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TIIVISTELMÄ (ABSTRACT IN FINNISH)

Pienhiukkaset ovat vuosittain osasyynä satoihin tuhansiin kuolemantapauksiin Euroopassa. 

Pyrittäessä vähentämään ilmansaasteiden haittoja ensisijaisena keinona on yleinen 

ilmanlaadun parantaminen ja päästöjen vähentäminen, mutta vähentämistoimet voidaan 

kohdentaa monin eri tavoin. On selvää, että terveyden kannalta parhaaseen tulokseen päästään 

vähentämällä nimen omaan väestön altistusta tehokkaasti. 

Ilmanlaadun ajallisen ja paikallisen vaihtelun lisäksi altistukseen vaikuttavat väestön 

ajankäyttö, erityisesti liikenteessä ja toisaalta sisätiloissa vietetty aika. Liikenteessä 

päästölähteiden läheisyys nostaa päästöjen vaikutusta altistukseen, sisällä oleskeltaessa 

puolestaan rakennukset suodattavat melko suuren osan ulkoilman pitoisuuksista. Toisaalta 

oma merkityksensä sisällä tapahtuvaan altistukseen on sisälähteillä, jotka joissain tapauksissa 

voivat kohottaa sisäilman pitoisuudet kertaluokkia korkeammaksi kuin pitoisuudet ulkona. 

Tässä työssä kehitettiin väestön altistusten arviointiin soveltuva simulointimalli, jonka avulla 

voidaan vertailla erilaisten ympäristönsuojelutoimenpiteiden vaikutusta väestön altistukseen. 

Malli kuvaa testilaskentojen mukaan väestön altistuksen vaihtelua hyvin ja mallin virheet 

jäävät väestötutkimusten otantavirheitä pienemmiksi lukuun ottamatta aivan korkeimpia 

altistustasoja. Mallin soveltuvuutta erilaisten toimenpiteiden vertailuun testattiin 

tarkastelemalla uudenaikaisten ilmanvaihtojärjestelmien tarjoamaa mahdollisuutta alentaa 

altistusta ulkoilman pienhiukkasille. Olettaen, että koko rakennuskannassa pääkaupunki-

seudulla käytettäisiin tulevaisuudessa koneellista ilmanvaihtoa suodattimineen tavalla, joka 

on jo käytössä 1990-luvulla rakennetuissa toimistorakennuksissa, voitaisiin altistusta 

ulkoilman pienhiukkasille laskea 27 % vuosien 1996-97 tasosta. Suuruusluokaltaan tämä 

vastaa paikallisen liikenteen pakokaasupäästöjen vaikutusta. Rakennusten ilmanvaihdon 

kehittäminen vaikuttaa lisäksi kaukokulkeutuneisiin hiukkasiin. 

Mallin vastaavuus mittauksiin testatuissa tapauksissa oli siis hyvä ja mallin osoitettiin 

soveltuvan erilaisten tulevaisuuskuvien vertailuun. Altistuksen arviointia ja mallien käyttöä 

osana ympäristöpolitiikan kehittämistä tulee lisätä. 

Asiasanat: pienhiukkaset, altistuminen, mallintaminen, ilman saastuminen, terveysvaikutukset, 

kaupunkiväestö,  simulointi, sisäilma, ilmanvaihtojärjestelmät, tutkimus
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ABSTRACT

Fine particles are associated with hundreds of thousands annual deaths and significant 

increase in morbidity in Europe. Improvement of air quality and reduction of air pollution 

emissions are identified as the primary goals, but environmental policies can be targeted in 

different ways. It is clear, that optimal protection of public health is achieved by policy 

options reducing population exposures effectively. Besides air quality and associated temporal 

and spatial variability, the most important factor affecting exposures is population mobility. In 

traffic environments the proximity of emissions increases exposures, while in indoor 

environments concentrations of particles entering from outside are reduced by the building 

shell. Presence of indoor sources, however, may result in indoor concentrations orders of 

magnitude higher than outdoors. 

In the current work a population exposure model was developed to compare the impact of 

alternative future policy scenarios on population exposures. Comparison with measurements 

showed that the model predicts the exposures and their variability well. The model errors 

were smaller than the statistical errors caused by random population sampling in an exposure 

study, apart from the highest few percentiles. Model applicability to policy evaluation was 

demonstrated by modelling the potential of ventilation systems equipped with effective 

particle filters to reduce exposures. Assuming the whole Helsinki metropolitan area building 

stock would be equipped with such mechanical ventilation systems that is already used in 

office buildings built in 1990’s, the overall population exposure to ambient particles was 

reduced by 27 %. This is in the order of the effect of local traffic tailpipe emissions, which 

would have to be completely removed to achieve a similar net effect. Besides, building 

ventilation system affects also long-range transported particles. 

Model correspondence with measurements was good and the model applicability to practical 

policy options comparison was demonstrated. The general conclusion of the work is that 

exposure assessment, using models when necessary, should be incorporated with development 

of effective environmental policies. 

Subject terms: air pollution, air pollution, indoor, air pollutants, environmental, ventilation, 

evaluation studies, urban population, particle size
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ABBREVIATIONS AND DEFINITIONS

These non-comprehensive definitions describe of the use of the terms in the current context. 

AirPEX Air Pollution Exposure model developed in RIVM (Freijer et al., 1998). 

BS Black Smoke. An optical measure of the blackness of a filter sample. Associated typically 
with diesel exhausts. 

CA California. A western state in the U.S. 

CD-ROM Compact Disk Read Only Memory. A CD-disk, typical capacity 650 MB. 

CHAD Consolidated Human Activity Database, a population time-activity database combined 
from several U.S. studies (McCurdy et al., 2000). 

CIDB Combined International Database; the main results from all centres. Available in MS-
Access versions 95, 97, and 2000. 

CO Colorado. A state in the U.S. 

CO Carbon monoxide. Toxic gas emitted from incomplete combustion processes. 

DOS Disk Operating System by Microsoft, Inc. A personal computer operating system popular 
in the 1980’s. 

Direct mode Exposure modelling in the current work using directly microenvironment concentration 
distributions (as opposed to nested mode). 

EADB EXPOLIS Access Database. The local database used for local data entry and management 
in each EXPOLIS centre. MS-Access version 95. 

EC European Community. 

ED-XRF Energy dispersive X-ray fluorescence (see also XRF). 

EPA U.S. Environmental Protection Agency. 

ETS Environmental Tobacco Smoke.  Air pollution (PM, nicotine, CO, etc.) originating from 
different forms of burning tobacco products to which smoking and non-smoking subjects 
are exposed in the environment. The total tobacco smoke exposure of active smokers is 
significantly higher than their ETS exposure, created by themselves and fellow smokers. 

EU European Union. 

EXPOLIS  Air Pollution Exposure Distributions within Adult Urban Populations in Europe –study. A 
multi-centre study conducted in seven cities in 1996-2000 (Jantunen et al., 1998). 

GerES German Exposure Survey. A German exposure research program (Seifert et al., 2000). 

GIS Geographical Information System. A computer software environment for handling 
spatially oriented data. E.g. MapInfo. 

GPS Global Positioning System, a satellite network and atomic clock based system for 
accurate real-time measurement of geographical locations. 

GSM Global System for Mobile Communications (originally Groupé System Mobile), a cellular 
telephone system. 

H+ Hydrogen ion. Cause of acidity. 

HAPEM Hazardous Air Pollutant Exposure Model by U.S. EPA. 

HEDS Human Exposure Database System, developed by U.S. EPA NERL. 

Helsinki Unless otherwise specifically indicated, the current work refers with this to the Helsinki 
metropolitan area, consisting of cities Helsinki, Espoo, Kauniainen, and Vantaa. Total 
population approximately 1 million. 

IN Indiana. A state in the U.S. 



KTL Finnish Public Health Institute (Kansanterveyslaitos; www.ktl.fi). 

MB Megabyte. A measure of computer memory device storage capacity. Defined alternatively 
as 1.000.000 bytes or 220 (1.048.576) bytes depending on the source. 

ME Multilinear Engine. A type of principal component analysis (Paatero and Hopke, 2003). 

MEM Microenvironment monitor. A sampling device that is positioned in a specific micro-
environment, typically a (room in the) residence, school, or workplace of the subject. 

NC North Carolina. An eastern state in the U.S. 

NERL National Exposure Research Laboratory of U.S. EPA. 

Nested mode Exposure modelling in the current work using ambient levels to model microenvironment 
concentrations (as opposed to direct mode). 

NHEXAS An exposure research program in 1990’s in the U.S. (Clayton et al., 2002). 

NJ New Jersey. An eastern state in the U.S. 

NO2  Nitrogen dioxide. An air pollutant. 

NV Nevada. A state in the U.S. 

NY New York. An eastern state in the U.S. 

O3 Ozone. An air pollutant produced by photochemistry in the atmosphere. 

ON Ontario. An east-central province in Canada. 

PAH Polycyclic aromatic hydrocarbons. 

PC Personal Computer. A microprocessor-based computer dedicated to a single user. 
Originally developed by IBM, Inc. in 1982. 

PCA Principal Component Analysis. A statistical modelling technique. 

PCP Pentachlorophenol. 

PEM Personal exposure monitor. A sampling device that is carried by the subject. 

PM, PM10, PM2.5  Particulate matter (with aerodynamic cut size diameter smaller than 10, 2.5 μm). Particles 
consisting of solid and liquid materials, suspended in the air. 

PMF Positive Matrix Factorization. A type of principal component analysis (Hopke et al, 2003) 

pNEM Probabilistic version of U.S. EPA National Exposure Model (NEM, Law et al. 1997) 

PTEAM Particle-TEAM study, Riverside, CA, U.S. (Özkaynak et al., 1996) 

p-value A statistical measure for the probability of an outcome being caused by mere chance. 

r2 Coefficient of determination. A statistical estimate for the fraction of variance being 
attributable to the independent variable(s) in a regression model. 

RIVM The Dutch Institute for Public Health and the Environment (Rijksinstituut voor 
Volksgezondheid en Milieu; www.rivm.nl) 

RSP Respirable suspended particles. Particulate matter suspended in the air capable of 
penetrating the respiratory system. Particle size defined differently in different sources, 
upper limit varying typically from 3.5 to 10 μm. 

SD Standard deviation. A statistical measure of variability of values in a data set. 

SHAPE Simulation of Human Activity and Pollutant Exposure, a probabilistic exposure model 
developed by Ott et al. (1988). 

SHEDS Stochastic Human Exposure and Dose Simulation model by U.S. EPA NERL (Burke et
al., 2001). 

SOP Standard operating procedure. A quality assurance procedure and document. 

TAD, TMAD Time-(microenvironment-)activity diary. A diary filled by study subjects to record their 
locations and activities. 



TEAM Total Exposure Assessment Methodology –research program in U.S., started in 1980’s. 

THEES Total Human Environmental Exposure Study conducted in Phillisburg, NJ in 1980’s 
(Lioy et al. 1990). 

THERdbASE Total Human Exposure Database and Simulation Environment by U.S. EPA NERL 
(Pandian et al., 1990). 

TN Tennessee. A state in the U.S. 

TSP Total Suspended Particles. Particulate matter suspended in air, regardless of the particle 
size (i.e. including coarse particles up to tens of micrometers). 

TX Texas. A southern state in the U.S. 

UK  United Kingdom, consisting of Great Britain and Northern Ireland. 

U.S. United States of America. 

VA Virginia. An eastern state in the U.S. 

VOC Volatile Organic Compounds. A heterogeneous group of innumerable volatile organic 
compounds, boiling points varying from 50-100°C to 240-260°C (WHO, 1989). 

VT Vermont. An eastern state in the U.S. 

WA Washington. A western state in the U.S. 

WHO World Health Organization of the United Nations. 

XRF X-ray fluorescence spectrometry. An analysis technique for determination of the 
elemental composition of samples of airborne PM. 

MATHEMATICAL SYMBOLS

E Time-weighted average exposure level [μg m-3]

f Fraction of time (spent in an microenvironment) [unitless] 

C Concentration [μg m-3]; using subscripts: 
a ambient (outdoors)
ai ambient originating particles in indoors
ig indoor generated particles in indoors
i indoor concentration (sum of ambient originating and indoor generated levels) 

Finf Infiltration factor [unitless]; ratio of Cai and Ca; using superscripts 
S sulphur-containing particles 
PM2.5. fine particles 

P Penetration factor [unitless] 

k Decay rate (indoors) [h-1]

a Air exchange rate [h-1]

V Volume (of an indoor space, e.g. apartment) [m3]

Q Emission rate (source strength) [μg h-1]

t time [h] 

ß0 Regression constant 

ß1 Regression slope; using superscripts 
S sulphur-containing particles 
PM2.5. fine particles 
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1. INTRODUCTION

A glimpse for perspective. Since prehistoric times it’s been known to man that the smoke 

from flames is irritating – anyone who ever sat in front of an open fire outdoors knows that it 

makes your eyes bleed and throat sore; it has never been news that air pollution is bad for 

health. The three major factors that have increased exposures to air pollution during the last 

millenniums are urbanization, industrialization, and the drastic increase of traffic. 

Urbanization started well in the first millennium before Christ. Growth of the cities during the 

following two millennia gradually increased the problems of pollution. Industrialization 

boomed towards the end of the second millennium, starting in the 18th and 19th centuries, but 

still in those days, merely domestic heating was a significant problem for air quality; a 

fireplace existed in almost every room of every inhabited building. Photographs from late 19th

and early 20th century taken over towns during days when heating was needed, demonstrate 

the poor state of air quality of that time. The third major step in worsening the air pollution 

was taken so late as early in the 20th century by the wide acceptance of the use of combustion 

engine.

The air pollution problem peaked in unfavourable meteorological conditions in places like 

Meuse Valley, Belgium (Dec. 1-5, 1930, 60 deaths), Donora, Pennsylvania, U.S., (Oct. 27-30, 

1948, 20 deaths), and finally in London, UK, (Dec. 5-9, 1952, 3000 excess deaths, added to 

the one thousand of normally expected ones for such a period) (Bell and Davis, 2001). Severe 

wide-spread public health effects during these extreme air pollution episodes, including death 

of thousands, demonstrated beyond any doubt the acute harmfulness of modern air pollution 

to human health. 

Fighting air pollution. In the next decades successful programs were launched to control air 

pollution, first in the developed world, and then towards the end of the century also globally. 

Political groups were founded targeting environmental protection in contrast to the struggle 

between the social classes in the beginning of the century. International collaboration started 

to fight global pollution and agreements were made to implement new low emission 

technologies.

Sulphur dioxide was one of the main pollutants that the emission abatement programs focused 

on in the 1970’s. Emissions in many countries were dropped by tens of percents by the end of 
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the century despite of increasing production and energy consumption, but globally the sulphur 

emissions continued to grow (Lefohn et al., 1999). Since the 1970’s strict emission reduction 

requirements have been set for the auto industry, turning the tailpipe emissions into a slowly 

lowering trail in spite of the continuously increasing number of vehicles and kilometres. So 

by the end of the century the developed world had conquered the problem of air pollution – or 

had it? 

The problem persists. After the London episode air quality monitoring has become standard 

practice in all cities and towns with more than hundred thousand inhabitants in the developed 

world. Together with the ever-increasing number of details of data collected by health 

authorities from populations of hundreds of millions, the accumulating data from these air 

quality monitoring networks has made it possible to study the effects of air pollution on 

human health with unforeseen sensitivity. During the last decade of the 20th century it became 

evident that even the prevailed relatively low levels or air pollution were still significantly 

associated with mortality and other health consequences in urban populations of the 

developed world. The number of premature deaths associated with air pollution was estimated 

to be tens of thousands annually in North America (Pope et al., 2002;Pope et al., 

1995;Dockery et al., 1993) and in Europe (Samoli et al., 2005;Katsouyanni et al., 

2001;Katsouyanni et al., 1997). The most significant association has been repeatedly found 

for particulate matter (PM), especially fine particles (PM2.5) (WHO, 2002;Ezzati et al., 2002). 

At the same time that the developed world realized that air pollution is an additional risk 

factor that increases the statistical probability of death and other adverse health effects caused 

primarily by cardio-vascular and respiratory diseases, the role of exposure as the actual causal 

link in the chain from emissions to the health effects became more clearly acknowledged (Ott, 

1995). Health effects really having causal connections with the air pollution must be caused 

by the actual exposures of the affected individuals. Therefore reductions in the health risks 

must occur via reductions in the exposures – and sometimes emission-based policies have 

shown to have only negligible effects on exposures (Jantunen, 1998). 

Particles originate from a number of different sources, including energy production, industry, 

vehicles, resuspension of dust, natural sources, and many sources indoors. In terms of 

emission tons the indoor sources are typically negligible, but their effect on indoor 

concentrations may be remarkable. Together with the fact that urban populations spend a 

majority of their time indoors makes the indoor exposures significant, and in some cases 
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totally dominating. In the beginning of the current decade it became obvious that the health 

effects of ambient and indoor generated pollution should be considered separately (Wilson et 

al., 2000). The concentrations caused by these do not correlate with each other; the particles 

have different chemical and physical compositions, presumably different toxicities, and 

definitely very different controlling options. Consequently, the questions that have risen to a 

central role in the public health protection concerning particulate matter pollution are: 

Are all particles (equally) harmful? 

What kinds of particles are (more) harmful? 

To whom are they (most) harmful? 

How to reduce the harmful exposures of sensitive population groups efficiently? 

Effective public health protection policies must be based on a clear understanding of 

population exposures and the underlying factors, including microenvironment concentrations

and population time-activity (Lioy, 1990). Optimal reduction of exposures can then be 

achieved by comparing alternative control strategies in terms of costs and exposures. 

Comparison of hypothetical policy options is really possible only by using models (Ott, 

1995;Seifert, 1995;Lioy, 1991;Ryan, 1991;Ott, 1985). Requirements for the reliability of such 

models, when used in selecting expensive and potentially invasive and limiting policies, are 

high. Such models must be carefully evaluated against experimental data in existing setups, 

including a thorough peer review before the models are applied. This is exactly what the 

current work is about. 
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2. AIMS OF THE DISSERTATION

The overall objective of the current doctoral dissertation work was to develop and evaluate a 

modelling methodology for the estimation of urban population exposures to fine particulate 

matter in current and future scenarios, including hypothetical scenarios supporting policy 

options evaluation. The work uses PM2.5 data from Helsinki for these purposes. 

The specific steps required meeting this overall objective include the following tasks. The 

original articles that tackle each task in detail are listed in parentheses. 

1.  Design and carry out a population-based exposure study to collect data on urban 

population exposure levels, microenvironment concentrations, and population time-

activity for development and validation of a probabilistic exposure simulation model (I),

2. Develop a conceptual model and supporting software framework for implementing 

probabilistic exposure models (II),

3.  Create data analysis methods to estimate model inputs from measured variables, 

including partitioning of microenvironment concentrations into ambient and indoor 

generated fractions and analysis of infiltration factors, and selection of appropriate 

population groups for time-activity modelling (III, IV, V),

4.  Study the accuracy of the simulation model by comparing model results with the 

measured personal exposure distributions in a random population sample (II, III, V),

5. Clarify the concepts of model evaluation by differentiating between the concepts of 

model error and assessment of uncertainty (V) and discuss the use of independent data, 

6.  Demonstrate the use of a simulation model in a policy relevant setup by applying it for a 

selected exposure reduction scenario (VI), and 

7.  Discuss development of effective environmental policies by using exposure analysis and 

models (VII).
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3. BACKGROUND

Focus shift from emissions to exposures. Environmental policies are facing new integration 

and optimization challenges in the 21st century. Health effects which have a causal 

relationship with air pollution must be caused by the actual personal exposures of the affected 

individuals (Spengler and Soczek, 1984;Duan, 1982;e.g. Ott, 1982). During the past decade it 

became clear that straightforward emission reductions are not always cost-effective means to 

reduce public health risks – in fact they can be costly and yet very ineffective. Perhaps the 

best-known example of this is the benzene exposure case in Northern California (Jantunen, 

1998;Ott, 1995). In the early 1990’s the San Francisco Bay Area Air Quality Management 

District considered that of all ambient air pollutants benzene was contributing the largest risk 

to the Bay area residents. The Board called for a 50 % reduction in benzene emissions from 

the largest industrial point sources. However, a source apportionment of the benzene 

exposures revealed that only 25 % of the exposures were of ambient origin, and only 3 % 

originated from the point sources. Majority of the exposures came from traffic, tobacco 

smoke, and various indoor sources and the 50 % reduction in point source emissions yielded 

only an indistinguishable 1.5 % reduction in the population's exposure and corresponding 

cancer risk. 

The Exposure Paradox. The association between ambient PM pollution and health was 

observed in epidemiological studies using air quality monitoring data from fixed outdoor sites 

to describe population exposures. Personal exposures are, however, modified by individual 

behaviour, time spent in traffic, and especially the indoor environments visited. Many studies 

have confirmed that personal exposures correlate poorly with ambient levels measured at 

fixed monitoring sites (Alm et al., 2001;Koistinen et al., 2001;Oglesby et al., 2000;Pellizzari 

et al., 1999;Wallace, 1996;Morandi et al., 1988;Spengler et al., 1985;Sexton et al., 1984). At 

first, this was seen as a major objection to the epidemiological finding itself, before it was 

realized that the health effects associated with fixed station levels are those caused by the 

particles of ambient origin. Fixed urban background monitoring stations represent well the 

average population exposures to these particles (Wilson et al., 2000). Other particles, not 

correlating with the ambient levels, may then have health effects of their own (Mage, 

2001;Wilson et al., 2000), but due to the methodological difficulties in assessing these, the 
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toxicities of indoor generated particles – except for ETS (e.g. Zhang et al., 2005) – are still 

largely unknown. 

The main conclusion from these findings is the fact that urban populations are exposed to a 

large variety of different kinds of particles from different sources; the particles may have 

different toxicities, and different sources certainly have different control mechanisms. 

Therefore it is important to assess these exposures separately (Ott, 1995;Sexton et al., 

1995a;Wallace, 1993;Girman et al., 1989).  

Understanding the underlying source and exposure factors associated with the health effects is 

crucial for the success in both exposure modelling and in public health risk management. On 

the population level there are dozens of time-activity factors, and factors that affect local 

microenvironment concentrations, that together create the individual exposure levels. Some 

major milestones in the particulate matter exposure analysis studying these factors are 

reviewed in the following section. 

3.1. Population-Based Exposure Research 

During 1980-2000 a number field studies were conducted first in the U.S. and later in Europe 

to collect population-based data for exposure analysis. The following reviews some of the 

studies that either had a profound contribution to exposure analysis for particulate matter, the 

design of the current work, or that have been progressing parallel to our study. Some of these 

studies, which have either preceded the current study and influenced its design, or have been 

conducted parallel or later to it, are summarized in Table 1 in chronological order and 

compared with EXPOLIS. The studies are identified primarily by the project acronym (if 

available; otherwise by location or primary researcher). 

The reviewed studies can be classified into two categories: (i) those focusing on total 

exposures of pollutants having multiple routes of entry into the human body, including 

besides inhalation also dietary and skin exposures. From the point of view of the current 

work, some of these studies (e.g. TEAM, NHEXAS, GerES, see definitions and details 

below) have been significant in terms of developing concepts and methods for population 

exposure assessment. The second category (ii) includes studies of inhalation exposures 

focusing more or less on particulate matter.  
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Important exposure concepts developed along the two active decades of population exposure 

research include exposure distributions, intra- and inter-personal variation, source 

apportionment, ambient and indoor sources, microenvironment assessment and modelling, 

indoor-outdoor relationships, and infiltration of particles. Many of these concepts are directly 

utilized in the modelling in the current work. 

Northern America. Early milestones in PM exposure research were set in late 1970’s and 

early 1980’s. One of these was the Harvard Six Cities study, a successful long-term research 

project that produced one of the most significant epidemiological findings on the association 

between ambient PM and health (Dockery et al., 1993). As a small part of this project, also 

the indoor-outdoor relationships of respirable particles (RSP) were studied using data from 68 

residences over one-year period (Dockery and Spengler, 1981). Somewhat later a similar 

study was conducted in Suffolk and Onondaga counties in the New York State ERDA –study 

(Koutrakis et al., 1992), where PM2.5 measurements, now including 16 elemental constituents, 

were conducted in 178 residences. Both of these studies were used to develop models for the 

indoor-outdoor relationship of particles (see modelling details in IV).

One of the important aspects studied in the 1980’s was the relationship of short-term and 

long-term exposures. When short-term exposure measurements are conducted on a population 

sample, the observed variance of personal exposures includes two components: inter-personal 

variance (i.e. variance in exposures of different subjects during the same day) and intra-

personal variance (variance of exposures of the same persons over different days). This issue 

was tackled in the Waterbury, Kingston-Harriman, and Phillisburg studies (Table 1). 

Exposures to respirable suspended particles (RSP) were measured in Waterbury (VT) using 

48 subjects (Sexton et al., 1984). Each subject was sampled every other day for two weeks, 

giving information on the intra-personal day-to-day variation. In Kingston and Harriman (TN) 

the size of the population sample was 97 (Spengler et al., 1985). In this study RSP personal 

exposures were monitored for three non-consecutive days together with simultaneous 

residential indoor concentrations. The longitudinal variation of personal exposures to PM10

was studied also in the THEES study in Phillisburg (NJ) (Lioy et al., 1990). The population 

sample was rather small (14) and not randomly selected, but residential indoor and outdoor 

concentrations and personal exposures were followed from day to day for a two-week period. 

Thus the results formed a 14x14 matrix of person days, allowing for analysis of the inter- and 

intra-day variances of the personal exposures and their relationships to ambient PM10 levels. 
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Perhaps the best-known exposure research program in the 1980’s was the Total Exposure 

Assessment Methodology (TEAM) focusing on multi-route exposures. Inhalation exposure 

compounds like carbon monoxide (CO), nitrogen dioxide (NO2), total suspended particles 

(TSP), respirable (PM10) and fine particles (PM2.5), acid aerosols, environmental tobacco 

smoke (ETS), and ozone were included, but in a minor role in these studies and benefited 

mainly from the methodological developments in population exposure assessment. The other 

exposure routes, dietary and skin exposures, however, have a profound role for many other 

substances including VOC's (e.g. benzene, toluene, limonene, styrene, chlorinated 

hydrocarbons, different forms of xylene), pentachlorophenol (PCP), lead, cadmium, 

polycyclic aromatic hydrocarbons (PAH), and pesticides. Population samples in the TEAM 

studies varied from small and non-representative to quite large random or stratified random 

samples. Inhalation exposures were measured typically for one day, but some designs allowed 

also for longitudinal exposure analyses (Hartwell et al., 1987;Spengler et al., 1985;Sexton et 

al., 1984). 

Concerning PM exposures, the most important study before EXPOLIS was initiated by the 

series of earlier TEAM studies and was called Particle TEAM (PTEAM, Table 1). This study 

was conducted in 1990 in Riverside (CA) using a random population sample of 178 subjects. 

Residential indoor and outdoor PM10 levels were monitored for two consecutive 12-hour 

periods (day and night) together with corresponding personal exposures. Residential indoor 

and outdoor PM2.5 concentrations were also measured, allowing for modelling of PM2.5

exposures and assessment of the ratio of PM10 and PM2.5 exposures. Elemental compositions 

were also determined and used for infiltration modelling and analysis of the decay and 

penetration terms required by the mass-balance model (Özkaynak et al., 1996;Clayton et al., 

1993;Thomas et al., 1993;Clayton et al., 1991). Similar analysis was developed further using 

the EXPOLIS data in IV.

Parallel to the current work was conducted the Ethyl Corporation funded study by Research 

Triangle Institute (NC) for PM2.5 and manganese exposures in Toronto (Ontario, Canada; 

Table 1). This is the largest population based PM study so far with it's 732 measured subjects. 

Manganese used as a gasoline additive in Canada was suspected to have public health effects. 

A sub sample of 190 subjects was measured again within the one-year study period with a 

random lag. Besides personal levels also residential concentrations were measured indoors 

and outdoors. Each person was monitored for 3-day period. Supplementary data on traffic, 
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meteorology, occupation, and time activity of subjects were also collected. Databases were 

developed to store the data and to support the data analysis. (Pellizzari et al., 1999;Clayton et 

al., 1999a) 

A parallel manganese study was conducted in Indianapolis (IN; Table 1) to get comparable 

exposure levels from a city where the same gasoline additive was not used (Pellizzari et al., 

2001a). In general the Indianapolis PM levels were somewhat higher than the corresponding 

levels in Toronto. The Mn levels, as expected, were lower in Indianapolis, especially when 

excluding occupational exposures. All PM10 levels in Toronto and microenvironment PM10

levels in Indianapolis were clearly lower than the PM10 levels in PTEAM study, Riverside 

(Pellizzari et al., 2001a). 

Another significant U.S. program in population based exposure research in general, but 

having only a minor contribution to PM research, is the National Human Exposure 

Assessment Survey (NHEXAS) that followed the TEAM studies in assessing multi-route 

multi-media exposures. NHEXAS targeted the whole population of the U.S. and to this end 

developed geographical, urban-rural and sociodemographic stratification levels for population 

sampling. In respect to pollutants studied, NHEXAS was more focused than the TEAM-

studies; there was a clear view that the compounds selected for such a large study should be 

documented or suspected human health hazards and there should be a need for exposure 

information for them. Pollutants of especial interest according to these criteria included 

benzene, pentachlorophenol, formaldehyde, mercury, and lead (Lioy and Pellizzari, 1995). 

Besides these, dozens of heavy metals, VOCs and pesticides were considered (Callahan et al., 

1995;Sexton et al., 1995b). NHEXAS acknowledged the need to characterize population 

distributions of exposures, including information on both the base line exposures as well as 

the high percentiles and estimates on the highest exposed individual levels for both the 

general population as well as for population sub groups. The program was divided into three 

phases. Phase I targeted planning, designing and testing, phase II implemented the national 

survey and in depth special studies were allocated to phase III. After that, NHEXAS was 

envisioned to be a continuous research activity, to be repeated every three to six years. 

(Sexton et al., 1995b) 

NHEXAS phase I studies were conducted in three different areas; (i) Arizona, (ii) EPA region 

5, consisting of six states in the Great Lakes area, and (iii) Maryland. NHEXAS Arizona 

measured residential indoor, outdoor and personal concentrations of 25 metals, 4 pestisides 
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and 25 VOCs for 175 subjects (study phase 3). The measurements were conducted during all 

seasons. (Gordon et al., 1999;Robertson et al., 1999;O'Rourke et al., 1999a;O'Rourke et al., 

1999b). The NHEXAS EPA region 5 study panned six states, where selected metals and 4 

VOCs were measured for a random sample of 250 subjects during an 18-month period in 

1995-97. Six-day samples of residential indoor, outdoor and personal VOC levels were 

collected besides extensive set of other samples. (Clayton et al., 2002;Pellizzari et al., 

2001b;Clayton et al., 1999b;Pellizzari et al., 1995). In Maryland the NHEXAS studies were 

more focused on selected specific issues. Buck et al. (1995) studied statistical aspects of 

estimating long-term exposures from short-term measurements. MacIntosh et al. (2001) and 

Pang et al. (2002) studied population exposures to pesticides, especially chlorpyrifos. 

Inhalation exposure related 24-hour measurements were conducted only in residential indoors 

of 80 subjects during a one-year study period. Longitudinal aspects were studied by repeating 

measurements on population sub samples up to six times. 

The most recent PM study is the Relationships of Indoor, Outdoor, and Personal Air (RIOPA, 

Table 1) study in U.S. The concentrations of 18 volatile organic compounds (VOCs), 17 

carbonyl compounds, and fine particulate matter mass (PM2.5) were measured using 48-h 

outdoor, indoor and personal air samples collected simultaneously. PM2.5 mass, as well as 

several component species (elemental carbon, organic carbon, polyaromatic hydrocarbons, 

and elemental analysis) were also measured in 1999-2000 in Houston (TX), Los Angeles 

(CA) and Elizabeth (NJ) in 212 non-randomly sampled homes. Personal samples were 

collected from non-smoking adults and a portion of children living in the target homes. The 

population sample was stratified according to the residence location in relationship to major 

freeways, industry and other recognised emission sources. (Meng et al., 2005;Weisel et al., 

2005)

Analysis results of the RIOPA data have just started to appear in the published literature. The 

first results include similar analysis of indoor-outdoor relationships of PM2.5 levels that was 

earlier presented by Dockery and Spengler (1981) and Koutrakis et al (1992), and that was 

conducted also in the EXPOLIS study (IV).

Europe. One of the most significant early exposure studies in Europe were the German 

Environmental Surveys (GerES) that was first conducted in the former West Germany 1985-

86 and then repeated in 1990-92, now including the whole united Germany. GerES studied 

representative population samples for exposures to dozens of metals and other toxicants. 



24

Inhalation exposures to VOCs were measured only on a sub sample of 113 adult subjects, PM 

exposures not at all. (Hoffmann et al., 2000a;Seifert et al., 2000a;Hoffmann et al., 

2000b;Seifert et al., 2000b) 

In Finland the first exposure studies were conducted by Alm et al. (2001;2000;1998;1994) 

and Mukala et al. (2000;1996). They measured personal carbon monoxide and nitrogen 

dioxide exposures of pre school children panels in Helsinki in 1990-91. Personal NO2 levels 

were found to be lower than levels at the day care centres and the fixed station levels. 

Personal CO levels were higher than fixed station levels, and they were affected by the 

presence of gas stove at home. Respiratory symptoms were also connected to NO2 exposures. 

Both NO2 and CO exposures were affected by tobacco smoking in the home. These studies 

had a significant contribution for the practical implementation of the EXPOLIS studies. 

A significant number of PM exposure studies in Europe were conducted by Phillips et al. in 

more than a half dozen European cities in collaboration with local institutes in each city 

(Table 1). These studies, however, were solely focused on ETS and nicotine exposures. The 

population samples were fairly large and representative in all cities (188-255 subjects per 

study), including only non-smoking subjects. Particle concentrations were measured mostly 

with cyclone pre-separator with 50% removal efficiency at 3.5 μm (the earliest study used no 

pre-separator and very low flow rate). Besides gravimetric RSP particle measurement various 

analytical methods were used to measure tobacco smoke originating particle concentrations

(ultraviolet, fluorescence and solanesol measurements). (Phillips et al., 

1999;1998a;1998b;1997a;1997b;1996;1994)

Important early European PM exposure studies were conducted by Janssen et al in the 

Netherlands (Table 1). They measured the PM2.5 and PM10 exposures of school children and 

elderly people in Wageningen and Amsterdam in 1994-95. Panels of 45 children and 37 

adults were sampled during 4-8 periods for 24 hours. Besides personal and residential levels, 

also concentrations in the school classrooms were measured 

(1999a;1999b;1998a;1998b;1997a;1997b). From the point of view of the EXPOLIS study 

some experience in the development of silent microenvironment and personal monitors were 

acquired from the Dutch experiences. Data analysis benefited, too, from the publications that 

appeared in the literature during the active period of EXPOLIS data analysis. 
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The Dutch studies were followed by the Exposure and risk assessment for fine and ultrafine 

particles in ambient air (ULTRA, Table 1). Cohorts of elderly cardiovascular patients were 

followed for six months in Amsterdam and Helsinki, including biweekly health inspection 

and ultrafine PM and PM2.5 exposure measurements (Vallius et al., 2003;Pekkanen et al., 

2002;Ruuskanen et al., 2001;Janssen et al., 2000). 

3.2. Databases Supporting Exposure Modelling 

The enormous amounts of valuable data produced in the population based exposure studies 

could potentially be utilised very effectively in exposure analysis outside the original study 

scope, if only the data was properly documented and made available (Burke et al., 1992). The 

value of databases designed for this purpose has been recognized since early 1990’s (Sexton 

et al., 1994;Burke et al., 1992;Graham et al., 1992;Sexton et al., 1992), when the revolution 

brought by the Internet-based networking really started to make a difference in the ways that 

exposure related data is collected and stored. Due to the technical nature of such databases, 

however, little has been written about them in the scientific literature.  

A lot of effort was put in the current work in developing a researcher-friendly, efficient, and 

reliable database system for collecting, storing, and distributing the various subsets of data 

from the EXPOLIS centres. The databases described in the Material and Methods –section 

have been used in data analysis for dozens of scientific papers, and in preparation a dozen 

doctoral dissertations. Therefore a short review of the thin literature concerning such 

databases is appropriate here to foster the use and publication of exposure databases to 

maximise the usability of data collected on public funding. 

The role of exposure databases in exposure analysis and exposure model development – the 

context for the current work – is depicted in Figure 1. The database provides data needed both 

for the process of constructing the model as well as data for the model runs. 
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Figure 1. The triple role of exposure database s in exposure model development. 

This topic was so urgent in the early 1990’s that a workshop designed specifically to examine 

exposure-related databases was conducted in January 21-23, 1992, in Virginia Beach (VA). 

Participants, including scientists from federal and state agencies, the private sector and 

academic community, examined the utility of existing databases from different perspectives. 

Sexton et al. (1992) concluded that the existing databases of that time contained a substantial 

amount of relevant information, but that it was clear that the quality of the data was 

inconsistent and it was difficult to access the data. These statements are still valid. The studied 

systems demonstrated a striking absence of data on actual human exposures – a factor that has 

improved since. EXPOLIS database is one of the European milestones in this area. 

Graham et al. (1992) recommended in the Virginia Beach workshop risk management 

workgroup that more human exposure measurement studies should be conducted and that new 

databases should be developed to meet critical data needs. The databases should emphasize 

quality assurance and control and they should be accessible to exposure and risk assessors. 

These are exactly the driving motivation for the current study: combination of conduction a 

population based European exposure study and development of an extensive exposure 

database for exposure analysis, modelling, and model validation purposes. 

One of the extensive exposure databases developed based on these needs was the Total 

Human Exposure Database and Simulation Environment (THERdbASE) by U.S. EPA's 

National Exposure Research Laboratory, Las Vegas (NV) THERdbASE started as a DOS-

based database system for information gathered in the TEAM studies to allow for (i) an 

ordered storage base for exposure-related environmental data and (ii) a convenient base for 
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building total human exposure models (Pandian et al., 1990). In the 1990’s the system 

evolved into a Windows based system capable of handling large databases and complex 

models in a networked PC-environment. Number of models and a variety of databases, 

including selected 1990 U.S. Census data were incorporated into one software platform. The 

database was peer-reviewed by a panel of national experts in December 1997. The database 

was downloadable from the Internet till 2004 when EPA dropped support for it, and it was 

adopted as a standard platform for exposure modelling across many offices within the U.S. 

EPA. (http://www.epa.gov/heasd/edrb/therd/therd-home.htm) 

To survey the availability and quality of federally sponsored databases in the U.S. Sexton et

al. (1994) made an inventory of databases potentially relevant for estimating human 

exposures to environmental agents. The inventory, reviewing and classifying 67 American 

databases, was compiled through a joint effort of EPA, the National Center for Health 

Statistics, and the Agency for Toxic Substances and Disease Registry. The inventory allowed 

for comparison of databases according to (i) type of exposure estimators, (ii) sample/media 

types, (iii) compounds, (iv) geographic scope and location coding (e.g. latitude/longitude, zip 

code, county) and (v) sampling frequency. The inventory showed that a significant number of 

the data systems contained useful information for exposure analysis, but it also was apparent 

that the data varied substantially according to the relevance, quality, and availability. Few 

databases collected representative population samples. 

In the area of population time-activity the National Exposure Research Laboratory (NERL), 

EPA, developed the Consolidated Human Activity Database (CHAD). CHAD combined 

originally data from 12 U.S. studies related to human activities. CHAD, accessible in the 

Internet at http://www.epa.gov/chadnet1/, contains data from pre-existing human activity 

studies that were collected at city, state, and national levels. CHAD is intended to be an input 

data source for exposure/intake dose modelling and statistical analysis. CHAD is a master 

database providing access to other human activity databases using a consistent format. This 

facilitates access and retrieval of activity and questionnaire information from databases that 

EPA currently uses in its regulatory analyses. (McCurdy et al., 2000)

NERL produced also the Human Exposure Database System (HEDS), which is putting the 

NHEXAS data on-line. NHEXAS data was originally managed independently in different 

centres (Lebowitz et al., 1995). HEDS contains chemical composition data for air, soil 

drinking water, house dust, food, beverage, blood and urine (Robertson et al., 2001). The data 
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includes pesticides, metals, VOCs and polynuclear aromatic hydrocarbons (PAHs). Question-

naire and diary responses are also included, addressing residential, life style demographic, 

occupational and health characteristics, time activity patterns and food consumption 

information (Robertson et al., 2001). HEDS is on-line at http://www.epa.gov/heds. 

3.3. Theoretical Context for Exposure Modelling 

Exposure models are used to estimate the concentrations of chemicals or other substances in 

an exposure media when in contact with the target subject. The media may be a surface 

becoming into contact with the skin or it may be e.g. foodstuff entering the digestive system. 

In the current work, focusing on inhalation exposures to fine particles, exposure is defined as 

airborne particle concentration in the breathing air of the subjects. 

Exposure models may be developed to estimate exposures of individuals, susceptible 

population groups, or entire populations. They may estimate exposures as continuous 

variables, or integrate over time from short-term periods like minutes and hours to days, to 

long-term periods like years to lifetime. Modelled exposure variables may include instant 

values, mean exposure levels, and distribution parameters like standard deviations, quartiles, 

and percentiles. Consequently, exposure models range over a wide variety of complexity, 

approach, inputs, and outputs as discussed shortly below to put the current work into 

perspective with alternative methods and approaches. 

3.3.1. What Are Exposure Models Needed For? 

Exposure is the mediating link between man and the environment. Modelling of exposures is 

of interest to both exposure scientists as well as those in charge of developing environmental 

and public health policies. Modelling can serve three purposes: 

Understanding a phenomenon 

Estimation in lack of measurements 

Forecasting



29

The first category is mainly of interest to scientists, for whom sometimes merely a weak but 

statistically significant correlation between two variables is an interesting finding. The second 

one may interest both user groups equally and includes exposure modelling for epidemiology 

and risk assessment. The last one, forecasting, can be interpreted as a special case of the 

second, where the lack of measurements is due to the fact of looking into future. Forecasting 

may concern short (hours to days) or long-term (years to lifetime) models. Some approaches 

integrate modelling and measurements, e.g. data assimilation in meteorological models. 

Models of the third category belong to the most important tools for formulating science-based 

and effective public health policies (Ott, 1984). 

3.3.2. Causality and Statistics  

Models considered here are numerical constructs, quantifying the relationships between 

independent and dependent phenomena based on a theory. Independent phenomena, or events, 

are entered into the model as values of input variables to estimate the numerical values 

describing the corresponding dependent events. The dependent events that are statistically, 

logically, or causally related to the inputs, are then described using the output variables.

