
KUOPION YLIOPISTON JULKAISUJA G. - A.I.VIRTANEN-INSTITUUTTI 21 
KUOPIO UNIVERSITY PUBLICATIONS G. 

A.I.VIRTANEN INSTITUTE FOR MOLECULAR SCIENCES 21 
 
 
 
 
 
 
 
 
 
 
 
 

MARKUS STORVIK 
 
 

Molecular mechanisms of the effects of 
uncompetitive NMDA-antagonist MK-801 on 

CREB related transcription factors 
 
 
 
 
 
 

Doctoral dissertation 
 

To be presented by permission of the Faculty of Pharmacy of the University of Kuopio for 
public examination in Auditorium L23, Snellmania building, University of Kuopio, Monday, 

28th June 2004, at 12 noon 
 
 

Department of Neurobiology 
A.I. Virtanen Institute for Molecular Sciences 
Department of Pharmacology and Toxicology 

Faculty of Pharmacy 
University of Kuopio 

 
 
 

 
 

 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEF Electronic Publications

https://core.ac.uk/display/15167599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  
 
 
 
Distributor:   Kuopio University Library 
    P.O. Box 1627 
    FIN-70211 KUOPIO 
    FINLAND 
    Tel. +358 17 163 430 
    Fax +358 17 163 410 
 
 
Series Editors:   Professor Karl Åkerman 
    Department of Neurobiology 
    A.I. Virtanen Institute 
     
    Research Director Jarmo Wahlfors 
    Department of Biotechnology and Molecular Medicine 
    A.I. Virtanen Institute 
 
Author’s address:   Department of Neurobiology 
    A.I. Virtanen Institute 
    University of Kuopio 

P.O. Box 1627 
FIN-70211 KUOPIO 
FINLAND 
Tel. +358 17 163 665 
E-mail:  markus.storvik@uku.fi 

 
 
Supervisors:       Doc. Garry Wong, Ph.D. 
    Department of Neurobiology 
    A.I. Virtanen Institute 

University of Kuopio 
 

Professor  Eero Castrén, M.D., Ph.D. 
    Neuroscience Center 
    University of Helsinki 
 
    Doc. James Callaway, Ph.D. 
    Department of Pharmaceutical Chemistry 

University of Kuopio 
 
     
Reviewers:   Professor Raimo K. Tuominen M. D. 
    Department of Pharmacy 

University of Helsinki 
 

Docent Petri Hyytiä, Ph.D. 
National Public Health Institute 
Helsinki 

     
 
 
Opponent:   Professor Astrid Lægreid, Ph.D. 
    Department of Physiology and Biomedical Engineering 

  Norwegian University of Science and Technology  
  Trondheim, Norway 
 
 

ISBN 951-781-380-5 
ISBN 951-27-0085-9 (PDF) 
ISSN 1458-7335 
 
 
Kopijyvä 
Kuopio 2004 
Finland

 2



Storvik, Markus. Molecular mechanisms of the effects of uncompetitive NMDA-antagonist 
MK-801 on CREB related transcription factors.  Kuopio University Publications G. A.I. 
Virtanen Institute 21. 2004. 82 p. 
ISBN 951-781-380-5 
ISBN 951-27-0085-9 (PDF) 
ISSN 1458-7335 
 
ABSTRACT 
 

Uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists, such as dizocilpine 
(MK-801) and memantine, bind to the NMDA receptor channel, and block Ca2+  influx. The 
increase in intracellular concentration of second messengers, such as Ca2+ and cyclic adenosine 
monophosphate (cAMP), activate the transcription of certain genes. This process is controlled 
by cAMP response element binding protein (CREB), a transcription factor that can be 
activated by synaptic activity. The aim of the present study was to characterize alterations in 
the expression of transcription factors produced by NMDA receptor antagonists. Regulation of 
gene expression of CREB and its modulators, and glutamate receptor subunits were studied 
after MK-801 administration. In addition, the gene expression profiles in rat brains after MK-
801, with or without cocaine, were studied with DNA micro- and macro arrays.  

High, but transient induction of genes related to CREB, such as inducible cAMP early 
repressor (ICER) and other CREM-family transcripts, were found following uncompetitive 
NMDA antagonist treatment. These induced transcripts, alone or in heterodimers with other 
transcription factors, were found to bind CRE-elements in DNA. The uncompetitive NMDA 
antagonists are therefore capable of altering the transcription of genes expressed in neurons. 
The effect of the acute NMDA-antagonist MK-801 on the expression of glutamate receptor 
subunits was also determined and mGluR3, GluR3 and GluR4 were affected. Finally, two 
DNA microarray experiments were performed after treatment with acute MK-801, acute 
cocaine, or after a combination of MK-801 and cocaine. The expression of altered genes on 
parietal cortex, frontal cortex, and in nucleus accumbens was profiled. Although MK-801 did 
not prevent the alterations in gene expression caused by cocaine, a high number of 
transcription factors and signalling transduction genes were among the 850 candidate genes.  

In conclusion, these findings provide new information about the acute effects of 
uncompetitive NMDA on the regulation of gene transcription, which in turn leads to long-term 
changes in the brain. These findings should help to determine the baseline of how alterations in 
gene expression in brain develop during NMDA antagonist treatment. 
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Medical Subject Headings: gene expression regulation; gene expression profiling; receptors, 
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ABBREVIATIONS 
 
AMPA  α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid 
ANOVA analysis of variance 
AP-1  activation protein 1 
BDNF  brain-derived neurotrophic factor 
CA1-3  cornus ammonis fields 1-3 of hippocampus 
CaMK  calmodulin-activated protein kinase 
cAMP  cyclic adenosine monophosphate 
CaMK   Ca2+/calmodulin-dependent protein kinase 
cDNA  complementary deoxyribonucleic acid 
Cpu  caudate putamen 
CBP  CREB binding protein 
CREB  cAMP element binding protein 
CREM  cAMP response element modulator 
DA  dopamine 
DG  dentate gyrus of hippocampus 
EMSA  electromobility shift assay 
EST  expressed sequence tag 
Fr ctx  frontal cortex 
GABA  gamma-amino-butyric acid 
GluR1-4 glutamate receptor subunits 1-4 
GO  gene ontology 
ICER  inducible cAMP early repressor 
IEG  immediate early gene 
i.p.  intraperitoneal 
LTP   long-term potentiation 
MAPK  mitogen-activated protein kinase 
mGluR  metabotropic glutamate receptor 
mRNA  messenger ribonucleic acid 
MK-801 (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-iminehydrogen 

maleate; dizocipline maleate 
NF-kB  uclear factor kappa-B 
NMDA N-methyl-D-aspartate 
NR1  N-methyl-D-aspartate receptor subtype 1 
NR2  N-methyl-D-aspartate receptor subtype 2 
NAc  nucleus accumbens 
Par ctx  parietal cortex 
PBS  phosphate buffered saline 
PKA  cyclic AMP dependent protein kinase, protein kinase A 
PKC  protein kinase C 
PCP  phencyclidine 
RNA  ribodeoxynucleic acid 
SOM   self-organising map 
VGCC  voltage-gated Ca2+ channel 
VTA   ventral tegmental area 
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1 INTRODUCTION 

 

Glutamate is the major excitatory amino acid (EAA) neurotransmitter in the 

mammalian brain (Headley and Grillner, 1990). Glutamate is synthesised in neurons from 

glutamine, and stored into vesicles. An action potential leads to the release of glutamate into 

the synaptic cleft, and from there it is taken mainly into glial cells and there converted into 

glutamine.  Glutamate is released from pre-synaptic neurons when the action potential reaches 

the synapse. The released glutamate increases the likelihood that a cell will fire by binding 

post-synaptic excitatory ligand gated ion channel receptors. The glutamate receptors also 

modulate cell state by second messengers, Ca2+ or cAMP. The effects of the receptor 

activation eventually alters the function of transcription factors and transcription of genes 

(Kornhuber and Weller, 1997). This is the point where the electrical, chemical, and 

macromolecular systems of the brain meet, and in which glutamate plays an important role in 

learning, memory, and neuronal plasticity (Sheng and Kim, 2002). 

 Most of the long-term effects of glutamate are transmitted through NMDA-receptors. 

NMDA receptor antagonists have antidepressant, analgesic, anxiolytic, anaesthetic, and 

according to some studies also antiaddictive properties (Kemp and McKernan, 2002). Many 

potent NMDA receptor antagonists such as ketamine, and phencyclidine (PCP) produce 

psychotic symptoms, which are very similar to those seen in schizophrenia. On the other hand, 

moderately potent uncompetitive NMDA antagonists such as memantine and amantadine are 

in clinical use for neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s 

disease (Reisberg et al., 2003), and they are well tolerated (Parsons et al., 1999). 

  Addiction disorders bring enormous costs to societies. Despite intensive research, there 

is no effective cure for addiction. Drug use can be decreased or prevented by medication 

causing adverse effects when the drug of abuse is taken. Another strategy for treating drug 

addiction is to ease the withdrawal state, by making the cessation of use more comfortable. 

These strategies do not alter the subjective elements of drug use, mainly the drug craving. 

Several lines of research suggest that uncompetitive NMDA antagonists could decrease drug 

self-administration by inhibiting the molecular mechanisms leading to addiction (Glick and 

Maisonneuve, 2000). It has been shown that in rats, MK-801 prevents the sensitisation to 

cocaine. MK-801 also decreases the self-administration of cocaine in rats (Pierce et al., 1997), 

although the findings are controversial (Hyytia et al., 1999). One of the most important of 

these molecular mechanisms is the cyclic AMP response element binding protein (CREB), 

which is a transcription factor activated by intracellular calcium, cAMP, and other intracellular 
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signalling pathways. CREB takes part in memory consolidation and it’s role in addiction has 

been pointed out in several studies (Carlezon et al., 1998; Nestler, 1993). 

 

 In this dissertation, the effects of uncompetitive NMDA ion channel blockers on the 

CRE-mediated gene expression have been studied at several levels. The alterations in the 

expression of CREB and related proteins have been assayed. The changes of expression of 

glutamate receptors are assayed to see the alterations at the receptor level. Finally, the gene 

expression profiles in brains of NMDA antagonist MK-801 and cocaine treated rats are 

determined by DNA-microarray techniques. 
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2 REVIEW OF THE LITERATURE 

 

2.1  Glutamate 

 

Glutamate is the main excitatory amino acid (EAA) neurotransmitter in the mammalian 

brain, and is important for passing electrical signalling over the synaptic clefts (Headley and 

Grillner, 1990). Glutamate is synthesised in neurons from glutamine and stored into vesicles. 

Glutamate is released from the pre-synaptic neuron when the action potential reaches the 

synapse and the intracellular Ca2+ concentration rises. From the synaptic cleft, glutamate is 

mainly taken into glial cells and converted into glutamine. The released glutamate binds to 

excitatory ionotropic glutamate receptors, or to metabotropic glutamate receptors, which 

modulate cell state by second messengers and eventually by altering transcription factor 

function and gene expression (Kornhuber and Weller, 1997). 

 Excitatory receptors open ion channels or modulate the cell state by second 

messengers. These changes increase the likelihood that the neuron will fire (Krystal et al., 

1999). At these levels the electrical, chemical and macromolecular systems of the brain meet 

and form the system known as brain activity. 

 Glutamate plays an important role in learning and memory, in neuronal survival, 

genetic expression of axon guidance cues, associative synaptic connectivity, formation of 

networks, and in other forms of synaptic plasticity (Thomas, 1995). Nearly 70% of all 

synapses in the brain have glutamate receptors. Glutamate is the central neurotransmitter in 

cortico-cortical, cortico-limbic, and cortico-subcortical neuroconnections, and essentially in all 

systems important for higher brain functions. 

 

2.1.1  Molecular biology of the glutamate receptors 

The effects of glutamate are mediated via ion channel-forming receptors and via 

metabotropic G-protein-coupled glutamate receptors. The ionotropic glutamate receptors are 

named by their agonists. AMPA receptors are made of GluR1-4 subunits, and kainate receptors 

of GluR5-7 and KA1-2 subunits. NMDA-receptor subunits are NR1, NR2A-NR2D, and NR3. 

There are also orphan receptors δ1 and δ2 which are likely non-functional (Dingledine et al., 

1999). The most distinct of all of the glutamate receptor subunits is NR1, which binds glycine 

instead of glutamate (Seeburg, 1993). The metabotropic glutamate receptors (mGluR) exist in 

8 subtypes (mGluR1-mGluR8) (Conn, Pin, 1997). 
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2.1.1.1 AMPA-receptors 

 

AMPA receptors consist of 4 or 5 subunits (M1 – M5), forming an ion channel by their 

M2 loop. AMPA receptors are typically heteromers of all combinations from GluR1 to GluR4 

(Dingledine et al., 1999; Nakanishi et al., 1998).  The subunit composition affects the ion 

channel currents. The receptor function is further regulated by protein kinases that 

phosphorylate receptor subunits. Phosphorylation affects the ion channel kinetics and the 

properties of binding of receptor-associated proteins (Koles et al., 2001). Activated AMPA 

receptor ion channels pass Na+ and K+ ions, which cause short (10-20ms) excitatory 

postsynaptic potentials. AMPA receptors can also pass some calcium, depending on the 

subunit composition. The receptors with GluR2 subunits pass only a little calcium compared to 

the others (Dingledine et al., 1999). 

 

2.1.1.2 Kainate-receptors 

 

Kainate receptors are composed of GluR5, GluR6, and GluR7 subunits, which are close 

relatives to genes encoding AMPA receptor subunits GluR1-GluR4. Kainate receptors 

contribute to excitatory postsynaptic currents in many regions of the central nervous system 

including hippocampus, cortex, spinal cord, and retina. Presynaptic kainate receptors occur at 

both excitatory and inhibitory synapses (Huettner, 2003). Once there, they cause short currents 

of Na+ and K+ ions, plus more modest amounts of Ca2+ ions to pass (Dingledine et al., 1999; 

Huettner, 2003). 

 

2.1.1.3 NMDA-receptors 

 

NMDA receptors consist of five or sometimes only four subunits coded by individual 

genes. NR1 unit exists in 8 variants, and NR2 in four variants (NR2A-NR2D) each with 

different properties. At least one of the subunits must be of the NR1 type to form a functioning 

channel (Laube et al., 1998). In addition, the receptor has NR2 units. Variants of NR3 has two 

variants, NR2A seen in developing brain and NR3B in motoneurons (Nishi et al., 2001). All 

the subunit proteins consist of 3 transmembrane loops and one loop that does not penetrate the 

cell membrane, but forms the edges for the ion channel (Dingledine et al., 1999; Platenik et al., 

2000); see figure 1). 
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In the brain, NMDA receptors have typically NR1 subunits and either NR2A or NR2B 

subunits, or NR1, NR2A, and NR2B subunits (Dunah and Standaert, 2003). NMDA receptors 

containing NR1 and NR2A have fast deactivation kinetics. Receptors with NR1 and NR2B 

binary receptors exhibit slow deactivation kinetics. NMDA receptors containing NR1, NR2A, 

and NR2B subunits have slow deactivation kinetics and also low affinity to haloperidol which 

is also seen in receptors with NR1 and NR2A subunits (Dunah and Standaert, 2003). 

 

              

Glycine Glutamate 
Extracellular 
space Ca2+, Na+ 

ion channel

NR1 
subunit 

NR2 A, B, 
C, or D 
subunit 

 

Intra cellular 
space 

 

Figure 1. The organization of an NMDA-receptor complex. The NR1 and NR2 proteins have 3 transmembrane 

domains, and one intramembrane loop (adapted from Platenik et al., 2000). 

 

NMDA receptors are located mainly in the postsynaptic side of the synapses, where 

they have a special role in synapse formation, and memory consolidation. These roles can be 

understood, as it’s now known that their function is voltage dependent. They need two agonists 

to bind before activation, and they can pass significant amounts of calcium ions (Dingledine et 

al., 1999). 

