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ABSTRACT 
 
 
Functional outcome of stroke patients depends on various factors such as rapid access to the 
emergency ward, care in the stroke unit and level of the rehabilitation. Stroke, infarction or 
intracerebral hemorrhage may cause motor weakness, sensory and proprioceptive deficits, 
intellectual impairment, emotional distress and motivational and social problems. Although 
most stroke patients regain walking independence, many have continuing problems with 
mobility due to impaired balance, motor weakness, and decreased walking velocity. The main 
purpose of this study was to evaluate gait rehabilitation in patients over six months post-
stroke. First, the amount and content of the exercise of a tailored three-week gait-oriented 
physiotherapy program was analysed in an in-patient rehabilitation setting. Subsequently, the 
postural control, the spatio-temporal gait characteristics and the effects of the gait-oriented 
rehabilitation were analysed. Static balance was assessed with the emphasis on differentiating 
the left and right hemiparesis. The gait-oriented rehabilitation was compared with 
conventional rehabilitation. Additionally, three gait-oriented rehabilitation strategies were 
compared: the body-weight supported (BWS) gait trainer exercise with functional electrical 
stimulation (FES), the BWS gait trainer exercise without FES and active walking exercise.  
The study population consisted of 59 patients with chronic stroke and 30 healthy subjects. 
Their motor abilities were studied with a battery of measurements and the details of the 
therapy were recorded. Comparison of three gait-oriented rehabilitation strategies revealed no 
differences between groups in motor improvements. Gait improved 14 – 24 % after 28 hours 
of instructed physiotherapy and self-initiated training in the gait-oriented groups and their 
dynamic balance improved by 28 – 48 %. The patients seemed to depend on a larger postural 
sway than healthy subjects to maintain their static balance and there may be specific features 
due to the side of the hemiparesis. Gait-oriented rehabilitation improved certain spatio-
temporal gait characteristics not seen in less intensive conventional rehabilitation. All gait-
oriented strategies were good choices for ambulatory stroke patients. The follow-up of six 
months showed no decline in gains in gait. The same time frame in the gait trainer allowed 
more repetitions of steps and a longer walking distance. Intensive training improved gait in 
patients with chronic stroke and may lead to increased options for daily activities.  
 
National Library of Medicine Classification: WB 320, WB 495, WB 541, WE 103, WL 355 
Medical Subject Headings: Cerebrovascular accident/rehabilitation; electric stimulation 
therapy/methods; gait disorders, neurologic/rehabilitation; motor skills; physical therapy 
techniques; recovery of function; rehabilitation/methods; walking/physiology 
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1 INTRODUCTION 
 

Stroke is one of the leading causes of severe handicap in the Western world (Stegmayr and 

Asplund 2003). The effects of stroke are variable and may include impairment in motor and 

sensory systems, emotion, language, perception, and cognitive function. Impairment of motor 

function involves paralysis or paresis of the muscles on the side of the body contralateral to 

the side of the supratentorial lesion. Damage to the descending neural pathways results in 

abnormal regulation of spinal motoneurons, causing alterations in postural and stretch reflexes 

and voluntary movement. Abnormalities in the temporal and spatial recruitment of motor 

units slow the ability of muscles to generate tension, leading to prolonged agonist 

contractions.  

 

One crucial component of the rehabilitation of stroke is the restoration of mobility in an 

attempt to regain independent living and walking. The time course and degree of the recovery 

of walking function after stroke and the influence of initial lower extremity paresis were 

studied prospectively in a community-based population of 804 consecutive acute stroke 

patients in Copenhagen study (Jorgensen et al. 1995b). They reported that at the time of 

admission to rehabilitation, 51 % of subjects had no walking function and another 12 % 

needed assistance in ambulation. After rehabilitation, only 18 % of the participants still had 

no walking function, and 11 % required assistance. Those who are independent walkers, 

however, have usually an abnormal walking pattern and they are slow compared to healthy 

subjects (Titianova et al. 2003).  

 

Although the incidence and mortality of stroke have declined, the prevalence of stroke has 

remained stable or it may even be increasing due to the increase in the numbers of elderly 

people in community (Tuomilehto et al. 1996, Immonen-Raiha et al. 2003, Sivenius et al. 

2004). The most commonly used rehabilitation methods are based on theories originating 

from the 60’s and 70’s (Brunnstrom 1970, Bobath 1978) and appear to be less efficient than 

recently introduced methods, which involve more dynamic, task-oriented and repetitive 

training. More studies are needed to compare different methods and amounts of rehabilitation 

in order to collect evidence in favour of one particular method. In addition, new research 

findings have indicated that even in the chronic phase of stroke, there exists the potential for 

rehabilitation. It has been clearly shown that constraint induced movement therapy for the 
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paretic upper extremity, which includes a large amount of exercise has resulted in improved 

paretic hand use in chronic stroke (Taub et al. 1993). A large amount of gait training for 

rehabilitation of acute and subacute phase of stroke has suggested that there is potential for 

improvement, but the research of gait rehabilitation during the chronic phase of stroke is 

inconclusive. The main purpose of this study was to assess the effects of in-patient gait 

rehabilitation in patients with chronic stroke, i.e. over six months since they had a stroke. This 

was achieved by detailed investigation of specific areas affecting the total gait rehabilitation 

outcome. 
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2 REVIEW OF THE LITERATURE 
 

2.1 STROKE 

 

2.1.1 Epidemiology and risk factors 

 

The WHO MONICA project of 12 224 registered stroke patients in eleven countries 

(Stegmayr et al. 1997) identified the highest attack rates (first and recurrent stroke) in men in 

Finland and Russia (350/100 000 per year). Their attack rates were three times higher than the 

lowest rates found in Italy and Germany. The incidence rates (first-ever stroke) in men were 

280/100 000 in Finland and 220/100 000 per year in Russia. In women, the highest attack 

(270) and incidence rates (190) were seen in Russia, where stroke events were more than 

three times higher than in Italy. In half of the eleven national populations of the WHO 

MONICA study, the stroke incidence was twice as high in men compared to women.  

 

In this population survey of eleven countries, the presence of smoking and elevated blood 

pressure explained 21 % of the variation in stroke incidence in men and 42 % in women 

(Stegmayr et al. 1997). A meta-analysis of 22 studies indicated that smoking can double the 

risk of ischemic stroke (WHO 1988, Shinton and Beevers 1989). Subjects who stop smoking 

reduce this risk by 50 % (Colditz et al. 1988). In middle-aged women who smoke, the relative 

risk for stroke may be as high as 2.6 times that of aged-matched non-smokers (Kawachi et al. 

1994). Lowering high blood pressure can substantially reduce the risk to vascular 

complications and overall mortality, depending on the magnitude by which blood pressure is 

lowered (Neal et al. 2000, Staessen et al. 2001). It is recommended that blood pressure should 

be lowered to normal levels below 140/90 mmHg and it should be lowered more aggressively 

in diabetics to achieve levels below 135/80 mmHg (Turner et al. 1999). The other stroke risk 

factors are hyperlipidaemia, heavy alcohol drinking and the use of hormone replacement in 

healthy women (Hack et al. 2003). In addition to decreasing blood pressure and cholesterol 

levels and smoking cessation, lifestyle modification includes additional factors to reduce the 

risk of stroke e.g. regular physical activity and use of a low salt, low saturated fat, high fruit 

and vegetable diet rich in fibre (Hack et al. 2003).  
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The population-based FINSTROKE register included 5 650 stroke patients (Sivenius et al. 

2004). The average annual decline during 1983 – 1997 in the age-standardized incidence of 

first stroke events was 2 % among men and 1.7 % among women. Although the incidence as 

well as the mortality of stroke events have declined significantly in Finland during this 15-

year period, the prevalence is stable or it may even be increasing as the population ages 

(Tuomilehto et al. 1996, Immonen-Raiha et al. 2003, Sivenius et al. 2004). 

   

2.1.2 Neuropathological changes 

  

Stroke can be defined as rapidly developing clinical signs of focal disturbance of cerebral 

function lasting more than 24 hours with no apparent cause other than a vascular origin 

(WHO 1988, Shinton and Beevers 1989). Stroke is either occlusive (due to closure of a blood 

vessel) or hemorrhagic (due to bleeding from a vessel). Insufficiency of blood supply is 

termed ischemia; if it is temporary, symptoms and signs may be found with little or no 

pathological evidence of tissue damage (Bryan et al. 1991). Ischemia reduces blood supply, 

thereby depriving tissue of oxygen, glucose, and prevents the removal of potentially toxic 

metabolites such as lactic acid. When ischemia is sufficiently severe and prolonged, neurons 

and other cellular elements die. Hemorrhage may occur at the brain surface. Alternatively, 

hemorrhage may be intraparenchymal causing a blood clot or hematoma within the cerebral 

hemispheres, in the brainstem, or in the cerebellum.  

 

Infarction in the territory of the middle cerebral artery causes the most frequently encountered 

stroke syndrome with contralateral weakness, sensory loss, and visual field defect, and, 

depending on the hemisphere, it can involve either language disturbance or impaired spatial 

perception (Bogousslavsky and Caplan 1995). Weakness and sensory loss affect the face and 

arm more than the leg because of the somatotopy of the motor and sensory cortex. The more 

proximal limbs and the trunk may be less affected because these are controlled by both 

hemispheres. Visual field impairment is the result of damage to the optic radiation, the deep 

fiber tracts connecting the thalamic lateral geniculate nucleus to the visual cortex. Destruction 

of left opercular cortex in human causes aphasia, and this may take a variety of forms 

depending on the degree and distribution of the damage (Pedersen et al. 2004). Left 

hemisphere convexity may also cause a disturbance of learned motor acts called motor 

apraxia (Pedersen et al. 2001). Right hemisphere convexity infarction tends to cause 

disturbances in spatial perception. (Stone et al. 1993).  
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2.1.3 Diagnosis and clinical characteristics of chronic stroke 

 

The European Stroke Initiative (EUSI) executive committee and the EUSI writing committee 

have updated the recommendations for stroke management (Hack et al. 2003). 

Recommendations emphasize that the acute stroke patient has to be transported to an 

emergency ward, and the physician must assess the patient with the priority for a life-

threatening and disabling illness. Symptoms and signs such as a space-occupying infarction or 

bleeding, recurrent stroke, and medical conditions such as hypertensive crisis, co-existing 

primary motor area, aspiration pneumonia and renal failure must be recognized early. It is 

crucial that the early assessment of stroke subtypes is based on a detailed physical and 

neurological evaluation. Early evaluation of physiological parameters, blood chemistry and 

hematology, and cardiac function is recommended in the management of acute stroke 

patients. After the emergency assessment, the neurologist should perform a targeted 

neurological examination with a careful medical history. 

 

Computerised tomography (CT) of the head is the most important diagnostic tool in patients 

with suspected stroke to distinguish hemorrhage and ischemic stroke or subarachnoid 

hemorrhage (Hack et al. 2003). Early infarct signs include sulcus effacement, swelling of the 

basal ganglia and the hyperintense middle cerebral artery sign. Early signs of extensive 

infarction with intracranial midline shifts indicate a very serious event and a high risk both for 

secondary hemorrhage and large malignant oedema formation. Parenchymal hemorrhage can 

be identified almost immediately either in deep structures in patients with hypertension or in 

atypical areas in patients without hypertension or during adequate treatment. Infratentorial 

hemorrhage or cerebellar infarcts can readily be identified, but smaller 

hemorrhages/ischaemic infarcts, in particular in the brain stem, may easily be missed. 

Magnetic resonance imaging (MRI) is more sensitive and is increasingly used as a standard 

procedure. Vascular imaging (ultrasound, CT angiography and MR angiography) provides 

additional information about the vessel patency in the brain and neck vessels and 

recommendations for stroke management emphasize that this should supplement all imaging 

procedures already in the acute phase.  

 

In the Copenhagen study, 9 % of the stroke patients had intracerebral hemorrhage (Jorgensen 

et al. 1995a). The relative frequency of intracerebral hemorrhage rose exponentially with 

increasing stroke severity. Stroke type had no influence on mortality, neurological outcome, 
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functional outcome or the time course of recovery. Initial stroke severity was the all-important 

prognostic factor. In the Finnish study (Kotila 1986), one year after stroke there were the 

following disturbances: hemiparesis 37 %, dysphasia 28 %, dysarthria 21 %, dysphagia 4 %, 

incontinence 9 %, visuospatial disturbances 41 %, memory disturbances 31 % and depression 

29 %. In the Copenhagen study, the prevalence of full urinary incontinence (UI), partial UI 

and no UI at six months post-stroke were 8 %, 11 % and 81 % (Nakayama et al. 1997). The 

prevalence of full fecal incontinence (FI), partial FI and no FI were 5 %, 4 % and 91 % at six 

months post-stroke. Risk factors for UI and FI were age, severity of stroke, diabetes and 

comorbidity of other disabling diseases. In the Copenhagen study (Pedersen et al. 2004), the 

type of aphasia always changed to a less severe form during the first year. One year after 

stroke, the following frequencies for aphasia were found: global 7 %, Broca’s 13 %, 

transcortical motor 1 %, Wernicke’s 5 % conduction 6 % and anomic 29 %. The outcome for 

language function was predicted by initial severity of aphasia and by initial stroke severity, 

but not by age, sex or type of aphasia. A later Finnish study indicated (Kotila et al. 1998), that 

the incidence of depression was more common than in the earlier study (Kotila 1986). 

However, fewer patients living in the districts with outpatient rehabilitation and activities of 

the local divisions of the Finnish Heart Association were depressed (41 % had depression) 

than in the areas without after-hospital-discharge interventional programs (54 %) at three 

months. The difference remained at one year (41 % versus 55 %). Seizures occur in about 10 

% of stroke patients (Olsen 2001). Five percent experience early-onset seizures and another 5 

% late-onset seizures (peak onset within 6 to 12 months after the stroke). Epilepsy develops in 

3 % to 4% of the stroke patients. There is a strong positive correlation between stroke severity 

and the risk of post-stroke seizures. Disturbances of motor control are described in next 

sections with special emphasis on balance and gait. 

 

2.2 MOTOR CONTROL 

 

2.2.1 Central motor system  

 

The central motor system can be subdivided into three levels (Bear et al. 2001). The highest 

level, represented by the association areas of neocortex and basal ganglia of the forebrain, is 

concerned with motor strategy: the goal of the movement and the movement strategy that best 

achieves that goal. The middle level, represented by the motor cortex and cerebellum, is 

concerned with tactics: the sequences of muscle contractions, arranged in space and time, 
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required to smoothly and accurately achieve the strategic goal. The lowest level, represented 

by the brain stem and spinal cord, is concerned with motor execution: activation of the motor 

neuron and interneuron pools that generate the goal-directed movement and make any 

necessary adjustments of posture. The correct function of each level of the motor control 

hierarchy relies heavily on sensory information. At the highest level, sensory information 

generates a mental image of the body and its relationship to the environment. At the middle 

level, tactical decisions are based on the memory of sensory information from past 

movements. At the lowest level, sensory feedback is used to maintain posture, muscle length, 

and tension before, during and after each voluntary movement.  

 

In humans, 60 % of the cortico-spinal axons originate from the primary motor cortex, and the 

remainder from the premotor area, the supplementary area, and the parietal lobe 

(Bogousslavsky and Caplan 1995). The cortico-spinal fibers converge within the corona 

radiata and pass downward through the internal capsule, crus cerebri, pons, and medulla. At 

the junction of the medulla and spinal cord, some 75 – 90 % of the fibers cross the midline, 

and three separate cortico-spinal tracts are formed (crossed lateral, ventral, and uncrossed 

lateral) 

 

It is common in stroke that infarction or hemorrhage involves the sensory-motor system. 

Shepherd has described impairments in muscle activation and motor control (Shepherd 2001). 

One major feature, muscle weakness, is due to loss of motor unit activation, changes in 

recruitment order, and changes in firing rates. Weakness from these sources is confounded by 

changes in the properties of motor units and in morphological and mechanical changes in the 

muscles, which occur adaptively as a consequence of denervation, but also of decreased 

physical activity and disuse. Muscle weakness and disordered motor control combine to 

evoke the functional movement disability. 

  

2.2.2 Postural control 

 

Postural stability consists of the static balance, i.e. the ability to maintain a chosen posture 

with minimal postural sway and the dynamic balance, i.e. the ability to move the center of 

mass in relation to the base of support in a controlled manner (Nichols 1997). Postural control 

includes both inborn reactions and those built up by learning. The sensory-motor organization 

for postural orientation includes neural mechanisms for active control of joint stiffness and 
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variables such as trunk and head alignment (Kandel et al. 2000). The vestibular nuclear 

complex in the medulla and pons is an important center for the integration of vestibular, 

somatosensory, and visual information that has a large part in the control of postural 

orientation and equilibrium. Vestibulospinal pathways from this region as well as 

reticulospinal pathways from the adjacent reticular formation, terminate on both motoneurons 

and interneurons that influence neck, axial, and limb musculature. The basal ganglia have an 

important role in postural alignment and control of stability. The cerebellum plays several 

different roles in the control of posture involving sensory-motor integration. Cortical 

involvement is most important in the anticipatory postural adjustments that accompany 

voluntary movement. Biomechanical models of posture suggest that much of the coordination 

and control of posture emerges from biomechanical constraints inherent in the musculo-

skeletal system and that the nervous system takes advantage of these constraints (Winter 

1995). The control of dynamic equilibrium has a reflex component, yet it is anticipatory 

postural adjustments that are instrumental in voluntary, focal movement. The relative roles of 

the somatosensory, vestibular, and visual inputs for postural orientation and equilibrium can 

change, depending on the task and on the particular environmental context (Woollacott et al. 

1986, Nashner et al. 1989, Popovic and Sinkjaer 2003). Somatosensory afferents include 

mechanoreceptors in the skin, pressure receptors in deep tissues, muscle spindles, Golgi 

tendon organs, and joint receptors. The vestibular receptors in the semicircular canals and 

macular otoliths are sensitive to angular and linear acceleration of the head. The static vision 

detects stable spatial features and relative position in a configuration space whereas the 

dynamic vision monitors the continuous motion of a stimulus as an image drift on the retina. 

Finally, postural coordination is significantly influenced by previous experience, practice, and 

training.  

 

2.2.3 Motor control of gait 

 

Walking occurs once the equilibrium ceases to exist because of the change of internal forces 

caused by muscle activity (Popovic and Sinkjaer 2003). Human walking starts after the 

redistribution of internal forces allowing the center of gravity to take over the stability zone. 

Falling is prevented by bringing one leg in front of the body providing a new support position. 

Once the first leg supports the body weight and then the other leg pushes the body up and 

forward due to the momentum, and thus the body will move in the direction of progression, 

and ultimately come directly above the supporting leg. This inverted pendulum position is 
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transitional; momentum and gravity will again bring the body into the falling pattern. Cycling 

repetition of the described events is defined as walking.  

 

Several critical insights into the mammalian neural mechanisms controlling stepping were 

made nearly a century ago. It was discovered that stepping on the hind legs could be induced 

in cats and dogs after complete transection of the spinal cord. The stepping movements in 

these spinal preparations were similar to normal stepping. There are different kinds of 

preparations used in studies of the neural control of stepping (Kandel et al. 2000). In spinal 

preparations, the spinal cord is transected at the lower thoracic level. In acute spinal 

preparations, adrenergic drugs are administered immediately after the transection. These 

drugs lead to the spontaneous generation of locomotor activity about 30 minutes after 

administration. In chronic spinal preparations, animal locomotor activity without drug 

treatment can return spontaneously in kittens, but in adult cats daily training sessions are 

usually required (Rossignol 2000). This means, that supraspinal structures are not necessary 

for producing the basic motor pattern for stepping. In the decerebrate preparations, the brain 

stem is completely transected at the level of the midbrain. In one decerebrate preparations, the 

locomotor rhythm is generated spontaneously, while in the other it is evoked by electrical 

stimulation to the mesencephalic locomotor region (Shik et al. 1969). When supported on a 

motorized treadmill both decerebrate cat preparations walk with a coordinated stepping 

pattern in all four limbs, and the rate of stepping is matched to the treadmill speed. These 

decerebrate preparations demonstrate that the basic rhythmicity of stepping is produced by 

neuronal circuits contained entirely within the spinal cord. Already in 1911 Brown showed, 

that rhythmic locomotor patterns were generated even after complete removal of all sensory 

input from the moving limbs (Brown 1911). This deafferentition is accomplished by 

transection of all the dorsal roots that innervate the limbs and is rarely used today. The spinal 

circuits can be activated by tonic descending signals from the brain. Immobilized preparations 

have revealed that the spinal pattern-generating networks do not require sensory input but 

nevertheless are strongly regulated by input from limb proprioceptors. The neuronal networks 

capable of generating rhythmic motor activity in the absence of sensory feedback are termed 

central pattern generators (CPG) (Kandel et al. 2000). Descending signals, drugs, or afferent 

signals could modify the temporal motor activity pattern by altering the functioning of 

interneurons in the patterning network. Three important types of sensory information are used 

to regulate stepping: somatosensory input from the receptors of muscle and skin, input from 

the vestibular apparatus, and visual input. Input from proprioceptors in muscles and joints are 
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involved in automatic regulation of stepping. Exteroceptors are located in the skin and adjust 

stepping to external stimuli. Exteroceptors have a powerful influence on the CPG for walking. 

Current evidence indicates that the signals that activate locomotion and control its speed are 

transmitted to the spinal cord by glutaminergic neurons whose axons travel in the 

reticulospinal pathway.  

