture-negative samples were PCR-

positive.

The calculated detection limit of the culture method was 450 cfu g-1, and for the PCR method

30 spores per gram dust. According to the 16S rDNA sequence comparison, the actinomycete

isolates were all members of the genus Streptomyces. To investigate the possible presence of

PCR-inhibitors in the PCR-negative samples, they were subjected to PCR amplification with

the universal bacterial primers pA/pH. All samples produced an amplification band with

pA/pH, indicating that they were streptomycete-negative, but did not contain PCR-inhibitors,

although two samples required a further purification step with a Wizard spin column.

According to the two-level classification, 38 (81 %) of the houses (n = 47) had some moisture

damage. The amount of streptomycete-specific PCR product, measured as intensity of the

band in agarose gel electrophoresis, was significantly higher in dust samples originating from
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moisture-damaged homes compared to non-damaged homes (p < 0.05, Mann-Whitney test).

Streptomycetes were detected in 36 % of the samples originating from moisture-damaged

houses by cultivation and in 81 % by PCR. However, from the nine non-damaged sites, only

one dust sample was culture-positive, but five were PCR-positive. When binary data

(presence or absence of moisture damage or streptomycetes) and Fisher’s exact test were used

for the statistical analysis, no statistically significant correlation between moisture damage

and the occurrence of streptomycetes was observed (p = 0.127 for culture, and p = 0.054 for

PCR).

5.3 Characterisation of Streptomyces isolates from moisture damaged buildings

The 16S rRNA gene of Streptomyces strains isolated from indoor air and building materials

(N=11), and from house dust (N=15) was partially sequenced. Sequence comparisons with

sequences in the EMBL database revealed that the 1520 bp sequences of the indoor air and

building material isolates (VTT E-99-1326 - 1336) had > 99 % sequence similarity to

sequences of known species, such as S. griseus, S. albidoflavus and S. coelicolor. The 520 bp

sequences of the dust isolates had > 97 % sequence similarity with known species, except

B352 that had 96 % similarity to S. albidoflavus.

Figure 1. shows the phylogenetic affiliations of the streptomycete strains investigated in this

study based on a 120 bp (nt. 159 - 278) alignment of the 16S rRNA gene sequences. The

sequences of the streptomycetes isolated from indoor air, building materials and house dust

formed four groups in the phylogenetic tree. The largest group of 16 strains affiliated with

sequences of S. anulatus and S. halstedii, two further groups with four strains in each of them

affiliated with S. albidoflavus and S. tendae. Two strains isolated from dust clustered with S.

exfoliatus and Streptomyces sp. YIM 26 sequences (Figure 1.).
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Figure 1. Neighbor-joining tree based on a 120 bp (bp 159 - 278) alignment of 16S rDNA

sequences obtained from Streptomyces spp. isolated from indoor environments, and from

public databases. B, Streptomyces isolates from dust; VTT-E-99-, Streptomyces strains

isolated from indoor air and building materials. Scale bar = 10% dissimilarity. Arthrobacter

globiformis was used as an outgroup to root the tree. Bootstrap values are given as percent out

of 500 trees. Values that are greater than 50 are indicated.
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Figure 2. Neighbor-joining tree based on a 120 bp (bp 159 - 278) alignment of 16S rRNA

gene sequences of Streptomyces strains obtained from public databases and sequences of PCR

amplified environmental clones. L, sequences amplified from linoleum; P, sequences

amplified from plaster. Scale bar = 10% dissimilarity. Arthrobacter globiformis was used as

an outgroup to root the tree. Bootstrap values are given as percent out of 500 trees. Values

that are greater than 50 are indicated.



48

5.4 Diversity of streptomycetes based on 16S rDNA sequences

A culture-independent approach was used to investigate the diversity of streptomycetes in

building materials. DNA was isolated directly from the building material and subjected to

PCR amplification with the primer sets StrepB/StrepE and StrepB/StrepF. The amplification

products were cloned in pUC19 vector and sequenced. In sequence comparisons with

sequences in the EMBL database, the clones had 95 - 100 % sequence similarities with known

streptomycete sequences.

