
 
 
 
Publications of the National Public Health Institute                      A 13 / 2004 
 
 
 
 
 
 
 
 
 
 
 

Mika Toivola 
 

Personal Exposure to Microbial Aerosols 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Department of Environmental Health 

Laboratory of Environmental Microbiology 
National Public Health Institute 

Department of Environmental Sciences 
University of Kuopio 

Kuopio, Finland 
2004 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEF Electronic Publications

https://core.ac.uk/display/15167603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

   

 

 

 

 

 

 

 

 

PERSONAL EXPOSURE TO MICROBIAL AEROSOLS  
 
 
 
 
 

Mika Toivola 
 

National Public Health Institute 
Department of Environmental Health 

Laboratory of Environmental Microbiology 
P.O.Box 95, FI-70701 Kuopio, Finland 

 
and 

 
University of Kuopio 

Department of Environmental Sciences 
P.O.Box 1627, FI-70211 Kuopio, Finland 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ACADEMIC DISSERTATION 
 

To be presented with the permission of the Faculty of Natural and Environmental Sciences of the 
University of Kuopio for public examination in Auditorium of the Tietoteknia Building, University 
of Kuopio, on Friday 1st October 2004, at 12 o’clock noon. 



 

   

Publisher:             National Public Health Institute 
Mannerheimintie 166 
FI-00300 Helsinki, Finland 
Phone  +358 9 47441 
Telefax  +358 9 47448408 

 
Author’s address:            National Public Health Institute 

Department of Environmental Health 
Laboratory of Environmental Microbiology 
P.O.Box 95 
FI-70701 Kuopio, Finland 
Phone  +358 17 201369 
Telefax  +358 17 201155 
E-mail  Mika.Toivola@ktl.fi 

 
Supervisors:             Docent Sari Alm, Ph.D. 

National Public Health Institute 
Department of Environmental Health 
Laboratory of Air Hygiene 
Kuopio, Finland 
 
Docent Aino Nevalainen, Ph.D. 
National Public Health Institute 
Department of Environmental Health 
Laboratory of Environmental Microbiology 
Kuopio, Finland 

 
Reviewers:             Assistant Professor Karen Bartlett, Ph.D. 

School of Occupational and Environmental Hygiene  
University of British Columbia 
Vancouver, Canada 

 
Professor Pentti Kalliokoski, Ph.D. 
Department of Environmental Sciences 
University of Kuopio 
Kuopio, Finland 
 

Opponent:             Docent Matti Vartiainen, Ph.D. 
National Product Control Agency for Welfare and Health 
Product Register Unit 
Tampere, Finland 

 
 
ISBN 951-740-460-3 
ISSN 0359-3584 
 
ISBN    951-740-461-1 (pdf- version) 
ISSN    1458-6290 (pdf-version) 
http://www.ktl.fi/julkaisut/asarja.html 
Kopijyvä Oy, Kuopio, Finland, 2004 



 

   

Toivola Mika. Personal exposure to microbial aerosols. Publications of the National Public Health Institute 
A13/2004. 65 p. ISBN 951-740-460-3, ISSN 0359-3584, ISBN 951-740-461-1 (pdf-version), ISSN 1458-
6290 (pdf-version) 
 
ABSTRACT 

At present very little is known about total exposures to bioaerosols. Short-time stationary samples correlate 
poorly with the health effects and probably represent, at best, only surrogates of the true exposure, because 
during a single day, an individual will be exposed to different concentrations of bioaerosols in several 
environments. It is necessary to understand better this phenomenon if we are to pinpoint determinants and 
find associations between exposure and health effects. 
   
A random sample of 81 teachers was selected from 823 teachers working in two municipalities in Eastern 
Finland for the wintertime measurement period (1998 - 1999). Bioaerosol and other particles were collected 
on filters using personal sampling and microenvironmental measurements in homes and at work. Particle 
mass, black smoke, viable and total microorganisms were analysed from each filter. The 24-hour sampling 
period was repeated twice. Questionnaires of home and workplace characteristics and events during the 
sampling period were filled in after the measurements. The homes and working places were also inspected 
for visible signs of moisture by a civil engineer. 
 
The personal particle mass (57 �g/m3), total fungi (12200 spores/m3) and viable fungi (33 cfu/m3) mean 
concentrations were higher than home (17 �g/m3, 10800 spores/m3 and 30 cfu/m3) or workplace (34 �g/m3, 
12000 spores/m3 and 19 cfu/m3) concentrations. Personal (1.10x10-5 1/m) and work (1.12x10-5 1/m) BS 
concentrations were higher than the home (0.67x10-5 1/m) concentration. Total and viable bacteria 
concentrations in workplace (145000 cells/m3, 1090 cfu/m3) were higher than the personal exposure (86400 
cells/m3, 715 cfu/m3) or home concentrations (60600 cells/m3, 338 cfu/m3). Personal exposure mass 
concentrations were only moderately correlated with home or work concentrations (r=0.3, p<0.001) while 
black smoke concentration of personal and home/work filters showed better correlations (r=0.6-0.7, 
p<0.001). There was no correlation between personal and home/work fungal concentrations. 
  
Those samples with higher viable fungal concentrations also had a higher diversity of fungi than the samples 
with lower concentrations. The concentration ratio of viable fungi and bacteria counts to total counts of fungi 
and bacteria was close to 1:100. The estimated mass concentrations of total fungi and bacteria were less than 
1% of the total particle mass concentration. Variation in the concentration of Penicillium explained between 
25 up to 95 % of the variations of viable fungal concentration in personal exposure, home and workplace 
environment. There was an association between personal exposure and home concentration of viable fungi 
and between personal exposure and home and work concentrations of viable bacteria. However, the results 
also indicate that observation of a certain fungus in a main microenvironment does not necessarily coincide 
with findings from personal exposure samples.  
 
There were several determinants (such as behaviour, traffic or building factors) contributing to personal 
exposure and increasing home and workplace concentrations of particles and microbes. There were common 
determinants for both personal exposure and microenvironments such as teaching subjects, condensation on 
window, ventilation and traffic, which point to the presence of potential pollutant sources in these 
microenvironments.  
 
Personal exposure measurements of bioaerosols in indoor environments are feasible ways to assess the real 
exposure to bioaerosols. In addition to personal bioaerosol exposure, stationary sampling in main 
microenvironments is often needed to determine the extent to which the microenvironment influences the 
measurements of total exposure and to design cost effective strategies to reduce exposure and related health 
effects. 
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PM10  Particulate matter in air with a 50% cut-off aerodynamic diameter of 10 �m  

PVC  Polyvinyl chloride 

QA  Quality assurance 

SOP  Standard operation procedure 

TNF   Tumor necrosis factor alpha 
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1 INTRODUCTION 

 

Exposure to particle material in air has been claimed to evoke many adverse health effects. 

However, the concept of exposure is a complex one. Particles include organic, inorganic and 

biological material and they may originate from various sources such as soil, vegetation, 

combustion processes, traffic and industrial sources. Particles from animals, plants, microorganisms 

and soil derived material are usually called bioaerosols. How, where and when an individual 

becomes exposed to particles and bioaerosols are basic issues if one wishes to understand the causal 

connections between exposure and subsequent health effects.  

 

Many adverse health effects associated with airborne particles have been reported in many contexts; 

for example the link between exposure to outdoor air particles and increased mortality and ischemic 

heart disease (Dockery and Pope 1994, Schwartz et al. 1996). Long-term exposure to combustion-

related fine particulate air pollution is an important environmental risk factor for cardiopulmonary 

and lung cancer mortality (Pope et al. 2002). Several health disorders and respiratory diseases, e.g. 

allergic alveolitis, asthma and organic dust toxic syndrome (ODTS) have been associated with 

exposure to organic dust in work environments, such as farms, remedial work and sawmills (Lacey 

and Crook 1988, Lacey and Dutkiewicz 1994) where airborne microbe concentrations are usually 

high. Respiratory health effects like wheeze, cough and asthma have been associated with building-

related moisture damage in residential, school and office environments (Waegemakers et al. 1989, 

Dales et al. 1991, Dekker et al. 1991, Brunekreef et al. 1992, Spengler et al. 1994, Peat et al. 1998, 

Bornehag et al. 2001) where airborne microbial concentrations are usually low, only 0.01-10% of 

those found in dusty work environments. Also non-respiratory symptoms have been reported in 

moisture damaged buildings (Husman 1996). Although many types of particulate pollutants have 

been linked with various health effects, there is still insufficient knowledge about the causative 

agents involved. 

   

One reason preventing a deeper understanding of the role of fungal and bacterial particles as 

causative agents in non-infectious symptoms is the insufficient knowledge about the personal 

exposure to these particles as well as its temporal and spatial variations. The exposure to 

bioaerosols has usually been assessed by stationary sampling. However, bioaerosol concentrations 

vary in time and space, and an individual will be moving around from one microenvironment to 

another, spending various periods of time in each of them. There is very limited information 

available on the personal exposure to microbes collected with sampling from an individual's 
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breathing zone or with portable monitors which would better mimic the actual exposure of an 

individual than can be obtained with stationary sampling. 
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2 REVIEW OF THE LITERATURE  

 

2.1 Exposure assessment 

 

Exposure to a pollutant is defined as an event during which a person comes into contact with the 

pollutant of interest (Ott 1982, Ott 1995, Nieuwenhuijsen 2003). The contact may take place 

between the substance in an environmental medium (such as air, water, soil, food) and the surface 

of the human body such as skin or respiratory tract. The chain of events starts from the source of a 

pollutant and ends as the dose causing a health effect as illustrated in Fig. 1. According to this 

definition, exposure has units of concentration and time. After uptake of a substance into the body, 

it is referred to as the dose (Fig. 1). Dose and dose-response are outcomes of an exposure, because 

there is no dose without exposure (Ott 1982).  

 

 

 

Fig. 1. Exposure model to air pollutants (Adopted from Nieuwenhuijsen 2003). 

 

Quantification of exposure, i.e. exposure assessment has been described as one of the main 

components of environmental health risk assessment in conjunction with hazard identification and 

dose-response assessment (NRC 1983).  
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There are three general types of measurements aiming at exposure assessment; direct (personal), 

indirect (microenvironmental and questionnaires) and biological monitoring (Lioy 1990). 