 

Although the basic motor pattern for stepping is generated in the spinal cord, fine control of 

walking involves numerous regions of the brain, including the motor cortex, cerebellum, and 

various sites within the brain stem (Dietz 1996, Kandel et al. 2000). Supraspinal regulation of 

stepping includes activations of the spinal locomotor system, controlling the overall speed of 

locomotion, refining the motor pattern in response to feedback from the limbs and guiding 

limb movement in response to visual input. The spinal locomotor system is activated by 

signals from the mesencephalic locomotor region relayed via neurons in the medial reticular 

formation. The cerebellum receives signals via spinocerebellar pathways from both peripheral 

receptors and the spinal CPG and this structure adjusts the locomotor pattern via brain stem 

nuclei. The brain stem nuclei influenced by the cerebellum during walking include the 

vestibular nuclei, red nucleus, and nuclei in the medullary reticular formation. Cerebellar 

output to the vestibular nuclei may be involved in integrating proprioceptive information from 

the legs with vestibular signal for the control of balance. Modification of stepping by the 

visual signal is mediated via the motor cortex. Human locomotion differs from four-legged 

animal locomotion in that it is bipedal, placing significantly greater demands on the 

descending systems that control balance during walking. The spinal networks that contribute 

to human locomotion are more dependent on supraspinal centers than those in quadrupedal 

animals.  

 

Two types of impaired motor control, which appear immediately after stroke, particularly 

affect gait performance. These are weakness or loss of volitional movement of the arm and 

leg on the side opposite to the brain lesion, known as paresis and inappropriately timed or 

graded muscle activations (decreased descending inputs, reduced motor unit synchronization 

as reviewed by (Shepherd 2001). Other types of disruptions that appear later include 

hyperactive stretch reflexes and hypoextensibility of the muscle-tendon complex (Dietz 1987, 

Richards et al. 1999) 
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2.3 RECENT FINDINGS IN MOTOR LEARNING 

 

Modern concepts of motor learning have recently modified drastically the framework of 

rehabilitation from a conventional neurodevelopmental therapy to a more dynamic, task-

oriented approach (Barbeau and Fung 2001). Barbeau and Fung have described the possible 

mechanisms involved in locomotor recovery. First it is known that the spinal cord severed 

from the descending pathways still possesses the capacity to learn complex motor skills such 

as locomotion (Rossignol 2000). Second, the training paradigms must be locomotor specific 

(Lovely et al. 1986). Third, the modulation of different reflexes is also task and phase 

specific. For example, hip extension and low load extensor muscles produce important 

sensory signals that allow decerebrate or spinal cats to move from stance to swing phase 

during locomotion (Dietz and Duysens 2000). An appropriate sensory stimuli, in addition to 

sensory input, e.g. the movement produced by the moving belt on a treadmill can be used as 

facilitatory input while training. Fourth, spinal reflexes such as the stretch reflex could also 

change following training (Wolpaw 1997). Fifth, recent study demonstrated remarkable 

adaptation of the spinal cord even without the supraspinal inputs (Bouyer et al. 2001). Thus, 

the spinal cord is capable of achieving a functional compensation after partial peripheral nerve 

lesions. Finally, neuropharmacological studies in conjuction with motor training are offering 

new hope for the recovery of function (Rossignol 2000).  

 

Plautz et al. (2000) trained adult squirrel monkeys to perform a motor task that required pellet 

retrievals from a large diameter well to induce repetitive use of a limited set of distal forelimb 

movements in the absence of motor skill acquisition. Detailed analysis of the motor behavior 

of the monkeys indicated that their retrieval behavior was highly successful and stereotypical 

throughout the training period, suggesting that no new motor skills were learned during the 

task. Comparisons between pretraining and posttraining maps of primary motor cortex 

movement representations revealed no task-related changes in the cortical area devoted to 

individual distal forelimb movement representations. They concluded that repetitive motor 

activity alone does not produce functional reorganization of cortical maps. Instead, they 

proposed that new motor skill acquisition, or motor learning, is a fundamental factor in 

driving representational plasticity in primary motor cortex.  

 

Thus, neurorehabilitation is increasingly taking into account novel scientific findings. Recent 

changes in intervention strategies include placing more emphasis on active exercise and task 
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specific training as well as active and passive methods of preserving muscle extensibility 

(Shepherd 2001). Training has the potential to promote brain reorganization and to optimize 

functional performance. Research findings underpin the development of training programs, 

and therapists are relying less on one-to-one, hands-on service delivery, making more use of 

circuit training and group exercise and of technological advances in training equipment which 

increase the time spent in active practice, aiming to increase strength, control, skill, 

endurance, fitness, and social readjustment. Shepherd has noted that rehabilitation services 

remain slow to undertake the changes necessary to upgrade environments, attitudes, and 

rehabilitation methodologies to those shown to be more scientifically rational and for which 

there is evidence of effectiveness.  

 

Rosebaum (1991) has pointed out that movement becomes more skilled with learning, and 

this is probably due to improvement in timing, tuning, and coordinating muscle activation. 

Training walking should, therefore, include exercises to strengthen weak muscles, to preserve 

muscle length, plus the practice of walking. Motor learning and developing the walking skill 

require practice with concrete goals and objective feedback about its effectiveness. The 

learner must have the opportunity to practice actively and to understand the importance of 

frequent repetitions. It is still not clear how best to encourage learning in disabled individuals. 

For example, good results were obtained by Silver and his group who carried out their task-

oriented program for chronic stroke patients to improve gait (Smith et al. 1999). Patients 

practised walking on the treadmill three times a week, 50 minutes at a time for three months. 

The program improved volitional torque and torque/time generation and reduced reflexive 

torque/time in the hemiparetic limb, the gait velocity, cadence and time to get-up, walk and 

return-to-sit improved (Smith et al. 1999, Silver et al. 2000).  

  

2.4 GAIT REHABILITATION OF STROKE PATIENTS 

 

Traditional physiotherapeutic approaches to gait re-education have focused primarily on 

spasticity and abnormal reflexes. For example, the so-called Neurodevelopmental Technique 

(NDT) established by Bobath (Bobath 1978, Davies 1985, Davies 1990) assumes that an 

abnormal postural reflex activity is the major cause of dysfunction, and as such a significant 

proportion of therapy time involves inhibiting spasticity and other abnormal responses. In the 

Brunnstrom technique, synergistic movements are used to strengthen and practice single 

movements (Brunnstrom 1970). Proprioceptive Neuromuscular Facilitation PNF (Voss 1985) 
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techniques consist of assisted isometric and isotonic leg flexion-extension exercises, which 

are thought to improve strength and control of leg musculature in preparation for walking. 

Hesse et al. (1994) studied the influence of NDT technique on gait (the gait rehabilitation 

related studies referred to in the next three sections are listed in table 1 in the same order). 

They assessed gait symmetry and absolute changes of vertical ground reaction forces of 148 

stroke patients (39 – 962 days post-stroke, mean 130.5 days). Both parameters are process-

oriented variables of the Bobath technique in which physiotherapists who are trained in NDT 

strictly control weight acceptance and push-off of both lower limbs. Patients received 45 min 

of physiotherapy based on Bobath concept, five times per week during four weeks of 

rehabilitation. Additionally, patients were instructed in a self-administered training program 

for at least 30 min daily. Stance duration, weight acceptance, push-off of both legs, and the 

stance duration symmetry improved, independent of changes of gait velocity. The symmetry 

of the ground reaction forces did not improve. The treatment even worsened heel strike and 

the loading rate at the end of four weeks of treatment. 

 

2.4.1 Active bracing assisted walking 

 

Therapeutic methods to improve gait have traditionally included walking with essential 

walking aids and with verbal and manual guidance (fig 1). Walking aids allows the therapist 

to begin to walk with patients who still require mild to moderate assistance to sit on a mat. 

The hemi-bar provides a rigid support for the patient to grasp with the unaffected hand. The 

therapist stands on the paretic side and prevents the patient’s pelvis from shifting away from 

the bar, and advances the patients’s paretic leg. Knee buckling during single stance phase on 

the paretic leg can be controlled manually with an ankle foot orthosis (AFO), an AFO and 

knee splint, or a knee ankle foot orthosis (KAFO). The least restrictive brace needed to assist 

with ambulation is chosen. Patients are usually able to begin using a hemi-walker or 

quadruped cane once they are able to walk 4 – 8 m at the hemi-bar (Kosak and Reding 2000). 

Walking exercises are undertaken usually on the floor, but also in other circumstances such as 

on stairs or outside. Using a limb-load monitor feedback, resisted exercises in the upright 

position with an isokinetic device and walking on a treadmill can also be used in task-specific 

intensive walking training program (Richards et al. 1993).  

 

If one wishes to reinforce the increased step length, then visual cues can be supplied in the 

form of nonslip footprints. When step length is closer to normal, the subjects can be 
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encouraged to walk faster and they can be timed for feedback. The step width can be reduced 

and the balance challenged by forcing the subjects to walk within one row of floor tiles or to 

walk along a line forward or walk sideways and backwards. The workload can be increased 

by making the individual climb stairs and slopes and automaticity can be promoted by the 

introduction of dual tasks. Overground walking can be also focused on walking alignment by 

encouraging an increase in hip extension and trunk verticality. To obtain this, subjects are 

asked to walk sideways with their heels and shoulders in contact with a wall to encourage hip 

extension and trunk verticality (Ada et al. 2003). Also musical motor feedback (MMF) can be 

exploited. In the study of Schauer and Mauritz (2003), stroke patients (44 days post-stroke) 

using a portable MMF device resulted in greater improvement than the group receiving 

common exercises such as slow walking with support of parallel bars and handrails, stepping 

sideways and backwards, etc. In both groups, the patients practised for five days per week, 20 

min each day, for a total of 15 sessions. The MMF device consists of sensor insoles that 

detect the ground contact of the heels, and a portable music player compatible with the 

musical instrument digital interface standard. The music was played at an adjustable speed, 

which was estimated from the time interval between two consecutive heel-strikes. The time 

period required to play a quarter meter was stretched or compressed instantly to coincide with 

the patient’s current step duration. The portable MMF device was fixed to the patient’s belt 

and thin wires led to the insoles. The music was presented via plugged headphones.  

 
Figure 1. Active bracing assisted walking 

with verbal and manual guidance. 

 

 
Figure 2. Patient practises walking on the 

treadmill.

Ada et al. (2003) studied four weeks of gait training consisting of both treadmill (fig 2) and 

overground walking. Thirteen chronic stroke patients (7 – 60 months post-stroke) practised 

three times per week for 45 min at a time. They required initially more than 8.3 s to walk 10 
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m. The proportion of treadmill walking decreased by 10 % each week from 80 % on week 1 

to 50 % on week 4. The treadmill component was structured to increase step length, speed, 

balance, fitness, and automaticity. The overground walking component aimed to reinforce 

improvements in walking pattern and speed achieved on the treadmill. It was defined as 

whole-task practice involving propulsion forward, backward, or sideways, or stairs climbing. 

The twelve sessions of walking training increased walking speed (10 m), walking capacity (6 

min), and step length compared with the control group (n=14) who received a low-intensity 

home exercise program and regular telephone contact. The Stroke adapted 30-item of the 

Sickness Impact Profile (van Straten et al. 1997) did not change in either group.  

 

Silver et al. (2000) have also studied effects of walking exercise on the treadmill in chronic 

stroke patients (9 – 70 months post-stroke). Five independently ambulatory patients walked 

on a treadmill three times per week for three months with the handrail support permitted. The 

exercise intensity was individualized initially and advanced as tolerated to 40 min duration at 

approximately 60 – 70 % of maximum heart rate reserve. Five-minute warm-up and cool-

down periods were included in each session. The time needed to arise from a chair, to walk 

3.1 m in a straight line without their normal assistant device(s) as fast as safely possible, turn 

and return to sit in a separate chair at the opposite end of the walkway exhibited 21 % decline 

after the training period. Also the straight-away walk segment time was faster, this being 

reflected in increased velocity and cadence. Mean stance and swing duration diminished for 

both affected and non-affected sides, but the asymmetry index of stance and swing durations 

remained unchanged.   

 

2.4.2 Body-weight supported gait training 

 

The gait rehabilitation strategies have been recently enlarged by providing treadmill training 

with partial body-weight support (BWS), combined with enforced stepping movements (fig 

2). This method is based on animal studies showing that the adult spinal cord can recover a 

near-normal walking pattern after a period of interactive locomotor training on a treadmill in 

which weight support for the hindquarters is provided, hence facilitating stepping on a 

treadmill (Barbeau and Rossignol 1987). On the basis of such studies, treadmill training with 

BWS has been applied in patients with spinal cord injury (Dietz et al. 1997, Basso 2000, 

Behrman and Harkema 2000, Wernig et al. 2000), stroke (Hesse et al. 1995a, Visintin et al. 
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1998), Parkinson’s disease (Miyai et al. 2000), cerebral palsy (Schindl et al. 2000) and Down 

Syndrome (Ulrich et al. 2001).  

 

In nonambulatory hemiparetic patients (3 months – 1 year post-stroke) treadmill training with 

BWS (A-phase) was shown to be more effective than physiotherapy based on the commonly 

used Bobath (B-phase) concept in improving gait (Hesse et al. 1995a). The study was carried 

out in an A-B-A single case study with seven patients. The first three week phase (A-phase) 

consisted of 30 min treadmill training each workday. The subsequent three week (B-phase) 

consisted of 45 min physiotherapy sessions daily followed by another A-phase. The gait 

parameters improved only during the A-phases. In a study of the 79 subacute hemiparetic 

patients (27 – 148 days post-stroke) with abnormal gait patterns, six weeks of training at a 

frequency of four times per week, 20 min at a time on a treadmill with BWS or without BWS 

was compared (Visintin et al. 1998). Patients in the BWS group were provided with up to 40 

% BWS at the beginning of training, and the percentage of BWS was progressively decreased 

as the patient’s gait pattern and ability to walk improved. Patients in both groups showed 

improvements in balance, motor recovery, walking speed, and endurance when scores at post-

training and at three months follow-up were compared. However, the patients started with 

BWS, scored significantly higher for those variables and they continued to have higher scores 

for over ground walking speed and motor recovery at the three month follow-up assessment. 

It seems also that more severely impaired patients and/or older subacute stroke patients can be 

mobilized more effectively using the treadmill with BWS than without this modality (Visintin 

et al. 1998, Kosak and Reding 2000, Nilsson et al. 2001, Barbeau and Visintin 2003). 

 

Several studies have compared walking on a treadmill with BWS with walking on the floor in 

subacute stroke patients. Eighteen stroke patients (2.9 – 11.2 months post-stroke) walked on a 

treadmill with 15 % and 30 % BWS and on the floor (Hesse et al. 1999a). The treadmill speed 

was chosen according to the patient’s gait velocity during floor walking, but some patients 

were more comfortable at a slower treadmill speed. On the treadmill, the gait was 

characterized by its higher symmetry, a prolonged single stance period of the affected limb, 

less plantar flexor spasticity indicated by the amount of premature activity in the plantar 

flexors and the co-contraction of the shank muscles. Further, the activation pattern of the 

erector spinae became more physiologic on the treadmill. In the study of Kosak and Reding 

(2000), fifty-six stroke patients (40 ± 3 days post-stroke) needing at least moderate assistance 
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for ambulation were randomized to receive treadmill training with BWS or aggressive early 

therapist-assisted ambulation using knee-ankle combination bracing and a hemi-bar if needed. 

A treatment session of 45 min and an additional 45 min session of functionally oriented 

physical therapy was given daily in both groups. After a mean of 12.5 treatment days, no 

significant difference in walking endurance or speed was seen between the groups. Patients in 

both groups continued to improve their walking function up to the 10-month follow-up. A 

subgroup analysis of the more seriously handicapped patients receiving 12 or more days of 

training that these patients in the treadmill group showed a greater improvement in walking 

endurance and speed. Nilsson et al. (2001) showed similar results in their study of 66 stroke 

patients (8 – 56 days post-stroke) who initially required more than 14 s to walk 10 m. The 

treadmill training with BWS group and the control group received 30 min of training for five 

days a week throughout length the patients’ stay (1 – 4 months). In the control group, the 

walking training consisted of walking on the ground according to the Motor Relearning 

Programme for stroke devised by (Carr and Shepherd 1998).  The additional 30 min for both 

groups consisted other types of physiotherapy training to improve motor control and to 

strengthen functionally weak muscles and techniques to improve motor function in the paretic 

side. A similar improvement in groups was seen in walking velocity, motor performance and 

balance. 

 

In the study of Werner et al. (2002a), 28 non-ambulatory stroke patients (2 – 8 months post-

stroke) participated in a comprehensive 9-week rehabilitation programme. The first 3-week 

period consisted of daily physiotherapy and occupational, speech and neuropsychological 

therapy according to individual need. During the subsequent 3 weeks of specific intervention, 

patients in group A received treadmill training with BWS for 30 min and other forms of 

physiotherapy for 40 min five times a week. Physiotherapy following the Bobath concept 

included gait preparatory manoeuvres whilst sitting and standing and the practice of gait itself 

either on the floor or on the stairs. The patients in group B received only treadmill training 

with BWS for 30 min five times a week. Afterwards, patients in both groups participated in a 

comprehensive rehabilitation programme for another 3 weeks. Patients regained better 

walking ability by treadmill training with BWS plus physiotherapy. However, it has to be 

noted that the A group received twice as much therapy as B group. The obtained difference 

waned by four months as a result of a further improvement of gait ability in all patients in 

group B.  
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There have been few studies conducted into the effectiveness of treadmill training with BWS 

conducted in chronic, over six months post-stroke, patients. Trueblood (2001) showed 

treadmill training with BWS in chronic stroke patients was able to improve gait and balance. 

The mean time since onset of stroke was 12.8 months, but the range was 2 – 42 months. All 

patients were able to ambulate independently for at least 10 m with or without the use of an 

assistant device or AFO. In the first part, the patients were randomised to three modes of 

walking: level ground ambulation with assistant device; level ground ambulation with BWS 

and treadmill ambulation with BWS. The velocity was kept constant at their normal walking 

speed for all modes of ambulation. During BWS, at least 30 %, but no more than 40 % BWS 

was used. During all modes of walking, surface EMG of the pre-tibial and quadriceps 

bilaterally was recorded as well as on/off foot patterns using a stride analyser. The results 

showed improved symmetry when walking with BWS either over level ground or on a 

treadmill. Improved timing of muscle activity was apparent during ambulation with BWS, and 

this was even more pronounced in the group receiving BWS on the treadmill. In part two, 

thirteen stroke patients (10.9 months post-stroke, range 4-36 months) participated in the 

study. In the intervention group, eight patients received BWS training for six weeks, three 

times per week. On the first week, patients started at 40 % BWS and progressed over a four 

week period to 0 % BWS. On the last two weeks they ambulated over level ground with a 

harness but without BWS. In the control group, five patients practised with their necessary 

walking aids for the same amount of time. All experimental patients showed significant 

improvements in velocity, stride length, sound limb swing and stance time, involved initial 

and terminal double limb support, and total double limb support. In the control group, the 

variables remained the same or even deteriorated. No significant differences pre-post testing 

between control and experimental groups in their EMG characteristics occurred following the 

intervention. In part three, thirteen stroke patients (9.8 months post-stroke, range 4 – 20 

months) participated in the study. In this study, the intervention consisted of 8 weeks of BWS 

treadmill training three times per week for 75 minutes per session. The weight bearing was 

progressively increased throughout each intervention session on the treadmill until full weight 

bearing status was achieved as long as an appropriate gait pattern was evidenced upon visual 

inspection. They also ambulated on level ground to promote motor learning and carryover. 

Those results were similar to those described in their previous study. In addition, results from 

Tinetti balance and total Tinetti scores (Tinetti 1986) were better in the intervention group. 

No significant differences were apparent in the six minutes’ walking test.  
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It has been claimed that the amount of BWS should be limited to 30 % (Danielsson and 

Sunnerhagen 2000). In a study with 11 hemiparetic patients reported by (Hesse et al. 1999a), 

the gait of the hemiparetic patients was analyzed on a floor and on a treadmill under full 

weight-bearing conditions and with BWS of 15 % and 30 %. These amounts of body weight 

relief were chosen based on clinical experience and a preliminary study that found a BWS of 

more than 30 % was not advisable because of a significant reduction of the performance of 

the relevant weight-bearing muscles in the affected lower limb of hemiparetic subjects (Hesse 

1997). Single-stance duration of the affected leg increased, the relative double-support time 

decreased, and the swing symmetry improved with increasing BWS (15 % and 30 %). 

Simultaneously, vertical ground-reaction forces and the functional activity of antigravity 

muscles decreased. The analysis of EMG showed less plantar flexor spasticity on the 

treadmill with 15 % BWS, in 13 of 18 subjects. In the study of Danielsson and Sunnerhagen 

(2000), 9 hemiparetic and 9 healthy subjects walked on a treadmill with 0 % and 30 % BWS 

at their self-selected and maximum walking speeds. At the self-selected speed as well as at the 

maximum walking speed, the mean oxygen uptake was significantly lower with 30 % BWS. 

The patient group walking at their self-selected speed, the mean oxygen uptake was 10.8 ml . 

kg-1 . min-1 with 0 % BWS and 9.4 ml . kg-1 . min-1 with 30 % BWS. At the maximum speed, 

their corresponding values were 11.2 ml . kg-1 . min-1 and 9.9 ml . kg-1 . min-1. The heart rate 

was also lower with 0 % BWS in both groups. The respiratory ratio was unchanged 

throughout the four measurements. 

