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ABSTRACT

In the inverse problem of radiotherapy treatment planning, the setup for treat-
ment delivery is solved so that clinical treatment criteria are satisfied. The treat-
ment criteria can be consisted of dose constraints for the cancerous tissue and
vulnerable tissues, or the criteria can be determined by using the estimated radio-
biological outcome of a treatment.

When the solution of the inverse problem is the intensity modulation treatment
fields, the planning/delivery process is called the intensity modulated radiotherapy
(IMRT). The multi-leaf collimator (MLC) is a widely used field-shaping device that
can be used to control the intensity modulation.

In this thesis, a complete system to solve the inverse problem is described. The
novel approach in the system is that the field-shaping device, namely the MLC, is
controlled directly. Thus, all technical limitations of the MLC can be taken into
account, when the inverse problem is solved. The system employs the so-called
multiple static control of the MLC.

The thesis describes the mathematical background of the inverse problem and
connects the mathematical models and limitations of the MLC to the inverse prob-
lem. The inverse problem cannot be straightforwardly solved but mathematical
optimization methods must be applied. The implementation of the optimization
is described and discussed.

Treament planning examples, where the developed system has been applied,
and preliminary dosimetric tests are presented and discussed.
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Abbreviations and notations

BEAM A Monte Carlo code to simulate treatment machines
DDC Dose deposition coefficient

DVH Dose volume histogram

GUI Graphical user interface

H The discretized dose deposition kernel

h{z,u) The dose deposition kernel

IMRT Intensity modulated radiotherapy

L-BFGS-B A limited memory quasi-Newton method for bound
constrained non-linear optimization

MLC Multi-leaf collimator

MU Monitor unit

NTCP Normal tissue complication probability
OAR An organ at the risk of radiation damage
P Discretized intensity distribution

! Intensity distribution of a treatment field
PTV The planning target volume

PUC The probability of uncomplicated cure

TCP Tumor control probability
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CHAPTER 1

Introduction

The basic dilemma of external beam radiotherapy is to deliver a high, and most
often, homogeneous dose to cancerous tissue while keeping dose in healthy tissue
at such a level that the amount of side effects is as low as possible or at least at
an acceptable level. Since the discovery of x-rays’ interaction with living tissue,
the dilemma has managed to interest researchers in the field of radiotherapy.

The dilemma can not be overcome in its simplest physical form. It is impossible
for radiation to pass through a medium without any interaction, except when the
medium is vacuum. There has been, however, much advancement during the 20th
century that has enhanced the quality of radiotherapy. The use of high energies
enables deeper penetration, delivery from multiple directions focuses high dose to
the cancerous tissue, rotations of the whole treatment unit (gantry), treatment
head (collimator) and patient couch give more degrees of freedom.

Arguably, the greatest innovations during the latter part of the last century
did not modify treatment delivery, but brought new ideas and possibilities to ra-
diotherapy treatment planning. First, computerized x-ray tomography (CT) was
applied to treatment planning [7, 80]. Second, the accurately estimated dose irra-
diated by a treatment unit could be calculated using CT-data and numerical com-
puter algorithms {see e.g. [2, 65]). It was possible to plan radiotherapy treatments
three-dimensionally. This meant that there was enough anatomical information
to reconstruct 3D tumor shape as well as shapes for other tissues, treatment fields
could be non-coplanar, a treatment plan could be viewed from beam’s eye or from
some other direction and three-dimensional dose distributions could be computed.

The new enhancements in treatment planning gave tools to apply field acces-
sories and still get reliable dose estimations. With beam limiting and attenuating
devices, the intensities of fields could be modified. For example, by blocking cer-
tain areas of a treatment field, dose is constrained in tissue which can not stand
high dose. With the use of accurate dose estimations and field intensity modi-
fications it was possible to produce conformal treatment plans. This was a big
step towards solving the basic dilemma since the region of high dose could now be
planned to conform to the shape of a tumor.

13



14 1. Introduction

Some intensity modulation can be done in conformal radiotherapy. The mod-
ulation is, however, limited, with the exception of a compensator, to blocking
wedges. During the last decades, despite the fact that there was not a device to
produce arbitrary intensity modulation of a treatment field, numerous methods
have been developed for the optimization of the intensity distributions of treat-
ment fields. The principle of inverse treatment planning for radiotherapy was
introduced [6]. In inverse planning the dose prescription is given and then the
treatment setup is solved so that a dose prescription is satisfied. The solution of
the inverse problem is the result of mathematical optimization. The dose prescrip-
tion consists typically of dose constraints for planning target volumes (PTVs) and
organs at risk (OARs) [28, 78].

If, in the inverse planning, the solved parameters are the intensities of treatment
fields, the method is called the intensity modulated radiotherapy (IMRT). The
other parameters that could be solved are e.g. radiation quality, the field angles
(gantry, couch and collimator) and field weights.

At present, the device to produce complex intensity distributions exists. It is
a beam blocking device consisting of narrow shields, called leaves, that can move
during the irradiation of a patient. The device is called the multileaf collimator
(MLC). The MLC can be used to reproduce the optimized intensity distributions.
The intensity distributions cannot, however, be truly arbitrary since the MLC can
move only under its mechanical limitations. For this reason, techniques that con-
trol the MLC in such a way that the optimized intensity distributions of treatment
fields can be reproduced have been developed.

All the contemporary inverse planning systems follow a similar kind of ap-
proach. First, the intensity distributions of treatment fields are optimized. Then,
the intensity distributions are reproduced with the MLC. The drawback of this
dual approach is that during the optimization of the intensity distributions the me-
chanical limitations of the MLC are not taken into account or they are addressed
only roughly.

THE AIMS AND CONTENTS OF THE THESIS

The aim of this thesis is to report the development and evaluation of a complete
system for inverse planning in radiotherapy. The system optimizes the control
parameters of the MLC directly. The optimization of the intensity distributions
of treatment fields is not needed. The technical limitations of the MLC are used
as constraint in the mathematical optimization. The result of the optimization is
a complete treatment plan.

A crucial part of introducing any new method, such as the inverse planning
system described in this thesis, to radiotherapy is to make sure that the safety of
a treated patient will not be compromised. The main aspect of patient safety is
the dosimetric accuracy of the new method. Also, to gain knowledge of the perfor-
mance of the new system several examples must be tested using real patient data.
In this thesis, the evaluation of the inverse planning system includes dosimetric
accuracy testing and inverse treatment planning for real patient examples. The
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treatment planning examples demonstrate the feasibility of the developed system,
they do not try to prove the superiority of the system.

Part of the work, mostly the mathematical background, that is presented in
this thesis has been published earlier [35, 36, 69, 73, 70, 71, 72].

In chapter 2 the basics of the inverse and forward problems of radiotherapy are
discussed together with clinical planning criteria. Chapter 3 introduces intensity
modulation of treatment fields as a tool to achieve optimized dose distributions.
Techniques for the delivery of intensity modulated fields are also discussed, espe-
cially the multileaf collimator (MLC}. Chapter 4 gives an overview of the imple-
mented inverse planning system. Treatment plans computed using the system are
shown in chapter 6. The results of preliminary dosimetric tests are in chapter 5.



CHAPTER 11

The inverse problem

2.1 Introduction

Conventionally, a radiation oncologist together with a physicist decides a config-
uration of treatment fields (field angles, field weights, etc) that results an accept-
able dose distribution. In complex treatment situations, to reach the acceptable
dose distribution can lead to a long trial-and-error iteration. For this reason the
treatment parameters are varied over a limited range [56]. In addition, modern
treatment planning systems enable three-dimensional planning and non-coplanar
(patient couch rotated) field orientations. It is difficult (for a human mind) to find
the best beam orientations if both gantry and couch angles are modified. Conven-
tional treatment planning may also yield unacceptable dose to healthy tissues. For
these reasons the inverse planning in radiotherapy has been studied intensively for
the last decades.

In inverse planning, the treatment delivery of radiotherapy is modeled as an
inverse problem. A dose prescription or radiobiological criteria are given and the
treatment configuration is solved based on the problem modelling and the dose
prescription. Usually, mathematical optimization methods are used to optimize an
object or a penalty function. The phrase plan optimization is somewhat misleading
since an optimal plan is very hard to specify. Optimal dose distributions can be
produced, but they are only part of a treatment plan. One has to consider e.g.
the overall condition of a patient, organ movement during beam delivery, dose
fractionation schedules etc. Whenever treatment plan optimization is mentioned
in this thesis, it refers to mathematical optimization of a mathematically defined
object function.

A number of delivery techniques have been under research to be potential
tools in inverse planning. These include the optimization of field weights [3, 40,
41], optimal compensator design [13, 82], use of blocks, optimization of beam
orientation (gantry and/or couch angles) [26]. None of these have, however, found
their way to clinical practice. Either beam delivery would be too complicated or
results have not been satisfactory.

16



2.2 Forward problem 17

The most promising technique for inverse planning is to modify the intensities
of treatment fields. This means that when the field orientations are given the
intensity distributions over fields are optimized to fulfill some dose constraints or
radiobiological criteria. It is clear that a computer algorithm is the most suitable
means to solve the problem.

Where there is an inverse problem there must be a forward problem. In this
chapter a mathematical model is introduced for the forward problem of treatment
planning. The model enables to determine dose as a function of the intensity
distributions of treatment fields. The basic solution of the inverse problem and
the practical meaning of the solution are also described. Finally, different clinical
criteria for inverse planning are examined.

2.2 Forward problem

To be able to apply inverse methods for radiotherapy treatment planning one
must have a model for the forward problem of treatment planning. This problem
can be defined shortly. When a treatment configuration is given, determine dose
distribution in patient. As the inverse planning is often an iterative process, one
must solve the forward problem several times. Consequently, fast techniques must
be employed while simultaneously the dose model must be accurate enough.

Modern treatment planning softwares can use semiempirical models for dose
calculation (e.g. [65]). Although these methods are accurate enough for clinical
use they are too inefficient when applied to inverse planning. Time used for dose
calculation is far too long. Other ways of describing the dose deposition must be
sought.

2.2.1 Fredholm integral equation formulation

Since only the intensity distribution of treatment fields is solved, a model suited for
this purpose is needed. All knowledge about field angles and modalities is included
in the model. Only parameters that can alter dose distribution are the intensity
distributions of treatment fields. A vastly used model for inverse planning is the
Fredholm integral equation of the first kind. The basic model is

D(x):/Uh(:z:,u)d)(u)du, (2.1)

where D{x) is dose at point z = (x1,z2,x3) In patient space, ¥(u) is intensity
at a point u = (uy,us) in treatment space and h(z,u) is the dose deposition
kernel which describes how much the value of intensity at point % contributes (or
deposits) to dose at point z.

Looking at equation (2.1), it is clear that if the forward or inverse problem
is to be solved, one must know the dose deposition kernel A{z,u). Since the
main interest here is in inverse planning, a thorough study of different kernels is
excluded. Dose or energy deposition kernels are described e.g. in [1, 22].
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2.2.2 The modeling of the dose deposition kernel

Since the kernel A is unknown, a model must be found that approximates the
kernel accurately and enables fast computation.

A simple approximation for the dose deposition is convolution. Based on the
equation (2.1), the convolution approach is

D(z) = /UI(xg)h(P(m) —w)tp(u)du, (2.2)

where h(P(z) — w) is the convolution kernel. P is a projection operator that
projects the point z from the three-dimensional patient space V to the two-
dimensional treatment space U which is essentially a plane. I(z3) is a function
representing relative depth dose. The convolution approach is attractive since
there are effective techniques (Laplace and Fourier transforms) to solve the convo-
lution equation. The assumption that dose is dependent only on the depth x3 and
radial distance P(x) — u of a point = from a point u is, however, over-simplified.
Although skin obliquity can be corrected using ray tracing, the effects of tissue in-
homogeneities are not taken into account. Hence, here are presented two variants
of the original and accurate Fredholm integral equation.