In his classical examination on exposure modelling principles, Ryan (1991) categorized 

exposure models into three categories: (i) statistical; (ii) physical; and (iii) physical-

stochastic. Selection of the best approach for each modelling task is driven by the 

relationships of the independent and dependent variables – exposures and their determinants - 

in the target system. Dependency of variables can result from three alternative relationships 

depicted in Figure 2. The first rows represent causal relationships, where the state of the 

output variable is directly or indirectly caused (or more often in reality: influenced) by an 

input variable. In the third row the Effect 1 is irrelevant in causal sense and could be ignored, 

if only some alternative variable would be available to describe the underlying cause. 

However, in lack of such a variable the statistical relationship resulting for Effects 1 and 2 can 

be used for prediction of Effect 2 when observations of Effect 1 are available. A classical 

example of the last type of relationship is the correlation of ice cream consumption and 

drowning deaths –both are (causally) influenced by a warm weather, leading to an apparent 

relationship. In this case the true causal variable is measurable and should be used. 
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Figure 2. Different relationships between model variables and model types suitable for them. 

In reality, usually there are many independent phenomena affecting the dependent one, and in 

many cases feedback loops connect the output back to (some of) the inputs. The more direct 

and simple the causal chain is, the easier it is to model. An increasing number of intermediate 

variables in the causal chain shifts the relationship towards diminishing causality and weaker 

statistical correlation. Causal models are generally more reliable than models based on 

statistical associations exactly due to the increasing complexity of the chain of events in 

between the input and output variables. Physical modellers often take this as a disadvantage of 

statistical models, but as Ryan (1991) points in his Venn-diagram depicting the rather small 

overlapping application area of statistical and physical models, it is more reflecting the nature 

of the modelled phenomena for which the statistical approach becomes handy. 

3.3.3. Researchers Standard Tools: Statistical Models 

Statistical models are standard tools of scientists. When the actual causal mechanisms in the 

system under study are not yet known, they can be revealed by building hypotheses based on 

current theoretical understanding and testing them using statistical methods. Statistical models 

are typically used for description of relationships of variables when analysing a collected 

dataset. Sometimes the causal mechanisms are too complex, or some of the causal variables 

are not available, making physical modelling impossible. In such cases statistical modelling 

with existing empirical variables is the only option available for the modeller. More complex 

models also considered statistical include neural networks. 



31

It is both strength and a weakness of empirical models that they do not require nor imply any 

causal relationships between the model variables. An empirical model carries on to the result 

all the interdependencies existing in the data, regardless of whether they are causal or 

introduced by chance, or considered by the modeller. Empirical models require both input and 

output variables to be known in the model development system. Because the outputs must be 

measured anyway, empirical models are not at their best in estimation of unmeasured 

parameters, excluding perhaps the special case of modelling missing values within a dataset 

or cases where time-series data is used for statistical forecasting in the same target system. In 

most cases their data-set dependency restricts their use for making future predictions. 

Regression models. By far the most common form of statistical model is the classic 

regression model. In its simplest form, a regression model solves the constant 0 and 

coefficients 1 … n, by minimizing the model errors (residuals) for the dependent variable. A 

standard equation is used to describe the relationships of the independent variables, resulting 

in the major benefit of statistical modelling techniques that variables having incompatible 

units of measure can be used together, including continuous and classification variables. 

Classification variables are typically transformed to binary dummies for studying the effects 

of a given questionnaire category on the dependent variable. Advantages of regression models 

include the capability of estimating the coefficient of determination (r2) as a measure of how 

large a fraction of the variation of the dependent variable can be explained with the 

independent variables, and statistical significance (p) as a measure of the statistical probability 

of the model relationship being caused by mere chance. 

Multiple regression exposure models can include concentrations in many microenvironments, 

and dummy variables for parameters such as smoking, form of commuting, type of work, gas 

stove, air conditioning, and other appliances. The terms of the resulting model are specific to 

the data set from which they have been calculated, and there are no grounds other than expert 

judgement to assess their applicability to some other location, time, or population. Examples 

of regression models used in exposure analysis include models for carbon monoxide 

exposures in Athens (Georgoulis et al., 2002) and Milan (Bruinen de Bruin et al., 2004a), and 

models for PM2.5 and NO2 exposures in Helsinki (Kousa et al., 2002b;Koistinen et al., 

2001;Rotko et al., 2001;Kousa et al., 2001b;Rotko et al., 2000a). 

Factor analysis. Another commonly applied statistical modelling technique in exposure-

related studies is factor analysis. Principal component analysis (PCA), most common type of 
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factor analysis, has been successfully applied to apportion observed air pollutant 

concentrations to different emission sources, or source categories, in a number of studies (e.g. 

Koistinen et al., 2004;Vallius et al., 2003;Edwards et al., 2001). Alternative forms of factor 

analysis have also been applied to environmental concentration data, including positive matrix 

factorization (PMF) and multilinear engine (ME) (Hopke et al., 2003;Paatero and Hopke, 

2003;Basunia et al., 2003;Yli-Tuomi et al., 2003a;Yli-Tuomi et al., 2003b).  

Advantages of factor analysis in source apportionment include the fact that the actual 

emission profiles of the different sources need not to be known. The corresponding 

disadvantage is that the results are largely data-set specific, and there are difficulties in 

comparing factors obtained from the same dataset using different methods, or factors from 

different studies. However, factor analysis is currently the mainstream technique to identify 

emission sources from concentration and exposure observations. 

3.3.4. Physical Models 

Capability to build reliable physical models is the best proof that all aspects of a phenomenon 

are well understood. Physical models, based on actual quantified physical and causal 

relationships between variables, are therefore, by definition, better suited for making 

predictions for alternative future policies than statistical models. In his overview of exposure 

models, Ryan (1991) divided physical models into deterministic and probabilistic ones. Short 

comparison of these techniques below introduces the main reasons why probabilistic 

modelling was selected for the current work. Deterministic techniques have their specific 

strengths in some exposure domains, as will be discussed in more detail later on when looking 

at the dimensions along which exposure data are aggregated. 

Deterministic models are calculated for selected individuals using input variables describing 

physical processes, physicochemical characteristics, and mass-balances specific to the target 

individuals, locations, and points in time. Deterministic models need intensive sets of data 

when applied to anything more than few individuals and relatively short periods. 

Dispersion models are a common exposure-related application area for deterministic 

techniques. Dispersion models describe emissions and atmospheric boundary layer conditions 

for estimating outdoor air pollutant concentrations. Such models are used for retrospective 

analysis of air quality and scenario analyses for policy options evaluation. Compared to air 

quality monitoring networks, dispersion models have tremendously better spatial resolution, 
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and in addition support detailed analysis of concentrations caused by various emission 

sources. (Kousa et al., 2001a;Kukkonen et al., 2001a;Kukkonen et al., 2001b;Kukkonen et al., 

2001c)

A common technique to overcome some of the limitations set by available data is to use 

population averages instead specific values for some variables. Typical examples of this 

include the use of fixed infiltration value; for O3 in the AirPEX model in the Netherlands 

(Freijer et al., 1998), for PM2.5 and NO2 in a GIS-based population exposure model EXPAND 

in Helsinki (Kousa et al., 2002a) and for H+ and sulphate in the U.S. (Suh et al., 1993). The 

use of population averages of input parameters instead of actual values does not pose 

significant problems for estimating mean exposures, but when distributions are estimated, it 

always reduces the modelled variance and biases individual model outputs towards the 

corresponding mean. It specifically leads to underestimation of the highest levels. Sometimes 

in cases when all causal effects cannot be included, physical models may apply physical 

factors estimated statistically from representative data sets (Karppinen et al., 2004b;Suh et al., 

1993). Use of such factors biases results towards the mean, too. 

Probabilistic models apply laws of probability to overcome the limitations of unavailable 

deterministic data for specific individuals, and to still capture the exposure variability in a 

given population. This is achieved by using the limited available data for estimating 

probability distributions of the values in the population in question. The population exposures 

are then simulated using physical equations from input values randomly sampled by the 

computer from them. In terms of data needs and model complexity, probabilistic modelling is 

the most efficient technique for estimation of population exposure distributions.

Because the input data in the probabilistic models are drawn randomly from defined statistical 

distributions, results of individual iterations are essentially random. Combination of a large 

number of them provides an estimate for population distribution. Originally probabilistic 

techniques were adapted to exposure analysis to model population variability. However, 

during the 1990’s the methods were taken into use also in analysing uncertainty (Burke et al., 

2001;Cox, 1999;Hattis and Burmaster, 1994;Morgan and Henrion, 1990). The uncertainty in a 

model (or in an analysis) can be described using probability distributions similarly as in 

Bayesian techniques (Rovers et al., 2005;Wikle and Berliner, 2005;Kashiwagi, 2004;Gangnon 

and Clayton, 2004), and numerical computer simulation can be used to propagate them 

through the calculations. The resulting distributions do not represent variability in the values, 
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but uncertainty in them. In this sense simulation of uncertainty is closely related to classic 

statistical methods for estimation of confidence intervals. Second-order simulations include 

variability and uncertainty components in the same model (Burke et al., 2001;Cullen and 

Frey, 1999;Frey and Rhodes, 1996). 

During the last few decades several research groups have applied probabilistic modelling for 

population exposures. The earliest models in the 1980’s targeted CO and VOC exposures, but 

since 1990’s also particulate matter exposures have been modelled. Some of the works were 

mainly targeted on model validation (Law et al., 1997;Ott et al., 1988), others have been 

focusing on developing tools for policy evaluation (especially models by EPA, e.g. Burke et 

al., 2001). Yeh and Small (2002) applied probabilistic 1-microenvironment model as a 

research tool in their analysis of health effects associated with PM2.5 exposures. The current 

work combines the aspects of model validation and development of a tool for policy 

evaluation. The latest PM2.5 models developed in parallel to the current work are summarized 

shortly below. 

U.S. EPA National Exposure Research Laboratory (NERL) developed one of the current 

models in parallel with the EXPOLIS study. The objectives set for this model, the Stochastic 

Human Exposure and Dose Simulation model (SHEDS) were defined as: (i) prediction of 

population distributions of daily PM exposures in an urban area; (ii) estimation of 

contribution of PM of ambient origin to total PM exposure; (iii) determination of factors 

influencing personal exposures to PM; and (iv) identifying factors contributing to uncertainty 

in the model predictions (Burke et al., 2001). 

SHEDS was applied for daily PM2.5 exposures in Philadelphia (PA, USA) by Burke et al.

(2001). Residential indoor concentrations were modelled based on a single-compartment 

mass-balance equation. Residential indoor emissions were modelled for cooking, smoking, 

and "other sources". For the other microenvironments (vehicle, office, school, store, 

restaurant, bar, other indoor) the distributions of PM concentrations were determined using 

linear regression equations from concurrent indoor and outdoor measurement data. Target 

population was divided into twelve groups by age and gender. Simulation results were 

presented, besides for total PM2.5 exposures (mean ± SD: 30 ± 32 μgm-3), separately for 

partial exposures in different microenvironments, and for exposures of ambient origin. The 

dominating role of residential indoor environment was obvious due to the large fraction of 

time spent there. Burke et al. compared their model outputs for Philadelphia with 
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measurement results from Toronto, Canada, (Pellizzari et al., 1999) and Basle, Switzerland, 

(Oglesby et al., 2000); mean population exposures were 30, 28 and 24 μgm-3 , respectively. 

Levels excluding exposures to ETS in Philadelphia and Basle were 20 and 18 μgm-3.

Yeh and Small (Yeh and Small, 2002) simulated population exposures to PM2.5 and PM10 as 

part of their work where they compared ambient monitoring epidemiology (AME) approach 

to individual exposure simulation (IES) model in predicting the number of annual excess 

deaths caused by PM exposures in Los Angeles county (CA, USA). Same toxicity was 

assumed for all particles. The probabilistic IES model uses microenvironment approach with 

two microenvironments combined with mass-balance equation estimation of indoor 

concentrations caused by mixing of ambient air and emissions from indoor sources (smoking, 

cooking, other) and additional personal cloud concentration. The mass-balance equation 

parameters were estimated using data from two household databases (Murray, 1997;Murray 

and Burmaster, 1995) and the PTEAM study in Riverside (CA, USA) (Özkaynak et al., 1996), 

but now only residential indoor microenvironments were modelled. Simulated personal 

exposures were attributed to sources, but not compared to exposure measurements. The 

estimated number of annual premature deaths was slightly (5 and 10% for PM2.5 and PM10,

respectively) smaller for the IES model compared to the AME model. 

Ott et al. (1988) and Law et al. (1997) used a large population-based CO dataset from Denver, 

U.S., collected in the early 1980’s to simulate population exposures using SHAPE and pNEM 

models, respectively. These modelling exercises are examined in more detail in III and in the 

section discussing model validation later on in this chapter. 

3.3.5. Exposure Dimensions: Individuals in Space and Time 

Personal exposures to fine particles vary in time, sometimes even second by second. Each 

subject is located differently and is in motion in the environment throughout the day, week, 

and year. As a theoretical mind game, the complete description of population exposure for a 

given time period, say a year, may be defined as consisting of instantaneous exposures second 

by second for each individual in the population throughout the year. Such a data structure is 

impossible to be obtained using current exposure measurement techniques and even 

modelling of it meets insurmountable problems, if not computationally, then at least in 

obtaining the necessary data. These difficulties will hardly be overcome. 
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Therefore to be able to estimate exposures and to draw meaningful conclusions on them, 

aggregation methods must be used to reduce this imaginary data set into a meaningful one that 

can be collected and used in exposure analysis. Common aggregation techniques include 

averaging and description of variability using various kinds of distributions. In the simplest 

and most common form, variability can be described using mean and standard deviation or 

other corresponding parameters. 

Aggregation of the data occurs along the dimensions of the exposure data – individuals, 

locations, and time. In the aggregated end of the scale is the long-term mean exposure of the 

whole population, a significant health measure by its own (e.g. Pope et al., 2002). Each of 

these dimensions and techniques for handling them in modelling are discussed below. 

Individuals and populations. Epidemiological studies have shown that a remarkable number 

of deaths are associated with fine particle exposures. Therefore estimation of the overall 

population exposure is one of the main interests. On the other hand, more detailed exposure 

analysis requires focusing on smaller groups (e.g. exposure studies), or even on few 

individuals.

Exposures of large populations can be estimated by drawing representative random samples. 

Standard statistical laws can then be utilized to estimate the uncertainty about the underlying 

true population values caused by the random sampling process. This method is commonly 

applied in the population-based exposure studies (see references in the section about 

population exposure studies earlier in this chapter). 

Probabilistic modelling has become a standard technique adapted for modelling of variability 

of personal exposures in populations (Yeh and Small, 2002;Burke et al., 2001;Lunchick, 

2001;Mitchell and Campbell, 2001;Hunter Youngren et al., 2001;Hamey, 2001;Mekel and 

Fehr, 2001;Price et al., 2001;Cullen and Frey, 1999;Law et al., 1997;Taylor, 1993, I, II, III, 

V). These population distributions could in principle be estimated using deterministic models 

for a statistically adequate number of randomly drawn individuals. However, in the 

population-based exposure studies this has been rarely done (or not reported in the literature).

Depending on the modelling approach, large target populations are usually divided into 

groups, or cohorts, that are handled separately within the model. Examples of such groups are 

age cohorts, men and women, and geographic, socioeconomic, and occupational groups. 

Whenever the exposures of different population groups are expected to be different from each 
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other, their exposures probably need to be modelled separately. Recent studies have reported 

findings of heterogeneity in the toxicity of particles from different sources and in the 

sensitivity of different population groups (e.g. Samoli et al., 2005). Especially the elderly, 

patients with some medical conditions (including respiratory diseases, cardiovascular 

diseases, and diabetes) and infants have been suspected for higher sensitivity. While 

toxicologists and epidemiologists are trying to identify the most toxic particles and the most 

sensitive population groups, modellers are developing methods to estimate specifically the 

exposures of the susceptible individuals to the most toxic particles. 

On the individual side detailed deterministic models have been developed to model personal 

exposures of small numbers of specified subjects in a limited time frame (Gulliver and 

Briggs, 2004;Briggs et al., 2003). A historical solution adapted into use in occupational 

hygiene to account for variability of exposures among the target population included 

definitions of hypothetical individuals, like the theoretical maximally exposed person. The 

exposure of this hypothetical individual is calculated (=modelled) by setting all variables to 

their worst possible values. Exposure estimates calculated this way are higher than the highest 

exposure of any true person in the target population. Practice has shown that such approach 

may, indeed, produce exposure estimates that are orders of magnitude higher than any of the 

actual exposures. The calculation of conservative point estimates provides no information on 

the actual level of conservatism in the estimate; therefore the development has shifted towards 

probabilistic assessments in the occupational settings, too. Probabilistic assessment is used to 

describe the exposure variability, including the prevalence of the highest levels, as accurately 

as possible, including quantitative estimates for model uncertainty when needed. 

Locations. Highly variable environmental pollution fields and mobility of individuals make 

the spatial dimension utterly important for exposure analysis. The pollutant concentrations 

can vary rapidly outdoors in space and time due to changes in emission sources and 

meteorology, but often an even more significant modifier of exposures is the fact that a 

majority of time in developed urban areas is spent in indoors (Wilson et al., 2000;Wallace, 

1996). Outdoor particles penetrate indoors with rather high efficiency along the air intake, but 

the gradual air exchange makes the concentrations indoors lag behind the outdoor ones 

smoothing out some of the variability. Indoors the particles are removed from the air by 

settling on surfaces and other processes, resulting in lower levels of particles. On the other 

hand, other particles may be generated indoors by resuspension and emissions from especially 
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smoking and cooking, but sometimes also other sources, and by chemical reactions (Wallace, 

1996, see also IV). As an outcome the indoor environment is a significant modifier of 

personal exposures to particles. 

Two different approaches have been developed to handle the variation of concentrations in 

space: spatial techniques and the microenvironment approach. Spatial techniques preserve the 

actual geographical locations, where the exposures occur. The common computer technique to 

do this is to use geographical information systems (GIS). Most air pollution dispersion models 

produce concentration estimates for geographical outdoor locations (Karppinen et al., 

2004a;Kousa et al., 2001a;Kukkonen et al., 2001a). Detailed models of indoor air quality have 

also been developed, but have not been combined with larger scale models of urban air 

quality mainly due to the difficulties in obtaining the needed detailed data on air exchange 

systems in individual buildings. 

Most detailed spatial modelling follows specific individuals in space and time, modelling the 

concentrations for the exact locations and times where the individuals are. An example of 

such approach is the work conducted in the Imperial College, London (Gulliver and Briggs, 

2004;Briggs et al., 2003). Moving towards population level makes it impossible to follow all 

the individuals in space and time. Jensen et al. have developed techniques utilising 

administrative databases to model locations of population members and combine these with 

air pollutant concentrations from a dispersion model (Hertel et al., 2001;Jensen, 1998). 

In Helsinki a statistical approach to population locations has been adapted and combined with 

dispersion models (Kousa et al., 2002a). Locations of residences and workplaces are retrieved 

from public databases and an hourly statistical population time-activity model is used to 

allocate the population members to the residences, workplaces (both as employees and as 

customers), and to traffic. Results are displayed over the whole metropolitan area using a 100 

m x 100 m grid. Infiltration of pollution indoors is modelled using a population average value 

observed in the EXPOLIS study. Population members are not followed across the hours and 

therefore daily personal exposures cannot be estimated. 

The alternative approach, commonly used in probabilistic modelling and selected for the 

current work, is the microenvironment approach, which classifies different locations visited 

by the subject into so-called microenvironments (one of the early references Fugas, 1975). 

The concentration field within the microenvironment is described in this approach using an 
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average value. This is often stated in the literature as assuming the concentration field to be 

constant within the microenvironment, but this, of course, does not need to be true. Exposure 

is then calculated as the time-weighted average concentration level across the 

microenvironments visited (Burke et al., 2001;Freijer et al., 1998;Ryan et al., 1986;Letz et al., 

1984;Dockery and Spengler, 1981, II, III, V). 

The microenvironment concept has been developed for two different purposes. The first is the 

fact that the exposure levels of many pollutants are often more similar in e.g. two similar 

residences or two similar offices across the city than inside and outside of the same building. 

In other words, the microenvironment category may be equally or more important than the 

geographical location. The microenvironment concept simplifies exposure modelling 

dramatically when combined with probabilistic techniques by reducing the millions of actual 

locations into a limited number of categorised microenvironments. 

The probabilistic approach assumes that the concentrations of all outdoor or indoor locations 

grouped together into a microenvironment can be described by the same probability 

distribution. The concentrations for simulated microenvironments are then sampled from the 

defined distributions using computer and random number generator. Exposure contributions 

of each microenvironment are calculated according to time activity model (e.g. original 

version of SHAPE, Ott et al., 1988, II, III, V) or using measured time activity patterns 

(SHEDS using CHAD+HAPEM, Burke et al., 2001;AirPEX, Freijer et al., 1998;pNEM/CO, 

Law et al., 1997). 

The microenvironment approach simplifies spatial modelling substantially. Deterministic time 

activity model for a large target population would require the geographical locations of each 

subject to be recorded. Global positioning system (GPS) devices, or the even more up to date 

GSM based positioning techniques that function also indoors would technically allow for 

registering such data. The computational requirements, however, are also much reduced when 

geographical and indoor locations can be combined into a small number of 

microenvironments. 

Time. Temporal scales affect exposure assessments in two ways. Any exposure data are 

related to some temporal time frame. Emissions, meteorology, populations, activities, and 

many other environmental factors all change in time, and thus any data on exposures will 

definitely change too. The relationship of exposure data to the time dimension is often 
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implicit; the limitations are not clearly stated, nor are they always even known. An example of 

these kind of unknown limitations could be the measured personal and population exposures 

in the EXPOLIS study. The exposure measurements were carried out in 1996-2000, and 

probably describe the exposures in the seven European cities for some years before and after 

the measurements. But for how long? Limitations may be specific to a given city, or to a sub 

population within a specific city, and can only be judged by expert opinion. Depending on the 

study or model design, exposure data may be representative of a specific time of a year (e.g. 

summer), days of week (e.g. work days in the EXPOLIS study) or time of day.  

Another equally important temporal aspect is the averaging time of exposures (Ryan, 1991). 

Biological doses are functions of uptake and removal processes and therefore the health 

effects depend on the temporal variation of the exposures. Same integrated personal exposure 

to CO that as a short-term peak would be lethal is harmless as constant annual level. Similar 

results have been observed for fine particles; the relative risk for additional mortality 

associated with daily concentration variations (i.e. short-term exposures) has been estimated 

to be around 1.5%, while relative risks up to and above 15% have been suggested for long-

terms exposures (WHO, 2000). In the case of short-term exposures, epidemiologists find also 

different lags from the exposure to the health effects (Samoli et al., 2005;Katsouyanni et al., 

2001;Penttinen et al., 2001;Roemer et al., 1998;Pekkanen et al., 1997). 

Best compilation of current knowledge about health-relevant exposure averaging times are 

reflected in the definition of air quality guidelines (e.g. WHO, 2000). Several averaging times 

are needed to protect the public from health effects caused by some pollutants; for others a 

single time value - with varying averaging times - is considered to provide adequate 

protection. The relationship of health effects and the temporal exposure profiles is still poorly 

known. Short-term peak exposure values cannot be assessed from long-term average 

concentrations, nor can long-term averages be estimated from short samples, if the 

intrapersonal variation in exposure levels in not known. Therefore the selection of the relevant 

averaging time must be done properly when designing the model and obtaining the 

corresponding input data. 
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3.3.6. Conceptual Model and It’s Implementation 

The issues of aims of modelling, types of causal relationships and corresponding modelling 

types, discussed above, affect the development of a conceptual model, which defines the 

phenomena included in the model, selection of the dependent and independent events, spatial 

and temporal scales, and equations describing the modelled relationships (Law and Kelton, 

1991). Before the model can actually be used, it has to be transformed into definitions of 

variables, formulas, and a logical flow of computations (Figure 3): the model has to be 

implemented. The conceptual model looks at the principles, but the implementation has to 

take care of all the details.

formulas

Figure 3. Five components of a computer model: 1) input variables, 2) algorithms, 

3) formulas , 4) intermediate variables, and 5) output variables. 

A neat conceptual model takes a lot of effort and dirty details before it has been turned into a 

reliable piece of computer software. The details that must be taken care include behaviour in 

the case of missing data and other special conditions, often created by such an unexpected 

source as the laws of mathematics. Besides driving the technical aspects of model reliability, 

implementation directly creates the user interface, consisting of methods for entering input 

variables, selecting model options, running the model, and retrieving the results. Model 

implementation has a significant effect to the required type of model documentation. In the 

case of a clear implementation, the model documentation needs mainly to concern about 

introducing the conceptual model. However, often the technical complexities in the model 

implementation totally drive the type of instructions required to use the model. Good model 

documentation should always first describe the conceptual model with its underlying 

assumptions and limitations clearly – good and intuitive implementation should then 

minimize the need for technical details. 
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3.3.7. Model Validation 

The outset of the current work was the insight that exposure modelling is an important and 

necessary tool for science-based development of environmental policies. Environmental 

policies should pose as little limitations and costs to the society as possible while ensuring 

safe environment for all. But what if a model used in the development of such policies would 

be unreliable? All conclusions based on such a model would be dubious at best, and total 

garbage at worst. A model is useful only, when the limits of its applicability and its accuracy 

are known.

On the other hand, Oreskes et al. (1994) shoot calmly down any attempts to ‘validate’ any 

model that describes one part of an open system for good. Environmental exposure definitely 

takes place in such a system. Models work, at best, as long as the rules of the system do not 

change. As an example we can think of the Newton’s law of gravity (Newton, 1687), thought 

to be the greatest of all laws in the Nature and newer to change, before Einstein was able to 

see beyond the its limits of applicability (Einstein, 1916;Einstein, 1905). Of course, the limits 

of the applicability of gravity law in an open-ended system can easily be demonstrated also in 

everyday surroundings by introducing e.g. resistance of air to the system under study. One 

law (or model) applies only until one overlooked starts influencing the system. Nevertheless, 

the need for model ‘validation’ is as clear as is the impossibility of the task. This 

contradiction should not lead to confusion, as discussed in more detail in V. There is a real 

need to quantify model reliability, and several techniques available, including modelling of 

uncertainty and analysis of model errors (V).

Building a valid model starts from a credible conceptual model (Law and Kelton, 1991). A 

model should include all phenomena that can be expected to be significant in the target 

system. The conceptual model should then be transformed to a mathematical form and often 

implemented in a computer environment without introducing errors.  

Models describe how the changes in the input variables are reflected into the outputs. Model 

applications are linked to a larger picture, to human understanding about how the phenomena 

of interest affect the model inputs, and how others are affected by the model outputs (Figure 

4). Models are useless in assessing events that are not related to the model inputs or outputs. 

Thus the model input and output variables define the main domain of the model.  
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Application Domain

Model Domain

Inputs Model Outputs
Events

affecting 
the inputs

Events
affected by
the outputs

Figure 4. A model quantifies the relationships of input and output variables. Model is applied 

using understanding of these variables and the rest of the world that is related to them. 

Law and Kelton (1991, p. 299) define model validation as determining whether the conceptual 

model is an accurate representation of the system under study. Model implementation 

transforms equations of the conceptual model into formulas that specify how the values of 

input variables are used to calculate intermediate and output variables. Algorithms define the 

computational sequences in which these calculations are performed. Comparison of the 

conceptual and implemented model is called by Law and Kelton ‘model verification’. 

Implementation of even the simplest conceptual model adds another layer of complexity to 

the system, because valid equations produce nonsense results, if not applied in a proper 

sequence, or the formulas do not handle missing and out-of-range values properly.  

When the model is ready, its outputs can be compared to observed values in a known system 

to further confirm the model (Oreskes et al., 1994). Accuracy in prediction can be tested only 

in a selected, existing target system. Leijnse and Hassanizaded (1994) called comparison of 

model predictions to observations ‘strong validation’. They point out that even a conceptually 

bad model might by change seem to work well in a limited set of test data. Therefore, final 

trust or distrust on model applicability on a given problem must be based solely on our belief 

that our question concerns a target system similar to what the ‘validated’ model describes. 

Two earlier works have been published on validation of probabilistic population exposure 

models (Law et al., 1997;Ott et al., 1988). Both of these are based on personal CO data 

collected in Denver, CO, in winter 1982-83. Microenvironment concentrations were estimated 

from the personal time-series data using time-activity diaries. The main result from both 

models was that the overall level of population exposures was captured well, but the 

variability was underestimated for reasons discussed in more detail in III.
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4. MATERIAL AND METHODS

Model development requires both theoretical background and input data, as depicted in Figure 

5. A model may be developed based on theory with literature and expert judgement for model 

inputs, but such an approach leaves open the uncertainties concerning the model validity and 

reliability. More detailed model evaluation requires data also on model output variables, 

exposures in the current case.

Input Data

Observations of
Exposures

Theory

Model

Validation

Application

Model DevelopmentField Study

Figure 5. Relationships of the main elements of the current work. 

The field data for the current work was collected in the EXPOLIS study (Air Pollution 

Exposure Distributions within Adult Urban Populations in Europe) conducted in Helsinki in 

1996-97 and in six other European cities in 1997-2000. The following describes the study 

features relevant for the simulation of population exposures to PM2.5 in Helsinki. The main 

design features of EXPOLIS are described in detail the original article I and compared to 

earlier and parallel PM studies in Table 1. The main study objectives were: 

1 Assessment of exposures of European populations to major air pollutants 

2 Analysis of personal and environmental determinants of these exposures 

3 Development of a European database for simulation of air pollution exposures 

The results for objective number one, the actual measured personal exposures, are used in the 

current work in the validation of the modelling results by comparing simulated and observed 

exposure distributions. Objective number two covers the measurements of microenvironment 

concentrations, time-activities, and personal exposure-related characteristics of the subjects 

that are used as model inputs. These inputs were accessed using the exposure database created 

according to the objective number three. 
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4.1. Designing the Field Study for Collecting Modelling Data (I) 

The modelling approach developed as one of the main goals of the EXPOLIS study is not 

specific to PM2.5 or Helsinki. The field study included other pollutants and cities, as shortly 

described below, and the modelling framework can quite well be utilized to modelling of 

other pollutants as well, as demonstrated by e.g. Kruize et al. (2003) and Bruinen de Bruin et

al. (2004b). The current work is focused on PM2.5 exposures in Helsinki to set a reasonable 

scope for a doctoral dissertation. 

4.1.1. Multi-pollutant approach 

While recent air pollution health studies has mainly focused on particulate matter, other 

pollutants have also been associated with various health effects, including mortality and 

morbidity, or have been shown to be irritating or carcinogenic. Many exposure-related factors 

correlate, causing subjects to be exposed to elevated levels of several air pollutants at the 

same time. Therefore it is important to be able to assess the exposures to multiple pollutants.  

Exposure measurements are intruding and demanding for the subjects, including carrying the 

monitoring equipment with them for the study period and filling in lengthy questionnaires, 

taking their time and attention. In case of microenvironment measurements the subjects have 

to let the researcher in their homes and workplaces, installing noise-making and space-

reserving monitoring devices. The subjects have to provide personal information regarding 

their social and occupational status, time-activities, and personal habits.  

In a population-based approach a random sample of subjects must be drawn and recruited to 

the study. A significant load of resources are needed in the visits to the subjects’ residences 

and workplaces, installing the monitoring equipment and instructing the subject. Several 

monitors can be easily installed during a single visit, and exposure related questionnaire data 

can be used to assess determinants of many exposures. Therefore maximal utility of the 

resources can be achieved by combining measuring several air pollutants together. For these 

reasons, the main air pollutants included in the EXPOLIS study were PM2.5, a selected set of 

30 VOCs, and CO. In some centres, including Helsinki, NO2 exposures and concentrations 

were included with a separate funding. Additionally for a subset of the collected samples, the 

elemental composition of the PM2.5 samples was analyzed separately.  
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4.1.2. Multi-centre study 

The population-based urban, working age, multi-pollutant inhalation exposure research effort 

that became the EXPOLIS study, was originally designed as a national project for the Helsinki 

Metropolitan area in 1994. As such, the study was to be expensive due to the labour intensive 

nature of exposure measurements and other tasks, including the development of the 

measurement methods and quality assurance procedures, training of the research personnel, 

recruiting procedures for the population samples, and the computer software and databases to 

store and manage the collected data. Therefore the Academy of Finland redirected us to 

international sources. At that time Finland was just about to be a new member of the 

European Union, and two years after the study planning had started, the EU Directorate 

General (DG) for Research granted the funding for the study as part of the fourth framework 

program for European research. Before that, the research plan was transformed to a multi-

centre approach and reviewed by European and American scientists including M. Lebowitz, 

B. Seifert, W. Ott, D. Mage, W. Wilson, J. Spengler, B. Leaderer, and D. Moschandreas. 

Personal exposure and microenvironment monitoring techniques were not in wide use in 

Europe in the mid 1990’s. Reliable simultaneous measurement of multiple pollutant 

concentrations in varying field conditions, including indoor and outdoor locations and private 

and semi-public places like workplaces and offices set high demands on the reliability, 

robustness, repeatability and user friendliness of the measurement methods. Moreover, 

handling of diverse sets of personal population based questionnaire data and data from 

physical measurements involving airflows, sample weights, temperatures, air pressures, and 

sample and equipment identification codes, required extensive data management procedures 

to maintain integrity and reliability of the collected data. Besides the development of study 

protocols, a written documentation and a training program for the personnel were needed to 

optimize data quality. All these tasks take the same effort whether done for only a single 

centre or for many. Air quality in Finland is known to be clean in comparison to many central 

European locations. All these points made it reasonable to extend the study from Helsinki to 

several other cities within Europe. 

The multi-centre approach made the training events international and required a careful cross-

translation program for the questionnaires and support materials that needed to be in the 

national language in each centre. The researcher-training program was conducted by having 

international workshops in Prague (April, 1996), Helsinki (September, 1996), Grenoble 
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(March, 1997), Bilthoven (February, 1998), Paris (May, 1999), and Bern (November, 1999). 

The study materials were developed in English, which was not the national language for any 

of the original partners. 

4.1.3. Expedition for Exposure Determinants 

The field study was designed to produce a large database on exposures and exposure related 

characteristics – potential exposure determinants. Detailed analysis of the potential exposure 

determinants was conducted. Many statistically significant determinants were found, but only 

factors with significant influence on exposures needed to enter the exposure model. Therefore 

from the point of view of the current work, the exposure determinant analyses of the collected 

data (Koistinen et al., 2004;Götschi et al., 2002;Kousa et al., 2002b;Koistinen et al., 

2001;Rotko et al., 2000a) formed the basis for the exposure model structure, including the 

selection of microenvironments and population groups. 

Targeting many air pollutants with different – but unknown – determinants, and multiple 

centres had many implications on development of the questionnaires. A good example is the 

use of double gazing in apartments: in Helsinki double glazing is the minimum requirement 

and is giving room for triple glazing, while on the other hand in Athens it stands for advanced 

insulation. This kind of research setup is different from the traditional experimental research, 

where a hypothesis is created before designing the experiment for testing the hypothesis. 

Therefore this type of exposure studies can be called “fishing expeditions” – large sets of 

presumably related data are collected with stated ideas about the needs and future use, but 

without definition of specific hypotheses to be tested. The actual statistical methods and 

variables used in the analysis of the data were to be selected later. Therefore the focus in the 

study design is in selection of a wide range of variables that are both (i) measurable and (ii) 

have causal or interesting statistical connections with the exposures. Such variables include 

naturally time-activities and microenvironment concentrations, but also variables related to 

personal, residential and occupational characteristics, including socio-economic status, 

smoking habits, exposure to ETS, etc. 
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4.1.4. Population sampling in Helsinki 

Random population sample is not an absolute requirement for a model development study. 

The model could be developed using data from a selected group of volunteers. However, 

using a random population sample makes the results on model inputs and outputs 

representative of the general population from which the sample was drawn. Therefore the 

random population sample approach significantly increases the generalisability of the results. 

In Helsinki the EXPOLIS sample was drawn by the Finnish Population Register Centre and 

consisted of 2523 Finnish speaking citizens of the Helsinki metropolitan area (including cities 

of Helsinki, Espoo, Kauniainen, and Vantaa) born in 1940-1970, inclusive (Table 2).The 

Helsinki population sample data was first received from the Civil Register on May 14th, 1996, 

with a correction file on May 21st, 1996.

Table 2. The random sample of the Helsinki working age population. 

City Male Female Total %

Espoo 264 270 534 21.2
Helsinki 683 781 1464 58.0
Kauniainen 13 11 24 1.0
Vantaa 231 270 501 19.9

Total 1191 1332 2523 100.0
47.2 % 52.8 % 100.0 %

A mailed questionnaire was sent to this random population sample. After a mailed remainder 

a final attempt to reach the non-respondents was done using a telephone interview, resulting a 

final response rate of 74 % (Table 3). 

Table 3. Response rate to the mailed questionnaire and telephone interview. 

Questionnaire response rate %

Questionnaires sent 2523 100 %
No response 650 26 %
Response, total 1873 74 %

One of the questions regarded the subject’s willingness to participate in the whole study, 

including exposure and microenvironment measurements, or questionnaires only (Table 4). 
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Table 4. Responses to the willingness to participate in the study. 

Willingness to participate the study %

Respondents 1873 100.0

No answer to this question 32 1.7

Yes 1368 73.0
Yes, questionnaires only 56 3.0

No, travelling 376 20.1
No 41 2.2

Two sub-samples were randomly drawn from the respondents willing to participate in the 

exposure measurements or the questionnaires-only study. A running selection code was 

allocated to these subjects randomly to ensure random sampling over the one-year study 

period, integrating over seasonal variations. Computer forms supporting telephone contacts to 

the subjects during the study field phase were created into the local EXPOLIS Access 

Database (EADB) used in each of the study centres.  

At a later stage, eleven participants of the simultaneous ULTRA-study (Vallius et al., 

2003;Pekkanen et al., 2002;Ruuskanen et al., 2001) were recruited for the EXPOLIS exposure 

measurements. These subjects, being patients with cardiovascular diseases, lived in the 

Vallila-Kallio –area (zip codes 00500, 00510, 00520, 00530, 00550 and 00610) a few 

kilometres from the Helsinki downtown. Table 5 lists the relative effect of these additional 

subjects on the collected data used in the analyses. 

Table 5. Sizes of the Exposure and Diary sub samples. 

Data set Random Ultra Total1

sample % subjects %2 subjects

Civil register data 2523 100.0 - - -
Short questionnaire 1871 74.2 11 0.6 1882
Questionnaires and diaries 423 16.8 11 2.5 434
Exposure measurements 190 7.5 11 5.5 201

1 Data from these subjects have been used in the analysis. 2 Percentage from the total subjects
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EXPOLIS subjects were aged 25-55 years at the time of sample formation. This population 

group forms a significant fraction of the total population, is legally and physically capable of 

participating in this kind of study. The selected age category includes working and non-

working subjects with a large variety of leisure time activities and thus their time-activity is 

variable. Therefore, in terms of exposure characterization, this group is more heterogeneous 

than the susceptible sub populations like infants and elderly, which spend more of their time 

in and around their residences. Especially time spent in traffic, one of the most important 

exposure modifiers of the active population, has presumably much smaller effect on the 

exposures of the susceptible groups. 

In Finland only Finnish speaking population was included in the sampling to avoid error 

prone and time-consuming translations of the questionnaires and other written support 

materials. The biggest non-Finnish speaking minority in the Helsinki metropolitan area 

consists of Swedish speaking Finnish citizens (9.3%, 6.5% and 3.5% in Espoo, Helsinki and 

Vantaa, respectively, in 2000-20021). The fraction of other language minorities has been 

increasing constantly, being approximately 5% in Espoo and Vantaa, and almost 6% in 

Helsinki at the same time. Therefore the total percentage of minorities excluded from the 

study by the language limitation is approximately 11-12 %. Although there is no specific 

reason to assume that the time-activities, living or working areas, or other exposure modifiers 

of the language minority groups would be significantly different from the Finnish speaking 

majority, this limitation should be kept in mind when interpreting the results. 

The population sampling and sample quality are described in detail in Rotko et al. (2000b). 

Rotko et al. found that the biggest loss of representativity occurred in the first contact phase, 

answering the short questionnaire. In general, women and individuals with higher education 

were overrepresented in the exposure and diary samples, and men, younger subjects (defined 

as 25-34 years) and unmarried individuals were somewhat underrepresented. In comparison to 

the other EXPOLIS cities the Helsinki response rates were good. From the model 

development point of view the population sampling can be considered successful and the 

results from the modelling representative of the general working age population in Helsinki 

metropolitan area. 

1 Tilastokatsaus 2003:5. Vantaan kaupunki, B6, ISSN 0786-7832. (In Finnish) 
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4.2. Time-Activity Measurements 

One of the main exposure modifiers is the mobility of subjects. People spend their time in 

various types of environments in different locations within the metropolitan area. Time-

activity measurements were conducted using a structured 15-minute resolution diary with 

eleven microenvironments and three activities. The microenvironments were grouped into 

transportation (five categories) and stationary microenvironments (residence, workplace and 

other, each subdivided into indoors and outdoors). The subjects classified their locations into 

these categories for approximately 48 hours, the same period when their microenvironment 

concentrations and personal exposures were monitored. 

The diaries were entered into EADB and transformed into fractions of time using the duration 

of the subject’s diary. Time fractions for the elementary diary microenvironments were 

further combined to create aggregate microenvironments for the simulation models (Table 6). 

Table 6. Microenvironment categories used in the simulations. 

Number of microenvironments in the model
μE 2 3 4 5

1 Residence Residence Residence Residence
2 Workplace Workplace Workplace Workplace
3 Other Traffic Traffic
4 Other Other indoors
5 Other outdoors

The three activities were smoking, exposure to ETS, and cooking. The two tobacco activities 

were combined to ETS-exposure yes/no indicator also for active smokers, because only 

exposure to ETS was sampled. Cooking was recorded without more detailed specification of 

the type of cooking (e.g. boiling water versus frying or toasting). Moreover, the effects of 

cooking were diluted into the 48-hour sampling period and therefore cooking was found not 

to have a notable effect on concentrations and was not included in the exposure models. 
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4.3. PM2.5 Measurements 

In Helsinki a full set of personal workday and leisure time exposures, and residential indoor, 

outdoor and workplace concentrations were successfully obtained from 194 subjects (total 

number of exposure measurement participants was 201 with 7 subjects with various failures). 

The number of non-ETS exposed subjects was 126. The PM2.5 measurement techniques and 

quality assurance results are described in Koistinen et al. (1999)and Hänninen et al. (2002b) 

and primary analysis of the data in (Koistinen et al., 2004;Götschi et al., 2002;Kousa et al., 

2002b;Koistinen et al., 2001;Rotko et al., 2000a). 