  

Hesse and his coworkers devised a 

mechanical gait trainer (fig 3), enabling 

patients to perform repetitive practice of 

gait-like movement without overstraining 

the therapists (Hesse et al. 1999a; Hesse et 

al. 1999b; Hesse et al. 2000). In the device, 

the patients are supported by a harness and 

stand with their feet on the motor-driven 

footplates. Patients can practice gait-like 

movements on the gait trainer, and this is 

intended to achieve better symmetry of 

posture, larger hip extension during stance, 

less knee flexion and less ankle plantar  

 

 
Figure 3. The patient practises walking 

on the gait trainer.
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flexion during swing when compared with the treadmill walking (Hesse et al. 1999b). Only one 

therapist is necessary to assist the patient on the gait trainer. In a study of subacute, 

nonambulatory stroke survivors performing six weeks of walking exercises (Werner et al. 

2002b), no differences were found between treadmill training with BWS and gait trainer 

exercises using such outcome measures as Functional Ambulation Category (Holden et al. 1984), 

gait velocity, Rivermead Motor Assessment (Collen et al. 1990) or Modified Ashworth Score 

(Bohannon and Smith 1987). The gait trainer was at least as effective as treadmill therapy with 

partial body weight support but required less input from the therapist. Dietz and his group made 

an adaptation to the treadmill by supplementing it with driven gait orthosis (DGO) (Colombo et 

al. 2000) . With this modification the patient can move his/her legs in a physiological way on the 

moving treadmill. The orthosis is adjustable in size to allow different patients to use it. The 

actuators at the knee and hip joints are controlled by a position controller. The patient’s legs are 

guided individually according to a pre-programmed physiological gait pattern. With DGO, the 

legs of patients with different degrees of paresis and spasticity can be trained for more than half 

an hour resulting in physiological gait patterns. 

 

2.4.3 Gait training with functional electrical stimulation 

 

The single channel electrical stimulation to prevent foot drop in stroke patients was introduced 

already in 1961 (Liberson et al. 1961). The technique is now generally known as functional 

electrical stimulation (FES), because stimulation replaces or assists a functional movement that 

is lost after injury or diseases of the central nervous system. Different peroneal stimulators  in 

stroke patients have been studied in several studies (Granat et al. 1996, Burridge et al. 1997, 

Taylor et al. 1999). The interventions have mostly been carried using surface electrodes,

with the cathode on the skin close to the nerve as it passes around the head of the fibula and the 

anode on the motor point of the tibialis anterior or in the popliteal fossa (fig 4). The FES 

stimulation is a symmetrical biphasic output waveform. It is normally delivered with using 0.3 

ms pulse duration, frequencies of 25 up to 50 Hz and amplitude of 20 mA up to 60 mA. Most 

commonly, the patients use stimulation without the therapist, however only after receiving 

training of its use from the therapist.  
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Figure 4. Patient receives functional 

electrical stimulation to prevent foot 

drop during walking exercise 

 Vodovnik et al. (1965) devised a six channel 

stimulator, which started a period of 

development of different multichannel 

stimulators. This also promoted the study of 

control principles, stimulation sequences, 

correction of gait abnormalities, and 

therapeutic effects of multichannel 

functional electrical stimulation (MFES). 

Bogataj et al. (1995) compared MFES to 

conventional therapy in 20 subacute stroke 

patients. They found that progress during 

MFES combined with traditional therapy 

was better than could be achieved by 

conventional therapy alone. The 

improvement was assessed by gait speed, 

stride length, gait cadence and Fugl-Meyer 

physical performance scores (Fugl-Meyer et 

al. 1975). The patients were randomly 

 

allocated to one of two groups. One group received first the MFES program followed by the 

conventional therapy program. The other group received first the conventional therapy 

followed by MFES (AB/BA study design). Each patient was monitored with the same 

methods throughout a period of 6 weeks, participating for three weeks in each therapeutic 

program. Each patient participated in one therapy session per day, five times a week, one to 

two hours per day. The conventional therapy consisted of passive and active approaches. The 

reflex activity was reduced, the range of motion in the joints was increased or preserved and 

sensory input was enhanced with the passive approach. The active methods included Bobath 

technique, proprioceptive neuromuscular facilitation to normalize posture and facilitating 

activities to achieve a good functional movement. Gait training was performed by using AFO 

or KAFO. During the MFES therapy period, the conventional gait therapy was replaced by 

MFES-assisted gait training. Each MFES therapy session lasted from 30 minutes to one hour 

with MFES being delivered with surface electrodes on the peroneal nerve for ankle 



 36

dorsiflexion, the soleus muscle for ankle plantar flexion, the hamstring muscles for knee 

flexion, the quadriceps femoris musculature for knee extension, the gluteus maximus muscle 

for hip extension and stabilization of the pelvis during stance, and optionally the triceps 

brachii muscle for reciprocal arm swing during the swing phase of gait for the ipsilateral leg. 

The stimulation was electrically synchronized to the gait pattern. It was delivered, when the 

patients walked on a 100-m walkway. The review by Daly et al. (1996), stated that the 

stimulation was useful, but the more muscles which were stimulated, the better improvements 

in gait to be expected. They also stated that intramuscular electrodes were more efficient than 

surface electrodes. The additional benefit of intramuscular electrodes has also been described 

in a single case study of two chronic stroke patients (Daly and Ruff 2000). 

 

MFES has also been combined with BWS treadmill training resulting in an improvement in 

the walking ability of non-ambulatory chronic (3 months – 1 year) stroke patients (Hesse et al. 

1995b). The study was carried out in an A-B-A single case study design with seven patients. 

The first three week phase (A-phase) consisted of 30 min BWS treadmill training with MFES 

each workday. The subsequent three weeks (B-phase) consisted of 45 min comprehensive 

neurodevelopmental physiotherapy sessions daily. Finally, there was another A-phase. MFES 

was delivered almost identically as in the study of Bogataj et al. (1995). The walking ability 

(FAC) and gait velocity improved only during the A-phases. The Rivermead scores for leg 

and trunk and gross functions improved steadily throughout the study.  

 

The number of the patients in different studies of gait training has varied (table 1). In six 

studies there was an intervention and a control group with comparable interventions. Four of 

these were randomized controlled studies (RCT) (Visintin et al. 1998, Kosak and Reding 

2000, Nilsson et al. 2001, Schauer and Mauritz 2003). In these RCT studies the group sizes 

varied from 11 to 43. However, the patients in these four studies were 8 – 148 d post-stroke, 

i.e. they were patients in the subacute state. The line between subacute and chronic stroke is 

difficult to draw. The Copenhagen Study indicated that recovery of walking function occurs 

in 95% of the patients within the first 11 weeks after stroke. This rapid recovery period may 

be the subacute state. There are also studies in which patients over six months post-stroke 

have improved their walking speed and walking capacity (Silver et al. 2000, Ada et al. 2003). 

However, these studies lacked either the control group or there was no comparable method 

used in a control group. It would be useful to have information of the degree of brain 
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plasticity in different phases of stroke recovery to determine exactly when the spontaneous 

recovery is over.   

 

Table 1. Gait rehabilitation related studies referred to in the text. 
 
            n   post-stroke       reported 
  (inter./contr.)  mean or range   effects            comments 
Hesse et al. 1994 148   39 – 962 d          +                             no controls 
Schauer & Mauritz 2003   23 (11/12)         44 d         ++            comparable interventions 
Ada et al. 2003   27 (13/14)     7 – 60 mo        ++  different aims for interventions 
Silver et al. 2000     5     9 – 70 mo        ++                         no controls 
Hesse et al. 1995a     7     3 – 12 mo          +   no controls, ABA design 
Visintin et al. 1998   79 (43/36)   27 – 148 d        ++    comparable interventions 
Hesse et al. 1999a   18     3 – 11 mo           -                   no intervention 
Kosak & Reding 2000   56 (34/22)       40 d            -            comparable interventions 
Nilsson et al. 2001   60 (28/32)     8 – 56 d           -            comparable interventions 
Werner et al. 2002a   28 (14/14)     2 – 8 mo          +       different durations in groups 
Trueblood 2001   10     2 – 42 mo           -                            no intervention 
Trueblood 2001   13 (5/8)     4 – 36 mo          +            comparable interventions 
Trueblood 2001   13 (8/5)     4 – 20 mo          +            comparable interventions 
Werner et al. 2002b   30 (15/15)     1 – 3 mo          -  comparable interventions 
Granat et al. 1996   18     3 – 36 mo          +                                   no controls 
Burridge et al. 1997   32 (16/16)   43 mo/59 mo        +      different durations in groups 
Taylor et al. 1999 101       5½ y        ++                                  no controls 
Bogataj et al. 1995†   20 (10/10)       49 d        ++  different aims for interventions 
Hesse 1995b     7     3 – 12 mo           +             no controls, ABA design 
d = days, mo = months, y = years, reported effects by researchers: - = no effect, + = mild 
effect, ++ = clear effect, 
comparable interventions = same time and amount of walking exercise in different methods, 
different aims for interventions = method used in control group did not improve walking or in 
AB/BA study design† the other method did not concentrate on walking 
 

2.4.4 Other exercises supporting gait re-education 

 

Postural balance is closely related to gait ability (Nichols 1997, Shimada et al. 2003). In a 

study of balance rehabilitation program with visual cue deprivation, outcome measures 

consisted gait velocity, timed stair climbing, and self-assessment of ease of gait in addition to 

balance under six sensory conditions (Bonan et al. 2004). Twenty patients (over one year 

post-stroke) were assigned either to group with or without visual cue deprivation. Each 

session lasted for 60 min five days a week for four weeks. Both groups improved, but balance 

improved more in the vision-deprived group than in the free-vision group. The improvements 

in gait measures correlated significantly with improved balance. Particularly in gait 

interventions, special balance exercises are usually included in other physiotherapy in 
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addition to the walking exercises (Kosak and Reding 2000). However, walking exercises are 

at the same time balance exercises. In the study of Jaffe et al. (2004), 20 patients (1.3 – 8.7 

years post-stroke) participated in training of stepping over obstacles while walking. Ten 

identical stationary obstacles of a selected height and length were used. Ten patients in the 

real object training method wore a gait-belt and stepped over foam obstacles in a hallway. In 

the virtual object training method, ten patients walked on a treadmill at a self-selected 

walking speed with harness without BWS. While walking on the treadmill, the patients 

stepped over the virtual obstacle with each foot for a total of 10 steps. The lateral view of the 

legs provided a visual cue, collision with the obstacle produced vibro-tactile and auditory 

feedback for stepping. Twelve trials over these ten obstacles in both groups constituted one 

session and six sessions of approximately one hour duration over two weeks were provided.  

 

The effects of muscle strengthening and physical conditioning training has been studied in 

chronic stroke patients (Teixeira-Salmela et al. 1999, Teixeira-Salmela et al. 2001). Thirteen 

patients participated (1 – 34 years post-stroke) in a ten week training program. Each 60 – 90 

min training session included 1) a warm-up consisting of calisthenics, mild stretching, and 

range of motion exercises, 2) aerobic exercises, consisting of graded walking plus stepping or 

cycling, 3) strength training, and 4) a cool-down period, consisting of muscular relaxation and 

stretching exercises. Patients demonstrated increases in strength of the affected muscle 

groups, in their general level of physical activity (Human Activity Profile, Fix and Daughton 

1988), in quality of life (the Nottingham Health Profile, Ebrahim et al. 1986), and in gait 

speed and rate of stair climbing even though there were no measurable changes of spasticity 

in either quadriceps or ankle plantarflexors (Teixeira-Salmela et al. 1999). In association with 

the improved speed, increases in cadence and stride length were observed, while stance time, 

double support time and symmetry ratio remained unchanged (Teixeira-Salmela et al. 2001).  

 

In the study of Moreland et al. (2003), 130 patients (on the average 37.5 weeks post-stroke) 

underwent 9 lower-extremity exercises three times per week for varying lengths of stay (mean 

6.8 weeks). The thirty min exercise sessions were designed to be performed in functional 

patterns of movements, with the exception of the ankle exercises. The first four exercises 

were performed in the standing position, the fifth was from sit to stand, and the last four were 

ankle movements with an ankle exerciser while sitting. Patients received also conventional 

physical therapy; techniques to facilitate and inhibit abnormal movements, balance retraining, 

motor control exercises, stroke mat classes, gait training, and gross motor skills training. In 



 39

contrast to Teixeira-Salmela et al. these workers detected no improvement in gross motor 

function (Chedoke-McMaster Stroke Assessment including two meters walking test, Gowland 

et al. 1993), whether the patient performed progressive resistance exercise with conventional 

physiotherapy or the same exercises without added resistance and with conventional 

physiotherapy (Moreland et al. 2003). 

 

Also home-based exercise for stroke patients is claimed to be feasible (Duncan et al. 1998). 

Twenty patients (on average 61 days post-stroke) were randomized into two groups. In the 

intervention group, the exercise program was designed to improve strength, balance, and 

endurance and to encourage greater use of the affected extremity. The program included 23 

visits by a physiotherapist for 90 min in duration for 8 weeks. Patients were instructed to 

continue the exercise intervention at home for an additional four weeks (35 session in total). 

The control group received usual care as prescribed by the patients’ physicians varying in 

intensity, frequency, and duration. Six patients received home health visits, and 4 received 

outpatient therapy. Most often the therapy consisted of balance training and bimanual 

activities followed by progressive resistive exercises and facilitative exercises. None of the 

patients in the control group received endurance training. There was an average of 39 visits 

with the average duration of each visit being 44 min. At the 12-week follow-up, the 

experimental group demonstrated a greater improvement in lower extremity Fugl-Meyer 

scores than the usual care group. There were also significant differences in changes in gait 

speed between the groups. In the control group, the gait velocity was 0.57 ms-1 at the baseline 

and 0.65 ms-1 at the end of 12 weeks. In the experimental group, the speed were 0.42 ms-1 and 

0.67 ms-1. There were no statistical differences in changes in upper extremity Fugl-Meyer 

scores (Fugl-Meyer et al. 1975), the 6-minute Walk (Guyatt et al. 1984), the Jebsen Test of 

Hand Function (Jebsen et al. 1969), Bartherl Index (Mahoney and Barthel 1965), and Lawton 

Instrumental ALD Scale (Lawton 1988). 

 

In the future it may become possible to combine gait training with pharmacotherapy. This 

technique has also been developed from animal studies and the first human studies were 

performed in SCI patients (Rossignol 2000). Amphetamine, a drug which releases 

noradrenaline from the presynaptic terminals, has been studied both in animals and in stroke 

patients. By releasing noradrenaline in the brain and spinal cord, amphetamine has been 

shown to promote recovery of function in animal models of brain injury. In spinalized cats, it 

was demonstrated that the combination of noradrenergic drugs with intensive locomotor 
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training was efficacious in accelerating locomotor recovery. Francisco and Boake (2003) have 

reported positive results with intrathecal baclofen administration combined with 

physiotherapy in 10 chronic ambulatory spastic stroke patients (9 – 55 months post-stroke). 

The mean time interval from pump implantation to follow-up was 8.9 months. The walking 

speed increased from 0.37 ms-1 to 0.52 ms-1, lower-extremity spasticity score from 2.1 to 0.4 

and the functional mobility score from 18 to 21 (five items of the FIM). Since all participants 

received physiotherapy, the improvements in the outcome measures could have been due to 

either the intrathecal baclofen pump or the combination of intrathecal baclofen and 

physiotherapy.  
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3 AIMS OF THE STUDY 
 

The main purpose of this study was to assess the content and effects of gait rehabilitation in 

patients with chronic stroke. This was done by detailed investigation of specific areas 

affecting the total gait rehabilitation outcome. 

 

The specific questions of the present study were: 

 

1) What is the amount and content of the performed exercise of a carefully tailored 

three weeks gait-oriented physiotherapy program for chronic stroke patients in 

an in-patient rehabilitation setting? (I) 

 

2) What kind of postural balance and balance deficits do ambulatory patients with 

chronic stroke have and are there differences between the left and right 

hemiparesis? (II, IV) 

 

3) What kind of gait characteristics do patients with chronic hemiparesis have and 

what are the effects of the gait-oriented rehabilitation (either body-weight 

supported training or physiotherapy not emphasizing any special therapy)? (III) 

 

4) Are there differences in the effects of two gait rehabilitation exercise strategies, 

one with body-weight supported electromechanical gait trainer exercise and the 

other with active walking exercise, in patients over six months post-stroke? (IV) 
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4 SUBJECTS AND METHODS 
 

4.1 SUBJECTS 

 

The study population consisted of a total of 89 subjects: 59 chronic stroke patients and 30 

healthy subjects (table 2). The study was approved by the Hospital District of Northern Savo 

Research Ethics Committee, and written informed consent for participation in the study was 

obtained from all subjects. Patients in the different studies were from the same group of 59 

patients (Fig 5). All patients were initially diagnosed with MRI or CT. The patients fulfilling 

the inclusion criteria were selected from the patient material of the Brain Research and 

Rehabilitation Center Neuron between years 2001 – 2003. The randomized 45 patients were 

selected between 2002 – 2003 and control stroke group in study III was selected 

retrospectively from the year 2001.  

 

Table 2. Characteristics of study population (mean ± SD).* 

Study   n age post-stroke            gender                         
    (years) (years)          (m/f) 
I patients  20 53.3 ± 9 2.6 ± 2.5           17/3 
II patients  30 52.9 ± 9  2.6 ± 2.5           24/6 
 healthy subjects 30 49.9 ± 5            10/20 
III patients  37 53.8 ± 8 2.6 ± 2.3           33/6 
IV patients  45 54.3 ± 8 2.9 ± 3.8           37/8 
* Patients in different studies were from the same group of 59 patients 

 

4.1.1 Patients 

 

For study I, twenty chronically hemiparetic patients during their in-patient rehabilitation 

period participated in the study. Patients with first supratentorial, ischemic or hemorrhagic 

infarction at least 6 months earlier were selected to the study, if they had 1) slow or difficult 

walking, 2) no unstable cardiovascular disease, 3) no severe malposition of joints, and 4) no 

severe cognitive or communicative disorders. Ten patients had left-sided and ten right-sided 

hemiparesis. The cause was a supratentorial infarction in 11 cases and an intracerebral 

hemorrhage in 9 cases. The patients’ gait abilities varied at the onset of the three-week 

inpatient period. The Functional Ambulation Category  (FAC) was assessed to record the 

level of walking ability (0 – 5) (Holden et al. 1984). None of these patients belonged to FAC 
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1 (needs two assistants to walk) or FAC 2 (needs someone for support to maintain balance 

while walking). Three of the patients needed to have someone walking beside them to give 

them confidence (FAC 3), 11 could move independently but needed help with stairs or on 

uneven ground (FAC 4), and five were fully independent in walking (FAC 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Subjects in the different studies. In study I, the first 20 chronic stroke patients 

randomized to gait trainer groups were selected to further analysis (green). In study II, 

the first 30 patients regardless of the group were selected (yellow).  In addition there 

were 30 healthy subjects in study II. In study III, the first 23 patients randomized to gait 

trainer groups were selected (blue). In addition there was a control group of 14 chronic 

stroke patients in study III. In study IV there were 45 randomized patients (red). 
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For study II, the group of patient consisted of 30 patients with chronic stroke fulfilling the 

same inclusion criteria as in study I. Fifteen patients had left-sided and 15 right-sided 

hemiparesis. All patients had clinically assessed asymmetrical hemiplegic gait pattern and 

most used a walking stick and/or an orthosis for everyday ambulation. One patient needed 

someone to support him to maintain balance while walking (FAC=2). Five of the patients 

needed to have someone walking beside them to give them confidence (FAC=3), 13 could 

move independently but needed help with stairs or on uneven ground (FAC=4), and eleven 

were fully independent in walking (FAC=5). 

 

For study III, 37 chronic stroke patients fulfilling the same inclusion criteria as in study I 

participated in an in-patient rehabilitation period. Twenty patients had left-sided and 

seventeen had right-sided hemiparesis. The cause was an ischemic infarction in 21 cases and 

an intracerebral hemorrhage in 16 cases. The group of 23 patients fulfilling the inclusion 

criteria after the purchase of the gait trainer were selected to the intervention group. The 

control group consisted of 14 patients fulfilling the inclusion criteria, who did not receive 

body-weight supported (BWS) walking training. With the exception of the time since onset of 

stroke (p=0.007) the patient characteristics were similar in the intervention and control groups 

(table 3).  

 

Table 3. Characteristics of patients (mean ± SD) of gait–oriented rehabilitation group 
(GT) and conventional rehabilitation group (control) in study III. 