DISCRETE DOSE DEPOSITION MATRIX

In this model, the patient and treatment spaces are divided into voxels and bixels,
respectively. A bixel is a shortened form for a beam pixel. It is usually a small
rectangular area in the two-dimensional treatment space. A narrow radiation beam
from the area of a bixel is usually called a pencil beam. A voxel is a cubic volume
in the three-dimensional patient space. Now, equation (2.1) is discretized and can
be formulated as a matrix equation

D = Hy, (2.3)

where D is a dose vector of size N1 X 1, H is a matrix of size N7 x N and 1 is
an intensity vector of size Na x 1. N is the number of voxels and No the number
of bixels. An element of dose vector is the dose integrated over a voxel in patient
space or dose at a point inside the voxel. Equation (2.3) can be called a pencil
beam model since the total dose is a superposition of dose depositions from all the
pencil beams [51]. Schematic figure 2.1 shows the spaces, a bixel and a voxel.
Equation (2.3) is a useful presentation for radiotherapy treatment planning
since it is suitable for computer algorithms. The equation can be used to solve the
inverse planning problem which will be discussed later. Here, the other inverse
problem that is imbedded in the equation is solved, namely the determination
of the matrix H. Suppose that a treatment could be delivered where only one
of the bixels has a non-zero intensity value, a value of unity. Then, the dose
distribution from such irradiation would indeed be the dose deposition of that
particular bixel and one column of H would present the deposition in a patient
or phantom. Continuing the process, each of the bixels would be set to unity
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Figure 2.1: Treatment space U and patient space V together with a bixel u and

voxel v.

while others would have zero value until dose depositions from all bixels would be
determined. The matrix H would be now fully described.

Dose depositions of pencil beams cannot be measured, since a measurement
setup where only a tiny part of a treatment field would be “open” is impossi-
ble because collimator scattering and leakage from the “blocked” area of the field
would disturb the intensity of the open area. A practical approach is to use an
accurate but slow dose calculation method for the determination of dose deposi-
tion from a bixel. In practice, the accuracy of a tested dose calculation method
{semiempirical, Monte Carlo) and the fast speed of computation of the pencil beam
model {2.3) are combined.

The size of matrix H is of significant importance. An example: the dose
depositions of five 10 x 10 ¢m? treatment fields are determined at N; = 30000
voxels in a patient. If the bixel size is 10 x 2.5 mm?, the number of bixels is
N, = 2000. Thus there are 60x108 elements in the matrix which is a figure that
cannot be handled by most computers. Fortunately, the matrix is sparse, especially
when only voxels radially close enough (e.g. < 2.0 cm) to the central axis of a
pencil beam are taken into account.
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NON-HOMOGENEOUS CONTINUOUS APPROXIMATION

The discrete dose deposition model introduced in the previous section is practical
in the inverse problem of radiotherapy treatment planning but the model has
certain disadvantages. Main drawback is that the model is tied locally to the points
in the patient and treatment spaces where the kernel h(z, ) has been discretized.
If the original integral equation (2.1) is needed, a continuous approximation must
be developed.

Based on the discrete dose deposition matrix H a continuous approximation
can be constructed. The idea is to replace the kernel with suitable basis functions
by formulating

N
h(m, u) = Z Cnfn(xa u)a
n=1

where f; are the chosen continuous basis functions. The unknown coeflicients
¢; can be determined using the discrete kernel H. Let z; € V (i = 1...NN;y) and
u; € U (j = 1...Na) be the discretization points. Denote y; = (z,u), [=1... M
(M = Ny - N3) to be some enumeration of the points (x;,y;). Then

h(?h) @]
H-= : and C =
h(yM) CN

Furthermore, define a matrix F as

Fi, = fn(?Jl)-

Then
H =FC. (2.4)

Now, depending on the basis, the unknown coefficients can be computed from
C = F'H, where (.)! is the pseudoinverse. One can use e.g. the Battle-Lemarié
Spline Wavelet basis, which has spatially local support [69].

2.3 Inverse problem of radiotherapy treatment planning

Before the subject of optimizing dose delivery to a patient is discussed, the discrete
inverse problem that was formulated in equation 2.3 is solved. The simplest form
of the solution is

¥ =H'D. (2.5)
Two questions arise when the solution (2.5) is examined:
1. Is the intensity distribution v physically feasible?

2. What does contain the dose vector D?
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The answer to the first question is that the intensity distribution must be con-
strained. Otherwise it will contain negative intensities for some bixels. This means
that a patient is irradiating the source of irradiation which would not be physically
relevant. A constraint ¢; > 0, ¢ = 1... Ny must be added.

The second question refers to an important aspect of inverse planning, namely
the dose prescription. Here, in vector D, one places all the requirements and
clinical criteria that a treatment plan must meet as precisely as possible. A desired
dose distribution is a rather simple way to assign a dose prescription. The rest of
this chapter is devoted to the presentation of various kinds of dose prescriptions.

2.4 Clinical criteria

When one wants to find an optimal treatment plan to cure cancer, one must first
decide what are the criteria that make a plan optimal. After the decision is made,
the criteria must be put into mathematical context so that the applied optimization
algorithm can use them.

The subject of defining an optimal treatment for an optimization algorithm is
somewhat controversial and has rised some debate over years. The desired dose
distribution D is clearly too simple formulation for dose prescription, although
very understandable from the mathematical point of view. The prescription does
not emerge from clinical demands. It is easy to assign dose in the PTV volume
to a certain value, like 60 Gy. The dose prescription for OARs cannot be 0 Gy,
since it is physically impossible to accomplish and all knowledge about the dose
tolerance level of an organ would not be utilized. Better models must be sought.

More sophisticated formulations of clinical criteria can be divided into two dis-
tinct categories. One is based on physical and the the other on radiobiological
criteria. It must be noted that fractionated radiotherapy is a process where un-
certainties in treatment field output, patient set-up and internal motion of organs
should also be taken into account or compensated [46].

Instead of formulating the criteria mathematically according to the linear equa-
tion (2.5), it will be assumed that dose depends nonlinearly on parameters that
control the intensity i.e. ¥ = 1¥(a), where a are the control parameters. Hence,
D(z) = D(z,a), where z is a point in the patient space. The linear problem
has been solved in [35] and [70]. The subject of intensity control, or intensity
modulation, is discussed in chapter 3.

2.4.1 Physical criteria

The physical criteria are a gathering of constraints, objectives and limitations that
prescribe what the physical dose distribution inside a patient should be. By using
the physical criteria, one tries to find mathematical equivalents for demands like
“Inside the PTV volume, the prescribed dose should be 60 Gy or within 5 % to
the prescribed dose”, “dose in spinal cord can not exceed 47 Gy”, “salivary glands
should not get more than 10 Gy” or “no more than 10 % of the volume of a lung can
be irradiated over 25 Gy”. When a set of these demands are put together and their
mathematical substitutes are inserted to an optimization algorithm, one should
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obtain a treatment plan that can be physically “good”. It can not be ensured that
the plan is the optimal plan for a patient nor that it is the clinically best plan.
There are mainly two reasons for this. The first is that the used optimization
algorithm may not be capable of finding the best mathematical solution i.e. the
algorithm can not find the global extremum (if an object function approach is
used) but is trapped to a local one. The second reason are the clinical demands
which are used to describe an acceptable treatment plan. The phrases that were
introduced above are still too restrictive. Human perception can come up with far
better definitions for a clinically good treatment plan. One of these definitions is
visual inspection, something that an experienced dose planner does routinely and
an algorithm simply cannot do.

Next, two mathematical approaches that use physical criteria to describe the
treatment planning problem are discussed. First, discretized dose is defined, as the
approaches will be described in their discrete forms. Patient space V is divided into
voxels vg, k=1,..., N1. A voxel is centralized to a point zy € vg. Dose in patient
space is controlled by some parameters a which will be defined later: D(zg) =
D(zy,a). Diflerent PTVs, OARs and other regions of interest are defined as
disjoint index sets J = Jppv, UJpv,U.. .UJpTVNp UJoar, UJoar,U. ..UJoARy, s
where J =1,..., Ny and

Jerv, = {keJ|xpePTVy},
Jprv, = {k€J|zp€PTVy},
Jervy, = {k€J |z €PTVN,},
Joar, = {ke€J|xzr € OARy},
Joar, = {k¢cJ|xzrc OARz},
Joary, = {k€J |z, € OARN,}, (2.6)

with N, being the number of PTVs and NN, the number of OARs.

OBJECT FUNCTION APPROACH

Consider a treatment situation where 1 mm from the boundary of a PTV there is
an OAR. The dose prescription dictates the minimum dose inside the PTV volume
to be 70 Gy. The same prescription tells that the maximum dose inside the OAR
volume must be under 47 Gy. Thus, the prescription demands that there must
be a dose gradient of AD/Ad = 23 Gymm~!. The gradient is impossible to ob-
tain using the contemporary treatment delivery techniques. This implies that the
optimization problem is infeasible. The infeasibility excludes many eflicient for-
mulations for object functions that would be based on the dose prescription. One
can not use e.g. gradient projection [539] or augmented Lagrangian [48] methods,
since they try to satisfy constraints exactly, they solve feasible problems.
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Instead of exactly constrained techniques, penalty functions must be used, al-
though they are not considered to be as effective as the gradient projection or
augmented Lagrangian methods [24]. There is one additional demand that the
penalty function must meet. It must be differentiable because a large-scaled opti-
mization problem will be faced and if the derivate of the penalty/object function
is needed, numerical differentiation (e.g. finite difference) is not recommended as
computation times are to be kept at a reasonable level.

Here, an object function is presented which is initially based on discrete Lo
norm and is more specifically a sum of quadratic penalties [71]. Quadratic formu-
lation is preferred over L; and L., norms because of differentiability. Define an
object function

Fa) = a Y |(Derv—D(zs,a))-
keJpTv
+ 2 Y |(D(zx,a) —dpry)_|?
kE€JpTv
+ ez Y || VaD(zp,a) |
keJpTv
+ e Y |(Doar — Dl(wx,a))- [
keJoar
. 2
+ ¢s|| Vav,0arR — 57— Z erf(D(zk,a) — Dav,0AR) (2.7)
[Joarl| , 25
OAR -
for a PTV and a single OAR. The scalar constants ci,...,cs are the relative
weights for the penalties and the operator (.)_ is
_J 0 y>0
(y)—_{ Y, y<0.

Since the physical size of a tissue must not bias the minimization of the object
function (2.7), each weight is divided by the number of voxels in the volume of a
tissue (PTV, OAR).

The different terms, whose sum the object function (2.7) is, are:

1. term: quadratic penalty for underdose in the PTV. This is the protagonist of
the minimization of the object function (2.7) and must be heavily weighted
against other terms.

2. term: quadratic penalty for overdose in the PTV. Here, different terms for
underdose and overdose are used, since an applicable dose prescription for
the PTV is sought. This and previous terms, however, could be replaced
by > resnm Do — D(zk,a)|* (weight excluded) where there is no penalty
as such but a least-squares fit of dose D{zg,a) to prescribed dose Dgy. This
approach would be simpler but there would also be no means to handle
severe underdose or overdose to small volumes i.e. “cold spots” or “hot
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spots”, respectively. When there are different weights for under/overdose,
one can at least compromise between “cold” and “hot” volumes.

. term: quadratic penalty for too large dose gradients in the PTV. This is an

additional penalty that decreases the probability of “hot spots” and “cold
spots” that are certain to emerge when the penalty of a constraint violation
is quadratic.

. term: quadratic penalty for overdose in the OAR. Similar to the penalty in

term 2.

. term: quadratic penalty for violation of dose-volume constraint in the OAR.

|Joar| is the number of voxels in the the OAR. The approximate formulation
of the penalty in (2.7) is such that it enables analytic computation [60, 71].
The original constraint is

{m=1,....M|D(zpm) > Dy}
M

S Vdv7

where M is the number of voxels in an OAR and Vg, is the volume that
should not be irradiated over Dgq,. As the dose-volume constraint for an
OAR must be physically relevant, all voxels must have equal volumes. There
exist models for more complex volume divisions.

Using the object function (2.7) a generic extremum problem can be stated:

Find the global minimum of

min F'(a)

a

under constraints for the control parameters a.
The constraints depend on what control technique for the intensity of treatment
fields is used. This subject will be discussed in chapter 3.