Microenvironments are well-defined surroundings e.g. home, office, automobile that can be treated 

as homogenous or well characterized with respect to the concentration of some pollutant or other 

agent (Duan 1982, EPA 1992). Personal exposure measurements of airborne particles have been 

conducted in several studies (Wallace 1996, Janssen et al. 1998, Koistinen et al. 1999), while 

microbial exposure assessments have been based generally on microenvironmental samples 

(Pasanen 2001, Meklin et al. 2002). Personal exposure to microbes has been assessed mainly in 

work environments, e.g. during remediation of moldy structures (Rautiala et al. 1998). Microbial 

exposure has also been assessed by combining microenvironmental measurements with biological 

monitoring and by determination of microbe specific IgG antibodies in exposed individuals 

(Erkinjuntti-Pekkanen et al. 1999, Hyvärinen et al. 2003, Patovirta et al. 2003). However, the 

correlation between IgG antibodies and microbial findings in environmental samples has not been 

especially good (Hyvärinen et al. 2003). This may be largely due to methodological problems both 

with antibody measurements and with microbial measurements based only on culturing. One 

important target for microbial exposure assessment is an indoor environment known or suspected to 

have moisture and mould damage. Air samples, dust, surface and material samples are 

recommended to be used for environmental monitoring (Pasanen 2001). There is no single method 

to determine comprehensively microbial growth and microbial exposure. The spatial and temporal 

variation in the numbers of airborne microbes is large (Hunter et al. 1988, Pasanen et al. 1992, 

Hyvärinen et al. 2001a) and thus to avoid the problems arising from these variations, house dust 

samples have been used to assess fungal exposures because of the ease of sampling and their 

representativeness for long-term exposure (Dillon et al. 1996, Flannigan 1997, Verhoeff and Burge 

1997). However, little is known about the inhalation exposure to possible causative agents of 

microbes that may be responsible for the large variety of health effects observed in the 

epidemiological studies. 
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2.2 Bioaerosols and their sources  

 

According to Baron and Willeke (2001) an aerosol is an assembly of liquid or solid particles 

suspended in a gaseous medium like air long enough to be observed and measured. Aerosols 

include bioaerosols, which are defined as particles that are living or originate from living organisms 

(ACGIH 1999). Bioaerosols contain a heterogeneous mixture of particles from plant, animal and 

microbial origin (Dillon et al. 1996). The particle size distribution of bioaerosols is wide: from 

small viruses (20-300 nm) up to bacterial cells (0.5-30 µm), fungal spores (1.5-30 µm) and some of 

the larger pollen grains (over 0.1 mm) (Reponen et al. 2001). In this work, fungi and bacteria are 

considered as the main types of bioaerosols. In indoor environments, bioaerosols may include also 

particles from house dust mites, cockroaches and other insects, and skin scales from humans and 

pets (Flannigan 2001).  

 

The main source of indoor air fungi is usually outdoor air (Burge 1990, Levetin et al. 1995). Fungal 

spores are always present in the outdoor air, with natural soil and dead plant material being the main 

sources. Season has an impact on the numbers of fungal propagules present in the indoor air (Ren et 

al. 2001). During summer and autumn one is more likely to detect higher fungal concentrations than 

during spring and winter. In the Nordic countries, the snow cover on the ground reduces the 

concentrations in wintertime thus the outdoor air has virtually no influence on the indoor air 

mycoflora during the winter (Reponen 1992b). 

 

Human activities like handling of firewood and foodstuffs, cleaning and other household activities 

may temporarily increase fungal concentration in the indoor air (Hunter et al. 1988, Lehtonen et al. 

1993). Also the presence of pets and bedding materials used by pets may increase fungi in indoor 

air (Lehtonen et al. 1993, DeKoster and Thorne 1995, Ren et al. 2001). Fungal spores can be carried 

indoors on clothes from highly contaminated environments such as cow barns (Pasanen et al. 1989, 

Burge 1990). In some cases, such as firewood, it may be a question of a true source of bioaerosol 

particles, and in other cases such as cleaning, the increase in airborne concentration may be a result 

of resuspension of previously settled particles. 

 

Moisture and mould problems in buildings have been reported to increase the indoor air 

concentration of fungi (Pasanen et al. 1992, Hyvärinen et al. 1993, Miller et al. 2000, Meklin et al. 

2003). However, water damage or observation of mould growth have not necessary been related to 

the measured viable fungi in indoor air (Strachan et al. 1990, Ren et al. 2001). Pasanen et al. (1992) 
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have reported that moisture problems in the urban environment do not necessarily increase total 

viable spore concentration, but have an impact on the composition of fungal flora. Temporal and 

spatial variations in the concentration of fungi have been detected by short time sampling methods 

(Ross et al. 2000, Hyvärinen et al. 2001a, Ren et al. 2001, Herbarth et al. 2003).  

 

Location, frame type and age of the building have been found to influence the concentration of 

indoor fungi. Fungal concentrations are lower in the urban/suburban residences than in the rural 

residences (Pasanen et al. 1992). The building materials used in the building frame have an effect 

on the indoor air fungal levels, since higher airborne fungal concentrations have been detected in 

wooden school buildings than in concrete school buildings (Rand et al. 1999, Ellinger et al. 2000, 

Meklin et al. 2003). Furthermore, microbes accumulate over time in a building and the age of a 

residential building has been shown to gradually increase the concentration of airborne fungi 

(Pasanen et al. 1992). However, Meklin et al. (2003) did not find any significant association 

between concentrations of airborne fungi and the age of the school buildings which clearly differ 

from residences in activities, size and in furnishings.  

 

2.3 Particles and black smoke  

 

The US Environmental Protection Agency  (EPA) has defined four terms for categorizing particles 

of different sizes: ultrafine dpa� 0.1 µm, fine 0.1 µm< dpa� 2.5 µm, coarse 2.5 µm < dpa� 10 µm and 

supercoarse dpa> 10 µm (EPA 2002). In Fig. 2, the sizes of the various particles are illustrated. The 

term PM10, called “coarse particles” includes particles having an aerodynamic diameter of less than 

or equal to 10 micrometers, and PM2.5, called “fine particles”, includes particles having an 

aerodynamic diameter of less than or equal to 2.5 micrometers. The shape and density of the 

particle affect its aerodynamic diameter and thus the aerodynamic diameter characterizes the 

filtration, respiratory deposition and separation of the particle (Hinds 1999).   
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Fig. 2. Sizes of some indoor particles (Adapted from Owen et al. 1992). 

 

Instead of using the terms “fine” and “coarse” particles, the terms “inhalable”, “thoracic” and 

“respiratory” particles are used in occupational hygiene. The 50% cut-off diameter for the thoracic 

fraction is 10 µm and for the respirable fraction it is 4 µm (CEN 1993). The inhalable fraction of 

total airborne mass fraction consists of particles that are inhaled through the nose and mouth. 

Particles greater than approximately 50 µm in diameter can enter the nose and mouth, and particles 

>10 µm are deposited on the ventilation pathway surfaces above the trachea. Fine particles gain 

entry to the alveolar region of the lungs (Rodes and Wiener 2001).  

 

The fine particles measured in the Helsinki area consist mainly of sulphate (21%), nitrate (12%), 

ammonium (9%) and other material (43%). Coarse particles mainly originate from crustal matter 

(59%) (Pakkanen et al. 2001). The black smoke (BS) mainly consists of carbon or soot particles 

generated in combustion processes, such as energy production and car engines (Gray and Cass 

1998, Kinney et al. 2000) and it is a marker component for local traffic (Vallius et al. 2000, 

Pakkanen et al. 2000).  
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2.4 Sources and determinants of particle exposure  

 

In indoor air, cigarette smoking has been reported to be the most important source of fine and 

coarse particles (Wallace 1996). The estimated particle concentration increases in homes with 

smokers are between 25 and 45 µg/m3. Cooking has been identified as the second most important 

particle source (Wallace 1996, Özkaynak et al. 1996). Also particle matter from the outdoor air may 

penetrate into indoor air (Long et al. 2001). Furthermore, there are other significant sources of 

particles that are not so well known. In several studies, it has been reported that personal exposure 

to particles is higher than the indoor or outdoor concentrations of particles measured with stationary 

samplers (Wallace 1996). This finding has been explained partly by the so-called “personal cloud” 

(Rodes et al. 1991, Wallace 1996, Janssen et al. 2000). During the day, when individuals are active, 

the particle increase can be as high as 50%. It has been suggested that the personal cloud mainly 

consists of coarse particles which can more easily resuspend than fine particles (Thatcher and 

Layton 1995, Wallace 1996, Luoma and Battermann 2001).   

 

Instead, in outdoor air, the major sources of fine particles are fossil fuel combustion, vegetation 

burning and processing of metals (Holman 1999). Traffic is an important source of both fine 

particles and coarse particles in urban areas due to the road dust lifted by the traffic and wind 

(Pakkanen et al. 2001). While fossil fuel combustion is a major source of black smoke (BS) 

emission (Blakemore et al. 2001), traffic has been shown to be the most important local black 

carbon source (Pakkanen et al. 2000, Vallius et al. 2000). In many European cities, over 90 % of 

elemental carbon (EC) originates from traffic sources (Hamilton and Mansfield 1991). In particular, 

diesel engines are known to emit EC (Watson 1994, Kerminen et al. 1997). It has also been shown 

that sources for fine particles tend to be regional in nature, but fine particles are also capable of 

travelling long distances (Chow et al. 1994). The coarse particles are mainly fugitive dust from 

industry, agriculture, construction and demolition and fly ash from fossil fuel combustion (Holman 

1999).  

 

2.5 Sampling methods of particles and microbial aerosols 

 

The physical principles utilized in the sample collection techniques for microbes and other particles 

are similar. The methods used in airborne microbe sampling are mainly based on filtration, 

impaction or liquid impingement (Willeke and Macher 1999, Reponen et al. 2001). Filters, 

impactors, virtual impactors and cyclones are widely used in the sampling of particles (Lee and 
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Mukund 2001, Marple et al. 2001). Cascade impactors were developed in the 1940s, and they are 

still commonly used in microbiological measurements in home and work environments (Nevalainen 

et al. 1992, Reponen et al. 1994, Seuri et al. 2000, Wu et al. 2000a). Inertial classification of 

particles in impactor samplers is achieved by turning the gas flow and capturing the particles with 

sufficient inertia to cross gas streamlines and to escape the flow impinging on a plate (e.g. growth 

media) or to penetrate into the collection probe (Marple et al. 2001). The Andersen 1, 2 - or six-

stage impactors are widely used impactor samplers, which collect microbes directly onto growth 

medium (Andersen 1958). The impinger and filter samples need to be cultivated separately on 

growth media (Palmgren et al. 1986, Kenny et al. 1999, Lin et al. 1999, Lin et al. 2000). The 

collection of the microbes directly onto the cultivation plate provides more a gentle method if one 

wishes to count viable microbes than collection on the filter. During the sampling, the desiccation 

effect due to airflow may be decrease the viability of microbes (Wang et al. 2001).  

 

Microbial sampling with filtration has been widely used, especially in stationary and personal 

monitoring in heavily contaminated work environments (Palmgren et al. 1986, Karlson and 

Malmberg 1989, Blomquist 1994, Heldal et al. 1996, Rautiala et al 1998, Rautiala et al. 2003). 

Filtration has also been used in other particle monitoring devices in indoor and outdoor air (Fischer 

et al. 2000, Janssen et al. 2000, Götschi et al. 2002). Filter samplers usually contain a body, which 

includes a filter holder and an inlet section, which can control the aspiration flow rate on sampling 

and size distribution of collected particles. In exposure measurements in the work environments, 

several types of filter samplers have been used. The most commonly used filter samplers have 

traditionally been 37 mm plastic filter cassette with a closed face and an open face, the IOM 

personal inhalable sampler, the seven hole personal sampler, the GSP personal sampler, the PAS-6 

personal sampler, the PERSPEC personal sampler and the CIP10-I personal sampler (Vincent 1995, 

Kenny et al. 1997). IOM and GSP samplers were reported to have the best accuracy and precision 

of those samplers (Kenny et al. 1997). Furthermore, a button sampler has been designed in the 

University of Cincinnati. This sampler is based on the aerodynamic properties of a bluff body which 

allows smooth flow over its surface in a fast moving wind (Kalatoor et al. 1995, Aizenberg et al. 