 
 GT control     p-value^ 
 n=23 n=14 

age (years)               52.5 ± 8.6   56.0 ± 6.3     0.194 
post-stroke (years)          1.7 ± 1.2     4.1 ± 2.8     0.007** 
weight (kg)               84.4 ± 12.2   78.4 ± 15.0     0.194 
height (cm)  173.3 ± 7.6    171.4 ± 9.8     0.512 
men/women         20/3        11/3     0.699 
infarction/hemorrhage         15/8          6/8     0.653 
left/right hemiparesis        13/10          7/7     0.183 
FIM (points)  106.1 ± 9.4  109.6 ± 7.8     0.249  
MMAS1-5  (points)   19.2 ± 4.0    22.1 ± 4.6     0.054 
10 meters’ walking test (s)   25.3 ± 12.2    23.8 ± 12.5     0.726 
^ = t-test, Pearson χ2 or Fisher’s exact test,  
** = p<0.01 
FIM = Functional Independence Measurement 
MMAS1-5 = First five items of Modified Motor Assessment Scale  
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For study IV, a total of 51 chronic stroke patients fulfilled the same inclusion criteria as in 

study I were entitled to an inpatient rehabilitation period. Three patients of the 51 patients 

refused to participate in the study, one was a too good walker in clinical assessment at the 

start and one considered that the protocol was too intense in clinical assessment. One patient 

interrupted the study for medical reasons. Thus, study IV consisted of 45 patients. The block 

randomization was used in the following way: patients, who filled the criteria in the 

neurological examination in the beginning of the rehabilitation period and gave their consent, 

were randomly allocated to three different walking exercise groups. The envelopes indicating 

the groups were sealed separately for patients with FAC 2 and 3 and with FAC 4 and 5. The 

clinician announced the FAC to the secretary, who made the allocation. Later it was observed, 

that patients with FAC 2 and 3 were rare and thus more FAC 4 and 5 envelopes were written. 

This explains why the number of patients with FAC 2 and 3 differed from that of FAC 4 and 

5 (table 4). All patients had clinically assessed asymmetrical hemiplegic gait pattern and most 

used a walking stick and/or an orthosis for everyday ambulation. Four patients needed 

someone to support them to maintain balance (FAC=2), six of the patients needed to have 

someone walking beside them to give them confidence (FAC=3), 18 could move 

independently but needed help with stairs or on uneven ground (FAC=4), and seventeen were 

independent in walking (FAC=5). Although some of the patients were fairly independent in 

walking, their walking speed was extremely slow.  

 

The presence of neglect was based on basic neuropsychological testing. Several tests, i.e. 

Behavioural Inattention Test (Wilson et al. 1987), visual memory testing and double 

simultaneous stimulation testing were used. The presence of aphasia was based on qualified 

assessment by a speech therapist, and Diagnostic Aphasia Examination was used (Goodglass 

and Kaplan 1983). All but two patients were fully right-handed before the stroke. One patient 

could use both hands and one patient was left-handed. After stroke, the left-handed patient 

with left hemiparesis learned to use his right hand. The patients with right hemiparesis learned 

to use their left hand to various degrees. Characteristics of the patients corresponded in all 

three groups (table 4). 
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Table 4. Characteristics of patients (mean ± SD) of the gait trainer groups (GTstim and 
GT) and walking exercise group (WALK) in study IV.  

 
 GTstim GT WALK p value# df       F/χ2 
 n=15 n=15  n=15 

age (years)             53.3±8.9     51.2±7.9    52.3± 6.8      0.770 2,42   0.26 
post-stroke (years)        2.6±2.4        2.4±2.6       4.0±5.8      0.505 2,42   0.69 
weight (kg)             79.8±12.9   89.9±13.5    79.4±14.9     0.072 2,42   2.81 
height (cm)                     171.5±7.2     175.6±7.0      172.5±6.9    0.263 2,42   1.38 
heart rate at rest        72.4±12.6   68.8±9.7 63.5±10.5  0.097   2,42   2.47 
SSS (points)             43.8±6.9 44.0±7.3 40.1±6.2 0.230 2,42   1.52 
10 meters’walking time (s) 44.0±36.2 39.6±35.4 39.5±25 0.911 2,42    0.09 
men/women      13/2     13/2     11/4 0.544 2        1.22 
infarction/hemorrhage      10/5       7/8       8/7 0.533 2        1.26 
left/right hemiparesis       9/6       8/7       5/10 0.315 2        2.31 
aphasia no/yes               10/5     11/4       7/8 0.293 2        2.46 
neglect no/yes     14/1     12/3     14/1 0.407 2        1.80 
position sense norm/abnorm  10/5     10/5       8/7 0.685 2        0.76 
patients in FAC 2 (n)        1        2        1 0.987^ 6        0.95 
patients in FAC 3 (n)        2        2        2   
patients in FAC 4 (n)        7        5        6  
patients in FAC 5 (n)        5        6        6   
SSS=Scandinavian Stroke Scale. 
FAC=Functional Ambulatory Category 0–5: 2= need someone for support, 3= need to have someone walking 
beside them to give them confidence, 4= could move independently but need help with stairs or on uneven 
ground and 5=fully independent in walking. 
# = p values obtained using one-way ANOVA or Pearson’s chi-square. 
^ = FAC and group table  
 

4.1.2 Healthy volunteers 

 

The healthy control group in study II consisted of 30 age-matched normal volunteers drawn 

from the personnel of the hospital and local inhabitants. Inclusion criteria for normal subjects 

were fit for work without illnesses affecting postural stability. Subjects were free from 

neurological diseases and used no medication influencing the central nervous system. 

 

4.2 ASSESSMENT METHODS 

 

4.2.1 Clinical assessment 

 

The neurological examination was made at the beginning of the rehabilitation period. Medical 

records were used to find out basic information of the patients, for example the time since the 

onset of stroke. A neurologist also tested the patient filling the Scandinavian Stroke Scale 
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(SSS) (De Haan et al. 1993). SSS assesses the patient’s functional status. It includes items on 

consciousness, orientation, eye movements, facial palsy, motor function of arm, hand and leg, 

gait and speech. Each item is scored (0–12) with a maximum of 58. In the validation of four 

scales for stroke patients (Roden-Jullig et al. 1994), fifty patients were examined by a 

physician over a period of five days from admission to the hospital with SSS (De Haan et al. 

1993), Mathew (Mathew et al. 1972), Toronto (Cote et al. 1988) and Fugl-Meyer stroke scales 

(Fugl-Meyer et al. 1975) and the Barthel Index (Mahoney and Barthel 1965). The last ten 

patients were also investigated by another doctor in the same manner and by nurses with the 

SSS only. All scales correlated highly significantly. The interobserver agreement was 

excellent between the physicians but not as good between the physician and the nurses. Also 

in another study, acute stroke admissions to a hospital 50 stroke patients were examined 

(Barber et al. 2004) and thus had their SSS scores assessed by an experienced physician 

within four hours of the examination performed by the medical admission team. Two 

examiners, blinded to the patients’ clinical condition, later independently estimated 

retrospective SSS scores using information documented in the medical admissions notes. 

Weighted kappa statistics for agreement between domains of the face-to-face and 

retrospective SSS were 0.73 for consciousness, 0.60 for eye movements, 0.83 for arm motor 

power, 0.71 for hand motor power, 0.81 for leg motor power, 0.81 for orientation, 0.80 for 

speech, and 0.53 for facial palsy. The intraclass correlation coefficient (ICC) for face-to-face 

and retrospective SSS composite scores was 0.97, p<0.0001. Inter-rater reliability for the 

different components of the retrospective SSS was excellent (kappa values greater than 0.75) 

apart from consciousness (0.71) and eye movements (0.58). 

 

All other measures were performed at the start (I, II, III, IV), after two weeks (III, IV) and at 

the end of the three weeks (I, III, IV) of rehabilitation. Excluding the Functional 

Independence Measure (FIM) (Keith et al. 1987), all measurements were performed also at 

the six months follow-up (III, IV). FIM was performed by a nurse and the other tests by a 

researcher. 

 

The FIM has been developed as a standard measure of disability for use in rehabilitation 

centers (Wade 1992). The FIM includes 18 items in the area of personal care, sphincter 

control, mobility, locomotion, communication and social cognition (I – IV). Each item is 

scored from 1 (total assistance required) to 7 (complete independence). Thus the FIM scale 

can range from 18 to 126. Based on a meta-analysis of 11 studies including 1568 patients 



 48

(Ottenbacher et al. 1996), FIM demonstrated acceptable reliability across a wide variety of 

settings, raters, and patients. The results revealed a median inter-rater reliability for the total 

FIM of 0.95 and median test-retest and equivalence reliability values of 0.95 and 0.92. The 

median reliability values for the six FIM subscales ranged from 0.95 for self-care to 0.78 for 

social cognition. For the individual FIM items, median reliability values varied from 0.90 for 

toilet transfer to 0.61 for comprehension. Median and mean reliability coeffiecients for FIM 

motor items were generally higher than for items in the cognitive or communication 

subscales. 

 

4.2.2 Assessments of motor abilities 

 

The motor abilities were studied with a battery of measurements. The spasticity was measured 

by the Modified Ashworth Scale (Wade 1992), muscle force by the Motricity Index (Wade 

1992), motor ability by the Modified Motor Assessement Scale (Carr et al. 1985), postural 

balance by the force plate (Pajala et al. 2004), gait by the ten meters’ walking test (Wade 

1992), six minutes’ walking test (Guyatt et al. 1984) and with a walkway embedded with 

pressure sensors (Cutlip et al. 2000, Bilney et al. 2003). 

 

Spasticity of the paretic leg was assessed (IV) with the Modified Ashworth Scale (MAS) 

(Wade 1992) including hip, knee and ankle mobility. MAS is scored from 0 (no increase in 

muscle tone) to 5 (affected part rigid in flexion or extension). Muscle force was tested by the 

Motricity Index (IV) including hip flexors, knee extensors and ankle dorsiflexors, but grading 

according to the Medical Research Council (MRC) from 0 (no movement) to 5 (full range of 

movement against power and the same force as on the opposite side) (Wade 1992). The 

reliability of the MAS and muscle power measured by MRC were studied in 35 acute stroke 

patients (age 73 y, time since onset of stroke 40 d, Gregson et al. 2000). Two raters assessed 

each subject with a 10 min rest period between the measures at about the same time on two 

consecutive days. Each measurement was made three times after a rest period of 30 s and the 

optimal score was recorded. Statistics (κ) with quadratic weights (Kw) showed moderate 

inter-rater agreement (Kw=0.45–0.51) and moderate to good intra-rater agreement (Kw=0.59– 

0.64) for the measurement of tone in the ankle plantarflexors. Good inter-rater agreement  

(0.73 – 0.79) and good to very good intra-rater agreement (Kw=0.77–0.94) for the 

measurement of tone in the knee flexors was demonstrated. The inter-rater agreement for knee 

flexors and extensors (Kw=0.85–0.95) as well as ankle dorsiflexors and plantarflexors 
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(Kw=0.84 – 0.91) were very good. Similarly, intra-rater agreement for the measurement of 

power was good to very good for all muscle groups (Kw=0.70–0.96). 

 

The patient’s motor ability was assessed with the Modified Motor Assessment Scale (MMAS, 

Carr et al. 1985) The MMAS items, scored from 0 to 6 with a maximum of 48 points, were 

supine to side lying, supine to sitting over the side of bed, balanced sitting, sitting to standing, 

walking, upper arm function, hand movements and advanced hand activities. In study III, the 

first five items of the MMAS were used (MMAS1-5), otherwise excluding the upper extremity 

items. In study IV the whole MMAS was used. The reliability of the Motor Assessment Scale 

was first investigated by (Carr et al. 1985). Fifteen stroke patients were videotaped while 

measured by one physiotherapist. Afterwards 20 physiotherapists or undergraduate students 

rated them by looking at the videotape. They had all practiced the scale with at least four 

patients. The percentage agreement was 87 and Pearson correlation was 0.95 between the first 

raters’s scores and 20 other raters. The first rater observed 15 stroke patients two times, with a 

four week interval. The test-retest Pearson correlation was 0.98. The last item, tonus, was not 

reported, because it could not be observed from the videotape.  

 

In two studies (Poole and Whitney 1988, Malouin et al. 1994), Motor Assessment Scale was 

compared to the Fugl-Meyer test (FMA) (Fugl-Meyer et al. 1975), a reliable and valid test for 

motor function in stroke patients (Duncan et al. 1983). The Spearman correlation coefficient 

between the total score on the MAS (except tone) and the total score on the FMA was 0.88 

(n=30 stroke, age 63.3, time since onset of stroke 1.0 years, Poole and Whitney 1988) and 

0.96 (n=32, age 60.0y, time since onset of stroke 64.5 days, (Malouin et al. 1994). The 

correlation coefficients for selected items on the Motor Assessment Scale and corresponding 

items on the FMA were all strong and significant at least at the level 0.01 except for sitting 

balance in both studies. The low correlation coefficient between sitting balance items was 

explained by differences in the nature of the items (Poole and Whitney 1988) or poor validity 

of the FMA balanced sitting item (Malouin et al. 1994).   

 

The interrater reliability coefficient (Spearman) for the total score on the Motor Assessment 

Scale between two raters was 0.99 (p<0.001, Poole and Whitney 1988). The reliability 

coefficients for each item on the Motor Assessment Scale were high and statistically 

significant at the level 0.001 except for general tone (r=0.29). Thus low correlation of general 

tone lead to its omission and the current version is now called the Modified Motor 
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Assessment Scale. Seven stroke patients (age 73.6 years) were individually videotaped while 

the trained physiotherapist assessed their performance on the MMAS. The Kappa coefficient 

between 14 therapists rating the MMAS from the videotape ranged from 0.73 to 0.96 

(Loewen and Anderson 1988). The range of Spearman rank-order correlation coefficients for 

the total MMAS were 0.83 to 1.00 with a median of 0.97. The mean Kappa values for the 

interrater reliability tests per individual item ranged from 0.56 (balanced sitting) to 1.00 (hand 

movements and advanced hand activities). Physiotherapists were trained to use the MMAS 

beforehand and they were given one month to practice the MMAS with patients. The 

therapists spent an average of four hours learning the MMAS and practised assessing the 

performance of an average of two patients with stroke. One month later, the video taped 

assessments were again shown to the therapist. The intrarater reliability tests for the MMAS, 

85 % of the Kappa values were in the excellent agreement range (≥0.75). The range of 

Spearman rank-order correlation coefficients were 0.81 to 1.00 with a median of 0.98. Only 4 

% of the Kendall’s Tau values for the intrarater reliability tests for individual item were non-

significant. 

 

4.2.2.1 Postural stability 

 

The neurological examination included the clinical assessment of sitting and standing balance. 

Postural recordings were made using a force plate system (Good Balance®, Metitur Oy, 

Jyväskylä, Finland) with strain-gauge transducers connected to a three-channel direct-current 

amplifier and 12-byte analog-to-digital converter connected to a computer (Pajala et al. 2004). 

After all measurement points were read, X-Y, i.e. anterior-posterior (AP) - medial-lateral 

(ML) coordinates were calculated on the basis of these vertical force signals by using the 

system’s own software. COP is the point location of the vertical ground reaction force vector 

(Winter 1995). The sampling rate for the force plate data was 50 Hz. 

 

The reliability of assessments of postural balance on the force plate has been described in 

several studies. However, only a few have analysed the COP variables of stroke patients 

(Rogind et al. 2005) and even fewer the reliability of the measurements (Dickstein and Dvir 

1993). The intrasession reliability of several COP variables was estimated by using the ICC 

based on an ANOVA model during quiet standing in healthy elderly individuals (mean age 60 

y, Lafond et al. 2004). They found that COP mean velocity was the most reliable COP 
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variable. Averaging two trials of 120 s allowed an ICC of 0.90, whereas averaging of four 

trials allowed an ICC over 0.95 in both the AP and ML directions. In general, the reliability 

increased with the duration of the trial from 30 s to 120 s. In the study of healthy subjects of 

mean age 55.4 Du Pasquier et al. 2003) test-retest three months apart yielded reliability 

coefficients of about 80 % for the speed of COP displacements. The duration of the quiet 

standing was 30 s. Le Clair and Riach (1996) found that optimum test-retest reliability was 

obtained at 20- and 30 s trial durations. According to ICC, the dynamic stability tests, i.e. a 

healthy male standing on the force plate and moving his COP through the targets shown on a 

computer screen, showed moderate trial-to-trial reproducibility and test-retest stability over 

time (Punakallio 2004). The test-retest stability improved when the reliability was estimated 

from the best of at least five trials with the dynamic balance test.  

 

In study II and IV, all subjects were allowed to choose a comfortable standing position on the 

force plate with feet slightly apart and were asked to stand quietly, keeping their feet still and 

facing a mark on the wall at a distance of about two meters. Patients with orthoses were 

recorded with shoes on (n=19). Only three of the eleven patients standing without any 

orthoses were recorded barefoot. All others felt too unstable to stand on the force plate 

without shoes. The patients kept their hands together in front of the trunk, the healthy hand 

holding the paretic wrist. The healthy subjects could choose which wrist was held by the other 

hand. First, after ten seconds, the body weight distribution was recorded. Then the static 

postural sway was recorded for 40 seconds in two consecutive trials (see movement of COP 

in one trial in fig 6). Absolute sway measures were corrected for the subject’s height. In study 

II, the first trial was used and 20 seconds (10 – 30s) in the middle of that data was further 

analyzed. In study II, the analysis was concentrated on anterior-posterior (AP) and medial-

lateral (ML) frequencies of center of pressure movements in different frequency bands 

separately in patients with left and right hemiparesis. The data of the patients were also 

compared with a group of age-matched healthy subjects. In study IV, a mean of two trials was 

used. The dynamic test included (IV) three screen-controlled lateral weight transfers, which 

were required to be performed as fast as possible (see movement of COP in one trial in fig 7). 

The mean time and distance of the COP movement were recorded in five consecutive trials.  
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Figure 6. The movement (mm) of the 

center of pressure (COP) of the patient 

with left hemiparesis (male, 64 y, 1½ y 

since the onset of the stroke) during 40 

seconds recording (Good Balance® force 

plate system). 

 

 

 
 

 

 

Figure 7. The movement (mm) of the 

center of pressure (COP) of one patient 

with right hemiparesis (female, 44 y, 4½ y 

since the onset of the stroke, FAC 4, 10m 

test 24 s, 6 min test 264 m) during 

dynamic balance recording (Good 

Balance® force plate system). 

 

 

In the static posture, the velocity of the COP displacements (speed) were derived for AP and  

ML directions. A further analysis of the frequency (II) characteristics was performed for 

1000 samples in both X and Y directions. The power spectral density function (PSD) of AP 

and ML sway was calculated using Welch‘s averaged, modified periodogram method 

(Matlab® Comsol Ab, Stockholm, Sweden) with a Hamming window and linear detrending. 

This process yielded power spectral density functions and a maximum frequency of 25 Hz 

was considered. A frequency resolution of 0.05 Hz was used.  Peak amplitudes for both AP 

and ML sway in nine frequency bands (from 0 to 2.7 Hz in 0.3 Hz bins) were collected. After 

analyzing the nine frequency bands, it was decided to combine them for further analysis to 

three final bands: 0.05 – 0.6 Hz, 0.6 – 1.5 Hz and 1.5 – 2.7 Hz. The final bands included over 

99% of the recorded power. 
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4.2.2.2 Gait  

 

The gait was assessed by the 10 meters’ walking test, six minutes’ walking test and with a 

walkway embedded with pressure sensors. In the 10 meters’ walking test (Wade 1992) (III, 

IV), the patient was asked to walk as quickly as possible. Patients were asked to start walking 

about one meter before a start line and to walk until they crossed the line by one meter. In the 

six minutes’ walking test (Guyatt et al. 1984) (IV), the patients were asked to walk as quickly 

as possible, but pacing themselves so that they could complete the task. The six minutes’ test 

was performed by walking along the marked distance (one lap 54 m). A digital stopwatch 

was used to record time in the 10 meters’ walking test and in the six minutes’ walking test. In 

all walking tests, patients were allowed to use walking aids, for example a dynamic orthosis 

or a cane. The same walking aids were used on every test occasion. 

 

The test-retest reliability of three timed walks to 10 meters repeated during two assessments 

one week apart proved that they were reliable for chronic stroke patients (Green et al. 2002). 

The ICC for all three within-assessment walks was 0.97 for both the first and second 

occasions. The between-assessment reliability was higher for the second and third walks 

(ICC 0.88) than for the first walk (0.87). The six minutes’ test was originally developed for 

cardiovascular populations. It has been found to be a reliable and valid test in healthy elderly 

individuals (Kervio et al. 2003) and patients with Alzheimer’s disease ICCs have ranged 

from .80 to .99 with 77 % of the variance explained by inter-subject difference. In chronic 

stroke patients, the Pearson correlations between self-paced gait speed over 8 m and six 

minutes’ walking distance was 0.92 (Eng et al. 2002).  

 

Spatial and temporal gait measurements were done (III) with a walkway embedded with 

pressure sensors (GAITRite®, MAP/CIR, Havertown, PA, USA (Cutlip et al. 2000). The 

length of the electronic walkway is 4.57 m consisting an active recording area of 3.66 m x 

0.61 m. A total of 13 824 sensors, each 1,25 cm in diameter, are arranged in 48 x 288 grids. 

The sensors transmit information about the geometry of the footprints and provide dynamic 

pressure mapping during walking by recording the location of activated sensors and the time 

of the sensor activation/deactivation.  
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Correlation coefficients for temporal parameters measured with a GAITRite® walkway 

system and a video-based system were high (≥0.94, Cutlip et al. 2000). Subjects walked 

across a walkway with embedded pressure sensors. Reflective markers were attached to the 

subjects' shoes and video capture was simultaneously performed during each trial. Video data 

were then digitized manually using peak software. Significant differences between systems 

were found with analysis of variance (ANOVA) for two parameters, step length and stride 

velocity (p=0.003, 0.0002).  