FEASIBLE SOLUTION APPROACH

With the definitions for object function, a feasible problem can also be formulated.
The problem is associated with the physical criteria [71]. A generic feasible prob-
lem can be stated as:

Find control parameters a for which the inequalities

derv < D(zg,a), k€ Jprv,
D(zp,a) < Dprv, k€ Jpv,
D(zg,a) < Doar, k€ Joar,
1
Vav,0ar 2 Tonrl > erf(D(zx,a) — Day.oar) (2.8)
OAR k€Joar

are satisfied under constraints for a.
The inequalities are, in order, the lower limit of PTV dose, higher limit of PTV
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dose, higher limit of OAR dose and dose-volume constraint for OAR. Note that
inequality for too large gradients in PTV is not included, although the inequality
would be possible to formulate.

The feasible solution does seem ideal for treatment plans based on physical
criteria. In reality, it is impossible to find the solution if the dose constraints are
too tight. Fortunately, there are algorithms, e.g. the Cimmino’s algorithm [10, 11]
or its non-linear equivalent [12], that converge to a weighted least squares solution
in case there is no feasible solution [21, 35].

2.4.2 Radiobiological criteria

While physical criteria enable dose prescription for a patient, they do not directly
tell anything about the biological outcome of a treatment. Models have been
developed that link physical dose to its biological effects. One of these models is
the Poisson model of cell kill [55]. In the model, probability of tissue injury P{D)
as a function of dose is formulated as

D

P(D) — QGXP[G’YU*D—‘EO)], (29)

where Dsg is the dose causing the injury for 50 % of patients and ~ is “close to the
maximum normalized slope of the dose response relation”, v = D(dP/dD) [42].
Another way to describe the probability is the logistic equation

P(D) = [1+ (Dso/D)™s5] 7. (2.10)

It is assumed in the probabilities (2.9) and (2.10) that an entire organ is ir-
radiated and the dose distribution is homogeneous. More sophisticated models
have been developed where volume and the serial/parallel effects together with
treatment fractionation have been taken into account (see e.g. [38]).

One possible way to define a biological object function is

PUC(D(z1,a)) = TCP(D(z4,2))[1 — NTCP(D(y, a))], (2.11)

where PUC is the probability of an uncomplicated cure, TCP is the tumor control
probability and NTCP is the normal tissue complication probability [42, 39]. TCP
and NTCP are based on the probabilities (2.9) or (2.10). Parameters a control
dose and, thus, the probabilites in equation (2.11), for example via model (2.9) or
(2.10). Using the biological object function, a generic extremum problem can be
stated:

Find the global mazimum of

max PUC{D(zg, a))

under constraints for control parameters a.

The biological response of radiotherapy has been studied widely but as Wang
et. al have expressed: “Currently available models for computing the TCP and
NTCP are simplistic, and the data they rely on are sparse and of questionable
quality” [74].



CHAPTER 111

IMRT, Intensity Modulated RadioTherapy

3.1 Introduction

Intensity modulated radiotherapy consists commonly of two main phases. First,
the intensity distributions of treatment fields are optimized to produce a desired
dose distribution. Then, the intensity distributions are converted to deliverable
treatment plans by reproducing the distributions using a field accessory. In this
chapter, a few devices that have been used to shape field intensity will be described.
The multileaf collimator (MLC) is the most applied of these devices and, hence,
it is discussed in detail.

The novel idea of the research and development described in this thesis is to
have just one phase in the IMRT instead of the two discussed above. The pa-
rameters of the intensity shaping device, namely the MLC, are directly optimized.
Thus, the intensity-to-delivery device conversion is avoided. To connect the ML.C
to optimization, an MLC head scatter model that can be used in the dose cal-
culation formula (2.1) is needed. The head scatter model produces an intensity
distribution that depends on the parameters of the MLC. The head scatter model
and the complete dose calculation model will be presented in this chapter.

3.2 Dose delivery techniques
3.2.1 MultiLeaf Collimator, MLC

The MLC has movable leaves, narrow shields, and can act as a block that attenu-
ates radiation (see figure 3.2). The leaves are arranged in pairs to a left and right
leaf bank. The number of leaves ranges from 20 to 128. The leaves are controlled
by a computer that loads the MLC leaf positions from a file that is written by
a treatment planning system. Complex shaped fields can be generated but they
are limited by the movement constraints of leaves (see section 3.2.2). The most
important use of the MLC is to shape conformal fields i.e. the field is opened only
for the tumor projection with a margin added. Previously, the treatment volume
was conformed using blocks individually moulded for each treatment field.

26
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S~ ZZZ ZZZZZZZZ22 leaf positions

Intensity

F

Superposition of four intensities

Figure 3.1: The illustration of the control of intensity using the delivery tech-
nique of multiple static collimation. Four segments construct a two-peaked in-
tensity profile. Scattering and divergence have been excluded.

When blocks and the MLC are compared, it is obvious that time is saved as the
individual blocks are not needed. The MLC might also be somewhat safer since
accidents where a block is attached to its tray incorrectly are impossible with
the MLC. In addition, a wrong block can be accidentally used for a treatment
field or a block can drop from the tray. A drawback with MLCs is that they
need a considerable amount of maintenance since they contain moving parts and
electronic equipment.

First ideas about MLC were patented as early as 10 years after Wilhelm
Rontgen’s great discovery, but the concept was used first time in practise dur-
ing 1960s in Japan [7]. Then, in the late 1970s and early 1980s, MLCs were
developed that had an increased number of narrower leaves.

Next, the two most important techniques that are used when complex intensity
distributions are created using the MLC are studied.

MULTIPLE STATIC MLC COLLIMATION

In the multiple static collimation intensity distributions are the superpositions of
the intensities from a number of static, MLC-shaped treatment fields, the so-called
subfields or segments. In figure 3.1 the superposition technique is illustrated. In
figure 3.1, the amplitudes of the segments are equal which is not mandatory.

The use of the multiple static collimation is to reproduce the desired intensity
distributions that are the solutions to the inverse problem of radiotherapy tretment
planning (equation (2.5)). There are numerous approaches devoted to solve this
problem (e.g. [4, 5, 73, 83]). One problem in the traditional use of the multiple
static collimation is that smooth intensity profiles are reproduced approximately
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by applying box-shaped functions (figure 3.1). This causes discrepancies between
dose estimated using the continuous profiles and using the reproduced profiles.
This is quite obvious consequence since the solution (2.5) is a linearized form of a
basically non-linear problem, and the control device, the MLC, is not taken into
account. For the reproduced profiles to be accurate, the number of segments would
have to be very large.

One disadvantage of the multiple static collimation is that during treatment
delivery x-rays are switched off, when the leaves are moved to their positions for
the next segment. This can lenghten treatment times. In addition, the output of
some treatment units is not instantly stable after the x-rays are swithced on. This
can lead to errors in beam output. If there are a large number of segments having
short beam-on times the instability error is bound to cumulate [78].

DyNaMICc MLC COLLIMATION

In the dynamic delivery of intensity modulated treatment fields, the leaves of
the MLC are moved under computer control when the beam is on. The obvi-
ous advantage over the multiple static collimation is that intensity profiles are
smoother, thus enabling more accurate reproduction of desired intensity distribu-
tions. Various control techniques for the dynamic leaf motion have been developed
[17, 61, 62, 63, 67, 72].

3.2.2 Technical MLC constraints

The MLC, being a mechanical device, has a number of constraints for the move-
ment of its leaves. Figure 3.2 shows examples of the different constraints. Since the
main interest in this study is in the multiple static collimation, these constraints
do not include the two constraints that are vital in dynamic MLC collimation,
namely the maximum speed and acceleration of a leaf. The technical constraints
are listed below. The first two constraints must be satisfied always while the rest
are dependent on the MLC model.

1. The leaves may not collide:
alspgblsp,l:1...L,8:1...Sl,p:1...]3l, (31)

where a;sp, is the left and by, is the right edge of a leaf, L is the number of
treatment fields, S; is the number of segments and P; is the number of the
leaf pairs of the Ith field.

2. The leaves can move only within certain limits:
arsp > W by <WB 1 =1...L, S=1...8,p=1...P, (3.2)

where W} and VVlright determine the width of a treatment field. If the field
is symmetric in the leaf movement direction and the origin is at the central
axis of the field, Weft = — /8",
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Figure 3.2: The schematic figure of some of the MLC leaf constraints. Leaf
pair 1 shows the leaf overlapping condition, the left leaf of pair 2 shows restricted
movement over field central axis (x), pairs 3 and 4 (also pairs 1 and 2) show the
violation of the interdigitation condition. Pairs 5 and 2 show the constrained

distance between the leaves of the same bank (7).

3. The leaf movements may have to satisfy the so-called interdigitation con-
dition stating that the left and right (or the right and left) leaves of the
adjacent leaf pairs cannot overlap:

blspgals(p+1), bls(p—i—l) <ap, t=1...L,s=1...85,p=1...P -1
(3.3)

4. The travel of leaves over the central axis of a field can be restricted to
Qsp 2> =8, bigp <k, l=1...L, s=1...85,p=1...P. (3.4)
This is the maximum overtravel constraint.

5. The distance between the leftmost and rightmost left leaf, or between the
rightmost and leftmost right leaf, can be limited to

Qlsp—Qlsqg <Yy bisp —bisg <77, [=1...L, s=1...5, p,g=1...P. {3.5)
This is the leaf span constraint.
6. Some MLCs do not allow completely closed leaf pairs:

bisp —aisp > e, l=1...L, s=1...5,p=1...P. (3.6)

Above k, v and ¢ are positive scalars.
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3.2.3 Other techniques for beam delivery

A number of beam delivery techniques have been proposed for the IMRT. Besides
the MLC, there are other suggested approaches like conventional blocks or dynamic
wedges with the most futuristic of the suggestions being perhaps a small linac
(linear accelerator) held by a robotic arm [81].

When a block of metal having a variable thickness is put in the shadow tray
of a treatment unit, it is called a compensator. Because x-rays have to traverse
through the compensator, they will experience location-dependent attenuation due
to the variable thickness. With a compensator, it is relatively easy to modulate the
intensity of a treatment field, but each modulated field must have an individual
compensator and spectral changes in photon beam must be taken into account
[49]. The fabrication of a compensator is time-consuming and requires special
machinery. Also, compensators can get very thick, if high attenuation is desired
[78].

Tomotherapy is a delivery technique that resembles the computerized tomog-
raphy (CT). The analogy between tomotherapy and tomography is that in to-
mography, slices of a patient are imaged and 2D-figures reconstructed in series,
whereas in tomotherapy patient is irradiated slice by slice. The treatment field is
in principle one-dimensional, although the field has a finite height.

Because the treatment field in tomotherapy is narrow, a patient must be moved
longitudinally during a treatment. Simultaneously to the movement of the patient,
the gantry of the treatment unit is rotated. There are two techniques for the trans-
lation. In the first, the patient is translated between gantry locations (MIMiC,
Multivane Intensity Modulating Collimator) [9]. In the second the patient is trans-
lated during the gantry rotation (Mackie’s device) [47]. The field collimation is
roughly similar in both techniques. In MIMiC, there is a slit aperture that can
be blocked partly by vanes. Each vane is moved pneumatically and can be in-
dividually controlled. A vane can be moved in or out of the aperture in 40-60
ms. Intensity profiles can be constructed by blocking and opening parts of the
aperture. The MIMiC collimator can be attached to an ordinary treatment unit
whereas the Mackie’s device is designed to be an independent CT-like treatment
device.

The main disadvantage of tomotherapy is that only transaxial slices are irra-
diated at a time and thus, a patient must be translated during the treatment.
This can cause difficulties in matching the individual slice-irradiations. Another
concern is that there are a number of mechanical devices, like gantry, patient
couch and the pneumatic vanes of the collimator, working at the same time. The
treatment must be monitored carefully.

The scanning beam technique for treatment delivery has been proposed [43].
This can be done using dynamic jaw motion, but treatment times would be far
too long. There is, however, a treatment unit (Racetrack Microtron) that can
steer electron beam by bending magnets. The pencil beam that scans the area
of a treatment field has too wide half-width (4 cm) at isocentre. For this reason
the beam must be further collimated using e.g. the MLC [68] or a multi-hole
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collimator [37].