 

The ligand binding sites in NMDA-receptors 

NMDA receptors have binding sites for two major neurotransmitters: glutamate and co-

agonist glycine. Glutamate binds to the NR2 subunit, and glycine to the NR1 subunit, which is 

genetically far from other glutamate ion channel subunit genes (see figure 2) (Dingledine et al., 

1999; Laube et al., 1998; Platenik et al., 2000). There is a polyamine binding site, which binds 

spermine, and spermidine. Polyamines decrease glutamate binding, and enhance the binding of 

competitive antagonists to the NMDA recognition site (Romano et al., 1991; Williams, 1997). 

This is likely to have a physiological role. In addition to these sites, a ligand can bind inside 
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the ion channel. Several uncompetitive NMDA antagonists, including ketamine, MK-801, and 

phencyclidine (PCP) bind here, but no endogenous ligand has been found (Porter and 

Greenamyre, 1995). 

e
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subunit 

NR2 
subunit

Intra cellular 
space 

Figure 2. The ligand binding sites of 

receptor in order to open the ion chann
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2.1.1.4  Metabotropic glutamate receptors 

 

Metabotropic glutamate receptors (mGluRs) belong to the large group of 7-

transmembrane (7-TM) protein receptors, and do not form an ion channel, but mediate their 

effect via so-called G-proteins (Conn and Pin, 1997; Hermans and Challiss, 2001; Pin and 

Duvoisin, 1995). Metabotropic glutamate receptors are slowly acting and modulatory. The 

intracellular part of the metabotropic glutamate receptor binds G-protein, which activates or 

inhibits second messenger systems. Activated G-protein binds GTP and hydrolyses it into 

GDP. The activated G-protein then binds to adenylate cyclase or another mediator. The type of 

G-protein that a specific mGluR binds decides the type of effect. 

Group I mGluRs, which are mGluR1 and mGluR5, activate phosphoinositide 

hydrolysis, which in turn leads to an increase of intracellular calcium, and cAMP 

concentration, and finally enhance NMDA-receptor function (Hermans and Challiss, 2001). 

Group II mGluRs, mGluR2 and mGluR3 inhibit adenylate cyclase, which in turn 

decreases the amount of cAMP to be synthesised. Activation of the group II mGluRs inhibits 

glutamate release and decreases the effects of ionotropic receptors. They also inhibit the 

function of N-type voltage gated calcium channels.  

Group III mGluRs, which are mGluR4, and mGluR6-8, also inhibit adenylyl cyclase, 

but are weaker than group II mGluRs. In some cases, their activation leads to an increased 

glutamate release, and they have a role in synaptic long-term depression. 

Different mGluRs are located differently, depending on the brain areas and the group 

they belong to. Excitatory group I mGluRs, and inhibitory group III mGluRs are usually post-

synaptic. Group II mGluRs are presynaptic and inhibitory (Conn and Pin, 1997; Schoepp, 

2001). Metabotropic glutamate receptors modulate activities of ion channels and ion channel 

receptors. Interestingly, group I and II mGluRs both inhibit N-type voltage gated calcium 

channels (Conn and Pin, 1997).  
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2.1.1.5  Phosphorylation and regulation of ionotropic receptors  

 
The glutamate binding activity and ion channel properties are regulated by the 

phosphorylation of receptor subunits by protein kinases, and by the binding and transport of 

several proteins. The phosphorylation typically makes the receptor more active, or increases 

the ion currents. The protein kinases can be activated by second messenger systems activated 

by metabotropic or ionotropic receptors of several transmitters. The phosphorylation is 

transient, because phosphatase enzymes dephosphorylate proteins. The expression levels of the 

protein kinases and receptor-associated molecules are regulated by transcription factors, which 

are partially controlled by second messenger systems. The signalling activity between neurons 

mediated by transcription factors therefore has effects on the expression and phosphorylation, 

and the function of glutamate receptors in the area (Koles et al., 2001; Nakanishi et al., 1998). 

Phosphorylation of a GluR1 subunit alters the functional properties of the AMPA 

receptor ion channel. Ser845 phosphorylation of GluR1 increases Ca2+ influx, but on the other 

hand, Ca2+ influx leads to dephosphorylation of GluR1 subunit. Ca2+ influx is responsible for 

AMPA-induced dephosphorylation of GluR1 subunit which occurs through L-type Ca2+ 

channels and not by NMDA-receptors (Snyder et al., 2003). By this mechanism, 

dephosphorylation of GluR1 creates a negative feedback mechanism for the regulation of 

AMPA receptor activity in neurons (Snyder et al., 2003). The effects of the protein kinases on 

AMPA and NMDA receptors are presented in table 1. 

The Ca2+ influx stimulates the accumulation of AMPA receptors at the neuronal 

membrane of hippocampal neurons (Borgdorff and Choquet, 2002). Also, there are so-called 

silent synapses with only NMDA-receptors. With enough activity, AMPA receptors are also 

transported to the region to form a normal active synapse with both fast and slow glutamate 

receptors (Borgdorff and Choquet, 2002). These phenomena use several types of glutamate 

receptor associated proteins, such as glutamate receptor-interacting proteins GRIP-1 and 

GRIP-2.  

The proteins associating with NMDA-receptors include synaptic organisers, which are 

PDZ-domain-containing proteins (e.g., proteins of the PSD-95 family, GRIP, AMPA receptor-

binding protein (ABP)). They bind the C-terminus of NMDA-subunits, and function by 

clustering the receptor in the synaptic terminus. Also nitric oxide synthase can be bound to 

NMDA-receptors directly or by PDZ-proteins, where it is activated by Ca2+/calmodulin 

activity (Watanabe et al., 2003). 
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AMPA receptors are targeted to excitatory synapses by PDZ domain-containing 

proteins (Hayashi et al., 2000). In synaptic long-term depression (LTD), AMPA receptors are 

rapidly internalised. Binding of GRIP1, ABP and PICK1 proteins are regulated by AMPA 

GluR2 which is phosphorylated on Ser880 in LTD. GRIP1 and PICK1 may regulate AMPA 

receptor internalisation during LTD (Kim et al., 2001). 

 
Table 1. Phosphorylation regulates AMPA and NMDA receptor kinetics and the properties of fast 
glutamatergic signalling. (CaMK, Ca2+/calmodulin-dependent protein kinase; PKA, protein kinase A; 
PKC, protein kinase C, Ser831, Ser845, and Ser880, serine residues of glutamate receptor subunits;  Src, 
Fyn, protein kinases; GRIP, glutamate receptor interacting protein; LTP, long term 
potentiation; PDZ, a domain in several proteins interacting with glutamate receptors)  (Maj and 
Zhang, 2003; (Banke et al., 2000; Grosshans and Browning, 2001; Snyder et al., 2003) 
 

Subunit Kinase Effect of phosphorylation 

CaMKII, Ser831 Phosphorylation increases the current flow 

PKA, Ser845 Peak response open probability increased. 

Dephosphorylation seen in LTD 

GluR1 

PKC, Ser831 Increase of current flow 

GluR2 PKC, Ser880 PDZ domain binding, dephosphorylation 

decreases GRIP1 binding 

GluR3 Not known, PKC 

suspected 

Phosphorylation by PKC regulates the binding of 

the PDZ domain-containing proteins  

GluR4 PKA, PKC, CaMKII Control of synaptic organization 

PKA Potentiation of NMDA receptor function NR1 

PKC Increased opening probability  

PKA Potentiation of NMDA receptor function 

PKC Potentiation of NMDA receptor function  

NR2A 

Src, Fyn Phosphorylation seen in LTP. Dephosphorylation 

in lithium treatment  

PKC Potentiation of NMDA receptor function NR2B 

Fyn Fyn-knockout impairs LTP 
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2.1.2  Physiological significance of the ionotropic glutamate receptors 

 

Glutamate receptors participate in synaptic plasticity, learning, and memory. A model 

for these phenomena is long-term potentiation (LTP) (Bliss and Collingridge, 1993). A key 

player in this mechanism is NMDA receptor activation and calcium influx. The short-term 

effects are formed by modulation of existing proteins, but long-lasting effects require synthesis 

of new proteins 

LTP is an activity-dependent, long-lasting enhancement in the strength of synaptic 

connections between neurons. LTP is most easily demonstrated in the hippocampus, and was 

first reported in the rabbit by Bliss and Lømo (Bliss and Lomo, 1973). The phenomenon lasted 

for up to hours or even several days (Bliss and Lomo, 1973). LTP was then proposed as a 

candidate memory mechanism, since it exhibits associatively, co-operatively, and input 

specificity (Malenka, 2003). Input specificity means that LTP selectively enhances only the 

active pathways. Converging inputs that are not active at the time of stimulation are not 

potentiated. Hebb (1949) proposed, on theoretical grounds, that synaptic modification that only 

occurs as a consequence of coincidence between pre- and post-synaptic activity could support 

"learning". In this way, the co-occurrence of neuronal events might be recorded in networks of 

neurons and used as the building blocks for memory representations (Bliss and Collingridge, 

1993). 

In addition to memory, LTP and related modulations of synaptic functions are likely to 

be important in neuropsychiatric disorders where any kind of memory dysfunction is present, 

but is not necessarily the primary feature (Reid and Stewart, 1997). Rison and Stanton (1995) 

have reviewed its involvement in mechanisms of neuronal injury and in disorders such as 

epilepsy, Alzheimer's disease, and schizophrenia. There are significant alterations in the 

mechanisms of memory in other neuropsychiatric disorders. In patients suffering from 

depression, there are decreased neuronal activities on certain brain areas, which can be seen as 

alterations in LTP. Also antidepressant treatments can modify the same molecules needed in 

LTP, as discussed in chapter 2.2.3. Also in addiction, the memory mechanisms include 

pathways in common with LTP. Even a single cocaine exposure in vivo induces long-term 

potentiation in dopamine neurons, which can persist for days (Ungless et al., 2001). 

Synapse activity can be enhanced for long after action potential burst. As calcium 

enters the neuron through NMDA-receptors, intracellular signalling pathways are activated 

(Nakanishi et al., 1998). This makes it possible for a neuronal network to sum up signals, 

either spatially, when several nerve termini activate simultaneously, or temporally when a 
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synapse is activated several times over a short period of time. Both pre-synaptic and post-

synaptic neurons are required to be fired, or potentiation fails to become a long term 

potentiation (Bliss and Collingridge, 1993). In a classical model of LTP, the mechanism for 

this selectivity is explained by the Mg2+ blockade in slowly activated NMDA-receptors, which 

is removed by depolarisation caused by high activity. NMDA receptor antagonists can prevent 

the induction of LTP and NMDA antagonists impair spatial learning tasks. The effect is dose-

dependent (Davis et al., 1992).  

Calcium entering neurons through active NMDA-receptors activates the kinases 

CaMKII and PKC controlling ion channels. NMDA-receptors phosphorylated by fyn, PKA, 

PKC, are activated by PKC; AMPA receptors recruited to “silent” synapses, conductance 

increased by phosphorylation, other kinases (PKA is activated by cAMP produced by CaMK 

activity), and transcription factors. In several brain areas, voltage-gated calcium channels and 

AMPA subtypes passing some calcium are required for LTP. It is also modulated by 

metabotropic glutamate receptors (Bashir et al., 1993), by regulating the function of voltage-

gated calcium channels, and NMDA ion channel activities. The fast developing long-term 

potentiation of synapse and neural network is essential for short-term memory, and if the 

network activity is repeated, the synapses consolidate and form the base for long term 

memory, which can last for the rest of an individuals’ life (Bliss and Collingridge, 1993).  

 

2.2   Pharmacology of NMDA-receptors 

 

 A number of neurological and psychiatric conditions are associated with alterations in 

glutamatergic signalling. These include schizophrenia, depression, drug addiction, epilepsy, 

and several neurodegenerative conditions such as Parkinson’s disease, Alzheimer’s disease, 

and acute stroke. NMDA-receptors have been a focus of interest for drug development because 

of their unique properties (see chapter 2.1.1.3). 

NMDA-receptors can be activated by ligand binding to glutamate or glycine sites, 

causing excitation. Ligands binding polyamine sites are modulators and could increase 

receptor functions (Bowe and Nadler, 1995; Romano et al., 1991; Williams, 1997). 

There are competitive, non-competitive, and uncompetitive antagonists for NMDA 

receptors. The competitive antagonist competes with glutamate for it’s binding site, whereas 

non-competitive antagonists do not, but bind somewhere else in the NMDA receptor complex, 

for example to the glycine site, polyamine site, or some unknown site. Uncompetitive 

antagonists are agents that bind inside the open NMDA-receptor ion channel, as depolarisation 
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and glutamate binding remove the Mg2+ blockade (Dingledine et al., 1999). To avoid 

confusion, uncompetitive antagonists can be referred as NMDA-ion channel blockers. 

 

2.2.1 NMDA-ion channel blockers 

 

The agents acting by blocking NMDA receptor ion channels include many well-known 

drugs such as amantadine, memantine, ketamine, PCP, and the ethnopharmacological 

substance ibogaine (table 2).  NMDA-channel blockers were first introduced as dissosiative 

anaesthetic agents that do not disrupt the control of breathing (Krystal et al., 1994). NMDA-

channel blockers have also neuroprotective, and antidepressive effects (Palmer, 2001; 

Skolnick, 1999). NMDA channel blockers, especially memantine, have been also suggested to 

have antiaddictive properties, discussed in detail in chapter 2.4.7. In addition, high doses of 

high affinity NMDA-ion channel blockers produce psychotomimetic effects. The most potent 

NMDA-blockers are used in anaesthesia and they can induce psychotic symptoms (Krystal et 

al., 1999; Krystal et al., 1994). One exception is ketamine, which does not have higher affinity 

than memantine, but which belongs to the anaesthesia group because of its clinical profile. 

Amantadine, memantine, and the antitussive agent dextromethorphane, are well tolerated in 

their clinical uses. NMDA antagonists such as memantine protect against cocaine induced 

convulsions in non-sedating doses, whereas antiepileptic agents are required to be given in 

sedative doses (Witkin et al., 1999).  

Very high affinity NMDA-ion channel blockers have a tendency to get stuck inside the 

ion channel (Krystal et al., 1999; Porter and Greenamyre, 1995). As an alternative explanation, 

some uncharacterised conformation change in the receptor protein complex 3D-structure could 

keep ligands attached. The prototype drug of the group is MK-801 (dizocipline) that is used for 

research purposes only. The affinity (Ki) of MK-801 is 0.003 µM which is hundreds of times 

higher than the Ki of ketamine (0.2 µM) or memantine (0.2 µM) (Krystal et al., 1999). MK-

801 is a prototypical NMDA-receptor ion channel blocker. The drugs act by blocking the 

calcium ion current through NMDA-type glutamate receptors (Wong et al., 1986). MK-801 is 

a potent and selective antagonist of the NMDA receptor/channel complex and acts by binding 

to the so called PCP site located within the channel (Reynolds and Miller, 1988), thus blocking 

Ca2+ influx. 
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Table 2. Uncompetitive NMDA-antagonists (Krystal et al., 1999; Rogawski, 2000). The binding 

properties and the suggested or clinical use of the agents vary greatly. 

Common name Affinity  Use 

Dextromethorphan Low affinity  Antitussive 
Amantatine Low affinity  Neuroprotective, 

antidepressant 
Memantine Low affinity, 0.2 µM Neuroprotective, 

antidepressant 
Ibogaine Low affinity  Traditional medicine 

Ketamine Dissociative 
Anaesthetic, 0.2 µM 

Anesthetic 

Phencyclidine Dissociative  
Anaesthetic 

Street drug 

Dizocipline (MK-801) Dissociative  
Anaesthetic 
0.003 µM 

Research 

Dextrorphan Dissociative  
Anaesthetic 

Research 

 

2.2.2  Short-term effects 

 

NMDA antagonists alter neurochemistry acutely, partially by direct inhibition, and 

partially by indirect circuits. Indirect mechanisms affect monoamines, catecholamines, GABA, 

and finally glutamate transmission.  