 

The ICCs between GAITRite® and stride analyser were moderate to high for single limb 

support (SLS) time (ICC (2,1)=0.69-0.91) and weak for the proportion of the gait cycle spent 

in double limb support (ICC (2,1)=0.44-0.57) performed by three walk trials at self-selected 

pace, three at fast pace and three at slow pace (Bilney et al. 2003). The stride analyser 

consisted of footswitches placed inside the shoes and attached to a portable data logger. 

There were very high correlations between the two measurement systems for gait speed (ICC 

(2,1)=0.99), stride length (ICC (2,1)=0.99) and cadence (ICC (2,1)=0.99). The reliability of 

repeated measures with these 25 healthy adults (aged 21-71 years, mean 40.5 years, S.D. 

17.2) for the GAITRite® was good at preferred and fast speed for speed (ICC (3,1)=0.93-

0.94), cadence (ICC (3,1)=0.92-0.94), stride length (ICC (3,1)=0.97), single support time 

(ICC (3,1)=0.85-0.93) and the proportion of the gait cycle spent in double limb support (ICC 

(3,1)=0.89-0.92). The repeatability of the GAITRite® measures were more variable at slow 

speed (ICC (3,1)=0.76-0.91). 

 

Also Menz et al. (2004) obtained excellent ICCs for walking speed, cadence and step length 

(ICCs 0.82 – 0.92, coefficients of variations (CVs) between 1.4 and 3.5 %) in a group of 30 

young adults (mean 28.5 y) and in a group of 31 older adults (mean 80.8 y). They walked at a 

self-selected comfortable walking speed across the walkway three times and repeated the 

process approximately two weeks later. Only base of support and toe in/out angles, although 

exhibiting high ICCs, were associated with higher CVs and it was concluded that these 

should be viewed with some caution, particularly in older people.  

 

The following parameters were analyzed: velocity (cm/s), cadence (step/min), step time (s), 

step length (cm), stride length (cm), swing time of cycle, swing % of cycle, stance time of 

cycle, stance % of cycle, double-support % of cycle, double-support time (s), step-time 
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differential, step-length differential and the Functional Ambulation Profile (FAP score, 

Nelson 1974). The calculations of the parameters were performed based on the geometric 

analysis of the footprints and are presented in more detail in the study of Titianova et al. 

(2003). The FAP scores are calculated automatically by the system, which uses different 

variables for this calculation (degree of asymmetry, base of support, the use of assisting 

devices, etc.). The final FAP score is derived by subtracting points from a maximum score of 

100. The FAP scores from 98 to 100 are obtained at an ordinary walking speed when step 

extremity ratios and step times are symmetrical and a dynamic base of support is less than 10 

cm. The concurrent validity and test-retest reliability of the GAITRite® walkway system has 

been shown to be excellent (Bilney et al. 2003). It is clear that this type of recording provides 

a considerable amount of data, but we concentrated on those variables which we considered 

to be most informative. All patients were asked to walk twice along the walkway as fast as 

possible. Both passes were used in the calculation. If the patient needed walking aids, the 

same walking aids were used on every test occasion. Asymmetry index (AI) of swing and 

stance times was calculated according to the study of Titianova et al. (2003). AI is a 

reflection of the asymmetry of walking. The sign of AI indicates the direction, positive 

values toward the affected side (AS) and negative toward the non-affected side (NAS). The 

magnitude of AI reflects the degree of asymmetry.  

 

4.2.3 Perceived exertion and heart rate 

 

Perceived exertion was recorded with the Borg Rating of Perceived Exertion Scale (Borg 

1982). This scale uses numbers indicating exertion, for example 6=minimum, 7=extremely 

light, 13=slightly strenuous, 19=extremely strenuous, 20 maximum. The patients were asked 

how hard they perceived their working every time in the last minute of 20 minutes walking 

exercise (I, III, IV) and in the last minute of the other two physiotherapy sessions (I). Heart 

rate (HR) was recorded with a heart rate monitor with a chest transmitter (Polar®, Polar-

electro Oy, Kempele, Finland). Heart rate (III, IV) was monitored continuously during the 

20 minutes’ walking exercise. The value of the last minute of the exercise was recorded.  

Patients with cardiovascular disease have been shown to be able to estimate their own 

exercise intensity by Borg Scale in line with their heart rate (Ilarraza et al. 2004).   
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4.2.4 Assessment of therapy 

 

The amount of therapy and its content were recorded in structured forms. The 

physiotherapists, nurses and the patients were familiarized with the detailed forms before the 

therapies began. The content of physiotherapy was recorded daily by the physiotherapist (I) 

detailing the gait on the floor, on the ground and on the stairs and other forms of 

physiotherapy methods. The chosen therapeutic alternative and duration of the therapy given 

were recorded.  

 

The treatment protocol involving the gait trainer exercise (I – IV) recorded speed, duration of 

therapy, number of steps and amount of body weight support. In the WALK group (IV), the 

duration of therapy and distance were recorded.  In addition, individual self-initiated training 

and participation in the groups were recorded daily on another form by the patient or by 

his/her nurse (I).  

 

4.3 INTERVENTIONS 

 

In study I, the reasons why the patients participated in the three-week inpatient period was to 

enhance their gait abilities and to improve their independence at home. Each patient received 

75 min physiotherapy including two physiotherapy sessions daily every workday for three 

weeks. In the first session, patients practised for 20 minutes in the electromechanical gait 

trainer (Gait Trainer®, Reha-Stim, Berlin, Germany). In the gait trainer, the patient is 

supported with a harness and his/her feet are placed on motor-driven footplates. The speed of 

the gait trainer can be selected between 0 – 2 kmh-1 which determines the number of steps 

during each session. Several hundred meters of gait can be practised in each session. The 

amount of the body weight supported by the harness is chosen according to the patient’s 

ability. The progression of the training was carried out individually by increasing speed and 

aimed at support less than 20 % of the body weight. Physiotherapy continued immediately 

for 25 minutes after walking in the gait trainer. Later during the same day, there was another 

physiotherapy session (30 min). The physiotherapy additional to gait trainer was carried out 

following individually set goals but always aimed at improving gait. The patients were also 

encouraged to practise by themselves with equipment available on the ward or in the fitness 

room. Equipment available for self-initiated training included active sitting equipment 
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(motorised/non-motorised arm cranking and/or leg cycling restorators, rowing machine, 

exercise bicycle) and active standing equipment (a supported standing system that provides 

reciprocal movement of the arms and legs, a step ergometer). Patients could participate in 

different exercise groups such as a balance group, swimming pool group, a sitting exercise 

group and a relaxation group. Each group session lasted for 30 min. The group consisted of 

3–8 participants and was supervised by a physiotherapist. 

 

In study III, 37 ambulatory chronic stroke patients participated in an in-patient rehabilitation 

period for three weeks in order to improve coping independently in their homes. In this 

study, two different interventions were compared. The group of 23 ambulatory chronic stroke 

patients participated in an intensive gait-oriented training program. Their physiotherapy was 

similarly carried out as in study I. In the control group, 14 chronic stroke patients participated 

in the routine rehabilitation period provided in our rehabilitation hospital not emphasizing 

special therapy but attempting to maintain functional abilities. In the gait-oriented group, 

patients received a total of 75 minutes of physiotherapy per day. In the control group, 

patients received 45 minutes of physiotherapy daily. The patients in both groups were also 

encouraged to practise by themselves using various equipment available on the ward or in the 

fitness room and to participate in different exercise groups.  

 

In study IV, participants were chronic stroke patients under 65 years of age entitled to 

receive an inpatient rehabilitation period provided by the National Social Insurance 

Institution. Each patient practised for 20 minutes walking either 1) in the electromechanical 

gait trainer with functional electrical stimulation (GTstim, n=15), or 2) in the gait trainer 

without stimulation (GT, n=15) or 3) on the floor (WALK, n=15). The GTstim group received 

functional electrical stimulation to two individually selected muscles. The stimulation was 

delivered (Bentrofit®, Bentronic, Munich, Germany) with surface electrodes on the gluteus 

maximus muscle for hip extension, the hamstring muscles for knee flexion, the quadriceps 

femoris musculature for knee extension, the peroneal nerve for ankle dorsiflexion on the 

paretic lower extremity. The frequency of the stimulation was 25 Hz with pulse width 0.3 ms. 

Duration of the stimulation for each muscle during the gait cycle was controlled individually. 

The stimulation was electrically synchronized to the gait pattern.  
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The progression of the training in both GT groups in study IV was carried out similarly as 

the gait trainer exercises in study I. The WALK group practised walking on the floor or out 

of doors with their individual walking aids. In the WALK group, the progression of training 

was carried out by increasing speed with the aim to decrease their reliance on walking aids or 

to permit them to walk in more difficult terrain. Physiotherapists guided verbally and/or 

manually the patients in all groups. Physiotherapy continued directly for 25 minutes after the 

walking exercises. Later during the same day, there was another physiotherapy session (30 

min). The physiotherapy provided in addition to the walking exercises was carried out as in 

study I. Patients were allowed to perform self-initiated training and to participate in different 

exercise groups similarly as in study I. 

 

4.4 STATISTICAL ANALYSIS 

 

The statistical analyses were carried out with using SPSS 10.1 for Windows-program (SPSS 

Inc. Chicago, USA). The normal distribution of the variables was tested by the Kolmogorov 

– Smirnov or Shapiro – Wilk –test. If the distribution was not normal a logarithmic 

adjustment was performed. This adjustment was made for the result of the ten meters’ 

walking test (I – IV), MMAS (IV) and sway parameters (II, IV). The age (II, III), time since 

onset of stroke (III), weight (II, III) and height (I, III), group means were compared using 

independent samples t-test. In study IV, age, time since onset of stroke, weight, height, heart 

rate, SSS, total distance of 15 gait sessions, and Borg Scale, means in GTstim, GT and WALK 

groups were compared using one-way ANOVA with the Tukey test. The gender (III, IV) 

diagnosis (III, IV) and side of the hemiparesis (III, IV), aphasia (IV), neglect (IV), and FAC 

(IV) frequency were compared using Pearson’s chi-square or Fisher’s exact test (III). The 

mean values of the speed and amount of BWS in the gait trainer were compared using 

independent samples t-tests (IV). In study II we calculated the mean values (for left and right 

hemiparetic patients and also healthy subjects) of velocity moment (VM), speed of COP 

movement in AP and ML directions and the peak amplitudes of each frequency band of AP 

and ML sway. These mean values were compared using one-way ANOVA with the Tukey 

test. Pearson’s correlation coefficients were used to test the correlation between the amount 

of weight on the paretic side for both AP speed and ML speed, and the correlation between 

the amount of weight on the paretic side and peak amplitudes for both AP and ML sway of 

three frequency bands. In study III, repeated measures ANOVA was used to evaluate the 

changes in MMAS1-5, ten meters’ walking time and gait information from the start of the 
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rehabilitation to its end in the intervention group. When significant differences were found, a 

post hoc analysis was performed to distinguish the differences between assessment time-

points using the Tukey test. In study III, a paired t-test was used to compare MMAS1-5, ten 

meters’ walking time and the gait variables at the end of rehabilitation and at follow-up to 

determine whether the variables in the follow-up remained stable in the intervention group. 

In the control group, a paired t-test was used to identify possible changes from the beginning 

to the end of rehabilitation (III). In study III, differences between the groups were tested by 

repeated measures ANOVA using a between factor for intervention and control groups. 

Correlations between gait variables and other assessed variables were identified using 

Pearson’s correlation coefficients (III). In study IV, repeated measures ANOVA was used to 

evaluate the changes between the beginning and the end of the rehabilitation, and to study 

group differences and interactions between the study groups and rehabilitation duration. 

Since the interactions and group differences were found to be non-significant, the main focus 

was placed on study changes in rehabilitation duration, in which the repeated contrasts 

analysis was performed. Friedman tests were used to evaluate the changes from the start to 

the end of rehabilitation in non-parametric variables. When differences were found in the 

Friedman test, Wilcoxon signed – rank test was performed (IV). A paired sample t-test was 

used to compare MMAS, 10 m, 6 min, dynamic balance variables at the end of rehabilitation 

and at six months to see whether the variables remained stable (IV). In all studies, results 

were considered significant if p<0.05. The effect size for walking distance in each group was 

calculated. The effect size was considered small (Cohen’s d ≥ 0.2), medium (d ≥ 0.5), and 

large (d ≥ 0.8). Effect sizes were also interpreted in terms of the percentage of non-overlap of 

the scores of the GTstim group with those of the GT and WALK groups. 

 

 

 

 

 

 

 

 

 



 60

5 RESULTS 
 

The results of each study are presented separately from study I to study IV. Additional 

results not included in any of the original reports are presented in section 5.3.2. 

 

5.1 THE CONTENT OF THE GAIT-ORIENTED PHYSIOTHERAPY PROGRAM 

(Study I) 

 

A total of 20 chronic stroke patients participated in study I. They received an inpatient gait-

oriented rehabilitation period, which included 75 minutes of physiotherapy daily, fifteen 

times during the three weeks’ rehabilitation. Physiotherapy started with 20 minutes walking 

exercise in the gait trainer. Physiotherapy continued immediately for 25 minutes after 

walking in the gait trainer. Later during the same day, there was another physiotherapy 

session (30 min). The amount of the instructed physiotherapy was the same for all patients. 

Patients received 19 hours (1125 min) of instructed physiotherapy (gait trainer exercises and 

other physiotherapy) and together with self-initiated training they practiced for a total of 28 

hours (1702 ± 404 min) in three weeks.  

 

5.1.1 Walking exercises 

 

The mean walking distance per patient performed in the mechanical gait trainer was 6400 ± 

1500 meters in 290 ± 33 min during the three week rehabilitation period. The mean weight 

support in the gait trainer started with 25 % of the body weight and ended up with 9 %. The 

mean perceived exertion in the gait trainer was 13.5 ± 2 on the Borg Scale. 

 

5.1.2 Other physiotherapy 

 

The further analysis of the 20 patients indicated that the practice time in the upright position 

was 62 % of the total duration of instructed physiotherapy. Most of the physiotherapy 

sessions supplementing the gait trainer, were spent doing three therapy methods: exercises of 

arms or trunk while sitting, standing exercises and walking on the floor (table 5). The mean 

duration of evaluation/planning was 10 min per patient. However, the patients were carefully 

evaluated for this study at additional times not included into the physiotherapy content. These 
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evaluations took three hours. The mean perceived exertion in the physiotherapy provided to 

supplement the gait trainer was 14.1 ± 1 on the Borg Scale. 

 
Table 5. Total duration of individual physiotherapy in addition to the sessions on the 
gait trainer divided according to specific contents during the three-week inpatient 
period (n = 20 chronic stroke patients) in study I. 
 
   Mean SD (range) 
   (min) 
Tonus inhibition  33 ±32 (0 – 100) 
Stretching   107 ±64 (15 – 290) 
Soft tissue techniques*  14 ±16 (0 – 55) 
Exercises in lower initial positions^ 38 ±26 (0 – 85) 
Upper limb/trunk exercises while sitting 143 ±63 (40 – 305) 
Lower limb exercises while sitting 52 ±37 (0 – 110) 
Exercise of transfers  15 ±22 (0 – 65) 
Exercises while standing  151 ±54 (30 – 225) 
Gait on even floor  149 ±69 (30 – 285) 
Stairs   79 ±32 (35 – 140) 
Gait on uneven ground  34 ±35 (0 – 110) 
Evaluation/planning  10 ±15 (0 – 55) 
Total duration   825 
* massage, lympha therapy 
^ exercises in lying, crawling position, standing on knees 
 

5.1.3 Self-initiated training 

 

Self-initiated training occurred most often in the sitting position (table 6). The most favoured 

apparatus was the motorised leg cycling restorator; in this apparatus most of the patients 

performed the cycling exercise without resistance (fig 8). 

 
Figure 8. Patient practises in the leg cycling restorator. 
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The total exercise time of all patients in that apparatus was 3960 minutes, with an average of 

20 sessions/patient. However, some patients practised clearly more than others. There was 

large interindividual variability in the amount of self-initiated training including group 

exercises; these ranged from 60 to 1260 minutes per patient. Participation in voluntary group 

therapies was not very impressive: seven patients did not participate in any of the groups, 

eight patients exercised from two to three times in a group, and the other five patients 

exercised from four to eight times in a group.  

 

Table 6. Total duration of participation in individual self initiated training (n = 20 
chronic stroke) in the study I. 
 
   Mean SD  
   (min) 
Active sitting equipment  329 ±294 
Standing apparatus   30 ±99 
Active standing equipment    14 ±39 
Gait and stairs   79 ±131 
Fitness room equipment   46 ±67 
 

5.2 POSTURAL BALANCE IN CHRONIC STROKE (Study II) 

 

5.2.1 Static postural balance 

 

Static postural balance was assessed using the force plate system. The analysis of 30 patients 

and 30 healthy subjects demonstrated that the balance of the patients with chronic stroke had 

deteriorated. The mean velocity moment (VM) of healthy subjects was 6.4±4 mm2s-1, i.e. a 

parameter which combines the speed and amplitude of the COP displacement. The patients 

with stroke had more than four times higher VM. The mean VM of the patients with left 

hemiparesis was 29.1 ± 23 mm2s-1 and it did not differ from 26.0 ± 30 mm2s-1 in the right 

hemiparetic patients.  

 

The mean speed of the COP displacement in the normal group was 5.6±2 mms-1 in the 

anterior-posterior (AP) direction and 3.1±1 mms-1 in medial-lateral (ML) direction. In the 

healthy subjects, the AP speed of COP was 1.8 times faster (p=0.000) than the ML speed. 

The COP displacement was more in the AP direction than in the ML direction also among 

stroke patients. The AP and ML speeds in the patients with left and right hemiparesis were 
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2.0 – 2.4 times faster (p<0.001) than those of healthy subjects. In the group of patients with 

left hemiparesis, the COP displacement in the AP direction was 1.5 times faster (p=0.001), 

and in the group of patients with right hemiparesis it was almost two times faster (p=0.000) 

than the ML speed. The patients with left and right hemiparesis did not differ in their mean 

AP and ML speeds from each other. 

 

The power peak magnitudes of COP displacements obtained in the frequency analysis of 

healthy subjects were lower than those of the patients with stroke (fig 9). Patients with left or 

right hemiparesis did not differ in the analyzed frequency bands of the power peak 

magnitudes directly. However, they differed from the healthy subjects in their power peak 

magnitudes, depending on the lesion side. The patients with left hemiparesis had significantly 

higher power peak magnitudes than healthy subjects only in the ML direction at lower 

frequencies, i.e. in bands 0.05 – 0.6 Hz (p=0.000) and 0.6 – 1.5 Hz (p=0.004) (fig 9). The 

patients with right hemiparesis had higher power peak magnitudes compared with healthy 

subjects in both ML (p=0.025, p=0.033) and AP (p=0.000, p=0.005) directions at the higher 

frequency bands 0.6 – 1.5 Hz and 1.5 – 2.7 Hz (fig 9).  

 

The weight distribution indicated that the patients with left hemiparesis had 35.4±14 % and 

the patients with right hemiparesis had 42.7±7 % of their body weight on the paretic side. 

The correlation between the percent of body weight on the paretic side and ML speed was –

0.53 (p=0.003). When we correlated the weight distribution with the frequency bands of the 

COP displacement, the power peak magnitudes correlated with weight distribution at higher 

frequencies in ML direction, but no correlation existed in the AP direction. The correlation 

between the percent of body weight on the paretic side and peak amplitudes in ML direction 

at 0.6 – 1.5 Hz was –0.42 (p=0.022) and at 1.5 – 2.7 Hz it was –0.39 (p=0.032). The less the 

body weight remaining on the paretic side, the more the patient swayed in the ML direction. 
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Figure 9. The power peak magnitudes of each frequency band of anterior-posterior and 
medial-lateral sway (mean values and standard errors) for the patients with left (n=15) 
and right (n=15) hemiparesis and normal subjects (n=30) in study II.  
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5.3 SPECIFIC GAIT CHARACTERISTICS AND EFFECTS OF REHABILITATION 

IN CHRONIC STROKE  

 

5.3.1 The gait-oriented physiotherapy compared to ordinary physiotherapy  (Study III) 

 

5.3.1.1 Physiotherapy program 

 

The intervention group of 23 chronic stroke patients receiving 75 minutes gait-oriented 

physiotherapy daily were compared to the control group of 14 patients receiving 45 minutes 

physiotherapy daily, which had no special effort on gait. The total duration of instructed 

physiotherapy was 1125 min in the intervention group and 675 min in the control group 

during three weeks’ rehabilitation. In the intervention group, the patients practiced walking in 

the gait trainer for 7054 ± 1255 meters in 300 min. Their mean speed at the start was 1.3 ± 

0.2 kmh-1 and this had increased at the end to 1.8 ± 0.3 kmh-1. The mean body-weight 

support in the gait trainer started with 23.4 ± 15 % of the body weight and ended up with 4.4 

± 5 %. The mean perceived exertion in the gait trainer was 13.3 ± 2 and the mean heart rate 

was about 100 beats per minute throughout the rehabilitation. In the intervention group, the 

825 min physiotherapy additional to the gait trainer exercises was similar as in the study I. In 

the control group, each patient received a total of 675 min of ordinary physiotherapy (45 

min/day).  
 