3.3 Dose calculation model using MLC parameters

Here, the MLC is connected to the dose calculation model (2.1) and more atten-
tion is given to the parameters that affect the dose in the combined model. The
main idea is to construct the intensity distribution ¥(u} using the positions of
MLC leaves. The derivation of the model is for symmetric treatment fields. For
asymmetric fields, modifications in the model are straightforward. The model is
first described for one leaf pair of a field. Then the model is expanded to take into
account multiple leaf pairs and several fields.

Let the maximal opening of a treatment field be a rectangle U = [-W, W] x
[-K,K]| c R?%. Denote the point of U by u = (u1,us). The leaves of an MLC
are positioned orthogonally to us-axis and they have a positive width d. With the
leaf positions, the positions of leaf edges in the leaf movement direction are meant.
Assume that there are P leaf pairs (Bp, A,), p = 1,...,P. This means that the
height of the field is 2K = Pd. Let U, := [-W, W] X [ug p—1,U2p], p =1, ..., P be
the rectangular areas (along ui-axis) determined by the leaf pairs (B,, Ap). The
areas U, can be called channels [79].

Now, the intensity distribution for one channel is modelled. Here, the distribu-
tion is actually considered to be an intensity profile i.e. the effect of a leaf on the
intensity distribution is assumed to be constant along us-axis. Another simplifica-
tion is that intensity is 0 under a leaf and )¢ if a point is not under a leaf, where
g is the constant, non-modulated intensity distribution of a treatment field. The
intensity profile for the pth leaf pair is

T
y(ur) = o / H(ap(t) — w2 )H(us — by(£))dl, (3.7)

where T > 0 is the total irradiation time (beam-on time). Thus, the leaf positions
ap : [0,T] — [-W, W] and b, : [0,T] — [-W, W] are functions of time. They are
called the leaf trajectories. The trajectories are assumed to be sufficiently smooth,
at least piecewise continuous and bounded functions. In addition, the trajectories
must satisfy at least partially the MLC constraints that were formulated in section
3.2.2. The function H is the Heaviside function

I, >0
H(“){ 0, u<0.

If the Fredholm integral equation (2.1) and the equation for MLC modulated
intensity profile (3.7) are combined, dose deposited D(z) by the channel U, can
be computed:

T
D(z) = vo /U hiz,u) /O H{ay(£) — ua YH(ur — by (£))dtclus dus.

A treatment consists of L different treatment fields S;. By different, it is
meant that at least one of the rotations of a field (gantry, collimator or table)
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is different from the other fields. Let T, I = 1,...,L be the beam-on times of
the fields. Furthermore, for each segment Sj, let the end of leaf A, be in a point
aip(t) € [—-W;, Wi at the moment ¢ € [0,7}] and let the end of leaf B, be in a
point by, (t) € [-W;, W;] at the moment t € [0,T;]. Also, let P, be the number of
leaf pairs of a field. Superposition is used to compute the dose deposition of an
MLC-shaped field and then to compute the total dose from all the fields. Now,
dose is formulated as

Ty l
Z %/ - hi(z, w)H(ap(t) — wi ) H{ua — bip(t))durduadt, (3.8)

where Uy, is the pth channel of the Ith treatment field and ¢} is the constant,
non-modulated intensity of the treatment field S;. If the same treatment unit is
used for a whole treatment, the intensity 1/16 can be divided into 1/16 = Yowy, where
1o is the output of the unit and w; is the weight of the Ith field. It is assumed that
the radation quality is not changed during a treatment which enables the simple
use of the weight w; instead of 1pw;.

The dose calculation model (3.8) can be directly applied to the dynamic MLC
delivery (section 3.2.1). It can be further enhanced by formulating the model to
use leaf velocities as control parameters instead of leaf positions [72].

If the MLC is used traditionally as a block, the leaf trajectories would be
constant functions. The obvious explanation is that leaves do not move during the
delivery.

Unless there is a continuous kernel h;(x,u) available, a discrete version must
be used. The discrete modification of the model (3.8) can be used in computa-
tion environment. Initially, the discrete kernel H (section 2.2, equation (2.3)) is
assumed to have been measured or computed in such a way that the bixel size
in uo-direction is the same as the width of a leaf. Because of the discretization,
intensity inside a bixel’s area is simplified to be a constant. These assumptions
lead to the discrete dose calculation model

P
D(xy,) Zwlzz / HippM{agy(t) — w))H (] — byy(t))dt, (3.9)

= p=1j=1

where J; is the measure of width of treatment field [ in bixels. This implies that
the scaling of the parameters a;,(t) and by, () must be changed accordingly. The
integration over u; in equation (3.8) is replaced by the Riemann sum.

3.3.1 Dose calculation for multiple static MLC delivery

When treatment delivery consists of treatment fields that are further divided to
segments (see section 3.2.1), the segments are superpositioned in a dose calculation
model. Instead of one treatment field, there are a number of segments each having
its own weight. The discrete model (3.9) is modified to take into account the
segments of multiple static delivery. MLC leaves do not move when a beam is
on in multiple static delivery. The constant leaf positions imply that the leaf
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trajectories are piecewise constant functions. Using the Riemann sum to compute
the integrals of the now piecewise constant trajectories, dose model becomes

L S PoJ

D(ze) = > > wis » Y HigpHlarsp — u))H(ud — bigp), (3.10)

=1 s=1 p=1j5=1

where w;s is the weight of sth segment of Ith field. The position parameters of
leaves a;sp and bysp are not functions of time as in (3.9) but refer now to sth
segment. The weight parameters w;s control dose deposition together with leaf
positions. The leaf positions and segment weights construct a complete set of
control parameters that are needed to define dose D(xy). Integration over time
is not needed since the trajectories of leaves are now piecewise constant. Instead,
the integral is handled by the superposition of segments. In practice this means
that leaves do not move during irradiation, when beam is “on”.

3.4 The head scatter model for MLC

In the previous section, the model for dose calculation using the MLC parameters
was formulated. However, a simplified model for the transport of radiation through
the MLC was applied, namely the Heaviside function H. The Heaviside function
does not take into account the scattering from the edge and the sides of a leaf. It
was also assumed that there is no radiation leakage through a leaf.

A relevant method to study radiation in a treatment unit is the Monte Carlo
code BEAM to simulate radiotherapy treatment units [58]. The BEAM code
was used to compute radiation flux at a plane under the MLC. Unfortunately,
the BEAM model for the MLC was not accurate enough to fully describe the
curvilinear geometry of the edge of an MLC leaf !. To overcome the problem of
simulating the MLC scatter and leakage, a different approach, developed by Chen
et. al [14], was used. The ray tracing and primary/extended source models were
adopted from their work.

3.4.1 Ray tracing method

Here, the scattering from the leaf sides or the so-called tongue and groove effect
[75] were not considered. The side scattering has been formulated in [73].

An intuitive way to determine fluence distribution at a scoring plane located
under the MLC is to cast rays from a small focal source at the level of the target of
a treatment unit to the plane. The attenuation of x-rays can be calculated using
the pathlengths of the casted rays in the attenuating material (i.e. the MLC).
Chen et. al [14] used a structure function for the calculation of the pathlengths
since they wanted to model the MLC three-dimensionally. Here, instead, simple
geometrical calculations are used to determine the pathlengths because only the
effects of scatter at the edge of a leaf were studied. The cross-sectional geometry
of a Varian (Palo Alto, USA) MLC was modelled.

LAt the time of writing there is availabe a more sophisticated model for the MLC.
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Extended source (flattening filter)
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Figure 3.3: The example of the two-dimensional ray tracing for the determi-

Scoring plane

nation of the MLC head scatter. There are two source of radiation: a focal and
extended source. Rays casted from one point of the extended source are shown.

The determination of intensity using ray tracing from a tiny source (focal
source) can be [urther enhanced by including scatter. Scatter is modelled by
an extended source at the level of the flattening filter of a treatment unit. A dual
source model can now be used: a small focal source at the target and a larger
extended one at the flattening filter plane. Fluence distributions for the sources
can be obtained from Monte Carlo simulations [44] and the source dimensions
and material properties (tungsten, copper and lead) from the manufacturer of the
treatment unit.

The convolution of the focal and extended sources, suggested in [14, 44], was
not used. In convolution, a small angle approximation is used that causes small
errors to the computed intensity. The full ray tracing is slow, when routine use is
considered, but gives higher accuracy than convolution.

The intensity for the 4 MV Varian Clinac 600C (Varian, Palo Alto, USA)
having a Varian MLC was computed. The fluence disitributions were estimated
from the parameters represented by Liu et. al [44]. Figure 3.3 shows an example of
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rays casted from the left edge of the extended source (the flattening filter). Since
the intensity profile did not change when more than 1000 rays were traced, this
number was used in computations.

3.4.2 Data fitting using an analytic basis function

As an efficient form of the MLC head scatter was needed for the dose calculation,
an analytic function was fitted to the intensity profile that was determined by
ray tracing. The first approximation, Heaviside function H, was replaced by an
analytic function

Flagan (@) = co + {1~ tanhea(b — y — c3)l, (3.11)

where cg, ..., cs are the fitting parameters, y is coordinate in leaf movement direc-
tion and b is the position of a leaf in the right leaf bank of the Varian MLC. For
a leaf in the left bank, analogously to (3.11),

Hiets(y,a) = co + %1[1 ~— tanh(co(y — c3 — a))], (3.12)

where ¢ is the position of a left leaf.

Figure 3.4 shows the ray traced intensity profile of the right leaf of the Varian
MLC and the fitted intensity using equation (3.11). For comparison, intensity that
was computed without the contribution of the extended source is also shown.

It can be noticed in figure 3.4, that the analytic fit to the original, ray traced,
intensity is not excellent. The original intensity is not “mirrored-symmetric” as
was simplified, when the basis was chosen for ﬁright and Hieg. The fit could be
improved for example by using a linear combination of two or more of the basis
functions but, as will become clear in section 7.2, where the dosimetric testing is
discussed, the goodness of the fit is of no great importance.



36 3. IMRT, Intensity Modulated RadioTherapy
= Focal/extended source
— Fitted
—_——]\ : <o Focal only
0.8
206
[72]
C
2
£
0.4
0.2
0 | |
-1.5 -1 -0.5 1 15

Distance from CAX (cm)

Figure 3.4: A comparison of the intensity profiles that were determined by
ray tracing (focal source only, focal end extended sources) and using a fit to an
analytic function. A right leaf of the MLC is at the central axis of the treatment
field (CAX).



CHAPTER 1V

4.1

Implementation

Introduction

Here, the inverse problem of radiotherapy treatment planning (chapter 2) and the
IMRT (chapter 3) are combined to a complete inverse planning system that uses
the multiple static collimation. The main goals of the design of the system were:

1

A system which optimizes MLC-parameters so that the resulting dose dis-
tribution is as close as possible to a dose prescription.

. The MLC-parameters define treatment fields that use multiple static colli-

mation (section 3.2.1).

. The system should work for all MLCs i.e. the system must be flexible enough

to accept the physical dimensions and the mechanical constraints (section
3.2.2) of any MLC.

The result of the computer optimization is a treatment plan, not a set of
intensity distributions.

. The estimated dose distribution of an IMRT treatment plan must be dosi-

metrically accurate.

. The fast execution of the computer optimization is desirable.

The system must work together with the Cadplan treatment planning system
(Varian Medical Systems Finland, Espoo, Finland).

The optimization system was written to be a stand-alone application. First,
the system reads the dose deposition kernel (H), the dose prescription and the
characteristics of the treatment fields and the MLC. The kernel has been calculated
by the dose calculation engine of Cadplan. After the computer optimization is
finished, the system writes the positions of the leaves of the MLC, the weights of
individual segments and the intensities of the treatment fields into separate files.

37
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The intensities, produced by the multiple static collimation, can then be used to
dose calculation purposes in Cadplan. From the leaf position files, MLC-files are
generated that can be fed in to the MLC control of a treatment unit. Monitor
units for the segments are calculated based on the weights of the segments.

In this chapter, the essential parts of the developed inverse planning system
are described. The description follows the same sequence of actions as the process
of inverse planning does.