A phylogenetic tree was constructed based on a 120 bp (bp 159 - 278) alignment of the cloned

PCR amplicons and known streptomycete sequences. The streptomycete 16S rDNA

sequences amplified from DNA isolated from building materials affiliated with several

clusters in the phylogenetic tree. Most of the clones affiliated with two branches, one

including S. anulatus, S. setonii and S. halstedii, and another including S. lividans and S.

tendae. Other sequevars were also present; some of them being distantly related to sequences

obtained from databases (Figure 2.).

DNA sequence accession numbers

The Streptomyces-sequences were submitted to the EMBL sequence database. The accession

numbers for the building material sequences are AJ344118 - AJ344132. The accession

numbers of the Streptomyces isolates VTT E-99-1326 - 1336 are AF429390 - AF429400,

respectively.
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6 DISCUSSION

6.1 Development and evaluation of the PCR-based detection method

6.1.1 Primer design

The 16S rRNA gene was chosen as the target gene for the PCR primers in the PCR assay,

aiming at the detection of as many as possible of the over 650 described Streptomyces -

species (www.dsmz.de/species/). The advantages of rRNA genes as targets for PCR detection

assays are that the genes are essential for the cells, and they are conserved among the

prokaryotes (Kim et al. 1993). With streptomycetes, which have a highly unstable genome

(Volff and Altenbuchner 1998), it is important that the rRNA genes are situated in the stable

core part of the genome (Bentley et al. 2002).

The sequence differences in the 16S rRNA gene are located in the so-called variable regions

V1-V8. The V2 and V3 the regions show the greatest differences between streptomycetes and

E. coli, while the V2 region shows the greatest variability within the streptomycetes (Pernodet

et al. 1989, Stackebrandt et al. 1991). According to Stackebrandt et al. (1991), the variable

regions V2, V6 and V7 are suitable for the discrimination of Streptomyces species. Sequence

analysis of the highly variable V2 region has been applied for Streptomyces species

identification; however, it was not able to distinguish all of the species (Kataoka et al. 1997).

Both of the primer pairs designed in this work, StrepB/StrepE and StrepB/StrepF amplified

the V2 region. In addition, the variable regions V6 and V7 are included in the fragment

amplified with the primers StrepB/StrepF. Thus, the gene fragments amplified with these

primers contain sufficient information for diversity studies; however, the 16S rDNA sequence

diversity provides no information about the functional diversity of species (Metsä-Ketelä et

al. 2002).

Two of the primers developed in this work, StrepB and StrepE partially overlap with

published Streptomyces -specific primers (Mehling et al. 1995). However, the 3' ends of the

primers are different. The previously reported primers have some disadvantages compared to

those developed in this work. Many of the primers have ambiguous nucleotides, perhaps due

to the limited sequence information available at the time of their publication. Two of them

also target the V7 variable region.  A previously reported Streptomyces -specific probe
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(Stackebrandt et al. 1991) targets a conserved region around a streptomycete -specific

nucleotide at position 6 from the 5’ end of the probe, which represents the only difference to

hundreds of other species. Use of this probe requires very stringent hybridisation conditions.

6.1.2 PCR specificity

DNA isolated from environmental samples mostly contains DNA of many known and

unknown species. The specificity of the PCR is affected by multiple factors, such as the

primers, the properties of the gene regions flanking the target site, the annealing temperature

in the PCR reaction, and the reaction conditions (von Wintzingerode et al. 1997). In this

work, the primer specificity was determined by multiple approaches. These included: 1) DNA

sequence comparisons with the existing databases of target and related non-target species; 2)

Experimental analyses of pure cultures of micro-organisms representing possible false

positives, and also multitemplate mixtures of non-target micro-organisms abundant in indoor

environments; and 3) Sequencing of PCR amplified DNA from environmental samples. The

primer pair StrepB/StrepF amplified DNA from pure cultures of C. uda, P. citrea, and M.

lylae, all of which can be discriminated from streptomycetes by the BstYI restriction enzyme

digestion. The primer pair StrepB/StrepE tested positive with Kitasatospora setae (two

mismatches to StrepB). However, the taxonomic position of the genus Kitasatospora is still

somewhat ambiguous, and there have been attempts to include them in the genus

Streptomyces (Wellington et al. 1992) or to revise the genus (Zhang et al. 1997). The DNA

sequencing of the environmental amplification products confirmed the specificity of the PCR

assay for streptomycetes. Although non-streptomycete sequences were detected among the

amplicons, these were BstYI-negative. The BstYI-negative sequences from soil had only low

similarities to sequences in databases, indicating that they could represent previously

uncultured organisms or be PCR artefacts, such as chimeric sequences (Wang and Wang

1997, von Wintzingerode et al. 1997).