5.3.1.2 Gait characteristics 

 

The motor ability measured by MMAS1-5 (p=0.054) and ten meters’ walking time (p=0.726) 

were similar at the start of rehabilitation in both groups (table 3). The improvements in 

MMAS1-5 and ten meters’ walking time did not differ between the intervention and control 

groups (p=0.217 and p=0.195). In the intervention group, the MMAS1-5 increased 19.2 ± 4.0 

to 22.0 ± 3.1 points (p<0.0005) and in the control group 22.1 ± 4.6 to 23.7 ± 3.8 points after 

three weeks of rehabilitation (p=0.005). In the intervention group, the ten meters’ walking 

time decreased from 25.3 ± 12.2 s to 21.7 ± 12.1 s (p<0.0005) and in the control group from 

23.8 ± 12.5 s to 21.4 ± 12.1 s (p=0.006).  
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The group comparisons showed that the spatial and temporal characteristics of gait improved 

only in the intervention group receiving gait-oriented rehabilitation. The spatial and temporal 

characteristics of gait of the intervention group before, after two weeks and after the 

intervention are presented in table 7. The Functional Ambulation Profile (FAP) score, 

identifying the severity of individual gait abnormality, increased from 54.6 to 61.4 scores 

after three weeks (p=0.023). The velocity of gait increased from 45.0 cms-1 to 51.0 cms-1 

(p=0.015). With the increasing gait velocity, the decreases in step time on the AS (r = -0.45, 

p=0.031) and on the NAS (r = -0.49, p = 0.18) grew as did the step length (AS, r= 0.60, 

p=0.003, NAS, r=0.61, p=0.002). The step lengths, originally 43.1 / 34.0 cm (affected side, 

AS / non-affected side, NAS) increased to 46.3 / 36.8 cm at the end of rehabilitation 

(p=0.011 and p=0.040). Also the stride length increased both on the AS and on the NAS 

significantly (p=0.018 and p=0.006). At the start, the swing % of the cycle on the AS was 

typically only 24.3 whereas on the NAS it was 38.5. When both legs were examined, the 

step-time differential decreased during rehabilitation from 0.40 to 0.32 (p=0.043). For 

example, the cadence and step time changes did not reach statistical significance (table 7). 

All gait variables in the gait-oriented group had remained stable at the six months’ follow-up 

(table 7).  
 

The intervention group itself, using repeated measures analysis, improved in seven gait 

variables in three weeks, however the control group did not improve in any of the variables. 

When the control and intervention groups were compared, they differed in three variables. 

The 0.10 s increased step time on the AS of the control group differed from the 0.05 s 

decreased the step time in the intervention group (p=0.025). In the intervention group, the 

swing time of the cycle on the AS was at the start 0.72 ± 0.2 s and at end of the rehabilitation 

it was 0.69 ± 0.2 s, in the control group it was 0.63 ± 0.2 s at the start and 0.69 ± 0.2 s in the 

end (p=0.012). Moreover, the step-time differential in the gait-oriented group decreased 

whereas in the conventional group it actually increased (p=0.029). The Asymmetry index 

(AI) of stance and swing times were –21.4 ± 12 and 45.7 ± 26 at the start in the gait-oriented 

group and –18.3 ± 12 and AI 53.6 ± 43 in the control group. The AI values remained stable 

throughout the rehabilitation in both groups and they did not differ from each other.  
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Table 7. Spatio-temporal gait characteristics (mean ± SD) of chronic stroke patients of 
intervention group (n=23) at start, after two weeks and at the end of the rehabilitation 
and at the six months follow up in the study III. Post hoc p-values are in parenthesis. 
 

3 w. vs     Repeated 
Parameters  side      at start       two weeks       3 weeks  6 months  follow-up measures                              
                            p-value     p-value 
FAP, scores            54.6 ± 14        61.6 ± 16     61.4 ± 17  61.5 ± 16     0.509     0.023* 
   (0.017* 0.967) 
 
Velocity, cm/s            45.0 ± 23        49.5 ± 27     51.0 ± 29        50.8 ± 25     0.913     0.015* 
   (0.029* 0.269) 
 
Cadence, step/min           68.6 ± 21        71.9 ± 23        70.6 ± 22        71.0 ± 18     0.780     0.151    
 
Step time, s              AS     1.17 ± 0.5       1.11 ± 0.4       1.12 ± 0.4       1.08 ± 0.4    0.290     0.094 
 
              NAS  0.78 ± 0.3       0.78 ± 0.3       0.80 ± 0.4       0.75 ± 0.3    0.212     0.555 
 
Step length, cm         AS     43.1 ± 10        44.8 ± 11        46.3 ± 11        45.4 ± 11     0.293     0.011* 
   (0.136 0.118) 
 
              NAS  34.0 ± 14        34.9 ± 15        36.8 ± 15        37.6 ± 14     0.416     0.040* 
   (0.444 0.046*)  
 
Stride length, cm                  AS+NAS 77.7 ± 23        80.3 ± 24        83.3 ± 24        83.1 ± 23     0.883     0.018* 
   (0.255 0.078) 
 
                    NAS+AS  77.3 ± 22        79.6 ± 23        83.2 ± 25        83.1 ± 23     0.950     0.006** 
   (0.246 0.021*)  
 
Swing time of cycle, s           AS     0.72 ± 0.2       0.68 ± 0.2       0.69 ± 0.2  0.70 ± 0.2    0.464     0.063 
 
  NAS  0.44 ± 0.1       0.44 ± 0.1       0.46 ± 0.1        0.45 ± 0.1   0.657    0.406                 
 
Stance time of cycle, s          AS     1.22 ± 0.6       1.22± 0.6       1.24 ± 0.7         1.12 ± 0.1   0.099    0.818 
                
  NAS  1.51 ± 0.7       1.44 ± 0.7      1.45 ± 0.7        1.38 ± 0.5    0.917    0.267                                   
 
Double-support % of cycle AS     37.0 ± 9        36.4 ± 12        34.9 ± 11        33.7 ± 9         0.274     0.184 
 
  NAS  36.8 ± 9        36.8 ± 12        35.3 ± 11        33.9 ± 9         0.187     0.319 
 
Double-support time, s AS     0.77 ± 0.5      0.76 ± 0.6      0.74 ± 0.6      0.65 ± 0.4       0.134     0.532 
 
  NAS  0.77 ± 0.5      0.77 ± 0.6      0.74 ± 0.6      0.66 ± 0.4       0.158     0.515 
 
Step-time differential           0.40 ± 0.3      0.34 ± 0.2      0.32 ± 0.2      0.33 ± 0.2       0.795     0.043* 
   (0.014* 0.504) 
 
Step-length differential            10.5 ± 8         10.4 ± 8          10.6 ± 7         9.2 ± 7           0.222     0.989 
FAP=Functional Ambulation Profile, AS=affected side, NAS=non-affected side 
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5.3.2 The efficacies of three methods of gait-oriented physiotherapy on spatial and 

temporal gait characteristics (not included in any of the original reports I-IV) 

 

Study IV consisted of 45 patients receiving 20 minutes’ walking exercises daily either 1) in 

the electromechanical gait trainer with functional electrical stimulation (GTstim, n=15), or 2) 

in the gait trainer without stimulation (GT, n=15) or 3) on the floor (WALK, n=15). In 

addition, they received other forms of physiotherapy during the three weeks’ rehabilitation. 

The new calculations of the changes of spatio-temporal gait characteristics of these patient 

groups are presented here. The exercise intensity and effects of gait-oriented rehabilitation in 

other measures are presented in chapter 5.4 (study IV).  

 

In study III, the 20 minutes’ walking exercises included only gait trainer exercises in 23 

patients. Later more patients were added to the data. Two patients of the 45 patients were not 

able to walk along the walkway. Since there were no differences between the different 

walking exercise groups in the changes in the spatio-temporal gait characteristics (between 

groups p-values on the table 8), the mean gait characteristics of 43 patients are presented 

together in table 8. In these new calculations of 43 patients, some of the patients did walking 

exercises also overground or on uneven terrain. When the number of patients was larger in 

the calculations, some parameters showed different changes. Three parameters which 

indicated significant improvement were the same as noted in study III, i.e. gait velocity and 

stride length on both sides. The cadence and stance time on the NS improved only when all 

43 patients were included (table 8). The FAP, the step length on both sides and the step time 

differential improved only when 23 patients (III) were analyzed (table 7).  
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Table 8. New calculations of spatio-temporal gait characteristics (mean ± std. error) of 
43 chronic stroke patients at start, after two weeks and at the end of the rehabilitation 
period. Post hoc p-values are shown in parenthesis.                             

            repeated         between  
Parameters  side at start         two weeks       3 weeks       measures        groups 
                    p-value          p-value* 
FAP   51.8 ± 1.7      54.2 ± 2.1      54.0 ± 2.2       0.056          0.792 
 
Gait velocity, cms-1  37.3 ± 3.2      41.0 ± 3.7      42.2 ±  4.0      0.003**      0.909 
                         (0.007**         0.185) 
 
Cadence, step/min  64.9 ± 3.3      67.5 ± 3.6      67.8 ± 3.4       0.013*        0.959 
                         (0.017*          0.773)  
 
Step time, s  AS  1.25± 0.08    1.19 ± 0.08    1.20 ± 0.08     0.040*        0.541 
                          (0.011*         0.636) 
  
  NAS 0.86 ± 0.05    0.84 ± 0.05    0.83 ± 0.06    0.536           0.897
  
Step length, cm  AS 39.1 ± 1.6      40.6 ± 1.6      40.9 ± 2.0      0.266           0.965 
 
  NAS 28.5 ± 2.2      29.5 ± 2.3      30.6 ± 2.5      0.078           0.855 
 
Stride length, cm  AS+NAS 68.2 ± 3.5      70.6 ± 3.8      72.7 ± 3.9      0.009**       0.859 

(0.113 0.043*)  
 

NAS+AS 67.7 ± 3.5      70.2 ± 3.7      73.5 ± 4.9      0.001**      0.514 
                         (0.069            0.010*)  
 
Swing % of the cycle AS 36.0 ± 1.4      35.5 ± 1.4      36.2 ± 1.5       0.648         0.683 
 
  NAS 21.7 ± 1.1      22.2 ± 1.1      22.4 ± 1.1       0.380         0.494 
 
Swing time of the cycle, s AS 0.70 ± 0.03    0.67 ± 0.03    0.68 ± 0.03     0.242         0.610 
 
  NAS 0.41 ± 0.02    0.41 ± 0.02    0.41 ± 0.02     0.894         0.556 
 
Stance % of the cycle AS 64.0 ± 1.4      64.5 ± 1.4      63.8 ± 1.5       0.651         0.678 
 
  NAS 78.3 ± 1.1      77.8 ± 1.1      77.6 ± 1.1       0.373         0.493 
 
Stance time of the cycle, s AS 1.39 ± 0.11    1.37 ± 0.11    1.36 ± 0.12     0.675         0.825 
 
  NAS 1.69 ± 0.13    1.62 ± 0.12    1.61 ± 0.12     0.024*       0.856 
                         (0.023*          0.616) 
 
Double-support % of the cycle            AS 42.7 ± 2.2      41.7 ± 2.2      40.6 ± 2.2       0.184         0.452 
 
           NAS 42.3 ± 2.1      42.0 ± 2.2      40.8 ± 2.2       0.337         0.714 
 
Double-support time of the cycle, s     AS 0.99 ± 0.12    0.94 ± 0.11    0.92 ± 0.92     0.133         0.884 
 
            NAS 0.98 ± 0.11    0.95 ± 0.11    0.92 ± 0.11     0.158         0.893 
 
Step time differential  0.41 ± 0.05    0.36 ± 0.04    0.37 ± 0.04     0.161         0.462 
 
Step length differential  12.3 ± 1.4      12.0 ± 1.4      13.0 ± 1.3       0.416        0.355 
FAP=Functional Ambulation Profile, AS=affected side, NAS=non-affected side, * = comparisons between GTstim, GT and WALK groups 
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5.4 THE EFFECTS OF THE GAIT-ORIENTED REHABILITATION IN CHRONIC 

STROKE (Study IV)  

 

5.4.1 Exercise intensity 

The study IV consisted of 45 patients receiving 20 minutes’ walking exercises daily either 1) 

in the electromechanical gait trainer with functional electrical stimulation (GTstim, n=15), or 

2) in the gait trainer without stimulation (GT, n=15) or 3) on the floor (WALK, n=15). In 

addition, they received other types of physiotherapy for 825 min during the three weeks’ 

rehabilitation. Patients in the three groups were similar (table 4). The treatments in the gait 

trainer in the GT groups were performed similarly (table 9). The actual amount of walking 

exercise per patient was 300 min during the three weeks’ rehabilitation. The walking distance 

that the patients were able to obtain in the mechanical gait trainer was over 6500 m in both 

GT groups (table 9). In the WALK group, the distance was below 4900 m, which was less 

than the walking distance obtained in the GTstim group (p=0.023, WALK versus GT group 

only p=0.084). The effect size for the walking distance between GTstim and GT was small 

(d=0.25) and their percentage of non-overlap was 18 %. The effect size between GTstim and 

WALK was large (d=0.92) and their percentage of non-overlap was 52 %. The effect size 

between GT and WALK was medium (d=0.70) and their percentage of non-overlap was 43 

%. The mean speed in the gait trainer started at 1.2 and 1.3 kmh-1 (GTstim and GT) and ended 

at 1.7 kmh-1. The mean weight support in the gait trainer started from 26.1 and 29.6 % of the 

body weight and ended at 8.5 and 9.1 %. The patients achieved the need for less than 20 % 

body-weight support in the gait trainer during their third training session. In the GTstim group, 

the most often stimulated muscles were hip and knee extensors. In 6 patients, the two 

stimulated muscles of the paretic lower extremity of the patient were hip extensors + knee 

extensors, in three of patients hip extensors + knee flexors, in three patients knee extensors + 

knee flexors, in two patients knee flexors + ankle pronators, and one patient received 

stimulation only to the hip extensors (Fig 10). The intensity of the stimulation was about 40 

mA. In the gait trainer, assistance was sometimes needed to prevent knee overextension. In 

the WALK group, eleven patients mainly used a cane during the 20 min walking but four 

patients walked without walking aids. Eight patients needed manual guidance during the 

walking. Many patients in the walk group practiced their gait also outside on the ground or 

even walking in the snow.  
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Figure 10. Fourteen patients in the GTstim group received functional electrical 
stimulation to the two paretic muscles and one patient to one paretic muscle. 
GMa=Gluteus maximus, BF=Biceps femoris, RF=Rectus femoris, VM=Vastus medialis, 
VL=Vastus lateralis, SM=Semitendinosus, PE=Peroneus, Gme=Gluteus Medius. 
 
The mean perceived exertion in GTstim, GT and WALK groups was similar during the 20 min 

walking training (table 9). The heart rate in different time-points remained stable, near 100 

beats/min in every group. The content of their additional physiotherapy, which may have 

contributed to the 20 min walking exercises was presented in study I.  

Table 9. The total amount of walking exercise (mean ± SD) and exertion in each group 
during rehabilitation (n=45) in study IV. The development of training speed and body-
weight support (BWS) is presented for GT and GTstim groups. WALK group received 
traditional walking training. 
 
         GTstim            GT            WALK        p value#    df      F 
        n =15                 n=15               n=15 
Distance† (m) 6906 ± 1268     6523 ± 1735     4871 ± 2862   0.023*   2,42 14.11 
Borg Scale (score)   13.1 ± 2.4      14.0 ± 1.7         14.0 ± 1.5      0.361      2,42   1.04 
Speed_1 (kmh-1)    1.3 ± 0.2        1.2 ± 0.2            0.300 
Speed_2 (kmh-1)    1.7 ± 0.3        1.6 ± 0.3            0.644 
Speed_3 (kmh-1)    1.7 ± 0.3        1.7 ± 0.3            0.745 
BWS_1 (%)   26.1 ± 16.4      29.6 ± 20.1           0.610 
BWS_2 (%)   11.1 ± 17.9      12.0 ± 13.4           0.880 
BWS_3 (%)       9.1 ± 18.4        8.5 ± 12.0           0.916 
20 % BWS^       2.6 ± 2.0        3.2 ± 3.7            0.614 
# = p values obtained using independent samples t-test or one-way ANOVA. 
†= walking distance cumulated  in 15 sessions 
* = p<0.05 
1 = in the first session, 2 = in the tenth session, 3 = in the last session 
^ = session when below 20 % BWS 
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5.4.2 Effects of rehabilitation 

 

Three weeks of gait-oriented rehabilitation significantly improved the motor abilities of 

chronic stroke patients (III, IV). The dynamic balance, gait speed, gait endurance and motor 

task performance improved irrespective of group (IV). At the start before the intervention, 

the mean ten meters walking time ranged from 39.5 s to 44.0 s in the three groups (table 10). 

After three weeks, ten meters’ walking time decreased by 18 – 24 %. The improvement in 

speed was achieved at two weeks (p<0.0005) and additional benefit was achieved after one 

more week (p=0.031). The mean six minutes’ walking distance was 112 m to 127 m at the 

beginning of rehabilitation (table 10). The six minutes’ walking distance increased by 14 – 

17 % (p<0.0005). One patient in the GT group was not able to walk on the floor for the 

required six minutes during the rehabilitation.  

 

The dynamic test including three lateral weight transfers ranged from 956 – 1021 mm in 9.8 

– 13.6 s in different groups (table 10). Two patients were unable to perform the dynamic 

balance test because they suffered too severe postural instability. The patients’ dynamic 

postural stability improved. The dynamic test time shortened at each recording by 28 – 48 % 

(p<0.0005, table 10). The improved ability to control the center of the mass in relation to the 

base of support was seen also in the distance COP moved in the dynamic test. This distance 

decreased by 18 % (p=0.005). The static postural sway parameters did not change during 

rehabilitation. The mean VM of the patients in different walking exercise groups varied from 

37.6 to 55.8 mm2s-1 at the beginning of the rehabilitation (table 10). The speed of COP 

change ranged from 12.6 to 16.8 in the AP mms-1 direction and from 8.7 mms-1 to 11.5 mms-1 

in ML direction at the beginning of the rehabilitation (table 10). 

  

At the beginning, the mean MMAS ranged from 19 to 21 scores (table 10). The motor ability 

improved during the rehabilitation with MMAS scores increasing by 10 – 18 % (p<0.0005). 

The third week exhibited further improvement (p=0.001). The FIM did not change in our 

chronic stroke patients (p=0.225, table 10). The mean FIM ranged from 99 to 107 throughout 

the rehabilitation. The GTstim, GT and WALK groups did not differ in the above 

measurements (table 10).  
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Table 10. The gait, balance and motor task performance (mean ± SD) of chronic stroke 
patients at start, after two weeks and at the end of the rehabilitation period in the study 
IV. 
 
                                          repeated          between  
Parameters  group      n at start          two weeks     3 weeks        measures         groups 
                     p-value            p-value 
10 meters’ walking time, s       GTstim       15  44.0±36.2       37.1±28.2       35.9±29.9  
  GT           15 39.6±35.4       33.7±30.9       30.3±23.6 
  WALK    15 39.5±25.5       31.8±14.7       32.1±15.9        0.000***       0.817     
                     Repeated contrasts p-value                                     0.000***         0.032* 
 
6 minutes’ walking distance, m GTstim       15    127.1±87.2     145.4±95.6    151.7±97.4    
  GT           14    152.3±89.6     175.9±105.8  177.5±111.5 
  WALK    15    111.8±57.3      133.5±72.8    135.1±67.9        0.000***       0.990 
                     Repeated contrasts p-value                                    0.000***        0.531 
 
Static balance test, GTstim       15 55.8±119.1      57.4±120.4    74.7±175.7 
VM, mm2s-1  GT           15 37.6±29.4        46.8±47.0      33.3±28.9 
  WALK    15 42.1±31.5        44.7±29.0      36.1±20.8        0.142             0.649 
 
Static balance test, GTstim       15 16.8±19.1       16.0±16.1       17.6±23.5 
AP speed of COP, mms-1 GT           15 12.6±5.2         13.5±7.2         12.1±5.2 
  WALK    15 15.3±7.0         15.2±5.8         13.7±4.9          0.136             0.885 
 
Static balance test, GTstim       15 11.5±17.1        12.0±17.0      12.9±19.9 
ML speed of COP, mms-1 GT           15   8.7±5.3            9.0±6.7          7.6±4.3 
  WALK    15 10.2±5.5          10.4±5.1          9.0±3.9          0.256             0.642 
 
Dynamic balance time, s GTstim      14 13.6±9.4           8.7±4.6           7.1±3.0 
  GT          14 10.8±5.6           7.9±3.3           6.5±1.9 
  WALK   15   9.8±5.3           8.0±4.9           7.1±3.3          0.000***       0.287 
                     Repeated contrasts p-value                          0.000***        0.000*** 
 
Dynamic balance distance, mm  GTstim      14    955.9±520.9   903.6±709.7   786.6±342.8 
  GT          14   1015.6±640.9  794.4±434.2    841.1±407.3 
  WALK   15   1021.1±464.5   850.5±276.2    834.0±201.3     0.005**        0.824 
                     Repeated contrasts p-value                              0.001**           0.883 
                     
MMAS, points  GTstim       15      19.0±7.2         21.1±6.8          23.2±7.1 
  GT            15 20.6±6.3         22.6±6.7          22.8±5.8 
  WALK     15 20.1±6.7         21.5±6.5          22.5±6.1         0.000***       0.239 
                     Repeated contrasts p-value                                     0.000***          0.001** 
 
FIM, points  GTstim       15      99.2±12.8       98.9±10.8      100.9±12.3 
  GT           15    106.9±10.0     106.3±10.0      106.8±10.2 
  WALK    15    100.7±11.4      101.9±10.3      102.3±10.9      0.225          0.553 
VM=velocity moment, AP=anterior-posterior, ML=medial-lateral, COP=center of pressure, MMAS=Modified 
Motor Assessment Scale, FIM=Functional Independence Measurement, ** = p<0.01, *** = p<0.001. If the 
distribution of the variable was not normal then logarithmic adjustment was used for statistics. 
 