The measurements were carried out in a random sequence during an approximately 12-month 

field survey period (three final subjects were measured after a 2-month pause at 14 months 

from the beginning of the field phase). Each subject was measured for two consecutive 

working days, from Monday to Wednesday or from Wednesday to Friday. National holidays 

were excluded and during the holiday seasons only subjects not on vacation were measured. 

Residential indoor and outdoor air was sampled from evening to morning, approximately at 

times when the study subject was expected to be at home according to the subject interview. 

The workplace air was sampled during the normal working hours. Personal samples were 

taken on two filters; one was taken into use in the morning, just before the subject left home 

or started the daily activities at home. Second filter was changed to when the subject returned 

home in the afternoon. Thus filter one corresponds to the daytime exposures, including 

workday and commuting, and filter two to leisure time (including night) exposures. The 

elemental composition of the filters of 98 subjects was analyzed using Energy Dispersive X-

ray Fluorescence technique (ED-XRF) in the University of Basle (Mathys et al., 2001). 

Sulphur data was used in the current work to apportion indoor concentrations into ambient 

and indoor generated fractions (IV, V, VI).
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4.4. Data Management 

Data management for this work was integrated with the data management of the whole 

EXPOLIS study. This included managing data for over 300 measured compounds (i.e. 

selected target VOC compounds (30) and other compounds observed (290), and elemental 

composition of the PM samples (37 elements)), questionnaires, and time-activity diaries. Only 

PM2.5 and sulphur data, time-activity diaries, and some questionnaire variables were used in 

the current work (II – VI), but the database was designed to support corresponding simulation 

of exposures to any of the measured pollutants (e.g. Bruinen de Bruin et al., 2004b). 

The original objectives underestimated the role of the exposure database by putting it into 

being merely an aid for the simulation. As later summarised in the article VII, the combined 

international database (CIDB) turned out to be a major outcome of the project by itself. The 

database has been used for data analyses producing over thirty original articles with only few 

relevant ones for exposure simulation, and besides the current work, over ten doctoral 

dissertations in seven countries, involving nine universities and four other research 

institutions have been based on the data. 

EXPOLIS data management goals were specified as: (i) all data items affecting the final 

calculated results are stored, (ii) data from all centres are stored, (iii) data storage structure is 

flexible, allowing later any analyses necessary, (iv) correctness of the data is maximized, (v) 

data entry tools and procedures are provided, and (vi) privacy of study subjects is protected. 

The data management procedures were developed as the second phase of the current work in 

integration and partly overlapping with the first one, the field phase. 

Database design. A project database (EXPOLIS Access Database, EADB) was developed 

using Microsoft (Seattle, WA) Access 7.0 (a.k.a. version 95). Relational database model was 

selected to allow maximum flexibility. Microsoft Access with a powerful, visual, and user-

friendly environment, low software cost, and easy availability as part of the most abundant 

office software package was selected as the platform. The database used in the European 

CESAR project served as a model in designing the EXPOLIS approach (Fletcher et al., 1999) 

A local database was created for each centre. The local database consisted of several Access 

database files, containing data from local Civil Register and other national registers, 

EXPOLIS time activity diaries, questionnaires, monitors, laboratory analyses, calibration 
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procedures and environmental conditions as well as urban air quality network and 

meteorological data covering the field study periods. All data was stored in its primary form 

and calculations were performed using the primary data dynamically. 

The local data was grouped to be stored in separate database files. Population sample 

management, questionnaire data, and concentration sampling were stored into the local main 

database. Time-activity diaries were stored in a 15-minute resolution time series database, CO 

data in 1-minute resolution time series database, meteorological data in 3-hour resolution time 

series database, and ambient air quality fixed station data in one-hour database. Averages of 

environmental variables from the meteorological and fixed station databases were calculated 

into the Fixedruns database for the microenvironment and personal sampling periods. 

Table 7. Local database files in Helsinki. Corresponding files were used in all centres. 

Data files Tool file Description
EADBTOOL.MDB Main local database:

Questionnaires, exposures, concentrations etc.
TMAD15min.MDB TMAD15minTOOL.MDB Time-activity diaries (15-min resolution),

15-min avg. personal CO data
CO1min.MDB CO1minTOOL.MDB 1-min CO exposures and TMAD data
FIXED.MDB AmbientTOOL.MDB Hourly ambient air quality data
MET.MDB 3-hourly meteorological data
FIXEDRUNS.MDB sampling period averages of ambient and met data; all stations

HELSINKI.MDB

The local database files were split into two functional groups. (i) Data files contain all data 

tables; (ii) the data processing tool elements, queries, forms and Visual basic modules, were 

stored in tool files (Table 7). The tool databases were then linked to the data files using 

Access Linked Table Manager, allowing for development and upgrading of the tools without 

changes to the data files in continuous use. Finally after the field phase and local data cleaning 

were completed in each centre, the local database files were collected and combined into the 

Combined International EXPOLIS Database (CIDB). The database structures are described in 

detail elsewhere (Hänninen et al., 2002a). 

A data integrity protocol was established according to the data security requirements of EU 

Directive on Protection of Individuals with Regard to Processing Personal Data (Directive 

95/46/EC). Persons were labelled using codes, and personification information (names, 

addresses) was removed after the field phase. The database files were secured with user 

identification and password control and the staff working with the databases in all centres 

were specifically trained in several common workshops. 
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4.5. Simulation Framework (II) 

Eighteen simulation models are presented in the original papers (II, III, V, VI). All these 

models were implemented using the microenvironment-based simulation framework 

developed originally in collaboration with RIVM (National Institute for Public Health and the 

Environment, Bilthoven, NL) as part of the EXPOLIS study (II). The development of the 

modelling framework was one of the main objectives of the EXPOLIS study to support 

exposure assessments for alternative policy options. The models based on the framework were 

to allow for assessing population exposure distributions of (i) selected sub populations and (ii) 

urban areas for (iii) different future scenarios (I). 

The framework uses similar microenvironment approach like independently developed 

models by e.g. Burke et al. (2001) and Yeh and Small (2002) to calculate time weighted 

average exposure levels (Ryan et al., 1986;Letz et al., 1984). The framework allows for 

definition of sub populations, macro- and microenvironments, indoor sources and time 

activities. Population time is allocated to macro- and microenvironments selected by the user 

and modelled as fractions of time using 2-parameter beta-distributions (II, III, V, VI).

Microenvironment concentrations can be modelled in direct or nested mode. In the direct

mode the concentration distribution is assumed lognormal and the probability distribution 

parameters are directly entered as inputs (II, III, V). In the nested mode the concentration of 

ambient origin is modelled from an ambient concentration distribution using an infiltration 

factor distribution (V, VI). In both modes indoor sources can be defined for a given fraction 

of each microenvironment type. The additional indoor source concentrations are defined as 2-

parameter lognormal distributions. (II, V, VI). The framework was implemented as Microsoft 

(Seattle, WA) Excel workbook using the @Risk add-on software (Palisade, Newfield, NY). 

The population exposure distribution is then simulated by applying probabilistic sampling to 

each of the input distributions. The partial exposure in each microenvironment is calculated 

by multiplying the microenvironment concentration (C) by the fraction of time spent in that 

microenvironment (f). The exposure level E of each iterated population member is calculated 

as the sum of the partial exposures over all microenvironments in the model (II).
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The use of fractions of time to describe population time-activities implies that the 

microenvironment model in this equation must be complete for the equation to produce 

average exposure level, i.e. that if = 1. When this condition is met (or the result is scaled to 

unity time fraction by dividing it by if ), the equation is applicable for any averaging time 

and any number of microenvironments and can in principle be used for any air pollutant. 

Repeating the calculation for a large number of hypothetical population members estimates 

the exposure distribution for the target population. The number of iterations in simulation runs 

ranges typically from hundreds to thousands. 

The development of the framework was described and models based on it were demonstrated 

in II using two examples. The first example used direct mode models to simulate the annual 

distribution of 48-hour PM2.5 exposures in Athens, Basle, Helsinki, and Prague. ETS and 

other indoor source exposures were not separately modelled, but were included in the 

microenvironment concentration distributions as observed in the EXPOLIS study. The second 

example demonstrated the nested mode to model the distribution of daily PM10 exposures in 

the general Dutch population, including all age groups and both rural and urban areas, for 

current situation and an alternative scenario, where ETS exposures were set to zero. 

A more detailed evaluation of the direct mode was conducted for PM2.5 exposures in Helsinki 

in III. The required number of microenvironments was studied by starting with the simplest 

possible models that take into account the mobility of the population, i.e. models with two and 

three microenvironments. Because in this stage (and in II) it turned out, that ETS exposures 

are a significant modifier of the exposures, the more detailed models in III were run 

excluding these to see how well the non-ETS exposures can be captured by the model. 

Population time-activity was modelled separately for the working and non-working adults. 

Analysis of residential infiltration factors and indoor source strengths was conducted in IV.

These data were used as inputs in the main paper of the current work (V), where validation of 

the nested modelling approach was completed. This paper elaborated on the theoretical 

aspects of terminology in model validation and uncertainty analysis, and quantified model 

errors for PM2.5 models in Helsinki. The model was enhanced by handling exposures in traffic 

as a separate fourth microenvironment; the exposure levels while in traffic were estimated 

using separate traffic measurements conducted during the EXPOLIS field phase.
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Finally, the use of the developed and evaluated modelling tool was demonstrated in VI by 

estimating the risk reduction potential achievable by using modern ventilation systems. The 

current situation was described using the EXPOLIS measurement data and a subset of the data 

was utilized in creating the future scenario. Occupational buildings built in and after 1990 all 

use a mechanical ventilation system with fine particle filtration according to the Finnish 

Building Code. The infiltration factors analysed for these buildings were used in the 

alternative scenario for all buildings, assuming that the whole Helsinki building stock would 

have been renewed to the condition currently required for new buildings. 
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5. MODEL AND EVALUATION RESULTS

Model development and model evaluation were conducted in two major steps. In the first 

phase a direct microenvironment-approach was used, where the parameters of concentration 

distributions in all microenvironments are entered directly into the model as inputs. These 

concentration distributions represent the total measurable PM2.5 concentration in the 

microenvironments, making no difference on origin of the particles. In the second phase 

another layer of modelling was added to allow for nested modelling of concentrations in 

indoor microenvironments by using ambient concentrations, infiltration factors and indoor 

sources as inputs. This approach required analysis of the infiltration factors and contributions 

of indoor generated particles to the indoor concentrations from observed total concentrations 

and corresponding elemental compositions. 

The direct-mode results from the first phase proved that the microenvironment-based 

modelling approach and the simulation technique can be applied to 48-hour PM2.5 exposures 

without any significant problems (III). Starting with the simplest approach with only two 

microenvironments and no sub population divisions, and working towards more detailed 

models when a need was indicated by the previous step, ETS exposures were identified as the 

most significant modifier of personal exposures. Further division of the target population into 

two groups according to the working status improved the time-activity modelling, but still 

turned out not to be a very significant modifier for PM2.5 exposure modelling. 

Infiltration factors and indoor source strengths were analysed for Helsinki and three other 

EXPOLIS cities (IV). Buildings in Helsinki were better sealed than in the other cities, leading 

to slightly lower infiltration factors. Concentrations caused by non-ETS indoor sources were 

comparable in all cities. Similar finding was made in U.S. using a statistical estimation 

technique for PM10 (Ott et al., 2000). The nested model, based on ambient concentrations, 

infiltration, and indoor sources, produced equal results to the direct model, indicating that the 

additional layer of modelling did not significantly deteriorate the modelling results. From the 

model applicability point of view, however, the ability to use ambient levels instead of 

microenvironment measurements is a significant advantage. 

After model validation, the model was applied to a hypothetical, but data based exposure 

reduction scenario (VI). The buildings sampled in the EXPOLIS study were classified into 
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two categories according to the construction year, dividing line drawn to 1990. Mechanical 

ventilation is more common in the newer buildings, and in the occupational buildings built 

after 1990 mechanical ventilation system with efficient fine particle filtration is standard. 

Therefore the infiltration factors estimated for these buildings were used to define the 

hypothetical scenario representing a future building stock where all buildings utilize 

controlled ventilation and fine particle filters. The validated simulation model is used to 

estimate the exposure reduction potential for such a scenario that will, in fact, become reality, 

as the required standards have already been mandated in the National Building Code of 

Finland (section D2, 2003). 

The main findings are summarized in the sub sections below. The reader is directed to the 

original articles for more detailed presentation. 

5.1. Direct Microenvironment Model (III) 

The simulation framework was applied on PM2.5 exposures in Helsinki in the direct mode in 

III. The simulated exposure distributions matched the observed ones well, especially when 

the ETS exposures were excluded from the model.  

Four simulation models were built; the first two crude models targeted the whole EXPOLIS

population without using any sub groups. The refined models 3 and 4 excluded ETS-exposed 

subjects (Another option would have been to model the ETS-exposures as separate indoor 

sources, but this was done later as a part of the nested model in V). In the models 3 and 4 the 

time-activity of the working and non-working subjects were also modelled separately. 

The distribution assumptions of lognormality of concentration distributions and beta-

distribution for the time fractions were tested statistically and graphically. The concentrations 

followed lognormal distributions quite well. The goodness-of-fit of the beta distribution for 

the time fractions was worse.  
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5.1.1. Simulation of Population Time-Activity 

Simulated three-microenvironment fractions of population time were compared to 

corresponding observed distributions in III, Figure 2. First, the whole EXPOLIS population 

was grouped together in the left column of charts labelled “whole population”. Simulated 

distributions are shown as lines and observed ones as histograms. X-axis represents the 

fraction of time spent in each microenvironment; y-axis shows a measure of the relative 

frequency of each value in the distribution (defined so that the area under each distribution is 

unity).

For the home microenvironment (topmost chart) the Figure 2 in III displays a clear 

underestimation of the relative frequency of the mode and other central percentiles. This 

underestimation is compensated in the tails of the distribution around time fractions 0.25 – 

0.45 and 0.60 – 0.85 where the modelled frequencies are to high. The mode of the fraction of 

time distribution is somewhat shifted to the right (i.e. overestimated) by the model. Simulated 

frequencies for those that spent their time almost completely at home are underestimated. 

For the workplace the most obvious discrepancy between the simulated and observed 

distribution in III, Figure 2 is the significant probability mass at zero, representing the 

subjects that did not spend any time at work. This might include some occupied subjects that 

happened to be off-duty for the measurement period and is called the “non-working” 

subpopulation for simplicity’s sake. The simulated beta distribution is shifted to left and the 

observed mode around fraction of time 0.35 is underestimated to be around 0.20. The main 

cause of this problem, the probability mass at zero, cannot be handled by the beta distribution. 

The fitted beta distribution has a closest resemblance to the observed one for the “Other” 

microenvironment class (the bottom chart in III, Figure 2). The mode height is still somewhat 

underestimated. Kolmogorov-Smirnov test for the above comparison shows clearly that the 

fitted beta distributions are not statistically representative of the histograms. 

In the second step the EXPOLIS population was divided into two main categories according to 

the major modifier of their time-activity: the working status. In the centre and right column of 

charts in III, Figure 2 (labelled “working” and “non working sub population”) the fitted beta 

distributions have much better resemblance with the observed ones. Still, for the working sub 

population the mode frequencies are underestimated for all three microenvironments. 



61

Kolmogorov-Smirnov test still indicates statistically significant differences for all cases of the 

working subpopulation (p-values below 2%), but the two non-working population 

distributions are acceptable even in terms of statistical significance (p-values >0.25). 

5.1.2. Microenvironment Concentration Distributions 

Simulated and observed microenvironment concentration distributions for the homes and 

workplaces were compared visually in III, Figure 3. Visually all the five fits seem to capture 

the overall shape of the observed data. The main determinant of the microenvironment 

concentrations was clearly shown to be exposure to tobacco smoke. Both of the distributions 

on the left column of charts labelled “whole population” show slight indications of two 

modes, the higher mode being attributable to smoking. Because smoking in residences in 

Finland is becoming rare, the second mode in the home distribution is clearly weaker than the 

first one, attributable to other PM2.5 sources than smoking. In the workplace case the smoking 

mode is more profound. 

Shapiro-Wilk’s test indicated statistically significant deviations from the lognormal 

distribution fitted using method of matching moments (Small, 1990) (p-values < 0.00). Same 

result applied to the distribution of ambient 1-hour concentrations from Vallila monitoring 

station. In the Vallila case the cause for the statistical deviation from log-normality were 

negative measurement results close to zero that were coded as zeros for the analysis. 

When the ETS-exposed microenvironments are excluded from the data, the lognormal fits 

become statistically acceptable (p-values 0.2 and 0.6 for homes and workplaces, respectively). 

5.2. Nested Model: the Infiltration Approach (IV, V) 

The next step, after the functionality of the direct simulation was affirmed, was to add the 

nested layer of modelling indoor concentrations using outdoor concentrations, infiltration 

factors, and indoor sources as inputs. The basic time-activity model remained the same, but 

the number of microenvironments was increased from 2-3 to 4 by splitting the aggregate 

group “Other” into “Traffic” and “Other-non-traffic”. 
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5.2.1. Infiltration Factors (IV, V) 

Infiltration factors and fractional concentrations from indoor and outdoor sources cannot be 

directly measured in practical situations, where both indoor and outdoor sources are present. 

Therefore these terms have to be analysed from the observed total concentrations. In the 

current work sulphur was used as a particle bound marker element that seemed to have no 

indoor sources in Helsinki or the other cities included in the analysis. 

Residential indoor PM2.5 concentrations regressed well against corresponding outdoor 

concentrations in Helsinki (slope 0.64, p-value <0.000). Corresponding slope for sulphur were 

0.76 (p-value <0.000), showing that the particles with high sulphur content, infiltrate indoors 

with a slightly higher rate. This was expected, because sulphur is mostly of secondary origin 

in air and is mostly present in submicron accumulation mode particles. A significant fraction 

of the mass-based PM2.5 concentration, on the other hand, is in the largest particles. The larger 

particles have higher settling velocities and therefore are removed from the indoor air more 

rapidly, leading to a lower infiltration rate even in case when the penetration rate of both 

particles would be identical. However, in cases of tightly sealed buildings with coarse filtering 

in the air exchange system, the larger PM2.5 particles are also removed more efficiently at 

entry. For these reasons, when using sulphur as a marker for particles of ambient origin, the 

sulphur infiltration rate should be corrected for these differences caused by the different size 

distributions. The ratio of the regression slopes (0.84) was used to scale sulphur infiltration 

factors for PM2.5 in individual residences. 

Concurrent outdoor measurements were not available for the workplace locations. Therefore 

the infiltration factor analysis for the workplaces was conducted using the residential 

nighttime outdoor sulphur concentrations, daytime workplace indoor sulphur concentrations, 

and daytime PM2.5 concentrations from the Vallila fixed monitoring station. PM-bound 

sulphur, being a long-range transported pollutant, does not have a diurnal pattern or any 

significant spatial variation in the Helsinki metropolitan area. Consequently this replacement 

of missing observations should not introduce significant bias (i.e. systematic error) to the 

results. Naturally in individual cases the uncertainty of the infiltration rates is higher. 

The resulting mean infiltration factor for the workplaces was significantly lower (mean 0.47) 

than that for residences (0.64). This could be expected and is presumably mainly due to the 



63

higher percentage of mechanical ventilation systems with PM filtering in office and other 

occupational buildings than in residential buildings. 

5.2.2. Indoor sources (IV, V) 

Estimation of the infiltration rates for individual indoor environments allowed, together with 

the observed outdoor concentrations, for calculation of the level of outdoor generated particles 

indoors. This, subtracted from the observed indoor concentration, is then an estimate for the 

indoor generated PM2.5 level. Assuming a constant decay rate for PM2.5 particles based on the 

PTEAM study in Riverside, U.S., also the ventilation rates (h-1) and consequently the source 

strengths could be estimated for residences. Indoor source generated concentrations were 2.5 

and 4.2  μg m-3 in non-ETS exposed residences and workplaces, respectively. In the 

residences ventilation rate was 0.8 h-1 and mean indoor PM2.5 source strength was 0.6 mg h-1.

Relative variability of the indoor generated particle levels was much higher than that of the 

infiltration factors. 

The simulation of the indoor concentrations in the next step will show that the presented 

estimates for the infiltration factors and indoor source strengths produce reasonable total 

concentration distributions when compared to corresponding observations. 

5.2.3. Simulation of Indoor Concentrations (V) 

For simulation model component evaluation, the simulated indoor concentrations were 

compared against corresponding observed distributions (V). The comparison included both a 

direct model, where the indoor concentration model consisted of a lognormal distribution 

fitted to the observations, and a nested model where the distributions of infiltration factors 

and indoor source generated concentrations were used as inputs in the simulation model 

together with a distribution of ambient concentrations. Numerical results for the latter 

approach are shown for residences in Table 8 

In the residences (V, Figure 7, left chart) the performance of both approaches was almost 

identical and matched the observations very well. In the case of workplaces (right chart in the 

same figure) both modelling approaches had a lower correspondence to the observed 

distribution. The direct model predicted the upper half of the distribution quite well with 
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rather clear overestimation of the highest five percentiles, but somewhat underestimated the 

lower percentiles. In absolute terms the underestimation, however, was small (<1 μg m-3). The 

nested model matched the lower tail quite well, but underestimated the percentiles between 

the 70th and the 95th. In relative terms the biggest underestimation for the 95th percentile was 

almost 30%. 

Table 8. Comparison of simulated and observed residential indoor concentration 

distributions.

First Moments    Percentiles
n mean sd 5 % 10 % 25 % 50 % 75 % 90 % 95 %

[μg m-3] [μg m-3] [μg m-3] [μg m-3] [μg m-3] [μg m-3] [μg m-3] [μg m-3] [μg m-3]
Simulated 2000 8.80 5.82 2.8 3.4 5.0 7.4 10.9 15.6 19.5
Observed 153 8.76 5.66 2.7 3.4 4.7 7.1 11.0 18.1 21.2

Difference:
Sim - Obs +0.0 +0.2 +0.1 +0.1 +0.2 +0.3 -0.0 -2.5 -1.7
Relative to Obs +0.5% +2.9% +4.8% +1.7% +4.7% +4.8% -0.4% -13.6% -8.1%

An alternative approach to the indoor concentration simulation used by many modellers 

would have been a mass-balance approach (Yeh and Small, 2002;Burke et al., 2001). It 

requires more input data, some of which are not widely available or easy to measure. The 

infiltration approach selected here is based on the same overall equation, but only two 

probability distributions are estimated (for FINF and Cig, see symbol definitions in IV) instead 

of five (for P, a, k, Q and V). The more detailed mass-balance approach is more flexible in 

modelling various technical changes affecting ventilation patterns and indoor sources, but as it 

is based on more numerous inputs it is potentially more prone to parameter uncertainty 

induced errors than the infiltration model. 

5.2.4. Model Evaluation: Characterisation of Model Errors (V) 

Model evaluation can be attempted using different setups, some of which are depicted in 

Figure 6. An exposure model is based on a conceptual model and its implementation includes 

the definition of input variables used in the model calculations. These input values are 

typically estimated using measurements from a population sample. Even a randomly drawn 

sample gives imperfect information on the true values of the variables of interest in the whole 
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population due to sampling error (response bias can be added due to imperfect sampling). The 

extent to which the sample represents the whole population is called “representativeness” and 

for a good random sample it is a function of the sample size. Case 1 in Figure 6 describes the 

calculation of the model error, which will be pursued in more detail shortly.  

Case 2 in Figure 6 describes the use of an independent data set for model validation, partly 

utilized e.g. in (Ott et al., 1988). While this setup makes sure that any specific relationship of 

the model structure and the sample 1 are not driving the model results, and the model results 

really can describe another population sample as well, two separate sampling errors are added 

to the comparison. Case 3 adds another layer of sampling errors and representativity issues to 

the comparison by using input values created from multiple samples of the target population. 

The model evaluation in the current work was done in V by quantifying the model errors 

using setup case 1 for the non-ETS exposed Finnish speaking working age Helsinki 

metropolitan area inhabitants. The model errors were quantified by comparing the observed 

and simulated distributions, and compared to the other error terms affecting population 

exposure assessments: the error in the observed exposure distribution caused by measurement 

error and to the sampling error in the observed distribution caused by the random sampling 

process. The latter represents the uncertainty in the field study results in representing the true 

underlying target population. 

Graphical comparison of the simulation results and the observed distribution is shown in V,

Figure 5. It can be seen that the overall match is similar for both the direct and nested models. 

For the upper half of the distribution the direct model performs slightly better, and both 

models somewhat underestimate the observed levels. In the lower half of the distribution the 

models perform identically. The same comparison is presented numerically in V, Table 3. The 

direct model overestimates population mean exposure by 1%, the nested model 

underestimates it by 5%. Both results can be considered at least satisfactory. The model errors 

are bigger for the standard deviation, which is underestimated by both models, by –9 and –

23% by direct and nested models, respectively. In the 25th and 50th percentiles the relative 

error approaches 10%, but is well below 1 μg m-3 in absolute terms. Such an error is 

comparable to the measurement error in a single measurement. Highest model error occurs for 

the 99th percentile in the nested model – this level is underestimated by –18%. The 

corresponding absolute error is –6 μg m-3.
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Figure 6. Different possible setups for model evaluation. Setup 1 allows for estimation of model error 

by excluding probabilistic sampling errors. 
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The different error terms affecting population exposure assessments are compared in V,

Figure 6. The top chart displays the uncertainty caused by population sampling. The current 

study with its 201 exposure measurement subjects can be considered a medium-to-large sized 

exposure study, and yet the uncertainty in the exposure percentiles is notably large. In the 

percentiles above 90th the uncertainty increases above 10 μg m-3.

The middle chart displays the effect of measurement errors. The light grey area displays the 

measurement error in single personal exposure measurements. The dotted line displays the 

corresponding bias in the observed distribution. The dark grey area displays an estimate for 

the uncertainty in this bias by assuming 0.5 (the edge of the dark grey area that is closer to 

zero) and 2 x (the other edge) measurement error. It can be seen, that the measurement error 

biases the lower tail low and upper tail high, meaning that the ob served distribution is, in fact 

wider than the true underlying distribution. Because the measurement error adds a random 

variation component to the observations, this is natural. 

The bottom chart in the V, Figure 6, displays the measurement error bias corrected model 

errors for the direct and nested models. These are comparable, the direct model being slightly 

more accurate. The model errors are somewhat smaller than – but comparable to – the 

uncertainty about the true population exposure distribution caused by the random sampling 

error. It should be noted that as this analysis of sampling error accounts only for the effect of 

random sampling; it does not include any effects of potential participation bias or subject 

modification of behaviour. Therefore the random sampling error represents a minimum 

estimate for the sampling error component. 
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5.3. Application: Risk Reduction Potential of Good Ventilation (VI) 

PM2.5 infiltration factor distribution for all residential buildings was 0.64 0.20 and 0.47 0.24

for occupational buildings. In the occupational buildings mechanical ventilation systems with 

at least coarse particle filters are more common than in residential buildings. However, in the 

newer buildings, which in the current study are represented by buildings built in or after 1990, 

the corresponding mean values are 0.58 and 0.35, respectively, indicating a clear lowering 

tendency. The difference is especially significant in relative terms for occupational buildings. 

The simulation model developed and validated in the earlier part of the work was now applied 

for the estimation of the exposure reduction potential in a future scenario, where the 

infiltration efficiency of all buildings would follow the distribution of infiltration factors in 

the post 1990 occupational buildings in the EXPOLIS sample. It was assumed that all the 

other model parameters would be unchanged. 

Because the infiltration efficiency affects mainly particles of ambient origin, the model was 

run without indoor sources. The health effects connected with the ambient PM levels in the 

epidemiological studies must be caused by ambient particles, because the indoor generated 

particle levels do not correlate with the ambient levels. Therefore, if the indoor generated 

particles have similar health effects than the ambient particles, they are additional to those 

observed in the epidemiological studies. Therefore the exposure reduction potential for the 

demonstration case was calculated mainly for the ambient particles. 

The results (VI, Table 3) indicated that a 27% reduction could be achieved by the changes in 

the ventilation systems. Because the needed requirements have already been implemented in 

the Building Codes, it can be assumed that this reduction will be achieved along the natural 

renewal of the building stock in every case. When new understanding is generated on the risks 

caused by particles to susceptible population groups, special actions regarding building 

characteristics can be taken to target exposure reductions to those that will benefit most. 
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6. DISCUSSION

Comparison of deterministic and probabilistic approaches. In the strictest sense of the 

phrase, deterministic models are based on physical equations describing causal relationships 

and target identifiable individuals and events. A single outcome of such a model could at least 

in principle be validated by comparing the model estimate to a corresponding observation. 

Deterministic models are, of course, not limited to modelling ‘specific individuals or events’. 

Large populations may be modelled by including all population members individually into the 

model. A common objection to deterministic models is that the collection of the input data 

needed for such an attempt would be impossible. But there is no need to include every 

member of the target population in a deterministic model, similarly as no one would suggest 

this for a personal exposure monitoring study. A statistical sampling scheme can be employed 

to create a random sample of the target population, to collect the required input data for this 

more limited number of subjects, and to run the model for them. 

Strengths of deterministic exposure models include presentation of exposures in geographical 

scales (using GIS), short-term forecasting, and modelling of alternative future scenarios. 

Practical challenges of the deterministic modeller may be solved using probabilistic 

approaches. It is obvious that in fact we do not need exposure data for specific individuals to 

manage exposures in a city or for a specific sub population. Relevant are the general exposure 

characteristics of the target population, including estimates for the mean exposure, exposure 

variability, and perhaps some idea of the levels of the highest exposures. For a model to be 

useful, it should help answering questions like “How could we best reduce these exposures?” 

and “How much would the exposures be reduced if we implemented these management 

options?” Of course, a model can replace neither the exposure analyst nor the decision maker 

in this process, but the model should be usable as a tool for comparing alternative options and 

scenarios for them. 

Because it is very difficult or practically impossible to collect individual data for anything 

more than small samples of selected populations, the deterministic modeller is drifted towards 

estimating input variables with point values more or less representative for the target 

population. Such point values are in the best case not biased, but they always lead to ignoring 

some of the variability of the values within the target population. Therefore such model can in 

the best case estimate the population mean exposures well, but the estimates of variability will 
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be compromised. This is exactly the main issue that a probabilistic modeller tries to solve. 

Probabilistic input variables are described as distributions that intend to capture the true 

variability of the input values.

Another point related more to risk than exposure modelling, is the use of conservative point 

estimates in the models to create a safety margin. In such a context, instead of using 

conservative point estimates in a deterministic model, the probabilistic modeller tries to 

capture the true variability (and sometimes also separately the uncertainty) in the input 

variables, and to create a best estimate for the whole range of variability of the exposure in the 

target population. Then, it is on the responsibility of the risk manager to apply a required 

margin of safety on top of the exposure assessment representing our best knowledge (with 

explicitly expressed uncertainty) on the true exposures. 

Model development and data acquisition. In the current work a population exposure model 

was developed in the context of a large European multi-centre study with extensive fieldwork 

in seven metropolitan areas. This directed resources towards the data collection, including 

personal exposure and microenvironment concentration measurements with the 

accompanying work related to development of measurement methods, quality assurance, 

multi-centre collaboration, data management, and data analysis, and it is difficult to avoid the 

question whether such a large field study gives the best environment for model development. 

The current work would have benefited more from an environment focusing on model 

development with support for theoretical aspects, computer based modelling, and statistical 

and mathematical expertise. 

On the other hand, a major limitation in many deterministic and probabilistic modelling 

attempts is the implicit uncertainty in the model inputs and outputs. When model inputs are 

estimated from various sources, including literature and pilot studies to mention few 

examples, the only way to assess the applicability and representability of the data for the 

purpose at hand is expert judgement. Here, at best, science enters to the round table of 

experts, where the peer review of the presented models and results judges the validity of 

selections and assumptions made by the model authors.  

On the other hand, when the model input data are collected using population-based random 

sampling, it is ensured that the data entering to the model are representative of the underlying 

population. Traditional statistical techniques can then be used to assess the uncertainty about 
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the underlying population caused by the random sampling process. Collecting observations of 

the model output variables at the same time and from the same subjects makes it possible to 

compare the observed and predicted values to calculate the model errors as the difference of 

these two. 

Estimation of model parameters from observations. In an ideal world a good model would 

use easily observable variables as inputs and calculate the desired outputs from those using 

physical equations completely capturing causal relationships between the inputs and outputs. 

Unfortunately we do not live in an ideal world. Taking ventilation as an example, it is 

operated by individuals, affected by e.g. ambient temperature and stochastic events like 

burning a toast, with a great personal variability, suitable for probabilistic characterization at 

best. A modeller could attempt to use questionnaire data specific to the day and apartment in 

case, or a typical value (perhaps classified more specifically to the type of day and apartment 

and other factors perhaps affecting the outcome). The first option becomes soon too detailed 

and demanding when the target population size increases. The second option in the simplest 

case uses population average as a point value for a specific individual, or uses statistical 

modelling to estimate it from other variables. This is not far from full-fledged probabilistic 

modelling, where uncertain statistical determinants can be left out of the model and replaced 

by a description of the variability of each variable. 

Attempts to model validation. As Oreskes et al. (1994) point out in their rather philosophical 

study, it is it is always impossible to ‘validate’ a model in an open system in a pre-emptive 

way. This is similar to ideas presented much earlier by Karl Popper (Popper, 1935) about 

falsification of a scientific theory: even what we considered the laws of nature are subject to 

falsification they are applied in a new environment, where new forces became effective. Any 

success in model evaluations may only increase gradually on our trust on the model. When 

the model fails in a new setting, limits of the model applicability become clearer. A classic 

example from physics were the measurements of the speed of light in late nineteenth century 

that led to the birth of the theory of relativity few years later and changed our understanding 

on the nature of gravity. In exposure modelling similar limits of model applicability may be 

associated with interactions of relatively simple phenomena like air exchange of an 

unoccupied room interacting with its complete environment including human behaviour in the 

rest of the building, ambient wind, temperature, radiation balance, etc. 



72

Popper and Oreskes et al. are, of course, right in principle. On the other hand also the need for 

different kind of models and the evaluation of their accuracy are very real. Therefore Oreskes 

et al.’s point should not be taken as discouragement for evaluation of model accuracy. 

Decision makers, for example, need to be aware of the uncertainties in the model predictions 

that they rely on when making expensive or restrictive decisions to protect the safety of the 

public. This very well illustrated by the benzene exposure reduction case in California 

(Jantunen, 1998;Ott, 1995) where expensive requirements were set on industry to reduce their 

benzene emissions. Later it turned out that a simple evaluation of population exposures to 

benzene would have saved all the trouble, as the controlled industrial emissions had only 

marginal impact on population exposures, which were driven by tobacco smoke and traffic. 

The underlying model that the population risk is a straightforward function of emission tons 

was false and the decision makers should not have counted on it in the first place. 

Ott et al. (1988) and others have argued that the model validation data set has to be 

independent of the one used for the model development. Ott et al. used the personal CO 

monitoring data from Denver, Colorado, to develop the SHAPE (Simulation of Human Air 

Pollution Exposures) model. In the monitoring study the exposures were logged with 1-

minute resolution for two days per subject. Ott et al. used the first day data to create 

concentration distributions for the 22 microenvironments included in the model. Then they 

combined these distributions with the time-activity diaries for the day 2 and compared the 

model outputs with the observed day 2 exposures, claiming that now the model development 

data (day 1) and the model validation data (day 2) were independent. However, this approach 

can be expected to work only if the true day 2 concentration distributions were similar to the 

day 1 ones. If, e.g. different mixing conditions, or ambient temperature that would affect the 

use of indoor heaters and ventilation patterns, would be different for the second day, there 

would be no reason to expect the day 1 distributions to represent the day 2 ones. 

The above example demonstrates that the requirement for independent data for model 

validation is problematic; the input data used in validation must be representative of the target 

system from where the corresponding observations are collected. If this is not the case, then 

similarities or differences in the input values may drive our comparison and conclusions, and 

this of course makes no sense. Therefore in the current study the model input values and the 

personal exposures used in the model validation were specifically collected from the same 

population sample. 
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Underestimation of variance. In the two validation studies for probabilistic population 

exposure models one common finding has been the underestimation of exposure variability 

(Law et al., 1997;Ott et al., 1988). One factor not mentioned by the authors is the use of 1-

minute concentration data in combination with time-activity diaries. Individual entries in time 

activity diaries may have significant timing errors due to watches, recall errors, errors in 

filling the diary, and errors in the data entry into the database. These dilute the estimated 

concentrations in all microenvironments towards the overall average concentration, i.e. the 

concentration variation is underestimated. Moreover, in those microenvironments, where the 

concentrations are especially high, like in the case under study focusing on CO exposures, 

parking garages, highways, street traffic, tunnels, gasoline stations etc., the time spent is very 

short. Even a minor error of few minutes in the timing of the visit to such a microenvironment 

will have a significant effect on the observed average concentration for the visit. Minor timing 

errors do not have remarkable effects on microenvironments where the time spent is hours. 

Time-activity modelling. The most common approach to time activity modelling is to use a 

database of actual time-activity diaries. Such a database is sampled in the simulation; 

individuals with the correct gender, age, and ethnic, socioeconomic, and other characteristics 

for the current simulated population group are randomly selected and used in the simulation 

(AirPex, SHAPE, pNEM etc.). The main strength of this approach is that the actual sequential 

dependences between visits to various microenvironments are completely maintained. The 

actual diaries are also very suitable for tying the visits to specific times of the day. 

On the other hand, if the model is used for future scenarios, it must either be assumed that the 

time-activity of the population does not change, setting a limit to the scenarios that can be 

studied, or the change in time activity must be implemented on each of the used diaries in the 

database. Both alternatives are limiting from the point of view of model application. 

Therefore a different approach was selected in the current work. The time of day and 

sequential nature of visits to microenvironments are merely ignored, and the total daily 

fraction of time used in each microenvironment is used instead. This way the time-activity 

inputs are very easily documented and hypothetical changes can be easily applied to them. 

Correlations. One new feature that seems to have been added to probabilistic exposure 

models in the current work is the statistical modelling of correlations of values sampled from 

various input distributions. The sampling used in basic probabilistic model simulations 

assumes independent input distributions. In such a model the dependencies between model 
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variables should be causally modelled as far as possible, but those phenomena for which no 

causal relationships are specified, are assumed independent. This is not true in the real world. 

A good example is exposure to tobacco smoke. Smoking subjects are more likely to be 

exposed to ETS in all of the microenvironments they visit, and subjects sensitive to tobacco 

smoke will try to avoid all contact with it. 

Correlations of microenvironment concentrations can be partly traced back to correlations of 

ambient concentrations. Ott et al. (1988) used this in their SHAPE model, where the 

microenvironment concentrations were split into an ambient background component and 

microenvironment specific component. On the other hand, also other factors may affect the 

correlations of microenvironment concentrations. For example a smoking subject is likely to 

be exposed to higher levels at both home and workplace – and even the restaurants he or she 

visits. Also, daily ambient temperatures and the season affect the ventilation patterns and thus 

modify the infiltration rates in a way that will increase the correlation between the different 

microenvironments. As a conclusion, the factors leading to correlations can partly be traced 

back to causal issues (e.g. the general ambient background level), but partly are merely 

statistical phenomena. In this sense it can be said that ultimately it might be impossible to 

capture the full range of variability of exposures using purely deterministic models. 

Simulation of exposures to other air pollutants. The original goals set for the simulation 

model development presented in this thesis were not limited to PM2.5. In principal the 

simulation framework, and the conceptual exposure model behind it, are generic and can be 

applied to different pollutants, as demonstrated e.g. by the simulations run for PM10 (II) and 

CO (Bruinen de Bruin et al., 2004b). In models for other pollutants than PM2.5, the role of 

different microenvironments and population groups must be considered separately. Exposures 

to benzene are driven by different microenvironments than exposures to particles, and even 

when looking at different size fractions of particles, or particles from specific sources, the 

microenvironments to be included in the model must be carefully considered. 

Exposure-response relationships. During the past decade of intensive research on health 

effects of particulate matter it has become evident that not all particles are equally toxic, nor 

are all people equally sensitive to the toxicity of the particles. It is clear that there are many 

toxic components in particulate matter and that the toxicity is mediated via numerous 

mechanisms. As the epidemiological and toxicological studies bring more light to the subject, 

the question about environmental health protection and particles becomes increasingly 
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complex. For each mechanism affecting health there are susceptible population groups, and 

particles from different sources affect different health mechanisms differently. Therefore the 

answer to the question: “How can we reduce these health effects most effectively?” requires 

population group level assessment of exposures to a multitude of PM fractions.  

The development of the current modelling approach towards this direction has already begun. 

In the national HEAT study we have specifically modelled exposures to traffic generated 

combustion particles (a.k.a. tailpipe particles) (Tainio et al., 2005). In the EU-funded 

FUMAPEX study we have looked at PM2.5 exposures of the most important general 

population groups that are considered susceptible to particles: elderly and infants 

(unpublished work). Much remains, however, to be done in this area. 

Exposure Modelling and Air Pollution Risk Management. Risk management policies cost 

money and restrict the alternatives available for individuals and institutions. The justification 

for such policies is the reduced mortality and disease burden. Therefore the public health 

achievements of the implemented policies should be evaluated against the set risk reduction 

objectives. The achieved mortality and morbidity reductions due to implementation of an air 

pollution policy, however, are in most cases practically impossible to measure. 

Implementation takes years, and other simultaneous changes in diseases, treatments, 

demography, and other environmental parameters will inevitably, and in many unknown 

ways, change the population mortality and morbidity – with all likelihood more than air 

pollution reduction. Options as dramatic, instantaneous, and effective, as the banning of coal 

sale for domestic use in Dublin in 1990, are rarely identified and even more rarely 

successfully implemented (Clancy et al., 2002). While the ultimate goal of urban air pollution 

abatement policy is to reduce the avoidable disease burden, the targets must be set on 

intermediate goal, reduction of air pollution exposures, because this can be planned, 

modelled, managed, measured, and verified independently from other developments in the 

society. When alternative future policies are being compared, exposure modelling is the only 

means to perform this important comparison.  

Exposure to some pollutants may concern only a small minority of the public.  This may be 

the case, if this minority has much higher exposures than the rest (occupational or vicinity to a 

source), or if the minority is exceptionally sensitive to this pollutant (e.g. allergic).  In these 

cases, the target population must, of course, be selected accordingly. 
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7. CONCLUSIONS

The developed probabilistic modelling techniques can be successfully used for modelling of 

population exposures to PM2.5, capturing the population variability of exposures (II, III, V).

The model is suitable for comparison of alternative future scenarios (VI). Such analysis 

should be conducted regularly for optimization of environmental policies (VII). The 

following paragraphs list the main conclusions associated with the detailed study aims. 

7.1. Study design (I, II, III, V, VII) 

 Integrated population-based measurement of exposures and affecting factors (i.e. 

microenvironment concentrations, time-activity, etc.) allows for detailed analysis of exposure 

determinants and development of exposure models with detailed evaluation. 