Some thermophilic streptomycetes, including S. thermolineatus, S. macrosporus and S.

megasporus, have several mismatches to StrepB and are not likely to be detected with the

designed primers. These species, however, are reported to belong to a phylogenetically

distinct clade (Kim et al. 1996). They are commonly isolated from composts and heated hay

or grain (Kim et al. 1996), and their prevalence or significance in indoor environments is not

yet known.
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6.1.3 PCR detection limit

The detection limit of the PCR reaction with the primer pair StrepB/StrepF reported in this

work was < 1 pg DNA/reaction (corresponding to approximately 30 cells) (study I), or 30

spores/sample (study II). The reported detection limits of indoor fungi range from two fungal

spores/sample using real time PCR (Haugland et al. 1999a) to 2 spores/reaction using

conventional PCR (Zhou et al. 2000). Cruz-Perez et al. (2001a,b) reported a sensitivity of <

20-23 spores/reaction in real-time PCR. All these experiments were carried out with pure

cultures. Roe et al. (2001) used the method developed by Haugland et al. (1999a) for

quantification of Stachybotrys chartarum in dust samples, and found that small amounts of

spores (< 10 spores/sample) in dust were not reliably quantified. In addition, all PCR primers

for fungi mentioned above, target the genes coding for ribosomal RNAs, which in fungi are

present in copy numbers of hundreds (Borsuk et al. 1982), while streptomycetes have less

than ten copies (Fogel et al. 1999). Hence, the results obtained in this work are comparable

with those obtained with spore-forming fungi in indoor environments.

6.1.4 PCR inhibition

Inhibition of PCR amplification by substances co-extracted with DNA, is a well-known

problem with environmental and clinical samples as well as with pure cultures (von

Wintzingerode et al. 1997, Tang and Persing 1999, Cruz-Perez et al. 2001a,b). This can be

avoided by dilution of the template DNA, further purification by agarose gel electrophoresis

or various columns and resins intended for DNA purification, or addition of substances like

bovine serum albumin to the PCR reaction mixture. In this work, PCR inhibition was

observed with two dust samples, although the DNA was purified twice with a Wizard spin

column. Ten-fold dilution of the template did not affect the amplification, but a third

purification with the Wizard spin column enabled the PCR amplification. PCR inhibition can

be identified by addition of an internal positive control to each PCR reaction (Tang and

Persing 1999). In this work, each sample PCR negative for Streptomyces was tested for

inhibitors separately using the PA/PH universal primer set. However, in routine PCR the use

of an internal positive control is more convenient.
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6.2 Comparison of PCR and culture

It has been reported that only 0.001 - 15 % of the microbial population in environmental

samples is detectable by culture (Amann et al. 1995). Generally, streptomycetes spores are

readily cultivable from environmental samples, however, medium selectivity can affect their

growth (Goodfellow and Simpson 1987). PCR based methods are not dependent on viability

of the target organisms, however, they also suffer from problems. These include inhibition

caused by co-extracted substances, and in diversity studies, differential amplification and

formation of PCR-artefacts, which have to be taken into account during the design of the

assays (von Wintzingerode et al. 1997).

The PCR method was more sensitive than the culture method in the detection of

streptomycetes in house dust samples, since 81% of the 47 dust samples tested positive by

PCR and 36% by culture. This is in accordance with previous works, which have used PCR

detection of bacterial and fungal spores in indoor environments (Zhou et al. 2000, Buttner et

al. 2001, Roe et al. 2001). In addition, the PCR method was more specific than the culture

method used in this work. The culture method identified the colonies simply as

actinomycetes, which are not routinely identified to the genus level, whereas the PCR method

indicated the presence of the genus Streptomyces.

There was no correlation found between culture and PCR results. There may be several

reasons for this including the different error sources inherent in both methods. The different

detection limits of the methods make presence /absence comparisons difficult. The cultivation

method used in this work was a routine method used in our laboratory for the detection of

total counts of bacteria.  It was not specifically designed for the detection of streptomycetes.