4.2 The user interface

In the graphical user interface (GUI), the user gives information mainly concerning
the treatment fields and the dose prescription. For the treatment fields the number
of multiple static segments (3 — 20) must be given. The dose prescription includes:

e For a PTV, lower and higher dose constraints and relative weights.
e For an OAR, a possible higher dose constraint and a relative weight.

e For an OAR, possible dose volume constraints: doses, volumes and rela-
tive weights. An OAR can have more than one (up to ten) dose volume
constraints.

e The densities of calculation points in the volume of an organ. Typical values
range from 15 points/cm? to 35 points/cm?.

In addition, the maximum number of iteration rounds (e.g. 100), the radial dis-
tance after a calculation point is discarded (sections 2.2.2 and 4.3) and the maxi-
mum optimization time must be given.

In addition to the interaction with the user, the GUI saves information about
the treatment fields and the MLC including e.g. field sizes and MLC characteristics
(leaf width etc.).

4.3 Calculation of the dose deposition kernel

The dose calculation engine of Cadplan was used to compute the discrete dose
deposition kernel H. The engine is a variant of the pencil beam algorithm intro-
duced in [65]. Dose is determined at predetermined points in the patient space.
The kernel is computed bixel by bixel i.e. dose contribution from an individual
bixel is recorded to all points of interest in the patient space. These contributions
are called dose deposition coefficients (DDCs).

An existing implementation, the pre-optimization routine PrOp of Cadplan,
was exploited in the computation of the kernel. The routine is originally meant
to be used with another optimization system which is based on [61]. Since the
dose deposition kernel is universal for all models based on the Fredholm integral
equation (2.1), the same pre-optimization routine can be used for all discrete,
pencil beam based optimization methods.

For each treatment field and PTV/OAR Pr0Op saves the DDCs as a sparse
array. Every point in patient space has a dose deposition matrix that defines how
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Figure 4.1: The dose deposition matrix in the treatment space (treatment field)
for one point in the patient space. up is the leaf movement direction. The total
dose of the field can be computed by simply summing the dose depositions of

bixels.

much each bixel of a treatment field contributes to the dose at the point (figure
4.1). Since the size of a bixel is small, Wyr,c x 2.5 mm? (Wwmrc is the width, e.g.
10.0 mm, of a leaf of the MLC at the distance where the field size is defined), the
matrix is mostly filled with zeros because the intensity of the fluence of a small
pencil beam decays radially fast. In fact, user can determine how close a point
must be radially from the pencil beam axis to be included in DDCs. Typical value
for the radial distance is 1.5 cm. The shorter the radial distance the fewer elements
of the matrix get non-zero values. Naturally, the zero-valued bixels need not to
be saved. This enables sparse matrix structure that can be used to save computer
memory.

4.4 Specific extremum problem

Here, the generic extremum problem applying the 40 leaf-pair Varian MLC and
the multiple static collimation is specified. The object function approach, equation
(2.7) is used. The specifical, linear MLC constraints are as follows:

e The inhibition of the leaf collition — constraint (3.1).

e The leaves can move only within a treatment field — constraint (3.2).
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e To avoid field shapes that have multiple openings, the interdigitation lim-
itation was included, although it is not mandatory for the Varian MLC —
constraint (3.3).

e The maximum overtravel is £ = 16.0 cm — constraint (3.4).
e The maximum leaf span is € = 14.5 cm — constraint (3.5).

The weight w;s of a segment, introduced in section 3.3.1, needs special atten-
tion. In multiple static collimation, the beam is switched off during leaf movement.
When the beam is then switched on, the flux of photons is not stable during the
first few monitor units (<10 MUs). Thus, it is not advisable to use segments that
have small weights corresponding to short irradiation times. A constraint can be
used to either force the weight of a segment to be greater than a specified value
or to force the weight to zero. The simple constraint is

wys > wy Vo wpg = 0, (4.1)

where wg is the lowest accepted value of a segment weight. The constraint (4.1)
is not computationally practical. A better non-linear {quadratic) formulation is

wis(wys — wg) > 0. (4.2)

While the constraint (4.2) may increase the value of the object function, when the
value of any of the w; is between zero and wyg, it does not ensure that the weights
are non-negative. Hence, an additional constraint has to be added:

wys > 0. (4.3)

Although it would be possible to link the monitor units and wq, an arbitrary figure
for the lowest accepted value wg was used.
The implemented object function is

Nprv
F(a,b,w) = Z lcgc%}\l/,i Z |(Dprv,: — D(2g,a,b,w))_|?
i=1 kcJprv,:

+ c%)r}‘vv,i Z [(D(zk,a,b,w) — dPTV,i)2‘|

kedprv,i
NoAR
2

+ g COAR,i g |(Doar,i — D(zx,a,b,w))_|

i=1 k€JoAR,

Nav,0AR,

1
+ Z Cdv,0AR.j| | Vav,0AR.; — 55—
= | JoAR. i

2
X Z erf(D{(zy,a,b,w) — de,OAR,z’j)) ]

k€JoAR,i




4.5 The optimization method 41

-+ Cweight Z Z |(wls (wls - wO))— | (44)

=1 s=1

There are a number of modifications when the object function (4.4) is compared
to the generic object function (2.7). The object is now a function of left and right
leaf positions and segment weights, a, b and w, respectively. Nprvy is the number
of PTVs and Npar the number of OARs. Each OAR can have Ngy o0ar,; dose
volume constraints (Ngy,0ar,: < 10). Also, the constraint for too small segment
weights is added.

The computed dose is a combination of the dose calculation model for the
multiple static collimation (3.10) and the analytic MLC head scatter models (3.12)
and (3.11). At calculation point z,

L Sl P Ji

D(xka a, b7 W) = Z Z Wis Z Z Hlkpj,):(left (], alsp),}:(right (], blsp)- (45)

=1 s=1 p=1 j=1

Now, the practical extremum problem can be stated:
Find the global minimum of
H%)in F(a,b,w)
under the constraints (3.1),(8.2),(3.3), (3.4), (3.5) for leaf positions a and b and
under the constraint (4.3) for segment weights w.

4.5 The optimization method

An optimization method is needed to find a minimum of the object function that
was formulated in the previous section. A careful choice of the method is vital,
when practical treatment plans are desired. There is no single optimization method
that can solve all problems with equal efficiency and accuracy. The choice of the
optimization method is always dependent on the capability of the person/persons
who choose the method. Some understanding of the optimization problem is es-
sential to categorize a problem optimizationwise. By categorizing, choices like
differentiable /non-differentiable object function, linear/non-linear object function,
no/box/linear/non-linear constraints etc. are meant. The deeper understanding
of a problem and testing of different methods can lead to the choice of the method
that solves the problem perfectly [24].

There were three main aspects that governed the choice of the optimization
method: non-linear object function, linear constraints and large-dimensionality.
The first two facets are obvious (section 4.4). The dimensionality of the problem
needs some clarifying. Consider a five-field treatment plan, where each field has
15 leaf-pairs and 15 multiple static segments. The total number of segments is
75, which is also the number of the segment weights. For each segment, the field
is shaped by 30 leaves, 15 left and 15 right leaves. Now, the total number of the
MLC parameters is Ny, = 2325. For a non-linear optimization problem, Ny is
large for the present computer hardware and algorithms.
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There are a few algorithms to choose for the non-linear, linearly constrained
and large-dimensional extremum problem. Because the optimization problem is
multiextremal, global optimization algorithms would be desirable [19]. Global
optimization methods are not straightforwardly applicable. At present time, the
generic global optimization algorithms, such as the simulated annealing [52, 57, 76]
or the genetic programming [41], cannot solve large-dimensional, non-linear prob-
lems in a reasonably short time. On the other hand, the use of a local optimization
algorithm forces one to determine an initial guess for the MLC parameters. This is
a serious drawback because the final solution depends heavily on the initial guess.
It is, however, possible to estimate the initial MLC leaf positions. This subject is
discussed in section 4.6.

Local optimization methods have been studied in the inverse problem of radio-
therapy, e.g. [18, 30, 31, 35, 45, 84]. In all these studies the linear model (2.3), or
its variant, has been used for dose calculation, and the results of the optimization
were the intensity distributions of treatment fields. Thus, the results of the studies
are not applicable, since here the parameters in the dose calculation are the leaf
positions and segment weights. To ensure the fast convergence of the object func-
tion (4.4), gradient of the object function must be used. Because the discrepancy
between the optimized and prescribed dose distributions can be large, optimiza-
tion methods that use only the gradient, or more precisely the Jacobian, of the
object function will not be efficient [24]. Knowledge about the second derivate,
namely the Hessian, of the object function is desirable.

The potential local optimization algorithms were LANCELOT [16], SNSOL
[25], MINOS [53] and L-BFGS-B [85]. The algorithms use the same principal
method. Let f(x) be an object function that is to be minimized. A local quadratic
approximation m. (from Taylor series expansion) of f at point z, is

me(x) = f(xe) + V(ze) (2 —20) + %(m — ) VA f(ze) (@),

Let 24 be the minimizer of m, [32]. Now, x is the approximation of the pa-
rameters that minimize f. Then, by setting . = z,, a new approximation for
the minimizer of f can be calculated. This iteration (or sequential quadratic ap-
proximation) can be continued until convergence to a minimum is achieved. The
method is called the Newton’s method, and when an approximation of the Hessian
V2 f(z.) is used, the method is called the quasi-Newton or variable metric method.
The amount of documentation about the Newton’s method is vast [20, 23, 24, 32].

The main problem of the Newton’s method, when it is used to solve large-
dimensional problems, is the size of the Hessian matrix V2 f(z.). Let z € RV*L.
Then, there must be enough computer memory for N2 double precision (8 bytes)
floating point numbers. If N is large, computer memory must be used extensively.
All four potential algorithms overcome this problem by using either a known spar-
sity pattern of the Hessian (LANCELOT) or a limited memory Hessian (SNSOL,
MINOS and L-BFGS-B).

None of the algorithms is perfect for the treatment planning problem.
LANCELOT was not suitable because there is no knowledge about the sparse-
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ness or about the sparsity pattern of the Hessian in the problem. SNSOL and
MINOS are effective only when the number of decision parameters roughly equals
the number of active constraints. In inverse treatment planning, this would mean
that almost all leaves should be under a constraint i.e. a leaf is about to collide
the opposite leaf (a;sp = bisp, constraint 3.1) or a leaf is at the edge of a treatment
field (constraint 3.2) etc. Finally, L-BFGS-B accepts only box constraints, higher
and lower limits, for parameters.

Despite the fact that L-BFGS-B is not capable of accepting the MLC con-
straints, it was considered to be sufficient for the purpose and was chosen to be
the optimization algorithm. It is possible to determine the box constraints ac-
cording to the MLC constraints. After the inital leaf positions are determined, for
each leaf position, lower and higher limits are determined in such a way that a
leaf will not violate the MLC constraints during the actual optimization. In other
words, the leaf movement was restricted to feasible regions. Because of the rigid
low/high limits, a leaf cannot move to position that would otherwise be feasible.
For example, let the left edge of a treatment field, in leaf movement direction, be
at —W and the right edge at W. The central axis of the field is at 0. The initial
values of the left and right leaf of a leaf-pair are at —W/2 and W/2, respectively.
The intuitive choice for the higher limit of the left leaf’s position is 0 which, at
the same time, is the lower limit for the position of the right leaf. If, during the
optimization, the right leaf is at the position 3W/4 and left is at 0, the left leaf
cannot move further right, e.g. to the position W/5, notwithstanding it will not
collide the right leaf.

4.5.1 Optimization applying the L-BFGS-B

A description of the features specific for the L-BFGS-B, especially about the lim-
ited memory feature, are given in appendix A.