 Population-based sampling of subjects ensures that the observations, and thus exposure 

analysis and modelling based on them, are representative for the general population from 

which the random sample was drawn. 

7.2. Simulation Framework (II, III, V) 

 Implementation of the modelling system using a pre-structured framework makes model 

development faster, easier and more reliable. 

 Inclusion of correlation structures is much easier using a pre-structured approach. 

7.3. Model input estimation methods (III, IV, V, VI) 

 Some model parameters (best examples being infiltration factors and indoor source 

strengths) are not directly measurable, but can be estimated from observed variables using 

state of art numerical analysis techniques. 

 Correlations are population level features that can be estimated from population sampled 

data. The causal dependencies between model variables should be modelled as such as far as 

possible; however, in some cases this may not be possible. Probabilistic model with the rank 
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correlation feature is one solution to the modelling of these features that are not easily 

included in physical models. 

 In model application many parameters must be estimated based on assumptions on local 

conditions etc., or values measured elsewhere must be used in lack of local data; 

heterogeneity of correlation structures, infiltration factors and other input values remains an 

interesting and potentially important research area relevant to future applications. 

 Goodness-of-fit evaluation methods for probabilistic exposure modelling are not very well 

established. Some methods based on p-values indicate statistically highly significant 

differences for distributions that are for all practical purposes identical. On the other hand in 

some cases (especially time-activity modelling) even visually obvious discrepancies have 

only minor effects in simulation results. Evaluation of GOF should not be excluded in data-

based modelling studies, but care should be taken in interpretation of the results. 

7.4. Model Accuracy (II, III, V, VI) 

 Model errors were found to be relatively small; comparative or smaller than population 

sampling uncertainties. 

 Measurement error is typically smaller in microenvironment monitoring than in personal 

exposure measurement (in case of PM2.5 due to the larger flow rates and consequent sample 

sizes) and therefore modelling based on the microenvironment monitoring can produce more 

accurate results than personal exposure monitoring. 

 Simulation models can be used to estimate population variances (unlike deterministic 

models without proper population sampling schemes), but as found also in previous studies, 

tend to underestimate exposure variances. With inclusion of correlations and by taking into 

account the measurement error bias in the observed exposure distribution the underestimation 

can be alleviated but not completely removed. 

 Model predicts PM2.5 exposure percentiles from 5th to 95th very well; in the tails the model 

errors become relatively (lower tail) or absolutely (upper tail) larger. Only the upper tail 

underestimation has practical significance for exposure management. 
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7.5. Model error, uncertainty and need for independent data (V) 

 Uncertainty concerns probabilistic evaluation of possible errors in model estimates; more 

precise and not probabilistic model error may be estimated using a observations of the model 

output variables together with carefully designed setup that removes other error terms. 

 Quantification of model error must be based on model inputs and comparison data from the 

same population sample and times, because otherwise sampling errors obscure them. 

 Requirement of independent data for model evaluation applies for evaluating model 

equations and algorithms in alternative setups. In such tests the input data used must describe 

the alternative target system. 

7.6. Model application for a policy-relevant scenario (VI) 

 Successful model application demonstrated that the developed modelling environment can 

be used to estimate reductions in exposures for given exposure scenarios. 

 Population-based exposure studies allow for data based development of exposure scenarios. 

 The model itself can be applied for hypothetical scenarios (with increased uncertainty). 

7.7. Development of efficient environmental policies (II, V, VI, VII) 

 Policy decisions must be based on reliable quantitative estimates of the expected benefits. 

 The model was validated for the current exposure scenario and applied successfully for a 

data based future scenario. 

 Preliminary scenarios may be created using theoretical assumptions about model inputs, 

but a data based approach, as demonstrated, ties the scenarios more tightly to reality. 

 Limitations in obtaining model parameters concern alternative modelling approaches, too. 

 Exposure assessment using this kind of models allows for realistic and quantitative risk 

assessment and management. 
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8. IMPACTS ON ENVIRONMENTAL POLICY AND PUBLIC HEALTH 

(VII)

Exposure analysis is a crucial part of effective management of public health risks caused by 

pollutants and chemicals in our environment. Development of science-based policies for 

promotion of public health requires careful analysis of exposures within the population, 

including identification of emission sources, exposure routes, behavioural determinants, and 

population groups at risk. Comparison of alternative future policies in terms of environmental 

health is possible only by using exposure models. One such model was developed and 

evaluated in the current work with encouraging results. 

Exposures to specific pollutants vary from subpopulation to another, and various policy 

options affect these exposures with largely different efficacies. Therefore future exposure and 

risk analyses should be carried out in population group level. Optimal benefits can be 

achieved by reducing exposures specifically in those subpopulations where the burden of 

adverse health effects is the highest.  

In the case of particulate matter, the pollutant itself consists of different fractions, with 

presumably different toxicities, and thus in this case the dose–response factors should be 

determined for each of these fractions. If analysis of population exposures is based on only 

centrally monitored ambient air quality data and dose-response factors obtained for the 

general population, non-optimal policies may be selected.  

EC pursues to develop guidelines for new pollutants, including PM2.5, and methodologies to 

control exposures to pollutants and chemicals with significant indoor sources. The collected 

exposure data in the EXPOLIS database and the models developed as part of the current work 

should, can and will be used to support these processes among other available tools and 

exposure analysis techniques. 
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Description and demonstration of the EXPOLIS simulation model:

Two examples of modeling population exposure to particulate matter

HANNEKE KRUIZE,a OTTO HÄNNINEN,b OSCAR BREUGELMANS,a ERIK LEBRETa

AND MATTI JANTUNENb
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As a part of the EXPOLIS study, a stochastic exposure-modeling framework was developed. The framework is useful to compare exposure distributions

of different (sub-) populations or different scenarios, and to gain insight into population exposure distributions and exposure determinants. It was

implemented in an MS-Excel workbook using @Risk add-on software. Basic concept of the framework is that time-weighted average exposure is a sum

of partial exposures in the visited microenvironments. Partial exposure is determined by the concentration and the time spent in the microenvironment. In

the absence of data, indoor concentrations are derived as a function of ambient concentrations, effective penetration rates and contribution of indoor

sources. Framework input parameters are described by probability distributions. A lognormal distribution is assumed for the microenvironment

concentrations and for the contribution of indoor sources, and a beta distribution for the time spent in a microenvironment and for the penetration factor.

Mean and standard deviation values parameterize the distributions. In this paper, Latin Hypercube sampling is used for the input distributions. The

outcome of the framework is an estimate of the population exposure distribution for the selected air pollutant. The framework is best suited for averaging

times from 24h upwards. Sensitivity analyses can be performed to determine the most influential factors of exposure. The application of the framework is

illustrated in two examples. The EXPOLIS PM2.5 example uses microenvironment measurement and time–activity data from the EXPOLIS study to

model PM2.5 population exposure distributions in four European cities. The results are compared to the observed personal exposure distributions from

the same study. The Dutch PM10 example uses input data from several (Dutch) databases and from literature, and shows a more complex application of

the framework for comparison of scenarios and subpopulations.
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Keywords: population exposure distributions, microenvironment approach, exposure model, air pollution, PM2.5, PM10.

Introduction

Epidemiological research of the past 20 years has revealed

significant mortality and morbidity effects in association to

present European and North American levels of urban air

pollution, especially fine particulate matter (PM). These

studies are based on air pollution levels that have been

measured at centrally located ambient air monitoring stations

(Vedal, 1997; Spix et al., 1998; Dab et al., 2001; Pope et al.,

2002). Health effects of air pollutants, however, are caused

by the exposures people experience during their daily

activities. People in Europe and North America spend most

of their time indoors (Szalai, 1972; Schwab et al., 1990;

Klepeis et al., 2001) where, in addition to pollution from

outdoor sources, also indoor sources of air pollutants are

present (Lioy, 1990). Indoor and personal pollution levels

often correlate poorly with outdoor air levels (Dockery and

Spengler, 1981; Letz et al., 1984; Sexton et al., 1984; Ott,

1985; Spengler et al., 1985; Ryan et al., 1986; Lioy, 1990,

1995; Law et al., 1997; Pellizzari et al., 1999; Kousa et al.,

2002). Better understanding of the relationships between the

personal exposures to various air pollutants and ambient air

levels, and their relationships to other significant exposure

determinants (such as indoor sources, sinks, and personal

activities) are therefore needed before the epidemiological

findings can be interpreted into efficient risk reduction

policies (Ott, 1984; NRC, 1998).

Exposure can be defined as the contact of a target and a

chemical, physical, or biological agent in an environmental

carrier medium (Duan, 1982; Ott, 1985; Zartarian et al.,

1997). It can be measured or modeled (Ryan, 1991), either

directly (personal measurements) or indirectly (microenviron-

ment approach) (Duan, 1982, 1991; Ott, 1984, 1985; Ott

et al., 1988; Lioy, 1990; Ryan, 1991; Duan and Mage,

1997). Personal exposure measurements are expensive

(Ott, 1984; Ryan, 1991), labor intensive and invasive (Letz

et al., 1984; Sexton et al., 1984). Modeling requires a validated
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model, and sufficient, representative, good-quality input

data. Once these requirements are met, a model can be

repeated for a large number of individuals or populations.

Models can be used to assess past exposures, exposures of not

sampled or undersampled groups in the population or to

compare alternative future exposure scenarios (Letz et al., 1984;

Lioy, 1990, 1995; Ryan, 1991). Only little demands have to be

made on the study population in comparison with personal

measurements (for which the study population, e.g., has to

carry sampling equipment). These are all significant benefits

when compared to measurements (Letz et al., 1984; Ryan et al.,

1986).

Ryan (1991) describes three classes of human exposure

models for air pollutants: statistical, physical, and physical–

stochastic models. Statistical models can be used for

descriptive analyses and testing of hypotheses on collected

data. In the physical approach, the model is based on

physical (and sometimes chemical) laws. The a priori defined

physical model is transformed into a mathematical model

(Ryan, 1991). An example of this deterministic type of

models is the National Ambient Air Quality Standards

(NAAQS) Exposure Model (NEM) (Johnson, 1995;

McCurdy, 1995). Physical–stochastic type of models are

based on physical equations like the pure physical models,

but instead of relying on deterministic input data to fully

describe the variability F or ignoring the variability F in

input parameters, physical–stochastic models apply prob-

abilistic techniques to propagate the variability through the

model. These models describe parameters with frequency or

probability distributions instead of single values (Ryan,

1991). Examples of this type of models are the Simulation of

Human Air Pollution Exposures model (SHAPE) (Ott,

1984; Ott et al., 1988; Duan, 1991; Ryan, 1991), pNEM, the

probabilistic version of the NEM model (McCurdy, 1995;

Law et al., 1997), and the Air Pollution Exposure model

(AirPEX) (Freijer et al., 1998). These models can be used to

predict population exposures for both existing and past or

scenario situations, and for subpopulations for whom no

measurement data are available (Ryan, 1991), by simulating

from the distributions of input parameters.

Full description of personal exposure to an air pollutant

requires knowledge of the magnitude of pollutant concentra-

tion in the exposure environment, duration of exposure, and

the time pattern of the exposure (Ryan, 1991). The

microenvironment approach has been commonly used to

model exposures (Fugas, 1975; Dockery and Spengler, 1981;

Ott, 1984; Letz et al., 1984; Ryan et al., 1986; Freijer et al.,

1998). In the microenvironment approach the exposure E is

calculated as the sum of the partial exposures across the

visited microenvironments Eq. (1) (e.g., Duan, 1982; Ryan

et al., 1986):

E ¼
XN

i

fiCi

where Ci is the concentration in microenvironment i, fi the

fractional time spent in microenvironment i, and N the

number of microenvironments.

In literature, the exposure E is often defined as ‘‘total

exposure’’, (e.g., Ryan, 1991). However, we prefer to use the

term ‘‘time-weighted average exposure’’, because in our

opinion it better expresses the fact that the exposure is the

sum of weighted concentrations to which people are exposed

in the microenvironments they visit. This equation can be

used for any averaging time and any number of microenvir-

onments, for any air pollutant. In case no measured data are

available for indoor environments, the concentration can be

derived as a function of outdoor concentration, the effective

penetration factor, and the contribution of indoor sources

(e.g., Dockery and Spengler, 1981; Ryan et al., 1986): (Eq (2))

Ci ¼ Capi þ Si

where Ca is the ambient concentration, pi the effective

penetration factor of the air pollutant in microenvironment i,

and Si the contribution of indoor sources in microenviron-

ment i.

The effective penetration factor includes both first-order

infiltration and first-order loss mechanisms (sinks) (Ryan

et al., 1986). According to Ryan et al. (1986), pi and Si are

dependent on many parameters, such as ventilation rates and

family activity patterns. In Figure 1, this nested model is

outlined for two types of outdoor environments (in this

example, the urban and rural environment), with different

indoor microenvironments nested within them.

As a part of the EXPOLIS study, a European multicenter

study for measurement of air pollution exposures and

microenvironment concentrations of working age urban

populations (Jantunen et al., 1998, 1999), a population

exposure simulation framework was developed to assess and

predict exposure distributions of air pollutants of European

urban populations. This simulation framework should be

applicable in scenario studies, to assess the public health gain

of environmental policy options in terms of population

exposure. Another condition was that the framework should

fit on information resulting from the EXPOLIS study.

Furthermore, it had to be developed in such a way that all

participating centers of the EXPOLIS study could use it

without extensive developer’s support. Also, the framework

should be applicable to perform calculations for various

(sub-) populations and air pollutants, and should produce

population exposure distributions (Jantunen et al., 1998).

Based on these conditions, the Dutch National Institute of

Public Health and the Environment (RIVM) developed the

modeling framework in collaboration with KTL (Finnish

National Public Health Institute).

This paper describes the development and structure of the

framework. Two examples demonstrate the application of the

framework to simulate population exposure to particulate

matter. The first one, the EXPOLIS PM2.5 example, applies

EXPOLIS simulation modelKruize et al.
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the framework to four EXPOLIS cities to model the adult

urban 48-h population exposure distributions to fine

particulate matter (PM2.5). The results are compared to the

observed 48-h personal exposure distributions from the same

study. The second one, the Dutch PM10 example, shows a

more complex application, using the framework to model

24-h respirable particulate matter (PM10) exposures of the

whole Dutch population. In this example, the target population

is divided into eight subpopulations based on age, work status

and living in either a rural or an urban area. In the Dutch

example, the results are calculated separately for the current

scenario, including exposures to Environmental Tobacco

Smoke (ETS), and for a hypothetical non-ETS scenario.

Methods

General Features of the Framework
The developed framework is based on Eqs. (1) and (2). It

was implemented as a Microsoft Excel workbook. An Excel

add-on software package @Risk (version 3.5, Palisade

Corporation, 1994) is needed to supply the probabilistic

functions for the stochastic functionality. The spreadsheet-

based approach allows easy use of the framework by

researchers who are not modelers or programmers by

training. @Risk offers the user possibilities to choose their

own simulation features, for example, selecting either

sampling by the Latin Hypercube method or the Monte

Carlo method. When Latin Hypercube sampling is used to

create random realizations from the input distributions, the

input probability distribution is stratified into equal intervals.

Samples are taken randomly from each interval of the input

distribution. Therefore, compared to the regular Monte

Carlo sampling, fewer samples are needed to create the whole

distribution. Owing to this way of sampling, also situations

occurring with a lower probability are represented in the

simulation output, for example, high concentrations sampled

from the tail of a microenvironmental concentration

distribution. Moreover, @Risk allows correlation among

input variables, according to the researcher’s specification.

@Risk offers several options to present or analyze model

outputs.

Required Input Data
Equations (1) and (2) show that three types of input data

are required. First of all, relevant microenvironments need to

be defined. The specification of microenvironments depends

on the goal for which the framework is applied, data

availability, and correlation between the microenvironments.

The pollutant being studied is important for the selection of

microenvironments, because the microenvironments, in

which the source of the pollutant is present, vary between

pollutants (Ott, 1985). Furthermore, a more detailed

distinction with more microenvironments can produce a

more accurate estimate, but it also requires more input data.

Secondly, concentration distributions need to be described

for each microenvironment. In literature, concentration

distributions and other distributions, which have a minimum

Micro environment: 2Micro environment: 1

μE: 3, Home  indoors μE: 4, Other indoors μE: 5,Home indoors
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Figure 1. Outline of the nested structure of a microenvironmental exposure model. Concentration distributions for microenvironments 1 and 2 and
for the microenvironment 3 are known. Concentrations for microenvironments 4–6 are modeled using penetrations and local sources.
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level of zero and no upper limit, are often approached as a

lognormal distribution (Ryan et al., 1986). Therefore, we

assume all concentration distributions to be lognormal. For

the microenvironments for which input data are available,

Eq. (1) is used. In case the concentration distribution for an

indoor microenvironment is not available, it is derived from

the ambient concentrations, the effective penetration factors,

and the contributions of indoor sources (Eq. (2)). For the

distribution of the effective penetration factor, a beta

distribution is assumed, limited between zero and one. This

type of distribution allows many different shapes (Ryan et al.,

1986). For the contribution of indoor sources a lognormal

distribution is assumed. Furthermore, the percentage of

indoor microenvironments with specified sources needs to be

given.

Finally, data on time–activity patterns are needed,

specified as the fraction of time spent in each microenviron-

ment. People spend their time differently, depending on

employment status, age (Letz et al., 1984), season, and day

of week (Johnson, 1995), among other factors (Chapin,

1974). Therefore, it is important to define groups of people

with similar time–activity patterns. For such subpopulations

exposure distributions need to be simulated separately, and

eventually merged together to get an exposure distribution

for the whole population. We describe time fractions with a

beta distribution, limited between zero and one, for the same

reason as mentioned for the penetration factor. The

simulation framework samples the time fractions from

independent beta distributions. To scale the total fraction of

time for each simulated individual to unity, each time fraction

is divided by the sum of the fractions before calculating the

partial exposures in microenvironments.

All distributions are entered as mean and standard

deviation (SD) into the worksheet of the framework. The

@Risk lognormal function is described by its mean and SD

(note: not geometric mean and GSD) values. For the @Risk

beta function, the mean and SD are transformed with Excel

formulas to the needed function called parameters a1 and a2.
Since input variables might be correlated (for example, a

person spending much time indoors will spend less time

outdoors), a correlation matrix was implemented, in which

the user can enter rank correlation coefficients. After having

sampled from all relevant distributions using the Latin

Hypercube sampling technique, the sampled values are

combined, resulting in a partial exposure in one microenvir-

onment for one individual. Summing all partial exposures

and repeating this procedure according to the selected

number of iterations generates the distribution of time-

weighted average exposure levels for the target (sub-)

population. From this population exposure distribution

several exposure measures can be derived, such as the

average exposure level, or exposure levels at different

percentiles of the population exposure distribution. Also,

sensitivity analyses can be performed to give an overview of

the relative influence of the input parameters on the simulated

population exposure distribution.

The following examples demonstrate the application of the

framework.

The EXPOLIS PM2.5 Example
The EXPOLIS PM2.5 example demonstrates the use of the

simulation framework in its simplest form. No subpopula-

tions are defined, and no correlation structures between the

model parameters are taken into account. ETS or any other

indoor sources are not modeled separately, but are included

in the observed total indoor microenvironment concentra-

tions. One simulation was run for each city to estimate adult

(age 25–55 years) urban population exposure distributions in

Athens, Basel, Helsinki, and Prague. The modeled and

measured 48-h population exposure distributions were

compared to give a general impression of the validity of the

framework. Table 1 summarizes the input data, which were

Table 1. Input values for the EXPOLIS PM2.5 example: lognormal concentration distributions (arithmetic mean, SD) and beta distributions (arithmetic

mean, SD) for time–activity for each of the three microenvironments of this model.

Microenvironment Helsinki

mean (SD)

Basel

mean (SD)

Prague

mean (SD)

Athens

mean (SD)

PM2.5 concentrations (mg/m
�3)

No of subjects 201 50 50 50

Home indoors 12.1 (15.1) 24.4 (24.7) 35.9 (30.0) 32.4 (20.9)

Work indoors 15.9 (34.8) 27.8 (38.5) 43.8 (44.6) 91.9 (81.3)

Outdoorsa 9.3 (6.9) 21.4 (13.9) 26.9 (10.5) 36.6 (26.7)

Time activity (fractions)

No of diaries 434 322 83 100

Home indoors 0.58 (0.13) 0.56(0.14) 0.59(0.15) 0.64(0.18)

Work indoors 0.25 (0.18) 0.23(0.14) 0.23(0.14) 0.17(0.14)

Other placesb 0.18 (0.10) 0.21(0.11) 0.18(0.12) 0.19(0.11)

a In Helsinki: fixed station 1 h, in other cities: EXPOLIS home outdoor 2-night concentration.
b ‘‘Outdoors’’ concentration is used for ‘‘Other places’’ in the simulation.

EXPOLIS simulation modelKruize et al.
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extracted from the EXPOLIS database Hänninen (et al.,

2002). Three microenvironments were defined: ‘‘Home

indoors’’, ‘‘Work indoors’’, and ‘‘Other places’’ (an aggre-

gate microenvironment covering all other places visited). In

the EXPOLIS study, data were collected from the fall of

1996 to the winter of 1997–1998. Measurements were carried

out during two consecutive weekdays. Concentration dis-

tributions for PM2.5 were available for the ‘‘Home indoors’’

(measurement period was 2� 16¼ 32 h) and ‘‘Work

indoors’’ microenvironments (measurement period was

2� 8¼ 16 h). The measured indoor concentrations include

both ambient PM2.5 particles penetrated indoors, as well as

particles from any indoor source. In Helsinki, 1-hour

ambient concentrations measured at a traffic-oriented fixed

monitoring station were randomly sampled for the ‘‘Other

places’’ microenvironment, because the visits to the ‘‘Other

places’’ microenvironments are typically short, and often

occur in traffic. In Athens, Basel, and Prague, the

approximately 32-h average concentrations measured out-

doors at home were used, because no hourly fixed site PM2.5

data were available for these cities. This treatment is likely to

narrow the distribution of concentrations experienced in the

‘‘Other places’’ from their real, but unknown, values. No

correction was applied to the standard deviations in spite of

the different averaging times. Data on the fractions of time

spent in the defined microenvironments were also available

from the EXPOLIS database. The participants kept a 15min

resolution time–microenvironment–activity diary for 48 con-

secutive hours. Time–activity data were collected during

weekdays, but not in weekends or holidays. Time spent in

the microenvironment ‘‘Other places’’ was calculated by

subtracting the time spent in the other microenvironments

‘‘Home indoors’’ and ‘‘Work indoors’’ from total time that the

diary was kept. In all, 2000 iterations and a random number

seed were selected for each of the four simulation runs.

The Dutch PM10 Example
We present the second example to show the use of the

EXPOLIS framework for purposes other than the EXPOLIS

study itself, in a larger and more complex set up, for

comparisons of subpopulations and scenarios based on

different policy options. This example is derived from work

performed for the Dutch Health Inspectorate, in which

rough estimates were made for the exposure of the Dutch

population to fine particles. We estimated the population

exposure distribution on the basis of directly available

information from existing (Dutch) databases and from

literature, gathered within a short time period. In this

example, ‘‘fine particles’’ were defined to be PM10, because

Dutch air-quality guidelines are defined at PM10. Conse-

quently, more Dutch data were available for PM10 compared

to PM2.5, at least for the outdoor microenvironment. The

input data are summarized in Tables 2–5. The subpopula-

tions were formed on the basis of expected general similarity

of time–activity patterns within groups and data availability.

This resulted in the following subpopulations: children

(0–12 years), the working/studying population (13–64 years),

the nonworking and nonstudying population (13–64 years),

and the elderly (Z65 years). In the following, we will refer to

these groups as ‘‘Children’’, ‘‘Adults W’’, ‘‘Adults N’’, and

‘‘Elderly’’. The subpopulations, with their percentages of

occurrence in the general Dutch population, are shown in

Table 2. Two scenarios were simulated: the current Dutch

situation including the presence of ETS in indoor environ-

ments (current scenario), in which we tried to give a rough

estimate of the current exposure of the Dutch population to

PM10, and the hypothetical situation with no indoor smoking

(non-ETS scenario). For the definition of microenviron-

ments, we selected those for which we expected Dutch input

data to be available, and for which the distinction would be

meaningful in relation to PM. This resulted in four

microenvironments ‘‘Outdoors’’, ‘‘Home indoors’’, ‘‘Other

indoors’’, and ‘‘In transport’’.

Since measurements from fixed monitoring stations

indicated that the ambient PM10 concentrations were higher

in urban areas compared to rural areas (mean 39.7 mg/m3,

SD 17.4 mg/m3 and mean 35.1mg/m3, SD 18.3 mg/m3

respectively), we made a distinction between the urban and

the rural part of the Netherlands (Kruize et al., 2000).

Ambient concentrations were available from the National

Air Quality Monitoring Network of the RIVM (Elzakker

and Buijsman, 1999). We considered data on indoor PM10

Table 2. Subpopulations, their percentages of occurrence in the Dutch population, and the number of iterations used in the Dutch PM10 example.

Subpopulation Age (years) Urban Rural Total

(%) Iterations (%) Iterations (%) Iterations

Children 0–12 5.4 2170 10 4011 15.5 6181

Adults Wa 13–64 18.2 7283 25.7 10,288 43.9 17,571

Adults Nb 13–64 11.3 4516 15.9 6378 27.2 10,894

Elderly 65+ 5.9 2342 7.5 3012 13.4 5354

Total F 40.8 16,311 59.2 23,689 100 40,000

aWorking or studying adults.
bAdults not working or studying.

EXPOLIS simulation model Kruize et al.
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concentrations, available from Dutch studies (for example,

Janssen, 1998; Fischer et al., 2000), not to be representative

for Dutch homes in general, because measurements were

performed in a limited number of Dutch homes, at a limited

number of locations in The Netherlands. Therefore, the

indoor concentration distribution for PM10 was derived from

ambient concentrations using a penetration factor (Eq. (2)).

In the absence of Dutch data on penetration factors,

parameters of the probability distribution for the penetration

factor were derived from calculations using a mass balance

model, in which the input consisted of ambient concentra-

tions, a fixed ventilation rate (0.64 h�1), and the half-life for

PM10 (1.41 h) (Freijer and Bloemen, 2000). The resulting

distribution for the effective penetration rate was parameter-

ized with a mean of 0.6 and an SD of 0.04. These values are

comparable with values presented in literature (Colome et al.,

1992; Li, 1994). Owing to a lack of specific data for different

types of indoor microenvironments, the distribution para-

meters of the microenvironment ‘‘Home indoors’’ were also

used for the microenvironments ‘‘Other indoors’’ and ‘‘In

transport’’.

The additional indoor concentrations caused by ETS were

simulated in a separate simplified stochastical model. In this

model (a modified version of the one described in Kruize

et al., 2000), data on the additional indoor concentration of

fine particles from one cigarette, the number of smoked

cigarettes per person, and the number of smokers in a

household, were combined to derive the input parameters of

the lognormal distribution for the contribution of ETS. The

additional indoor concentration per cigarette (2.2 mg/m3) was

derived from the average emission per cigarette (12mg;

Koutrakis et al., 1992), the average volume of a Dutch house

(assumed to be 250m3), a deposition rate of 12 per day, and

a ventilation rate of 15.3 per day (Freijer and Bloemen,

2000). The number of smoked cigarettes per person was

derived from a Dutch survey on smoking (Stivoro, 1999).

For the adult and elderly subpopulations it was assumed that

smoking would be present only in the ‘‘Home indoors’’ and

‘‘Other indoors’’ microenvironments. For the ‘‘Other in-

doors’’ microenvironment the same input parameters for the

Table 4. Input values for time–activity for the Dutch PM10 example: fractions of time spent daily in the microenvironments (arithmetic mean, SD), by

subpopulation.

Children 0–12 years Adults Wa 13–64 years Adults Nb 13–64 years Elderly 65+ years

n=1101 n=2805 n=874 n=276

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Outdoors 0.13 (0.13) 0.13 (0.14) 0.14 (0.13) 0.15 (0.13)

Home indoors 0.72 (0.13) 0.62 (0.18) 0.76 (0.17) 0.78 (0.14)

Other indoors 0.11 (0.13) 0.19 (0.17) 0.06 (0.1) 0.04 (0.07)

In transport 0.04 (0.04) 0.05 (0.05) 0.04 (0.06) 0.03 (0.05)

Columns do not add up 1.00 due to rounding.
aworking or studying adults.
bAdults not working or studying.

Table 5. Spearman rank correlation input values for time–activity fractions used in the Dutch PM10 example.

Home indoors Other indoors Outdoors

Children Adults Wa Adults Nb Elderly Children Adults W Adults N Elderly Children Adults W Adults N Elderly

Home indoors 1 1 1 1 F F F F F F F F
Other indoors �0.49 �0.56 �0.29 �0.11 1 1 1 1 F F F F
Outdoors �0.56 �0.24 �0.68 �0.72 �0.20 �0.49 �0.15 �0.22 1 1 1 1

In transport �0.3 �0.42 �0.3 �0.29 0.33 0.28 0.43 0.5 �0.09 �0.05 �0.07 0.06

aWorking or studying adults.
bAdults not working or studying.

Table 3. ETS concentration input values Dutch PM10 example: percen-

tage of Dutch households with ETS, and the concentration distribution of

additional PM10 in indoor environments caused by ETS (arithmetic mean,

SD), by subpopulation.

Subpopulation Age (years) Percentage of

households (%)

ETS-caused PM10

level (mg/m3)

Mean (SD)

Children 0–12 47.9 57.1 (51.7)

Adults Wa 13–64 53.2 59.1 (55.0)

Adults Nb 13–64 53.2 55.7 (50.6)

Elderly 65+ 28.7 46.8 (41.2)

aWorking or studying adults.
bAdults not working or studying.

EXPOLIS simulation modelKruize et al.
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contribution of ETS were applied as used for the ‘‘Home

indoors’’ microenvironment, because no representative spe-

cific data could be found for different types of indoor

microenvironments. For children, it was assumed that ETS

exposure would only occur in ‘‘Home indoors’’, because we

assumed no smokers to be present with children in ‘‘Other

indoors’’ (for example, Dutch day nurseries) and ‘‘In

transport’’ (Kruize et al., 2000). The number of indoors or

household and the percentages of households with smoking

were derived from a time–activity survey performed by the

Dutch research institute ‘‘Intomart’’ in a sample of the Dutch

population (n¼ 5056) (Freijer et al., 1998). The input data

used to simulate the contribution of ETS in indoor

microenvironments are summarized in Table 3.

The earlier mentioned Dutch time–activity survey per-

formed by Intomart aimed at gathering data of different

subpopulations in The Netherlands in such a way that they

could be used to estimate exposures to air pollutants for these

subpopulations. Therefore, we could use these data for the

Dutch PM10 example. Data were collected for both week and

weekend days, during three time periods: the summer period

(July–September 1994), the winter period (November 1994–

February 1995), and in episodes with predicted maximum

temperatures above 251C (July and September 1994).

Intomart weighed time–activity data for age and gender in

order to get representative time–activity data for The

Netherlands. During 24 h people selected every 15min, the

location they visited at that moment, the activity they

performed at that moment, and how strenuous the activity

was, from a preformatted list. From these data statistics were

calculated for the selected subpopulations and microenviron-

ments as presented in this example. The time–activity input

parameters are summarized in Table 4. Spearman rank

correlation between distributions of time spent in the different

microenvironments was calculated using data from the Dutch

time–activity survey (Table 5).

For each scenario, separate simulations were performed

for urban and rural inhabitants, and for the mentioned

subpopulations. A weighted number of iterations were

selected according to the occurrence of each subpopulation

in the Dutch population, as derived from Dutch Census data

(Table 2). For each subpopulation, we selected at least 2000

iterations, and we used a random seed. In total, 40,000

iterations were used for each scenario. Sensitivity analyses

were performed using regression analyses, in order to

determine the influence of the input parameters on the

outcome (Kruize et al., 2000).

Results

The EXPOLIS PM2.5 Example
The cumulative simulated 48 h-average population exposure

distributions for the EXPOLIS PM2.5 example are presented

in Figure 2. Statistics of the simulated and the corresponding

observed exposure distributions are summarized in Table 6.

The observed mean exposure levels were highest in Athens,

followed by Prague, Basel, and Helsinki (37, 35, 31, and

16 mg/m3, respectively). The corresponding simulated values

rank to the same order, indicating that the relative exposure

levels between cities can be estimated using these kind of

models. The highest observed mean exposure level (Athens)

was 2.3 times higher than the lowest one (Helsinki, 37/16).

The corresponding ratio for simulated values is 3.3, clearly

higher (43/13). Comparing the extreme cities the simulation

models seem to exaggerate the difference.

In Basel and Helsinki, the simulation models under-

estimate the mean exposure levels, while in Athens and
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Figure 2. Simulation results for the EXPOLIS PM2.5 example:
exposure distributions of adults in four European cities (percentiles
5–95).

Table 6. Summary statistics of simulation results and corresponding

observed exposures for the EXPOLIS PM2.5 example.

Helsinki Basel Prague Athens

Sim.a Obs.b Sim. Obs. Sim. Obs. Sim. Obs.

n 2000 193 2000 46 2000 47 2000 29

PM2.5 exposures (mg/m
3)

Mean 13 16 25 31 37 35 43 37

SD 30 19 20 43 30 26 30 25

25% 6 6 14 15 22 19 28 20

50% 9 10 20 20 30 25 37 29

75% 15 18 30 30 43 42 52 41

90% 24 33 43 50 62 57 68 70

95% 34 43 54 74 75 82 82 74

aSim.=simulated in this work.
bObserved in EXPOLIS measurements.

EXPOLIS simulation model Kruize et al.
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Prague the simulated levels are higher than the observed

ones. Differences between the observed and the simulated

means range from +2 mg/m3 in Prague to 76mg/m3 in

Athens and Basel. Relatively speaking, these maximum

differences are +16 and �19%, respectively.

The simulated standard deviations do not rank to the same

order as the corresponding observed values. Especially in

Helsinki, the simulated standard deviation is too high and in

Basel too low (+58 and �54%, respectively). Basel is the

only city for which the standard deviation was under-

estimated.

The simulated main percentiles shown in Table 6 compare

to the observed values similarly to the mean values in most

cases. If the mean was underestimated, most of the

percentiles are underestimated too; in fact, for Basel and

Helsinki none of the percentiles was overestimated. For

Athens and Prague most of the percentiles (except the 90th

and 95th, respectively) were overestimated.

The Dutch PM10 Example
Figure 3 shows the cumulative simulated population

exposure distributions for PM10 in the Dutch population

for both the current scenario and the non-ETS scenario.

Summary statistics of the distributions are presented in

Table 7, for the whole population and for the subpopulations.

The average exposure level of the whole population

appeared to be almost halved in the hypothetical case where

people would not smoke in the indoor environments,

indicating that roughly half of the present population

exposures to PM10 are caused by passive exposure to tobacco

smoke in indoor environments. Differences between urban

and rural environments were analyzed, but appeared to be

small (approximately 3 mg/m3). Since all other input values

were the same, this difference in modeled exposure levels is

caused solely by the differences in ambient concentrations.

In the current scenario, the differences between the

subpopulations (Table 7) were mainly because of the

differences in ETS exposure, but were also caused by

differences in time–activity patterns. Elderly people clearly

appeared to experience the lowest exposure levels, with a

largest difference in means compared to the adult population

(36mg/m3 versus 49 and 50mg/m3, respectively). The

sensitivity analyses confirmed that the contribution of ETS

and time spent indoors were the most influential factors in

this scenario.

In spite of the differences in time–activity patterns,

variations in the exposure distributions of the subpopulations

were very small (maximum difference of 1 mg/m3) in the non-

ETS scenario. From the sensitivity analyses, the ambient

concentrations appeared to have the largest influence on the

population exposure distribution.

In this example, largest differences were found between the

two presented scenarios, again emphasizing the influence of

ETS on population exposure to PM. Compared to these

differences, the differences between urban and rural dwellers,

and between the subpopulations were small.

Discussion

In this paper, the EXPOLIS simulation framework is

presented as a tool to provide insight into population

exposure to air pollutants, without costly and invasive

personal measurements. The examples presented in this

paper illustrate the framework structure and usability. PM

exposures are modeled in both examples, but the framework

can be applied for other air pollutants as well. The EXPOLIS

PM2.5 example demonstrated the use of the simulation

framework in its simplest form, and the Dutch PM10

example showed that, although the EXPOLIS framework

was developed as a part of the EXPOLIS study, it can be

used for purposes beyond this project as well, in a larger and

more complex set up, as long as input parameters can be

derived from literature or existing databases. The presented

results of the Dutch PM10 example should be interpreted

carefully. For the work ordered by the Dutch Health

Inspectorate, input data were gathered within a short time

period, and should therefore preferably be directly available

Dutch data. Since not all the required input data were

directly available, several assumptions were made, and

proxy’s were used. Also, not all directly available data

appeared to be representative for the general situation in The

Netherlands. For example, the time–activity data used in the

Dutch example were not gathered during the whole year, and

might therefore not give a representative idea of yearly

average time–activity patterns. Consequently, the simulation

results of the current scenario only give a rough estimation of

the PM10 population exposure in The Netherlands, and the

effect of a virtual ‘‘no indoor smoking’’ policy. Once more,
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Figure 3. Simulation results for the Dutch PM10 example: exposure
distributions of the Dutch population for the current and the
hypothetical non-ETS scenarios.
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we would like to emphasize that this example presented

mainly to show the usability of the EXPOLIS framework for

comparisons of subpopulations and scenarios, more than

showing the most accurate results.

Usability of the Framework
The presented examples show that the framework can

be used well for comparison between several existing or

nonexisting situations or populations. First, we presented a

comparison of population exposures to PM2.5 in four

European cities (Athens, Basel, Helsinki, and Prague),

included in the EXPOLIS study, which demonstrates how

models can be built to estimate population exposures in

different cities. From the study of Rotko et al. (2000b) it

appears that response rates were below US standards.

However, because both the input for the simulations and

the personal measurement data were derived from the same

EXPOLIS database, and the low response rates do not stand

in the way the comparison between simulation and measured

data as presented here. Furthermore, the fact that the

nonresponse was high, emphasizes the need of modeling next

to measuring. The simulated means compared rather well to

observed ones; absolute maximum differences were +6 mg/
m3 in Athens and �6mg/m3 in Basel, and both of these

values are within 720% of the observed levels. The main

reason for these differences is that the ETS exposures are not

fully captured by the microenvironment measurements used

as inputs for the EXPOLIS framework, as some ETS

exposure occurs also in other places (and rooms) than where

the microenvironmental measurements were taken. Further-

more, the simulated variances of three out of four cities were

overestimated probably because of the fact that the

lognormal concentration distributions used in this work were

not truncated. One or two extreme concentration values

generated by the Latin Hypercube sampling increase the

simulated standard deviation significantly. In the case of

Helsinki, the simulated maximum exposure was higher

(1128mg/m3) than in any of the other cities and more than

an order of magnitude higher than any of the hundreds of

measured concentrations, even though all microenvironment

concentration means were the lowest in Helsinki. This

artefact caused by the sampling technique does not affect

any of the percentiles below 99th and, owing to the large

number of samples, affects the mean only slightly. The

artefact, however, does affect the standard deviation, and

thus the truncation of lognormal distributions should be

considered, as suggested by Hänninen et al. (2003) and

Hänninen and Jantunen, 2003), when the standard devia-

tions (or other measures of variance) are reported.

Secondly, we performed a scenario analysis for The

Netherlands, considering the current population exposure

to PM10 (including ETS) with a non-ETS scenario, serving as

an example of determining the effect of a potential policy

option, in this case a ‘‘no indoor smoking’’ policy. The

average exposure level of the whole population appeared to

be almost halved in case people would not smoke in the

indoor environments. Also, the sensitivity analyses showed

ETS to be an important determinant of exposure, together

with time spent indoors (where ETS exposure took place).

Other exposure studies also indicate that tobacco smoking

is the most or one of the most important contributors of

personal exposure to PM (Dockery and Spengler, 1981; Letz

et al., 1984; Sexton et al., 1984; Spengler et al., 1985;

Koutrakis et al., 1992; Rotko et al., 2000a; Koistinen et al.,

2001). It is important to keep in mind that both the measured

and modeled exposures in relation to tobacco smoke, both

for smokers and nonsmokers, only include the impact of

passive smoking and inhalation of environmental tobacco

smoke (ETS). We realize that the exposure of a smoker from

active smoking is much greater, but it was not assessed in this

study.

The same ETS occurrences and concentration parameters

modeled for a standard Dutch home as explained in the

methods were used for the ‘‘Home indoors’’ and ‘‘Other

Table 7. Simulation result statistics for the subpopulations and the whole population in the Dutch PM10 example.

Children Adults Wa Adults Nb Elderly All

Current

(mg/m3)

Non-ETS

(mg/m3)

Current

(mg/m3)

Non-ETS

(mg/m3)

Current

(mg/m3)

Non-ETS

(mg/m3)

Current

(mg/m3)

Non-ETS

(mg/m3)

Current

(mg/m3)

Non�ETS

(mg/m3)

n=6181 n=17,571 n=10,894 n=5354 n=40,000

Mean 44 24 50 24 49 24 36 24 47 24

SD 36 12 39 12 39 12 28 12 38 12

25% 20 15 25 16 23 16 19 16 23 16

50% 34 21 40 22 38 22 28 22 37 22

75% 55 30 62 30 61 30 43 30 58 30

90% 84 39 93 40 92 40 67 40 88 40

95% 110 46 119 48 116 47 87 47 114 47

aWorking or studying adults.
bAdults not working or studying.
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indoors’’ microenvironments for adults and elderly people,

which can be considered an important approximation done in

the PM10 model. For example, Hänninen and Jantunen

(2002) report PM2.5 ETS concentrations analyzed from

EXPOLIS Helsinki data that are almost double in work-

places compared to homes. It is likely that also in the

Netherlands the ETS concentrations in workplaces and, for

example, restaurants are different from those in homes. This

question cannot be answered without representative measure-

ments. The current ETS model used in the Dutch PM10

example can be considered to be the best possible estimate,

using directly available data.

A third comparison made in this paper was on subpopula-

tions of the Dutch population. Elderly people appeared to

experience lower exposures compared to the other subpopu-

lations according to the current scenario. In the presented

example, these differences between the subpopulations are

caused for a greater part by the differences in the estimated

exposures to ETS; a small fraction of the differences between

the subpopulations is attributable to the differences in the

ratio of times spent indoors and outdoors. In general, this

type of comparison between subpopulations can be used to

determine, for example, what part of the population is at risk,

or to model exposure for specific sensitive groups, such as the

elderly or children.

Another subdivision presented in the Dutch example was

based on a (spatial) distinction between urban and rural

dwellers. The differences in exposures between the Dutch

urban and rural dwellers in the example are caused solely by

the difference in ambient levels, being approximately 0.6� (40–

35) mgm3¼ 3mg/m3, because all other input parameters were

assumed to be equal between these two subpopulations.