In cortical regions, namely in the pyramidal cell layer, NMDA antagonists block the 

activation of GABAergic neurons with a greater potency than they inhibit the activation of 

glutamatergic neurons (Maccaferri and Dingledine, 2002). The decreased activation then 

reduces GABAergic transmission that inhibits glutamate neurons, resulting in increased 

glutamate release. This disinhibition of glutamate neurons then increases stimulation of non-

NMDA glutamate receptors and leads to neuronal activation (Krystal et al., 2003). This will 

lead to an increase in action of monoaminergic neurons in cortex, limbic system, midbrain and 

brainstem. Also, the release of dopamine will increase. The dopaminergic activity on frontal 

cortex can be blocked by AMPA antagonists (Moghaddam et al., 1997). 

Output of dopamine neurons projecting to the frontal cortex and prefrontal cortex is 

under tonic excitatory control of NMDA and AMPA receptors in the VTA, and AMPA 

receptors in the prefrontal cortex. NMDA receptors in the prefrontal cortex exert a tonic 

inhibitory control on dopamine release (Takahata and Moghaddam, 1998). 
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Adverse effects 

The effects of the blockade of NMDA receptor mediated glutamatergic stimulation are 

seen as psychotomimetic symptoms, hallucinations, and thought impairment. In extreme cases 

of NMDA-antagonism, this mechanism leads to neurotoxicity (Olney et al., 1991). These are 

most often seen with high affinity NMDA-ion channel blockers, which have street value for 

drug abuse (Krystal et al., 1999). PCP and MK-801 are not used clinically because of these 

properties. Also ketamine, which is still in use, can produce nightmarish experiences for 

anaesthetised patients during the recovery/wake-up period. 

In healthy people, ketamine and PCP induce euphoria in small doses. High doses 

induce also dissociation symptoms, disturbed thinking, hallucinations, and in even higher 

doses unconsciousness. These effects are similar to both the positive (e.g. perceptual 

disturbances) and negative symptoms (e.g. diminished emotional response) of schizophrenia, 

and PCP-induced symptoms in humans or in animals are the best schizophrenia model 

available (Krystal et al., 1994). 

NMDA-antagonists can inhibit LTP, and they impair learning tasks in animals (Morris, 

1989). Small doses of NMDA-antagonists seem to not only impair the calcium influx to nerve 

terminals, but also cause improper action of local circuits, as inhibition of glutamatergic 

neurons by GABA decreases because of NMDA-block on GABAergic neurons (Jevtovic-

Todorovic et al., 2001). 

 Ketamine disturbs also working memory and information encoding short-term 

memory, but for a yet to be explained reason, small doses of NMDA-antagonists increase 

memory function in Alzheimer-patients, perhaps also through increased glutamate release 

(Krystal et al., 1999; Moghaddam et al., 1997). Ketamine has positive effect on moods, which 

helps in learning. In addition, the NMDA-antagonists have neuroprotective properties, which 

could be therapeutically valuable in neurodegenerative disorders. For memantine, the effective 

but tolerated doses have varied from 2 to 10 mg in pre-clinical trials, and 20 mg has been a 

typical dose in clinical trials (Kornhuber et al., 1994; Palmer, 2001). There is some 

evidence that the behavioural effects of NMDA-channel blockers can be disrupted by glycine-

B receptor antagonists (Karcz-Kubicha et al., 1999). 
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Toxicity 

 Although NMDA antagonists protect neurons from death after ischemia and hypoxia 

(Schurr et al., 1995) by decreasing the excitotoxic damage in the brain through inhibition of 

calcium influx to neurons, they are neurotoxic themselves in high doses. 

 The neurotoxicity of low doses is reversible, higher doses leads to death by apoptosis 

and even higher to necrotic cell deaths. In rats, MK-801 has induced intracellular 

vacuolisation, and caused neuron deaths in a dose-dependant manner. The most sensitive brain 

region for this toxicity is the retrosplenial cortex (Olney et al., 1991). 

 In young rats, the toxicity is less intensive than in adult rats. It has been hypothesised 

that this could be related to the known phenomenon that ketamine does not induce psychotic 

effects in children, but does induce them in an adult human. The damage of uncompetitive 

NMDA-antagonists can be to some extent inhibited by antipsychotic agents (Nakki et al., 

1996), or GABA-receptor binding anxiolytic agents (Jevtovic-Todorovic et al., 2001). This is 

interesting, as diazepam attenuates the psychotic symptoms induced by ketamine (Krystal et 

al., 1999; Olney et al., 1991). 
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2.2.3  Long-term effects of uncompetitive NMDA-antagonists 

 

The mechanisms of the long-term effects of these drugs, like antidepressive and anti-

addictive properties, are not completely understood. The development of these effects needs 

alterations in the expression of several types of neuronal proteins that participate in the 

regulation of neuronal transmission. 

In monkeys, chronic blockade of NMDA receptors is relatively well tolerated, but in 

rats, MK-801 has significant and long-term adverse consequences on learning tasks (Paule et 

al., 2003). The NMDA antagonist MK-801 does not seem to damage working memory 

permanently, but in toxic doses the treatment does permanently damage some learning 

abilities, the effect can be seen even long after such treatments. The less potent NMDA 

antagonist memantine has a larger therapeutic range before such changes (Zajaczkowski et al., 

2000), and clinically used doses do not induce neurotoxicity. 

 

The antidepressive effect of NMDA antagonists 

 Clinical response to antidepressant drugs requires chronic administration, and there is 

usually a delayed onset in relief of symptoms (Schwaninger et al., 1995). NMDA antagonists 

have been shown to both block and enhance the action of antidepressants. In animals studies, 

low doses of NMDA-ion channel blockers have antidepressive actions, but in high doses, the 

effect of antidepressants is decreased by the coadministration of NMDA-blockers. 

The effects of MK-801 in these tests may be due to an indirect activation of dopamine 

neurotransmission, and, therefore, it should be acknowledged that peripheral administration of 

MK-801 potentially could affect the release of other neurotransmitters (Callado et al., 2000). 

Although it is unlikely that NMDA receptor antagonists themselves could be clinically 

tolerated, the fact that the NMDA receptor-channel complex has multiple modulatory sites 

(and appears to be regulated by both adrenal steroids and neurotrophic factors) suggests that 

there is further scope for the development of new drug therapies with enhanced efficacy. 

Uncompetitive NMDA-antagonists have some tendency to induce euphoria in high 

doses. In chronic treatment with non-euphoric doses, there has been seen some antidepressive 

effect (Petrie et al., 2000; Skolnick, 1999), which suggests that the antidepressive effect of 

NMDA antagonists is not an artifact caused by increased euphoria-related locomotor activity. 

Both preclinical and recent clinical studies support the finding. Also chronic administration of 

antidepressants to mice alters the expression of NMDA receptor subunits. It is hypothesized 

that traditional antidepressants and these agents converge to produce an identical functional 
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endpoint: a region-specific dampening of NMDA receptor function (Skolnick, 1999), but it is 

not necessary that both affect the same targets downstream.  

Several studies in animals demonstrated that the activity of transcription factor CREB 

is upregulated by chronic antidepressant treatment. Therefore, it has been hypothesised that 

antidepressant treatment exerts its therapeutic effect by this mechanism (Koch et al., 2003a; 

Koch et al., 2002). CREB could be the mechanism that explains the antidepressive effect of 

NMDA antagonists. Since it is phosphorylated CREB (pCREB) that determines its 

transcriptional activity, it is pertinent that some antidepressants have been shown to reduce 

pCREB in the brain in vivo and in tissue culture in vitro. Moreover, pCREB is downregulated 

in human fibroblasts from patients with major depression and in the post-mortem brain of 

suicide victims with a history of depression (Manier et al., 2002; Sulser, 2002). 

 

Neuroprotection in neurodegenerative disorders 

 Due to the efficacy of NMDA-ion channel blockers to reduce acute excitotoxity, it was 

suggested that these agents might have potential in treatment of neurodegenerative disorders. 

There were also case reports of cognitive improvement of amantadine treated senior influenza 

patients. Amantadine is a weak uncompetitive NMDA-antagonist, a close relative to 

memantine that usually does not produce severe adverse effects (Kornhuber et al., 1994). Also, 

there have not been street-markets for memantine, which could be used as evidence of the lack 

of abuse potential, which high-affinity blockers and to some extent even the unspecific low-

affinity agent dextromethorphan have. 

 The clinical studies have demonstrated efficiency of memantine in moderate-to-severe 

Alzheimer’s disease (Reisberg et al., 2003). NMDA-blocker treatment is expected to increase 

the life expectancy in patients with Alzheimer’s disease (Danysz and Parsons, 2003).   In 

Parkinson’s disease, memantine can balance the dopaminergic and glutaminergic imbalance in 

basal ganglia, but NMDA-antagonists also increase the expression of genes needed in 

dopamine synthesis, neuronal signalling, and neuronal survival (Danysz and Parsons, 2003; 

Parsons et al., 1999). 
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2.3 Gene transcription and NMDA-antagonists 

      

 The response to external stimuli can lead to permanent alterations on neuronal structure 

and function by novel protein synthesis. The genes are transcribed into RNA, which are then 

translated as proteins with peptide-structure. This process is initiated by activation of 

transcription factors, which bind DNA and enable the RNA synthesis to begin. Some of the 

transcription factors are constitutive, which are activated by phosphorylation. Some other 

transcription factors are expressed only when needed. They are products of genes transcribed 

after activation of inducible transcription factors (Herdegen and Leah, 1998). 

 The transcription factors are classified into several large groups based on the structure, 

and the groups are further divided into families based on which DNA consensus sequences the 

factors recognize (Herdegen and Leah, 1998). Many neuronal functions are regulated through 

cAMP or Ca2+ dependent signaling pathways. Neuronal stimulation mediates expression of 

genes containing Ca2+/cAMP response elements. Ca2+ and cAMP were found to induce 

transcription of genes containing cAMP response elements (CRE) in the promoter region. 

Transcriptional factors binding to CRE’s in the promoters belong to the basic leucine zipper 

superfamily and are composed of three genes in mammals, CREB, CREM, and activating 

transcription factor 1 (ATF-1). The most notable transcription factor binding CRE is CREB. 

The family of transcription factors binding CRE contains both activators as CREB, and 

repressors, such as ICER proteins (De Cesare and Sassone-Corsi, 2000). 

 The CREB-CRE transcription factor pathway is necessary for long-term memory 

encoding, and neuronal cell survival. The stimuli requiring learning and memory activate 

CRE-mediated gene expression (Impey et al., 1998; Platenik et al., 2000). 

 

2.3.1 CREB 

 

 CREB is a basic leucine zipper (bZIP) transcription factor. The bZIP’s class of 

transcription factors include gene families similar to AP-1 proteins, CREB, C/EBP, and some 

minor families. CREB belongs to the same family as the CREM, and ATF-1 transcription 

factors. These transcription factors have a DNA binding domain (basic domain), and 

dimerization domain (leucine zipper). When PKA or CaMK(IV) phosphorylates CREB-

proteins, they form dimers. The dimer can bind DNA specifically at CRE. This way  

Ca2+/cAMP can increase expression of certain genes, which alters the cell function in a long-

term way. 
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CREM, activator
 
CREM, repressor
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Figure 3.  The CREB and CREM family bZIP transcription factors. Near the carboxy end on the left 

there are Q-domains required for basal activity, the protein kinase inducible domain, and near the 

amino end there is proline-rich dimerization domain and DNA-binding domain. Legend: Q, Q-domain; 

P-box, phosphorylation site; BAS, basic domain; ZIP DNA-binding domain (Adapted from Servillo et 

al., 2002) 

 

The name for transcription factor CREB stands for cAMP response element binding 

protein, for it can bind to CRE sequences in DNA ( 5’TGACGTCA3’), (Gonzalez et al., 1989). 

CRE-mediated transcription begins after the increase of intracellular calcium concentration. A 

more correct name would be cAMP/Ca2+ response-element binding protein, as CRE has been 

found to be in several genes, in which transcription is activated by both cAMP or Ca2+ 

concentration increases in the cell. CREB is not the only protein that can bind CRE-element, 

but it is the most notable (Quinn, 2002), since other transcription factors can bind to CRE. 

Therefore CREB activity is not always the same as transcription of genes containing CREs. 

(Hu et al., 1999). CREB protein has three isoforms: CREBalfa, CREBbeta, and CREBdelta. 

CREBdelta is the prominent form consisting of 90% percent of all the forms (Herdegen and 

Leah, 1998). The CREB transcription factor is the connection point where the electrical 

stimulation induced second messenger signals in the cell can lead to transcription of the DNA 

(see figure 4). 

 

Glutamate stimulation can activate CREB 

 Glutamate can activate CREB by all types of glutamate receptors. NMDA-receptors are 

permeable to calcium ions. Calcium influx activates protein kinases, for example PKA, which 

phosphorylates CREB. AMPA-dependent phosphorylation of the nuclear transcription factor, 

CREB, requires L-type Ca2+ channels (Rajadhyaksha et al., 1999). In contrast, AMPA-

dependent CREB phosphorylation is also blocked by NMDA receptor antagonists 

(Rajadhyaksha et al., 1999). Metabotropic glutamate receptors regulate CREB activity via 

cAMP or IP3 second messenger systems in a type specific manner. 
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Regulation of CREB activity 

 CREB is constitutively expressed, although some upregulation is reported by chronic 

antidepressant treatment. Regulation of CREB activity is mainly dependent on the 

phosphorylation state. CREB can bind to DNA without being phosphorylated, but the activity 

is low. The phosphorylation alters the 3D-structure and allows additional factors to interact 

with CREB. 

 Basal activity requires Q-boxes near the carboxyl end of the protein. This carboxy-

terminal constitutive activation domain (CAD) recruits the promoter recognition factor TFIID, 

and RNA polymerases (Quinn, 2002). Next to that domain, there is kinase-inducible domain 

(KID) with phosphorylation sites for PKA, PKC, casein kinase, and CaMK IV (Quinn, 2002). 

Intracellular signalling cascades leading to CREB-activity include Ras/MAPK, Ca2+/CaMK, 

PI3K/Akt, and cAMP/PKA pathways (Dawson and Ginty, 2002; Deisseroth et al., 1998; Kim 

et al., 2000). CREB is dephosphorylated by serine/threonine phosphorylases (Koch et al., 

2003b). 
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CREB binding proteins, CBP and TORC 

 Phosphorylation at Ser-133 is critical for the induction of CREB activity, but this site 

does not fully explain the activation of CREB (Gonzalez et al., 1991). The other domain of 

CREB was found to specifically bind another nuclear protein and coactivator called CREB 

binding protein (CBP), which links CREB to the basal transcription factor machinery, 

including RNA polymerase II complexes (Chrivia et al., 1993; Kwok et al., 1994). CBP is 

recruited when CREB is phosphorylated. CBP does not bind to unphosphorylated CREB, 

although CBP does bind to unphosphorylated steroid-responsive element binding protein 

(Cardinaux et al., 2000). 

 These coactivators of CREB play the role of regulating transcription activated by calcium 

currents through NMDA and voltage-sensitive calcium channels. Activation of CaMKII, 

CaMKIV, PKA, but not Ras-MAP pathways can induce CBP mediated transcription. This 

induction is strength-dependent, and may be a regulatory switch for glutamate-induced CREB-

mediated transcription (Hu et al., 1999).The function of CBP with CREB makes it possible for 

cells to react differently to calcium and non-calcium signals, cAMP and non-cAMP mediated 

signals, stress, and mitogens. There is also a nuclear inhibitor that binds to CREB and inhibits 

CBP recruitment in response to stress or mitogenic stimuli (Mayr et al., 2001). 