L-BFGS-B uses reverse communication i.e. it asks the user, or a user written
driver routine, the necessary information instead of calling special subroutines,
where the value of an object function or its gradient would be computed. The
reverse communication property of the L-BFGS-B enables simple implementation
since the optimization subroutine can be called from a driver routine and the only
input parameters, besides the control parameters of the I-BFGS-B, are the value
of the object function and its gradient, which can be computed in the driver.
The reverse communication is a favourable feature since otherwise the large dose
deposition kernel would have to be passed to optimization subroutine as an input

argument or the kernel to be declared as a common (Fortran) parameter.
A simplified pseudo-code of the implemented driver routine:

PROGRAM main

PROCEDURE do_optimization
BEGIN
read dose prescription
read field related data and number of subfields
read MLC related data
FOR field DO
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BEGIN
read the dose deposition coefficients for PTVs
read the dose deposition coefficients for OARs
END
initialize leaf positions
WHILE NOT last_round DO
CALL L-BFGS-B algorithm
compute the value of the object function
compute the gradient of the object function
IF NOT optimization_limit_reached THEN CONTINUE
IF NOT time_limit_exceeded THEN CONTINUE
write results (object function value, DVHs,
intensity matrices, solution)
reread dose prescription
IF NOT prescription_changed THEN CONTINUE
ELSE restart optimization with the new prescription
END
write results (object function value, DVHs,
intensity matrices, solution)
END

BEGIN
read sizes for variable allocation
CALL do_optimization

END

The description of the algorithm:

Before the actual optimization, the sizes of the arrays needed to define the dose
deposition are read and memory is allocated for the arrays. This way the coding of
the optimization algorithm is simple as dynamical memory allocation is avoided.
First, in the actual optimization, the dose deposition kernels, the dose prescription
and treatment field information are read form files and the MLC leaf positions are
initialized. Then, the iteration is carried on as long as the time limit is not met,
the value of the object function converges or the infinite norm of the gradient of
the object function is above a predetermined threshold. The dose prescription
can be modified from the GUI during the iteration. If modified dose constraints
are detected, the iteration continues with the new prescription. At each iteration
and at the end, results are written to files for evaluation and treatment planning
purposes.

4.6 The initialization of leaf positions

As a local optimization algorithm was used for the computation of the MLC pa-
rameters, a method to determine an initial set of ML.C parameters was developed.
Two approaches were implemented and tested. In the first, geometrical one, the
two-dimensional projections of PTVs and OARs to the treatment space (the plane
of a treatment field) were used to determine field shapes [71]. Figures 4.2 and
4.3 explain the approach. One segment is used to open the field for a PTV while
others open the field in such a way that an OAR is shielded from left or from
right. The geometrical approach is simple to implement and to understand but no
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Figure 4.2: The conformation of the projection of a PTV (from Tervo and
Kolmonen [71]).

%

Figure 4.3: The avoidance of the projection of an OAR using two multiple static

segments (from Tervo and Kolmonen [71]).

further work has been done to apply the approach for more than three segments
and to more difficult OAR projections than the one in figure 4.3.

The other approach developed to initialize the leaf positions of the multiple
static segments is based on the use of the discrete dose deposition kernel (section
2.2.2). This approach was used in the developed inverse planning system. The
idea is to use the transpose of the kernel to mimick the backward (or adjoint)
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transport of photons. The backward transport was used by Jeraj and Keall [29]
to compute the initial guess of intensity distributions in their Monte Carlo based
method for inverse treatment planning. They used Monte Carlo code to place a
radiation source in PTV and scored particles exiting the patient geometry, thus
obtaining an intensity distribution that was used as an initial guess for further
optimization.

The initial intensity distribution \iflp of the pth leaf-pair of the treatment field
! is computed using equation

Nprv Noar

\i/lp ZS{ Z CPTV,iM(HlEiI) — Z COAR,@'H[F&I , (4.6)

i=1 i=1

where H l};i is the transposed dose deposition kernel (a matrix) for {th field, pth
leaf-pair and ith structure (a PTV or an OAR). The heuristic operator M modifies
the intensity determined for PTVs by averaging and multiplying the intensity. The
operator § smooths the intensity profile slightly. The weights for PTVs and OARs
are CpTV i, COAR,:, respectively. I is a unit vector.

While equation (4.6) may not be physically relevant, when compared to the
backward transport, it does have some heuristic analogy to the transport method.
At a bixel in treatment space, all transposed dose depositions from a PTV are
summed. It is clear that the unit of the summed quantity cannot be any of those
that describe fluence, the quantity is simply the unitless weight of a bixel. This
weight distribution must be heavily modified (operator M) before a PTV is well
conformed. From this weight distribution the transposed dose depositions from
an OAR are subtracted, thus lowering the weights of the bixels that irradiate the
OAR. A dose volume limit is too complex a constraint to be included in the simple
model (4.6).

When intensity distributions are computed, the MLC leaf settings can be de-
termined by methods described in e.g. [4, 5]. The implementation differs from the
usual one because the leaf constraints must be taken into account and they must
be transformed to box-constraints due to the choice of the optimization algorithm
(see section 4.5).

4.7 Data output during optimization

During the iteration the value of object function is written to a file to observe the
progress of the optimization. Dose volume histograms (DVHs) are also saved at
each iteration, and they can be viewed during the optimization.

During and after the optimization, the intensities of treatment fields are written
to files as intensity matrices. Each element of a matrix represents the intensity of
a 2.5 x 2.5 mm? bixel. Reason for this kind of format is that the same bixel size
is used by the dose calculation engine of Cadplan.
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4.8 Dose calculation and MU determination

After optimization, the resulting intensity matrices are used to compute dose dis-
tribution employing the calculation algorithm of the Cadplan treatment planning
system. Dose distribution is computed in transversal, two-dimensional slices. For
plan evaluation, dose volume histrograms can then be determined from the com-
puted dose distribution. The histrograms may differ from those that are computed
during optimization. The reason for this is that the locations of the calculation
points in patient space are not necessarily identical. When dose deposition coeffi-
cients are computed before the actual optimization, calculation points are spread
to the entire volume of a PTV or an OAR, whereas during the dose computation
after optimization, the dose distribution is computed in transversal slices.

To be able to deliver the optimized plan the number of Monitor Units (MUs)
must be determined for each multiple static segment. The procedure is as follows:

e Compute the dose distribution applying optimized fluences.

e Based on the dose distribution and dose normalization, calculate MUs for
treatment fields.

e Using the total amount of MUs for a treatment field and the weights of the
multiple static segments of the field, compute MUs for the segments. This
can be formulated as

NS = round (N;ﬁ‘{g —“’Seg> , (4.7)
WTot

where ]\fl\sﬁgJ is the amount of MUs for a segment, N{%¢ is the total amount
of MUs for the treatment field, wre is the weight of the field and wgeg is
the weight of the segment. The weight of a field wre is the maximum value
of the intensity matrix of a field whose intensity has been modulated. The
operator round(y) rounds y to the nearest integer since Nyt € N.



CHAPTER V

Dosimetric testing

Patient safety demands extensive dosimetric testing when new methods are
brought to radiation therapy. Agreement between the measured and the calcu-
lated dose must be within a narrow tolerance (set by e.g. the ICRU [27]).

The developed optimization system was tested applying film measurements in
a plexiglass phantom. Film was chosen because it was readily available and the
dose distribution of a plane could be measured at once. For more accurate point or
profile dosimetry, other detectors, such as ionization chamber and detector array,
can be used [54].

5.1

Measurement procedure

The measurement procedure consisted of:

1.
2.

N v

®

Choose one field from an optimized treatment plan.

Calculate dose distribution from the chosen field to the phantom at a plane
perpendicular to the field central axis.

Normalize the dose to 1 Gy at the central axis of the treatment field in the
calculation plane.

Write an MLC-file for each multiple static segment.
Compute monitor units (MUs) for segments.
Set up the measurement (phantom, film and treatment unit).

Irradiate the film using the multiple static segments of the field and the
computed MUs.

Scan the film with a film scanner (Hewlett-Packard, Palo Alto, CA, USA).
Convert the optical density of the measured film to dose using a measured

calibration curve (the optical density as a function of absorbed dose).

48
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After the measurements and film scans, the measured dose could be compared
with the calculated dose. The calibration curve for film dosimetry was determined
by irradiating several films with known values of dose.

5.2 The tested fields

Three intensity modulated fields were measured. The modulation of intensity was
different for each field. The first field had a wedge type intensity distribution
with a sharp peak at the thick end of the “wedge”, the second one had an area
of high intensity perpendicular to the direction of leaf motion and the intensity
distribution of the third one was highly irregular. The intensity distributions of
the tested fields featured mainly two different aspects: areas of flat intensity and
steep intensity gradients. In addition, to test slow changes in the intensity, the
intensity distribution of the second field decreases gradually across the width of
the field. Because dose was measured in a homogeneous phantom, the intensity
distributions, with a minor blurring caused by scattering in the phantom, can be
seen in dose distributions that are showed in the figures in section 5.5.

The measured and computed dose distributions were determined using equal
spatial resolution. The computed dose distributions were calculated using
1.25x1.25 mm? (the first and third fields) or 2.5x2.5 mm? (the second field)
resolutions. The reason for the coarser resolution in the dose distribution of the
second field is that the whole distribution would not have been calculated if the
finer resolution had been used. The initial resolution of the measured dose dis-
tributions (150 dots per inch) was determined by the film scanner. To be able to
compare the measured and computed distributions, the measured ones were aver-
aged to decrease the amount of random noise over square areas whose dimensions
were the same as the resolutions of the computed distributions (1.25x1.25 mm?
or 2.5x2.5 mm?).

5.3 Phantom

The phantom was cuboid in shape and was divided to four parts so that a radio-
graphic film could be placed between the parts (figure 5.1). The material of the
phantom was lexan (polycarbonate, (C16H1403)5).

The computed dose distributions were determined in a synthetic water phan-
tom. To be able to compare the measured and computed dose distributions, the
depth from the surface of the phantom to the plane where the computed distribu-
tions were determined had to be corrected. The energy of the radiation (nominally
4 MV) indicates that the primary interaction between radiation and the phantom
material is Compton scattering. Now, electron densities can be used to determine
the depth correction [33]. The correction is

d e Plexan (Z/A)lexan
ke Pwater (Z/A)water

where the density of lexan piexan ~ 1.20 gem ™2, density of water pwater =~ 1.00
gem ™3 (7 A)lexan = 0.53 and (Z/A)water =~ 0.56 [64]. The result of the correction

dlexan s (5 1)
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Figure 5.1: A schematic illustration of the phantom that was used in dosimetric
film measurements. The phantom is constructed of four plexiglass parts. A
radiographic film is visible between the two middle parts.

is that the calculations must be made in a plane that is deeper in the phantom
than the plane were the measurements were made. The two depths are comparable
by dwater ~ 1~14dlexan~

5.4 Radiographic film

Kodak X-Omat V film (Eastman Kodak Company, USA) was used . The film
has a “nominal dose range of 0.25 — 1.75 Gy under normal viewing conditions”
[34). With the applied measurement equipment (the Kodak film and the HP film
scanner) it was noticed, however, that the feasible dose range was 0.2 — 1.2 Gy.
Outside this range the calibration curve (figure 5.2) became too steep (above 1.2
Gy) or too flat (below 0.2 Gy) for reliable results.

The reason for placing the film perpendicular to the central axis of a treatment
field was that if the film is oriented along the central axis during irradiation,
the optical density of the film is not only a function of dose but also a function
of the distance that radiation has traversed in the film. This was discovered in
preliminary measurements and is also reported in [66]. One possible explanation
is that the film itself changes considerably the interaction conditions of radiation
and matter. The substances in the film, such as silver, may have a small effect
on scattering in the otherwise homogeneous lexan material. The phenomenon is
further amplified if primary radiation traverses long distances in the film as is
the situation when the filn is oriented along the central axis of a treatment field.
Thus, a logical orientation of the film is perpendicular to the central axis because
then primary radiation traverses minimum distance in film resulting the radiation
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Figure 5.2: The calibration curve of the radiographic film. Dose is presented as
a function of optical density of the film. The scanned reading is in range 0 — 255.

to cause minimum disturbance to the optical density of the film.