With the simulated population exposure it is possible to

estimate the health effects of the exposure as well, if reliable

and comparable exposure–response relationships are avail-

able for PM from different sources and in different

microenvironments. The elemental composition of indoor

and outdoor PM can be rather different (Letz et al., 1984;

Spengler et al., 1985; Koutrakis et al., 1992), and data are

only emerging on the differences in the risk levels of PM from

different sources (Laden et al., 2000; Pope et al., 2002). The

only indoor source, for which broad-based risk assessments

are available, is ETS (Hackshaw et al., 1997; Law et al.,

1997), which is also the most important indoor source for

PM. In order to be able to calculate the risks from multiple

indoor and outdoor sources, the outcome measure of the

modeling result should be the same as the exposure measure

used in the exposure–response relationship.

The outcomes of the EXPOLIS framework can be

tested against air-quality standards considering both indoor

and outdoor environments. Again, for the PM-oriented

examples presented in this paper it was not possible,

because the standard for PM is based on only ambient

concentrations.

Another aspect on the usability of the EXPOLIS frame-

work concerns the averaging time for which the model can be

used. As the time–activity is modeled as fractions of time, the

framework can be applied to calculation of exposures with

wide range of averaging times, but is best suitable for

averaging times from 24 h upwards.

A last remark should be made on the way total fraction of

time is calculated in the presented version of the model. Since

fractions of time spent in the defined microenvironments are

sampled from independent distributions for each defined

microenvironment, the total sampled time might end up

below or above one. In the presented version of the

EXPOLIS framework, total time spent in the visited

microenvironments is scaled to unity, by dividing each time

fraction by the sum of all of the fractions of time of the

visited microenvironments, before calculating the partial

exposures in microenvironments, as applied in the Dutch

PM10 example. In the EXPOLIS PM2.5 example scaling was

not necessary, because time spent in the microenvironment

‘‘Other places’’ was calculated by subtracting the time spent

in the other microenvironments ‘‘Home indoors’’ and ‘‘Work

indoors’’ from total time that the diary was kept a day,

automatically resulting in a total sampled time of one, being

another possibility to deal with this problem. We are aware

that there are probably more (accurate) solutions (e.g.,

binary trees of probability distributions for occurrence of

time fractions). Further research is needed to find out what is

the effect of the way this problem is treated, and what

solution would be best.

Data Availability
Users of the EXPOLIS framework have many opportunities

to adapt the framework to their own needs within the

limitations of data availability. These limitations of data

availability became also apparent in the examples presented

in this paper.

For example, in both examples presented in this paper,

some data referred to only a short period of time for each

study participant. In the EXPOLIS study, the participants

kept a diary during two weekdays. The Dutch participants

filled out the diary during only one day. This short period

that the diary was kept does not necessarily represent the

normal (average) time–activity pattern of a person. There-

fore, the presented population exposure distributions do not

allow analyses on an individual level (Klepeis, 1999).

However, if time–activity data and concentration data would

be available on a longer consecutive period of time, it would

be possible to derive distributions of personal exposure levels

of specific individuals.

Apart from this, data availability was not a big problem in

the EXPOLIS PM2.5 example, because the framework was

built around the design of the EXPOLIS study. However,

the Dutch PM10 example illustrates that data availability

may become a problem when using the framework for other

EXPOLIS simulation modelKruize et al.
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purposes. Although the current EXPOLIS framework has

simple input requirements, representative PM10 concentra-

tion data for indoor environments and indoor sources (even

on ETS) were not directly available for the Netherlands.

Therefore, we had to decide whether to use available foreign

data or Dutch data based on a limited number of

measurement locations, assuming that these data are

representative for the Netherlands, or to estimate input data

making assumptions and using proxies. In this case, we chose

the latter solution. For example, to be able to calculate the

effect of passive smoking, we estimated the contribution of

ETS to indoor concentrations with a separate stochastical

model. It is well possible that another researcher would

decide to use the available foreign or Dutch data of Janssen

(1998) or Fischer et al. (2000) instead. This example makes it

clear that the researcher’s decision can influence the modeling

results. In the absence of validation, however, it is

questionable what solution would approach the real exposure

situation most accurately.

As this problem must be recognizable for many researchers

in the field of exposure modeling, it would be very helpful if

more databases on (indoor) concentration data and

exposure-relevant time–activity data were published and

made available (Klepeis, 1999). In the USA, several useful

initiatives have been taken already so far (Sexton et al., 1994;

Johnson, 1995). For example, the CHAD is a large database

in which several time–activity databases from the US and

Canada are included, such as the NHAPS database (Klepeis,

1999; Klepeis et al., 2001; McCurdy et al., 2000). However,

it is questionable as to what extent data from these studies

can be used for other (European) countries, because time–

activity patterns might be rather different in different

countries, caused by the cultural differences in how people

spend their time for example. Therefore, more large,

international, multicenter exposure studies would offer a rich

source of (comparable) data, often for more countries at the

same time. The EXPOLIS study is an example of such a

study, from which the database (including outdoor, indoor,

and personal concentration data and time–activity data

among others) will become accessible for the international

research community. When more data on (indoor) concen-

trations of air pollutants, indoor sources, and time–activity

patterns would become available in the future, one still needs

to be careful in using them as input for the model, and one

should evaluate the representativeness of the input data case

by case.

Conclusions

The EXPOLIS simulation framework, described in this

paper, is a helpful tool for researchers to support policy

makers and policy evaluating processes by evaluating air

pollution exposures in different scenarios, population groups,

and locations. It is also useful for helping researchers to

understand the factors affecting exposure levels.

The EXPOLIS example showed that the model predicted

mean population exposure levels in four European cities with

better than 20% accuracy. The presented version of the

simulation framework, not applying truncation to lognormal

concentration distributions, however, overestimated var-

iances in three out of four cases.

The Dutch population PM10 exposure example demon-

strated the use of the framework in modeling exposure levels

of a large complex population in alternative scenarios, for

different subpopulations. The results support the findings

from field surveys that exposure to tobacco smoke approxi-

mately doubles the population exposures to particulate

matter. Limited data availability asked for creative ways to

derive input parameters for the EXPOLIS framework, and

emphasizes the need for general accessibility of databases on

(indoor) concentration data and exposure-relevant time–

activity patterns to support researchers in the field of

exposure modeling.
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EXPOLIS simulation model: PM2.5 application and comparison with

measurements in Helsinki

OTTO HÄNNINEN,a HANNEKE KRUIZE,b ERIK LEBRETb AND MATTI JANTUNENa

aKTL, Kuopio, Finland
bRIVM, Bilthoven, The Netherlands

PM2.5 exposure distributions of adult Helsinki citizens were simulated using a probabilistic simulation framework. Simulation results were compared to

corresponding personal exposure distributions measured in the EXPOLIS study in Helsinki. The simpler models 1 and 2 (with two and three

microenvironments, respectively ) predict the general outline of the exposure distributions reasonably well. Compared to the observed exposure distribution,

the mean is underestimated by less than 3 �g m�3 (20%) and the standard deviation by 23–35%. In the improved simulation models (3 and 4 ), the

environmental tobacco smoke (ETS) - exposed subjects are excluded, the time–activity models of working and nonworking subpopulations are modeled

separately, and the correlations of input concentration and time fraction variables have been accounted for. The output of these models was very close to the

observed distributions; the differences in the means were less than 0.1 �g m�3 and the differences in standard deviation less than 1%. We conclude that when

the required input data are available or can be reliably estimated, the target population PM2.5 exposure distributions can be predicted accurately enough for most

practical purposes using this kind of a microenvironment model.
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Introduction

Modeling is recognized as a tool for assessing population

exposures to air pollution. Exposure models allow estima-

tion of pollutant exposure for groups of people and time

periods (e.g., future) for which personal monitoring has not

been conducted. Models can be used to combine informa-

tion from different sources to produce estimates for

population exposures that would be very expensive or

impossible to measure (e.g., Letz et al., 1984).

Models should be tested against observed data to see how

well the model performs in reality. Two related objectives of

testing strategies usually are (1) to quantify how closely

predictions match observed parameters and (2) to identify

model component deficiencies that might be responsible for

poor predictions (Parrish et al., 1992).

Law and Kelton (1991) identified comparison of pre-

dicted values to observed ones only as one part of vali-

dation. In their opinion (p. 299), validation is concerned

with determining whether the conceptual simulation model

construct is an accurate representation of the system under

study. The conceptual model behind the factual implemen-

tation must match reality — in other words, phenomena

truly affecting the exposures should drive the model.

Koistinen et al. (2000) analyzed behavioral determinants

of personal PM2.5 exposures using EXPOLIS Helsinki data.

Exposure to environmental tobacco smoke (ETS) was

found to be the strongest single determinant of personal

PM2.5 exposures. Other yet weaker determinants were the

concentrations at home and at work place. Cooking was not

found to be important at population level, but this is partly

due to the fact that gas stoves are rare in Helsinki. Rotko

et al. (2000a) analyzed socio-economic factors connected

to different PM2.5 exposure levels. In this analysis, too, the

tobacco smoke exposure was the strongest single factor,

while the working status and type of occupation had weaker

yet statistically significant relationships with the exposure

levels.

Letz et al. (1984) compared respirable particle (RSP)

exposure modeling results to personal monitoring data from

Kingston-Harriman, TN, USA, for validation. The micro-

environment model approach presented is also used as basis

for the EXPOLIS simulation model (Kruize et al., 2002).

Letz et al. (1984) used time-weighted averages in the

analytical model, and the variances were estimated using

Gauss’ law of error propagation.

They used five microenvironments: outdoors, home

when awake, home when asleep, other indoors, and in

travel. Results were shown separately for the ETS-exposed
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and the nonexposed. The predicted means were 6–8% and

standard deviations 8–14% lower than the observed values.

Closer values for both mean and standard deviation were

obtained for the ETS-exposed target population. Other

exposure distribution characteristics, like the shapes of the

simulated or observed distributions, were not reported.

In a later work, the same authors applied Monte Carlo

simulation technique to the same microenvironment model

for NO2 exposures (Ryan et al., 1986), but no model

validation was presented.

Ott et al. (1988) developed the SHAPE model for

assessing population exposure distributions to carbon mon-

oxide (CO). They used the Denver 1982–1983 personal

monitoring data for validation. The model approach was

much more detailed than in the Letz et al. (1984) study; the

observed data were practically continuous and 22 micro-

environments were identified from the time–activity data.

Ott et al. (1988) reported the observed and simulated

personal 1- and 8-h maximum exposure distributions on

log–probability charts. The mean, standard deviation, and

maximum values were also listed numerically for com-

parison. For the 8-h maximum exposures, all the three

presented simulation model versions estimated the mean

well (observed 4.9 ppm, composite fixed station model

4.8 ppm) but underestimated the standard deviations (ob-

served 4.2 ppm, composite fixed station model 2.4 ppm: a

43% underestimation). For the 1-h maximum exposures,

the simulated mean (10.6 ppm) was close to that ob-

served (10.2 ppm), but the standard deviations were,

again, underestimated by over 30% (observed 8.9 ppm,

modeled 6.0 ppm). Ott et al. listed the finite nature of

histogram distributions used in the sampling, autocorrela-

tion of microenvironment concentrations, and serial de-

pendencies of personal activities as possible causes for the

underestimation.

Behar et al. (1990) modified the SHAPE model to

simulate benzene exposures. The modified model is called

Benzene Exposure Assessment Model (BEAM). Micro-

environment concentrations were taken from 12-h mea-

surements performed in the BEAM studies and the

corresponding daytime and overnight exposure measure-

ments were used for validation. The predicted and observed

cumulative distributions were shown for daytime, over-

night, and 22-h average exposures together with numerical

values of the mean, standard deviation, and maximum. The

means matched well; the predicted overnight mean was the

same, while the predicted daytime and 22-h means were

16% and 8% higher than the corresponding observed

values. The standard deviations in all reported simulations

were — again — considerably underestimated (by 39–

45%). Behar et al. explained the differences by the absence

of extremes in the distributions used in sampling process.

Law et al. (1997) evaluated the probabilistic NAASQ

Exposure Model applied to CO (pNEM/CO) using the

same Denver 1982–1983 data as Ott et al. (1988) earlier.

The simulated results, maximum 1- and 8-h running

average daily exposures, were the same as in Ott et al.’s

paper, but number of microenvironments was smaller (13

compared to 22). Homes with and without gas stoves were

simulated separately. The target population was divided into

84 cohorts according to home and work districts, demo-

graphic groups, and cooking fuel used at home.

The simulation results were compared to observed

exposure distributions by plotting the cumulative 1- and

8-h maximum exposure distributions on log–probability

charts and by tabulating eight percentile values for

comparison. The median values were slightly (3–4%)

Table 1. Summary of the presented simulation models 1–4.

Model number Target population Subgroups Model

microenvironments

Correlations EXPOLIS

subjects

Simulation

iterations

1 EXPOLIS population HI+W no 194 2000

2 EXPOLIS population HI+W+O no 194 2000

3 Non-ETS-exposed working /not HI+W yes 126 3770+570

4 Non-ETS-exposed working /not HI+W+O yes 126 3770+570

Microenvironment codes: HI=home indoors, W=workplace, O=all other places.

In all models, the fitted lognormal concentration distributions were truncated at 99.9%.

Table 2. Summary of time activity distributions ( fractions of time)

used in the simulations ( f=fraction of time, HI=home indoors,

WI=work indoors, O=other ).

Variable Whole EXPOLIS target population

n Mean SD Min Max

f(HI ) 434 0.576 0.126 0.16 1.00

f(WI ) 434 0.248 0.130 0.00 0.51

f(O) 434 0.176 0.103 0.00 0.70

Working subpopulation

f(HI ) 377 0.544 0.091 0.16 0.86

f(WI ) 377 0.285 0.093 0.00 0.51

f(O) 377 0.171 0.099 0.02 0.70

Nonworking subpopulation

f(HI ) 57 0.789 0.123 0.42 1.00

f(WI ) 57 0.000 0.000 0.00 0.00

f(O) 57 0.211 0.123 0.00 0.58

EXPOLIS simulation model: Comparison with measurements Hänninen et al.
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underestimated for the 1-h exposures and overestimated for

the 8-h exposures (7% for nongas stove homes, 16% for gas

stove homes). All models also overestimate the 5th

percentile level by 40% or more and underestimate the

95th percentile level by 24–67%. Thus, the variation was

once more underestimated in the simulated results, although

direct variation measures were not reported.

Law et al. (1997) list four possible reasons for

the discrepancy between simulated and observed values:

( i ) only two (gas stove and smoking) of all known

indoor sources (wood stove, kerosene heaters, water

heaters, fire places, and garages) of CO were included in

the model; ( ii ) the population time–activity autocorrela-

tions were not modeled; ( iii ) the time–activity database

(Washington, DC) was from different area than the vali-

dation data (Denver); and (iv) the model may under

predict high exposures due to the constant values used

in mass balance model and other empirical pNEM/CO

model parameters.

Law et al. (1997) also calculated modified Kolmogor-

ov–Smirnov (K–S) statistics to test the differences

between the observed and simulated distributions. All simu-

lated distributions except the 1-h exposures of subjects with

non-gas stove homes were rejected in the K–S statistical

tests using 5% risk level (P=0.05). Thus, according to the

K–S statistics, the simulated exposure distributions are not

similar to the measured ones.

In summary, all the reviewed simulation model valida-

tions predicted the mean or median values with fair to good

accuracy, but all underestimated the exposure variability.

According to the authors, there is a need to improve the

model performance especially in the high-end exposure

levels.

Kruize et al. (2002) described the simulation frame-

work developed within the EXPOLIS project. As des-

cribed in Jantunen et al. (1998), the general objectives of

the probabilistic exposure simulation development in

EXPOLIS are to assess the population exposure simula-

tions of selected subpopulations, urban areas, and future

scenarios. The aims of the current paper are (1) to use the

model to simulate Helsinki adult population exposures to

PM2.5; (2) to compare the simulations to observed

exposure distributions; and (3) to evaluate model com-

ponents to identify possible model development needs.

Materials and methods

The structure of the EXPOLIS exposure simulation frame-

work used in this work is presented in detail by Kruize et al.

(2002). The model is based on average concentration

experienced over visits to multiple environments (Fugas,

1975). The microenvironment formulation of the approach

is shown in Eq. (1) (e.g., Duan 1982; Letz et al., 1984;

Ryan et al., 1986):

E ¼
X

i

fiCi ð1Þ

where E is the time-weighted average exposure of an

individual and f i and Ci are the time fraction spent in and

concentration in microenvironment i. This equation is

applicable for any averaging time and any number of

microenvironments and can, in principle, be used for any air

Table 3. Summary of EXPOLIS exposure data used in comparison and concentration data used as simulation inputs.

Variable Whole EXPOLIS population Non-ETS-exposed

n Mean SD Min Max n Mean SD Min Max

Personal, 48 ha 194 15.4 18.8 1.7 177.4 126 9.8 6.4 1.7 37.4

Home indoorsb 192 12.2 15.1 1.8 121.6 126 8.9 5.7 1.9 26.7

Work indoorsb 151 15.9 34.9 0.5 280.2 98 9.7 10.0 1.4 82.6

Ambient, 1 hb 6436 9.6 6.8 0.1 128.4 6436 9.6 6.8 0.1 128.4

aDistribution used in comparison.
bDistribution used as simulation input.

Table 4. Pairwise rank correlation coefficients between input time

fraction and concentration variables in models 3 and 4.

Time–activity

Home Work Other

Working subjects

Home 1

Work �0.37 1

Other �0.52 �0.50 1

Nonworking subjects

Home 1

Work N/A N/A

Other �1.00 N/A 1

Concentrations

Home Work Ambient

Non-ETS-exposed subjects

Home indoors 1

Work indoors 0.40 1

Ambient 0.83 0.57 1

Hänninen et al. EXPOLIS simulation model: Comparison with measurements
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pollutant. In a model run, E is calculated for a large num-

ber of simulated individuals, based on a random drawing

of input variables fi and Ci from specified probability

distributions. The modeling framework described by Kruize

et al. (2002) allows also for a nested approach, where the

Eq. (1) -based microenvironment model is supplemented

with ( i ) modeling of indoor microenvironment concen-

trations using ambient concentrations and probabilistic

penetration factor following beta distribution, and (ii )

modeling of indoor emissions using probabilistic lognormal

emission factors. This nested approach is not used in this

work.

The EXPOLIS Helsinki PM2.5 exposure and microen-

vironmental concentration measurement data are used to

test the applicability of microenvironment-based simula-

tions to PM2.5 exposures. The EXPOLIS study is described

in detail in Jantunen et al. (1998) and the PM2.5 sampling

methods and data quality in Koistinen et al. (1999). The

Figure 1. Comparison of simulated and observed exposure distributions (P48=observed 48-h exposure to PM2.5; NSE=non-ETS-exposed
subjects only ).

EXPOLIS simulation model: Comparison with measurements Hänninen et al.
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measurements were carried out in 1996–1997. The popu-

lation sampling procedures and sample comparison to the

whole metropolitan area population are presented by Rotko

et al. (2000b). The randomly drawn EXPOLIS population

sample in Helsinki consisted of Finnish-speaking 25- to

55-year-old Helsinki Metropolitan area residents.

PM2.5 concentrations at home indoors, home outdoors,

and at work place, and personal exposures during 48 h

were measured for 201 subjects. The personal monitor

briefcase was carried by the subject and kept in the vicinity

for 48 h. Because the measurement did not catch true

exposure to active smoking, the exposure levels of active

smokers are processed here as exposures to ETS. The resi-

dence and work microenvironment measurements were

programmed to occur during the actual hours that the

participants were expected to spend there. A 15-min reso-

lution time–microenvironment–activity diary (TMAD)

with 11 microenvironments and three activities were kept

during the measurements and all subjects filled a detailed

microenvironment, behavioral, and socio-demographic

questionnaire. A larger population sample participated in

a questionnaire-only study by filling the diaries and

questionnaires. The measurement and questionnaire data

were stored into the EXPOLIS Access Database (EADB;

Microsoft, Seattle, WA, version 7.0) developed for this

purpose (Hänninen et al., 2002).

Four simulation runs, listed in Table 1, were performed

using the Risk add-on software (Palisade, Newfield, NY,

version 4.0) with Excel (Microsoft version 8.0). All simu-

lations were run using Latin hypercube sampling. Models 1

and 2 targeted the whole EXPOLIS population while models

3 and 4 excluded the ETS-exposed subjects from the target

population and used separate time–activity models for

working and nonworking subpopulations. Models 1 and 3

were built on two microenvironments, ‘‘Home indoors’’

(HI) and ‘‘Work indoors’’ (WI), and used the exposure

equation E= fHICHI+ fWICWI. Models 2 and 4 added the

‘‘Other’’ (O) microenvironment by lumping all other nine

diary microenvironments together. The exposure equation

for these models was E= fHICHI+ fWICWI+ fOCO.

The time–activity parameters used here are calculated

from all of the diaries, including both the exposure

measurement sample and the questionnaire -only sample

( total n=434). The time fractions were calculated for the

two or three microenvironments and beta distributions were

fitted on these data. Goodness of the fits were evaluated by

plotting observed histograms overlaid with the correspond-

ing fitted beta density function and by calculating K–S,

Anderson–Darling, and Chi-square test statistics (using

Risk 4.0 software). The time–activity simulation inputs as

fractions of time spent in each microenvironment are listed

in Table 2.

The concentration input parameters were obtained from

the EXPOLIS ‘‘Home indoors’’ and ‘‘Work indoors’’ micro-

environment measurements. Measurement repeatability for

the EXPOLIS concentrations was 3% (relative standard

deviation) (Koistinen et al., 1999). Hourly measured am-

bient PM2.5 data were used as the concentration distri-

bution for the ‘‘Other’’ microenvironment. The Helsinki

Metropolitan Area Council carried out the ambient mea-

surements and provided the data. The simulation inputs

(means, standard deviations) and the numbers of ob-

servations of each type are listed in Table 3, including

observed exposure values. The lognormality of the con-

centration distributions was tested using Shapiro–Wilk’s

test. Two-parameter lognormal distributions were fitted to

the concentration data. Goodness of the fits were eva-

luated visually using function overlays on a histogram and

statistically by t - test, Wilcoxon rank-sum test, and K–S

test statistics for each fit (STATA 5.0 statistical software;

STATA, College Station, TX).

All lognormal concentration distributions were truncated

at 99.9th percentile in the simulations to prevent unrealis-

tically high concentration values. Spearman’s rank correla-

tion (r ) matrixes for the time fraction and concentration

variables were used in models 3 and 4. The rank correlation

inputs are shown in Table 4.

Results

Comparison of Model Outputs to Observed Exposure

Distributions

Simulated exposure distributions are compared graphically

to the observed ones in Figure 1. Models 1 and 2, targeting

the whole EXPOLIS population (Finnish-speaking 25- to

55-year-old persons), are shown in the top chart. In models

3 and 4 in the second chart, the ETS-exposed subjects have

been excluded, and the models have been enhanced with

separate time–activity models for working and nonworking

subpopulations and by taking the rank correlations within

fraction of time and concentration variables into account.

Table 5. Observed and simulated population exposure distribution

values [�g m�3 ].

Whole EXPOLIS

population

Non-ETS-exposed

subpopulation

Observed Model 1 Model 2 Observed Model 3 Model 4

Mean 15.4 13.2 12.6 9.2 9.1 9.2

SD 18.8 14.4 12.3 5.8 5.8 5.8

Percentiles

25% 6.5 5.1 5.9 5.3 5.2 5.3

50% 9.9 8.8 9.2 7.3 7.7 7.9

75% 17.6 15.8 14.8 10.8 11.3 11.4

90% 32.6 26.6 23.9 15.7 16.2 16.2

95% 42.6 37.5 34.0 19.3 20.5 20.5

Hänninen et al. EXPOLIS simulation model: Comparison with measurements
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Each chart shows two simulations: one with two and the

other with three microenvironments. Visually evaluated, all

the simulated distributions are roughly similar to the

observed ones.

Numerical comparisons of the mean, standard deviation,

and percentiles of the observed and simulated distributions

are shown in Table 5. Models 1 and 2 slightly underestimate

the mean and all percentiles. The three-microenvironment

model (model 2) is closer to observed values in low per-

centiles while the two-microenvironment model (model 1)

is performing slightly better in the high end of the dis-

tribution. Both models clearly underestimate the standard

deviation. Models 3 and 4 estimate the means and standard

deviations very close and almost identical to the observed

values. All modeled percentiles are closer to the observed

values than in models 1 and 2, especially in the high end of

the distributions. The lowest percentiles are still underes-

timated, but the absolute differences are less than 1 �g m�3.

Agreement of the simulated distributions with the

observed exposures was statistically tested using the t - test,

Wilcoxon rank-sum test, and K–S test statistics. The K–S

P values were 0.01, 0.11, 0.53, and 0.69 for models 1–4,

respectively. The t - test and Wilcoxon rank-sum tests

produced similar results.

Figure 2. Fitted beta functions ( lines ) compared to observed time activity distributions (bars ).
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Evaluation of Model Components

Fitted Time–Activity Functions Observed fractions of time

histograms are shown with corresponding beta density

functions in Figure 2. Different subpopulations are shown

in the columns and microenvironments in the rows.

The fitted beta function for home indoors had a similar

range as the observed data, with central tendency close to

the observed. The observed data, however, show a more

pronounced peak for the whole and the working po-

pulations. The K–S statistics (P values) testing the

goodness of the fits are 0.000, 0.002, and >0.25 for the

whole, the working, and the nonworking populations,

respectively.

Figure 3. Histograms and fitted lognormal distributions for the concentration inputs. Ambient concentration, used for the ‘‘Other’’
microenvironment in models 2 and 4, is not affected by ETS exposure status of the subjects.
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By definition, the nonworking subpopulation, with

fraction of time spent at work being zero, can be seen in

the leftmost bar of the histogram. This high bar forces the

beta fit leftwards, causing the mode to be misplaced

compared to the observed data. The beta function properties

do not reflect the working day length well. Even the longest

working individuals in the observed data do not spend more

than approximately 50% of their time at work. The normal

workday length, 8 h, is the mode of the observed data. Thus,

the observed histogram is skewed to the left, while the fitted

beta function is skewed to the right. The histogram for the

working subpopulation is identical to the whole population,

except that the zero time bar has been removed. Now the fit

is clearly better, but it still overpredicts short and long

workdays with a mode closer to 6 than 8 h. This indicates

that the beta fit, so applied, is not very good for the work

microenvironment. The K–S statistics (P values) are 0.000

for both the whole and the working populations, indicating

that statistically, the fitted and observed distributions are

different.

For the sum of time fractions spent in all other envi-

ronments ( than in ‘‘Home indoors’’ and ‘‘Work indoors’’),

the beta fit is quite good for all three populations. It can be

expected that beta fit works well for most minor microenvi-

ronments, where the distribution mode is close to zero and

the distribution is skewed to the right. The K–S statistics

(P values) are 0.01, 0.01, and >0.25 for the whole, the

working, and the nonworking populations, respectively.

This indicates that the fits for the first two populations are

still statistically poor but that the last one is good.

Fitted Concentration Functions Concentration histograms

measured in the Helsinki EXPOLIS study are shown in

Figure 3. The fitted lognormal density functions are

plotted on logarithmic x -axis scale. The concentrations in

the ‘‘Home indoors’’ and ‘‘Work indoors’’ of the whole

Helsinki study population (models 1 and 2) are shown in

the left column of figures. Observed data for the non-

ETS-exposed subpopulation (models 3 and 4) are shown

in the right column. The single chart on the third row of

figures shows the distribution of 1-h ambient concentra-

tion used as the concentration distribution for the ‘‘Other’’

microenvironment in models 2 and 4.

The overall visual appearances of the fits are good.

Shapiro–Wilk’s test results for lognormality, however, were

poor. The P values were <0.00 for all distributions for the

whole population and ambient 1-h data. The P values for

the non-ETS-exposed subpopulation were 0.20 (‘‘Home

indoors’’) and 0.64 (‘‘Work indoors’’), indicating statisti-

cally acceptable fits. This indicates that the most important

cause for the poor fit of the distributions for the whole

population is smoking; the ETS-exposed indoor environ-

ments appear in the concentration distribution as weak but

statistically evident multimodality.

Detailed inspection of the simulated concentrations (data

not shown) reveals that in some cases, the open-ended

nature of lognormal distribution (from zero to infinity) does

not describe the range of realistic concentrations. In models

1 and 2, the highest simulated concentrations without

truncation exceeded 5000 �g m�3, 20 times the observed

maximum. The problem was reduced in models 3 and 4, but

the simulated maximum concentrations were still clearly

higher than the observed maxima in these models, too. Latin

hypercube sampling, used in the simulations, highlights this

problem by ensuring that one sample is taken from the

extreme of each distribution.

Intercorrelation of the Simulation Inputs Pairwise rank

correlation coefficients within the observed fraction of

time and concentration variables are shown in Table 4.

The fractions of time correlations are negative. In the

three-microenvironment model for the nonworking subjects

(model 4), the correlation between the fraction of time

spent in ‘‘Home indoors’’ and in the ‘‘Other’’ microenvi-

ronments is �1.00, by definition.

The rank correlation between the ‘‘Home indoors’’

concentration and the ‘‘Work indoors’’ concentration of

the same person is lower (r=0.4) than the correlations of

both of these indoor microenvironments with simultaneous

ambient concentrations. The rank correlation of ‘‘Home

indoors’’ for the non-ETS-exposed subjects with the

ambient concentration was 0.83.

Discussion

Comparing Simulation Results to Literature

In the validations of simulated exposures in the reviewed

literature, the mean or the median values usually matched

the observed ones quite well. Our own results for estimating

the means are similar. Models 1 and 2 underestimate the

means by 15% and 18%, respectively, but models 3 and 4

come very close to the observed values, the relative

difference being less than 1%.

The variance was usually underestimated in the cited

studies. In the current work, models 1 and 2 behave

similarly. The standard deviations were underestimated by

23% (model 1) and 35% (model 2). Adding the correlation

matrix to model 2 improved the standard deviation estimate

only slightly (underestimation by 27%, data not shown),

and did not affect the main problem of underestimating all

the levels. Our models 3 and 4 outperformed the earlier

models by predicting standard deviations within 1% of the

observed values. This is at least partly explained by (i )

incorporation of concentration intercorrelations in these

models, and (ii ) the use of factual microenvironment

concentration distributions measured in times when people

were truly present.
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The simulated standard deviations were quite sensitive to

the simulated maximum concentrations. Without truncation

at 99.9th percentile, the standard deviation of model 1 was

four times of the observed (over estimation 400%, data not

shown). Truncation at 99th percentile led to 10% under-

estimation in the standard deviation (data not shown). The

effect was much smaller in models 3 and 4.

All the reviewed models in the literature have been built

on five or more microenvironments, while the current

models have only two or three. This indicates that at least for

a pollutant like PM2.5 — having very small outdoor spatial

variations and with major indoor source ETS excluded — a

very simple microenvironment model can work remarkably

well. For the whole population, the three-microenviron-

ment model performed slightly better; but for the non-ETS-

exposed, there was practically no difference between the

two- and three-microenvironment models.

Evaluation of the Goodness of Fit

Classical statistical tests were used in combination with

graphical comparison of the model outputs to observed

distributions to evaluate the parametric input distribution

fits. As discussed by, e.g., Firestone et al. (1997), the

statistical power of the tests increases with the number of

data points. In a simulation with a large number of

iterations, the possibility to find small but statistically

significant differences between distributions increases. The

overall shape of a fitted distribution can be similar to the

observed one and the values fit the same ranges, but

statistically, the distributions are still different. On the other

hand, the input distribution can be found to be lognormal

using a statistical test, but using the fit as input in a Latin

hypercube sampling model may produce unrealistically

high concentration inputs. Both of these cases are demon-

strated in the results.

The statistical tests reduce the goodness-of -fit evalua-

tion to a single P value, but the interpretation of such a

number may be difficult. Graphically, the fit might look

acceptable, having approximately the same range of values

with roughly the same shape, while the statistical test

indicates a poor fit. The tests assess the probability that the

observed values have been sampled from the fitted

distribution. They do not evaluate whether the difference

would invalidate the fitted distribution. Thus, the result of a

statistical test should neither be the only reason to accept nor

reject a particular fit or output.

Firestone et al. (1997) emphasize the use of graphical

comparisons in assessing the goodness of fits. Different

formats of graphical distribution comparisons have different

benefits. The log–probability plots used in this work and in

the literature (e.g., Ott et al., 1988; Behar et al., 1990; Law

et al., 1997) show the relative goodness of the fits clearly.

On the other hand, the logarithmic y -axis scale partly masks

the absolute differences at the high end. Our work follows

Law et al. (1997) and lists the main percentiles numerically

for direct ( linear ) comparison (Table 5).

In the Helsinki metropolitan area, there are approxi-

mately 440,000 people in the age range 25–55 years. The

corresponding EXPOLIS measurement sample was only

201 persons (0.05 %). Each sampled subject represents

2189 persons in the target population. The highest indoor

concentration observed was close to 300 �g m�3 (Table 3).

Many other studies have reported higher indoor particle

levels in smoker’s homes, e.g., in the Netherlands, weekly

average indoor RSP levels in the winter period were 400–

500 �g m�3 (Lebret, personal communication). Thus, the

observed maximum in Helsinki may be an underestimation

of the true extreme. The simulated concentration level of

5000 �g m�3 would, however, be unrealistic due to the

visual, olfactory, and irritative properties of tobacco smoke.

The reliability of the measured extreme exposures to

represent the true extreme exposures within this population

is equally uncertain as the reliability of the modeled

extremes. Above 95th percentile, they both have up-

wards- increasing uncertainty, which should be kept in

mind when comparing the simulated and observed levels

beyond these percentiles.

The uncertainty and the variability were not modeled

separately in this work. The concentration and exposure

measurements were carried out with a 3% relative precision.

Repeatability of the time–activity measurement by partici-

pant-applied time–microenvironment–activity diaries has

not been assessed by us or others. One can only theorize that

for a 6- to 8-h working day, the diary error might be 30 min,

which is less than 10%. For the fraction of time spent at

home, the relative error is probably smaller. For micro-

environments where the time spent is shorter, the relative

error would increase. These measurement errors slightly

increase the observed variance in both the observed

exposure distributions and in the simulation outputs. In

both cases, most of the variance seems to be real.

Modeling Input Concentrations

Environmental pollutant concentrations have often been

found to follow lognormal distribution (e.g., Ryan et al.,

1986; Ott, 1990; Ott et al., 1988). The microenvironment

concentrations, used as inputs for ‘‘Home indoors’’ and

‘‘Work indoors’’ in models 1 and 2, visually appeared close

to lognormal. The overall population concentration dis-

tributions were in fact multimodal due to the combination of

ETS-exposed and nonexposed subjects, and Shapiro–

Wilk’s statistical test rejected the lognormality at 1%

confidence level. This may be one explanation for the

poorer results for models 1 and 2. In models 3 and 4, the

ETS-exposed subjects were excluded, and the microenvi-

ronment concentrations were lognormal.

Ott (1990) used computer simulations to show how

concentrations after random dilution process followed
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roughly lognormal distributions. At the highest percentiles,

however, the concentrations fell below the lognormal ones.

In Ott’s results, this starts to appear above 98th percentile

and becomes even stronger above 99th percentile. Ott

simulated the levels up to the 99.9th percentile. This feature

and its consequences were well demonstrated in the current

work. Using Latin hypercube sampling with 2000 or more

iterations, the lognormal concentration inputs produced

concentrations in excess of 5000 �g m�3. The highest

measured indoor concentrations in EXPOLIS Helsinki data

were below 300 �g m�3 even with ETS exposures included

and below 90 �g m�3 when ETS exposures were excluded.

While it is conceivable that such extreme concentrations

could sometimes occur in Helsinki, we are not implying that

our model could estimate them any more than randomized

EXPOLIS measurements could capture them. Thus, the

concentration model was enhanced with truncation. Con-

centrations exceeding the 99.9th percentile level were

truncated to that level. The selection of the truncation

percentile affects the simulated standard deviations (a lot in

extreme cases ), and might have a minor effect on the mean

values, too. It has no effect on the exposure percentiles

below the 99th one.

Besides the selected lognormal distributions to model

indoor concentrations, other distribution shapes could be

considered. Lognormal distribution is, however, the most

common distribution used to model concentration in the

literature. Ott’s (1990) work has shown that there, in fact, is

a physical explanation to the fact that many observed

concentration distributions appear to be approximately log-

normal. Thus, in the current work, the lognormal distri-

bution was used as a default distribution shape for the

concentrations. The results indicate that despite of the

observed deviancies from the lognormality, this assumption

works fine in the current models.

Time–Activity Inputs

The current work uses modeled time–activity inputs. As

suggested by Ryan et al. (1986), fitted beta distributions

were used to describe the time fractions spent in each

microenvironment. Beta distribution is flexible, is limited

by definition to the range [0,1] as a time fraction parameter

must be, and allows for symmetry or skewness to the left or

to the right. Time–activity diaries of true persons have also

been used as time–activity inputs for simulation modeling

(e.g., Ott et al., 1988; Behar et al., 1990; Law et al., 1997;

Freijer et al., 1998). The SHAPE model was originally

developed to use modeled time activities, but the versions

used in the CO (Ott et al., 1988) and benzene validations

(Behar et al., 1990) were modified to use actual diary data

as input instead. Ott et al. (1988) point out that also the US

Science Advisory Board panel members suggested the use

of actual diaries instead of time–activity models to avoid

errors from overlooked auto- and intercorrelation structures

of time–activity variables.

By definition, the fractions of times spent in different

microenvironments must, in general, be inversely related.

The time spent in any one microenvironment reduces the

time available for all others. In the current EXPOLIS

simulation framework, the time–activity model has been

built so that the individual fractions of time are sampled

from the fitted beta functions of each microenvironment,

and are then divided by the total of the sampled fractions.

This effectively scales the used time to unity — an

important and necessary property of any time fraction

model. But this approach also has the problem that after the

division, the sampled time activities do not follow anymore

the original fitted beta function. Using negative correlations

slightly helps in this problem, the total sampled time being

in average closer to unity before the division.

There is no natural reason for fractions of times spent

in microenvironments to follow beta distribution. Ryan

et al. (1986) selected beta distribution as the preferred

function because it is bounded by zero from below and

one from above — matching the definition of fraction of

time variable. The goodness-of- fit plots and tests for b
fits showed that the fits are not ideal even in the best

cases. One clear reason for this is the difference in time

patterns between subgroups of people, e.g., the working

and nonworking. We did not explore further subdivision

into subgroups as a means of improving the fits. If the

time–activity model would need to be improved, then

maybe the use of experimental density functions could be

considered. But in simulations with more than few

microenvironments, this opens the question as to whether

the kind of simple correlation matrix approach used here

is sufficient.

In spite of the theoretical problems in the beta fit -based

time–activity model discussed above, the simulation out-

puts compare well to the observed exposures. This suggests

that at least for a pollutant like PM2.5, the beta fit model is

good enough.

ETS Exposure

It is important to realize that neither the measured nor

modeled exposures include active smoke inhalation by

smokers. Because only ETS was included in the sampling,

both passive and active smoker measurements reflect the

exposure of passive smoking, ETS, only. The true exposures

of active smokers are much higher.

The simulations shown in this paper clearly confirm the

general finding in many studies (e.g., for Helsinki,

Koistinen et al., 2000, Rotko et al., 2000a) that ETS

exposure greatly affects total population exposures to

PM2.5. The simulations including ETS-exposed subjects

underestimated the exposure levels. This is probably caused
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by the fact, that the fixed point home indoor and workplace

measurements catch only part of the ETS exposure. In

Helsinki, smoking in the workplaces is very often restricted

to special rooms, and even at home, many people smoke

only outdoors. Adding the concentration correlations to the

ETS-included models improves the standard deviation

estimates, but does not solve the underestimation of the

levels. Thus, models 1–4, not including the microenviron-

ments important for ETS exposures (models with only

‘‘Home indoors’’ and ‘‘Work indoors’’) or lumping these

microenvironments together with many other types of

microenvironments (models with the ‘‘Other’’ microenvir-

onment), are not suitable for modeling ETS exposures. ETS

exposures should be specifically handled in a model, or

should just be excluded from the simulation. The nested

design of the modeling framework described by Kruize et

al. (2002) allows also for modeling of ETS and other indoor

source exposures. Exclusion of ETS, selected in this work,

is justified when the focus is in pollution with ambient

origin.

Were there other specific indoor sources than smoking,

similar analysis of input representativeness should be

carried out to assess the model applicability.

Limitations of the presented model include the need for

microenvironment concentration distributions for home and

work place indoor air, optionally with the correlations with

each other and the ambient air. The concentration submodel

needs to be developed further to allow the use ambient air

quality measurements to model the microenvironment

PM2.5 input concentrations.

Uncertainty in the Models

When a model is developed to assess exposure levels in a

hypothetical scenario, it is important to assess also the

uncertainties in the model outputs, caused by uncertainties

in model structure, exposure scenario, and model para-

meters. Model uncertainty includes uncertainties in the

selection of the distributions (different parametric vs.

empirical ), methods of fitting the parameters, definition of

the microenvironments and modeled activities, selection

of averaging times and number of iterations, and generation

of the random numbers, and so forth (Morgan and Henrion,

1990; Cullen and Frey, 1999).

The microenvironment model, shown in Eq. (1) earlier,

is in fact the definition of exposure as time-weighted

average over the microenvironments visited. Thus, in this

basic equation of the model, there is no uncertainty. The

simplifications used in the selection of microenvironments

and the selection of parametric distributions, however,

introduce uncertainties to the model structure.

Model uncertainty has been examined to some extent by

evaluation of the input distributions and by comparing the

two- and three-microenvironment models with and without

ETS exposure. As an example, missing such microenviron-

ments as bars and smoking lounges in the model is

obviously one reason for the poor results in simulation of

the exposures of the smokers and ETS-exposed. Full

analysis of the model uncertainty would significantly

broaden the focus and volume of this article. Because the

comparison of the modeled and measured exposures for the

non-ETS-exposed subjects shows that there is little

remaining uncertainty to be explained, this analysis will

not be pursued here.

Assessment of scenario uncertainty is crucially impor-

tant when a model is applied into a new setting (scenario is

changed). In the present comparison study, the modeled

and measured scenarios are identical and, thus, scenario

uncertainty has been removed by the study setup. Using

the same population sample for both model inputs and

comparison data also removes the biggest source of

parameter uncertainty, namely population sampling. Thus,

only measurement errors are causing parameter uncer-

tainty in the presented models. According to the quality

assurance results published elsewhere (Koistinen et al.,

1999), the effect of measurement errors seems to be neg-

ligible and was considered to be out of the scope of the

current work.