1998). This means that the sampling efficiency of the button sampler follows well the inhalability 

convention even in windy conditions (Aizenberg et al. 2000).  

 

In Table 1, examples of personal samplers and sampling studies are listed. Although personal dust 

exposure has commonly been measured in work environments (Ogden et al. 1993, Tsai et al. 1996, 

Nieuwenhuijsen et al. 1999, Nielsen et al. 2000, Harper et al. 2002, Harper et al. 2004) the 



22 

   

applications of microbial personal sampling have been rather limited (Milton et al. 1996, Rautiala et 

al. 1996, Kenny et al. 1997, Alwis et al. 1999, Nieuwenhuijsen et al. 1999, Mitakakis et al. 2000, 

Nielsen et al. 2000). In addition, personal exposure samples have been mainly collected by 

samplers, which have no exact cut size. In the large exposure studies PTEAM and EXPOLIS, total 

personal exposure to particles PM2.5, PM10 has been assessed for 12 or 48 hours measurement 

periods (Clayton et al. 1993, Özkaynak et al. 1996, Koistinen et al. 1999, Oglesby et al. 2000). The 

measurement period in those studies included exposure in the home and in workplaces as well as in 

all other environments where the study subjects spent their time. 

 

Table 1. Examples of samplers used in studies focusing on personal exposure. 

Sampler Exposure environment Pollutant Study 
37 mm filter holder Remediation work 

Nickel alloy production  
Wood working 
Fiberglass insulation 
manufacturing 

Total and viable microbes 
Nickel 
Viable microbes 
Endotoxins 

Rautiala et al. 1996 
Tsai et al. 1996 
Alwis et al. 1999 
Milton et al. 1996 

25 mm filter holder, closed 
face 

Biowaste collection Endotoxin, dust, total and viable 
microbes 

Nielsen et al. 2000 

PM2.5 cyclone (GK2.05) 
with 37 mm filter holder 

Total exposure 
Total exposure 
 
Total exposure 

PM2.5 

PM2.5, elements 
 
PM2.5, absorption coefficient (BS) 

Koistinen et al. 1999 
Oglesby et al. 2000 
EXPOLIS study 
Janssen et al. 2000 

37 mm filter holder with 
inlet-nozzle section and 
impactor plate 

Total exposure PM10, elements 
PM10, elements 

Clayton et al. 1993 
Özkaynak et al. 1996 
PTEAM 

Small inertial impactor Total exposure PM2.5, PM10, Mn Pellizari et al. 1999 
IOM (Institute of 
Occupational Medicine) 
personal inhalable sampler 

Nickel alloy production 
Cotton manufacture 
Agriculture 

Nickel 
Cotton dust 
Dust, endotoxin, crystalline silica 

Tsai et al. 1996 
Ogden et al. 1993 
Nieuwenhuijsen et al. 
1999 

Button sampler  
 

Wood-products industries  
Wood-products industries 
House cleaning 

Wood dust 
Wood dust 
Total dust 

Harper et al. 2004 
Harper et al. 2002 
Hauck et al. 1997 

PAS (Personal air sampler), 
with filter held within IOM 
sampling head 

Total exposure Pollen and mould spores Mitakakis et al. 2000 

 

 

2.6 Analysis methods for microbes and other airborne particles 

 

Although the sample collection techniques used for microbes and other airborne particles possess 

some similarities, there are considerable differences in the analysing methods used. Microbial 

analyses are mainly based on cultivation or staining of microbes before calculating or identification, 

whereas particles are analysed by direct counting from air or by gravimetrical techniques. 
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After the sampling, microbial concentrations can be determined using cultivation, microscopy, 

molecular biological, immunochemical or biochemical methods (Larsson and Saraf 1997,  Nugent 

et al. 1997, Pasanen et al. 1997, Tuomi et al. 1998, Douwes et al. 1999, Keller et al. 1999, Samson 

1999, Saraf 1999). Traditional cultivation methods are often based on direct impaction on a growth 

media (Verhoeff et al. 1992, DeKoster and Thorne 1995, Miller et al. 2000). After incubation for 

one week, fungal colonies can be identified by their morphological appearance to the genus or 

species level.  

 

Only some of the airborne microbes are viable or able to grow on the culture media (Burge and 

Otten 1999, Näsman et al. 1999). The total concentration of microorganisms, including viable and 

non-viable microorganisms can be counted from samples collected on a filter with microscopical 

methods. The sample can also be collected on a slide or tape. Microorganisms can be detected by 

staining with a fluorescent stain (e.g. acridine orange) and counting by epifluorescence microscopy. 

Various other microscopic methods are available, from scanning electron microscopy to the image 

analysers as presented by Morris (1995).  

 

The most common aerosol particle property measured is the mass. Several samplers classify 

particles according to their size, e.g. PM2.5 or PM10. Other possible analyses for collected particles 

include particulate carbon, elemental, anion and cation analysis as well as microscopic or electron 

beam analysis (Chow 1995, Solomon et al. 2001).  The black smoke (BS) method is intended for 

the measurement of a BS index and is based on the measurement of reflectance (ISO 1993). Total 

carbon is classified into elemental carbon or black carbon, organic carbon and carbonate carbon. 

Their analysis methods are based mainly on thermal or optical techniques (Solomon et al. 2001). 

 

2.7 Ambient concentrations of microbial aerosols and particles 

 

2.7.1 Microbes in outdoor air 

 

Fungal concentrations in outdoor air vary widely according to location, altitude, season, climate and 

time of day (Madelin and Madelin 1995). Examples of reported levels of airborne fungi and bacteria 

in indoor and outdoor environments and in personal samples are shown in Table 2. Seasonal 

variation in bioaerosols has been observed to be remarkable. In air sampling, carried out in 

Connecticut, the mean concentrations of culturable fungal propagules in outdoor air were highest in 

the summertime, 1200 cfu/m3 whereas the mean wintertime concentration was 505 cfu/m3 (Ren et 
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al. 1999). In fall and spring, mean concentrations were 607 and 830 cfu/m3. Similar results were 

reported by Kuo and Li (1994) in the subtropical climate of Taiwan. Reponen et al. (1992) have 

reported levels of outdoor air in the Northern climate of Finland. In wintertime, when snow cover 

eliminates outdoor sources, fungal geometric mean (GM) concentration was only 20 cfu/m3, while 

the summertime mean was 950 cfu/m3. In summary, in outdoor air, typical summertime mean 

concentrations are around 103 cfu/m3, while in winter conditions the concentrations are much lower, 

of the order of magnitude of 101–102 cfu/m3. Fall and spring means are between these extremes, i.e. 

102 cfu/m3. 

 

2.7.2 Microbes in indoor air 

 

Fungal concentrations of indoor air also vary with location, season, climate and time of day 

(Verhoeff et al. 1992, Li and Kuo 1993, Levetin et al. 1995, Hyvärinen et al. 2001a, Medrela-Kuder 

2003) because outdoor air is the main source of the airborne fungi found in indoor air (Flannigan et 

al. 1991, Levetin et al. 1995). The climatic conditions also have a major impact on indoor airborne 

fungal concentrations. In warm climates, the concentration levels of viable fungi in dwellings and 

school buildings have ranged from 102 to 104 cfu/m3 and total fungi from 102 to 104 spores/m3 

(Levetin et al. 1995, Su et al. 2001a, Su et al. 2001b) (Table 2). In cold subartic climates, such as in 

Scandinavia, concentration levels in dwellings and schools usually remain at 102 cfu/m3 during the 

warm seasons but during the wintertime, when there is snow cover on the ground, levels as low as 

101 cfu/m3 have been reported (Reponen et al. 1992, Dotterud et al. 1995, Smedje et al. 1997, 

Bartlett et al. 1999, Hyvärinen et al. 2001a, Meklin et al. 2003). Higher airborne fungal 

concentrations have been reported in moisture and mould problem buildings than in reference 

buildings, although the concentrations levels usually have remained lower than in dusty work 

environments (Macher et al. 1991, Hyvärinen et al. 1993, Górny et al. 1999, Miller et al. 2000, 

Pessi et al. 2002).    

 

In dwellings in rural environments, higher fungi concentrations have been reported (from 102 to 103 

cfu/m3) than in urban dwellings (Pasanen 1992). In dusty work environments, such as agricultural 

environments, sawmills and handling waste or woodchips, much higher concentrations of fungi 

have been reported. Concentrations of viable fungi have ranged from 103 to 107 cfu/m3 with total 

fungi from 104 to 107 spore/m3 (Kotimaa et al. 1987, Eduard et al. 1990, Hanhela et al. 1995, 

Lappalainen et al. 1996, Kullman et al. 1998, Mandryk et al. 2000, Pillai et al. 2002) (Table 2). 

During the demolition work of building structures, viable fungal concentrations have increased up 



25 

   

to 104 cfu/m3 and total concentrations of fungi up to 106 spore/m3 (Rautiala et al. 1996, Rautiala et 

al. 2004).  

 

The fungal flora present in indoor air reflects largely the fungal profile present in outdoor air 

(Reponen et al. 1992, Li and Kendrick 1996, Wu et al. 2000b). The most commonly found fungal 

genera in indoor air are Penicillium together with Cladosporium, Aspergillus or yeasts (Dungy et al. 

1986, Hunter et al. 1988, Pasanen 1992, Pasanen et al. 1992, Beguin and Nolard 1994, Kuo and Li 

1994, Rand 1999, Burge et al. 2000, Cvetnic and Pepeljnjak 2001, Hyvärinen et al. 2001a, Meklin 

et al. 2003). These fungal genera and groups are common, irrespective of the climate or continent, 

for example, Cladosporium seems to be the most dominating genus in outdoor air around the world. 

In moisture and mold problem buildings, composition of fungal flora may change (Pasanen et al. 

1992, Hyvärinen et al. 1993, DeKoster and Thorne 1995). This is due to the microbial growth on 

moist building materials. In addition to the most commonly observed microbial genera, Penicillium, 

yeasts, Cladosporium and Aspergillus spp. also less frequent genera are detected on moldy 

materials, such as Acremonium, Aspergillus versicolor, Aureobasidium, Stachybotrys and 

Sphaeropsidales (Hyvärinen et al. 2002). Indeed, certain fungi that are not part of the normal flora 

of indoor environments have been listed as indicator organisms of moisture and mould damage. The 

international workshop “Health Implications of Fungi in Indoor Environments” in Baarn, the 

Netherlands 1992 produced a list of fungi containing many indicator organisms, i.e., Aspergillus 

fumigatus, Aspergillus versicolor, Exophiala, Fusarium, Phialophora, Stachybotrys, Trichoderma 

(Samson 1994).  
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Table 2. Examples of reported levels of airborne fungi and bacteria in indoor and outdoor 
environments. The wintertime and summertime concentrations are shown together, separated by “/”, 
as are the fall and spring concentrations. 