 
The median of the ankle spasticity gave a value two and the median of the knee and hip 

spasticity gave a value of zero according to MAS. Ankle spasticity, but not knee or hip, had 

decreased only in the WALK group by the last week of rehabilitation (p=0.021). The median 
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of the muscle force of the ankle dorsiflexion was zero and in hip flexors it was three as 

measured by MI. The ankle dorsiflexion force increased in the GTstim group (p=0.033) as did 

the hip flexion force in the GT group (p=0.019). The median of the muscle power of the knee 

extension was four and this did not change during rehabilitation.  

 

5.4.3 Maintenance the effects of rehabilitation 

 

Follow-up tests were performed 23.5 ± 3.1 weeks after the rehabilitation (study IV). Only 

two patients were not available for follow-up assessments. One patient refused to attend and 

one had fallen ill. While no differences were found between the different gait exercise groups 

(GTstim, GT and WALK) at three weeks, the comparisons between the end of rehabilitation 

and the follow-up were performed for all patients together (n=43). With the exception of 

MMAS, all of the parameters measured in these chronic stroke patients had remained 

unchanged since the end of rehabilitation (table 11). 

 

Table 11. The gait, balance and motor task performance (mean ± SD) of chronic stroke 
patients in the end of the rehabilitation period and at follow up at six months in study 
IV. 
 
Parameters   n 3 weeks             follow-up t-test p-value 
10 meters’ walking time, s         43    32.4 ± 23.8        39.2 ± 47.9 0.343 
 
6 minutes’ walking distance, m  42 157.9 ± 92.9 160.9 ± 102.4 0.523 
 
Static balance test, VM, mm2s-1  42   45.6 ± 105.3   39.5 ± 66.7 0.795 
 
Static balance test,  42   13.9 ± 14.3   13.4 ± 11.4 0.911 
AP speed of COP, mms-1 
 
Static balance test,  42     9.3 ± 11.8     8.9 ± 9.6 0.671 
ML speed of COP, mms-1 
 
Dynamic balance time, s  41     6.9 ± 2.9     7.6 ± 4.3 0.297 
 
Dynamic balance trip, mm  41 818.1 ± 326.3 855.3 ± 541.6 0.982 
 
MMAS, points   43   22.3 ± 5.7   21.4 ± 5.7 0.018* 
VM=velocity moment, AP=anterior-posterior, ML=medial-lateral, COP=center of pressure, MMAS=Modified 
Motor Assessment Scale, * = p<0.05 
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6 DISCUSSION 
 

The main purpose of these studies I – IV was to evaluate gait rehabilitation and factors 

affecting it in patients with chronic stroke. Three weeks of gait-oriented rehabilitation 

significantly improved the motor abilities of chronic stroke patients. The total time of 

instructed physiotherapy was 19 hours and together with self-initiated training patients 

practised for 28 hours. The dynamic balance, gait speed, gait endurance and motor task 

performance improved irrespective of the gait-oriented rehabilitation strategies used and 

patients maintained their improved motor ability at least six months. The gait-oriented 

physiotherapy combined with BWS resulted also in an improvement of spatio-temporal gait 

characteristics not seen when compared to physiotherapy without any special effort on gait. 

Chronic stroke patients swayed three times more than healthy subjects. Frequency analysis of 

sway parameters suggested that the postural stability may have specific characteristics due to 

the side of the hemiparesis.  

 

6.1. THE CONTENT OF GAIT-ORIENTED PHYSIOTHERAPY PROGRAM 

 

The three-week gait-oriented physiotherapy program for chronic stroke patients 

accomplished plenty of active walking exercises and other physiotherapy. Although the in-

patient rehabilitation time was only three weeks, within that time the patients received 19 

hours of physiotherapy, which together with the self-initiated training meant that the total 

exercise duration was on average 28 hours. In previous gait-oriented rehabilitation studies for 

stroke patients the amount of therapy has been 12 hours during a four-week period (Pohl et 

al. 2002) and 17 hours during an eight-week in-patient rehabilitation period (Goldie et al. 

1996). There are also studies where the amount of practice during the inpatient period has 

been reported for one day or one week, but the length of individual stay has varied (90 

min/day, five days/week (Kosak and Reding 2000). Nilsson et al. (2001) reported the gait 

training being provided for 30 min five days a week during the varying length of the patients’ 

stay (between 1 and 4 months). The amount of physiotherapy in addition to gait exercise is 

usually not mentioned. Previous gait-oriented rehabilitation studies (Goldie et al. 1996, 

Kosak and Reding 2000, Nilsson et al. 2001, Pohl et al. 2002) were directed to subacute 

patients (mean time from stroke onset to inpatient rehabilitation varied from 17 days to 16 
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weeks). In contrast, in our study all of the patients were chronic, i.e. more than six months 

had elapsed since stroke. 

 

Our three-week rehabilitation period for chronic stroke patients concentrated on gait training. 

Thirty-eight percent out of the total mean duration of all exercises per patient was gait 

exercise including exercises in the gait trainer, on the floor, on the ground and on the stairs 

and thus it represented 50 % of instructed physiotherapy. Patients also practised in upright 

position (10 %) strengthening the affected lower limb in a functionally relevant way, such as 

doing weight-bearing and balance exercises and this formed 14 % of the instructed 

physiotherapy. These exercises allowed patients to practise in conditions of varying 

demands. Richards et al. support this kind of training approach that emphasizes task-oriented 

strengthening and coordination exercises to promote gait in various contextual and 

motivational environments (Richards et al. 1999). 

  

From the total mean duration of all exercises per patient, 35 % was spent in sitting positions. 

Though this may seem to be rather much, one explanation is that 64 % of the sitting exercise 

time consisted of self-initiated training. When the patients practised by themselves, it was 

easier and safer for them to do the exercises in sitting positions. The time practised with the 

physiotherapist in sitting positions consisted of transfers, trunk control and mobility 

exercises, upper extremity exercises or patients practised in the fitness room for example 

with equipment such as the leg press. With respect to the passive methods, stretching 

accounted for 11 % and it was used to maintain elastic properties of the muscles and to 

prevent muscle shortening and increased muscle stiffness. The stretching was carried out 

most often during the last five minutes of the session. 

 

In previous studies, the content of the supplemental physiotherapy has been poorly described. 

In the study of Nilsson et al. (2001) they aimed at improving motor control and strengthening 

functionally weak muscles. They used transfers and a variety of motion exercises as well as 

techniques to improve motor function in the paretic side. Patients also practised on their own 

or in a group under supervision. Kosak & Reding´s (2000) physiotherapy sessions were 

provided by the patient’s individual therapist. They were functionally oriented, incorporated 

a variety of motor facilitation and motor control techniques, and often included the use of 

bracing and walking assist devices. In some studies, physical therapy methods additional to 

gait training were claimed to be based on the physiotherapeutic “dogmas”, for example on 
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the Bobath concept (Davies 2000) or on the Motor Relearning Programme (Duncan et al. 

1998). In study I, we analysed and reported the actual amount and content of the active 

practice that the patients received. 

 

While patients are in a rehabilitation center, a large amount of active practise can be 

accomplished when special effort is made to maximize this exercise. However, it has also 

been reported that stroke patients in rehabilitation spend many hours a day alone and inactive 

if no special effort is made to keep them active (Ada et al. 2003). In our study, the patients 

were encouraged to practise by themselves with equipment available on the ward or in the 

fitness room and they were helped with transfers if needed by nurses or physiotherapists. 

Patients could also participate in different exercise groups, but their participation rates were 

rather low. However, the amount of self-initiated training was quite impressive. The use of a 

structured form may have resulted in more self-initiated training than usually would occur 

during an in-patient period. 

 

6.2 POSTURAL BALANCE AND REHABILITATION IN CHRONIC STROKE 

 

Various balance functions are known to impact on gait (Nichols 1997, Nadeau et al. 1999, 

Chou et al. 2003). The more the patient sways, the worse is the balance and consequently 

his/her gait ability (Nichols 1997).  In studies II and IV, patients needed a large postural 

sway to maintain their standing balance as seen in the speed of COP displacements. The 

static postural sway parameters did not change during rehabilitation, but the dynamic balance 

improved. The COP movement time and distance after lateral weight transfers decreased in 

all groups. 

 

The patient groups with left or right hemiparesis did not differ from each other in their static 

balance when this was assessed by the VM (II). The frequency spectrum analyses showed 

that high amplitudes are prevalent at low frequencies of COP displacement and low 

amplitudes are prevalent at high frequencies in all patients. The frequency content stayed 

below 2.7 Hz. In addition, patients did not differ in the analyzed frequency bands of COP 

displacements directly. However, the patient groups differed from healthy subjects in specific 

frequency power peak magnitudes in distinct ways depending on the lesion side. The patients 

with left hemiparesis had higher power peak magnitudes of COP than healthy subjects in the 

ML direction at low frequencies. Thus the patients with left hemiparesis swayed more 
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slowly, with large amplitudes from side to side. The patients with right hemiparesis had 

higher power peak magnitudes than healthy subjects in both AP and ML directions at higher 

frequencies. This indicates that the patients with right hemiparesis swayed more rapidly with 

large amplitudes in all directions than healthy subjects. Although sensory and motor cortical 

areas are symmetric in both hemispheres, the hemipheres are known to have different 

functions. For example, cognitive deficits are often associated with left hemiparesis and 

aphasia with right hemiparesis. More aphasia was seen also in the present study among the 

patients with right hemiparesis. Right hemisphere convexity infarction tends to cause also 

disturbances in spatial perception. Cognitive deficits may have a role in the poorer outcome 

in the functional status of the patients with left hemiparesis (Cassvan et al. 1976, Kinsella 

and Ford 1980, Titianova and Tarkka 1995, Rode et al. 1997). 

 

The difficulty in shifting the body weight toward the paretic side is seen in the asymmetry of 

weight bearing during quiet standing (II). The less the body weight rests on the paretic side, 

the more the patients have COP displacement in the ML direction. The patients with left 

hemiparesis had less body weight on the paretic side while standing than patients with right 

hemiparesis. This is in line with previous studies (Cassvan et al. 1976, Kinsella and Ford 

1980, Titianova and Tarkka 1995) where the ambulatory deficit of the patients with left 

hemiparesis was more pronounced compared to the deficit noted in patients with right 

hemiparesis.  

 

In the study of Esparza et al. (2003), patients with right hemiparesis had significantly lower 

amplitudes of trunk movement during pointing movements than patients with left 

hemiparesis. Since the control of the trunk is thought to be mediated bilaterally from both 

hemispheres (Bear et al. 2001), the difference in the trunk displacement between the left and 

right hemiparetic patients was considered to support the idea that the left hemisphere plays a 

greater role than the right one in the control of complex coordination between the arm and 

trunk. This may be connected to the finding of move-limited deficit in static balance of left 

hemiparesis in study II. In the study of Esparza et al. (2003), an interesting aspect of the 

hemispheric role in the control of movement in stroke patients was that the patients with right 

hemiparesis seemed to have more temporal coordination deficits for movements made with 

the ipsilesional, non-hemiparetic left arm than those patients with left hemiparesis for 

movements made with the ipsilesional right arm.  
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Important directional information is obtained by measuring COP displacements separately in 

the AP and ML directions. In the study of Winter et al. (2003) two force plates were used to 

separate the contribution of the individual limbs. They found that COP from the left foot and 

COP from the right foot moves forward and backward primarily under the control of the 

plantarflexor muscles. Further, they demonstrated that virtually 100 % of the COP in ML 

direction is controlled by the load/unload mechanism. An inverse dynamics analysis of the 

kinetic in the frontal plane showed that this mechanism is controlled by the hip 

abductor/adductor muscles. In addition to these two separate mechanisms, the COP 

displacements in AP and ML directions are different. As indicated in the II and other studies 

(Baloh et al. 1998), the COP displacement in the AP direction is greater than the change in 

the ML direction in healthy subjects. Study II also reveals the same situation in stroke 

patients but their displacements were of greater magnitude.  

 

In comparison with other neurological diseases, patients with bilateral peripheral vestibular 

loss and cerebellar atrophy have shown greater COP displacements in the AP direction than 

in the ML direction (Baloh et al. 1998). The speed of COP displacements while standing 

seems to be greater in patients with bilateral peripheral vestibular loss and in cerebellar 

atrophy compared to chronic stroke patients. Further, in study II, patients with stroke were 

shown to have significant postural instability during quiet standing when compared with 

healthy age-matched subjects in agreement with previous studies (Nichols 1997, Rode et al. 

1997, Dickstein and Abulaffio 2000). In the present study (II), the mean age of the patients 

was 53 years. Their mean velocity moment (VM) was four times higher and the speed of 

COP displacement was 2.0 – 2.4 times faster when compared with a group of age-matched 

healthy subjects.  

 

6.3 SPECIFIC GAIT CHARACTERISTICS AND REHABILITATION IN CHRONIC 

STROKE 

 

In study III, both groups improved in MMAS1-5 and ten meters’ walking time and the 

improvements did not differ in the gait-oriented physiotherapy and conventional 

physiotherapy groups. However, specific gait characteristics improved only in the gait-

oriented group. Furthermore, all of the gait characteristics and also patient mobility in the 

gait-oriented group remained at the discharge level still at the six months follow-up. While 

no differences were found between the three gait-oriented groups with similar amounts of 
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practice (IV), we consider that intensive gait-oriented physiotherapy was more efficient 

irrespective of the exact method of delivery compared to ordinary physiotherapy, which is 

dispersed trying to achieve several different aims. The greater improvements in the gait-

oriented group were not only due to the greater amount of therapy (75 min > 45 min), but 

also due to the content of the therapy focusing on gait. Motor learning and developing 

walking skills require practice with concrete goals and the patients must have the opportunity 

to practice actively and to understand the importance of frequent repetitions (Rosebaum 

1991). 

 

Ottenbacher and Jannell (1993) were unable to detect any correlation between length or 

extent of therapy and the effect size. In the study of Kwakkel et al. (1997), adding more 

therapy in the experimental group compared with the control group increased the final effect 

sizes for activities of daily living (ADL) providing further evidence for the presence of an 

intensity-effect relationship. Later, in their randomised controlled trial of 53 patients with 

stroke these researchers showed that a greater duration of rehabilitation for the lower 

extremities during the first 20 weeks post-stroke led to improved recovery in terms of ADL, 

walking ability, and postural control compared to control group (Kwakkel et al. 1999). The 

greater duration of rehabilitation for the upper extremities differed only in dexterity from the 

control group. In addition, they found that greater durations of rehabilitation for the lower 

extremities resulted in increases in comfortable walking speed compared with longer 

durations of rehabilitation sessions for the paretic upper extremities or the control treatment 

(Kwakkel et al. 1999, Kwakkel and Wagenaar 2002). Both groups, lower extremity training 

group and upper extremity training group, both received training for 30 min five days a 

week. The control group received immobilization of the paretic lower and upper extremities 

by means of an inflatable pressure splint by the same amount of time. In addition all three 

groups participated daily in a basic treatment program of 30 min as well as a weekly 1½-hour 

session of ADL training. Patients maintained their functional gains for up to one year after 

stroke when they had received a 20 week upper or lower limb training programme (Kwakkel 

et al. 2002). However, a significant number of patients who experienced an incomplete 

recovery still showed improvements or deterioration in dexterity, walking ability, and ADL 

from 6 months onwards.  The results of Kwakkel et al. (1999, 2002) are in line with these of 

study III, i.e. exercise therapy primarily induces treatment effects on the abilities at which 

training is specifically aimed. Thus, only the gait-oriented rehabilitation improved specific 

gait characteristics. 
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In a study somewhat comparable to study III in patients with chronic stroke (Ada et al. 

2003), four weeks of treadmill and overground walking program significantly increased 

walking speed and walking capacity, but had no effect on handicap as assessed by Sickness 

Impact Profile. In study III, the gait velocity in the intervention group improved and we 

confirmed previous findings that the changes in walking speed in patients with chronic 

hemiparesis produce quantitative alterations in the overall gait variables (Zatsiorky et al. 

1994). The individual FAP scores, which assess the severity of gait abnormality, described 

well the slow post-stroke velocity performance. The patients' improved gait velocity resulted 

in higher FAP scores and decreased step time and increased step and stride lengths 

bilaterally. Some of the patients may have benefitted even more a speed if faster than 2 kmh-1 

had been available in the gait trainer. 

 

Also Hesse et al. (2001) studied walking speed during gait rehabilitation and its influence on 

outcome of stroke patients. These workers studied the relationships between treadmill speed 

and energy consumption and lower limb muscle activity in 24 ambulatory hemiparetic 

patients (6 - 8 weeks after lesion). Initially, their minimum self-adopted overground walking 

velocity was 0.5 ms-1. Three conditions were assessed during treadmill walking: walking at 

self-adopted speed (V SAS), walking slowly (V SAS – 25%), and walking fast (V SAS + 25 

%). Patients wore a harness that did not support weight. With the exception for the increase 

in cadence and stride length, cycle parameters did not correlate with gait velocity. The ratio 

of cadence to stride length remained unchanged, indicating that walking speed increased in a 

physiologic manner. The mean activity of tibialis anterior, gastrocnemius, rectus femoris, 

biceps femoris, and vastus medialis muscles increased at higher walking speed. Gait velocity 

did not significantly influence the activity of the adductor longus, gluteus medius, and erector 

spinae muscles. At higher speeds, an early and more timely onset of activity was seen in the 

vastus medialis, biceps femoris, and gluteus medius muscles. At a low speed, the start of 

activity was delayed with the onset occurring during midstance. Energy cost measurements 

indicated a more efficient gait when walking faster. In studies I – III, these were taken into 

account by aiming to increase speed progressively as soon as possible, yet completing 

practise of 20 minutes at a time. 

 

It is noteworthy, that the increase in maximum walking speed was found to increase gait 

asymmetry in the study of Kwakkel and Wagenaar (2002). Their findings and study III 
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suggest that the recovery of walking speed and the restoration of gait pattern in the chronic 

stage of stroke may result from two different mechanisms (Wall and Turnbull 1986, 

Titianova et al. 2003). Gait velocity is mainly affected by weakness of the affected hip 

flexors and knee extensors whereas gait asymmetry is in part influenced by the degree of the 

spasticity of the affected ankle plantar flexors (Hsu et al. 2003). The patients with chronic 

stroke may achieve varying speed performance using different strategies to achieve motor 

control of their hemiparetic gait (Knutsson and Richards 1979, Lamontagne et al. 2000) 

resulting in more or less stereotyped but quantitatively different patterns of walking (Dietz 

1996). 

 

In study III, the step-time differential decreased significantly during rehabilitation, but 

calculating asymmetry index (AI) of swing and stance times did not identify any asymmetry 

changes. The AI values were similar to those of chronic stroke patients described by   

Titianova et al. (2003). The step-time differential is calculated directly from the step time on 

the AS minus the step time on the NS, but the AI takes into account the entire gait cycle 

((AS-NS) x 100 / (AS+NS)/2). During our intervention, the gait trainer provided symmetrical 

removal of weight from the lower extremities, integrated weight bearing, provided stepping 

and balance and stimulated repetitive and rhythmic stepping. Also the weight bearing of the 

lower limbs was controlled and a gradual increase in weightbearing was achieved. The gait 

trainer exercises, while assisting the symmetrical removal of the weight during the gait 

training, did not result in significant improvements in the symmetry of walking of the 

intervention group. The control group did not improve in gait symmetry either.  

 

In study III, there was extensive individual variability in the step time changes. The wide 

individual variability of the patients was also seen even when the number of patients was 

enlarged in the new calculations of gait characteristics presented in the section 5.3.2. Some 

parameters showed different changes, but the gait velocity and stride length on both sides 

improved in both calculations, i.e. in the published study III and with the supplemental 

patients too. 

  

 The step time decreased more after rehabilitation in those patients in study III who had 

longer step time on the AS at the beginning. Barbeau & Visintin (2003) also claimed that 

sub-acute stroke patients with slower walking speeds (<0.2 ms-1), lower overground walking 

endurance and lower motor recovery scores and elderly patients would most likely benefit 
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from BWS training. Even though the walking speed of all chronic stroke patients in study III 

was faster than 0.2 ms-1 and they were relatively young, they also benefitted from 

physiotherapy and even more from combined BWS and other types of physiotherapy.  

 

Hesse and his coworkers (Hesse et al. 1999b, Hesse et al. 2000) developed the mechanical 

gait trainer to assist patients to perform repetitive practice of the gait-like movement without 

overstraining the therapists. In their study among subacute, nonambulatory stroke patients 

performing six weeks of walking exercises they found no differences between treadmill 

training with BWS and gait trainer exercises using such outcome measures as Functional 

Ambulation Category, gait velocity, Rivermead Motor assessment score or Modified 

Asworth Score (Werner et al. 2002). The gait trainer was at least as effective as treadmill 

therapy with partial body weight support but it required less input from the therapist. In 

studies III and IV, the enhanced gait-oriented rehabilitation improved significantly the 

patients’ spatio-temporal gait characteristics and other motor abilities. 