Conclusions

The probabilistic two- to three-microenvironment simula-

tion model predicts the population PM2.5 exposures fairly

well. When ETS exposures were excluded and correlations

between the input variables were taken into account, the

match was very good over the whole distribution for this

subgroup.

With ETS-exposed subjects included and ignoring the

input correlations, the simulation outputs underestimated

the exposures at the mean and all percentile levels. To solve

this problem, ETS exposure should be specifically modeled,

e.g., using a nested model. Ignoring the input correlation

matrix leads to underestimation of the exposure variance.

The beta distribution model used for time–activity

performed acceptably, in spite of the deviations in the fits

compared to the observed distributions. Lognormal fits for

microenvironment concentrations had to be truncated at

99.9th percentile to prevent overestimation of exposure

variation.
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Abstract

Ambient fine particle (PM2.5) concentrations are associated with premature mortality and other health effects. Urban

populations spend a majority of their time in indoor environments, and thus exposures are modified by building

envelopes. Ambient particles have been found to penetrate indoors very efficiently (penetration efficiency PE1.0),

where they are slowly removed by deposition, adsorption, and other mechanisms. Other particles are generated indoors,

even in buildings with no obvious sources like combustion devices, cooking, use of aerosol products, etc.. The health

effects of indoor generated particles are currently not well understood, and require information on concentrations and

exposure levels.

The current work apportions residential PM2.5 concentrations measured in the EXPOLIS study to ambient and non-

ambient fractions. The results show that the mean infiltration efficiency of PM2.5 particles is similar in all four cities

included in the analysis, ranging from 0.59 in Helsinki to 0.70 in Athens, with Basle and Prague in between. Mean

residential indoor concentrations of ambient particles range from 7 (Helsinki) to 21mgm�3 (Athens). Based on PM2.5

decay rates estimated in the US, estimates of air exchange rates and indoor source strengths were calculated. The mean

air exchange rate was highest in Athens and lowest in Prague. Indoor source strengths were similar in Athens, Basle and

Prague, but lower in Helsinki. Some suggestions of possible determinants of indoor generated non-ETS PM2.5 were

acquired using regression analysis. Building materials and other building and family characteristics were associated with

the indoor generated particle levels. A significant fraction of the indoor concentrations remained unexplained.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Exposure; Particle; EXPOLIS, Sulphur; Indoor air quality; Indoor sources

1. Introduction

Ambient fine particulate matter (PM2.5) concentra-

tions have been associated with excess mortality and

morbidity at current urban levels (e.g. Pope et al., 2002).
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Because urban populations typically spend large fractions

of time in indoor environments, it is important to

understand how exposures to outdoor particles are

affected by building envelopes (Wallace, 1996). Accord-

ing to population-based studies conducted during the last

couple of decades in the US, summarized shortly below, it

seems that exposures are reduced (i) substantially by

decay processes of particles in indoor environments,

being effective especially in (ii) reduced air exchange rates,

and (iii) to a lesser extent or not at all by limiting the

penetration of ambient particles indoors. (Wallace, 1996).

On the other hand, the total personal exposure to

particulate matter may be significantly increased by

particles generated by indoor sources like smoking,

cooking and other activities (Wallace, 1996; Özkaynak

et al., 1996). The relative contribution of these particles

to exposures increases when air exchange rates are

lower. It is still not clear whether non-ambient particles

have health effects similar to those that have been shown

for ambient particles. For efficient control of health

effects, however, exposures to particles from different

sources, having potentially different health effects or

exposure-response relationships, should be estimated

separately (Wilson et al., 2000;Wallace, 1996).

The following background section gives a short

description of the techniques used earlier to estimate

the infiltration of ambient particles indoors and

the concentrations of indoor generated particles. The

objective of the current work is to: (i) modify the

analysis technique suggested by Ott et al. (2000) and

Wilson et al. (2000) to use PM2.5 bound sulphur as a

marker substance, (ii) apportion the observed residential

indoor PM2.5 concentrations to fractions of ambient and

indoor origin, and (iii) investigate potential determi-

nants of indoor generated particle concentrations,

including building and family characteristics.

2. Background

Five large population based studies have been

conducted on the relationships of indoor and outdoor

particles: the Harvard six cities—study, the New York

State ERDA—study and the EPA particle TEAM

(PTEAM)—study in US, the Ethyl Corporation study

in Toronto, Canada, and the European EXPOLIS-

study. The first three of these and dozens of smaller

studies are reviewed in detail by Wallace (1996).

Dockery and Spengler (1981) used indoor and outdoor

measurements of respirable particles (RSP, EPM3.5)

from six US cities to study the indoor–outdoor relation-

ships of particles in 68 residences over a one-year

measurement period. The same cities were studied later

in the famous Harvard six cities epidemiological study

(Dockery et al., 1993). Dockery and Spengler elaborated

on the mass-balance equation, assuming uniform mixing

within the building and steady state conditions, i.e. that

the penetration efficiency P, the air exchange rate a and

the decay rate k stay constant over the sampling period

Dt. Accordingly, the average indoor concentra tion Ci

(mgm�3) can be expressed as:

Ci ¼
Pa

aþ k
Ca þ

Q

Vðaþ kÞ �
DCi

Dtðaþ kÞ ; (1)

where Ci is the indoor concentration (mgm�3), Ca the

ambient (outdoor) concentration (mgm�3), P the pene-

tration efficiency (dimensionless), a the air exchange rate

(h�1), k the decay rate indoors (h�1), Q the source

strength (mg h�1) (symbol used by Dockery and Spengler

was S) and V the interior volume of the building (m3).

The third term on the right side of the equation is

reorganized here to use D- variables: DC ¼ Ciðt1Þ �
Ciðt0Þ; indoor concentration change during the sampling

period (mgm�3), Dt ¼ t1 ¼ t0; sampling period (h).

The third term in the equation, representing the lag of

indoor concentrations in reaching equilibrium, becomes

relatively small and can be ignored for 24-h or longer

sampling periods. Dockery and Spengler estimated the

remaining two model parameters using a regression

technique, giving slope values of 0.70 for RSP and 0.75

for sulphates and a constant term of 15.0mgm�3 for

RSP. Based on theoretical considerations and earlier

results from Dockery’s Ph.D. theses, they state that for

fine particles the decay term k is negligible (o0.5 h�1 for
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ETS: environmental tobacco smoke

EXPOLIS: air pollution exposure of adult urban populations in Europe –study
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PM: particulate matter

PM2.5: fine particles, i.e. PM with aerodynamic diameter smaller than 2.5 mm
PM10: PM with aerodynamic diameter smaller than 10 mm
RSP: respirable suspended particles (EPM3.5)

SD: standard deviation
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RSP, o0.05 h�1 for PM1) in comparison to typical air

exchange rates (1.5 h�1) and that thus the indoor–out-

door regression slope can be interpreted as the particle

mass penetration efficiency P.

Koutrakis et al. (1992) analyzed a similar population

based data set from Suffolk and Onondaga counties,

New York, for source apportionment of indoor PM2.5

and 16 elements. The final data set consisted of indoor

measurements of 178 residences and 57 corresponding

outdoor measurements. The outdoor measurements

were used for several residences measured at the same

time in different locations. Koutrakis et al. simplified the

mass-balance equation by assuming that air exchange

rate (0.5170.28 h�1), residence volume (3417184m3)

and particle deposition velocity (1.46mh�1, calculated

from other values reported) presented little variability in

the study and were thus considered as constants. Based

on these assumptions Koutrakis et al. were able to solve

the penetration efficiency and source flux terms using the

regression estimate for the outdoor–indoor slope. The

regression slope, however, was not statistically signifi-

cant for PM2.5 mass and 8 of the 16 elements (including

sulphur). Thus, the authors used the average of the

statistically significant slopes (0.49) instead, yielding a

value of 0.84 for the PM2.5 penetration efficiency. Using

regression techniques, the authors also derived PM2.5

source strengths for smoking (12.6mg/cigarette) and

other (unidentified) sources (1.1mg h�1). Estimated

source strengths for wood burning and kerosene heating

were statistically non-significant.

Lewis analyzed VOC and PM2.5 sources using

measurement data from 10 residences in Boise, Idaho

(1991). The observed air exchange rates varied between

0.2 and 0.8 h�1 (mean 0.5 h�1). None of the residences

had obvious major indoor sources. Lewis separated

particles from ambient and indoor sources using the

methods presented by Dockery and Spengler (1981),

based on simultaneous indoor and outdoor concentra-

tions and one or more species with negligible indoor

sources. Lewis identified sulphur, lead, zinc, and soil-

corrected potassium as species with no notable indoor

sources. Calculated infiltration factors for fine particle

species averaged 0.5 and varied in a reasonable way with

air change rates. The PM2.5 mass concentrations

attributable to indoor sources varied between �5 and

22mgm�3 (mean 3 mgm�3).

In the PTEAM study personal exposures to PM10 and

residential indoor and outdoor levels of PM2.5 and PM10

were measured using a probability sample of the non-

smoking population of Riverside, CA, over 10 years old.

Each of the 178 subjects was monitored for two

consecutive 12-h periods in September–November,

1990. Using these data, Clayton et al. (1993) identified

house work (including vacuuming, dusting, carpet

cleaning, cooking, using a clothes dryer), spraying

(using paints, cleaners and other consumer products in

spray-form), and tobacco smoke as indoor sources

affecting personal exposures to PM10. Özkaynak et al.

(1996) performed detailed analyses of the mass-balance

equation terms infiltration, penetration, decay and

indoor source strength for PM10 and PM2.5 particles.

They modified the mass-balance model developed by

Koutrakis et al. (1992) and derived population averages

for the equation terms using nonlinear least squares

methods. The original solution estimated the penetra-

tion efficiency to be slightly above unity, which is

impossible by definition, and thus the model was

constrained by setting P=1 (Wallace, 1996; Wilson

et al., 2000). Unknown indoor sources were found to

account for a substantial fraction (25%) of indoor

concentrations.

Several smaller-scale studies have used continuous

monitoring techniques to investigate the indoor

behaviour of particles. Thatcher and Layton (1995)

studied the penetration, deposition and resuspension

properties of particles as a function of particle size

in a single residence during the summer months of

1993 in Livermore, California. Air exchange rates

varied between 0.14 and 0.3 h�1. The calculated pene-

tration efficiencies were close to unity (0.9–1.4,

except one higher outlying value). The particle deposi-

tion loss rates ranged from 0.0 h�1 for particle sizes

between 0.3–0.5 mm to 4.1 h�1 for particles larger than

25mm. Deposition loss rates calculated for 2–3 mm
particles were 0.55–0.75 h�1. The concentration of

resuspended particles below 1mm was minimal, but

concentrations increased by over 20mgm�3 for the

1–5mm particle size range due to vigorous house

cleaning activities.

Abt et al. (2000) and Long et al. (2001) studied the

behaviour of particles of different sizes in 4 and 9

residences, respectively, in the Boston area, Massachu-

setts. They used scanning mobility particle sizer (SMPS)

and aerodynamic particle sizer (APS) monitors (TSI,

Inc.) together with a tapered element oscillating micro-

balance (TEOM) for particle monitoring, and the mass-

balance equation for deriving penetration, decay and

source terms for different particle sizes. Due to the

numerous days of monitoring they were able to report

variability of these parameters in the buildings over a

period of approximately 1-week. Air exchange rates

reported by Abt et al. (2000) based on analysis of decay

rates varied between 0.16 and 0.66 h�1. The decay rates

varied from just below 1 to slightly over 3 h�1 for

particle sizes from 0.3 to 7mm. The decay rate was the

lowest for particle sizes around 0.5 mm. Long et al.

(2001) found penetration efficiencies to be between 0.7

and 1.0 for particle sizes up to 2.5 mm and 0.3 for particle

sizes 2.5–10mm. The decay rates varied between 0.1 and

0.5 h�1, being lowest for particle sizes between 0.1 and

0.5mm and 0.7270.34 (SE) for 2–3 mm particles. Abt

et al. saw the effects of indoor sources (cooking,
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cleaning, indoor work and washing) mostly on particles

larger than 2 mm. The effect of cooking on particles

o2mm was small and not statistically significant. Long

et al. (2000), on the other hand, reported significant

peaks due to various cooking events especially in the

particle size range 0.1–0.5 mm. The peaks were typically

short.

Ott et al. (2000) developed a statistical method called

random component superposition (RCSP) model for

separating personal exposures to particulate matter into

ambient and non-ambient components and applied it on

PM10 data from Phillipsburg, NJ (THEES study),

Riverside, CA (PTEAM study) and Toronto, Canada

(Ethyl Corporation study). Ott et al. used the regression

slope of exposure against ambient concentration from

population level data to estimate the fraction of personal

exposures attributable to particles from ambient

sources. The observed personal exposure level, minus

this fraction, was then interpreted as non-ambient

exposure level, consisting of exposures to particles from

indoor sources as well as a personal cloud. Ott et al. also

demonstrated how the suggested analysis can be applied

to modelling of residential indoor PM10 concentrations

in Phillipsburg instead of exposure data (Fig. 2. in Ott

et al., 2000), and derived a slope of 0.53 and intercept of

18mgm�3. The slopes of exposure versus ambient PM10

concentration in the three cities were 0.54, 0.55 and 0.61,

and corresponding mean non-ambient PM10 exposure

levels 53, 59 and 52mgm�3, respectively.

Wilson et al. (2000) elaborate the same equations

and estimation methods as Ott et al. (2000) using

symbols that are familiar from the mass-balance

equations presented by Dockery and Spengler (1981)

and Koutrakis et al. (1992). The following summary of

the technique for separating ambient and indoor

generated PM levels is essentially the same model as

developed by Ott et al. (2000), but presented using a

notation adapted from Wilson et al. (2000). Apportion-

ment is based on Eq. (2):

Cig ¼ Ci � Cai; (2)

where Ci is the total indoor concentration, Cai the

concentration of ambient PM that has infiltrated

indoors and Cig is the concentration of indoor generated

particles. Based on the mass-balance equation presented

by Dockery and Spengler (1981) these concentration

fractions can be expressed as

Cai ¼
Pa

aþ k
Ca; (3a)

Cig ¼
Q

V ðaþ kÞ ; (3b)

where the other symbols are same as in Eq. (1). The

indoor–outdoor ratio of the ambient PM, i.e. the

infiltration fac tor, can be calculated as

F INF ¼ Cai

Ca
¼ Pa

aþ k
: (4)

Combining Eqs. (2) and (4) the indoor concentration

can be expressed as

Ci ¼ F INFCa þ Cig (5)

and the parameters FINF and Cig can solved from the

regression of indoor concentration against the ambient

concentration as demonstrated by Ott et al. (2000). The

slope of the regression (X 1) estimates the FINF and the

intercept (X 0) the average concentration of indoor-

generated PM (Cig).

3. Material and methods

The multi-centre EXPOLIS—study funded by the

European Union was conducted in seven European

cities during 1996–2000. In each city a population

sample was drawn and personal exposures and micro-

environment concentrations of PM2.5 (including both

gravimetric mass and elemental composition), carbon

monoxide, nitrogen dioxide and 30 volatile organic

compounds were monitored for 48 h over a one-year

period. The current work uses the PM2.5 measurements

conducted at each subject’s residence in Athens, Basle,

Helsinki, and Prague. Home indoor and outdoor air was

sampled for two consecutive working days from evening

to morning, when the study subject was expected to be at

home. Thus, the sampling time for each residential

PM2.5 sample was typically 30–32 h. Indoor and outdoor

pumps were programmed to run simultaneously, but in

a few cases different sampling times indicated exceptions

to the normal procedure. Besides being an indication

that the sampling was not completed as planned,

different sampling times may lead to errors in the

following calculations. To limit these errors, residences

where the indoor and outdoor sampling times differed

by more than 3 h were excluded from the current

analysis. The data is summarized in Table 1. Population

sampling, response rates and sample quality are

described in detail in Rotko et al. (2000) and the overall

study design in Jantunen et al. (1998). The PM2.5

measurement techniques and general quality assurance

results are described in Koistinen et al. (1999)

and Hänninen et al. (2002a). The elemental composition

of the filters was analysed using energy dispersive

X-ray fluorescence (ED-XRF) by the University of

Basle (Mathys et al., 2001). Data were accessed from

the combined international EXPOLIS access data-

base (CIDB, version September, 2002), described in

Hänninen et al. (2002b).

Sulphur is suitable marker for ambient PM, as there

are typically no indoor sources. Sulphur is emitted as
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gaseous sulphur dioxide and oxidized to sulphate in the

atmosphere. Sulphate condenses on existing particles

and forms new ones. As a result, a large fraction of the

ambient particles contain traces of sulphur, but the

largest fraction of particle bound sulphur is in the sub-

micron particle size range. Because PM mass on the

other hand is concentrated in the larger particles, which

have on the average higher settling velocities and lower

diffusion coefficients, it can be expected that decay rates

of PM2.5 particles differ from that of PM-bound

sulphur, and thus corresponding infiltration rates also

differ. In the current work sulphur I/O ratios are

adjusted for PM2.5 infiltration by using the ratio of

PM2.5 and sulphur indoor–outdoor regression slopes in

each city. The indoor levels of ambient PM2.5 and

concentrations of indoor-generated PM2.5 in residences

are then estimated from the EXPOLIS data from four

European cities.

The overall population values of infiltration factors

for PM2.5 and PM2.5 bound sulphur were calculated as

slopes (X 1) of the corresponding indoor–outdoor con-

centration regression. The assumption of no indoor

sources was supported by the small and statistically non-

significant intercepts (X 0) of the indoor–outdoor regres-

sions, varying on both sides of zero (Fig. 1). The PM2.5

regression was calculated using only non-ETS exposed

residences to avoid influence of unevenly distributed

high ETS concentrations (the slopes were slightly

affected by the ETS residences in Basle and Prague

while in Athens and Helsinki the effect was small as can

be seen from the right-side charts in Fig. 1). Because the

slopes for PM2.5 were lower than for sulphur for all cities

(Table 2), we concluded that, as suggested earlier by e.g.

Dockery and Spengler (1981), the decay rate of PM2.5

particles is slightly higher than that of PM bound

sulphur due to the differences in particle sizes and other

properties, and thus the infiltration efficiency is also

different, too.

To estimate the PM2.5 infiltration factors for indivi-

dual residences we first calculated the sulphur infiltra-

tion factor using Eq. (6) for each residence

CS
i ¼ FS

INFC
S
a þ CS

ig;C
S
ig ¼ 0;

) FS
INF ¼ CS

i

CS
a

; ð6Þ

where FS
INF ¼ infiltration factor for sulphur for a

single residence; CS
i ;C

S
a ;C

S
ig are the indoor, outdoor

and indoor generated concentrations of sulphur, respec-

tively.

Then, the observed difference in PM2.5 and sulphur

infiltration factors was corrected using the ratio of the

corresponding regression coefficients according to

Eq. (7):

FPM2:5
INF ¼ bPM2:5

1

bS1
FS

INF; (7)

where FS
INF is the infiltration factor for sulphur for a

single residence, bPM2:5
1 ; bS1 are the PM2.5 and sulphur

indoor–outdoor regression slopes for each city (Table 2).

Indoor concentrations of ambient PM2.5 were then

calculated using infiltration factors and residential

outdoor concentrations according to Eq. (3a). Concen-

trations of indoor generated PM2.5 were calculated as

ARTICLE IN PRESS

Table 1

Summary of the PM2.5 and sulphur concentration and residence volume data

PM2.5 (mgm
�3)

Residence outdoors Indoors, all Indoors, non-ETS

Mean7SD (min, max) n Mean7SD (min, max) n Mean7SD (min, max) n

Athens 37727 [9, 140] 47 31717 [12, 75] 35 23711 [12, 52] 21

Basle 19712 [5, 59] 47 26726 [6, 140] 40 1778 [6, 39] 29

Helsinki 1077 [2, 45] 170 13716 [2, 122] 170 976 [2, 27] 135

Prague 27710 [10, 48] 20 36730 [10, 124] 47 25716 [10, 96] 32

PM2.5 –bound sulphur (ngm�3) Residence volumes (m3)

Residence outdoors Indoors, all

Mean7SD (min, max) n Mean7SD (min, max) n Mean7SD (min, max) n

Athens 756475095 [2047, 29175] 37 529172020 [2739, 9016] 28 290783 [140, 508] 50

Basle 329171594 [951, 7822] 41 261971625 [728, 7215] 30 2807169 [95, 910] 50

Helsinki 215171502 [175, 6434] 98 158671287 [215, 5930] 84 205783 [63, 524] 189

Prague 397171536 [1275, 7802] 20 307371278 [1268, 5492] 16 233780 [79, 360] 49
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the difference of the total measured indoor concentra-

tions and estimated contributions of ambient PM2.5

according to Eq. (2). To estimate air exchange rates and

indoor generated particle concentrations we solved these

from the Eqs. (3b) and (4):

F INF ¼ Pa

aþ k
) a ¼ kF INF

P� F INF
; (8a)
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Fig. 1. Sulphur (left column) and PM2.5 indoor–outdoor relationships. Besides the 1:1 line, regression lines are shown; for PM2.5 two

regression lines, upper one including the ETS exposed residences (solid markers). Data points discarded in jack knife sensitivity

analysis of the result variables are shown with x-markers.
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Cig ¼
Q

V ðaþ kÞ ) Q ¼ CigV ðaþ kÞ: (8b)

Based on results from the US studies summarized by

Wallace (1996), we then assumed that the penetration of

PM2.5 particles is approximately 1.0 and that the decay

factor for PM2.5 is 0.39 h�1 (Wallace, 1996; Özkaynak

et al., 1996) and calculated estimates for values of a and

Q for individual homes.

Univariate single and stepwise-multiple regression

analyses were run using the EXPOLIS questionnaire

data, describing the residences, occupant characteristics

and exposure related activities during the sampling

period, against the calculated concentrations of indoor

generated particles (Cig). Only independent variables

with a potential theoretical connection to indoor air

quality, including generation or decay of particles in the

indoor environment, were included in the analysis. Only

households not exposed to tobacco smoke were con-

sidered. Regression models were calculated using

Stata software, version 5.0 (Stata Corporation, College

Station, TX).

4. Results

Indoor versus outdoor regression analyses produced

slopes varying between 0.75 (Athens) and 0.88 (Basle)

for sulphur (all regressions statistically highly signifi-

cant, po0.001) and between 0.64 (Athens and Helsinki)

and 0.69 (Basle) for PM2.5 (others highly significant,

Prague p=0.050). The slopes of the regression with data

points are shown in Fig. 1 and corresponding statistics

are shown in Table 2. The magnitude of the sulphur

intercepts were 5–10% of the average outdoor sulphur

concentration (all statistically non-significant, p40.2),

confirming that there were no significant population

level indoor sources for sulphur. From the graphs in

Fig. 1 it can be seen, however, that there were seven

residences with I/O ratios above 1; these cases might be

influenced by sulphur indoor sources. The single case in

Helsinki occurs on a very low sulphur level and might be

caused by measurement error. These and one outlier

case in Athens were excluded from the analysis, as

otherwise they produced infiltration rates above one and

resulted in highly negative indoor sources. Regression

slopes for ETS-included and the ETS-excluded datasets

differed in Athens and in Prague due to unevenly

distributed high indoor concentrations in ETS-exposed

residences (indicated with solid markers in Fig. 1). Non-

ETS regression coefficients were used in the following

analysis.

Mean infiltration factors for PM2.5 varied between

0.59 (Helsinki) and 0.70 (Athens, Table 3). The values

for Basle, Helsinki, and Prague were very close to each

other, while in Athens the infiltration rate was somewhat

larger. This difference can be seen in all percentiles of the

infiltration levels as depicted in the first chart in Fig. 2.

This is reasonable for the warmer climate in Athens,

which favours less tightly sealed buildings and thus

higher air exchange rates. The estimated mean air

exchange rate for Athens was 1.3 h�1, while in the three

other cities it ranged between 0.7 and 0.9 h�1. The air

exchange rate percentiles in Athens were much higher

than in the other cities (Fig. 2). Variability of the air

exchange rates was clearly smaller in Basle and Prague

compared to Athens and Helsinki (Table 3). At least in

Prague this was probably caused by the fact that all

residences were sampled from the downtown area.

Indoor concentrations of ambient PM (Cai) and of

indoor generated non-ETS PM2.5 (Cig) are summarized

in Table 4 and in Fig. 2. The indoor concentrations of

ambient PM are clearly highest in Athens

(21713 mgm�3) and lowest in Helsinki (775 mgm�3).

Concentrations caused by indoor generated PM2.5 were

highest in Basle and Prague, where air exchange rates

were the lowest. Source strengths for indoor generated

non-ETS PM2.5 were comparable in the other three cities

(1.4–1.5mgh�1), but were clearly lower in Helsinki

(0.6mgh�1).

The lowest percentiles of indoor generated concentra-

tions (Cig) and source strengths (Q) are negative as can

be seen in the bottom charts in Fig. 2. The sample size of

non-ETS exposed residences in Prague was small (n=9)

and as a result the standard error of the slope of PM2.5

indoor–outdoor regression was high. Negative source

strengths, however, can be expected in this kind of

analysis and also were reported by Lewis et al. (1991).

ARTICLE IN PRESS

Table 2

Regression analysis of the sulphur and PM2.5 indoor–outdoor relationships

Sulphur PM2.5 b1 ratio

b1 SE r2 p n b1 SE r2 p n PM2.5/S

Athens 0.75 0.072 0.81 o0.000 28 0.64 0.070 0.83 o0.000 19 0.86

Basle 0.88 0.078 0.82 o0.000 30 0.69 0.090 0.71 o0.000 26 0.79

Helsinki 0.76 0.041 0.80 o0.000 84 0.64 0.057 0.53 o0.000 113 0.84

Prague 0.79 0.114 0.78 o0.000 16 0.67 0.293 0.40 0.050 10 0.85
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Infiltration factors are lower than one, because of decay

of particles indoors. When there are no indoor sources,

and for some reason the decay is faster than average in a

certain building (for reasons like static electricity in

materials, use of air cleaners etc., or differences in

particle size distribution), in this kind of analysis the

decay processes appear as negative indoor sources.

As pointed out by Özkaynak et al. (1996) and Wallace

(1996), a large fraction of indoor PM2.5 concentrations

observed in previous population based studies was

unexplained. Because the current analysis estimated

infiltration ratios for individual residences, and thus

allowed for estimation of indoor generated particles in

individual residences, a series of regression analyses was

run in an attempt to identify determinants of indoor

generated particle levels. Regression analyses were run

for the combined dataset from the four cities using

indoor source concentrations (Cig) of non-ETS exposed

residences as the dependent variable (n=125, mean7SD

3.674.0 mgm�3). The dependent variable included one

outlying high value (24.3 mgm�3). This value, when

included in the models, nearly doubled the coefficient of

determination, and increased the statistical significance

of variables associated with this special case (e.g.

education level and marital status). A gas appliance

was used for 36 h in this residence and was probably

connected to the high level, but to draw conclusions on a

single data point is unjustified and thus this single data

point was excluded from reported models.

Regression analyses were able to identify few vari-

ables that were associated with indoor source concen-

trations with statistical significance (Table 5). In simple

regression these variables were (i) wooden building

material (three variables for floor, panels, and both

combined), (ii) city, (iii) building age (in decades), (iv)

floor of the residence (0=ground floor) and (v) use of
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generated PM2.5, air exchange rates (air changes per hour) and non-ETS indoor PM2.5 generation rate.
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stove other than electric. The slope for the stove variable

was negative and the data was available only from

Helsinki, where there were four residences with non-

electric stoves. Variables and regression coefficients are

listed in Table 5).

Five variables were entered to a forward-selection

stepwise regression model with significance limit for

entering variables set to p=0.2. Only the first variable

remained significant at 0.95 level in the final model:

(i) PVC floors, (ii) air exchange rate, (iii) building age

(decades), (iv) attached garage, and (v) wood panels. In

the corresponding backward model eleven variables

stayed at the same p-value limit set for removal of

variables. Four of these were the same variables as in the

forward model, but their ranking (in the order of

decreasing statistical significance in the final model) was

changed. The wood panel variable was dropped and

variables for number of family members, floor area per

person, chipboard walls, residence size (m2), pets, traffic

density near home and gender of the subject were

included in the model. Six variables remained statisti-

cally significant in the final model (variables that were

entered in the forward selection model too are indicated

with an asterisk): (i) air exchange rate*, (ii) PVC floors*,

(iii) number of family members, (iv) floor area per

person, (v) building age in decades*, and (vi) attached

garage*.

Other tested variables included time spent cooking,

vacuuming, soft furnishing materials (including carpets

and curtains), use of burning devices (both as hours of

use and as binary variable, separately for devices fuelled

with wood, oil, coal or gas, and all of them combined),

hours that windows were kept open, marital status,

years of education, and time of year (both as month and

as season).

The coefficient of determination remained below 10%

for all variables in simple regressions. The correspond-

ing multiple regression coefficients of determination

were 0.22 for the forward and 0.34 for the backward

selection models. Variables consistently associated with

indoor generated particle levels included air exchange

rates and descriptors of building materials (wooden

floors and panels, PVC floors and chipboard walls).

Increased air exchange rate decreased indoor generated

levels as expected. The role of indoor materials is not as

clear; they might be descriptors of building, family and

activity characteristics not included in exposure ques-

tionnaires, but they might also be causally connected to

e.g. resuspension and decay rates of particles. It seems

that the origin of the non-ETS indoor generated

particles is heterogeneous and that it is not possible to

completely quantify the various sources from population

based non-continuous PM2.5 measurements. The

achieved coefficient of determination in the backward

selection model gives, however, indication on variables

that are worth studying in more detail.

5. Discussion

Mean indoor levels of ambient PM2.5 are two to five

times higher than corresponding levels caused by indoor

ARTICLE IN PRESS

Table 3

Infiltration factors for PM2.5 and sulphur particles and estimated air exchange rates

FINF (Sulphur) FINF (PM2.5) Ventilation rate

Mean SD Mean SD n Mean SD

[1] [1] [1] [1] (h�1) (h�1)

Athens 0.82 0.14 0.70 0.12 28 1.3 1.1

Basle 0.80 0.19 0.63 0.15 30 0.83 0.46

Helsinki 0.70 0.20 0.59 0.17 84 0.81 0.85

Prague 0.72 0.16 0.61 0.14 16 0.75 0.43

Table 4

PM2.5 concentrations of ambient and non-ETS indoor origin, and corresponding PM2.5 indoor source strengths

PM2.5 of ambient origin Non-ETS indoor sources

Mean SD n Mean SD Mean SD n

(mgm�3) (mgm�3) (mgm�3) (mgm�3) (mgh�1) (mg h�1)

Athens 21.3 12.7 28 4.0 2.8 1.4 1.3 16

Basle 11.4 7.0 30 5.3 4.9 1.5 1.4 23

Helsinki 6.5 5.3 84 2.9 3.1 0.6 0.6 71

Prague 16.9 6.7 16 5.0 8.2 1.4 1.9 9
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generated PM in Helsinki and Athens, respectively

(Table 4). Residential indoor levels caused by ETS,

excluded from the current analysis, were even higher.

Thus, assuming equal toxicities for the sake of

comparison, the relative importance of these PM

exposures can be ranked into the order of: (i) ETS,

(ii) ambient, and (iii) indoor generated non-ETS PM.

Those PM fractions for which we have the strongest

evidence of being a health problem, ETS and ambient

PM2.5, clearly dominate exposures—particularly in areas

with high ambient PM. As the impacts of public health

education continue to result in reduced exposures to

tobacco smoke, and a combination of development of

low pollution vehicles and successful emission control

measures in industry reduce ambient PM2.5 levels, more

attention will be focused on indoor air pollution. There

is a need, therefore, to understand the relative toxicities

and health effects of PM from indoor sources, to

determine whether policies to reduce exposure to these

sources may be warranted.

Besides being air pollution sources by themselves,

buildings can also be considered as a complementary

means to reduce the exposure levels to ambient particles

by adjusting the air exchange rates and using efficient

filtration in mechanical ventilation systems. In particu-

lar, use of efficient filters in mechanical ventilation

systems remains as an interesting option to further

reduce exposures to ambient particles.

The current paper demonstrates estimation of the

variability of infiltration factors in a random population

sample. The standard error (SE) of the regression slope

allows for assessment of the uncertainty in the mean

infiltration level, but does not allow for assessment of

parameter variability. The use of a marker element

(sulphur in the current work) for calculation of

infiltration factors for individual residences, allows for

assessment of the variability of the infiltration efficien-

cies, but might be biased due to different decay rates of

particles of different sizes. The current work combines

the advantages of the both techniques by correcting the

bias using a correction factor calculated as the ratio of

the regression coefficients for PM2.5 and the marker

substance.

Current and previous attempts to identify and

quantify non-ETS indoor sources of PM2.5 have not

been very successful. Short-term studies in single

buildings using continuous monitoring techniques have

been able to easily detect effects of cooking, cleaning

and other indoor activities (Thatcher and Layton,

1995;Abt et al., 2000;e.g. Long et al., 2001). When these

emission events are mixed with each other, diluted to a

longer sampling time and mixed with measurement

errors and variability of concentrations caused by

outdoor sources and variations in the air exchange rates

and infiltration ratios, it becomes extremely difficult to

detect them with statistical significance in datasets of

current sample sizes. The time dilution alone reduces the

effect of a 30-min cooking event of 20mgm�3 to

0.4mgm�3 in the corresponding 24-h average. Ques-

tionnaire variables used to model these sources also

include large variability. For example a cooking event

might indicate boiling of water in one time activity diary

entry, while in another it might refer to sautéing or

frying, which are much more plausible sources of indoor

particles. The dilution ratio for this kind of variability in

the questionnaire data is difficult to estimate, but it does

not seem too far-fetched to say that a large fraction of

the population cooking time in Europe is not a

significant source of indoor particles. Thus, even sources

that are strikingly evident in the continuous short-term

measurements end up being only vaguely visible, if at all,

in the kind of population data used in the current work.

On the other hand, people are present near the stove

while cooking, and the effect may be larger on personal

exposure than on indoor concentrations measured

further away from the stove. To improve population

exposure studies, exposure questionnaires must be

improved to quantify the particle generating activities

more accurately, including separation from non-source

events.

Studies based on small, non-representative samples of

buildings are very useful for deepening the under-

standing of the processes affecting I/O relationships

and indoor concentrations of pollutants. Such studies

are needed to supply relevant information that serves as

input to models for estimation of exposure of general

populations. Population based values of exposure

variables, including description of variability, are needed

for efficient application of models for exposure and risk

analyses as pointed out by e.g. Ryan et al. (1986), Freijer

et al. (2000) and Kruize et al. (2003). Further studies,

based on development of exposure questionnaire vari-

ables through short-term indoor source studies using

continuous monitoring combined with current findings

on potential determinants of indoor sources, will allow

for more detailed understanding of the indoor generated

PM2.5 levels.

6. Conclusions

The current paper demonstrates a method to estimate

the variability of PM2.5 infiltration ratios in a sample of

buildings, and thus to more accurately estimate the

variability of the levels of indoor generated particles.

Indoor concentrations of ambient PM2.5 varied sub-

stantially between cities; mean levels in Athens

(21mgm�3) were more than three times higher than in

Helsinki (6.5 mgm�3). The building envelope is a

significant modifier of personal exposures to ambient

particles; for example in Athens residential indoor

concentrations of ambient PM were only 56% of
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corresponding outdoor levels. Levels of indoor gener-

ated particles were similar in four different European

cities (3–5mgm�3), being highest in Basle and Prague,

where the air exchange rates were the lowest. Indoor

source strengths were similar in Athens, Basle and

Prague (E1.5mg�1) but only 0.6mg h�1 in Helsinki.

These estimates are being used further in EXPOLIS

exposure modelling.

Besides air exchange rate, building materials, building

age, an attached garage, and family characteristics were

associated with levels of indoor generated particles.

Wooden floors and/or panels were associated with

decreased levels of indoor generated particles, while

PVC or plastic floors were associated with increased

levels. The predictive power of regression models

remained below 35% for reasons discussed. Refinement

of exposure related questionnaires will be required in

population exposure studies for more accurate predic-

tion of levels of indoor generated particles, and thus

improve our ability to estimate exposures.
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ABSTRACT
Exposure models are needed for comparison of scenarios
resulting from alternative policy options. The reliability
of models used for such purposes should be quantified by
comparing model outputs in a real situation with the
corresponding observed exposures. Measurement errors
affect the observations, but if the distribution of these
errors for single observations is known, the bias caused for
the population statistics can be corrected. The current
paper does this and calculates model errors for a probabi-
listic simulation of 48-hr fine particulate matter (PM2.5)
exposures. Direct and nested microenvironment-based
models are compared. The direct model requires knowl-
edge on the distribution of the indoor concentrations,
whereas the nested model calculates indoor concentra-
tions from ambient levels, using infiltration factors and
indoor sources. The model error in the mean exposure
level was �0.5 �g m�3 for both models. Relative errors in
the estimated population mean were �1% and �5% for
the direct and nested models, respectively. Relative errors
in the estimated SD were �9% and �23%, respectively.

The magnitude of these errors and the errors calculated
for population percentiles indicate that the model errors
would not drive general conclusions derived from these
models, supporting the use of the models as a tool for
evaluation of potential exposure reductions in alternative
policy scenarios.

INTRODUCTION
Much interest has been paid to validating environmental
models, particularly in the late 1980s and early 1990s,
because of their use in public policy debates regarding
climate change and other environmental impacts. These
models contain large uncertainties and raise controversy
because of the large costs of reducing the suggested im-
pacts. The debate triggered critical reviews of the concept
of model “validity”. In their rather philosophical exami-
nation, Oreskes et al.1 pointed out that validation or ver-
ification of any physical model is impossible in the sense
that the truthfulness of a model can never be proven
conclusively. A model is always developed in a given
setting that implicitly defines its limits of applicability.
Instead of conclusive validation, a model can be tested
against real data. In case of test failure, the model is
invalidated; if the results are favorable, the test can be
interpreted as confirming, but not validating, the model.2

Although Oreskes et al.1 are absolutely correct, their con-
clusion is useful only if it is understood as a cry for more
specific model-assessment descriptors than “validation”
or “verification”. The term validation is widely used in the
scientific literature, and to make it meaningful, it should
be understood as a demonstration that a model is capable
of making accurate predictions in a given real setting.3

Model accuracy and reliability are continuous quan-
tities, and model assessment is shifting toward a more
quantitative analysis of model reliability.4 A commonly
used technique to assess model reliability is uncertainty

IMPLICATIONS
Exposure models are needed for optimization of policies for
controlling exposures to toxic substances. Costly and lim-
iting controls must be based on scientifically sound esti-
mates of the intended exposure reductions. In the current
work, various error terms affecting exposure estimates are
quantified and compared with each other for observed
population exposure data, including quantitative validation
of a microenvironment-based simulation model. The results
show that the model errors are comparable with measure-
ment error bias below the 90th percentile and above that
with the sampling error. The presented general population
model underestimates the highest exposures, indicating a
need for special attention.
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analysis. Uncertainties in model outputs can be estimated
by propagating known or estimated uncertainties through
the model, and they are described by confidence limits
that are assumed to contain the true value with a given
probability.5

Our approach, however, is different. Our aim is to
calculate the difference between the model outputs and
the corresponding true values representing the model er-
rors. These are not statistical measures of the probable
differences between the model output and the true value
but quantitative measures of the model accuracy in the
given situation. The complementary nature of uncer-
tainty analysis and the current approach is depicted in
Figure 1. Uncertainty analysis can be conducted even
when the true values are unknown, whereas the model
errors can be calculated only in the opposite case. In the
current work, analysis of model errors is applied to a
probabilistic model used to estimate population variabil-
ity of exposures to fine particulate matter (PM2.5).

Our comparison of model outputs with observed val-
ues includes all errors created along the model and the
measurement chains, as depicted in Figure 2. To be able to
estimate the model errors, the experiment must be de-
signed so that the other error terms can be excluded or
quantified. In the current work, the errors caused by sta-
tistical sampling and representativity were excluded from
the study design by use of input values and observed
output values measured from the same population sample,
and the effects of measurement errors are corrected for.

Probabilistic modeling has been useful in modeling
of exposure distributions (i.e., variability).6-11 In this con-
text, probabilistic models are based on equations describ-
ing the causal physical relationships between the model
variables, but instead of using inputs describing specific
individuals, probabilistic model inputs are entered as
probability distributions. Physical equations and values
sampled from the input distributions are then used to
calculate the outputs; thus, the simulated cases do not
represent real individuals. It is therefore only meaningful
to compare population statistics, such as mean, SD, and
percentiles, with the corresponding observed values
(Figure 2). In a deterministic model, in which specific

individuals are modeled, the model error can in principle
also be calculated for individuals. Probabilistic technique
is also often used for the analysis of uncertainty, but in
the current work, it is used only to model variability.

The probabilistic exposure model used was developed
as part of the EXPOLIS study in collaboration by RIVM
and KTL. The goals set for the model development in-
cluded capability to assess population exposure distribu-
tions for (1) selected subpopulations and (2) urban areas
in (3) different policy scenarios.12 The developed micro-
environment-based model can be run in either direct or
nested mode. In the direct mode, lognormal microenvi-
ronment concentration distributions are assumed and the
parameters entered as inputs. In the nested mode, the
indoor concentration of ambient origin is modeled by use
of ambient concentration distribution and infiltration
factor distribution, as depicted in Figure 3. In both modes,
additional indoor sources can be defined for a defined
fraction of microenvironments.13 Kruize et al.13 applied
the model to direct mode simulation of the annual distri-
bution of 48-hr PM2.5 exposures in Athens, Basle, Hel-
sinki, and Prague and to nested mode simulation of the
daily PM10 exposures of the general Dutch population,
including all age groups and both rural and urban areas.

The model has also been applied to more detailed
evaluation of the direct mode simulation of PM2.5 expo-
sures in Helsinki.14 The distribution assumptions for the
log normality of concentration distributions and the �

distribution for the time fractions were tested; the con-
centrations followed lognormal distributions quite well,
but the fits for the time fractions were more problematic.
Statistically significant deviations in the time–activity dis-
tributions, however, did not lead to significant errors in
the outputs. The current work continues by adding traffic
as a fourth microenvironment to the model (including
analysis of PM2.5 concentrations experienced while in
traffic by use of measurements in traffic), compares the
direct and nested approaches (including the analysis of
the infiltration factors and indoor sources in residences
and workplaces), and takes the quantitative comparison
of model outputs to observations one step further by
accounting for the measurement errors.

The objectives of the current work are (1) quantifica-
tion of the model error in simulation of population sta-
tistics of cross-sectional 48-hr PM2.5 exposures (including
correction of the measurement error bias in the observed
exposure distribution required for this purpose); (2) com-
parison of the model errors with the other errors affecting
population exposure assessment: measurement error,
measurement error bias, and sampling error; and (3)
comparison of the model errors in direct and nested
simulation.