Environment Mean (GM) concentration Season Study 
Outdoor,  
Finland 
Taiwan 
 
Connecticut 
 
Cracow, lecture hall 
 

Viable fungi (cfu/m3) 
20/950 
54/1230 
374/379  
505/1200 * 
607/830* 
106/1211* 
557/508* 

 
w/s 
w/s 
f/sp 
w/s 
f/sp 
w/s 
f/sp 

 
Reponen et al. 1992 
Kuo and Li 1994 
 
Ren et al. 1999 
 
Medrela-Kuder 2003 

Indoor, 
Amsterdam, damp house 
Taiwan, homes 
Sweden, dwellings 
USA, schools 
 
Handling of grain 
Demolition work 
Finland, reference dwellings 
Taiwan, schools 
Taiwan, homes 
 
Sweden, schools 
Cracow, lecture hall 
 
Finland, schools 

Viable fungi (cfu/m3) 
645 
140-3200* 
300 
56-624* 
494-2100* 
53000 
23000 
58/160 
9672/4381 
20552/6798* 
11083/11096* 
200 
353/939* 
690/501* 
37 

 
f 
May-Jun 
w 
w 
f, s 
f-w 
 
w/f 
w/s 
w/s 
f/sp 
w 
w/s 
f/sp  
w 

 
Verhoeff et al. 1992 
Li and Kuo 1993 
Björnsson et al. 1995 
Levetin et al. 1995 
 
Lappalainen et al. 1996 
Rautiala et al. 1996 
Hyvärinen et al. 1993 
Su et al. 2001a 
Su et al. 2001b 
 
Smedje and Nordbäck 2001 
Medrela-Kuder 2003  
 
Meklin et al. 2003 

 
Sawmill 
Sweden, dwellings 
USA, schools 
 
Handling of grain 
Demolition work 
Wisconsin, barns 
Sweden, schools 

Total fungi (spores/m3) 
9x106* 
288-1287* 
1541-9999* 
2.1x106 
1.3x106 

17600 
19000 

17600 

 
 
w 
w 
f/s 
as 
 
as 
w 

 
Eduard et al. 1990 
Björnsson et al. 1995 
Levetin et al. 1995 
 
Lappalainen et al. 1996 
Rautiala et al. 1996 
Kulman et al. 1998 
Smedje and Nordbäck 2001 

 
Sweden, dwellings 
Demolition work 
Finland, dwellings 
Sweden, schools 
Finland, schools 

Viable bacteria (cfu/m3) 
400 
14000 

~400/~600 
360   
646 

 
w 
 
w/f 
w 
w 

 
Björnsson et al. 1995 
Rautiala et al. 1996 
Hyvärinen et al. 2001b 
Smedje and Nordbäck 2001 
Meklin et al. 2003 

 
Sawmill 
Sweden, dwellings 
Sweden, schools 

Total bacteria (cells/m3) 
7.2x105* 
52000 
22800 

 
 
w 
w 

 
Eduard et al. 1990 
Björnsson et al. 1995 
Smedje and Nordbäck 2001 

season: w=winter, s=summer, f=fall, sp=spring and as=all season 
* arithmetic mean 
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2.7.3 Particles in outdoor air 

 

The seasonal and temporal variations are also typical to ambient concentrations of respirable 

particles. Seasonal concentrations of coarse particles in ambient air can be affected by soil dust 

(Muir and Laxen 1995, Harrison et al. 1997, Vallius et al. 2000). Examples of mass concentrations 

in indoor and outdoor air are shown in Table 3. In a residential area of Helsinki, the concentration in 

winter period of PM1 was 6 µg/m3, PM2.5 9 µg/m3, PM10 13 µg/m3 and black smoke (BS) 1.5x10-5 

1/m but in two Central European cities, Alkmaar and Erfurt, PM2.5 and BS concentrations were 

much higher (Vallius 2000, Ruuskanen et al. 2001). As reported in the PEACE study of 14 

European research centers, the median concentration of PM10 ranged from 11 µg/m3 in 

Scandinavian rural sites to 92 µg/m3 in Athens, Greece, adjacent to a busy street (Hoek et al. 1997). 

In the EXPOLIS study, the PM2.5 outdoor concentration was 37 µg/m3 in Athens whereas PM2.5 

concentrations were lower in Basel, Helsinki and Prague (Götschi et al. 2002). Outdoor BS levels in 

EXPOLIS study were also highest in Athens, 3.3x10-5 1/m.  

 

In Kuopio city situated in eastern Finland previously reported concentrations of PM10 in wintertime 

were 24.5 µg/m3 in an urban part, and 20.7 µg/m3 in a suburban part (Reponen et al. 1996). The 

sources of PM10 were also identified. The main sources of PM10 in Kuopio area were soil and street 

dust (48%), traffic exhausts (14%), heavy fuel oil burning (12%), wood burning (11%) and 

unidentified sources (15%) (Hosiokangas et al. 1999). In Birmingham, vehicles were the major 

contributors to both PM2.5 and PM10 (Harrison et al. 1997).  

 

2.7.4 Particles in indoor air 

 

The concentrations of particles in indoor environments have attracted much less research interest 

than the outdoor concentrations. However, there are some reports from different cities around the 

world. In residences of Riverside, California, mean indoor air concentration of PM2.5 was 37 µg/m3 

and for PM10, 95 µg/m3 (Özkaynak et al. 1993, Özkaynak et al. 1996). In Amsterdam, PM10 indoor 

air concentrations varied from 22 µg/m3 in homes in low traffic areas to 37 µg/m3 in high traffic 

areas (Fischer et al. 2000). The outdoor air was the major source of both fine (PM2.5) and coarse 

particles (PM10) indoors, accounting for 76% and 66%, respectively (EPA 1996). Smoking and 

cooking were the two other important indoor PM2.5 and PM10 sources, accounting for 4-5% of the 

total (EPA 1996, Morawska et al. 2003). In European cities, Amsterdam, Athens, Basel and Prague 

PM2.5 indoor air concentrations were between 15 µg/m3 to 36 µg/m3 and in Helsinki, 10 µg/m3 
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(Fischer et al. 2000, Janssen et al. 2000, Götschi et al. 2002). Black smoke (BS) levels in indoor air 

in those European cities ranged from 0.78x10-5 1/m to 2.9x10-5 1/m (Fischer et al. 2000, Janssen et 

al. 2000, Götschi et al. 2002) (Table 3).  

 

Work environments with high microbial concentrations are often also dusty work environments, 

such as agricultural environments, sawmills and facilities handling of waste or woodchips. In such 

places, total dust concentrations from 0.01 to 16 mg/m3 have been reported (Lappalainen et al. 

1996, Kullman et al. 1998, Mandryk et al. 2000, Melbostad and Eduard 2001) (Table 3). These 

levels are as much as three orders of magnitude higher than the particle mass concentrations present 

in indoor air of urban dwellings, even sites adjacent to roads with heavy traffic. 

 

Table 3. Examples of mass concentrations of particles in indoor and outdoor air. The concentrations 
in different seasons is separated by “/” 

Environment Mean concentration (µg/m3) Season Study 
Outdoor, 
Riverside, CA 
Bristol 
Kuopio, suburban, urban site 
Birmingham, centre 
Kuopio 
Toronto 
Amsterdam, high traffic homes 
Helsinki 
Amsterdam, Helsinki 
Alkmaar, Erfurth, Helsinki 
Athens, Basel, Helsinki,Prague 

PM2.5 
52 
 
 
 
 
15 
25 
9.4/9.9 
21, 12 
27, 42, 9.4 
37, 19, 11, 27 

PM10 
97 
26 
18, 23 
22/25 
19 
24 
43 
13/22 

 BS  
 
6 
9, 13 
 
 
 
3.0(a, 2.8(a2 
15/13(a,b 

1.8, 2.1 
1.8, 4.0, 1.4(b 
3.3, 1.4, 1.0, 3.0 (c 

Total dust 
 
 
 

 
 
 
w 
w/s 
w 
Jun-Aug 
Jan-Mar 
w/sp 
w/sp 
 
w and s 

 
Özkaynak et al. 1993 
Muir and Laxen 1995 
Reponen et al. 1996 
Harrison et al. 1997 
Hosiokangas et al. 1999 
Pellizari et al. 1999 
Fisher et al. 2000 
Vallius et al. 2000 
Janssen et al. 2000 
Ruuskanen et al. 2001 
Götschi et al. 2002 

Indoor, 
Riverside, CA 
Handling of grain 
Wisconsin, barns 
Toronto 
Amsterdam, high traffic homes 
 
Amsterdam, Helsinki 
Helsinki, non-ETS exposed 
Athens, Basel, Helsinki,Prague 
Brisbane 

 
37 
 
 
21 
27 
 
14.9, 10.2 
8.2 
36,21,10,34 
11.2 

 
98 
 
 
30 
37 

 
 
 
 
 
2.1(a, 2.2(a2 

 
1.8, 1.6(c 

 

2.9, 1.4, 0.8, 2.7(c 

 
 
6.2mg/m3  

0.7mg/m3 (#  

 
 
f-w 
as 
Jun-Aug 
Jan-Mar 
 
w/sp 
as 
w and s 
f/w 

 
Özkaynak et al. 1993 
Lappalainen et al. 1996 
Kulman et al. 1998 
Pellizari et al. 1999 
Fisher et al. 2000 
 
Janssen et al. 2000 
Koistinen et al. 2001 
Götschi et al. 2002 
Morawska et al. 2003 

season: w=winter, s=summer, f=fall, sp=spring and all season # geometric mean 
a PM2.5 sample, a2 PM10 sample  b (1/m)x106, c (1/m)x105 
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2.8 Personal exposure to microbial aerosols and particles 

 

2.8.1 Microbes 

 

Personal microbial exposure measurements have been done mainly in dusty work environments. 

Task-specific exposure levels have varied from 104 to 107 spore or bacteria/m3 in agricultural 

environments (Melbostad and Eduard 2001) (Table 4). During the remediation work, the fungi 

concentration level in personal samples varied from 104 to 105 cfu/m3 (Rautiala et al. 1998). In 

sawmill workers, personal exposure varied from 103 to 104 cfu/m3 (Mandryk et al. 2000). Personal 

exposure levels to microbes have seldom been studied in home environments. In an Australian 

study in home environments using one hour exposure measurements, personal exposure median 

level of Alternaria spores was 33 spores/m3 (Mitakakis et al. 2000) and of Cladosporium spores, 8 

spores/m3.  

 

2.8.2 Particles 

 

Personal exposure to PM2.5 and PM10 has been reported in several studies (Clayton et al. 1993, 

Wallace 1996, Janssen et al. 1998, Clayton et al. 1999, Ebelt et al. 2000, Evans et al. 2000). Three 

large-scale studies that quantified personal exposure to PM under normal conditions have been 

reported in the literature, EPA’s Particle Total Exposure Assessment Methodology (PTEAM) study 

(Clayton et al. 1993); the Toronto, Ontario study (Pellizzari et al. 1999); and the Air Pollution 

Exposure Distribution within Adult Urban Populations in Europe (EXPOLIS) exposure study 

(Jantunen et al. 1999); (EPA 2001). In the PTEAM study, daytime mean personal PM10 

concentrations were 150 µg/m3 and the overnight personal PM10 concentration was 77 µg/m3 

(Clayton et al. 1993) (Table 4). Daytime personal concentrations were over 50% higher than indoor 

or outdoor concentrations (95 µg/m3) and overnight personal concentrations were similar to the 

indoor (63 µg/m3) and outdoor (86 µg/m3) levels. In the Toronto area, personal PM10 concentrations 

were also much higher (68 µg/m3) than indoor (30 µg/m3) or outdoor (24 µg/m3) PM10 

concentrations. The corresponding PM2.5 concentrations were; personal 28 µg/m3, indoor 21 µg/m3 

and outdoor 15 µg/m3 (Pellizzari et al. 1999). Resuspension of particles caused by personal 

activities (the so called personal cloud) mainly affected coarse particle concentrations (Janssen et al. 