5.5 Results

Figures 5.3, 5.6 and 5.9 show comparisons between the measured and computed
dose distributions. The measured dose distributions are derived from the scanned
films by the optical density to dose calibration. The two-dimensional dose distri-
butions are compared using difference maps. A statistical measure of the discrep-
ancies between the measured and computed dose distributions is illustrated by his-
tograms. The histograms show the discrepancy distributions when the measured
dose distributions are subtracted from the computed ones. For more informative
visual comparison, several dose profiles are shown in figures 5.4, 5.5, 5.7, 5.8, 5.10
and 5.11. The profiles are plotted either along the leaf movement direction or
perpendicular to it.

The maximum and mean discrepancies between the computed and measured
dose distributions were determined in dose range Dmax/2 — Dmax, where Dy, 18
the maximum dose of a computed dose distribution. Results are in table 5.1.



52 5. Dosimetric testing

Table 5.1: Maximum (Apax) and mean (Amean ) dose discrepancies between the
computed and measured dose distributions in dose range Dmax/2 — Dmax-

Field Amax (GY) Amean (GY)
1 0.10 0.02
2 0.20 0.02
3 0.15 0.03

0.6

0.4

0.2

b

0
-0.2 -0.1 0 01 0.2
Discrepancy (Gy)

Figure 5.3: Overview of the first measurement. Upper row: the measured

dose distribution and the histogram of the discrepancy between the computed
and measured dose (F is the fraction of the total number of points in the dose
distribution). Lower row: 0.3 and 0.7 Gy isodoses of the computed (solid line} and
measured (dashed line) dose distributions and the difference map of the computed
and measured dose distributions.
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Figure 5.4: The profile comparisons of the first measurement. Upper row: Dose
profiles along the direction of leaf movement. The measured profiles are drawn
using thick lines and the computed ones using thin lines. Lower row: Absolute
differences between the computed and measured profiles shown in the upper row.
The numbers in the measured dose distribution, in figure 5.3, refer to the shown

profiles.
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Figure 5.5: The profile comparisons of the first measurement. Upper row: Dose

profiles perpendicular to the direction of leaf movement. The measured profiles

are drawn using thick lines and the computed ones using thin lines. Lower row:

Absolute differences between the computed and measured profiles shown in the

upper row. The numbers in the measured dose distribution, in figure 5.3, refer to

the shown profiles.
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Figure 5.6: Overview of the second measurement. Upper row: the measured
dose distribution and the histogram of the discrepancy between the computed
and measured dose (F is the fraction of the total number of points in the dose
distribution). Lower row: 0.3, 0.7 and 0.9 Gy isodoses of the computed (solid
line) and measured (dashed line) dose distributions and the difference map of the

computed and measured dose distributions.
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Figure 5.7: The profile comparisons of the second measurement. Upper row:

Dose profiles along the direction of leaf movement. The measured profiles are

drawn using thick lines and the computed ones using thin lines. Lower row:

Absolute differences between the computed and measured profiles shown in the

upper row. The numbers in the measured dose distribution, in figure 5.6, refer to

the shown profiles.
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Figure 5.8: The profile comparisons of the second measurement. Upper row:

Dose profiles perpendicular to the direction of leaf movement. The measured

profiles are drawn using thick lines and the computed ones using thin lines. Lower
row: Absolute differences between the computed and measured profiles shown in
the upper row. The numbers in the measured dose distribution, in figure 5.6,
refer to the shown profiles.
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Figure 5.9: Overview of the third measurement. Upper row: the measured

dose distribution and the histogram of the discrepancy between the computed
and measured dose (F is the fraction of the total number of points in the dose
distribution). Lower row: 0.3, 0.7 and 0.9 Gy isodoses of the computed (solid
line} and measured (dashed line) dose distributions and the difference map of the

computed and measured dose distributions.
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Figure 5.10: The profile comparisons of the third measurement. Upper row:
Dose profiles along the direction of leaf movement. The measured profiles are
drawn using thick lines and the computed ones using thin lines. Lower row:
Absolute differences between the computed and measured profiles shown in the
upper row. The numbers in the measured dose distribution, in figure 5.9, refer to

the shown profiles.
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Figure 5.11: The profile comparisons of the third measurement. Upper row:
Dose profiles perpendicular to the direction of leaf movement. The measured
profiles are drawn using thick lines and the computed ones using thin lines. Lower
row: Absolute differences between the computed and measured profiles shown in
the upper row. The numbers in the measured dose distribution, in figure 5.9,
refer to the shown profiles.



CHAPTER VI

Patient examples

To test the developed optimization system, several treatment plans were computed
for artificial phantoms and anonymous patients. The test examples had a variety
of PTV/OAR geometries and field settings. Three of the examples are represented
and discussed. The plans are not intended to be clinically relevant but they show
the basic features of IMRT with multiple static collimation. A more exhaustive
testing and evaluation will be needed before the optimization system enters clinical
practice.

The optimizations were done using a HP C180 XP (Hewlett-Packard, Palo
Alto, USA} computer with a HP-UX 10.20 operating system.

The represented DVHs are based on the dose calculations using Cadplan treat-
ment planning system. The intensities of the treatment fields were modulated
according to the results from the developed optimization system:.

6.1 A prostate example

The often existing problem, when external radiotherapy is used to cure a prostate
cancer, is that while a homogeneous dose distribution is easy to create using a
four-field “box” treatment plan, there are vulnerable OARs close to the PTV
(prostate). One of the OARs is rectum, or more precisely the anterior rectal wall.
The quality of life of a treated patient suffers significantly if the rectal wall receives
a long-lasting radiation damage. If the anterior rectal wall is to be shielded after
an accepted tolerance dose, but radiotherapy is continued to a high dose needed
to destroy cancer in the PTV, a concave dose distribution is required because of
the prostate-rectum anatomy (figure 6.1). Close to prostate is also bladder which
should be shielded as effectively as possible.

Treatment configuration consisted of five isocentric coplanar treatment fields.
Table 6.1 shows information about dose constraints and constraint priorities. Ini-
tially, 9 segments per treatment field were allowed. The density of calculation
points in the patient space was 25 points/cm?.

The optimization algorithm ran 95 iterations and evaluated the value of the
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Table 6.1: Dose constraints in the prostate example. For each irradiated object

the constrained volume is shown.

Volume (%) | Dose (Gy) | Priority
PTV 100.0 > 69.3 100
PTV 100.0 < 70.7 75
Femur, dex 100.0 < 40.0 70
Femur, sin 100.0 < 40.0 70
Bladder 90.0 < 60.0 30
Rectum 100.0 < 60.0 80
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Figure 6.1: A transversal slice of the patient with prostate cancer. The shaded
area shows the PTV. Anterior to the PTV is bladder and posterior the rectum.
Five isocentric treatment fields irradiate the PTV. The 63 Gy isodose of the

optimized treatment plan is also shown.

object function and its gradient 115 times. The whole optimization took 63 min-
utes. Finally, there were 3, 5, 4, 4 and 4 segments in the fields 1...5, respectively.
Figure 6.2 shows the resulting dose volume histograms and table 6.2 dose statistics.
The 63 Gy isodose that corresponds to 90 % of the prescribed dose in the PTV is
shown in figure 6.1. There is an overdose in rectum and bladder, since the lower
dose limit of the PTV has the highest priority. Especially, dose in the bladder
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Relative volume (%)

Dose {Gy}

Figure 6.2: The cumulative dose volume histograms of the prostate example.

violates significantly the dose volume constraint because of the low priority. Mean
doses in the femurs, on the other hand, are well below the dose limit, mainly due
to their distant location from the PTV.

Table 6.2: The statistics of the optimized dose distribution in the prostate
example. For each object the minimum dose (Min dose), maximum dose (Max

dose), mean dose and standard deviation (S.D.) are shown.

Min dose (Gy) | Max dose (Gy)

PTV 64.1 73.7
Femur, dex 0.8 45.7
Femur, sin 0.8 44.9
Bladder 17.0 71.4
Rectum 30.7 66.3
Mean dose (Gy) +1 8.D. (%)

PTV 70.0 2.2
Femur, dex 20.7 18.1
Femur, sin 19.7 17.7
Bladder 45.5 23.2
Rectum 53.6 114
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6.2 A nasopharynx example

The treatment configuration is non-symmetric. As opposed to the prostate exam-
ple, where the patient was irradiated from all directions co-planarly, the fields are
here mainly posterior. Hence, dose to the mouth and nose may be reduced. Dose
to parotids, however, must be constrained since two of the lateral fields irradiate
right through the parotids. Of other sensitive structures, the brain stem and spinal
cord have the OAR status. Dose constraints are shown in table 6.3.

The treatment setting and patient anatomy are illustrated in figure 6.3. Each
treatment field had initially 11 segments. Dose deposition was computed using 20

calculation points per cm?.

Table 6.3: Dose constraints in the nasopharynx example. For irradiated objects

the constrained volume is shown.

Volume (%) | Dose (Gy) | Priority
PTV 100.0 > 60.0 100
PTV 100.0 < 60.6 90
Parotis, dex 100.0 < 25.0 90
Parotis, sin 100.0 < 25.0 90
Brain stem 100.0 < 40.0 90
Spinal cord 100.0 < 40.0 80
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Figure 6.3: A transversal slice of the patient with a cancer of the nasopharynx.
The shaded area shows the PTV. Laterally to the PTV are the parotid glands
and posterior is the brain stem. The 54 Gy isodose of the optimized treatment

plan is also shown.

The optimization algorithm ran 110 iterations and evaluated the value of the
object function and its gradient 138 times. The whole optimization took 78 min-
utes. The final numbers of segments were 2, 5, 2, 2, 8, 10 and 10 for treatment
fields 1...7, respectively. Dose statistics for the PTV and the OARs are in table
6.4 and dose volume histograms that were calculated from the optimized dose dis-
tribution are shown in figure 6.4. The 54 Gy isodose that corresponds to 90 % of
the prescribed dose in the PTV is shown in figure 6.3.
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Table 6.4: the statistics of the optimized dose distribution in the nasopharynx

example. For each object the minimum dose (Min dose), maximum dose (Max

dose), mean dose and standard deviation (S.D.) are shown.

Relative volume (%)

Dose (Gy)

Min dose (Gy) | Max dose (Gy)
PTV 54.2 63.9
Parotis, dex 4.3 28.8
Parotis, sin 5.7 31.8
Brain stem 3.2 44.6
Spinal cord 4.0 39.7
Mean dose (Gy) +1 S.D. (%)
PTV 60.0 1.8
Parotis, dex 13.4 7.0
Parotis, sin 17.2 7.1
Brain stem 21.3 19.3
Spinal cord 23.1 15.6
S PTV
Brain stem
= 5‘0 6‘0 7IO

Figure 6.4: The cumulative dose volume histograms of the nasopharynx exam-

ple.

6.3 A Mediastinal example

Due to the location of the (mediastinal) PTV, dose volume constraints must be
assigned to both lungs if the irradiated parts of the lungs are to be kept at least
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partially functional {table 6.5). The number of treatment fields, 3, was kept modest
to not to raise integral dose (the overall dose level) in lungs (figure 6.5). In the
beginning of the optimization, 11 segments were allowed for the treatment fields.
The point densities in the patient space were not homogeneous. In the “small”
volumes (PTV, spinal cord), a figure of 30 points/cm?® was used, but in the lungs
only 3 points/cm?®. Otherwise, the number of DDCs representing dose contribution
in the lungs would have been too big for the computer that was used for the
optimization.

Table 6.5: Dose constraints in the mediastinal example. For each object the

constrained volume is shown.

Volume (%) | Dose {(Gy) | Priority
PTV 100.0 > 59.4 100
PTV 100.0 < 60.6 90
Lung, dex 90.0 < 25.0 50
Lung, sin 79.5 < 25.0 54
Lung, sin 92.4 < 40.0 50
Spinal cord 100.0 < 40.0 100
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Figure 6.5: A transversal slice of the patient in the mediastinal case. The shaded
area shows the PTV. Adjacent to the PTV are lungs and posterior is the spinal

cord. The 48 Gy isodose of the optimized treatment plan is also shown.

Optimization was finished after 43 iteration rounds, and 56 function/gradient
evaluations were needed. The whole optimization took 31 minutes. At the end
there were 6, 11 and 10 segments of the fields 1, 2 and 3, respectively. Figure
6.6 shows the cumulative dose volume histograms of the optimized dose, while
table 6.6 shows the dose statistics in the PTV and OARs. The 48 Gy isodose that
corresponds to 80 % of the prescribed dose in the PTV is shown in figure 6.5.
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Figure 6.6: The cumulative dose volume histograms of the mediastinal example.