Figure 1. Uncertainty analysis propagates (known) uncertainties
through the model to estimate confidence limits for the outputs.
Analysis of model error quantifies the errors instead of the confi-
dence limits.
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MATERIALS AND METHODS
Model Description

The current work defines exposure as the time-weighted

average pollutant concentration experienced by the sub-

ject during a given averaging period. Exposures are mod-

eled by a microenvironment approach in which the tem-

poral and spatial variations of the concentration field

experienced by the subject are reduced to the average

concentration in each microenvironment during the sub-

ject’s presence. Below is the mathematical representation

of our definition of exposure:

E� �
1

tavg
�
i � 1

u

�ti � Ci� � �
i � 1

n

fi � Ci (1)

Figure 2. Comparison of modeling results to observations includes all errors along the two chains. The terms quantified in Figure 6 are
indicated by #1–#4.

Figure 3. Diagram of the nested-model structure as an extension of the direct model. Symbols are defined in the text (see eqs 1 and 2).
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where E� is the average exposure level for the averaging
time, tavg (	
ti); ti is the time spent in the microenviron-
ment i; Ci is the average concentration therein; and fi is
the fraction of time spent in each microenvironment, i.e.,
the ratio ti/tavg.

In the nested approach, the microenvironment con-
centrations in indoor environments are calculated from
the corresponding ambient levels and indoor sources ac-
cording to the following equation:10,15-18

Ci � FINFCa � Cig (2)

where Ci is the indoor concentration (�g m�3); FINF is the
infiltration factor (dimensionless) for ambient particles;
Ca is the ambient (outdoor) concentration (�g m�3); and
Cig is the concentration of indoor generated particles
(�g m�3).

Major differences compared with the previous pub-
lished work14 include splitting of the earlier “other” mi-
croenvironment into “traffic” and “other” microenviron-
ments, increasing the number of microenvironments
from three to four, and use of the nested approach. The

models were run with the EXPOLIS simulation frame-
work13 with Microsoft Excel version 8 (Seattle, WA) and
@Risk add-on software version 4 (Palisade, Newfield, NY).
Simulation settings included Latin hypercube sampling,
2000 iterations, and a fixed pseudorandom number seed.

Model Inputs
The simulation model inputs for concentrations, time
activity, infiltration factors, indoor sources, and intervari-
able correlations were created by use of the EXPOLIS-
Helsinki time–activity diaries and microenvironment
measurements. The inputs used in the simulation models
are listed in Table 1. The model outputs were compared
with 48-hr personal exposure measurements. The EXPO-
LIS study design,12 the population sampling,19 and the
PM2.5 measurement techniques20-22 have been published
in more detail elsewhere. The EXPOLIS data were accessed
from the EXPOLIS database dated September 2002.23

Subpopulations and Time Activities. The EXPOLIS popula-
tion was classified into working (86.2%) and nonworking
(13.8%) subpopulations according to the questionnaire

Table 1. Simulation inputs for the frequency distribution variables.

Input Category/Variable Form

Parameters

Obsa (n)

Used in Models

Mean SD Direct Nested

Time–activity (% of time)

Working subpopulation (86.2%)

Residence indoors � 57 8 374 x x

Workplace � 28 9 374 x x

Traffic � 8 6 374 x x

Other combined � 6 7 374 x x

Nonworking subpopulation (13.8%)

Residence indoors � 85 13 60 x x

Traffic � 9 13 60 x x

Other combined � 7 7 60 x x

Concentrations (�g m�3)

Residence indoors Lognormal 8.9 5.7 126 x

Workplace indoors Lognormal 9.7 10.0 98 x

Ambient night (17-07) Lognormal 9.5 5.9 297 x

Ambient day (07-17) Lognormal 9.1 6.1 297 x

Ambient 1-hr Lognormal 9.6 6.8 7036 x xb

Ambient 24-hr Lognormal 9.3 5.4 298 xb

Traffic Lognormal 17.2 13.9 37 x x

Infiltration factors (fractions)

Residences � 0.64 0.20 98 x

Workplaces � 0.47 0.24 94 x

Other � 1.00 0.00 N/Ac x

Indoor sources (�g m�3)

General/residences Lognormal 2.48 3.18 78 x

General/workplaces Lognormal 4.18 4.98 41 x

aNumber of observations used in parameter estimation; bUsed in alternative nested models; cN/A, not applicable.
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data. The time activities of these subpopulations were
created separately by combining the original 11 diary
categories into four microenvironments in the models: (1)
residence; (2) workplace indoors (for the working sub
population); (3) traffic; and (4) all other places. The diary
entries, measured as minutes spent in each microenviron-
ment, were transformed to corresponding fractions of
time, and two-parameter � distributions were fitted to the
fraction of time distributions by use of the common sta-
tistical technique of matching moments.5 Goodness of
similar fits was evaluated earlier.14

Concentrations. The Helsinki Metropolitan Area Council
(YTV) supplied continuous PM2.5 data measured during
the EXPOLIS field phase in the Vallila monitoring station
�3.5 km northeast of the Helsinki downtown area. The
data were measured by a �-radiation absorption tech-
nique with an Eberline FH 62 I-R analyzer. Comparison of
fixed monitoring station data and the EXPOLIS residential
outdoor measurements showed good correlation.24

Hourly PM2.5 data were used to create the ambient
inputs listed in Table 1. A lognormal probability distribu-
tion was fitted to each of these observed distributions by
the method of matching moments.5 In the simulations,
the fitted lognormal distributions were truncated at the
99.9th percentile to prevent unrealistic concentration val-
ues created by the open-ended nature of the lognormal
distribution. In reality, the upper concentration limit in
the environment is set by the concentration in emission
gases (e.g., exhaust gas) and mixing conditions. The upper
limit depends on the location and the averaging time. The
truncation percentile was selected based on literature and
earlier results.14,25

During the EXPOLIS study in 1996–1997, PM2.5 con-
centrations were measured in 37 vehicles. Four measure-
ments in cars and taxis, and 20 in busses and trams were
combined to describe concentrations in street traffic.
Thirteen measurements in trains and metros were used to
describe concentrations in rail traffic. The ambient 1-hr
concentration distribution was used for walking and bik-
ing. Distribution of the average concentrations experi-
enced while in traffic was simulated by use of these mea-
surements and the EXPOLIS time–activity data. The
resulting lognormal distribution (17.2 � 13.9 �g m�3)
was used for the traffic microenvironment. This repre-
sents the total microenvironment concentration, includ-
ing the ambient fraction, in-vehicle sources (if any), and
the additional fraction caused by the immersion in the
traffic flow.

Infiltration Factors and Indoor Sources. Ambient PM2.5 infil-
tration factors for residences and workplaces were calcu-
lated by use of the microenvironment measurements and

elemental sulfur data. The population average PM2.5 in-
filtration was estimated by use of the slope for home
indoor–home outdoor regression. The sulfur indoor/out-
door (i/o) ratio for each home was scaled to the ambient
PM2.5 infiltration factor by use of the ratio of average
PM2.5 infiltration to average sulfur i/o ratio.16

A similar approach was used for the workplaces, ex-
cept that there were no simultaneous outdoor measure-
ments of elemental PM2.5 composition available. Particu-
late sulfate is a smoothly distributed secondary pollutant,
and it was assumed that its ambient concentration in
Helsinki does not have any significant diurnal pattern.
The 2-night residential outdoor sulfur and 2-day work-
place indoor sulfur concentrations were used to estimate
the sulfur i/o ratios for the workplaces. Ambient concen-
trations, measured simultaneously with the workplace in-
door PM2.5 concentrations, were used to obtain the aver-
age PM2.5 infiltration factor as the slope for the
workplace–ambient regression. The workplace sulfur i/o
ratios were finally scaled to the ambient PM2.5 infiltration
factors by use of the ratio of these averages.

The indoor PM2.5 concentration of ambient origin
was calculated by use of the infiltration factors and resi-
dential outdoor concentrations. The difference between
the total measured indoor concentration in homes with-
out environmental tobacco smoke (ETS) and the esti-
mated contribution of ambient PM2.5 was used as the
indoor source concentration.16 A similar calculation was
repeated for the non-ETS workplaces.

The method of matching moments5 was used to fit
distributions with identical means and SD on the data. A
� distribution was used for the infiltration factor, for
which the two-parameter � distribution completely cov-
ers the theoretical range from zero to one. Lognormal
distributions were used for the indoor-source–generated
particle concentrations. The lognormal distribution fits
were truncated at the 99.9th percentile.

Correlations. The @Risk simulation program supports rank-
order correlation matrixes for modeling of statistical de-
pendencies between input variables. For example, the
fraction of time variables have negative correlations, by
definition, because a large fraction of time spent in one
microenvironment (e.g., the residence) will reduce the
fraction of time left for the other microenvironments. The
ambient concentrations are also correlated across all mi-
croenvironments, depending on the spatial and temporal
variability of the target pollutant and variations in the
infiltration factors between different microenvironments.
Behavioral factors might also lead to correlations of
personal-activity–related indoor source concentrations,
but these were not included in the models.
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Spearman rank correlations were calculated with
Stata software, version 5 (Stata Corp., College Station, TX)
for the residential and occupational indoor concentra-
tions (direct model), the three different ambient concen-
trations (nested model), and the time activities (both
models; Table 2). The rank-order correlation of traffic
measurements with the simultaneous ambient concentra-
tions was 0.21.

Model and Measurement Errors
The model error is defined here as

y � x � εmodel (3)

where y is the modeled value (population mean, SD, or
given percentiles in the current work), x is the corre-
sponding true value, and εmodel is model error.

To calculate the model error, the true value (x) must
be known. This is impossible, however, because of the
measurement and other errors inherent to any empirical
observations. The simple classical model for measurement
error can be written as26

z � x � εobs (4)

where z is the observed value, x is the true value, and εobs

is the measurement error.
The measurement error above may also include ef-

fects of the measurement on the behavior of the subject.
Comparison of the model outputs (y) with corresponding
observations (z) allows us to calculate the net error, a
combination of the model and measurement errors:

y � z � �x � εmodel� � �x � εobs� � εmodel � εobs � εnet

(5)

The error introduced to distribution parameters (SD and
percentiles) is much smaller than the measurement error
itself. Because a random measurement error widens the
observed distribution, the lower percentiles are biased
downward and the upper percentiles and SD upward. The
bias can be corrected for if the statistical properties of the
measurement errors are known, e.g., from duplicate mea-
surements. Each duplicate contains an unknown effect of
the measurement error; thus, the difference of two dupli-
cates is a sum of two measurement errors. Assuming non-
differential random measurement errors, the statistical
properties can be estimated from a sample of duplicate
measurements.

Using the EXPOLIS duplicate personal exposure mea-
surements (n 	 14 in Helsinki), we created a statistical
measurement error model. The duplicates showed relative
and absolute error components; at higher levels, relative
errors caused probably mainly by the volumetric flow
control of the personal monitor pump were apparent
(coefficient of variation 	 17%). At lower concentrations,
the absolute errors caused by the weighing procedure and
filter handling became dominant (SE 	 0.92 �g m�3). The
final error model is a combination of these terms with the
switch point concentration set to 5.4 �g m�3, giving
identical errors (Figure 4).

The effects of the measurement error on the observed
exposure distribution was estimated by simulation. The
true (but unknown) values were described by a lognormal
maximum likelihood fit to the observations.27 A random,
nonbiased normally distributed error term with the prop-
erties described above was then added. Differences of the
percentiles of the observed data and the error simulation
were used as the measurement error bias. To estimate the
measurement error bias uncertainty, we simulated two
additional models: one with one-half and the other with
double error. The simulations were conducted with
10,000 samples. Finally, the observed personal exposure
distribution was corrected for the measurement error bias
by subtracting the bias estimates from the corresponding

Table 2. Spearman rank correlation matrixes used in the simulation.

Time Activities

Nonworking

Working

Home Indoor Workplace Traffic Other

Home indoor 1 N/Aa �0.56 �0.71

Workplace �0.39 1 N/A N/A

Traffic �0.27 �0.37 1 (0.0)b

Other �0.42 �0.37 (�0.1) 1

Concentrations: Direct Model

Home Indoor Workplace A1h Traffic

Home indoor 1

Workplace 0.40 1

A1h 0.83 0.57 1

Traffic (0.2) (0.2) (0.2) 1

Concentrations: Nested Model

A–N A–D A1h Traffic

A–N 1

A–D 0.69 1

A1h 0.73 0.69 1

Traffic (0.2) (0.2) (0.2) 1

Notes: The time–activity matrix uses the lower half of the working and the

upper half of the nonworking subpopulations. The concentration matrixes are

identical for both subpopulations; aN/A 	 not applicable; A1h 	 ambient

1-hr; A–N 	 ambient night; A–D 	 ambient day; bValues in parentheses are

not statistically significant (P  0.5); all other are statistically significant (P �

0.05).
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distribution values. The model errors were then calculated

as differences between modeled and bias-corrected ob-

served values.

RESULTS
Measurement Error Bias

The observed exposure distribution mean, SD, and main

percentiles and the corresponding measurement error bi-

ases are shown in Table 3. In an absolute sense, the bias

terms are small. The maximum value of 2 �g m�3 for the

99th percentile indicates that, from the point of view of

exposure assessment, the measurement error bias can be

mostly ignored. Relative bias values varied between �3

and �6% for the main percentiles, but in the lower tail,

�10% was exceeded (Figure 5). Graphical inspection con-

firmed that the bias (the difference between the top of the

gray area and the line with open circles) was notable only

in the tails of the distribution.

Simulation Results

The exposure levels of the lowest and highest 1% of the

population differed by �10-fold (3–30 �g m�3). From this

point of view, both the direct and nested models captured

the exposure variability quite well (Figure 5). The simu-

lated mean exposure was overestimated by just 1% by the

direct model and underestimated by 5% by the nested

model (Table 3). Both models, however, underestimated

the SD more clearly, by �9 and �23% by the direct and

nested models, respectively. Both models overestimated

values between the 20th and 50th percentiles and under-

estimated values in both tails. In the high tail, underesti-

mation was larger in an absolute sense, but lower in

relative terms. On examination of the model errors, the

role of the measurement error bias becomes more appar-

ent; e.g., underestimation of the 99th percentile in the

direct model is reduced by 50% compared with the net

error.

We ran two alternative nested simulations to demon-

strate situations in which only 1- or 24-hr distribution of

ambient concentrations is available (Figure 3). Use of only

a single distribution for ambient concentrations led to

effectively 100% correlation between the ambient con-

centrations used for calculation of residential and occu-

pational indoor concentrations, and the distribution vari-

ances also reflected the averaging times slightly. For short

averaging times, the variance increased and vice versa.

Thus, as can be expected, the alternative simulation for

1-hr ambient concentrations produced slightly more vari-

able exposure estimates (9.4 � 5.2 �g m�3), reducing un-

derestimation of the SD. Similarly, the simulation with

24-hr data decreased exposure variability (9.2 � 4.5

Figure 4. Comparison of measurement error models for personal
and microenvironment monitors.

Table 3. Observed and simulated distributions and corresponding net errors and bias-corrected model errors.

Distribution Mean SD

Percentiles

25 50 75 90 95 99

EXPOLIS personal non-ETS exposure measurements

Observed values (n 	 126) (�g m�3) 9.8 6.4 5.5 7.7 12.1 16.7 19.7 33.6

Measurement error bias (�g m�3) 0.0 0.3 �0.14 �0.20 0.02 0.4 0.8 2.0

Relative bias (%) �0 �5 �3 �3 �0.2 �2 �4 �6

Bias-corrected exposure (�g m�3) 9.8 6.1 5.6 7.9 12.1 16.3 18.9 31.6

Direct model 9.8 5.6 6.0 8.5 12.0 16.8 21.0 29.6

Net error (�g m�3) 0.1 �0.9 0.5 0.9 �0.1 0.1 1.2 �3.9

Model error (�g m�3) 0.1 �0.6 0.4 0.7 �0.1 0.5 2.0 �2.0

Relative model error (%) �1 �9 �7 �8 �1 �3 �11 �6

Nested model 9.3 4.7 6.1 8.3 11.2 15.3 18.0 25.9

Net error (�g m�3) �0.5 �1.7 0.7 0.6 �0.9 �1.3 �1.7 �7.7

Model error (�g m�3) �0.5 �1.4 0.5 0.4 �0.9 �1.0 �0.9 �5.7

Relative model error (%) �5 �23 �9 �5 �7 �6 �5 �18
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�g m�3), increasing the underestimation of SD. The over-
all changes in the simulated distributions, however, were
smaller than model errors of the nested model in corre-
sponding percentiles.

Model Error and Other Error Terms
The error terms quantified in the current work are depicted
in Figure 6. In exposure assessment, the most significant
error term is the sampling error (#1 in Figure 6; calculated
from the observed data by the method described, e.g., by
Small 28 and Campbell and Gardner29). It should be noted
that this error term represents only the statistical uncer-
tainty about the true distribution from which the sample
has been drawn, assuming an ideal random sample. Any
problems caused by nonrepresentativeness of the sample
add to the sampling error. In the current work, sampling
error was excluded by study design.

The measurement error for a single observation (#2)
and the bias caused to the estimated percentiles (#3) are
shown in the middle chart in Figure 6. Although the mea-
surement error in the EXPOLIS-Helsinki measurements
caused a 17% unsolvable relative uncertainty around indi-
vidual personal exposures 5.4 �g m�3 and a 0.92 �g m�3

absolute uncertainty below that level, the uncertainty in the
population percentiles was much smaller and could be cor-
rected for. This level of measurement error is not very sig-
nificant for exposure assessment, but it increases the appar-
ent model errors (i.e., net errors) significantly; therefore, in a
model validation study, it is reasonable to take the bias into
account. The 0.5x and 2x measurement error bands, dem-
onstrating the effects of uncertainty in the measurement
error itself, indicate that if the measurement
error can be reduced to one-half, it will no
longer have notable effects. On the other
hand, if bad measurement techniques or
poor quality control lead to doubling of the
measurement error, its effects increase sig-
nificantly in the tails of the distribution.

Model errors (#4) of the direct and
nested models are shown in the bottom
chart of Figure 6. Model errors in the per-
centiles varied between �2 and �1
�g m�3 below the 80th percentile for the
nested model and the 90th percentile for
the direct model. Above these percentiles,
the model errors increased suddenly, ap-
proaching the magnitude of the sampling
error, indicating a more serious underesti-
mation of exposures for the highest 10%
of the population. This is a clear indica-
tion that some microenvironments and
activities that affect exposures for the top
10% of the population are missing or not

fully described in these models. In relative terms, the peak
underestimation approached but did not exceed �20 and
�30% for the direct and nested models, respectively.

If the models were evaluated with use of net errors
(i.e., without correcting the measurement error bias), the
errors were overestimated. Several model-validation stud-
ies have shown that simulation models tend to underes-
timate high exposures and exposure variances.6,8,14 This
finding may be explained in part by the effects of the
measurement error bias.

The errors in the direct model were smaller than
those in the nested model, but the overall shape of the
errors was the same. The direct model is more accurate,
but it requires measurements of microenvironment con-
centrations, whereas the nested model can be used when
only ambient concentration data are available. The nested
model requires infiltration factor inputs, but such data
have recently become available from both Europe and the
United States,16,30 and the values do not seem to be highly
variable among different cities or geographical areas.

A significant advantage of microenvironment-based
exposure modeling is the fact that the measurement error
is much smaller in microenvironment monitoring than in
personal exposure measurements. Figure 4 shows the
measurement error models built from the EXPOLIS-
Helsinki duplicate data. The personal exposure measure-
ment included a significant relative error term, whereas
the microenvironment monitor duplicate data (n 	 41)
showed no such increase of measurement error as a func-
tion of the concentration. Because of the higher flow rate
and larger samples, the absolute error term caused by filter

Figure 5. Graphical comparison of observed and simulated exposure distributions. The
gray-shaded area represents the observed exposure distribution.
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weighing and handling was also lower (SE 	 0.30

�g m�3). Thus, when the model inputs are created from

microenvironment and fixed monitoring station mea-

surement data, one significant error source, the measure-

ment error, is significantly reduced compared with per-

sonal exposure measurements.

Simulated Indoor Concentrations
The simulated residential indoor concentration distribu-

tions matched the corresponding observed distributions

well for both the direct and nested models (Figure 7). For

the occupational indoor concentrations, the direct and

nested models differed more clearly. The direct model

Figure 6. Sampling error (#1) is excluded here by study design. Measurement error in individual exposures (#2) is larger than the bias carried
to sample percentiles (#3). Model error (#4) is comparable to measurement error bias below the 80th percentile and with sampling error above
the 80th percentile.
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captured the levels between the 50th and 95th percentiles
well but overestimated the levels for the highest 5% and
underestimated levels below the 30th percentile. On the
other hand, the nested model matched the observations
reasonably well below the 60th percentile and above the
98th percentile but underestimated levels in between.
These slight problems in simulating the workplace con-
centrations probably indicate special occupational expo-
sures that were not specifically included in the model. It
must be also noted that the infiltration factors for the
workplaces were estimated by use of residential leisure
time outdoor measurements, which caused uncertainty in
the infiltration factor distribution.

DISCUSSION
Sources of Model Errors

Sources of uncertainty in numerical models are typically
grouped into three classes: (1) model uncertainty; (2) pa-
rameter uncertainty; and (3) scenario uncertainty. Model
uncertainty concerns whether the conceptual model and
its implementation as equations and algorithms really
capture the essential causal relationships of the modeled
system. Issues such as selecting the correct variables to
describe the behavior of the system belong to this class.
Measurement and sampling errors (including representa-
tiveness) and errors caused by proxy variables are respon-
sible for parameter uncertainty. Scenario uncertainty
arises in situations in which the modeled system does not
exist (yet) and some or all its properties are based on
assumptions. This situation is typical for models predict-
ing the behavior of a system in the future.

In the current work,
these classical sources of un-
certainty can be interpreted
in terms of being responsible
for the model errors. The ba-
sic conceptual model in the
current work defines the per-
sonal exposure as the time-
weighted average concentra-
tion experienced by an
individual. This is in fact the
definition of the modeled
variable and thus contains
no model uncertainty. A
similar example would be
the area of a rectangle,
which is calculated (both
modeled and defined) as the
product of the width and the
length. Such a model will
definitely include parameter
uncertainty because of the

imperfections of measurement of the width and the
length, but model uncertainty would be involved only in
cases when the assumption of the shape of the object
(rectangle) would fail.

Use of the same known system, the EXPOLIS-Helsinki
population sample, to collect the input data (on concen-
trations and time activities) and the personal exposures
used for comparison removed scenario uncertainties and
sampling errors from the study design. The exposure and
input parameter measurements are independent of each
other because they were conducted with different equip-
ment. Thus the set-up really allows for quantification of
model errors in a known system.

Although the overall match between the simulations
and the observations was good, a significant remaining
source of model error in the current setup is the definition
of the microenvironments. In addition to residence,
workplace, and traffic, all other environments were
grouped together, including both outdoor environments
and microenvironments with high concentrations attrib-
utable to local sources (e.g., parking garages). From the
modeling point of view, this group of environments is
problematic because of its heterogeneous nature. It would
be a significant undertaking to conduct representative
concentration measurements in all microenvironments
belonging to this category, and in most cases, such data
do not exist. The purpose of combining all of these envi-
ronments together and using the hourly ambient concen-
tration distribution to describe the exposures in them in
the current work was to quantify the errors caused by such
a simplification. Our conclusion in this respect is that

Figure 7. Comparison of observed residential and occupational indoor concentrations with the fitted lognormal
distribution used in the direct model and the simulated distribution produced by the nested model.
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when looking at the total PM2.5 exposures, the effect of
overlooking specific concentration distributions in vari-
ous minor microenvironments is small. When looking at
exposures to specific particle fractions (e.g., diesel parti-
cles), the separation of concentrations for time spent (e.g.,
in the vicinity of traffic arteries) versus time spent else-
where might be necessary.

Underestimation of Variance
All current simulation models underestimate variance
similarly to earlier studies.6,8,14 The reasons for this in-
clude incomplete definition of high-concentration micro-
environments; incomplete description of behavioral and
environmental correlations, including concentrations of
ambient origin in various microenvironments; behavioral
factors affecting microenvironment concentrations as
well as personal time–activity structures; and measure-
ment error bias leading to slight overestimation of the
sample variances.

The current work includes intervariable correlations
obtained with the @Risk rank-correlation technique. The
technique, using Spearman rank-correlation coefficients,
partly reproduces the correlation structures. In the case of
skewed distributions, such as lognormal ones, the high
tail values dominate the Pearson linear correlation. When
the simulation model reproduces correlations by use of
the rank-correlation technique, part of the correlation is
diluted in the low-tail values, which do not have a notable
effect on exposures. Another reason for variance underes-
timation here could be the correlation between the time
fraction spent in traffic and the concentrations experi-
enced while in the traffic. Preliminary data analysis by
Rotko et al.31 show that men, who spend more time in
traffic in general, also spend more time specifically in road
traffic (diary categories: motorcycle, car/taxi, and bus/
tram), particularly cars, in which the concentrations are
higher than in rail traffic or when walking.

As reported earlier,14 the SD of a simulated exposure
distribution was sensitive to the single highest sample
taken from lognormal input distributions. The earlier so-
lution to truncate all lognormal distributions at the
99.9th percentile was followed, producing the best
matching SD estimates in the earlier work. Truncation of
the lognormal distributions does not suggest that under
extreme conditions such high concentrations could not
exist (although Ott25 used a theoretical approach to show
that the high concentrations fall short of the levels pre-
dicted by the lognormal density function). Truncation
limits the concentrations to a range that is represented by
the input data.

Weak correlations were observed in the infiltration
factors and ambient concentrations in the EXPOLIS Hel-
sinki data (data not shown). The infiltration factor varies

according to the time of the year (e.g., keeping windows
open during the summer increases ventilation rates). Be-
cause the ambient pollutant concentrations also vary
among seasons, a correlation structure will emerge. In the
present work, this correlation was so low that it did not
appear to affect the simulations.

Time–Activity Modeling
Actual diaries randomly sampled from a time–activity
database have been used in many models.6,8-10 The main
advantage of this approach is that it captures the complex
autocorrelation structures of time–activity data. The cur-
rent work, however, uses parametric distribution fits to
describe fractions of time spent in different microenviron-
ments. This �-fit approach allows very efficient descrip-
tion of the time–activity data. When the model is applied
for alternative nonexisting scenarios, changes according
to the estimated changes in population time–activity dis-
tributions are easy to make and to describe compared with
modification of thousands of actual diaries.

Theoretically, the use of a probabilistic time–activity
model instead of actual diaries could explain the bias of
the results toward the mean value. In the earlier studies,
however, in which actual diaries were used and the results
were validated against observed data,6,8 the underestima-
tion of variance was larger than in the current work.

CONCLUSIONS
The current work interprets “model validation” as a dem-
onstration that a model can predict the output variables
in a known system with such accuracy that conclusions
derived from the model are not driven by model errors. To
address this problem quantitatively, we calculated model
errors and compared them with the other errors affecting
exposure assessments: random sampling error, random
measurement error, and the bias in observed percentiles
caused by the measurement error. These error terms,
ranked in increasing order, were measurement error bias
in sample distribution � model error � measurement
error � sampling error, except for the highest percentiles,
for which model error approached the magnitude of sam-
pling error. If the bias caused by the measurement errors
is not corrected for, it increases the apparent model error
(i.e., net error) for the highest exposure percentiles and
the exposure variance.

Direct and nested simulation approaches were com-
pared. The overall matches between the models and ob-
servations were good, indicating that such models can be
used to characterize population exposures to PM2.5. The
model based directly on input distributions of indoor
concentrations produced slightly better estimates of pop-
ulation parameters than the nested model using ambient
concentrations and infiltration factors to model indoor
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concentrations. For both models, the errors for the mean
exposure levels were slightly negative and for the SD clearly
negative, indicating that the models underestimate these
values. The suggested main reasons were as follows: (1) Cor-
relation structures caused by behavioral and personal factors
between concentrations in different microenvironments
were not fully modeled. A rank-order correlation technique
was used to include some of these correlations in the model,
but the method loses some of its effect in correlating sam-
ples taken from the low end of the distributions, whereas the
high concentrations drive variances of the exposures. (2)
The available microenvironments and the concentration
measurements in residences and workplaces did not capture
all exposures, particularly those that occurred in proximity
of local sources (e.g., exposures to traffic-generated particles
while in areas affected directly by traffic).
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Reduction potential of urban PM2.5 mortality risk using modern

ventilation systems in buildings

Introduction

Epidemiologists have shown that urban fine particulate
matter (PM2.5: particulate matter with aerodynamic
diameter smaller than 2.5 lm) concentration is associ-
ated with increased risk of premature mortality (e.g.
Pope et al., 2002). The observed risk ratios translate to
hundreds of thousands of annual excess deaths in the
developed world at the prevailing PM2.5 levels.
Although successful restrictions have been set on
industrial and energy production emissions and a lot
of work has been done in developing low-emission
motor vehicles to reduce exposures to particles from
these sources, significant exposures still remain. Besides
the remaining emissions from these sources, particles
are generated by sources that are more difficult to

control by local policies, like natural sources and
distant sources contributing to long-range transport. In
Helsinki it has been estimated that up to 76% of
ambient PM2.5 originates from long-range transport
(Karppinen et al., 2004; Koistinen et al., 2004; Vallius
et al., 2003).
Many studies have shown that personal PM expo-

sures correlate poorly with ambient concentrations
(Koistinen et al., 2001; Pellizzari et al., 1999) and that
indoor sources make remarkable contributions to
personal exposures (Clayton et al., 1993; Koistinen
et al., 2004; Wallace, 1996). The health effects observed
in the epidemiological studies, however, must be
caused by ambient PM (or some factor closely asso-
ciated with it), and not by exposures to indoor-
generated particles, which do not correlate with the
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low-pollution vehicles and environment-friendly transportation systems. While
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ambient pollution levels (Wilson et al., 2000). The
additional personal exposures caused by individual
behavior and independent indoor sources may, of
course, be responsible for additional health effects that
are not associated with ambient concentrations.
It has been suggested that ventilation systems in

buildings could protect people from ambient particles
(Fisk et al., 2002). In the warm and humid climate
areas in the US, where sealed and air conditioned
buildings are most common, the dose–response rate for
PM10-induced morbidity was found to be lower than in
the milder climate areas, where open windows are used
more for ventilation, indicating a safety factor created
by the sealed building envelopes (Janssen et al., 2002).
Similarly, in Canada residents of new energy efficient
homes experienced less air quality-related symptoms
than the control group members (Leech et al., 2004).
People in developed countries spend a majority of their
time indoors (Clayton et al., 1993; Hänninen et al.,
2003) and thus filtration of ambient pollution by
building envelopes can be expected to be an important
exposure modifier. In residential buildings, where
mechanical ventilation systems have been rare, outdoor
particles penetrate indoors very efficiently (penetration
factors close to unity) (Özkaynak et al., 1996; Wallace,
1996), but in buildings with two-way mechanical
ventilation particle removal by supply air filters has
been identified as the most significant particle removal
process (Thornburg et al., 2001). Indoors particles are
slowly removed from the air due to deposition and
other decay processes even in houses with no supply air
filtering (Hänninen et al., 2004; Wallace, 1996). In
mechanical ventilation systems particle removal can be
accelerated by recirculating indoor air through the
filters (Fisk et al., 2002).
In Helsinki metropolitan area <1% of homes built

before 1990 have supply air filters, but these are
becoming increasingly common in new buildings. The
recently renewed National Building Code of Finland
(section D2, 2003) requires mechanical ventilation with
heat recovery and efficient fine particle filtration of
supply air in urban areas. Since 2000 a majority of
single-family houses have been equipped with mechan-
ical supply and exhaust ventilation system with supply
air filtration. Mechanical supply and exhaust ventila-
tion system with supply air filtration was used in 78%
of the existing office buildings in Helsinki already
in 1990 (Jaakkola and Miettinen, 1995) and 83% of
office employees were working in such buildings.
Since then all new office buildings have been equipped
with mechanical supply and exhaust air ventilation
systems.
Fisk et al. (2002) estimated performances of various

supply air filters on indoor particle concentrations
using a mass-balance model. According to their results,
up to 80% reductions in indoor concentrations of
ambient fine particles can be achieved with realistic

filter efficiencies and flow rates. Such a modeling study,
however, is based on assumptions on filter efficiencies,
air leaks, particle penetration rates through the build-
ing envelopes (Airaksinen et al., 2004), and indoor
particle decay rates. In reality also the behavior of the
inhabitants affects the indoor concentrations; efficiency
of even the best filtration system is reduced when
windows or doors are kept open. Therefore the
theoretical estimates calculated by Fisk et al. (2002)
must be validated by using real life observations.
The objective of the current work is to compare

the theoretical reductions estimated by Fisk et al.
(2002) with the values observed in the Helsinki
metropolitan area building stock in the Exposures of
Adult Urban Populations in Europe Study (EXPOLIS)
(Hänninen et al., 2004a; Jantunen et al., 1998). In
addition, to support air pollution exposure control
policy optimizations, a probabilistic simulation model
is used to estimate how much the mechanical venti-
lation systems with supply air filtration, if assembled
to the whole building stock, residential and occupa-
tional, could reduce population exposure to ambient
PM2.5.

Material and methods

The conceptual exposure model used in this work is
shown in Figure 1. The adult population in Helsinki
metropolitan area spends on average 87% of their time
in indoor environments; approximately 8% in traffic
(including walking) and only 5% in non-traffic outdoor
environments. Therefore decreasing infiltration of par-
ticles indoors significantly reduces overall exposure
levels to particles of ambient origin.

Scenarios

The current work defines two exposure scenarios. The
current scenario is based on the prevailing situation in
1996–97 when the population-based EXPOLIS study
was conducted in the Helsinki metropolitan area.
A random sample of adults was drawn and exposures
and concentration in the residences and workplaces of
the subjects were measured. Infiltration factors for the
ambient PM2.5 were calculated using indoor and
outdoor measurements of PM2.5 concentrations and
corresponding PM-bound elemental sulfur levels
(Hänninen et al., 2004). In the alternative scenario
the infiltration properties of the future building stock
of the 21st century are approximated by using the
infiltration factors observed in the newest occupational
buildings built in the 1990s, which were captured in the
EXPOLIS workplace sample, i.e. existing buildings
that all use mechanical ventilation systems with F7 or
F8 class supply air fine particle filters with 80–95%
collection efficiencies for 0.4 lm particles. A probabi-
listic simulation model (Hänninen et al., 2003, 2005;

Hänninen et al.
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Kruize et al., 2003) is applied to estimate the popula-
tion distributions of 48-h exposures for these two
scenarios.

Simulation model

The simulation model used is based on microenviron-
ment approach (Duan, 1982; Letz et al., 1984; Ryan
et al., 1986) and probabilistic simulation (Law et al.,
1997; Ott et al., 1988). The model defines personal
exposure level (E) as the time-weighted average
concentration (C) over the microenvironments
(indexed by i) visited. According to Equation 1, time
weighting is done using personal time activities as
fractions of time (fi) spent in each microenvironment,
implicitly defining the averaging time:

E ¼
X

i

fi � Ci: ð1Þ

The simulation model has been validated for PM2.5

exposures in two steps. First, the model was used in
microenvironment mode, where the concentrations in
the microenvironments are directly defined with
parameters of log-normal distributions (Hänninen
et al., 2003). In the second step the indoor microenvi-
ronment concentrations (Ci) were modeled from ambi-
ent concentration according to Equation 2:

Ci ¼ Finf � Ca þ
X

j

CSj; ð2Þ

where Finf is the infiltration factor and Ca the ambient
PM2.5 concentration. The additional concentrations

(CSj) caused by various sources (indexed by j) within
the microenvironment are then added to the concen-
tration of ambient origin (Finf · Ca). Infiltration factor
can be estimated as the slope of indoor–outdoor
concentration regression (Hänninen et al., 2005).
The simulations were run using four microenviron-

ments: (i) residential indoors, (ii) workplace indoor
(working subpopulation only), (iii) in traffic, and (iv) all
other environments grouped together (Hänninen et al.,
2005).

Input data

The model inputs were calculated from the EXPOLIS
database (Hänninen et al., 2002). EXPOLIS study was
conducted in seven European cities in 1996–2000,
including Helsinki, Finland. Fine PM exposures,
corresponding residential and occupational concentra-
tions and exposure-related characteristics of the resi-
dences, workplaces and time activities of the subjects
were measured from a random sample of the adult
urban populations. The study design has been des-
cribed by Jantunen et al. (1998), the collection of the
PM data by Koistinen et al. (1999), the X-ray-induced
fluorescence analysis of the PM2.5 samples by Mathys
et al. (2001) and the calculation of the infiltration
factors by Hänninen et al. (2004). Elemental sulfur had
no notable indoor sources (i.e. indoor–outdoor ratios
above unity) in the data and the sulfur indoor–outdoor
ratio was assumed to represent the effective infiltration
factor for those fine particles that have a similar size

Ambient 
pollution

Air intake

Filter

Fan

Air outlet

Windows and doors

Air flow
through
frames 
and walls

Ventilation 
while open

87% of time 
indoors

5 % of time 
outdoors

8 % of time 
in various means
of transportation

Fan
Reduced concentration

due to filtration and decay

Fig. 1 Schematic diagram of the exposure model used in this study: a major fraction of the population exposure to ambient PM2.5

occurs indoors. The effect of supply of air filtration, which is an efficient means to reduce these exposures, is quantified for the existing
building stock in Helsinki
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distribution as the sulfur-containing particles. The
sulfur infiltration factors were corrected for the slightly
different size distribution of PM2.5 particles using the
ratio of corresponding indoor–outdoor regression
coefficients (Hänninen et al., 2004). For occupational
buildings simultaneous outdoor sulfur measurements
were not available; these data were substituted with
corresponding residential outdoor concentrations. It
was assumed that as a secondary long-range transpor-
ted pollutant the sulfur concentrations do not have
significant spatial or diurnal patterns and that the two-
night average residential concentration is a reasonable
estimate for the 2-day occupational outdoor concen-
tration.
Distribution of the ambient PM2.5 concentration was

formed from hourly ambient PM2.5 concentrations,
monitored by the Helsinki Metropolitan Area Council
(YTV). The 6854-h time series data was measured
during the study field phase at Vallila monitoring
station, located approximately 3.5 km north-east from
the Helsinki downtown area, using b-radiation absorp-
tion-based Eberline FH 62 I-R analyzer. Non-positive
data (182 h) were discarded before fitting the log-
normal distribution to the concentration data using
method of matching moments (i.e. using mean and
standard deviation values). Indoor concentrations in
residences and workplaces were probabilistically mode-
led using the ambient concentration distribution and
Equation 2. Residential and occupational concentra-
tions of indoor sources were estimated from the

EXPOLIS data and modeled assuming log-normal
distributions (Hänninen et al., 2004, 2005). Log-nor-
mal traffic concentration distribution was simulated
using the 37 in-transport measurements conducted
during the EXPOLIS study and the population time
activities (Hänninen et al., 2005). The ambient con-
centration distribution described above was used
directly for the other microenvironment. The model
input values are listed in Table 1.
Time activities of the working and non-working

adult populations were modeled separately. The time
activity data for the 11 microenvironments in the
EXPOLIS Helsinki database for 434 subjects was
grouped into four microenvironment categories and
transformed into fractions of time spent in each during
the 48-h diary collection period. In the model time
activity values were sampled from beta distributions
for each microenvironment and scaled for the sum of
unity for each simulated individual.
Four simulation models were run. For the current

scenario a model was run for the total PM2.5

exposures, including exposures from non-ETS (envi-
ronmental tobacco smoke) indoor sources (model 1)
and for the exposures to ambient PM2.5 (model 2).
Similar models were run for the alternative scenario
(models 3 and 4 respectively). The total non-ETS
exposures for the current scenario (model 1) were
simulated for validation purposes and compared with
the personal exposure distribution observed in the
EXPOLIS study.

Table 1 Model input distributions and parameters used in the simulations. Models columns indicate in which models (1–4) each input was used

Input category
Data
distribution

Parameters

Obsa (n)

Models

Mean s.d. 1 2 3 4

Time-activity (fractions of time, %)
Working subpopulation (86.2%)

Home indoors beta 57 8 374 · · · ·
Workplace beta 28 9 374 · · · ·
Traffic beta 8 6 374 · · · ·
Others beta 6 7 374 · · · ·

Non-working subpopulation (13.8%)
Home indoors beta 85 13 60 · · · ·
Traffic beta 9 13 60 · · · ·
Others beta 7 7 60 · · · ·

PM2.5 concentrations (lg/m
3)

Ambient 1-h log-normal 9.6 6.8 7036 · · · ·
Traffic log-normal 17.2 13.9 37 · · · ·

Infiltration factors (fractions)
Current building stock scenario

Homes beta 0.64 0.20 98 · ·
Workplaces beta 0.47 0.24 94 · ·

Building stock 1990s scenario
Homesb beta 0.35 0.12 n/a · ·
Workplaces beta 0.35 0.12 9 · ·

Indoor sources for PM2.5 (lg/m
3)

General home source log-normal 2.48 3.18 78 · ·
General work source log-normal 4.18 4.98 41 · ·

aNumber of observations used in parameter estimation.
bWorkplace data used also for residences.

Hänninen et al.
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The natural negative autocorrelations of time frac-
tions and correlation between the ambient concentra-
tion and concentration experienced while in traffic were
modeled using the rank correlation technique provided
by the @Risk software (Palisade, Newfield, NY). The
rank correlation values varying between )0.1 and )0.7
for time fractions and between 0.2 and 0.7 for
concentrations were analyzed from the EXPOLIS data
and have been reported in detail earlier (Hänninen
et al., 2005).