 

 Phosphorylated CREB would have to interact with the RNA polymerase complex to 

have an effect on transcription, whether at the recruitment step or at later steps (e.g. 

isomerization, promoter clearance, or reinitiation) (Kim et al., 2000). As seen in figure 5, 

phosphorylated CREB activates transcription through interaction with CBP and recruitment of 

RNA polymerase II complexes. CREB binds CBP in a strictly phosphorylation-dependent 

manner. CBP binds TFIIB and enhances the activation through recruitment of essential 

components of the polymerase complex. CBP has interactions with numerous other 

transcription factors, including c-Fos, c-Jun, Jun-B, c-Myb, Sap-1a,p62, (TCF), Stat1a, Stat2, 

SREBP, Myo-D, pp90(rks), GATA-1, p53, NNcoA, and p160 (Janknecht and Hunter, 1996). 

 CREB is a constitutive transcription factor with some activity even when it is not 

phosphorylated. There are transducers of regulated CREB activity (TORC), which are 

coactivators that enhance CRE-dependent transcription via a phosphorylation-independent 

interaction with the bZIP DNA binding/dimerization domain of CREB. TORCs enhance the 

interaction of CREB with the TAF(II)130 component of TFIID (Conkright et al., 2003a). 

 

 

 33



 

 

 

 

 

 

 

 

 

 

PDNA 
doublestrand 

CREB 
dimer 

RNA 
polymerase 
complex 

Figure 5. CREB transcription factor. CREB binds CR

polymerase II complex through associated proteins (CBP and

shown. 

 

Interplay by dimerization 

 CREB can bind CREs either as a homo- or heterod

are much more expressed than ATF-1 (Mayr and Montm

The family has both activators like CREB and repressors 

for all of these is the phosphorylation site for PKA Arg

mostly to CRE (5’ TGACGTCA 3’). 

 The leucine-zipper transcription factors share simi

group of CREB and CREM are the C/EBP proteins (CA

and activation protein 1 (AP-1) proteins. AP-1 includes fo

code for inducible transcription factors, which are induc

not form dimers with most AP-1 proteins, in contrast to C

dimers with AP-1 (Herdegen and Leah, 1998). CREB

CREM/ICER proteins. ICER is an inducible repressor o

alternative promoter within the CREM gene. The heterod

factors can bind a variety of sites. 

 CRE-sequence is similar to TPA responsive elem

recognized by AP-1 family transcription factors. The 

CREM, and AP-1 proteins recognize both sequences in v

1998). An ICER form of CREM-factor can inhibit both sy

 34
TGACGTCA
E s

 oth

ime

iny,

like

-Ar

larit

AT

s, ju

ed 

RE

 ca

f C

im

en

het

aria

stem
TATA
CB
equence, and interacts with RNA 

ers). TATA and CRE-elements are 

r. In neurons, CREB and CREM 

 2001; Dawson and Ginty 2002). 

 some CREM isoforms. Common 

g-Pro-Ser-Tyr. This family binds 

ies. The closest relatives for the 

-box/enhancer binding proteins) 

n, and krox proteins. AP-1 genes 

after CREB-activity. CREB does 

M/ICER proteins, which do form 

n form dimers with ATF-1 and 

REB, and is transcribed from an 

ers of CREB-family transcription 

t (5’ TGAGTCAG 3’), which is 

erodimers consisting of CREB, 

ble degrees (Herdegen and Leah, 

s. 



2.3.1 Modulators of CREB, the CREM and ICER genes 

 

 The CREM gene is a close homolog to CREB. The products of the CREM gene are 

leucine zipper transcription factors or modulators, which can dimerize to a variety of other 

leucine zipper proteins (Foulkes et al., 1991). 

 Variable splicing produces the different CREM-proteins. The only activator, which 

activates gene transcription, is CREMtau. The other CREM isoforms (alfa, beta, and gamma) 

inhibit gene transcription.  The properties of CREM isoforms are determined by the 

combination of exons, which lead to different functional domains in different proteins. 

CREMtau is the only isoform with two glutamine-rich regions, Q1, and Q2. Phosphorylation 

of sites in these regions is needed for transcription activation (Herdegen and Leah, 1998). 

 CREM-proteins that are not phosphorylated can still form heterodimers with leucine 

zipper transcription factors of CREB/ATF-1 and AP-1 families. Most of these dimers are less 

active than homodimers. In theory, the most minimal of all CREM-repressors would be a 

single leucine zipper domain, which could dimerize with CREB and other transcription factors, 

and repress CRE-mediated transcription. 

 

Inducible cAMP early repressor, ICER  

 Expression of CREB/ATF-1 family transcription factors is steady and their activity is 

regulated by phosphorylation. Phosphorylation is then slowly removed by phosphorylases. To 

counterbalance the different activity states in neurons, new protein synthesis is required 

(Molina et al., 1993). 

 The small inducible cAMP early repressor ICER is a product of the CREM gene 

beginning from an alternative promoter in an otherwise intronic area. In the promoter of ICER, 

there are four CRE-sequences, which leads ICER to be transcribed efficently together with 

other CRE-containing genes (Della Fazia et al., 1997). It has been suggested that ICER 

functions as a Ca2+ -activated repressor of CREB/CRE-mediated transcription, because the 

properties of CREs can differ. CREs of individual genes can be regulated separately by Ca2+ 

and cAMP (Krueger et al., 1999). ICER expression peaks 2 hours after activation of CREB, 

and the production ends 4-6 hours after its beginning (Molina et al., 1993). 
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The structure of ICER is simple. It has only 120 amino acids and little more than the 

leucine zipper domain is left from CREM-structure. The four isoforms of ICER have only 

minor differences. ICER can bind CRE-elements either as homodimer, or as dimerized with 

some other leucine zipper transcription factor. As ICER cannot activate transcription 

machinery, ICER expression represses CRE-mediated gene transcription. This way ICER 

inhibits the activity of it’s own CRE-containing promoter and forms a negative autoregulatory 

loop for balancing CRE-transcription (Foulkes et al., 1996). ICER dimerizes also with AP-1 

family transcription factors, which are induced by CRE-transcription. This way ICER 

expression represses also the production of AP-1 transcripts. 

 

2.3.3   Targets of CRE mediated transcription 

 

 The genes containing CRE and transcribed after CREB activation include enzymes 

needed in neurotransmitter synthesis, such as tyrosine hydroxylase, receptors like neuron-

derived orphan receptor-1 (NOR-1), and somatostatin. The products of these genes have 

neuromodulatory activity and hormone-like effects, cell cycle regulators and antiapoptosis 

genes, such as B-cell leukaemia/lymphoma 2 protein (Bcl-2), and cyclin A, and neurotrophic 

factors and their receptors, as brain-derived neurotrophic factor, and its receptor trk-B 

(tyrosine kinase B). Perhaps the most dramatic effect of CREB-transcription is the induction of 

transcription factors, such as c-fos, or YY-1. The inducible transcription factors mediate 

further the long-term effects (Conkright et al., 2003b; Desdouets et al., 1995; Montminy, 

1997). 
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2.3.4  CRE mediated transcription in neuronal processes 

 

 In the nervous system, the signalling pathways controlled by neurotransmitters, 

neuropeptides and other modulators, growth factors, and hormones can alter gene expression 

by activating protein kinases that activate CREB-mediated transcription (Kim et al., 2000). 

 Synaptic activity leading to cAMP/Ca2+ signalling and phosphorylation of CREB by 

CaMKIV and other protein kinases can alter the expression of CRE-containing genes. The 

products of these genes participate in synaptic transmission (Lim et al., 2000). These genes 

include receptors and enzymes producing or degrading neurotransmitters. A more sustained 

and widespread effect is caused by soluble peptides such as neurotrophins, which carry 

proliferation messages to neurons. CREB is therefore important in synaptic plasticity. 

Ras/ERK/RSK pathways also drive these effects. 

 

2.3.5   CREB in diseases and medication 

 

 The symptoms of depression include low mood, anhedonia, pessimism, and some 

physiological changes. Depression has also a negative effect on neuronal survival in brains 

(Garcia, 2002). CREB might play a role in these alterations. There is evidence that 

antidepressants stimulate components of the cAMP pathway in patients with depression while 

mood stabilisers blunt the same pathway in patients with bipolar disorder. All this suggests the 

involvement of CREB, and there is some evidence of alterations of cAMP signalling pathways 

in post-mortem brains (Stewart et al., 2001). It is still difficult to determine which alterations 

are primary and which secondary. An interesting finding is the involvement of the brain nerve 

growth factor (BDNF) in antidepressant drug action (Nibuya et al., 1996). BDNF is a well 

known target for CRE-mediated transcription, and it is secreted out of activated neurons, 

strengthening signals to other neurons nearby (Sulser, 2002). 

 There are many parallels between the molecular changes underlying addiction and those 

related to other forms of brain plasticity such as learning and memory. From a behavioral 

perspective, certain features of addiction, such as the ability of drug-associated cues to induce 

relapse, have been described as forms of memory. Also, activation of the cAMP pathway and 

of CREB-mediated transcription has been observed in forms of synaptic plasticity believed to 

constitute cellular correlates of memory (Nestler, 2001). The role of CREB in drug addiction is 

discussed in chapter 2.4.5. 
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2.3.6 CREM/ICER in development and diseases 

 

As an inducible transcription repressor, ICER is important for many hormonal 

oscillations controlling metabolism. CREM plays a key physiological and developmental role 

within the hypothalamic-pituitary-gonad axis, and in other areas with requirement for transient 

transcription activation (Foulkes et al., 1996). 

 

Circadian rhythm 

ICER is expressed rhythmically in the suprachiasmatic nucleus. The rhythm is 

controlled by the light cycle, and driven by melatonin. ICER is cAMP inducible and undergoes 

a characteristic day-night oscillation in expression with a peak towards the end of the night. 

CREB is phosphorylated constitutively with a transient fall occurring at the beginning of the 

night. These transcription factors modulate the oscillatory levels of melatonin. The amplitude 

of oscillations of serotonin N-acetyl transferase, the rate-limiting enzyme of melatonin 

synthesis, is then reequilibrated by CREB and oscillations of ICER. Thus, a transcription 

factor modulates the oscillatory levels of a melatonin hormone (De Cesare and Sassone-Corsi, 

2000; Foulkes et al., 1996). 

 

Spermatogenesis 

 Spermatogenesis is under the control of hormonal signals, which are converted to 

protein expression by transcription factor activity. Spermatogenesis stops at the first step of 

spermatogenesis in the CREB or CREM knock-out mutants and there is a significant increase 

in apoptotic germ cells. In addition to CREB, CREM is highly expressed in testis and 

important for the control of spermatogenesis (De Cesare and Sassone-Corsi, 2000; Nantel and 

Sassone-Corsi, 1996).  

 

Gastrointestinal system 

 The secretions of parachrinic and enzyme products in gastrointestinal system are also 

regulated in a rhythmical manner. Gastrin is a peptide hormone, which controls gastric acid 

secretion. CREB plays an important role in control of gastrin mediated signalling (Thommesen 

et al., 2000). Gastrin has CRE-element in its promoter, and gastrin activates CREB-

transcription in its target cells, as the receptors activate PKC, MAPK, and other signaling 

systems. Gastrin can also activate CRE by Ca2+-activated pathways. 
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Gastrin-induced expression of ICER is not inhibited by PKA and PKC, or calmodulin 

inhibitors, although CRE-mediated transcription is affected (Thommesen et al., 2001). It has 

been suggested that ICER promoter is activated by different mechanism that activates the 

minimal CRE promoter. A set of transcription factors that can bind ICER promoter does not 

belong to CREB/CREM/AFT-1 family (Thommesen et al., 2001). 

 

CREM/ICER in cancer 

ICER is an important mediator of cAMP antiproliferative activity that acts as a putative 

tumor suppressor gene product. The second messenger cAMP inhibits the proliferation of most 

cell types. The nuclear response of cAMP is mediated by CREB and CREM/ICER. ICER is a 

transcriptional repressor that negatively regulates cAMP-mediated gene expression. 

CREM/ICER is important for male reproduction and proliferative signaling. ICER specifically 

affects the tumorigenicity of the prostate cancer cell without affecting their growth. In 

leukemia cells ICER has anti-apoptotic effects diminishing the effect of prostaglandins that 

cause apoptosis (Krueger et al., 1999).  

ICER-IIgamma is induced by cAMP. ICER-IIgamma blocks cells at the G2/M 

boundary of the cell cycle. (De Cesare and Sassone-Corsi, 2000). ICER-IIgamma inhibits the 

growth and DNA synthesis of mouse pituitary tumour cells and human choriocarcinoma cells. 

This alteration in cell growth is coupled with a reduced ability of these cells to grow in an 

anchorage-independent manner and to form tumours in mice. ICER-IIgamma is a tumour 

suppresser gene product mediating the antiproliferative activity of cAMP. Therefore, the 

manipulation of ICER expression could be used for the treatment of androgen-insensitive 

prostate tumours without causing undesirable toxicity to the cells (Memin et al., 2002).   
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2.4  Addiction 

 

The defining feature of drug addiction is compulsive, out-of-control drug use, despite  

negative consequences. Addiction is a chronic brain disease, not a synonym to tolerance or 

dependence. Physical dependence is neither necessary nor sufficient to cause addiction, 

although these two phenomena often coexist. Drug taking leaves a permanent mark on the 

brain. These changes make the brain more sensitive to drugs and cause a person to crave drugs. 

In addiction, drugs lead to wanting, not necessary liking of the drug. There is medication to 

antagonize the effects of the drugs of abuse, and to relieve the physical withdrawal symptoms, 

but there is no efficient medication to cure the drug addiction and drug craving (Kreek et al., 

2002). The loss of control that addicts show with respect to drug seeking and taking may relate 

to the ability of drugs of abuse to commandeer these natural-reward circuits and disrupt a 

person's motivation and drive for normal reinforcers (Franken, 2003; Koob and Le Moal, 

2001; Self, 1998). 

 

2.4.1  Neuropsychology of addiction 

 

Drugs of abuse are both rewarding and reinforcing, although there are some exceptions, 

like nicotine, which is only reinforcing, not rewarding. Rewards are stimuli that the brain 

interprets as intrinsically positive, and reinforcing stimuli are those that increase the 

probability that behaviors paired with them will be repeated (Koob, 1992).  

Total abstinence is difficult to achieve, and this is largely because of episodic craving, 

that may persist for years. This leads to high rates of relapse (Cami and Farre, 2003). A drug 

user loses the voluntary ability to control the drug use. 

Recent theories of addiction describe a concept of incentive motivational processes, In 

most current conceptualisations of drug dependence, subjective craving is regarded as a central 

phenomenon, leading to relapse and continuation of drug use (Everitt et al., 1999; Robinson 

and Berridge, 2000). Drugs with high potential for addiction, such as cocaine or amphetamine, 

change the neurochemistry even after a single dose, although permanent changes require 

repeated administration (Nestler et al., 2001). Because of these alterations, addiction has begun 

to be seen as a neuropsychiatric disorder (Robbins and Everitt, 1999). 
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2.4.2    Molecular mechanisms of addiction 

 

In neurochemical terms, there are four stages of development of an addiction (Nestler, 

2000); (Hyman, 1996a; Hyman, 1996b): 

1) When the drug is administrated, an acute drug state where the reward processes of the 

brain are active. The dopamine release in the mesolimbic regions of brain increases.  

2) If drug use is continued, a chronic drug state develops, where the changes in the 

neurochemical systems show as tolerance, desensitisation, and addiction. Adaptations in 

mesoaccumbens brain reward circuitry itself alter emotional and motivational aspects.  

3) As the drug concentration decreases in the body after continuous use, there is a short term 

withdraw state, and withdrawal symptoms occur. In the brain, glutamatergic and noradrenergic 

transmission increases, as the balance of homeostasis has shifted. 