2000). However, much of difference between the personal, indoor and outdoor PM10, PM2.5 levels 

can be attributed to tobacco smoking. In the EXPOLIS study, personal PM2.5 exposure in the 

Helsinki area was lower (19 µg/m3) than in Toronto (28 µg/m3) (Koistinen et al. 2001). Inorganic 
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secondary particles, primary combustion and soil were the dominant source types for personal 

exposure PM2.5 concentration (Koistinen et al. 2003). From the personal PM2.5 exposure, residential 

indoor PM2.5 concentrations explained 76% of personal leisure time exposure variation and 

workplace concentrations explained 66% of the workday exposure variation (Kousa et al. 2002). 

 

In dusty work environments, Melbostad and Eduard (2001) have reported not only microbial 

exposure, but also the task-specific exposure level to total dust in agricultural environments, e.g., 

threshing, animal tending, manuring and handling of grain or hay and these varied from 0.4 to 5 

mg/m3. Personal dust exposure at sawmills was around the same level as found in agricultural 

environments or even higher (from 0.83 to 12 mg/m3) (Mandryk et al. 2000) (Table 4).   

 

Table 4. Examples of reported levels of airborne fungi and bacteria and particles in personal 
exposure samples. The wintertime and summertime concentrations are shown together, separated by 
“/”, as are the fall and spring concentrations. 

Environment Mean (GM) concentration Season Study 
Microbes, 
Norwegian farmers, handling of grain 
Finland, remediation work 

Total fungi (spores/m3) 
1.3x106 

3x106-8x106 (range) 

 
as 

 
Melbostad and Eduard 2001 
Rautiala et al. 2002 

 
Australia, sawmills 
Finland, remediation work 

Viable fungi (cfu/m3) 
34000 
9.6x104-1.7x105 (range) 

  
Mandryk et al. 2000 
Rautiala et al. 1998 

Norwegian farmers, handling of grain Total bacteria (cells/m3) 
5.5x106 

as Melbostad and Eduard 2001 

    
Environment Mean concentration (µg/m3) Season Study 
Particles, 
Riverside, CA, daytime 
Riverside, CA 
Toronto 
Australia, sawmills 
Amsterdam, Helsinki 
Norwegian farmers, handling 
of grain 
Helsinki, non-ETS exposed 

PM2.5 
 
 
28 
 
15.3, 10.0 
 
 
9.9 

PM10 
150 
144 
68 

BS 
 
 
 
 
1.7, 1.5(c 

Total dust 
 
 
 
1.6mg/m3 (# 

 
19mg/m3 (# 

 

f 
 
Jun-Aug 
 
w/sp 
as 
 
as 

 
Clayton et al. 1993 
Özkaynak et al. 1993 
Pellizari et al. 1999 
Mandryk et al. 2000 
Janssen et al. 2000 
Melbostad and Eduard 2001 
 
Koistinen et al. 2001 

season: w=winter, s=summer, f=fall, sp=spring and as=all season, # geometric mean  
c (1/m)x105 
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3 AIMS OF THE STUDY 

 

The principal aim of this study was to explore the personal exposure of individuals to airborne 

microbes and particles during wintertime. The detailed objectives of this study were:  

 

1. To develop an approach and protocols for investigation of bioaerosol exposure (I). 

2. To compare the personal exposure of teachers to microbes and particles with concentrations 

in microenvironmental measurements at home and in work, and with a time weighed 

microenvironmental model (I, II). 

3. To determine the associations between airborne microbes and particles in personal and 

microenvironmental samples (II).  

4. To investigate the qualitative composition of airborne microbes in personal and in 

microenvironmental samples (II, III). 

5. To identify the determinants of bioaerosol and particle exposure in teachers (IV). 
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4 MATERIALS AND METHODS  

 

4.1 Study design 

 

A short background questionnaire (15 questions) was sent out in October 1998 to all elementary 

schoolteachers in two municipals. The questionnaire contained questions about their health and the 

indoor environment in their home and workplace. From these teachers, a random sample of 81 

individuals was chosen for wintertime measurement period (November 98 - March 99) when the 

snow cover eliminates outdoor airborne microbes. 

 

The study design was an application of the design developed in the EXPOLIS study for particle 

exposure (Jantunen et al. 1999). A 24-hour sample for bioaerosol and other particles was collected 

using personal sampling and microenvironmental sampling in homes, and an 8-hour sample was 

collected in the workplaces. The button personal sampler (SKC, Eighty Four, PA, USA) (Kalatoor 

et al. 1995) that has a low wind sensitivity and low intersample variability was utilized. The 

sampling procedure was repeated two times for each individual.  

 

The mass concentration of collected particles was determined gravimetrically and the blackness of 

the filter was assessed by using a reflectometric method. Viable microorganisms collected on the 

filter were cultured and the total number of microorganisms was counted with an epifluorescence 

microscope (Fig. 3).  

 

At the end of each sampling period, a questionnaire was filled in concerning the events of the 

previous 24 hours possibly affecting the exposure. After the measurements, an extensive 

background questionnaire was filled in. This covered details of health symptoms as well as home 

and workplace characterization. A technical investigation was conducted by a civil engineer for 

signs of moisture or mould damage in both homes and workplaces according to a checklist 

developed in previous studies (Nevalainen et al. 1998). 

 

The study was conducted during the same time period as several other studies concerning microbial 

problems and their health effects in schools (Taskinen 2001, Immonen 2002, Meklin 2002). 
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Fig. 3. Processing of the filter sample. (Cytotoxicity and inflammatory mediators are not reported in 

this thesis). 

 

4.2 Study location and target population 

 

The study population were elementary school teachers from Kuopio and Siilinjärvi area in eastern 

Finland. During the wintertime measurement periods, the average temperature was -7�C,  lakes 

were frozen and the land was under snow cover.  

 

At the beginning of the study there were 823 elementary school teachers working in these areas. 

The background questionnaire was sent in October 1998 to all teachers in these two municipals. A 

total of 562 (68%) of the teachers responded by filling and returning the short questionnaire. Of the 

respondents, 88 % wanted to participate in the exposure study, 2 % would not be living in the area 

any longer during the measurement periods and 10 % refused to participate in the exposure study. 

From the voluntary teachers, a random sample of 81 individuals was chosen for the measurements. 

According to the short background questionnaire analyse the persons selected in the exposure study 

were fairly representative of the larger 562 respondents teachers population (I, Table 1). 
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4.3 Monitoring methods 

 

4.3.1 Personal exposure monitoring (PEM) 

 

The personal exposure monitor (PEM) was an aluminium briefcase including a modified pump 

(AFC 400, BGI Inc., Waltham, MA, USA), a button sampler (SKC Inc., Eighty Four, PA, USA) 

(Fig. 4) and noise absorption material (total weight 3.5 kg) (Fig. 5). The samples were collected 

with a flow rate of 4 l/min on a 25 mm PVC filter (0.8 µm pore size, Millipore, Bedford, MA, 

USA). PVC filters were chosen because of their high collection efficiency, low toxicity and low 

pressure-drop. The sampling period was repeated two times for each individual.  

 

 

 

Fig. 4. Button sampler.  
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Fig. 5. The personal exposure monitor (PEM), with the button sampler. 

 

4.3.2 Microenvironmental monitoring (MEM) 

 

The microenvironmental monitor (MEM) consisted of the pump (PQ100, BGI Inc., Waltham, MA, 

USA) and button sampler with the PVC filter (Fig. 6). The flow rate was preset to 4 l/min and the 

pump was programmed to start and stop automatically to take the 24 hour sample from the home 

environment and an 8 hour sample from the school environment (I).  

 

               

Fig. 6. The microenvironmental monitor (MEM). 
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Personal sample volumes were normalized to 760 mmHg air pressure at 20 ºC temperature. PEM 

pumps had volumetric flow control and the MEM pumps had mass flow control and thus PEM 

flows were normalized with conditions in which the MEMs were calibrated. Temperature data were 

collected by Vaisala humidity & temperature indicator (HM31 Vaisala, Finland) and air pressure 

data of the laboratory used in calibration by a mercury manometer. 

 

4.3.3 Filter weighing 

 

The mass concentration of collected particles was analysed gravimetrically. A microbalance 

(Mettler MT5 by Mettler-Toledo AG, Greinfensee, Switzerland) with a reading precision of 1 µg 

was used for weighing the PVC filters. The filters were equilibrated to weighing room conditions 

for a minimum of 2 hours according to NIOSH manual (1994) before the weighing session and 

deionised with a Po-210 deioniser (Staticmaster 1269 by Cahn Inc, USA) before weighing. 

Temperature, relative humidity and air pressure were recorded during the weighing session. In the 

weighing, two consecutive weighings of the same filters had to agree within 1 µg to be accepted 

(Koistinen et al. 1999). The same weighing room and the standardized weighing procedure were 

used throughout the study. 

 

4.3.4 Black smoke analysis 

 

The term black smoke (BS) is used here as a term to indicate the absorption coefficient of filters. 

Black smoke is assumed to indicate particles like soot from burning process. The light absorption 

coefficients of the PVC filters were measured with a black smoke method according to the ISO 

protocol (ISO 1993) by a smokestain reflectometer (M43D, Diffusion Systems Limited, London 

U.K.). The absorption coefficient was measured on five points on filter surface in a dark chamber. 

 

4.4 Microbial analysis 

 

4.4.1 Extraction of filter 

 

On the same day, after the weighing and the reflectance measurements, the particles were extracted 

from the filters with 5 ml dilution buffer (distilled water with 42.5 mg l-1 KH2PO4, 250 mg l-1 

MgSO4, 8 mg l-1 NaOH, and 0.02% Tween 80) using an ultrasonic bath (15 min) and a shaker (15 

min). After the extraction, the suspension was divided into two, for microbiological analyses (2.1 
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ml) and toxicological analyses (2.9 ml) (toxicological analyses are not reported in this thesis) (Fig. 

3). 

 

4.4.2 Viable microbes 

 

The concentrations of viable fungi and bacteria and genera of the viable fungi were determined by 

the cultivation method. Diluted suspension (1:10 and 1:100) was plated on two fungal growth 

media, 2% malt-extract agar (MEA) and dichloran glycerol 18 agar (DG18), and on a bacterial 

medium, tryptone-yeast-glucose agar (TYG). Fungi were incubated for seven days at 25 ºC, and 

bacteria for up to 14 days at 20 ºC. The total number of viable bacteria colonies was counted after 

five days and actinomycete colonies after 14 days of incubation. The detection of actinomycete 

colonies was based on their typical dry appearance. Fungi were identified morphologically on a 

genus level.  