The medium used has been shown to be suitable for streptomycetes (Suutari et al. 2002), but

it can also support the growth of other bacteria. The presence of mesophilic actinomycetes

was recorded after incubation at 20-25 ºC for 14 days. After these long incubations the plates

were often overgrown, and slow-growing actinomycetes may have remained undetected. On

the other hand, the sensitivity of the PCR method may have been affected in some instances

by inhibitors present in the samples and co-purified with the DNA (von Wintzingerode et al.

1997, Cruz-Perez et al. 2001a). The impurities in the DNA may lower the PCR amplification

efficiency without inhibiting it totally, which can be determined by using an internal positive

control in the PCR reaction, but not with the inhibition control used in this study.
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6.3 Diversity of streptomycetes in indoor environments

The diversity of streptomycetes in buildings was investigated by PCR amplification of 16S

rDNA sequences directly from building materials and by amplifying the 16S rDNA sequences

of Streptomyces isolates cultured from indoor air, building materials and dust. The 16S rRNA

gene is highly conserved, but a few variable regions are present, which have value in

examining the diversity within the genus Streptomyces (Stackebrandt et al. 1991, Kataoka et

al. 1997). The most highly variable region, which extends from nucleotide position 158 to

203 in the 16S rRNA gene (Pernodet et al. 1989), was included in the PCR amplicons created

in this study.

In contrast to the 16S rRNA genes, which are located in the conserved core part of the

Streptomyces chromosome, genes coding for morphological and physiological characters,

such as pigments and production of extracellular enzymes, are often located in the

chromosome arms, which can undergo dramatic rearrangements (Bentley et al. 2002).

Therefore, the 16S rDNA sequence diversity does not necessarily reflect the diversity of other

properties, and depending on the application, other genes could be used. Metsä-Ketelä et al.

(2002) compared the phylogenetic trees obtained from 16S rRNA and polyketide synthase

(PKS) gene (involved in biosynthesis of secondary metabolites) sequences of 99

actinomycetes isolated from soil, and found no correlation between the two trees.

Interestingly, a great part of the 16S rDNA sequences obtained in this work clustered with the

sequences of S. griseus, S. anulatus and S. setonii in the phylogenetic tree. These species

belong to the Streptomyces albidoflavus -cluster, which is the largest group of Streptomyces

species. This group is known to include many producers of secondary metabolites (Anderson

and Wellington 2001), and was the largest group of secondary metabolite producing isolates

investigated by Metsä-Ketelä et al. (2002). These findings suggest that this cluster may be one

of the most important groups of streptomycetes in moisture damaged buildings both in terms

of their abundance and also in terms of their production of secondary metabolites that could

pose as exposing agents to building occupants.

The culture-independent approach revealed 16S rDNA sequences that clustered with the same

database sequences as the cultured isolates, but also sequences that were only distantly related

to known sequences. Hence, somewhat greater diversity was detected with this approach.
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7 CONCLUSIONS

1. The PCR method applied in this work proved to be specific for the detection of

streptomycetes and was successfully used for the detection of streptomycetes in building

materials and dust samples.

2. Occurrence of streptomycetes in house dust correlated with observed moisture damage in

the houses. The results of PCR detection of streptomycetes and culturing of mesophilic

actinomycetes in dust samples did not correlate with each other. However, all the strains

isolated from dust and identified as mesophilic actinomycetes were streptomycetes

according to their 16S rDNA sequences. Streptomycetes were detected in 81 % of the dust

samples by PCR and actinomycetes in 36 % of the samples by culture. Thus, PCR based

detection seems to be a more sensitive and accurate method for detection of

streptomycetes in house dust than culture. This proposal requires further validation in

future experiments.

3. According to their 16S rRNA sequences, the Streptomyces -isolates from indoor

environments are mostly members of the Streptomyces albidoflavus -cluster, which

includes the subclusters S. albidoflavus, S. anulatus and S. halstedii. However, other

species were also present. The species diversity in buildings seems to reflect the species

diversity in the soil and other natural habitats, and the assessment of the importance of

each individual species in relation to the adverse health effects suffered by occupants of

moisture-damaged buildings needs further research.

4. 16S rRNA gene sequences directly PCR amplified from DNA of building material

samples generally affiliated with the same branches in the phylogenetic tree than the

sequences of the cultured isolates. However, also sequences more distantly related to

known 16S rDNA sequences of streptomycetes were detected, indicating that this

approach could be useful for detecting species that are not readily cultivable.
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