 

The stimulation for stepping movements is important in activating the rhythmic locomotor 

patterns generated in the spinal cord. Although the basic motor pattern for stepping is 

generated in the spinal cord, fine control of walking involves numerous regions of the brain, 

including the motor cortex, cerebellum, and various sites within the brain stem. The bipedal 

type of human locomotion places major demands on the descending systems that control 

balance during walking. The spinal networks that contribute to human locomotion are more 

dependent on supraspinal centers than is the case in quadrupedal animals. The mechanism 

responsible for gait improvements may also be related to the functional brain reorganization 

following stroke which can utilize residual descending motor pathways, which are unaffected 

by the lesion and bilaterally organized (Bach-y-Rita 2003, Hsu et al. 2003). It may be that 

delayed, but appropriate, gait-oriented rehabilitation can support functional neural 

reorganization even many years after stroke leading to improvement in the patients' stability 

of walking.  

 

 

 

 

 

 



 84

6.4 THE EFFICACIES OF THE GAIT-ORIENTED REHABILITATION OBSERVED 

IN OTHER MEASURES IN CHRONIC STROKE 

 

In study IV, although all patients were over six months post-stroke, they improved some 

aspects of their motor performance during the three weeks’ rehabilitation. The intensive gait-

oriented rehabilitation was effective irrespective of the type of exercise. In the study of 

Werner et al. (2002), chronic non-ambulatory stroke patients regained better walking ability 

through physiotherapy plus treadmill training with BWS than could be achieved by 

conventional therapy. However, they provided twice as much therapy for the treadmill group 

than for the conventional group and the obtained difference waned by four months. Also 

Trueblood (2001) showed treadmill training with BWS in chronic stroke patients to 

normalize gait and improve balance in their non-randomized clinical trial. Their results 

remained at three months follow-up. In the rehabilitation of subacute stroke patients there is 

evidence that three types of walking training, 1) on a treadmill with BWS or 2) on the ground 

following Motor Relearning Program or 3) using aggressive bracing are similarly effective 

(Kosak and Reding 2000, Nilsson et al. 2001). Furthermore, treadmill training with BWS 

was shown to be more effective than physiotherapy based on the commonly used Bobath 

concept in improving gait (Hesse et al. 1995a). In study IV, when the same amount of 

walking training was given, walking in the gait trainer with BWS (with or without electrical 

stimulation) and walking on the floor resulted in similar motor performance improvements in 

chronic stroke patients and at the follow-up at six months most of the improvements were 

still present. 

 

Patients considered the exercise to be only slightly strenuous or strenuous, even though the 

amount was more than usually provided. The results of studies I, III and IV, where there 

were many repetitions, support the results that repetitive training appears to be the key to 

improved activity and functional ability of the paretic extremity (Dombovy 2004). The mean 

walking distance in the gait trainer groups was over 6700 meters compared to 4800 meters in 

the WALK group (IV). In the same time frame, the gait trainer allowed more repetitions of 

steps and a longer walking distance. The effect size calculation indicated a beneficial effect; 

if we look at it as the percentage of non-overlap it showed that 52 % of the GTstim group 

benefited and 43 % of the GT group benefited compared to the WALK group. An additional 

advantage is that less manual guiding effort of the therapist is required if the patient is using 

the gait trainer compared to walking exercises overground. Previous studies have also 
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indicated that retraining gait with BWS leads to a more successful recovery of walking of 

stroke patients and that the progressive decrease of BWS improves walking more effectively 

(Visintin et al. 1998, Barbeau and Visintin 2003). In studies I, III and IV, the effectiveness 

of exercise in the gait trainer was enhanced by adding speed and decreasing BWS, the 

patients were provided with BWS in the gait trainer and this allowed the patients to achieve 

proper trunk and limb alignment, gait pattern and walk. Patients reached below 20 % of BWS 

in the third session. Low weight support is important if one wishes to activate effectively the 

lower limb muscles and to keep energy expenditure high (Colby et al. 1999, MacKay-Lyons 

et al. 2001). It has been reported that BWS at 40 % results in a significant reduction in 

electromyography of the quadriceps and oxygen consumption decreases by 12 % (Colby et 

al. 1999). Also walking with 20 % BWS decreases the energy cost by 6 %.  

 

 In a study of subacute ambulatory stroke patients, the use of an interval training program on 

the treadmill to increase gait speed resulted in faster overground walking, increased cadence, 

stride length and FAC compared to training without speed increases or conventional gait 

training (Pohl et al. 2002). In their study, the effectiveness of sprint training at maximum 

speed (STT), limited progressive treadmill training (LTT) and conventional gait training 

(CGT) was compared. Patients were able to walk without assistance and the time required to 

walk 10 m ranged from 5 – 60 s. All patients participated in 12 training sessions during the 

four weeks’ rehabilitation. The patients in the STT and LTT group used a harness, but the 

body-weight support, no more than 10 %, was allowed only in the first 3 training sessions. In 

the STT group, a detailed sprint-training program was used. In the LTT group, the training 

speed was increased no more than 5 % of the maximum initial walking speed each week. All 

patients received also 8 sessions (45 min) of conventional physiotherapy. After four weeks of 

training, the STT group scored higher than the LTT and CGT groups for overground walking 

speed, cadence, stride length, and Functional Ambulation Category. The results of Pohl et al. 

(2002) support the importance of progression of speed in walking exercises. In study IV, the 

patients were able to increase the gait trainer speed by 0.5 kmh-1 during the three weeks. The 

speed was added progressively, not by sprint-training program. In study IV, the increases in 

GTstim and GT groups were 23.5 % and 29.4 %, whereas in the study of Pohl et al. (2002) the 

increase in the case of same initial walking speed on a treadmill in the LTT group could have 

been 17.7 %. Still, their LTT group exhibited significantly better improvements in walking 

speed, cadence, and FAC scores compared to CGT group based on the proprioceptive 

neuromuscular facilitation and the Bobath concept. 
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The patients in GTstim group received functional electrical stimulation to two muscles in the 

paretic lower extremity. Due to the fact that the gait trainer provides the mechanical support 

to the ankle dorsiflexion, the stimulation of the peroneal nerve was not useful whereas in 

many studies of chronic stroke patients it is commonly stimulated (Granat et al. 1996, 

Burridge et al. 1997, Taylor et al. 1999). Hesse et al. (1995b) have compared combined 

treadmill training and multichannel electrical stimulation to a comprehensive 

neurodevelopmental physiotherapy program in non-ambulatory subacute hemiparetic 

patients. The patients improved their functional ambulation capacity only with combined 

treadmill training and electrical stimulation. The combined therapy proved to be more 

effective also in its ability to improve walking velocity (Hesse et al. 1995b). Barbeau et al. 

(1998) recommended combining treadmill training with functional electrical stimulation. In 

the present study, the stimulation of two muscles during walking in the gait trainer with 

surface electrodes did not add significantly to the improvements of gait compared to 

exercising without stimulation. In the review of Daly et al. (1996), it is stated that stimulation 

is useful (especially with intramuscular electrodes), furthermore the more muscles that are 

stimulated, the better improvements in gait to be expected.  

 

In study IV, the WALK group had more possibilities to increase the demands of practice than 

GT groups for whom the maximum speed was 2 kmh-1. The WALK group could practise 

without a cane or in different conditions and these could have contributed to the good 

progress achieved by the WALK group. It has been reported that more severely impaired 

and/or older subacute stroke patients can be mobilized more effectively using the BWS 

(Hesse et al. 1995a, Kosak and Reding 2000, Barbeau and Visintin 2003). In the present 

study (IV), the number of severely impaired patients was too small to allow comparison 

between those severely or less affected. The rather independent walking ability and young 

age (mean age 52 y) may explain the similar results achieved by all groups. In addition, the 

walking speeds of our patients were variable, which further obscured the differences between 

the groups.  

 
The enhanced gait-oriented rehabilitation resulted in improvement in gait speed, gait 

endurance and motor tasks. After rehabilitation, our patients with chronic stroke walked 0.07 

ms-1 (18 - 24 %) faster and their six minutes walking distance increased about 24 meters (14 

– 17 %). These improvements are very much in line with the studies of Silver et al. (2003) 
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and Ada et al. (2003) of chronic stroke patients. In the study by Ada et al. (2003), twelve 

sessions of four weeks of combined treadmill and overground walking training resulted in 

0.18 ms-1 (24 %) increase in walking speed (10 m) and 99 m (26 %) increase in walking 

capacity (6 min). Their patients’ initial walking velocity was 0.62 ms-1 whereas that of our 

patients’ was 0.24 ms-1. Their initial six minutes walking distance was 296 m whereas in the 

present study it was 112 – 152 m. It appears that with additional effort a 20 – 30 % increase 

in walking speed of chronic stroke patients can be obtained. The variability of the results 

showed that patients were quite heterogeneous irrespective of fulfilling the inclusion criteria, 

for example the walking speed range was 0.07 – 1.11 ms-1. 

 

The patients’ initial MMAS was only about 42 % of the maximum score and this was mainly 

attributable to the asymmetrical weight shifting and the paretic upper limb. Two weeks of 

rehabilitation produced an improvement of two points and the third week gave another point 

in MMAS. On closer consideration, with the exception of the two hand items, improvements 

were seen in MMAS in all items (Fig 11). In previous studies of chronic stroke patients the 

motor performance improved, but the handicap/independence scales did not change (Ada et 

al. 2003). Also in the present study the total FIM remained stable throughout, but 

interestingly the subitems of personal care and locomotion improved significantly during the 

rehabilitation period (Fig 11). 

 

Not only electromechanical walking training has been able to evoke improvement in overall 

fitness reserve in stroke patients (Macko et al. 1997a, Macko et al. 1997b, Danielsson and 

Sunnerhagen 2000, Macko et al. 2001, Katz-Leurer et al. 2003). The effects of three 40-min 

sessions of treadmill training weekly for six months were studied in 19 chronic hemiparetic 

patients (6 – 81 months post-stroke) (Macko et al. 2001). Treadmill training was started at a 

mean of 0.63 ms-1 and progressively increased to the 0.85 ms-1 at the end. The three months 

of training produced a significant 10 % increase in absolute Vo2peak, from 1.18 lmin-1 at 

baseline to 1.31 lmin-1 at 3 months. The mean economy of gait improved 15 %, from 9.3 ml . 

kg-1 . min-1 to 7.9 ml . kg-1 . min-1. After 3 months, these improvements in peak exercise 

capacity and economy of gait enabled patients to perform the same constant-load 

submaximal effort treadmill walking task using 20 % less of their peak exercise capacity. 

Although improvements in Vo2peak, economy of gait, and fractional utilization were 

maintained for 6 months of training, no further gains were found in patients who completed 

the entire training program, beyond the gains recorded after 3 months of training. The 
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estimated peak ambulatory work load capacity increased progressively by 39 % across the 6-

month training program. Mean respiratory exchange ratio and heart rate during peak effort 

exercise testing were virtually identical during those tests conducted at baseline and after 6 

months, indicating equivalent cardiovascular-metabolic efforts. During three weeks of gait 

training every workday (study IV), the heart (HR) level of the patients was around 100 

beats/min throughout the walking exercises. It is possible that their medications could have 

accounted for the low HR level as the heart rate in rest showed that the change in HR was 

quite small. The heart rate at rest varied between 64 – 72 in the different groups (table 4). 

The results of subjective feelings of perceived exertion are in line of the results of low HR. 

They perceived that they were working only slightly strenuously during 20 minutes walking 

exercise (mean Borg Scale 13.1 p – 14.0 p, table 9, study IV) and the same situation occurred 

during additional physiotherapy (mean Borg Scale 13.5 p, study I). It might have been 

interesting to measure oxygen consumption, however we had only 15 sessions, which is not 

very much if one wishes to improve fitness reserve. However it is likely, that the poorer the 

fitness is in the beginning the more rapidly positive results can be achieved.  
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Figure 11. The scores of Modified Motor Assessment Scale (MMAS) items and 
Functional Independence Measurement (FIM) subitems at start and at the end of 
rehabilitation in 45 chronic stroke patients. The maximum of MMAS of each item is 6. 
The maxima for FIM scores in the various are 35, 21, 21, 14, 14 and 21. P values 
obtained using paired sample t-test * = p<0.05, ** = p<0.01, *** = p<0.001. 
 
Smith et al. (1999) hypothesized that a 12 weeks program of regular “task-oriented” treadmill 

aerobic exercise would improve lower extremity muscle strength, reduce spastic reflexes, and 

normalize the symmetry in motor output between limbs in chronic hemiparetic stroke 

patients. Their fourteen patients (7 months – 6.7 years post-stroke) participated for three 

* * 
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* * 

*** 

** 

* 



 89

times per week for three months in the treadmill exercise. The training intensity was limited 

at the beginning of the study to 40 % of the calculated HR reserve and increased as tolerated 

to targeted levels. Patients progressed over the course of the training program to 40 min of 

continuous exercise at 60 % to 70 % of their previously calculated HR. Five-minute warm-up 

and cool-down periods at 30 % of HR were included in each training session. Repeated 

measures of reflexive and volitional torque were obtained from the hamstrings musculature 

bilaterally with the isokinetic dynamometry. Torque generation was measured at four angular 

velocities. At post-testing, the concentric hamstring torque production improved on both 

sides. The eccentric torque production was different depending on the limb tested and the 

angular velocity. The within-limb concentric torque/time production measure increased by 50 

% and eccentric torque/time production increased by 21 % in the affected limb after the 

intervention. In the nonaffected limb, the increases were 32 % and 22 %. Passive torque/time 

generation in the paretic hamstrings decreased by 11 %. Reflexive torque/time was 

unchanged in the nonparetic hamstrings. In study IV, muscle forces were measured clinically 

by the Motricity Index. In the GT groups, the muscle force of the ankle dorsiflexion or hip 

flexion increased significantly, but the power of knee extension force did not change 

suggesting that muscle force can be increased by gait trainer exercise. In the WALK group, 

the muscle forces did not change.  

 

In Finland, if a patient fulfils the handicap criteria, the National Social Insurance Institution 

provides rehabilitation for patients less than 65 years of age. That usually consists of one in-

patient period once a year in addition to outpatient rehabilitation depending on the individual 

needs and aims. This study was made while the patients attended the rehabilitation period in 

a rehabilitation hospital. The mean age of the patients (study I – IV) was only 52 years, 

however it has been previously suggested that older patients benefit more from BWS 

training, we showed that younger patients benefit too. In the studies listed in table 1, mean 

age has varied from 52 to 71. In twelve of the studies, the mean age was 60 or over. The 

range was quite large in some studies (Visintin et al. 1998, 27 – 93 y, Werner et al. 2002a, 29 

– 77 y and Hesse et al. 1994, 15 – 84 y). In study IV, the age range was 33 – 64. This study 

population (I – IV) represents the usual population in in-patient rehabilitation. Those patients 

with only a mild handicap or those very severely handicapped who are in institutional care 

are not included in these studies. The protocol was quite demanding (study I, III, IV). 

Twenty minutes walking exercises for patients with the FAC 1 (need two assistants to walk) 

could have resulted in dropouts. The four patients with FAC 2 (need someone for support to 



 90

maintain balance while walking) ranked their exertion as rather high point on the Borg Scale. 

However the mean of the Borg Scale was at the level of only slightly strenuous. Finally, 

although the rest of the patients were quite independent walkers, they were all slow. For 

example, the safe speed to across the road is 1.2 ms-1, but in study IV, their mean speed was 

0.24 ms-1 at the beginning and the fastest speed was 1.25 ms-1. During the studies, the 

principal researcher knew in part to which group the patients belonged. She supervised the 

physiotherapists about the exercise therapy and provided support and encouragement. 

Recordings were performed always at the same time of the day by the same researcher in the 

same order.  

 

In the meta-analysis of 20 studies in stroke patients (Kwakkel et al. 2004), the duration of 

rehabilitation varied from four weeks to six months. In studies I, III and IV, the duration of 

rehabilitation was three weeks. In the future, a longer duration of rehabilitation could be 

beneficial. However, the daily minutes of physiotherapy in the gait-oriented groups were 

more than in most of the studies referred to by Kwakkel et al. (2004), where they presented 

the effects of intensity of augmented exercise therapy time on activities of daily living, 

walking, and dexterity in patients with stroke. Only in one study the patients had more than 

75 minutes of daily exercise, Stern et al. 1970), 100 minutes in the intervention group). In 

studies I, III, and IV, the therapy time was calculated from the actual time of exercise. For 

example, the twenty minutes walking exercise was the actual time, but about 35 minutes was 

needed with the physiotherapist to achieve this 20 min. The time to put on the harness and to 

transfer to the gait trainer and the possible rest on the gait trainer was omitted.  

 

General agreement on the concepts and on the instruments to be used in stroke disability 

assessment could facilitate the comparability of research findings and the improvement of 

stroke care. To achieve a comprehensive framework and classification, the new International 

Classification of Functioning, Disability and Health (ICF 2001) has been developed. For 

practical purposes, the consensus process of the special versions of the ICF Core Sets for 

different diseases is still on-going. The ICF Core Sets for stroke includes the Comprehensive 

ICF Core Set and the Brief ICF Core Set (Geyh et al. 2004). The preliminary studies 

identified a set of 448 ICF categories at the second, third and fourth ICF levels with 193 

categories on body functions, 26 on body structures, 165 on activities and participation, and 

64 on environmental factors. Altogether 130 second-level categories were included in the 

Comprehensive ICF Core Set with 41 categories from the component body functions, 5 from 
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body structures, 51 from activities and participation, and 33 from environmental factors. The 

Brief ICF Core Set included a total of 18 second-level categories (6 on body functions, 2 on 

body structures, 7 on activities and participation, and 3 on environmental factors). In studies 

I – IV, the assessment of heart functions (HR), proprioceptive functions (position sense), 

muscle power functions (MI), muscle tone functions (MAS) and exercise tolerance functions 

(Borg Scale), memory functions (FIM) belong to body functions in ICF. Maintaining a body 

position (postural recordings), transferring (MMAS), walking (FAC, MMAS, 10 m, 6 min, 

walkway) and hand and arm use (MMAS) belong to activities and participation in ICF as 

well as toileting, dressing, eating, communication, social interaction and problem solving 

(FIM). Thus, we assessed and trained mainly in the area of activities and participation. 

Although both activities and participation belong in one subitem of ICF, the effects here were 

mainly observed in activities, however, the total FIM did not change. The concentration of 

the rehabilitation was mainly on gait, but all patients also received other professional stroke 

rehabilitation in addition to the walking training and other forms of physiotherapy. After 

returning to their homes, outpatient physiotherapy was continued from one to three times a 

week. This probably has helped patients to maintain their positive results. 

 

Finally it is important to note that while the gait-oriented exercise groups did not differ in the 

measures used, in the GT groups patients performed more repetitions of steps and longer 

walking distance with less input needed from the therapist. While repetitions of practice can 

be increased, more information is needed to determine what kinds of patients would benefit 

most of those repetitions.  
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7 CONCLUSIONS 
 

The main purpose of this thesis was to evaluate gait rehabilitation in patients with chronic 

stroke. This was done by detailed investigation of specific areas affecting the total gait 

rehabilitation outcome. The following conclusions can be drawn: 

 

Walking tests indicated that all patients improved their gait after special effort. In contrast to 

the results of the Copenhagen study (Jorgensen et al. 1995c), which detected no further 

improvement of gait function in hemiparetic patients three months post-stroke, gait 

improvements in patients more than six months post-stroke were obtained. When sufficient 

time is spent in active and focused exercise, even chronic stroke patients can obtain 

beneficial results. In addition, they were motivated and perceived their exercise only slightly 

strenuous. In study I, the total time of instructed physiotherapy was 19 hours and together 

with self-initiated training patients practised for 28 hours resulting in improved motor ability 

after three weeks of gait-oriented rehabilitation. Patients practised in upright position 64 % of 

instructed physiotherapy including walking and standing exercises. 

 

Patients seemed to depend on a large postural sway to maintain their standing posture as seen 

in the speed of center of pressure displacements. Chronic stroke patients swayed three times 

more than healthy subjects. During the intensive gait-oriented rehabilitation, the static 

balance did not change, but the dynamic balance improved by 28 – 48 %. Frequency analysis 

of sway parameters suggested that the postural stability may have specific characteristics due 

to the side of the hemiparesis. Further studies are needed to clarify this finding. 

 

The gait-oriented physiotherapy combined with BWS assisted to increase the amount of 

walking practise resulting in an improvement of spatio-temporal gait characteristics not seen 

when compared to physiotherapy without any special effort on gait. The improvements in 

Functional Ambulation Profile, gait velocity, step lengths, stride lengths and step-time 

differential remained at the achieved level at the follow-up assessment at six months. 

However, less sensitive measures of motor ability showed no differences in improvements 

between gait-oriented physiotherapy and physiotherapy without any special effort on gait. 
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Moreover, no differences in motor abilities were found between different gait-oriented 

rehabilitation strategies. Patients with chronic stroke maintained their improved dynamic 

balance and improved walking speed, walking endurance, and improved gait characteristics 

at least six months after the intensive gait-oriented rehabilitation. Gait trainer exercise with 

BWS and overground walking exercise were both good choices for ambulatory stroke 

patients, who were slow but fairly independent in their gait. An additional advantage was that 

the gait trainer allowed more repetitions of the physiological gait cycle. Also less manual 

guiding input from the therapist is required if the patient is using the gait trainer compared to 

walking on level ground. 
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