 

4.4.3 Total microbes 

 

The total concentration of the collected microbes on the filters was determined by the acridine 

orange direct counting method (AODC) (Hobbie et al. 1977, Palmgren et al. 1986). The samples 

were filtered and stained with 0.01% (w/v) acridine orange. The stained microbes were counted 

with an epifluorescence microscope (Olympus BH-2, Olympus Optical Co., Tokyo, Japan). Forty 

randomly chosen fields were counted by using 1000 x magnification. Fungal spores and bacteria 

were distinguished roughly from each other by their size (for bacteria, less than 1.5 µm).  

 

4.4.4 Time weighed microenvironmental model 

 

A time weighed microenvironmental model was used to assess average personal exposure to 

pollutants according to equation 1 (I). 

TWChw= Chome x thome / (thome + twork) + Cwork x twork / (thome + twork),   (1) 

 

where TWChw is pollutant concentration of home and workplace measurements with time weighing; 

C is the concentration of the pollutant; t is the time spent at home and in work. 
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4.5 Questionnaires (I-V) 

 

Three different questionnaires were used in this study. The first background questionnaire contained 

15 questions about the health status of the individuals and the indoor environment in the home and 

workplace. Immediately after each measurement period, the subjects participating in the exposure 

study (n=81) filled in a 24 hours time activity and exposure questionnaire to collate all the events of 

the previous 24 hours possibly affecting the exposure. Details of health symptoms as well as home 

and workplace characterisation were screened by an extensive background questionnaire conducted 

at the end of the second measurement of the exposure study (n=81). The representativeness of the 

subsample was analysed by comparing the characteristics of this group with those of the whole 

population of respondents (n=562). 

 

4.6 Quality assurance (QA) 

 

Representativeness of the exposure study sub-sample (n=81) was analysed. Detailed standard 

operating procedures (SOP) and working instructions were created for analysis and sampling. The 

sampling monitors and analytical methods were tested during a short pilot study. Flow rate before 

the sampling had to be within 2.5% and after sampling within 10% of the 4 l/min flow rate. 

Comparability of samples was assessed by duplicate samples (5% of all samples). Contamination of 

samples was assessed by blank samples (10% of all samples). 

 

4.7 Data analysis 

 

Statistical analyses were conducted with SPSS for Windows, version 9.0. - 12.0. All concentration 

values under the detection limit were replaced with a half of the detection limit in the database. The 

concentrations of airborne microbes were not normally distributed (I-IV). 

 

Statistical analyses utilized both nonparametric and parametric tests to test the representativeness of 

the 81 teachers participating (I), differences between the personal, home and workplace 

environments (I, III) and the difference between field duplicates (I). The proportion of the pollutant 

types explaining the variation of other pollutants (II, III), the associations between personal 

exposure and the time weighted model and between different microbes (III), microbial differences 

between urban and rural areas (III) and differences and agreement between MEA and DG18 media 
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(III) were tested. Statistical differences inside the determinant groups and the proportions of the 

classified determinant types explaining the variation of pollutants concentrations and toxicity of 

collected particles were analysed with one way analysis of variance test (IV). The proportions of the 

determinants explaining the variation of pollutants concentrations and toxicity of particle material 

were analysed with multiway analysis of variance test custom model with main effects (IV). Details 

of statistical analyses are described in each original publication (I-IV). 
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5 RESULTS  

 

5.1 Quality assurance (QA) (I) 

 

There were no statistically significant differences in the characteristics of the exposure study sub-

sample of individuals (n=81) and all of the respondents of the short screening questionnaire (n=562) 

(I Table 1). The field blank filters showed a systematic increase in concentrations of particle mass 

and total bacteria during the field measurements in all microenvironments (I Table 2). The average 

field blank mass increase was subtracted from all of the particle mass results. A small increase in 

total fungi, viable fungi and viable bacteria was also detected in some field blank filters from the 

home and work sampling sites. This increase was not subtracted from the results.  

 

The calculated detection limits for mass concentrations were 2.9 µg/m3 in personal samples, 16.9 

µg/m3 in home samples and 20.2 µg/m3 in workplace samples. The detection limits for total fungi 

and bacteria concentrations were 4051 spores/m3 (for bacteria, cells/m3) in personal and in home 

samples, and 12152 spores/m3 in workplace samples. For viable fungi and bacteria concentrations, 

the detection limits were 4 cfu/m3 in personal and home samples, and 12 cfu/m3 in workplace 

samples. The detection limits in workplace measurement samples were higher than in home or 

personal samples due to the shorter sampling time (8 hours versus 24 hours). There were variations 

noted between the duplicates (CV%= 9.9-78.7) although the differences were not statistically 

significant (p=0.158-1). Details of QA results are shown in publication I. 

 

5.2 Personal exposure and microenvironmental concentrations 

 

The personal particle mass (57 �g/m3), total fungi (12200 spores/m3) and viable fungi (33 cfu/m3) 

mean concentrations were higher than home (17 �g/m3, 10800 spores/m3 and 30 cfu/m3) or 

workplace (34 �g/m3, 12000 spores/m3 and 19 cfu/m3) concentrations (I Fig. 1 and 2, II Table 1). 

Personal (1.10x10-5 1/m) and work (1.12x10-5 1/m) BS concentrations were higher than the home 

(0.67x10-5 1/m) concentration. Total and viable bacteria concentrations in workplace (145000 

cells/m3, 1090 cfu/m3) were higher than the personal exposure (86400 cells/m3, 715 cfu/m3) or 

home concentrations (60600 cells/m3, 338 cfu/m3). However, there were statistically significant 

associations between personal BS and viable bacteria exposures and both home and work BS 

concentrations (II). Furthermore, there were associations between personal exposure and the home 
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concentration of viable fungi and between personal exposure and home and work concentration of 

viable bacteria, whereas poorer associations were detected with work concentrations and particle 

mass, total bacteria with home or work concentrations (II, III). Black smoke (BS) concentrations 

explained best the variation of particle mass concentrations in personal exposures and in home 

concentrations while in highly populated workplaces, viable bacteria concentrations explained the 

largest variation within the particle mass concentrations (II Table 4). 

 

5.3 Viable fungal genera in personal exposure and in microenvironments 

 

The geometric mean (GM) of total concentrations of viable fungi varied between 3-12 cfu/m3 in the 

different environments (I, II). Fungal concentrations and the diversity of personal exposure and 

home samples were higher in the rural (GM= 15 and 15 cfu/m3) environment than in the urban 

environment (GM= 11 and 5 cfu/m3) (III). The concentrations of viable fungi and bacteria were 

about 1 % of the total fungi and bacteria concentrations in the wintertime measurements (I). Those 

samples with higher fungal concentrations had also higher diversity of fungi than samples with 

lower concentrations. Total number of fungal genera was 39 for personal, 34 for home and 23 for 

work samples. The most common fungi in personal exposure and home samples were Penicillium 

spp. and in the workplace samples, the most common group was the yeasts. The geometric mean 

concentration was 0.6-3.7 cfu/m3 for Penicillium and mainly under 1 cfu/m3 for other fungi. The 

Penicillium concentration explained as much as 95 % of the variation of personal exposures, 80 % 

of home and 25 % of workplace concentration variation of total viable fungi (III).  

 

5.4 Correlations (II, III) 

 

Personal exposures to viable fungi correlated with home concentrations (r=0.6, p<0.001). With 

respect to viable bacteria, personal exposure correlated with both home (r=0.7, p<0.001) and work 

(r=0.5, p<0.001) concentrations. Similarly, personal black smoke (BS) exposures correlated with 

both home (r=0.6, p<0.001) and work (r=0.6, p<0.001) BS concentrations (II). In contrast, personal 

exposure to particle mass did not correlate well with home or workplace concentrations. 

 

When correlations between various pollutants were analysed, the black smoke concentrations in 

personal exposure and at home correlated with personal exposure to particle mass (r=0.4, p<0.001) 

and with home (r=0.4, p<0.001) concentrations of particle mass. In workplaces, viable bacteria 

concentrations correlated (r=0.6, p<0.001) best with particle mass concentrations, but no other 
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significant correlations were identified (II). The estimated mass concentrations of total microbial 

aerosols (viable and non-viable) fungi and bacteria were less than 1% of the particle mass 

concentration in wintertime measurements as assessed by mean fungal spore size 2.6 µm (II). 

 

The time weighted microenvironmental models of BS and viable bacteria correlated moderately 

well (r=0.7) with personal exposures (II, III). The correlations with other pollutants were poorer 

(r=0.2-0.6) and the model underestimated personal exposures of particle mass, viable fungi, total 

fungi and total bacteria (II, III).  

 

5.5 Determinants (IV) 

 

5.5.1 Determinants of personal exposure 

 

The determinants of the personal exposure varied according to the pollutant being measured. The 

most important determinants of personal exposure are shown in Table 5. Personal exposure to 

particles was elevated by teaching of practical subjects, time spent in car (>35 min) and by having a 

spouse, especially a spouse with a blue-collar professional status. The black smoke personal 

exposure was elevated by the time spent in a car, but also by having a low (<=325) number of 

pupils in school and living in a rented apartment. Personal exposure to total fungi concentrations 

was elevated by teaching of practical subjects, and by having a low number of pupils in the school. 

Personal exposure to viable fungi was increased by dogs, contact with potential microbe sources, 

living in a family house and condensation inside of the inner glass window at home. Total bacterial 

concentrations of personal exposure were elevated by teaching of practical subjects, low traffic 

density near to the home and having a low number of pupils in school. Personal exposure to viable 

bacteria was higher in men than women and in younger persons (27-40 and 40-48 years) compared 

to older persons (over 48 years). Furthermore, having a spouse, especially a blue-collar spouse, as 

well as moisture damage and visible mould growth at home elevated personal exposure to viable 

bacteria. (IV Table 2, Table 5) 

 

5.5.2 Determinants of home concentrations 

 

The major descriptors of particle concentrations in the home were heavy traffic near to the home, 

having a spouse or spouse with a blue-collar professional status and the number of persons living in 

the house. Traffic also elevated black smoke concentration at home, as did burning of candles and 
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living in an apartment. In the home, the total concentration of fungi was increased by cats and 

potential microbial sources. In the home, several determinants of viable fungi could be defined. 

Home location in a rural area, animals at home, income of family over 50000��������	
�����presence 

of extractor hood in the kitchen, potential microbe sources and condensation inside of the inner 

glass window elevated viable fungi concentration in the home. Owning cats, having a spouse with a 

blue-collar professional status and the presence of visible mould growth elevated total bacteria 

concentrations in the home. Cats, having a spouse and a spouse with a blue-collar professional 

status, building year (built after 1980 compared to built 1960-1979), ventilation systems without 

cleaning and moisture damage in home increased viable bacteria concentrations in the home. (IV 

Table 4, Table 5) 

 

5.5.3 Determinants of workplace concentrations 

 

In the classrooms, teaching of practical subjects and gravitational ventilation increased particle 

mass concentration. The age of the school building (building year <1960) increased the black 

smoke concentration in school. In the workplace, no significant determinant for total fungi could be 

detected. In the school, gravitational ventilation elevated viable fungi concentration. Both total 

bacteria and viable bacteria concentrations were higher in primary schools than in upper level 

schools. (IV Table 6, Table 5) 
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Table 5. The main determinants of personal exposure and occurrence of those determinants at home 

or in the workplace. 