Table 6.6: The statistics of the optimized dose distribution in the mediastinal

example. Tor each object the minimum dose (Min dose), maximum dose (Max

dose), mean dose and standard deviation (S.D.) are shown.

Min dose (Gy) | Max dose (Gy)

PTV 49.3 70.0
Lung, dex 0.1 62.6
Lung, sin 0.1 68.8
Spinal cord 0.1 45.3
Mean dose (Gy) +1 S.D. (%)

PTV 60 4.3
Lung, dex 8.6 19.0
Lung, sin 16.6 35.5
Spinal cord 13.0 20.8




CHAPTER VII

Discussion

7.1 Implementation issues

A local optimization method was used. It was not, however, a method of choice.
An efficient global optimization method would have been a more preferable ap-
proach. Global optimization has been used to optimize radiotherapy treatment
plans. The simulated annealing algorithm, particularly, has been applied widely
[52, 76] and is used in the commercially available inverse planning system CORVUS
(NOMOS corporation, Sewickley, USA). Unfortunately, simulated annealing would
be too ineflicient for the developed inverse planning system. The main reason is
that the intensity of a bixel is dependent on the leaf positions in several segments.
For example, if there are 15 segments, then there are 30 parameters (15 left and 15
right leaves) that can potentially modify the intensity of a bixel. When the linear
dose calculation model (2.3) is used, a global optimization method is applicable
since only one parameter determines the intensity of a bixel.

To apply a global optimization algorithm for the developed inverse planning
system, prior knowledge would have to be used to decrease the size of the parameter
space where a global algorithm searches the global minimum. In addition, the use
of initial values for parameters could shorten the optimization times. The use of
prior knowledge and initial values must be used carefully because the algorithm
can be guided accidentally to a region where the global minimum cannot be found.
Thus, the benefits of global optimization may be lost.

A local optimization method always converges to the nearest local minimum.
Consequently, the determination of the initial values of the MLC parameters has a
large effect on the final solution. The equation (4.6) is the product of a thorough
testing where the treatment plans of several patients were optimized. Because
the patient anatomy and the location of the PTV varies substantially between
different patients, equation (4.6) is a compromise that produces the best overall
set, of initial values for the MLC parameters.
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7.2 Dosimetric tests

The results of the preliminary dosimetric measurements are satisfactory. They
show that the positions of the leaves of the MLC are nearly identical in the com-
puted and actual dose delivery. There are minor differences between the computed
and irradiated dose distributions, especially when the dose profiles in the direc-
tion perpendicular to the movement of the leaves are studied (figures 5.4, 5.5, 5.7,
5.5, 5.10 and 5.11). The tinyest difference in leaf positions causes noticeable dis-
crepancies in these perpendicular dose profiles. In addition, the round off of the
monitor units to integers in equation (4.7} can cause small errors. This could be
compensated, however, by recomputing segment weights using the rounded MUs.

Initial comparisons between the computed and measured dose showed unac-
ceptable amount of discrepancy. After a thorough analysis of the dose distribu-
tions, it was understood that the head scatter model for the MLC (section 3.4) was
not correct. The contribution of the dose calculation algorithm of Cadplan had
not been taken into account in the applied ray tracing method. Cadplan already
models the head scatter. To enhance the scattering model, a time consuming
manual adjustment of the model parameters was done. The adjusted model was
quite similar to the Heaviside function with an 8 mm offset in the leaf movement
direction. All dose comparisons were made using the new model.

At the edges of the dose distributions, large discrepancies between the com-
puted and measured dose can be seen in the difference profiles {lower portions of
figures 5.5, 5.5 and 5.11}. Presently, it is not clear what causes these discrepan-
cies. Possible contributors are the head scatter model of the MLC, dose calculation
system or the inaccuracy of the film measurements.

7.3 Patient tests

The discussion here is not meant to find out whether the optimized treatment plans
are clinically acceptable or superb but to evaluate the solutions optimizationwise.
Since the simulations were peliminary, the evaluation must answer questions about
how error-free and reliable the optimization system is and how good it’s perfor-
mance was.

The optimization system is, at it’s present condition, stable and does follow the
dose prescriptions. Illogical solutions have not been encountered. The produced
field shapes are simple and intuitive. All the applied technical constraints of the
MLC are satisfied. As an example, figure 7.1 shows three segments that form the
intensity modulation of the first field in the prostate example (section 6.1). Tt is
easy to conclude from the shapes of the segments that the field faces an OAR and
the modulation tries to protect it.

All optimizations terminated when the L-BFGS-B algorithm informed that the
value of the object function was not converging anymore. The termination was
controlled by a given tolerance. Another termination criterion of the L-BFGS-B is
the infinite norm (the largest absolute value) of the gradient of the object function.
The optimization never terminated because of the gradient criterion. Based on
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Figure 7.1: The MLC-shaped segments of the first treatment field in the prostate

example.

the large gradient norms at the termination, it was considered that at least one
parameter was having large values of gradient but the value of the parameter could
not change since the parameter was already at a constraint boundary 4.e. the
parameter was active. The L-BFGS-B never terminated due to erroneous search
direction. This implies that the gradient of the object function was correctly
computed.

The optimized plans show the typical feature of a quadratic penalty. While
the overall dose distributions satisfy the prescriptions, small regions of PTVs and
OARs get too low or too high dose (tables 6.2, 6.4, 6.6). Another feature in
the solutions is that the values of weighted penalties of PTVs and OARs are not
equal after optimization. For example, in table 7.1 are shown the values of the
non-weighted and weighted quadratic penalties for the PTV and the OARs in
the prostate example. The values in table 7.1 are determined from the final dose
distribution that was computed using Cadplan. This feature is self-explanatory
as the weighted quadratic penalties are combined into one object function (4.4).
The individual penalties are not separable. A more sophisticated approach for
the treatment planning problem would be the multiobjective optimization [50]. In
the multiobjective optimization, each dose constraint could be handled separately
i.e. the object function is a vector containing the weighted dose constraints of
PTVs and OARs. There is not, however, an implementation of the multiobjective
optimization for large-scale problems.
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Table 7.1: The non-weighted (W71) and weighted (W3) quadratic penalties of
the PTV and the OARs in the prostate example.

W1 W,
PTV, low 0.482 | 124.338
PTV, high | 0.032 34.913
Femur, dex | 0.241 | 143.650
Femur, sin | 0.090 57.475
Bladder 0.011 | 549.250
Rectum 1.700 | 240.803

In each patient example, the number of segments decreased during the op-
timizations. This shows that the constraint for too small segment weights was
working (section 4.4). Too small weights were forced either to zero or above the
given minimum value. The smallest accepted segment weight corresponded ap-
proximately to 8 MU.

In the mediastinal example, the PTV dose distribution is not as good as in other
examples. This is a consequence of the overlap of the PTV and lungs. The dose
prescription in the region of intersection is not unique. In fact, the prescription is
controversial because dose should be above the lower constraint of the PTV and,
simultaneously, below the highest accepted dose of the lungs.

The computation times varied substantially between the examples. Time range
was from half hour to almost 80 minutes. The calculation time is dependent on
the number of treatment fields, the number of segments per a field and the point
densities in patient space. The most influental of these dependencies is the number
of fields since adding more fields increases the number of optimization parameters
rapidly. As the computer hardware that was used was quite old even at the
time of writing, the calculation times can be expected to decrese to just a few
minutes in the near future. Remarkable in the mediastinal example is that only
43 optimization iterations were needed. This number is approximately half of the
number of iterations in the other examples. There are mainly two reasons for
this. First, the number of treatment fields was lower than in the other examples.
Second, dose volume constraints were assigned for both lungs. There appears
to be an unbalance between “ordinary” constraints and dose volume constraints
that was wittnessed not only in the mediastinal example but in other examples
that are not documented in this thesis. A dose volume constraint appears to
be too strong when compared to other constraints. This leads to the premature
termination of optimization because a strong dose volume constraint implies a
strong local minimum of the object function. To balance the overly strong dose
volume constraints their priorities must be set to low values. A careful balancing
of different types of constraints needs to be addressed in the future.



CHAPTER VIII

Summary

A complete system for controlling the multileaf collimator (MLC) in the inverse
problem of radiotherapy treatment planning has been described. The control of
the MLC enables the modulation of the intensity of a treatment field. The control
parameters of the MLC can be mathematically optimized according to a dose
prescription. A dose description can contain weighted dose constraints and dose
volume constraints. A correct head scatter model for the leaves of the MLC ensures
that the resulting dose distribution is accurate. The technical limitations of MLCs
are addressed during the mathematical optimization. To not to create segments
with too short beam-on times, the minimum weight of a segment can be assigned.

Preliminary dosimetric phantom testing has been done using radiographic film.
The performance of the inverse planning system has been tested by optimizing
treatment plans of example patients.

The significant parts of the inverse planning system have been discussed and
studied critically.

The aims of the work that was reported in this thesis were fulfilled. Based
on the results of the dosimetric and patient example tests, the direct control of
the MLC can be used in the inverse problem of radiotherapy treatment planning.
Further testing will show whether the described system is clinically relevant.
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APPENDIX 1

L-BFGS-B

L-BFGS-B is a quasi-Newton method [24] designed to solve large dimensional
non-linear simple bounded (box constrained) optimization problems of the form

min f(x)
subject to Li<z;<u, i=1,....n, (A.1)
where f : R™ — R is a nonlinear function [8, 85]. The gradient g of f must

be provided by the user. The number n of variables is assumed to be large. The
algorithm does not require the knowledge of the second derivate of f since it uses
a quasi-Newton update of the Hessian B of f.

At iteration k£ a quadratic model

ma(z) = flan) + gl (x — x) + %(x—xk)TBk(x—xk) (A.2)

is approximately minimized subject to the bounds 1 and u. Before the minimiza-
tion, gradient projection method is used to determine a set of active constraints
at each iteration i.e. the set I = {i | (i) = I(¢) or (i) = u(i), i =1,...,n} (see
e.g. [15]). Then, the constraints belonging to the active set are treated as equality
constraints during the minimization of my(z).
The ordinary BFGS update of the Hessian By 1 is of the form

T T
Ye+1Yer1  (Brsk+1)(Brsir1)
Yii1Sk+1 Sk+1BrSK11

Bii1 =B + ; (A.3)

where s 11 = X1 — Xk and i1 = k41— &k [32]. The update A.3 requires dense
matrices By+1 and By which is impossible if n is large (several thousands). One
method to overcome this is to use a sparse representation of B with a known spar-
sity pattern. An example of this kind of approach is in the well known LANCELOT
algorithm [16].

What makes the I-BFGS-B algorithm suitable for large-scale optimization,
when By is not sparse or the sparsity pattern is not known, is the use of limited
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memory BFGS matrices to approximate the updated Hessian By [8]. At every
iteration k, the algorithm stores a small number m of correction pairs {s;,y;}, ¢ =
k—1,...,k—m, where

Sp = Xg41 — Xg and Yg = Zr4+1 — k- (A.4)

The correction pairs contain information about the curvature of f and they are
used instead of the full Hessian.

Now, the limited memory Hessian can be determined using the correction pairs
{A.4). Define first n x m correction matrices

Yk = [Yk—m Yk—1]7 Sk = [Sk—m Sk—l]- (A5)

When the BFGS update (A.3) is used, the Hessian is (from [8])

By = 61 - W, MWy, (A.6)
where
[-D LF 17
M= { L. osis, |
with ( )T( |
- Sk—m—1)" \Yk—m—1+j ifi>j
(Lk)w B { 0 otherwise
and

Dy = diag [s;ffmyk,m 3571}’1%1]'

The scalar © is a positive scaling parameter.

In the L-BFGS-B algorithm, the limited memory presentation (A.6) is used to
perform efficiently computations involving the Hessian Bg. The saving of memory
is remarkable since, in principle, only 2m vectors of length n need to be saved and
m can be as small as 3. Typical values are 3 < m < 20 [85].