Long-term withdrawal. There has not been drug in the body for long times, but the craving for 

the drug remains. The systems for memory and learning in the brain are probably important for 

this. This stage can remain for the rest of the life. 

 

6.4.1 The initial targets of the drugs of addiction 

 

All drugs of abuse induce release of dopamine in the mesolimbic dopamine reward 

system, especially in nucleus accumbens (NAc) (Wise, 1998). Even though not all drugs of 

addiction are dopamine agonists, they have secondary effects involving dopamine in 

mesolimbic pathways (Robbins and Everitt, 1999). The drugs with high addiction potential 

include opiates and psychostimulants. The use of sedatives (benzodiazepines), NMDA-

antagonists (PCP, ketamine), cannabinoids and alcohol can also lead to addiction. Cocaine is a 

psychostimulant, which acts through potentiating monoaminergic transmission. Cocaine 

inhibits the functioning of dopamine reuptake transporters, thereby increasing the duration of 

action of dopamine that is released in the nucleus accumbens (Hyman 1996). Serotonin and 

noradrenalin transporters are also affected. Amphetamine prevents reuptake of dopamine as 

cocaine does, but amphetamine also increases dopamine release without changing firing rate, 

and causes reverse transportation of dopamine by dopamine transporters (Giros  1996). Sites of 

action for the drugs of addiction are presented in figure 6. 
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Figure 7. The role of glutamate in neuronal circuits in brain and in neuronal circuits associated with addiction.  

Nucleus accumbens receives dopaminergic input from ventral tegmental area, and glutamatergic input from 

cortical regions (Adapted from Hummel et al. 2002). 

 

 

Integration of psychology, behavior, and molecules 

 

In order to be able to develop medication for drug addiction, the psychological 

mechanism must not be by-passed, as they contain the key to the problem – why are drug 

related stimuli able to elicit classically conditioned physiological (dependence) and subjective 

(craving) responses in persons with drug addiction? These psychological mechanisms include 

acute subjective reward, memory formation, and attention processes (Franken, 2003). The 

long-lasting effects require memory mechanisms, and activation of gene transcription and 

protein synthesis. Memory consolidation by synaptic plasticity in addition is also moderately 

well understood, although some mysteries remain, and one of these is the ultimate role delta-

fosB plays in addiction (Nestler et al., 2001). Another mystery is the role of CREB in learning 

and unlearning of addiction, and whether can it be affected by medication? 

Second messenger pathways play a critical role in learning (Sheng and Kim, 2002), and 

cAMP cascade leading to the activation of PKA is involved, for example in late long term 

potentiation in the rat hippocampus (Kandel, 2001) and working memory in the frontal cortex 

(Taylor et al., 1999). It is also needed in cocaine self-administration in rats (Self, 1998). 
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The increase in nucleus accumbens dopamine response to acute amphetamine is 

independent from calcium, but the sensitisation-related enhancement of this response appears 

to be calcium dependent (Warburton et al., 1996). 

Chronic exposure to several drugs of abuse upregulates cAMP formation and PKA 

activity specifically in NAc (Shaw-Lutchman et al., 2003; Widnell et al., 1996). Does drug-

induced upregulation of PKA activity in the NAc contribute to motivational disturbances in 

drug addiction, or is it also a part of a negative feedback mechanism that might even protect 

from those changes? 

Infusion of PKA inhibitor into NAc induces a relapse in cocaine-seeking behavior 

(Self, 1998). Similar effects have been reported after systemic injections of D2-like dopamine 

agonists (Self, 1998). Also, PKA activator induces an impaired ability to discriminate the 

drug-effects. This is suggested by Self et al. (1998) to be more presynaptic, than post-synaptic. 

Based on these observations, it that has been suggested that sustained upregulation of PKA 

activity in chronic drug-abuse could explain the tolerance to cocaine reinforcement, and acute 

inhibition of this system could contribute to drug craving and relapse (Self, 1998). 

 

2.4.5    CREB and addiction  

 

The use of addictive drugs leads to long-term alterations in brain neurochemistry 

(Nestler, 1993; Nestler, 2001). These alterations in reward, motivation, mood, and arousal 

systems change beyond the ability of the system to return to its original set point  (Koob and 

Le Moal, 1997; Koob and Le Moal, 2001).  To produce these adaptations in the brain, the gene 

expression and protein synthesis must be altered some way in addiction, as these alterations are 

stable or permanent. Changes through novel protein synthesis reguire gene transcription, a 

process that is regulated by the transcription factors. One of the transcription factors associated 

with the mechanisms of addiction is CREB  (cAMP response element binding protein), which 

is important in synaptic plasticity. CREB activity in the nucleus accumbens shell controls 

gating of behavioural responses to emotional stimuli (Barrot et al., 2002).   

Increased transcription of the CREB gene accompanies the upregulation of the cAMP 

pathway known to occur in certain brain regions after repeated drug intake. Upregulation of 

the cAMP pathway and CREB might mediate a homeostatic adaptation that diminishes further 

drug responsiveness. However, as the increased levels of CREB have a relatively short life, 

additional mechanisms are thought to underlie the longer-lasting manifestations of addiction.  
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The genes regulated by CREB include transcription factors such as immediate early genes, and 

delta fosB, which then cause more changes in gene expression (Nestler et al., 2001). 

It is suggested that CREB is needed in NAc for gating and controlling the effects of 

emotional stimuli. For acute control of information, CREB is too slow in response, but it could 

act as modulation for the overall response level. If drug addiction is thought of as a process of 

homeostasis, then CREB could be the key to how the static state is achieved at the neuronal 

level (Shaw-Lutchman et al., 2003). Over action of CREB in NAc leads to the diminishing of 

the rewarding effects of sugar and morphine. This has been proved by transgenic experiments. 

Underexpression of CREB in NAc increases the rewarding effects of sugar and morphine, and 

natural rewards. Also the response for aversive stimuli was diminished in a CREB knock-

down experiment (Barrot et al., 2002). 

The NAc is a critical neural substrate for the rewarding properties of opiates and most 

other drugs of abuse (Koob, 1999). Chronic morphine or cocaine treatment upregulates the 

cAMP pathway in this brain region (Terwilliger et al., 1991; Unterwald et al., 1993). Chronic 

exposure to amphetamine increases the state of phosphorylation of CREB in striatal regions 

(Cole et al., 1995; Turgeon et al., 1997). Using viral vectors to overexpress CREB, increased 

CREB activity in the NAc reduces the rewarding properties of morphine and of cocaine 

(Carlezon et al., 1998; Barrot et al., 2000). Increased CREB function in this region also 

produces a negative emotional state as inferred from an animal model of depression (Pliakas et 

al., 2001). Together, these data support the scheme that observed induction of CRE-mediated 

transcription in the NAc may mediate tolerance to the rewarding effects of morphine and 

contribute to aversive aspects of the withdrawal syndrome (Nestler, 2001).  It is hard to know 

if the expression level of CREB stands for reduced activity, as it could be a compensatory 

alteration for prolonged activity. 

Chronic cocaine administration decreases the basal activity of adenylyl cyclase in some 

parts of striatum outside nucleus accumbens. Chronic cocaine administration eventually 

increases the CREB activation in nucleus accumbens. This is seen as accumulation of fos-

related proteins with long half-life.  

Chronic treatment of enkephalin acting on mu and delta opioid receptors do decrease 

the basal activity of adenylyl cyclase in both of the regions, but cocaine attenuates the decrease 

created by a delta-agonist, but not the one created by a mu-agonist (Unterwald et al., 1993). 

Opiates acutely inhibit CREB by inhibition of adenylyl cyclase, but in chronic treatment, 

cAMP-mediated signalling is returned to basal level, because its regulators are upregulated 

(adenylyl cyclases I, and VIII, also PKA) and the phosphorylation state of CREB gradually 
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recovers toward normal levels during the course of chronic opiate administration. If opiate 

treatment is removed, the over activity of CREB system can be seen. This upregulation of 

molecules is seen in NAc, locus coeruleus and other limbic areas (Shaw-Lutchman et al., 

2003). In withdrawal, CREB activity is increased in NAc but in VTA the CREB activity is 

decreased. 

It appears that acute exposure to morphine reduces levels of CREB, but chronic 

exposure activates CREB in the nucleus accumbens, possibly through cAMP (Self et al., 1998; 

Self and Nestler, 1998; Widnell et al., 1996).  The levels of FosB, another transcriptional 

regulator, are also increased after administration of drugs of abuse. As the half-life of this 

molecule is very long, it provides a molecular mechanism of addiction based in the stability of 

the protein by which drug-induced changes in gene expression can persist long after drug 

intake stops.  

   

 2.4.6  Antiaddictive drugs.  

 

The main goal for treating of substance addiction is to prevent the uncontrolled use of 

drug and prevent subsequent relapses. The strategies for treating drug addiction includes the 

following five main time points, and several targets (Kreek et al., 2002). 

 

1. Prevent the psychological and molecular mechanism 

2. Substitute the drug of addiction with a less harmful drug 

3. Ease physiological withdrawal symptoms 

4. Balance the function of the reward system 

5. Reverse the long term alterations in brain 

These make it possible for the individual to unlearn (in a wider sense) out of addiction. 

 

The first time point for treatment is the active drug state. The subjective effects of the 

drug of abuse could be prevented by drug-antagonists, or immunopharmaceutical means, such 

as cocaine or nicotine vaccinations.  In the early stage of drug addiction where the drug user 

has been using the substance only for a short period of time, these might be a useful way of 

intervention, if only it happens before robust changes in the brain. Direct antagonising of the 

drug effect on the other hand might be dangerous, if there is strong physical dependence. A 

partial detoxification can be performed for opiates by partial-agonists such buprenorphine, 
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which blocks the effect of opiates by competing for mu receptors. Antagonising the effect of 

one group of substances does not prevent the use of any other drugs of abuse. 

The second point to cure addiction is to relieve the withdrawal symptoms that keep up 

the drug abuse. This is the base of the opiate substitution by slowly decreasing the 

maintenance dose of methadone or buphrenorphine. For psychostimulant users, sedatives and 

antipsychotics are used to relieve the symptoms. 

The third point is relapse prevention, in which the drug craving is the main target. It is 

typical for all addictions that relapses occur even after long stages of abstinence. 

 

2.4.7    NMDA-channels, transcription, and addiction 

 

 NMDA antagonists are suggested to have significant potential in the treatments of drug 

dependence and addiction, including withdrawal effects, normalization of the neurochemical 

alterations, and attenuation of conditioned responses of drug related stimuli, diminishing the 

drug use (Bisaga and Popik, 2000). 

 

The hypothesis for NMDA antagonists as potential anti-addictive drugs arise from several 

findings (Glick and Maisonneuve, 2000; Popik et al., 1995): 

 Ibogaine, an alkaloid of an African plant, which has a reputation of being antiaddictive  

 Acamprosate, a low affinity NMDA-antagonist that binds to the spermidine site of NMDA-

receptor, in use to treat alcoholism. 

 MK-801 and other uncompetitive NMDA-receptor blockers, evidence of diminished 

cocaine self-administration in rats. 

 Lower affinity NMDA-blockers reduce drug self-administration in rats also. 

 In clinical trials, low-affinity NMDA-blockers have not shown efficiency for diminishing 

drug craving, but they reduce the euphoria. 

 Treatment of withdrawal symptoms with NMDA-antagonists. 

• Morphine withdrawal can be treated as a state of glutamate hyperactivity 

 Treatment of drug craving with NMDA antagonists 

• Independent from withdrawal symptoms 

The capacity of NMDA antagonists to reverse the effects of drugs of addiction is most well 

documented in opioid withdrawal, as memantine and ibogaine are reported to significantly 

ease the withdrawal symptoms (Leal et al., 2003; Maisonneuve and Glick, 2003; Popik et al., 

1995). Even during gradual detoxification from opioids, there are dramatic symptoms. The 
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other way to ease the symptoms is to perform very fast detoxification with opioid antagonists 

in narcosis, which would then normalize the opioid system. Theoretically, use of NMDA-

antagonists in anesthesia may be found to be useful. 

 

NMDA antagonists and drug craving 

 The phenomenon often described as a reason for relapse after abstinence is craving for 

the drug. NMDA-antagonists seem to inhibit also the craving for the drug, which is 

demonstrated both in animal studies, and with human subjects. Ibogaine, a plant alkaloid with 

NMDA-antagonistic properties was shown to reduce mice morphine consumption (Popik and 

Skolnick, 1996). A specific NMDA-antagonist has been shown to reduce morphine use and 

this might be because of the glutamatergic blockade in ventral tegmental area  (Xi and Stein, 

2002). The strongest proof comes from treatment of alcoholism where there are very 

promising recent results on the use of acamprosate as additional medication.  

Uncompetitive NMDA-antagonists interact in the reward and reinforcement systems 

with the dopaminergic transmission, as described in chapter 2.4.4.  Although addictive 

psyhostimulants amphetamine and cocaine increase dopaminergic transmission, glutamate is 

involved in the induction and expression of the behavioural changes. Activating NMDA 

receptors in dopamine midbrain cell bodies is required for stimulant sensitisation. 

 Co-administration of dextromethorphan with morphine attenuates the morphine 

rewarding effect and related dopamine releases at the nucleus accumbens (Huang et al., 2003). 

In addition to dopaminergic transmission, NMDA-antagonists affect also noradrenergic and 

serotonergic transmission in several brain areas. Release of noradrenaline in locus coeruleus, 

serotonin in dorsal raphe nucleus, and also dopamine in nucleus accumbens increase (Callado 

et al., 2000). In the nucleus accumbens shell, but not in the core, NMDA-block increases 

dopamine release (Marcus et al., 2001). If serotonergic transmission is blocked, NMDA-

antagonists seem to lose their effect on dopaminergic transmission. (Dall'Olio et al., 1999; 

Dall'Olio et al., 2000).  
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3.  AIMS OF THE STUDY  

 

Although neurotransmitter receptor binding by NMDA-antagonist drugs is well documented, 

the proposed clinical efficacy of NMDA-antagonist drug treatment is less well understood. The 

aim of the present studies was to examine the molecular biological mechanisms of the effects 

of NMDA-antagonists and CREB. This study was undertaken to: 

 

1) Study the effect of uncompetitive NMDA receptor antagonists on the expression of the 

members of CREB family transcription and closely related leucine zipper transcription factors 

in rat brain. 

2) Examine whether glutamate receptors and signal transduction proteins are affected by 

CREB or independent of it after NMDA-antagonist treatment. 

3) Study how the alterations in gene expression by NMDA-antagonists correlate with the 

altered gene expression after cocaine treatment. 

4) Identify the genes with an altered expression in response to acute MK-801 and cocaine 

treatments. 
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4. EXPERIMENTAL PROCEDURES 

 

Experiments were carried out with the rats in vivo. All animal studies were performed 

in accordance with the guidelines of the Society for Neuroscience and were accepted by the 

Experimental Animal Ethics Committee of the University of Kuopio. 

 

4.1 Experimental animals 

 

Male Wistar rats (weight 180-260 g, National Laboratory Animal Centre, University of 

Kuopio and Harlan, Netherlands) were housed 3-6 per cage and kept under standardised 

temperature (22±1), and humidity. A circadian light cycle (12 hours light/12 hours dark) was 

maintained in the housing facilities with free access to food and water. 

All drugs were administered with intraperitoneal (i.p.) injections. After drug 

treatments, the animals were anaesthetised with CO2 and sacrificed by decapitation. The brains 

used for in situ hybridisations were frozen intact and stored at -70 C. The brains used for 

immmunoblotting, or RNA isolation, were dissected and brain area samples were stored at -70 

C. The samples for DNA-microarrays in publication IV were treated with RNAlater (Ambion, 

UK) overnight. 