Pollutant Determinant of personal exposure  Same determinant at home (H) 
or workplace (W) 

Particle mass Teaching of practical subjects 
Work status of spouse 
Time spent in car 

W 
H 
na 

Black smoke Number of pupils in school 
Time spent in car 
Owner of dwelling 

- 
na 
- 

Total fungi Teaching of practical subjects 
Number of pupils in school 

- 
- 

Total bacteria Traffic near to home 
Teaching of practical subjects 
Number of pupils in school 
Visible mould growth 

- 
W 
- 
H 

Viable fungi Dogs 
Contact with potential microbe 
sources 
Condensation inside of the inner 
glass window 

- 
H 
 
H 

Viable bacteria Gender 
Age 
Work status of spouse 
Moisture damage 
Visible mould growth 

- 
- 
H 
H 
- 

na=not analysed from home or workplace, - = not the same determinant at home or workplace  
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6 DISCUSSION  

 

6.1 Monitoring methods of particles and microbial aerosols 

 

Personal exposure to bioaerosols has usually been assessed by indirect stationary measurement 

methods (ACGIH 1999, Pasanen 2001). Exposure has been estimated in some particular 

microenvironment, although bioaerosols, such as fungi and bacteria, are present everywhere in our 

normal environments and thus, exposure occurs wherever a person is moving or spending his/her 

time. The measurements have usually involved sampling over a relatively short time although it is 

well known that the concentrations vary in time and space in each environment (Hyvärinen et al. 

2001a). Thus, one must question how well such short time measurements in a single 

microenvironment reflect an individual’s actual exposure to the pollutant in question. This study 

was initiated to fill this gap in our knowledge for the personal exposures to microbial aerosols. 

Personal exposure to particle matter (PM) had been previously studied by personal monitoring in a 

number of studies (Wallace 1996, Janssen et al. 1998, Koistinen et al. 1999). Microbial aerosols are 

part of the airborne particle matter, although little attention has been paid to them in studies 

focusing on PM exposure. In this study, the approaches and methods used in PM exposure studies 

were applied to study personal exposure to microbial aerosols.  

 

Both airborne particles in general and more specifically, bioaerosols have been intensively studied, 

but usually in separate studies and by different researchers. However, people are simultaneously 

exposed to many specific pollutants in their normal life. Until now, the health effects of individual 

pollutants as well as their interactions are still poorly understood. The sampling method used here 

provided access to several pollutants, with simultaneous collection of both microbes and other 

particles in the mixture by using collection methods which were not exclusive for either particle 

matter or microbes. The personal aerosol samplers used in exposure studies are mainly based on 

filter collection with inlets like impactors or cyclones with specific cut points, such�
����� ��������

�����������
	������� Thomas et al. 1993, Koistinen et al. 1999, Janssen et al. 2000). In dusty work 

environments, personal exposure studies of microbes have usually been conducted during a 

workday with 37 mm filter cassettes, sampling the whole size range of airborne particles. However, 

the 37 mm filter cassette is no more accepted for workplace monitoring, but according to SFS-EN 

481, the samplers used at workplaces should follow the ACGIH/CEN/ISO inhalable convention. 

Size-selective personal samplers have been developed for this purpose and become commercially 

available (Kalatoor et al. 1995, Kenny et al. 1999, Agranovski et al. 2002). The button sampler used 
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in this study has been designed to follow the inhalable convention curve. It also has lower 

intersample variability and higher uniformity of particle deposition than the 37 mm filter cassettes 

(Hauck et al. 1997, Agranovski et al. 2002).  

 

The filter sampling used in this study, may have an effect on the culturability of microbes, because 

of desiccation of the cells on the filter during the collection (Wang et al. 2001). Therefore, the total 

concentrations of microbes on the filters were also determined by direct counting with a 

microscope. The direct counting method used here has the disadvantage of having a relatively high 

detection limit, which compromises its use in indoor environments where there are relatively low 

microbial concentrations. The proportion of viable fungi of the total concentration of airborne 

microbes varies. In our study, the proportion of viable fungi and bacteria of their total numbers was 

approximately 1%. In a previous study, the proportion of the airborne culturable fungi in 

comparison with the total spore concentration varied between 0.2 and 7.4% before the dismantling 

of building structures and between 0.2 and 37% during the dismantling (Rautiala et al. 1996). In 

some situations, the corresponding ratio of viable fungi and bacteria can be even less than 1% of 

total counts (I, Rautiala et al. 1996), which is also commonly observed for environmental bacteria in 

water and soil (Atlas and Bartha 1993, Szewzyk et al. 2000). Collection and analysing the samples 

for airborne microbes is a major research challenge. Given the complexity and diversity of 

microbial bioaerosols, the present methods still need further refinement to resolve the 

methodological problems of microbial exposure assessment. 

 

6.2 Concentrations of particles and microbial aerosols 

 

Personal exposures to particles have mainly been studied and measured as exposures to PM2.5 or 

PM10. The levels of particle mass observed in this study were 17-57 µg/m3, rather similar to the 

levels reported for PM2.5 and PM10 in large field studies, PTEAM and EXPOLIS (Pellizzari et al. 

1999, Koistinen et al. 2001). Also in the Toronto, Ontario study rather similar levels of the inhalable 

fraction of particles have been reported (Clayton et al. 1993). Similarly to our results,  the personal 

PM2.5 and PM10 exposures in these studies have also been higher than in stationary samples. This is 

evidence of the phenomenon of the “personal cloud” which contributes to the personal exposure 

compared to stationary sampling. When persons are active, the particle increase can be even 50% 

and it has been suggested that the personal cloud mainly consists of coarse particles (Thatcher and 

Layton 1995, Wallace 1996). However, the proportion of personal cloud from total personal 

exposure to particles was not detected in this study. 
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Reflectance of filters is expressed as light absorption (1/m). The results were not transformed into 

µg/m3 since the transformation used to calculate mass concentration is filter specific and no 

transformation is available for the filter used in the present study. For this reason, it is not possible 

to make any direct comparison of black smoke concentrations between different studies. However, 

the black smoke concentrations of personal exposure, home and workplace in this study are at the 

same level as those for outdoor air in Kuopio area (Penttinen et al. 2000) and in Amsterdam 

(Janssen et al. 2000) or in the indoor air in Helsinki and Basel (Götschi et al. 2002). In another 

study, much higher indoor and outdoor concentrations were reported from Amsterdam (Fischer et 

al. 2000) but these measurements were made at a site with a high traffic intensity. In Athens and 

Prague, BS levels were more than twice as high as those found in this study (Götschi et al. 2002).  

 

Total fungi concentrations 104 – 106 spores/m3 measured by the filter method have previously been 

reported from dusty work environments, such as farms or during the house repair work 

(Lappalainen et al. 1996, Rautiala et al. 1996). In this study, total fungi concentrations were 100 

times lower than the concentrations reported from dusty work environments. However, total fungal 

concentrations similar to this study have been detected in Finnish schools and offices in our 

previous study (Toivola et al. 1999). On the other hand, higher total fungal concentrations were 

found both from Swedish homes (Björnson et al. 1995) and in Swedish schools (Smedje and 

Norbäck 2001) than in this study. Part of the differences may be due to methodological aspects, 

since much shorter sampling times (1-5 h) were used than in our study (8-24 h). The measurements 

were also made during the active hours which probably show the peak levels of airborne fungi as 

indicated in chapter 2.2.  

 

As could be expected, total bacteria concentrations measured by the filter method in dusty work 

environments, such as woodchip handling, agriculture and sawmills (Eduard et al. 1990) have been 

much higher compared to the findings of this study. However, Björnson et al. (1995) reported about 

two times higher total bacteria concentrations in Swedish homes compared to the bacteria 

concentrations in this study. Instead, the bacteria concentrations in Swedish schools were only a 

third of those measured in this study (Smedje and Norbäck 2001). The differences in homes may 

partly be due to the different sampling approach as has been discussed with the total fungal counts 

above. However, this does not explain the difference observed in the schools, but the differences 

may be due to differences in the efficiency of ventilation in schools. 
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In this study, viable fungal concentrations were much lower than those reported from dusty work 

environments (Lappalainen et al. 1996, Rautiala et al. 1996), but also slightly lower than those 

reported in normal Finnish homes and schools when measured with a six-stage impactor (Hyvärinen 

et al. 2001a, Meklin et al. 2002). This may be partly caused by desiccation during the sampling but 

also by the long sampling periods that also covered quiet hours in the nighttime. 

 

In this study Penicillium was the most common fungal genus, as has been reported previously in 

several studies (Pasanen 1992, Hyvärinen et al. 1993, Kuo and Li 1994). In this study, the 

Penicillium concentration explained between 25-95% of the variation of viable fungi concentration 

of home, of personal exposures and of workplace concentrations. Observation of a fungus at home 

or in the workplace does not always coincide with fungal findings of personal exposure samples. In 

samples where there were higher fungal concentrations, also more fungal genera were detected than 

in samples with lower concentrations. This suggests that some fungal sources were also present in 

the environments studied.  

 

The concentrations of viable bacteria found in schools were comparable to the concentrations found 

in normal residences or schools (Liu et al. 2000, Hyvärinen et al. 2001b). Viable bacteria 

concentrations were from 1-10% of the concentrations reported by Rautiala et al. (1996) from a 

dusty work environment.  

 

6.3 Personal exposure in relation to microenvironmental concentrations 

 

The personal exposure mean concentrations of particle mass and viable fungi were higher than 

those in home and workplace samples (I, II). Also in the EXPOLIS study, Koistinen et al. (2001) 

reported higher personal PM2.5 exposure concentrations than those in stationary samples. In some 

previous studies, high personal concentrations of total dust and workplace concentrations have been 

reported in dusty work environments as well as higher personal sample concentrations than 

stationary workplace sample concentrations (Kulman et al. 1998, Mandryk et al. 2000, Melbostad 

and Eduard 2001). A major factor contributing to higher personal exposures compared to stationary 

sampling is the resuspension of particles caused by personal activity, the so-called personal cloud 

(Janssen et al. 2000). This applies mainly to coarse particles and therefore, to the mass 

concentrations. The personal exposure levels to black smoke (BS) were at the same level as 

workplace concentrations but significantly higher than home levels. On the other hand, Janssen et 

al. (2000) reported slightly higher BS level at home than in personal exposure for elderly people in 
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Amsterdam and Helsinki. Differences between this study and study in Amsterdam and Helsinki 

may be mainly due to differences of behaviour i.e., activities, time spent in workplace and home 

between teachers and elderly people. The total concentrations of fungi in work environments were 

higher than those measured at home or with personal exposure monitoring. This finding differs 

from that of viable fungi. It may be that non-viable fungi are typically part of the settled dust in a 

school building where the activity of school children causes elevated levels in the air during the 

workday. The concentrations of viable fungi in the home environments were lower than those 

detected in personal exposures but higher than in work environments. This may be explained by the 

normal sources of fungi detected in homes, such as cooking, cleaning and having pets (Lehtonen et 

al. 1993). Both the total bacteria and viable bacteria concentrations were highest in the work 

environments and lowest in homes. Schools are highly populated indoor environments, and since 

humans are a major source of airborne bacteria, the high concentrations of bacteria may be a result 

of crowdedness. 