 

4.2 Pharmacologic agents and treatments 

 

In publication I, rats were given a single injection of saline, (+)-MK-801 (dizocilpine 

maleate; Research Biochemicals Inc., Natick, MA, USA) in doses ranging from 0.1 mg/kg to 

10 mg/kg. The animals were sacrificed 1 hour, 4 hours, 8 hours, 1 day, 2 days, 3 days, or 6 

days later. The moderate affinity NMDA-ion channel blockers, memantine (Akatinol-

Memantine; gift from Dr.G.Quack, Merz + Co., Frankfurt/Main, Germany) and ketamine 

(Ketalar; Parke-Davis Scandinavia, Solna, Sweden) were given as a single injection, and the 

animals were sacrificed 6 hours later. The atypical antipsychotic drug clozapine (Leponex; 

Wander pharma GmpH, Nürnberg, Germany) was given as a single injection once a day for 17 

days. Tricyclic antidepressant desipramine (Sigma Chemical Co.), typical antipsychotic 

haloperidol (Serenase; Orion, Espoo, Finland), kainate-type glutamate receptor agonist kainic 

acid and high-affinity uncompetitive NMDA-antagonists phencyclidine (Sigma chemical co., 

St. Louis, MO, USA), CPP [(+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid)]; 
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Research Biochemicals International) were given as a single injection and the animals were 

sacrificed 4 hours later. 

In publication II, rats were given MK-801 (dizocipline maleate; Research 

Biochemicals Inc., Natick, MA, USA) (1mg/kg) dissolved in water and sacrificed 4 hours after 

the treatment. 

In publication III, rats were given a high dose of MK-801 (dizocipline maleate; 

Research Biochemicals Inc., Natick, MA, USA) (5mg/kg; 4h) dissolved in water. 

In publication IV, rats were given MK-801 (dizocipline maleate; Research 

Biochemicals Inc., Natick, MA, USA) (1mg/kg), cocaine (20mg/kg), dissolved in water. The 

drugs were given alone or in combined treatment, in which MK-801 injection was given 15 

minutes prior to cocaine, the animals were sacrificed 4 hours after the last injection. 

MK-801 induced stereotypical behaviour in rats dose dependently. Cocaine (20mg/kg) 

induced modest hyperactivity. The pre-treatment with MK-801 (1mg/kg) before cocaine  

(20mg/kg) induced stereotypical behaviour with high motoric activity. 

 

4.3  In situ hybridisation experiments 

 

Radioactive in situ hybridisation with antisense oligonucleotide probe on coronal brain 

sections was used to determine mRNA levels of CREB, CREM, and ICER (publications I and 

IV), and candidate (publications II and IV), and glutamate receptor subunits (publication III).  

Gene-specific anti-sense oligonucleotide probes (35-mer) were designed after sequence 

homology comparison to public databases to minimize non-specific hybridisation (table 4).  

After the drug treatments, the rats were narcotized with CO2 and decapitated. Brains 

were rapidly removed, frozen in dry ice, and stored at -70°C. Horizontal or coronal brain 

sections (14 µm) were cut on a Leica CM 3000 cryostat and thaw-mounted onto 

SuperFrost/Plus (Menzel-Gläser, Braunschweig, Germany) slides. Sections from saline 

(control) and treated rats were comounted onto the same slide. In situ hybridisation with 

oligonucleotide probes were performed as described by Wisden and Morris (1994). 

Oligonucleotide probes were 3' end-labeled to a specific activity of 1-3 × 107 cpm/pmol using 

terminal deoxynucleotidyl transferase (MBI Fermentas, Vilnius, Lithuania) and a 20:1 M ratio 

of [alpha-33P]dATP (2000 Ci/mmol, New England Nuclear) to probe. Hybridisation was 

performed on 4% paraformaldehyde postfixed sections with 1-3 × 106 cpm/ml labeled probe in 

buffer containing 50% formamide, 4× standard saline citrate (SSC) (1× SSC: 150 mM NaCl, 

15 mM sodium citrate), 10% dextran sulfate, and 10 mM dithiothreitol (DTT). After overnight 
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hybridisation at 42°C, sections were dipped into 1× SSC at room temperature, washed for 

30 min at 55°C in 1× SSC, washed sequentially for 3 min each at room temperature in 1× SSC, 

0.1× SSC, 70% ethanol, and 94% ethanol. After a 1- to 5-week exposure, Hyperfilm-max films 

(Amersham, Buckinghamshire, England) were developed in D-19 (Kodak, France).  

 

Table 4. Oligonucleotide sequences of probes for in situ hybridisation experiments. 
 
Gene GenBank # Sequence (5’ - 3’) 
CREM/ICER U04835 CAGACTCCCTGGTGAGGCAGCCATCACCACACCTT 
ICER S66024 CAGTTTCATCTCCAGTTACAGCCATGTTGGGCT 
CREB X14788 TGGCTGGGCCGCCTGGATGACCCCATGGACCTGGA 
RTN-1  AATAAGTTGTCCTTGATGAGCTTCCCCTCCACAGG 
Erp29 AY004254 TAGTCTGAGATCCCCACCTCTGCCACCAAGAGATC 
ABC2/ABCA2 
transporter 

 TCTTGATGAGGTCCAGAATGAGGTTCCACAGGAAG 

GluR1 M36418 AGTTTGAAGAGGGACGAGACCAGACAACCAGTGAC 
GluR2 M36419 AATTTGAAGATGGAAGAGAAACACAAAGTAGTGAA 
GluR3 M36420 ACAACAATGAAGAAC CTCGTGACCC ACAAAGCCCT 
GluR4 M36421 AGTAGGTTTAGCCCATATGAGTGGCACACAGAAGA 
mGluR1 M61099 GTACACAGAAGCTAATCGCTATGACTATGTCCACG 
mGluR2 M92075 ATCAGCCGGACCTCTTCCTGCCTCTCGCTGTAGCG 
mGluR3 M92076 AACTTGCAGCAGACAGGTGGGAAGTATTCTTACTT 
mGluR4 M90518 GTACCAACTGCGCAATGGCTCGGCCGAGTACAAGG 
mGluR5 D10891 GACAATGGGGAATTAAAAATGGATGATGACGAAGT 
mGluR6 D13963 GCAGA GGCCCTTAGACTGGATATGGAAGTTCTACG 
mGluR7 D16817 TCTCATTGGGCAGTGGACAGATGAACTTCAGCTCA 
mGluR8 U63288 CTGGACAAATCAACTTCATCTAAAGGTGGAAGATA 
GPC19  GTTTGGTGGGTTTGAGTTGATGGGCCAGGCGAGCT 
SNTA  GAACAGAAAGGCTCCTCTTCCTCCTCTTGCCACTG 
IP-bg  GAAGCGCCGGACACAGTATGTGTTCCCATTTCATG 
RAMP  ATGGTGGTGATGAAGTATACCAGAGACCTGGCGCT 
VAMP2  ATTGGGGAGGAAAGTTTTCAGTCCAACCTCTAGCA 
RGS2  ACACTGGTTCTACAGCACGGCACAGCATTCACTCT 
GRIP2  GTCGCCCGGCTCGAGGGTGCCAGTCCTGTGCGCCA 
CBP  AGCTCTGACAGTTGTTTATGTTTGGACGCAGCATC 
c-fos X06769 GCAGCGGGAGGATGACGCCTCGTAGTCCGCGTTGAAACCCGAGAA 
Sst (87)  CGCCCAAAGCCAGGACGATGCAGAGCGCGGCCAGC 
Sst (353)  GAAGAAGTTCTTGCAGCCAGCTTTGCGTTCCCGGG 

 

  In situ autoradiograms were quantified with video-based MCID™ image 

analysis software (Imaging Research Inc., St. Catherines, Canada). The appropriate brain areas 

were determined according to rat brain atlas (Paxinos, 1986). 
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4.4    Immunoblotting 

 

In publication I, immunoblotting was performed in order to compare protein 

expression by MK-801 and saline treatments. Brains were removed and rapidly dissected and 

immediately homogenized by sonication for 5 s in 1% SDS and 1 mM sodium orthovanadate 

(SDS lysis buffer) and then heated for 5 min in a boiling water bath. After measuring protein 

concentrations (Dc Protein Assay; Bio-Rad, Richmond, CA), samples consisting of equal 

amounts of protein (20 µg) were diluted into 2× Laemmli's buffer and subjected to 15% SDS-

polyacrylamide gel electrophoresis. Proteins were transferred to nitrocellulose membranes 

(Protran; Schleicher & Schuell, Keene, NH) and blocked in PBS (pH 7.5) with 3% nonfat dried 

milk (blocking buffer), and immunoblotting was carried out with anti-CREM antibodies (X-

12:sc-440, rabbit polyclonal IgG; Santa Cruz Biotechnology, Santa Cruz, CA) at 1:200 

dilutions at 4°C overnight. Filters were rinsed in water twice and in PBS containing 0.05% 

Tween 20 twice. Bound immunoglobulins were detected with anti-rabbit horseradish 

peroxidase-conjugated secondary antibody (Amersham) at 1:1000 dilution for 1 h at room 

temperature, rinsed, and followed by chemiluminescence detection using Luminol (Sigma 

Chemical Co.) as the substrate. Films were exposed for 1 to 5 min. 

 

4.5  Electromobility shift assay 

 

 DNA-binding activity of proteins recognizing CRE-sequence was studied in 

publication I. The tissues from parietal cortex were homogenized in hypotonic buffer (10 mM 

HEPES, pH 7.9, 1.5 mM NaCl, 10 mM KCl, 0.2 mM phenylmethylsulfonyl fluoride, 1 mM 

DTT) and homogenized manually for 12 strokes. Sample tubes were left on ice for 15 min, 

spun, and washed once in hypotonic buffer. Pellets were resuspended in an equal volume of 

low-salt buffer (20 mM HEPES, pH 7.9, 25% glycerol, 1.5 mM MgCl2, 1.2 mM KCl, 0.2 mM 

EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 1 mM DTT), and then high-salt buffer (same 

as low-salt buffer except 1.2 M KCl) was added to obtain a final KCl concentration of 

0.4 M. Samples were incubated on ice for 30 min and centrifuged at top speed (25,000g) for 

30 min at 4°C. The supernatant was drawn off, and the nuclear protein concentration was then 

measured. Consensus doubled-stranded CRE oligonucleotide was labeled in a reaction 

consisting of 3.5 fmol of oligonucleotide, 1× kinase buffer, 3 µl of [-32P]ATP (~3000 Ci/mmol 

at 10 mCi/ml), and 15 U of T4 polynucleotide kinase (Promega). Nuclear extracts (5 µg) were 

incubated for 20 min at room temperature with labeled oligonucleotide (~30,000 
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cpm/reaction), 2 µg of poly(dI/dC), 10 mM Tris-HCl, pH 7.5, 4% glycerol, 1 mM MgCl2, 

50 mM NaCl, 0.5 mM EDTA, and 1 mM DTT. Samples were resolved by electrophoresis on 

4% polyacrylamide gel. Gels were dried and exposed to X-films or Phosphor Screens 

(Molecular Dynamics Inc., Sunnyvale, USA). Some films were overexposed (3-7 days) to 

reveal low-expressing complexes.  

For competition assays, 100-fold of double-stranded competitor oligonucleotide 

(activator protein-1, nuclear factor-B, CREB; Promega) was incubated with the nuclear protein 

before the addition of radiolabeled oligoprobe.  

For supershift assays, 2 µg of anti-CREB or anti-CREM antibodies (sc-271 X, mouse 

monoclonal IgG, or sc-440 X, rabbit polyclonal IgG, respectively; Santa Cruz Biotechnology 

Inc.) was incubated for 2 h with the nuclear extract before the addition of radiolabeled CRE 

oligoprobe.  

DNA-binding activity was quantified from X-ray films using MCID™ image analysis 

software (Imaging Research Inc., St Catherines, Canada). The results were converted to 

percent of the complex intensity in drug treated samples comparison to complex intensities of 

protein extracts from saline-treated animals.  

 

4.6   DNA-microarray experiments 

 

In publication II, differentially expressed genes in the rat parietal cortex were searched 

using a microarray with 300 aminolinked 65-mer oligonucleotides printed on 3D-Link slides 

printed at KIChip (Stockholm, Sweden). In publication IV, differentially expressed genes in 

the parietal cortex, frontal cortex, and nucleus accumbens, after MK-801 and/or cocaine 

treatments were determined using DNA-microarrays from the Norwegian University of 

Science and Technology with 14500 sequence verified rat cDNA clones printed in duplicate on 

Corning CMT Gaps II slides. Samples of frozen tissue from rat parietal cortex, frontal cortex, 

or nucleus accumbens were placed into TRIzol reagent (GIBCO, Langley, OK, USA), 

homogenized, and total RNA extracted. DNA was removed by DNase I treatment (Ambion, 

Stockholm, Sweden). Samples from two animals were pooled to create 3 samples of 6 animals 

in the treatment group (figure 8). 

Hybridisation was performed using fluorescent cDNA probes synthesised from total 

RNA (20 µg) using Cy Script labelling (Amersham Biosciences, Buckinghamshire, England) 

according to the manufacturer’s protocols with minor modifications. Hybridisation was in a 

total volume of 28 µl containing Cy3 and Cy5 labelled cDNAs, human Cot-1 DNA (10 µg) 
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and yeast tRNA (20 µg) (Invitrogen, Carlsbad, CA) in 3x SSC (1x SSC; 150 mM NaCl, 15 

mM sodium citrate)/0.3% SDS at 55°C for 18 h. After hybridisation, microarrays were washed 

in 1x SSC/0.03% SDS, 0.2x SSC, and 0.1x SSC for 3 min each at room temperature. Slides 

were quantitated using ScanArray 5000 (Packard Bioscience, Meriden, CT) and converted to 

colour images using Array Vision (Imaging Research, St. Catherine’s, Ontario, Canada) and 

TIGR Spotfinder software (Saeed et al., 2003). Spots were quantitated and background 

subtracted. 

 

 

4.7   Expression array data analysis 

 

In publication II, data was normalized for each channel using b-actin as a control and 

quantitated results are the average of two experiments, as the number of genes was too low for 

any other normalization. The fold-change of gene expression was determined dividing Cy3 

channel expression by Cy5 channel expression, then corrected by the ratio of control genes. 

In publication IV, microarray datasets were normalized by LOWESS method (Chen et 

al., 2003). The number of replicate spots with expression level over Arabidopsis spike 

controls, and deviation between replicates were used as quality controls and the most trusted 

data was taken into further analysis. 

Z-ratios were created with a method modified from Cheadle et al. (2003). For each 

treatment and brain area, Z-ratios were used determine the level of significant alteration in the 

gene expression.  

First, the Z-scores were calculated for the data from each channel of each of the 

replicate chips. A log10 transformation of the raw intensity data was applied to reduce the 

variance due to extreme values. The standard deviation of all genes in the replicate chips was 

calculated. The log fold expression of the gene was divided by the standard deviation of the 

logarithmic values of all genes. This yielded Z-scores for the each gene. Next, for each gene, 

the average Z-score of the 3 replicate chip controls (Cy3 channel) was subtracted from the 

average Z-score of the treatment (Cy5 channels). Finally, this difference was then divided with 

the standard deviation from the all genes in this group. 

The method standardizes the cut-off limit for significant gene expression alteration. 

The genes with Z-ratios <-2 or >2 were considered to have expression with significant 

alteration. 
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Figure 8. Workflow of a  microarray experiment. In publication II, animals were treated with saline or 

MK-801. In publication IV, animals were treated with saline, cocaine, MK-801, or MK-801 + cocaine 
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4.8 Bioinformatic analysis 

 

The information of genes in the datasets of publication IV was subjected to further 

bioinformatics analysis. The NTNU DNA-microarray had a total of 14500 cDNA clones 

printed on the microarray. In the beginning of the project, almost 7600 (52%) of these were 

unknown ESTs. Because of the high number of unidentified sequences and errors in the 

annotations, there was a need for reannotation according to the homology comparison in order 

to increase the information of the genes and functional groups that are affected by the 

treatment. The ESTs with altered expression were reannotated with results from sequence 

comparisons against all entries in the last available release of the GenBank (#137) and EMBL 

(#75) sequences using the BLAST (Basic Local Alignment Search Tool) program with human 

judgement. In order to facilitate the process, we wrote a minimalistic BLAST-parser for 

filtering and parsing the results (figure 9). 