 

The personal exposure concentrations of black smoke correlated with home and work BS 

concentrations better than did the concentrations of particle mass in those environments. Similar 

results have also been reported in previous studies among elderly people (Janssen et al. 2000). 

However, correlations between personal particle mass exposures and both home and workplace 

concentrations were weaker in this study than those reported for PM10 (Monn et al. 1997, Janssen et 

al. 1998), which may due to the fact that also particles larger than PM10 were collected in this study. 

The BS explained best the variation in the particle mass concentrations in personal exposures and 

home concentrations. However, the BS is an indicator of fine (<2.5 ���
����	��
������������
����	���

derived from combustion processes (Vallius et al. 2000) and the button sampler collects also larger 

particles.  

 

In the samples of the present study, which were collected in wintertime, total mass of fungi and 

bacteria accounted for less than 1% of the total particle mass. In an office building measured in the 

autumn the proportion of viable fungi and bacteria number concentration was <1% (Luoma and 

Batterman 2001). However, this means higher total microbial proportion than in this study, because 

concentrations of total airborne fungi and bacteria are 100-fold those of viable fungi and bacteria. 

This is a feasible conclusion since the airborne loads of fungi and bacteria are much higher in 

summer and autumn than in winter (Reponen et al. 1992). There is not much data on the proportions 

of microbial aerosols of the total particle matter, but in numerical terms, 37% of all outdoor air 
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particles �������� ��appeared to be of biological origin in Germany in the summertime (Matthias-

Maser and Jaenicke 1994). 

 

The time weighted microenvironmental model was a useful method to assess personal exposure for 

BS and viable bacteria concentrations (II, III). However, the model underestimated personal 

exposures of particle mass, viable fungi, total fungi and total bacteria concentrations. This indicates 

that there were other relevant sources in addition to home and workplace for these pollutants. 

 

6.4 Determinants of particles and microbial aerosols 

 

Teaching of practical subjects, time spent in a car, having a spouse and having a spouse with a blue-

collar occupational status were the major determinants for personal exposure to particle matter. 

There were slight correlations between personal particle exposures and particle mass concentrations 

at home, where also having a spouse and a spouse with a lower occupational status were 

determinants for particle mass concentration. It has been previously reported that PM2.5 exposure is 

higher for persons with lower occupational status than higher occupational status (Rotko et al. 

2000). The reason why there is an increase in the personal exposure associated more with the 

marital and socioeconomical status than the number of occupants, remains to be studied in the 

future. The results of this study also indicate that the number of inhabitants at home may increase 

particle concentrations. The number of people may increase the activities inside the building and 

this may increase the resuspension of particles and the generation of new particles (Wallace 1996).  

 

There was also a slight correlation between personal particle exposure and particle mass 

concentration in the workplace. The common determinant of personal exposure and workplace 

concentration was teaching practical subjects, i.e. woodwork, textile work, arts and crafts and 

cooking. These are all particle-creating activities which explains both the increase in the particle 

concentrations in the work environment and its contribution to the personal exposure. Time spent in 

a car increased personal particle exposure as did the presence of traffic near to the home. Traffic 

also increased the particle concentration at home. Traffic density has been reported to be a major 

determinant for particle exposure of individuals in large cities (Janssen et al. 1998, Pakkanen et al. 

2001). One interesting aspect in our study was that the effect of traffic could be seen even in areas 

of relatively low traffic intensity. The towns included in this study have 20000-88000 inhabitants 

and the traffic densities are ~20000 vehicles/day at the maximum. Thus the traffic is a major 

descriptor of particle exposure in both cities and less densely populated areas. Smoking has been the 
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strongest determinant of fine particles for personal exposure and indoor concentration (Wallace 

1996, Janssen et al. 1998). In our study, there were only a few smokers and the effect of smoking 

was thus not detected.   

 

Time spent in a car was the most important determinant for personal exposure to black smoke (BS). 

Although personal exposure to BS correlated with home and workplace BS concentrations, there 

was no common determinant for these concentrations. However, the presence of traffic near to the 

home was the main determinant of home BS concentration. Traffic and combustion processes are 

the main sources for BS and indoor BS predominantly originates from the outdoor air. BS outdoor 

levels explained 62% of the indoor variations in Helsinki (Götschi et al. 2002). Similarly to the 

particle results, it is interesting to note that traffic acts as a descriptor of BS concentrations even in 

areas of relatively low traffic density. Other determinants for personal BS exposure were the 

number of pupils in school and ownership of dwelling. Tenants of the rented dwellings may be 

exposed more to BS than homeowners because rented dwellings are often located in urban areas 

close to heavy traffic. 

 

Personal exposure to total fungi was mainly related to the school environment. The main 

determinants for total fungi exposure were teaching of practical subjects and a lower number of 

pupils in school. However, none of those determinants was important for the workplace 

concentrations and there was no correlation between personal and workplace total fungi 

concentration. There may be some other, so far unexplained, determinants for personal total fungi 

exposure. In general, the most important fungal spore source is the outdoor air (Garrett et al. 1998), 

but in this study, conducted in wintertime, the contribution of outdoor spores was probably minimal 

(Reponen et al. 1992).  

 

Fungal exposure was also assessed in terms of concentrations of viable fungi. Condensation inside 

of the interior window glass was the main determinant of viable fungi concentrations both in 

personal exposure and the home environment. Condensation in interior window glass is a surrogate 

of high humidity or insufficient ventilation instead of being a real determinant itself. Thus, 

observations of condensation suggest a source of recently released fungal spores that are detected as 

viable counts rather than as total numbers of spores. This is an important observation since in the 

dry indoor air conditions typical of a cold wintery climate, condensation is an unusual and 

undesired phenomenon. Nevertheless, the results show that it contributes to the fungal exposure 

experienced by the occupants. Dogs also increased personal viable fungal exposure. Pets have been 
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reported to increase fungal concentration in homes (Lehtonen et al. 1993, DeKoster and Thorne 

1995, Ren et al. 2001). Fungal concentrations and the diversity of personal exposure and exposure 

at home were higher in rural areas than in urban areas. This has also been shown earlier by Pasanen 

et al. (1992) in a study comparing rural homes with urban homes. The personal exposure to viable 

fungi correlated with home concentrations, whereas the correlation with workplace concentrations 

was poorer and there was no common determinant. In the qualitative analysis of the samples, it was 

noted that the fungal findings were not always the same in the individual’s personal samples and in 

the microenvironmental samples in the places he/she had visited. Therefore, it can be concluded that 

the detection of a fungus in a certain microenvironment does not always coincide with findings 

from personal exposure samples.  

 

Teaching of practical subjects also increased personal exposure to total bacteria. Teaching these 

subjects means handling of wood, textiles, craft material and foodstuffs. However, the levels 

observed in this study were only 0.1-1% of the levels measured in agricultural work (Melbostad and 

Eduard 2001). There were slight associations between personal total bacteria exposure and home 

and workplace concentrations. Humans are considered to be important sources for indoor air 

bacteria (Nevalainen et al. 1991, DeKoster and Thorne 1995). Interestingly, observations of visible 

mould growth increased exposure to total bacteria and concentration at home, but not exposure or 

concentration of fungi. Meklin et al. (2002) did not find clear differences in the microbial flora 

between moisture damage and reference school buildings. This raises the question of how important 

fungal exposures are in comparison to bacteria in situations of indoor mould growth in school 

buildings.  

 

With respect to viable bacteria, the essential determinants of personal exposure were gender, age, 

having a spouse or work status of the spouse, moisture damage and visible mould growth. Men and 

young persons were exposed to more bacteria than women and older people. This may be due to 

gender- related physiological differences or activities. It is known that humans are important 

bacterial sources and their emissions depend on gender and physical activity (Noble et al. 1976, 

Nevalainen et al. 1991, DeKoster and Thorne 1995). Similarly to the concentrations of total 

bacteria, moisture damage and visible mould growth were determinants of exposure to viable 

bacteria. This supports the suggestion that the role of bacteria exposures should be further studied in 

connection with indoor moisture and microbial problems. 
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7 CONCLUSIONS  

 

An approach and quality assurance protocols for simultaneous studies of personal exposure to 

microbial aerosols and particles were developed and tested with random sample of teachers. It can 

be assumed that the developed protocols are feasible also in other non-industrial living 

environments with low microbial concentrations. The use of duplicates and blanks is recommended 

to control for possible contamination and to guarantee the accuracy of the methods used. 

 

The personal exposures to particle mass, black smoke and fungi were higher than the concentrations 

in the two main microenvironments, the home and the workplace. This emphasizes the importance 

of the personal cloud and the activities of individuals. It may also point to other sources and 

important microenvironments for exposure to these pollutants. Although the time spent in these 

other microenvironments is short, sporadic high concentrations encountered there may have an 

influence on the total personal exposure. In contrast, bacterial concentrations in workplaces were 

higher than those in personal samples. The workplaces were busy, heavily populated school 

buildings which apparently contribute to the exposure to airborne bacteria. For certain pollutants, 

such as black smoke the time weighted model using information detected in many 

microenvironments is useful method to assess the personal exposure. 

 

The associations of personal exposure to microenvironmental concentrations of airborne microbes 

and particles were only moderate. However, correlations between personal exposure and home 

concentrations of viable fungi and bacteria indicate that the home dominates the personal exposure 

to microbial aerosols compared to work environment. With respect to black smoke, both home and 

workplace concentrations correlated with personal exposure, while the correlations concerning 

particle mass concentrations were poor. This is in line with earlier studies and is explained by 

different sources and behaviour of the two types of airborne particles. 

 

The concentration of viable microbes in the indoor air was only about 1% of the total 

concentrations of microbes and less than 0.01% of the total particle mass. Both the concentration of 

viable fungi and the diversity of fungal genera were higher in personal samples than in home and 

work samples. This may point to exposure environments for fungi other than home and workplace. 

On the other hand, environmental samples also contain fungal genera that were not detected in 

personal samples, thus, fungal findings in a microenvironment do not always coincide with the 

findings from personal exposure.  
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There were several determinants for personal exposure, home concentration and workplace 

concentration of pollutants, but none of them was dominant. There were common determinants for 

both personal exposure and microenvironmental concentrations, which suggests presence of 

pollutant sources in these microenvironments. Therefore, source-related information concerning e.g. 

building characteristics is valuable in exposure assessment studies.   

 

Personal exposure needs to be measured to assess the real exposure to bioaerosols. Methodological 

aspects are critical in the assessment of microbial exposures. For example, a long sampling time 

with filters may influence the viability of fungi and bacteria, thus, other methods not based on 

culturing such as direct microscopy, DNA techniques and immunochemical or chemical marker 

analyses, may provide useful alternatives. However, stationary sampling in the main 

microenvironments is also important to elucidate their importance as microbial sources and to 

design cost effective strategies to reduce exposure and related health impacts. 
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