In order to detect strong patterns in the gene expression data, the difference of gene 

expression between treatments and brain was studied by hierarchical (tree) clustering with 

Pearson correlation to compute a dendrogram that assembles all elements into a single tree 

where the degree of similarity among gene profiles is represented by branch lengths and 

distances. The results were confirmed by determining the correlation between fold-changes 

from two datasets at a time. The genes with altered expression were clustered by 6 x 6 neuron 

Self-Organising Map (SOM) algorithm (Toronen et al., 1999) to produce synexpression 

groups, which are represented by genes sharing the same expression pattern.  

The genes with altered expression were finally classified by the gene ontology (GO) 

terms. Gene ontology’s (GO) is a common hierarchical terminology for genes and their 

products. GO-terms for the annotated genes or their human/mouse orthologs were obtained 

through DAVID Internet service, and completed with locuslink. Not all transcript ESTs 

represent genes with a function, and 42% of genes have no annotation even after reannotation, 

and less than half of the regulated ESTs were used in the grouping process. 
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Figure 9. Reannotation process of 14K and 15K NTNU rat microarrays 
 

 

 

4.9   Statistical analysis (I-IV) 

 

Data analysis for in situ hybridisation’s and immunoblotting and was performed using 

analysis of variance (ANOVA), or Student’s t-test. For the electromobility assay, the data was 

analysed using ANOVA with Dunnett’s post hoc test. Data of DNA array expression analyses 

(II, IV) were analysed as described in section 4.8. 
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5 RESULTS 

 

5.1   Effects of uncompetitive NMDA receptor blockers on CREB/CREM family 

leucine-zipper transcription factor mRNA levels 

 

NMDA receptor blockade by MK-801 greatly induced expression of CREM and ICER 

in the rat brain. (I, Fig 1). This induction was dose dependent and was seen already at a non-

toxic dose of 0.2mg/kg, and even higher at toxic doses up to 10mg/kg (I, Fig. 2). Time course 

assay demonstrated the highest increase of CREM/ICER at the 4 hours time point, and return 

to the basal level between 8 to 24 hours. The effect was seen with all uncompetitive NMDA 

antagonists, and also by kainate activation, but not by competitive NMDA antagonist or by 

antipsychotic agents (I, table 1).  The ICER was the predominant form of the CREM family to 

be induced by uncompetitive NMDA-treatment. (I, fig 5). CREB expression was not altered 

(I). 

 Expression level changes of several transcription factor transcripts were studied by in 

situ hybridisations. MK-801 alone and the pre-treatment of MK-801 combined with cocaine 

were similar. The inducible repressor ICER, CREM, and CBP were upregulated on parietal 

cortex. Expression of CREB was unaltered. Cocaine differed from other treatments, and c-fos 

was downregulated in the hippocampus (71.8±21.7) and parietal cortex (IV, table 6 and figure 

5). 

 

Table 5. Summary of expression of  CREM and ICER mRNA in parietal cortex after MK-801 
treatment, percents compared to saline treatments. In publication I and IV, the in situ 
hybridisation results, in publication II, DNA-microarray experiment result. Values are % of 
control ± SEM. 

mRNA treatment publication and experiment 
  I (in situ) II (microarray) IV (in situ) 
CREM MK-801 (5mg/kg; 4h) 178 ± 22 - - 
CREM MK-801 (1mg/kg; 4h) - 141 166±9.9 
CREM Phencyclidine (20 mg/kg; 6 h)  136 ± 11 - - 
CREM Memantine (50 mg/kg; 6 h) 150 ± 13 - - 
CREM Ketamine (250 mg/kg; 6 h) 168 ± 18 - - 
ICER  MK-801 (5mg/kg; 4h) 238 ± 15 - - 
ICER  MK-801 (1mg/kg; 4h) - 122 168±6.0 
ICER Phencyclidine (20 mg/kg; 6 h) 163 ± 13 - - 
ICER Memantine (50 mg/kg; 6 h) 192 ± 19 - - 
ICER Ketamine (250 mg/kg; 6 h) 131 ± 7 - - 
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5.2  Effects of uncompetitive NMDA receptor blockers on CREM/ICER  transcription 

factor protein levels 

  

Immunoblotting revealed that not only mRNA levels, but also protein levels of CREM 

and ICER were increased after MK-801 treatment time and dose dependently (I, fig 2). The 

DNA-binding activity of the protein complexes recognising CRE-consensus sequence in DNA 

was studied in the rat parietal cortex preparation 1 hour to 6 days after administration of MK-

801 to determine the functional activity of CREB and CREM/ICER proteins. Four complexes 

with different sizes were observed (I, Figure 6). The complexes named in the size order from I 

to IV were identified by electro mobility super shift with CREB and CREM antibodies. CREB 

antibody removed the complex II and some of the intensity of complexes I and III.  CREM 

antibody affected all of the complexes, and most notably to the light complex III and very light 

complex IV (I, Figure 7A). As complex I was not removed by either CREB or CREM 

antibodies, electro mobility shift assay with unlabelled DNA sequences containing AP-1, 

CREB, or NF-kB binding sites were carried out. CREB competitor removed all of the 

complexes, NF-kB competitor was without an effect, and AP-1 competitor removed complex I 

almost totally (I, Figure 7B).  

The time course of the complex forming (I, Figure 6) revealed acute induction of 

complex I containing CREB and AP-1 proteins, and complex II containing CREB-CREB-

dimers. The induction of these complexes was most notable at the 1-day time point. This was 

followed by a statistically insignificant decrease of complexes I and II below baseline. At the 6 

days time point complexes I and II reached baseline. 

The time course of complexes III and IV, which contain CREM and ICER proteins, 

was faster and significant already at the 8 hours time point. The expression peaked 

significantly at 1 day time point, but returned to basal level at the 2 days time point (I, Figure 

6). 

 

5.3       Effect of NMDA-antagonists MK-801 on OCT-1, C/EBP and NF-kB  

 

In addition to electromobility shift assay with CRE-oligo (publication I), also OCT-1, 

C/EBP, and NF-kB oligos were used to further characterise the binding activity of several 

transcription factor pathways. As seen in figure 10, the effects of uncompetitive NMDA-

antagonists MK-801 (5mg/kg) can alter the binding of nuclear proteins in different brain areas 

significantly even days after the treatment (data unpublished). 
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Figure 10 The intensity on complexes between the C/EBP, OCT-1, and NF-kB oligonucleotides, and the rat brain 

nuclear proteins after MK-801 (5mg/kg) treatment. The significant alterations are delayed, although some trends 

do occur only hours after the treatment. 
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 5.4  Alteration of glutamate receptor subunits 

 

The expression of AMPA receptor subunit and metabotropic glutamate receptor 

mRNAs after systemic administration of MK-801 (5mg/kg i.p., 8 h) was determined by in situ 

hybridisation. Significant decreases of AMPA glutamate receptor subunits GluR3 and GluR4, 

and metabotropic glutamate receptor mGluR3 were observed (III, Table 1). GluR3 was most 

significantly altered in hippocampus, and GluR4 in cortical regions. In limbic regions no 

alteration was observed (III). Metabotropic glutamate receptor 3 was downregulated 

throughout the brain. 

 

 5.5  Gene expression ratios in DNA-microarrays after MK-801 treatment 

 

Expression levels and profiles of genes following saline or MK-801 treatment (1 

mg/kg; 4 h) in rat brain parietal cortices were obtained using microarrays. Average ratio values 

(MK-801 treated/saline treated) from 2 independent experiments were determined. Six genes 

were found to be up-regulated by at least 40%: EST-885, CBP, CREMact1,2, pan 

CREM/ICER, c-fos, and PKCγ. (table I, II). Higher expression was observed for ICER than 

CREM forms of CREM/ICER transcripts (figure I, II). Also a slight increase of nurr-1 and c-

jun transcription factors were observed (Table I., II). 
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5.6    Expression of CREB-related transcription factors after MK-801 and cocaine 

treatments 

 

The acute effect of cocaine (20 mg/kg), MK-801 (1mg/kg) and the combination of 

MK-801 pretreatment 15 minutes before cocaine on the expression of CREB and regulators of 

CREB were determined by in situ hybridisation (IV and unpublished results). The expression 

induced by MK-801 and cocaine differed greatly (table 6). 

 
Table 6.  Effect of cocaine and MK-801 (alone, or as combination) on CREB and ICER expression in rat brain. 

The brain areas are retro, retrospenial cortex; par ctx, parietal cortex; and DG, dental gyrus. (Mean% ± standard 

error of mean; 4 hours time point) 

 

CREB treatment retro Par ctx 

layer 4 

striatum DG 

 Cocaine 88.0±18.6 91.8±17.7 136.1±21.8 88.9±12.1 

 MK-801 107.0±23.5 103.5±9.8 113.4±13.0 131.9±37.8 

 Cocaine+ MK-801 95.6±41.9 85.4±19.2 106.1±20.4 106.7±26.8 

ICER  retro Par ctx 

layer 4 

striatum DG 

 Cocaine 96.8±13.2 96.3±14.2 109.1±4.3 101.6±13.4 

 MK-801 144.5±14.5 158.8±11.1 103.2±6.4 115.8±19.6 

 Cocaine+ MK-801 143.1±20.6 182.1±30.5 103.4±6.2 134.6±28.9 

 

 

A DNA-microarray experiment was carried out to determine the effects of MK-801 

(5mg/kg) and cocaine (20mg/kg) on the gene expression in the rat parietal cortex, nucleus 

accumbens, and frontal cortex. In order to produce reliable data, the datasets originated from 

the chips with 14500 EST were filtered heavily. Only on average, 10% of the genes passed the 

filtering and was treated as trusted data. The strictest limiter was the number of replicate spots, 

which was required to be 4 or above. (IV table I). 

The 850 genes with significantly altered expression in at least one of the sample sets, 

determined by z-transformation and z-ratios from all 3 replicate chips of the group, were taken 

to further analysis (IV figure I; table 10) 

 

 63



   A hierarchical clustering with Pearson correlation was performed to find brain areas 

and treatments grouping together. Cocaine and MK-801 treated NAc data were grouped 

together (IV figure 2). Combined MK-801 + cocaine treatment in Nucleus accumbens was 

clustered together with parietal cortex MK-801 treatment. Parietal cortex data of cocaine and 

MK-801 + cocaine was on the other hand grouped together. The frontal cortex was different 

from all other data.  

 Synexpression groups of the genes with altered expression were created by Self 

Organizing Map algorithm. The main factor regulating gene expression in parietal cortex was 

MK-801, and in NAc cocaine and MK-801 had similar and as large effect of gene expression 

(IV figure 4). 

 The functional groups and biological significance of the genes with altered expression 

were constructed based on the Gene Ontology terms obtained from David www-based 

database and locuslink. A large group (30 genes) of transcription regulation associated genes 

was seen to be regulated by MK-801 or cocaine after MK-801 treatment (IV Figure 3). Also 

intracellular signalling pathways and enzyme-activity associated genes were highly altered. 

The percentage of the genes falling to the categories was similar in all studied groups (IV 

figure 3). 
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6  DISCUSSION 

 

 Uncompetitive antagonists of the NMDA receptors have neuroprotective, anesthetic, 

antiepileptic, and antidepressive effects (Krystal et al., 1999; Skolnick, 1999). According to 

some studies, these agents have also antiaddictive effects (Popik et al., 1995), although the 

reports are controversial. Despite therapeutic effects, potent uncompetitive antagonists produce 

also psychosis-like symptoms in rats and humans. Also, the antiaddictive potential requires 

special consideration, as PCP and ketamine have abuse value and are used as street drugs. 

 The uncompetitive NMDA-antagonists produce a number of molecular and cellular 

changes in the brain (Marvanová et al. 2003). The effects of NMDA-ion channel blockers on 

immediate early genes has been also reported (Kontkanen et al., 2000). We further studied the 

underlying transcriptional mechanisms, which could be involved in these alterations. The main 

focus of the research was the transcription factor CREB, which is one of the first transcription 

factors to be activated after neuronal stimuli, as well as modulators CREM and ICER. CREB is 

also known to be needed in neuronal survival, and likely a mediator for the development of 

antiaddictive and antidepressive effects of uncompetitive NMDA-antagonists (Bito and 

Takemoto-Kimura, 2003). 

 

6.1   Analysis of microarray experiment results 

 

The alterations in mRNA levels do not always match the protein levels, because of 

post-transcriptional steps. The verification techniques used in study include protein assays by 

immunoblotting, in which the protein studied is bound with a specific monoclonal antibody. 

By those methods we demonstrated that alterations in the studied CREB or CREM/ICER 

family transcription factors do occur similarly in mRNA and protein levels. 

The reliability, sensitivity, and reproducibility of the DNA-microarray technique has 

been severely questioned, as in many studies known predicted alterations have not been seen, 

and at the same time alterations seen have not been verified by independent techniques. The 

most reliable method was the protein assay, but it does not give information of the accurate 

localization of the changes. The best information was given by in situ hybridisation, in which 

the cell groups with altered expression could be detected. None of the techniques gave 

information of the changes in individual neurons. This could be done either in cell cultures, 

which gives limited information because of the lack of circuits needed for the full actions of 
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NMDA-channel blockers. Slightly better could be the floating slice technique, in which the 

neuronal connections are mostly intact. 

 

Problems and solution with DNA-microarray data. 

 Microarray data analysis has no canonical guidelines. The removal of background 

binding was done both in publications II and IV by diminishing the background intensity from 

the spot intensities. In publication IV there were spike control spots printed on chip. Because 

no mRNA was supposed to specifically bind to these spots, their average intensities could be 

used as measure of the unspecific hybridisation. The filtering of all raw values was performed 

on the level of spike control averages, which should markedly decrease false positives. The 

intensities of data spots vary greatly, and approximately 20 % of the spots with lowest 

expression were filtered out. This could create artifacts, if spots on one of the replicate chip 

have been filtered, leaving the spots from other two chips with higher expression to the 

datasets. This was taken into consideration by accepting to the datasets only the genes that had 

data from at least 4 spots. 

 The DNA-microarray technique can be based on synthesised well-designed 

oligonucleotide probes or on cDNA libraries. The Kuopiochip v 1.0 used in publication II had 

custom-designed oligomers, whereas NTNU Rat chips used in publication IV had cDNA-

oligos. The genes on microarray in publication II were annotated reliably, because all of the 

probes were custom designed against one known gene. On the other hand, in publication IV 

the probes on the chip were ESTs, varying from 200 to 600 base pairs. Unfortunately, half of 

the ESTs do not have significant similarity with previously annotated genes in databases. The 

rest of the RNA-sequences are likely to have homologies with mRNAs, but in varying degree. 

Also cloning and sequencing mistakes are common. The basic annotation of the ESTs on 

microarray was found to be insufficient, and also in some cases incorrect. The reannotation 

produced more correct information. 

 In the reannotation process, we had a bioinformatics challenge to identify the ESTs as 

genes. The library, to which the NTNU microarray was based, was created in 1999, and the 

sequence databases have grown hugely since that time. For the annotation process, several 

options were considered. First, if the annotation is done for only the regulated genes instead of 

all genes, this reduces the work that is to be done by many hundred folds. Unfortunately this 

was not enough, as we needed to know the level of expression of CREB/CREM and fos/jun 

related transcription factors, even if they would not be regulated by the treatments. This 

required all of the EST sequences to be reannotated using the latest GenBank database. 
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 For the annotation process, homology comparison with BLAST was chosen as the main 

tool. The strength for BLAST is that cDNA sequences can be compared not only to nucleotide, 

but also to protein sequences. Comparison of mRNAs to proteins via mRNA to protein 

sequence translation can on the other hand create false results, as the amino acid sequences of 

conserved regions of related proteins with different function might be sometimes close and 

masked by the mistakes of cDNA sequencing. 

 The BLAST parser created for the task represents the closest for the best found 

homologs. This parser had the advantage of simplicity, speed, ease of use, and the inbuilt 

filtering of homology finding pointing to cDNAs, libraries, and draft sequences. Even after 

diminishing false homology hits with the BLAST parser, the scientist is still required to make 

the final decision of whether the EST is likely matching an mRNA of coded protein. In many 

cases no good annotation can be found, maybe because of sequencing error of the cDNA. This 

information was used, although after careful consideration, in publication IV to decide 

functional classes of the ESTs with altered expression after drug treatments. As Locuslink 

www-service binds together information of orthologs from different species and homologous 

genes in same species, and information of functional domains, gene ontology terms, and other 

additional information, both manual inspection and semiautomatic scripts were successful in 

the data mining for following analysis, and the basic annotation of unknown sequences. 

 

Doses and treatments 

In the publication I, the doses used were relatively high in order to see the full range 

of effects. As the high response with lower doses of MK-801 was seen, the doses were lowered 

and a dose-response study was performed. 

MK-801 used in publications II to IV has very high affinity for NMDA-ion channels, 

and it can cause toxicity in high doses. The dosage of 1mg/kg does not cause permanent 

damage in male rats (Olney et al., 1991), but the cell stress can possibly be seen in the 

microarray data as expression of stress-related genes. The 1mg/kg dose of MK-801 induced 

stereotypic behaviour in the male rats. Lower affinity NMDA-ion channel blockers such as 

dextromethorphan and memantine are well tolerated in clinical use. This may raise the 

question that the research should be focused on them, as the results could be more relevant for 

clinical questions. Dissociative anaesthetics have also addiction potential, and for lower 

affinity NMDA-blockers the risk for abuse is not as high, although some abuse does occur, 

when they are used in very high doses. Good clinical data for that is unfortunately missing. It 
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could be hypothesised that dosing and pharmacokinetics matter most, not the affinity on 

receptor or receptor binding kinetics. 

 The anecdotal tales of NMDA-antagonists abusers describe that the subjective effects 

of NMDA-antagonists can be described as separate plateaus, depending on dose and the 

potency of the agent. This would suggest that dose-dependent activation of the different 

neuronal circuits, but this requires still more research. 

 

6.2   The effect of NMDA-blockers on glutamate system 

 

It has been demonstrated that uncompetitive NMDA-antagonists increase glutamatergic 

activity via non-NMDA-receptors mediated mechanisms. This study does not answer whether 

the alterations in gene expression occur because of increased glutamate release, or by some 

other transmitter systems.  There are reports of alterations in monoamine transmission after 

NMDA-blocker treatments (Callado et al., 2000), and dysregulation of GABAergic 

transmission (Olney et al., 1991). All these alterations will create a complex network of altered 

neurochemistry and neurotransmission. 

The effect of NMDA-blockers on glutamate transmission itself can be seen in three 

areas at the gene-expression level. First, the regulators of synaptic and receptor functions may 

be altered. This happens mainly by existing proteins, but novel protein synthesis will soon 

follow, including protein kinases. Second, the receptor expression may alter as adaptation to 

the changes. Third, larger scale alterations will follow after altered activation and expression of 

transcription factors in glutamatergic neurons and their target neurons. In the series of studies, 

we observed alterations belonging to all of these categories, although pin-pointing them into 

specific neuronal populations is impossible with only gene-expression data. In the DNA-

microarray results, uncompetitive NMDA-antagonists MK-801 altered greatly the expression 

of enzyme, signaling mediators, and transcription factors. 

 

The effects of NMDA-antagonists on gene expression 

 We have demonstrated that CREM/ICER expression can be induced by uncompetitive 

NMDA-antagonists. This was seen in mRNA level, protein level, and also in level of DNA-

protein complex formation. The induction of CREM/ICER was seen after kainate-induced 

seizures, but not after other treatments, not even by competitive NMDA-antagonists. This 

demonstrates that strong CREM/ICER induction is a typical feature for NMDA-antagonists. 
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The effect of NMDA-blockers on glutamate receptors 

Glutamate receptor expression and function undergo adaptive changes during chronic 

treatment of NMDA-antagonist (Toyooka et al., 2002). These alterations could begin early at 

mRNA levels. Linden et al. (1997, 2001) have studied the acute effects of uncompetitive 

NMDA-antagonists on glutamate receptor expression (Linden et al., 1997; Linden et al., 

2001b). 

Taken together, the results of that and this study suggest that the expressions of 

metabotropic glutamate receptors do not seem to alter greatly. The metabotropic glutamate 

receptors of group I, which potentiate NMDA-effects, are not affected. This could suggest lack 

of adaptive changes. The group II mGluRs are putative targets for antipsychotic drugs 

(Cartmell et al., 2000). The effects of mGluR2 and mGluR3 are not yet completely 

distinguished from each other, because of the lack of selective compounds. 

Alterations in the expression of ionotropic glutamate receptors can be more often 

observed. The NMDA-receptor subunit NR2B is decreased by MK-801 treatment, which could 

then decrease the NMDA-receptor activity (Linden et al., 1997; Linden et al., 2001b). We saw 

a decrease in AMPA-receptor subunit GluR3 and Glu4 expression, which again could be 

adaptive changes. But is there really a system that increased/decreased activity which then 

leads to alterations in mRNA levels pointing to returning to basal level? The data does not tell. 

The altered expression of NMDA-receptors is controversial. Linden et al (2001) demonstrated 

increased phosphorylation of NR2A subunit of NMDA-receptors, which then could lead to 

increase of NMDA-receptor mediated Ca2+ influx that is acutely blocked by MK-801 (Linden 

et al., 2001a). The electrophysiological data of NMDA-receptor antagonist treatment induced 

alterations on AMPA and NMDA-receptor functions is minimal. The microarray experiment 

demonstrated alteration of numerous kinases and receptor-binding protein coding genes (PKA, 

PKC, GRIPs) that could affect to glutamate receptor function. GRIP-2 which is involved in the 

targeting of AMPA receptors to synapses (Dong et al., 1999) was upregulated on parietal 

cortex by MK-801 treatment, which could been an adaptive effect, resulting from the acute 

decrease of glutamatergic transmission on cortical regions. If this is the general trend, it would 

suggest that the main effects of MK-801 are seen on cortical regions, and then the secondary 

effects would be seen as the cortical neurons project to lower areas such as VTA, and nucleus 

accumbens, where MK-801 would again block NMDA-mediated transmission. 
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6. 3 Uncompetitive NMDA-antagonists treatment alters function of CREB 

 

 In the series of studies, we clearly demonstrated that uncompetitive NMDA-antagonists 

induce of CREB-activity in rat brain – although not determined directly, it was seen as 

upregulation of genes containing CRE-elements (somatostatin, ICER, and others). Among 

these genes were CREB/CREM/ATF-1 family transcription factors. The most highly inducible 

was ICER, which is an early response repressor for CREB-mediated transcription. 

As seen by dimerization between ICER, and AP-1, CREB, and CREM family 

transcription factors in the electromobility shift assay, the induction of ICER can alter the 

profile of these transcription factors. This could lead to decrease of activity of transcription 

factors other than CREB. In the electromobility shift assay, the binding of ICER to CRE-

sequences was acutely increased, and then returned to basal level, but binding of AP-1 proteins 

to CRE-sequences was decreased for days. 

 There is interplay with different signalling pathways even at the transcription factor 

level. AP-1 family transcription factors are produced after cAMP-activity. The activation of 

AP-1 factors is then induced by MAP kinases, c-fos by ERK-type kinases, and Jun by 

JNK/SAPK type kinases (Servillo et al., 2002). AP-1 proteins can dimerize with CREB/ATF-1 

family transcription, although not to CREB itself. One of the highly dimerizing proteins is 

ICER, inducible cAMP early repressor. When induced after CRE-activation, ICER can 

dimerize with AP-1 proteins. This way cAMP and MAPK pathways can interact even after 

transcription of the target genes has occurred. The binding properties of AP-1 containing 

heteromers to CRE-sequences were altered by MK-801 treatment. AP-1 binding to CRE rises 

slowly, and then is below basal state for several days after MK-801 treatment. This could be 

because of induction of ICER, which declines slowly. 

C-fos is an immediate early gene that is known to influence transcription of other genes 

in many neural systems. C-fos is also a target gene for CREB and induced after its’ activation 

Both psychostimulants and the uncompetitive NMDA antagonist MK-801 induce c-fos 

expression after systemic administration, but in different brain areas. MK-801 induces c-fos in 

primary motor cortex, infralimbic cortex, and in several thalamic nuclei, but does not affect the 

expression in nucleus accumbens. Amphetamine induces c-fos in nucleus accumbens shell. 

Both amphetamine and MK-801 induce c-fos in thalamus, but in partially different thalamic 

nuclei (De Leonibus et al., 2001). This makes it further unlikely that the motor effect exerted 

by NMDA antagonists depends on increased DA activity (Imperato et al., 1990), otherwise a 
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somewhat similar pattern of c-fos induction should have been observed (De Leonibus et al., 

2001). 

 The decrease of mGluR3 to 80% from the basal level on parietal cortex pyramidal cell 

layer 8 hours after 1mg/kg MK-801 injection was interesting. The promoter of mGluR3 has 

several transcription factor binding sites (2 x AP-1, 2 x AP-2, 3 x C/EBP, 2 x HSF, 3 x NF-1, 2 

x Oct-1, and 1 x Sp-1) (Minoshima and Nakanishi, 1999). In the time course assay of 

electromobility shift of DNA-protein complexes with Oct-1, NF-kB, CREB, AP-1, and C/EBP 

probes we saw some alterations in the time point of 1h, which could be soon enough to have 

impact on mGluR3 expression at 8h time point. 

 We saw an increase in the intensity of C/EBP binding complexes at 8-hour time point, 

but not at the 1 h time point. If MK-801 decreases the Ca2+ currents, it could lead to 

dephosphorylation of C/EBP proteins. Moreover, transcriptional activity of C/EBP proteins 

might depend on CBP binding properties and phosphorylation (Kovacs et al., 2003). If there is 

impairment of CBP-function, it should be seen in the expression of CRE-dependent genes, but 

on the contrary we saw massive induction of such genes. If the promoter of gene coding 

C/EBP has CRE sites, it would suggest increase of C/EBP mRNA expression. There are also 

repressing forms of C/EBP, which makes it difficult to estimate the net effect. 

NF-kB complexes were modestly decreased at the 1h time point, but it should not 

affect mGluR3 transcription. Also, intensity of AP-1 and CREB containing complexes was 

increased from 1 to 8 hours. The intensity of ICER-containing complexes was not affected at 1 

hour, but in 8 hours indicating increased CREB-activity. The ICER protein itself did not 

increase until several hours later. There are no CRE-elements in mGluR3 promoter, but 

activity of genes induced by CREB-activity may play some role. It could be hypothesised that 

interaction of ICER with AP-1 proteins could lead to binding of transcription factor dimers 

without activity to the AP-1 binding sites on mGluR3 promoter. In this case, induction of AP-1 

family immediate early genes by CREB could not be strong enough to balance the situation. 

Oct-1 has not only activation function, but also transcription repressor function.  Oct-1 

activity has been reported to downregulate prolactin gene expression, which is known to be 

activated by dopaminergic transmission. We observed a rapid decrease of Oct-1 binding 

activity in the cingulate cortex, but not in other brain areas. MK-801 has been reported to 

decrease prolactin expression in the hippocampus (O'Donnell et al., 2003), but our EMSA 

assay results does not elucidate the role of Oct-1 in this issue. 
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Co-regulators 

 In both microarray experiments and in situ  hybridisation, we observed upregulation of 

CREB binding protein (CBP). CBP serves in the integration of additional signal transduction 

pathways (Chawla et al., 1998; Hardingham et al., 1999).  CBP mediates both positive and 

negative transcriptional responses to the JAK/STAT and Ras/Map signal pathways, and 

regulates also activation of AP-1 proteins and NF-kB (Horvai et al., 1997). CBP has also a 

signal-regulated transcriptional activation domain that is controlled by nuclear calcium via 

CaMKIV and by cAMP (Chawla et al., 1998). More research however is needed before the 

significance of the alteration of CBP can be determined, and if this is the mechanism of how 

alterations of CREB-mediated transcription can be modulated by uncompetitive NMDA-

antagonists to alter AP-1 related transcription. These and other findings raise the question of 

CBP as a target of signalling pathways altered by NMDA-antagonists and cocaine. 

 

6.4  Main findings and future studies 

 

In in situ hybridisation and DNA-microarray studies, we found alteration in the expression 

of genes associated with all levels of glutamate signalling, starting from glutamate receptors 

and enzymes, continuing to signal transducers, and ending at transcription factors. These 

molecules play a role in neuronal activity, neuronal plasticity, in adaptive responses, and in 

addiction, therefore, they appeared to be putative targets for the actions of MK-801 and to the 

suggested antiaddictive properties of NMDA-channel blockers. 

The most important finding of this series of studies was that MK-801 administration 

increased ICER expression, and that a low dose of MK-801 affected intracellular signalling 

pathways. This leads the way for future studies of uncompetitive NMDA-antagonists. Another 

rising question is the role of CBP, which could be differentially regulated after drug 

treatments. For the future studies, it remains to be seen what the effects of clinically well 

tolerated uncompetitive NMDA-antagonists such as memantine, and dextromethorphan have 

on gene expression in nucleus accumbens, striatum, and frontal cortex.  
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7 SUMMARY AND CONCLUSION 

 

This study aimed to examine the molecular effects of the uncompetitive NMDA 

receptor antagonists to the expression of transcription factor CREB and to related gene 

products in the rat brain. The main findings and their relevance can be summarised as follows:  

1. CREM/ICER expression is induced in the rat brain by uncompetitive (MK-801, 

PCP, memantine, ketamine), but not by competitive NMDA-antagonist drugs. The induction is 

transient and most of the induced forms are of the ICER form. The induced ICER form 

interacts with the transcription factors binding CRE-elements, as shown by electromobility 

shift assays. There is also interaction between AP-1 and CREM/ICER transcription factors.  

2. The treatments with uncompetitive NMDA antagonist MK-801 alter the expression 

of AMPA and metabotropic glutamate receptors, sub-units GluR3, Glu4, and mGluR3. These 

alterations may lead the way to further characterise drug targets to modulate glutamate-

signalling pathways.  

3. CREM/ICER gene products repress CREB mediated transcription. The alteration of 

CREB function could be a possible mechanism for the anti-addictive properties of the 

uncompetitive NMDA antagonists, although CREM/ICER induction might be merely 

secondary effects for initial induction of CREB activity. However, no alteration of the 

expression of genes induced by acute cocaine treatment was observed to be blocked by the 

acute treatment of the uncompetitive NMDA-antagonist MK-801. Potential or reputed anti-

addictive properties of NMDA antagonists are likely to occur through complex transcriptional 

events that indirectly require b-ZIP transcription factors and later, hundreds of their target 

genes.  

4. Several genes with an altered expression in response to acute MK-801 and cocaine 

treatments were identified. These molecules play a role in neuronal activity, neuronal 

plasticity, in adaptive responses, and in addiction. They appeared to be putative targets for the 

actions of MK-801 and to the suggested antiaddictive properties of NMDA channel blockers. 

The gene expression profiles after acute treatments with MK-801 or cocaine were found to be 

similar in nucleus accumbens, but differed greatly in the cortical regions in rat brain. 

Characterisation of these genes may lead to a better understanding of the molecular 

pharmacology of uncompetitive NMDA receptor antagonists and some of these genes may 

constitute novel targets for new therapeutic use. 
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