Results

The infiltration factors for ambient PM2.5 in the
residential buildings are higher (mean ± s.d.:

0.64 ± 0.20) than those in the occupational buildings
(0.47 ± 0.24, Figure 2, Table 2). More efficient filtra-
tion of ambient particles in the occupational buildings
is presumably caused by the facts that supply air
filtering is more common in office buildings and that
ventilation by opening windows is more common in
residential buildings. The 90-day running averages
(Figure 2) show a slight seasonal pattern for both types
of buildings, following the average seasonal tempera-
tures. For both building types there are some outliers
above the theoretical upper limit of 1.0, caused by (i)
indoor sources of sulfur (especially in two workplaces
with PM2.5 infiltration values of 2.8 and 3.6, which
were excluded from the analysis), (ii) time delay from
outdoor PM via infiltration to indoor levels, (iii) by
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measurement errors, and (iv) PM concentration differ-
ence between the outdoor monitoring site and actual
air intake location. Despite of these minor shortcom-
ings, the overall distributions of infiltration factors are
plausible.
A log-normal fit to the observed ambient fixed

monitoring station concentration data was used in the
simulations (Figure 3). The adjusted coefficient of
determination (R2) calculated from the observed con-
centration data using values from the fitted log-normal
function with identical z-score values, was 0.98, i.e.
98% of the observed variation in the ambient concen-
tration could be modeled indicating a very good fit.
The same ambient concentration model was used for
both scenarios.
Besides the building infiltrations, population time

activity is the most important factor affecting the
exposure reduction potential modeled here. The more
people spend time in indoor environments, the larger
effect the building filtration properties have on their
exposures. On individual level the time activity is very
variable, as can be seen in Figure 4a. The histograms in
these charts describe the distribution of the observed
fractions of time spent indoors, outdoors, and in traffic
according to the 434 time activity diaries collected in
the EXPOLIS study in Helsinki. The population

average for the fraction of time spent in indoor
environments is 87%. The overlaid beta distribution
in each chart depicts the technique used to model the
time activity distributions in the simulations; in the
simulations the number of microenvironments was
four for the working and three for the non-working
subpopulations (totaling seven time activity classes;
parameters of these distributions are listed in Table 1).
From the point of view of generalizing the Helsinki

results to other cities in Europe or elsewhere, it is
important to look at the differences in the state of the
art of building construction and ventilation technology
for residential and occupational buildings, including
the infiltration properties, and the population time
activity patterns. To demonstrate that the time use
differences between urban populations in Europe are
small, the population averages for indoors, outdoors
and in traffic fractions of times observed in the
EXPOLIS study are compared in Figure 4b. The
average fraction of time spent indoors varies from
0.86 in Athens (Greece) to 0.89 in Grenoble (France)
and Milan (Italy), being thus nearly constant. There-
fore it can be concluded that if there are differences
between geographical areas in the efficiency of the
suggested approach to reduce exposures, they must be
driven by the differences in buildings and occupant
behavior.
Simulated total exposures in current scenario (model

1) compare well with the observations (Figure 5a). For
the highest percentiles the model underestimates the
levels slightly. The observed mean exposure level is
9.8 lg/m3 and simulated 9.3 lg/m3. Thus the overall
underestimation is 0.5 lg/m3, or 5%. The correspond-
ing standard deviation values were 6.4 and 4.7 lg/m3,
respectively, having larger underestimation in both
absolute and relative terms. This could be expected,
because standard deviation of a skewed distribution is
more sensitive to underestimation of the high-tail
values and consequently is not a very stable statistic
for such distributions. The overall match between the
two distributions is reasonable: the model is capable of
catching 95% of the population exposures and can thus
be considered valid for the following analyses.
Modeled mean exposure levels to ambient PM2.5

were 6.9 and 5.0 lg/m3 for the current and alternative

Table 2 Infiltration factors observed in different EXPOLIS building categories and values used to describe scenarios

Construction before 1990 Construction 1990–97

Reduction (%)Filtering prevalence (%) Observed infiltration (fraction) Filtering prevalence (%) Observed infiltration (fraction)

Residences <1 0.65 n/a 0.58 11
Workplaces 78 0.48 100 0.35 27

(1) No filtering used (2) Filtering in all buildings

Scenario values <1 0.65 100 0.35 46

n/a, not available.

Mean±s.d.
9.6±6.8
n=6854

Fig. 3 Hourly ambient PM2.5 concentrations in Helsinki and the
fitted log-normal distribution (calculated based on z-scores;
adjusted R2 ¼ 98.0)
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scenarios, respectively, indicating a 27% reduction
potential (Table 3). This main result of the current
work is graphically depicted in Figure 5b, where the
difference between the scenarios is shown in darker
shade of gray. As both axes are printed on linear scales,
the areas under the curves are proportional to the
corresponding risks. Reduction affects all percentiles as
can be expected, but the absolute reduction is largest
around the 70th to 90th percentiles, i.e. where the
exposure levels are rather high. This can be considered
as an advantage: exposures can be reduced efficiently
by using filtration systems in buildings in polluted
areas. For the highest percentiles the effectiveness gets
smaller, corresponding to relatively rare personal
activities that lead into high exposures.
Current approach assumes that concentrations of

indoor-generated particles would not be affected in the
alternative scenario. While this assumption is reason-
able when focusing on the ambient exposures to which
health effects have been mostly associated, the indoor-
generated concentrations can also be lowered with
changes in the ventilation system, e.g. by using indoor
air recirculation through filters. Simultaneously with
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Table 3 Simulated mean population exposures to ambient, indoor-generated and total
PM2.5, and the corresponding risk reduction estimates (%) based on the linear exposure-
response factor

Exposure fractions

Current
scenario
(lg/m3)

Alternative
scenario
(lg/m3)

Exposure
reduction
(%)

Ambient PM2.5 6.9 5.0 )27
Indoor sources 2.5 2.5 0
Total PM2.5 exposure 9.3 7.5 )20
Indoor % of ambient 36 49 –
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the lowering ambient exposures in alternative scenario,
the relative magnitude of indoor-generated non-ETS
exposure increases from 36 to 49% (Table 3). If the
indoor-generated particles turn to be toxic at all, their
role in the PM question will become more important as
the ambient part is alleviated.
The simulated exposure results can be translated to

reduction in the ambient PM2.5-associated health risks
by using the generally adopted no-threshold linear
dose–response relationship (WHO, 2000). This
assumption suggests that a reduction in the health
risk, e.g. mortality, is proportional to the reduction in
the exposure. When looking at the main focus of the
current work, the ambient exposures, the current
scenario exposure level 6.9 lg/m3 reduces to 5.0 lg/m3

in the alternative scenario, a 27% reduction in the
exposure and thus potentially a similar risk reduc-
tion. Taking the World Health Organization estimate
that the annual number of deaths associated with
ambient PM2.5 levels in Europe is 102,000–368,000
(WHO, 1999), the estimated reduction would turn to
be in the order of 27,000–100,000 deaths per year in
Europe.

Discussion

To compare the theoretical reductions of ambient
PM2.5 in indoor air obtainable with supply air filters as
estimated by Fisk et al. (2002) with respective obser-
vations, the buildings in the EXPOLIS sample were
classified into two age categories divided by construc-
tion before or after 1 January 1990. The technical
specifications of ventilation systems of the EXPOLIS
buildings were not collected, but over three quarters of
office buildings constructed before 1990 already had
mechanical ventilation with supply air filtration (Jaak-
kola and Miettinen, 1995). Some of the EXPOLIS
workplaces were not located in office buildings, so it
can be expected that the prevalence of supply air
filtering in the EXPOLIS workplaces is somewhat
lower. Less than 1% of residences built before 1990 use
supply air filtering. Residences built in the 1990s
started to introduce mechanical ventilation with supply
air filters and all office buildings built in 1990s were
designed with mechanical ventilation with supply air
filters. Consequently, the old residences (built before
1990) represent a reference building stock, where
filtration systems are practically absent. The old
occupational buildings (built before 1990) and the
newer residences built in 1990s represent mixed build-
ing stocks, and in the occupational buildings built in
1990s a vast majority uses mechanical ventilation with
supply air filtration.
In the EXPOLIS Helsinki sample there were nine

occupational buildings built after 1 January 1990 and
16 corresponding residential buildings. For both build-
ing types the newer buildings had smaller infiltration

factor values than the pre-1990 buildings, but the
difference was much larger for the workplace buildings
(Table 2). Fisk et al. (2002) estimated that the levels of
ambient PM2.5 could be reduced approximately by 23,
51 and 80% when using fine particle filters with
classification ASHRAE 45, 65 and 85% (efficiencies
as defined in standard ASHRAE, 1992), respectively,
compared with ventilation without filter. In their base
case they assumed 1 h)1 mechanical outside air venti-
lation, 0.25 h)1 unfiltered ventilation and 4 h)1 indoor
air recirculation through the filters, representing a
North American one-family house with forced air
heating system. The estimate for ASHRAE 65% class
filters (51%) is close to the observed reduction of 46%
for the building categories �all with filters� versus �none
with filters� (Table 2). Out of this reduction potential,
the current building stock in 1996–97 had already
established reductions of 2 and 28% for residences and
workplaces, respectively, calculated as the proportion
of current building stock infiltration values to that of
the reference building stock of old residences. In
comparison, the theoretical maximum of 80% reported
by Fisk et al. (2002) indicates that with the building
technology to be developed in the 21st century,
significant benefits remain to be achieved.
The PM2.5 fraction responsible for the observed

excess mortality has not been identified conclusively yet
regardless of the significant effort put to study this
problem. PM2.5 is composed of fractions including
long-range transported particles of different types, tail-
pipe particles from local traffic, combustion particles
from local stationary sources, crustal particles gener-
ated and/or re-suspended by road traffic and natural
processes, salt particles associated both with natural
processes as well as road de-icing in colder climates. In
the current situation the mean population exposure
level to ambient fine particles, observed as PM2.5 mass
concentration, is still the most widely accepted health-
relevant PM measure. Primary combustion-generated
particles from local sources are very small, typically
smaller than 100 nm in diameter These ultrafine
particles behave differently in the filtering and ventila-
tion systems. Especially their removal rate in indoor air
is lower than that for the larger particles which
comprise a majority of PM2.5 mass. It has been
suggested that the ultrafine particles have health effects
different from those of PM2.5; it should be noted that
the results obtained here for PM2.5 particles are not
representative for the ultrafines.
Filtration by the building envelopes reduces expo-

sures to particles from all ambient sources. The filters
in mechanical ventilation systems are capable of
removing PM2.5 particles with high efficiency. When
windows or doors are kept open, suspended particles of
all sizes penetrate indoors with equal efficiency
(�100%). Only when outdoor air penetrates indoors
through small cracks, holes, and fibrous insulation
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materials in the building envelope does the infiltration
result in particle size-dependent losses. For larger
particles the dominant mechanisms are sedimentation
and impaction, for the smallest interception and
diffusion. Accumulation mode particles have the
highest penetration efficiency (Kulmala et al., 1999;
Raunemaa et al., 1989; Tung et al., 1999). The same
physical phenomena reduce the PM concentrations
after they have penetrated into indoor spaces. When
the air leaks are minimized, the exposure reduction
affects particles of all sizes and a risk reduction can be
expected regardless of future findings of the role of
different PM2.5 fractions in causing the premature
mortality associated with ambient PM2.5.
The current work simulated the exposure reduction

for the active working age population. The suggested
approach, however, affects the exposures of all resi-
dents without any behavioral changes. Susceptible
population groups, like the newborns and the elderly,
spend more of their time indoors and less in traffic
compared with the working age population; thus they
would benefit the most from exposure reduction
affecting indoor environments. Because buildings are
designed, built, and renewed one by one, the ventila-
tion system specifications reducing PM2.5 exposures
can be targeted to selected buildings, geographical
areas, and population groups.
Renewing of the urban building stock is expensive

and occurs gradually along the natural renovation
and re-construction process. The same, however, is
more or less true also for most local outdoor source
control alternatives. People concerned about air
pollution can act accordingly and select residences in
sealed building envelopes and with good filtration
systems. To support this, information on the filtration
properties of houses should be made available.
However, ventilation systems themselves can become
sources of pollution (Pasanen et al., 1994) and there-
fore it is important also to maintain the ventilation
systems properly.
Enhancements of city transportation system and

changes of local traffic emissions and population time
activity affect mainly exposures to local traffic particles.
Based on published data (Koistinen et al., 2004;
Vallius et al., 2003) we estimate that in Helsinki
particles from local traffic contribute approximately
10–20% to the total PM2.5 exposures. Compared with
the exposure reduction potential estimated in the
current work, the tailpipe PM2.5 emissions from local
traffic should be totally eliminated to obtain similar
reductions in the total PM2.5 exposures. Battery- or
fuel cell-operated vehicles might eliminate traffic tail-
pipe emissions in the decades to come, but even then
exposure to re-suspended soil particles and to industry
and energy production-generated long-range particles
would not be affected. In contrast, filtration by
building envelope affects particles from local and

regional sources as well as long-range transport, and
its potential is not limited to our simulation results,
which only reflect the ongoing business as usual policy.
The risk reduction potential is estimated using data

from Helsinki, a city with northern location and
population of 1 million. Because of the northern
climate, triple glazing is standard in most buildings
and the current building stock may also be in other
ways tighter than buildings e.g. in the Mediterranean
area, Central Europe or Southern states in the US.
Thus it can be expected that the infiltration of PM2.5 is
similar or larger in most parts of the developed world
and that the reduction potential could thus be even
larger. Janssen et al. (2002) looked at the relationships
between the health outcomes, including chronic
obstructive pulmonary disease, cardiovascular disease
and pneumonia, associated to ambient PM10 and
prevalence of air conditioning systems in 14 cities in
the US. In comparison with open window ventilation,
a sealed building with air-conditioning considerably
reduces PM infiltration. Consequently they found out
that the prevalence of air conditioning reduced the
concentration–response slope, especially for cardiovas-
cular diseases, suspected to be the most common
primary cause of premature death linked to PM. This
result indicates that the reduced exposures in mechan-
ically ventilated sealed buildings indeed do reduce
morbidity and mortality, and supports the idea that the
building envelope and ventilation system design can be
used to reduce PM2.5 risks also in warmer climates than
Helsinki.
Slower air exchange rates lead to decreased infiltra-

tion due to the longer air residence times and particle
decay processes. However, it is known that low air
exchange rates lead to poor indoor air quality caused
by indoor sources of CO2 and other compounds (Lin
and Deng, 2003; Thornburg et al., 2004; Wong and
Huang, 2004). The concentrations caused by indoor
sources are proportional to the air exchange rate and
would be increased if air exchange rates would be
reduced. Although the exposures to pollution of
ambient origin would be reduced due to lower infiltra-
tion rates in such situation, the net effect could be
worsening of total exposures and potentially increasing
health risks. Moreover, poorly designed building
structures can lead to moisture condensation and
consequent mold problems, having both economical
and health consequences. All these issues must be
carefully considered when planning exposure reduction
policies.

Conclusions

Engineering buildings and their ventilation systems in a
way that minimizes the infiltration of fine particles
indoors is an efficient way to reduce population
exposures to PM and corresponding health risks. In
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the EXPOLIS Helsinki data the PM2.5 infiltration
efficiencies for the residential and office buildings built
after 1990 were clearly lower than for the older
buildings and especially for the occupational buildings,
where the mechanical ventilation systems with supply
air filters became standard in 1990s. If the non-ETS-
exposed working age population in Helsinki lived and
worked in buildings with similar filtration efficiencies
as the occupational buildings built after 1990, their
PM2.5 exposures would be reduced by 27% in com-
parison with the current situation.
Advantages of filtration by ventilation systems com-

pared with other local exposure reduction alternatives
include:

• Exposures to particles from all ambient sources are
reduced;

• The reduction can be targeted to susceptible sub
populations;

• Making building filtration property information
available so that people can select their residences
according to their concern for air pollution;

• The benefits of reducing ambient air concentrations
indoors can be further amplified by indoor air
recirculation.

Based on the generally accepted no-threshold linear
dose–response model for the ambient PM2.5, any
exposure reduction will lead to a proportional reduc-
tion in PM2.5-induced mortality and other health
effects. The public health benefit potential can be tens
of thousands saved lives per year in both Europe and
North America. Improvement of the ambient air
quality, however, is necessary and the primary means
to reduce these exposures in the long run.
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MARK J. NIEUWENHUIJSEN,e KRISTINA SAARELA,f RADIM J. SRÁM,g DENIS ZMIROUh
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Exposure analysis is a crucial part of effective management of public health risks caused by pollutants and chemicals in our environment. During the last

decades, more data required for exposure analysis has become available, but the need for direct population based measurements of exposures is still clear.

The current work (i) describes the European EXPOLIS study, designed to produce this kind of exposure data for major air pollutants in Europe, and the

database created to make the collected data available for researchers (ii) reviews the exposure analysis conducted and results published so far using these

data and (iii) discusses the implications of the results from the point of view of research and environmental policy in Europe. Fine particle (with 37

elements and black smoke), nitrogen dioxide, volatile organic compounds (30 compounds) and carbon monoxide inhalation exposures and exposure-

related questionnaire data were measured in seven European cities during 1996–2000. The EXPOLIS database has been used for exposure analysis of

these pollutants for 4 years now and results have been published in approximately 30 peer-reviewed journal papers, demonstrating the versatility, usability

and scientific value of such a data set. The multipollutant exposure data from the same subjects in the random population samples allows for analyses of

the determinants, microenvironments and sources of exposures to multipollutant mixtures and associations between the different air pollutants. This

information is necessary and useful for developing effective policies and control strategies for healthier environment.
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The goals, design and methods used in the EXPOLIS study

Owing to the lack of population-based information on personal

exposures to air pollution in Europe, the EXPOLIS study (Air

Pollution Exposure Distributions within Adult Urban Populations

in Europe) was launched in 1996 as a part of the European

Community (EC) Framework program IV for Research and

Technological Development. Additional funding was provided by

the EC for the study in Czech Republic and by national funders

in all centers. The main goals of the study were: (i) to measure

personal exposures of population samples of European urban

populations to major air pollutants; (ii) to analyze the personal

and environmental determinants of these exposures and (iii) to

create a European database of these exposures and exposure-

related data for exposure analysis and simulation of population

exposures in the current and future scenarios (Jantunen et al.,

1998).

Population samples of adult urban populations were drawn

in seven selected cities or metropolitan areas, representing

different city sizes and geographical locations over Europe.

The study areas were Athens (Greece), Basle (Switzerland),

Grenoble (France), Helsinki (Finland), Milan (Italy). Oxford

(Great Britain) and Prague (Czech). The field measurements

were carried out during 1996–2000 in each center over an

approximately 1-year period to integrate over the seasonal

variations in environmental concentrations and in population

behavior and time activity. The following paragraphs give a

short overview of the main features of the study design.

Population Sampling
In each of the cities, personal exposures, microenvironment

concentrations and personal time activities were measured
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from a population sample. A Primary population sample was

randomly drawn in each city. Based on a short mailed

Screening questionnaire, two smaller subsamples were cre-

ated. The Exposure sample was recruited for exposure and

microenvironment monitoring, including all questionnaires.

The Diary sample participated for time activity diary and

questionnaire application without exposure or microenviron-

ment monitoring (Figure 1). In Athens, Basle, Helsinki,

Milan and Prague, the Primary samples were based on a

random draw from the working age (25–55 years) city

inhabitants (in Prague from limited Region V area only). In

Oxford, the primary population sample was drawn from a

larger ongoing epidemiological study. In Milan, the Exposure

sample was selected from office workers and in Prague both

the Exposure and Diary samples were selected from the

municipality employees. In Grenoble, an ongoing study on

the PM2.5 exposures and daily symptoms of 40 volunteering

asthmatics, 20–60 years of age, was adapted to yield PM2.5

exposure results, which can be related to the data from other

EXPOLIS centers. The response rates and the representa-

tiveness of the population samples were analyzed in detail by

Rotko et al. (2000b).

Measurements
Weekday personal exposures of the Exposure sample and

microenvironment concentrations at the subjects’ home

indoors, home outdoors and in workplace were monitored

for 48 h. The measured air pollutants included fine particulate

matter (PM2.5), its elemental composition (37 elements in

total) and black smoke (BS) concentration, carbon monoxide

(CO), volatile organic compounds (VOC; 30 target com-

pounds analyzed from all samples and approximately 250

other compounds identified when present in notable amounts)

and nitrogen dioxide (NO2; in Basle, Helsinki, Oxford and

Prague). Only personal PM2.5 exposures and their composi-

tion were monitored in Grenoble.

The air pollutants were selected based on their health

effects, environmental concerns and available reliable mon-

itoring techniques. CO originates especially from traffic and

indoor sources and a monitoring technique with continuous

logging of levels in 1-min interval is available; thus CO is

suitable for representing short-term variations in exposures

to traffic exhausts and indoor combustion sources. Many

VOC compounds are known to be carcinogenic, odorous and

irritating, but also precursors for tropospheric ozone (O3),

and useful markers for various emission sources. Fine

particles (PM2.5) have the greatest current health concern,

and no PM2.5 exposure studies on representative population

samples were reported in Europe so far. PM2.5 samples also

allow for analysis of their elemental composition and

assessment of exposures to nonvolatile toxic elements.

Each subject carried a personal exposure monitoring

(PEM) case and her/his home inside and outside and

workplace were equipped with microenvironment monitors

(MEM) for 48 h. The workplace concentrations were

measured for the normal working hours at the actual work

spot of the subject. The home inside and outside concentra-

tions were monitored from the time when the subject would

normally return from work to the time when she/he would

normally leave home for work. CO was measured using

electrochemical detection and continuous logging of expo-

sures with 1-min interval. CO was not separately measured in

the microenvironments. VOC were sampled on a Tenax TA

absorbent (Carbotrap in Basle) using a restricted side-flow

from the PM sampling line. NO2 was measured using a

passive sampling technique, producing a 48-h average

concentration. Weekend exposures were not measured.

To facilitate the analysis of PM2.5 composition and source

attribution, its BS levels were determined optically and elemental

composition by energy dispersive X-ray fluorescence (ED-

XRF). The PM sampling and analysis techniques are described

in more detail by Koistinen et al. (1999) and Hänninen et al.

(2002b); the elemental analysis of the filter samples by Mathys

et al. (2001), and VOC sampling by Jurvelin et al. (2001a).

Questionnaires
Four exposure questionnaires/diaries were collected from the

study participants: (i) Short Screening Questionnaire,

(ii) Core Questionnaire, (iii) Time-Microenvironment-Activ-

ity-Diary (TMAD) and (iv) Retrospective Exposure Ques-

tionnaire. The Short Screening Questionnaire evaluated the

subjects’ suitability and intention for participation before the

actual field phase of the study. The other questionnaires were

applied during the field campaign. The Core Questionnaire

covered indoor air quality related characteristics of each

subject’s home and workplace, as well as commuting,

socioeconomic and some exposure-related personal charac-

teristics, such as smoking.

The TMAD defined the EXPOLIS microenvironments

and it was used to assess the subject’s time use and activities

while their personal exposures and microenvironment con-

centrations were measured. The subject was asked to mark

for each 15-min of the day the appropriate microenviron-

ment and activity category. The 11 microenvironment

- Random draw from the local/nationalCivil Register
-Short Screening Questionnaire applied via mail or telephone interview

- Core Questionnaire
- Time-Microenvironment-Activity Diary
- Retrospective Exposure Questionnaire

- Core Questionnaire
- Time-Microenvironment-Activity Diary
- Retrospective Exposure Questionnaire

- Exposure measurements
- Microenvironment concentration 
   measurements

Primary Population Sample

Diary Sample Exposure Sample

Figure 1. Diagram of the various population samples and the collected
environmental data.
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categories in this TMAD were classified as ‘‘in transfer’’

(walk/bike, motor cycle, car/taxi, bus/tram and metro/train)

and ‘‘not in transfer’’ (home in and out, work in and out,

other in and out), and activities (cooking, self-smoking and

someone smoking in same room). Multiple entries were

allowed for each 15min. The Retrospective Exposure

Questionnaire was filled in at the end of the 48-h

measurement period addressing specific activities, which

may influence personal exposure to some compounds during

the measurement period.

Quality Assurance
A quality assurance program was used to minimize any

differences between the centers, affecting the comparability of

the results, and specifically to ensure quantitatively reliable

data. The field procedures were carefully planned, tested and

documented in the pilot phase. Quality assurance methods

included (i) using identical sampling equipment and

(ii) questionnaires according to (iii) standard operating

procedures (SOPs) in all centers, (iv) training the field

researchers together in common workshops and (v) encoura-

ging daily communication between them during the field

phase including the use of cellular phones acquired partly for

also this purpose. All international communication and

project documentation was conducted in English.

Data Management
All the collected data was stored together with the

corresponding ambient pollution and meteorological data in

the local EXPOLIS database for further statistical analyses.

The EXPOLIS data management procedures were developed

in KTL, Finland, in collaboration with other partners. Data

management objectives included the following: (i) all data

items affecting the final calculated results are stored, (ii) data

from all centers are stored, (iii) data storage structure is

flexible, allowing later any analyses necessary, (iv) correctness

of the data is maximized, (v) data entry tools and procedures

are provided and (vi) privacy of study subjects is protected.

A common relational database structure called EXPOLIS

Access Database (EADB) was developed using Microsoft

(Seattle, WA, USA) Access 7.0 (also known as version -95).

Relational database model was selected especially to allow

maximum flexibility for data processing. Microsoft Access

was selected because of its visual development and end user

friendly environment, low software cost and easy availability

as part of the most common office software package.

A local database was created for each center. The local

database consisted of Access database files for storing data

from local Civil Register and other national registers,

EXPOLIS time-activity diaries, questionnaires, monitors,

laboratory analyses, calibration procedures and environmen-

tal conditions as well as data from urban air quality and

meteorological measurements covering the field study peri-

ods. All data was stored in its primary form and all

calculations were performed using the primary data dynami-

cally.

The local data was grouped to be stored in separate

database files (Table 1). Population sample management,

questionnaire data and concentration sampling were stored

into the local main database. Time-activity diaries were

stored in a 15-min time series database, CO data in 1-min

time series database, meteorological data in 3-h resolution

time series database and ambient air quality fixed station data

in 1/24-h database. The averages of environmental variables

from the meteorological and fixed station databases were

calculated into the Fixedruns database for periods corre-

sponding the microenvironment and personal sampling.

To facilitate updating of the data processing algorithms

without changes to the data files, the local database files were

split into two functional groups. (i) Data files contained all

data tables but no queries, forms or Visual basic modules;

(ii) these data processing tool elements were stored in Tool

files. The tool databases were then linked to the data files

using Access Linked Table Manager.

A data integrity protocol was established according to the

data security requirements of EU Directive on Protection of

Table 1. Database files in the local and the combined international databases

Local database files in each center

Data files Tool file Description

HELSINKI.MDB EADBTOOL.MDB Main local database: questionnaires, exposures, concentrations, etc.

TMAD15min.MDB TMAD15minTOOL.MDB Time-activity diaries (15-min resolution) 15-min avg. personal CO data

CO1min.MDB CC1minTOOL.MDB 1-min CO exposures and TMAD data

FIXED.MDB AmbientTOOL.MDB Hourly ambient air quality data

MET.MDB 3-hourly meteorological data

FIXEDRUNS.MDB EXPOLIS sample sampling period averages of ambient and met data: all stations

Combined International database files

CIDB_Sep02_Access95.mdb Access 95 (version 7) format

CIDB_Sep02_Access97.mdb Access 97 (version 8) format

The EXPOLIS studyHänninen et al.
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Individuals with Regard to Processing Personal Data in

Medical and Epidemiological Research. According to this

protocol, persons were identified using codes, which cannot

be translated back to identity. The database files were secured

with user identification and password control and the staff

working with the databases in all centers were trained in

several common workshops.

After the field phase and local data cleaning in each center,

the local databases were collected in KTL and the main

results were then collected from the local databases and put

into the Combined International EXPOLIS Database

(CIDB) (Figure 2). Unlike the local databases, CIDB

contains only the tables of calculated concentrations. The

local databases were run solely in Access-95 environment.

The CIDB was created in Access-95 format, but then

converted also to Access-97 format. While the local

databases require user identification and are password

protected, the CIDB is not, allowing easy access to the data.

All data allowing identification of subjects have been

removed from the CIDB.

The first version of the international database was

compiled in late 1999 (v. November 1999) and delivered to

the EXPOLIS centers in CD-ROM format. The particulate

matter data was updated and the database version two

released in 2000 (December 2000). The elemental data was

updated again in summer 2002 and the database version

three was released in September 2002 (September 2002). The

complete set of EXPOLIS databases contains database

documentation (Hänninen et al., 2002a, available also from

http://www.ktl.fi/expolis/bb.html), the CIDB database in the

two versions as well as copies of all local databases in one

CD-ROM disk. Sizes of the data files on the disk are listed in

Table 2.

Review of the published results of the EXPOLIS study

Using a variety of statistical methods, the EXPOLIS

database has been used to analyze (i) the statistical

associations between exposures to different air pollutants,

(ii) the contributions of different air pollution sources to air

pollution exposures and (iii) the relationships of geographic,

CIDB

Main results from local
databases in combined
tables.

MS-Access formats

-  version 7 (a.k.a. -95)

-  version 8 (a.k.a. -97)

-  version 2000

Combined International
Database

Athens

Basle

Grenoble

Helsinki

Milan

Prague

Oxford

Local EXPOLIS databases (all in Access -95 format only)

CO1min TMAD15min Fixed Met FixedrunsLocal main db

Figure 2. Local databases and the Combined International EXPOLIS database (CIDB).

Table 2. EXPOLIS database sizes, including the local databases

Component Number of

files

Number of

folders

Uncompressed

size (MB)

CIDB 2 73

\Documents 15 1 6.4

\Additional data 6 1 3.6

\Expolis www 212 10 6.3

\Local databases

\Athens 10 1 35

\Basle 10 1 122

\Grenoble 5 1 13

\Helsinki 10 1 168

\Milan 10 1 68

\Oxford 10 1 83

\Prague 10 1 39

Complete CD-ROM 301 19 614

Compressed size of the whole CD-ROM is 233MB (compression ratio

64%).
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housing, occupation and commuting related, behavioral and

socioeconomic factors to air pollution exposures. Further,

using the EXPOLIS database, probabilistic simulation

models have been developed to assess the population

exposure distributions for specific subpopulations, specific

urban areas and selected future scenarios. These analysis

have been published, besides numerous conference abstracts,

doctoral theses and other publications, in approximately 30

papers in peer-reviewed scientific journals. These papers are

shortly reviewed below first for each pollutant and then for

the nonpollutant specific topics. Each analysis combines

various selected data from questionnaires and personal,

microenvironment and ambient measurements. Some of the

papers look at differences between the EXPOLIS cities,

others perform more detailed analyses within a single city.

The reviewed papers and EXPOLIS data subsets used are

summarized in chronological order of publication in Table 3.

Pollutant specific data from each city used in the publications

are summarized in Table 4.

PM2.5

Boudet et al. (1998) analyzed the roles of ambient air and

time spent in traffic for personal PM2.5 exposures measured

in Grenoble. A total of 40 adult asthmatic volunteers carried

a personal exposure monitor (PEM) case for 48 h. The

Grenoble study deviated from the EXPOLIS design by using

two PEM pumps and no microenvironment monitoring. One

of the PEM pumps was used to collect average 48-h samples,

while the subject manually stopped the other one whenever

he/she went to outdoors (including traffic). Each subject

Table 3. Summary published data analyses performed using the EXPOLIS database
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completed the 15-min resolution EXPOLIS time-activity

diary, indicating times spent outdoors and in various means

of transportation. The results showed that 33% of PM2.5

mass exposures occurred while outdoors or in traffic. The

average exposure levels were 7.3 mg/m3 indoors and 29 mg/m3

outdoors and in traffic. The average time spent outdoors or

in traffic was 11%.

The relationship of ambient PM10 levels and personal

PM2.5 exposures in Grenoble was analyzed by Boudet et al.

(2001). PM10 levels were available from one urban back-

ground station and one traffic-oriented station. According to

the geographical home and workplace locations and the

traffic density in the corresponding nearby streets, six

proximity models were created for the difference of ambient

PM10 and personal PM2.5 levels.

Götschi et al. (2002) analyzed the residential indoor and

outdoor PM2.5 and BS levels in four EXPOLIS cities,

Athens, Basle, Helsinki and Prague. PM2.5, and BS levels

were lowest in Helsinki, moderate in Basle and remarkably

higher in Athens and Prague. In each city, Spearman rank

correlation coefficients of indoors versus outdoors were

higher for BS than for PM2.5.

In a linear regression model (data from all cities),

outdoor BS levels explained clearly more of indoor variation

(86%) than in the corresponding PM2.5 model (59%). The

authors conclude that BS captures the traffic-, especially

diesel, related elemental carbon particles better than PM2.5

measurement and thus can be used as a cheap additional

analysis method to assess concentration of particles of traffic

origin.

Koistinen et al. (2001) used statistical methods to analyze

PM2.5 exposures and exposure determinants in EXPOLISF
Helsinki. The most important single factor affecting

exposures was found to be exposure to environmental

tobacco smoke (ETS); mean exposure level of ETS-exposed

subjects was almost double compared to those not (16.6 vs.

9.6 mg/m3). The mean exposure level of active smokers

(exposure to smoking assessed only as ETS) was 31mg/m3.

The mean residential indoor concentrations of non-ETS-

exposed subjects were lower than those outdoors (levels were

8.2 and 9.5 mg/m3, respectively). In simple linear regression

models, residential indoor concentrations were the best

predictors of personal exposure concentrations, even though

the residential concentrations were measured in the EX-

POLIS protocol only during the leisure time. Coefficients of

determination (R2) between personal exposures of all

participants and residential indoor, workplace indoor,

residential outdoor and ambient concentrations were 0.53,

0.38, 0.17 and 0.16, respectively.

Multiple regression, using residential indoor and work-

place concentrations and traffic density in the nearest street

from home as independent variables, explained 77% of the

exposure variance of non-ETS-exposed subjects. Stepwise

regression without residential and workplace indoor concen-

trations explained 47% of the exposure variance using

ambient concentration and home location as predictors of

personal exposure. Wilcoxon and ANOVA tests identified

the time of windows kept open during the 48-h measurement

period and home location (classified as downtown/suburban

high-rise/suburban single houses) as statistically significant

determinants of personal exposures. Time spent in traffic,

home to work distance, cooking or stove type used at home

were not statistically significantly associated to the exposure

levels.

Rotko et al. (2000a) used similar techniques to analyze

relationships between EXPOLIS-Helsinki PM2.5 exposures

and sociodemographic factors. Variation in personal

exposures between sociodemographic subgroups was

best described by differences in occupational status, educa-

tion level and age. Lower occupational status, less-educated

and younger participants have greater exposures than

upper occupational status, more-educated and older partici-

pants. Differences in workplace concentrations explained

most of the occupational socioeconomic differences. Differ-

ences in personal day and night exposures and residential

indoor concentrations explained the exposure differences

Table 4. Summary of published data analyses for each pollutant in each city

Athens Basle Grenoble Helsinki Milan Oxford Prague Total

PM2.5 2, 19, 20, 21, 25 2, 8, 19, 20, 21, 25 6, 10 2, 5, 9, 12, 19, 20, 21,

22, 23, 24, 25

19, 20, 21 21, 28 19, 20, 21, 25 15

PM2.5 elements 8 23, 24 28 4

PM2.5 BS 19 19 19 19 19 1

Target VOC 4 4 N/A 4, 11, 15, 16 4 28 4 5

Other VOC N/A 17 1

NO2 21 13, 21 N/A 13, 14, 21 21 21, 28 13, 21 4

CO 18 18 N/A 18 18, 26, 27 28 18 4

Total 7 10 2 19 7 2 7 -

N/A¼ data not available.

The listed numbers refer to references in Table 3, except in the total column and row where they are counts of papers.
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between age groups. Men had higher exposure levels and

higher differences between sociodemographic groups than

women. No gender, socioeconomic or age differences were

observed in residential outdoor concentrations between

groups.

In a following work, Koistinen et al. (2004) used principal

component analysis (PCA) and PM2.5 elemental analysis

data to identify PM sources from EXPOLIS-Helsinki

concentrations. Then, mass reconstruction techniques was

used to quantify source contributions for residential indoor

and outdoor and workplace indoor concentrations and

personal 48-h exposures. Inorganic secondary particles

contributed 31 (personal)–46 (outdoors) percents to the

PM2.5 levels. Second highest were primary particles

(28–35%) followed by soil particles (16–27%). Besides these

source categories, also sea/road salt and detergent sources

were identified. Resuspension of soil particles in indoor

environments was found to be notable. As the authors

concluded, the use of fixed site data in epidemiological studies

might lead to underestimation of true exposure–response

relationship and respective health effects. Kousa et al. (2002)

analyzed the exposure chain of PM2.5 levels from ambient

levels to residential outdoor, indoor and workplace concen-

trations and personal exposures in Athens, Basle, Helsinki

and Prague. Ambient PM2.5 data was available only from

Helsinki, where ambient levels correlated quite well with

residential outdoor concentrations (r¼ 0.90). Highest corre-

lations were found between leisure time personal exposures

and residential indoor concentrations. When ETS exposures

were excluded, these correlation coefficients varied between

0.72 (Prague) and 0.92 (Basle) between the cities.

Linear regression model built using log-transformed non-

ETS residential indoor concentrations from all cities

predicted 76% of variation in personal leisure time

exposures. Similar model predicted 66% of the day time

exposure variation with workplace indoor concentration.

Leisure time and workday exposures correlated with each

other quite poorly. In the absence of ETS and other

significant indoor or personal sources and for nonworking,

noncommuting subjects, ambient fixed station levels ex-

plained approximately 50% of personal exposure variation.

Oglesby et al. (2000a) used EXPOLIS-Basle PM2.5 levels

and elemental data to study validity of ambient PM

concentrations as surrogates for personal exposures of

ambient origin from different sources. Elemental data was

used to estimate PM2.5 fraction from long-range transport,

traffic and crustal origin. Personal PM2.5 mass exposures

were not correlated to corresponding residential outdoor

levels (rank correlation 0.07). Long-range fractions of

residential outdoor concentrations correlated much better

with corresponding personal exposure fractions (rank

correlation 0.85) than the traffic and crustal fractions

(varying from element to element from 0.12 to 0.53). The

finding was consistent with the spatially homogeneous

regional pollution and higher spatial variability of traffic

and crustal indicators. Thus, the authors conclude that for

some source-specific exposures, ambient fixed site data is not

the optimal measure.

VOC
Edwards and Jantunen (2001) and Edwards et al. (2001a, b)

analyzed the Helsinki VOC data from several aspects.

Edwards and Jantunen (2001) focused on benzene exposures

only. Observed median levels were for the personal exposures

2.5 mg/m3 for nonsmokers, 2.9 mg/m3 for ETS-exposed

subjects and 3.1 mg/m3 for active smokers. Residential indoor

levels were 3.1 and 1.9 mg/m3 for environments with and

without tobacco smoke, respectively. Residential outdoor

level was 1.51mg/m3 and workplace concentrations were 3.6

and 2.1 mg/m3 (with and without tobacco smoke, respec-

tively).

Multiple stepwise regression identified indoor benzene

concentrations as the strongest predictor for personal

benzene exposures of those not exposed to tobacco smoke,

followed sequentially by time spent in a car, time in the

indoor environment, indoor workplace concentrations and

time in the home workshop. Relationships between indoor

and outdoor microenvironment concentrations and personal

exposures showed considerable variation between seasons.

Automobile use-related activities were significantly associated

with elevated benzene levels in personal and indoor

measurements when tobacco smoke was not present.

Edwards et al. (2001b) looked at the 30 measured target

VOC compounds measured in EXPOLIS-Helsinki. Residen-

tial indoor levels were found to be higher than outdoor levels

for all other compounds but hexane. Personal exposure levels

were lower and workplace indoor concentrations even still

lower for compounds that had strong residential indoor

sources (D-limonene, alpha pinene, 3-carene, hexanal, 2-

methyl-1-propanol and 1-butanol).

ETS-exposed participants had significantly higher personal

exposures to benzene, toluene, styrene, m, p-xylene, o-xylene,

ethylbenzene and trimethylbenzene. ETS-free workplace

concentrations were higher than ETS-free personal exposure

concentrations for styrene, hexane and cyclohexane. Personal

exposures of participants not exposed to ETS were

approximately equivalent to time-weighted ETS-free indoor

and workplace concentrations, except for octanal and

compounds associated with traffc, which showed higher

personal exposure concentrations than any microenviron-

ment (o-xylene, ethylbenzene, benzene, undecane, nonane,

decane, m, p-xylene, and trimethylbenzene). The observed

concentration levels varied from below 1mg/m3 to few

hundreds or few thousands of mg/m3. Highest single levels

were observed for m, p-xylene, 2-butoxyethanol and

cyclohexane (2779, 2421 and 1512 mg/m3, respectively).

In their follow-up work, Edwards et al. (2001a) used

principal component analysis to identify VOC sources from

The EXPOLIS studyHänninen et al.
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the Helsinki microenvironment concentration and personal

exposure data. Variability in VOC concentrations in

residential outdoor microenvironments was dominated by

compounds associated with long-range transport of pollu-

tants, followed by traffic emissions, emissions from trees and

household product emissions. Variability in VOC concentra-

tions in ETS-free residential indoor environments was

dominated by compounds associated with indoor cleaning

products, followed by compounds associated with traffic

emissions, long-range transport of pollutants and household

product emissions. The median indoor/outdoor ratios for

compounds typically associated with traffic emissions and

long-range transport of pollutants exceeded 1, in some cases

quite considerably, indicating substantial indoor source

contributions.

Jurvelin et al. (2001b) analyzed a carbonyl data set

collected in EXPOLIS-Helsinki besides the standard EX-

POLIS measurements. Using Sep-Pak DNPH-Silica car-

tridges, formaldehyde and acetaldehyde exposures and

concentrations in the standard EXPOLISmicroenvironments

were measured for 15 subjects. Observed mean personal

exposure levels were 21.4 ppb for formaldehyde and 7.9 ppb

for acetaldehyde. Personal exposures were systematically

lower than residential indoor concentrations for both

compounds, and ambient air concentrations were lower than

both residential indoor concentrations and personal exposure

levels. The mean workplace concentrations of both com-

pounds were lower than mean residential indoor concentra-

tions. This indicated that residential indoor concentrations

are better estimates of personal exposures to these com-

pounds than the ambient concentrations.

In their follow-up work, Jurvelin et al. (2003) looked at all

the 16 carbonyl compounds measured in this substudy.

Findings for the remaining 14 compounds were similar than

those presented in the previous paper for formaldehyde and

acetaldehyde; residential indoor concentrations were higher

than personal exposures and other microenvironment con-

centrations, thus driving the personal exposures.

CO
The CO exposures have been analyzed by Georgoulis et al.

(2002) in five of the EXPOLIS cities and Bruinen de Bruin

et al. (2004a) in detail in Milan. Georgoulis et al. (2002) used

two different approaches in the statistical analyses. First, the

determinants of log-transformed average 48-h exposures

were analyzed using analysis of variance (ANOVA) and

multiple linear regression techniques. Secondly, the CO

personal exposure corresponding to the specific 15-min time

periods when different activities (i.e. ‘‘in transfer’’, ‘‘under

ETS exposure’’, ‘‘during use of gas appliances’’) were taking

place was calculated and compared using nonparametric

tests.

The geometric mean 48-h exposure levels of nonsmoking

subjects were 1.68, 0.82, 0.45, 2.17 and 1.50mg/m3 in

Athens, Basle, Helsinki, Milan and Prague, respectively.

Levels for smokers were slightly or substantially higher in all

cities but Helsinki. Proportion of smokers was restricted in

the population sampling process in all but Helsinki and

Milan. The Spearman rank correlation coefficients between

ambient and personal 48-h levels varied from 0.33 (Helsinki)

to 0.77 (Milan).

The coefficient of determination (adjusted R2) in regression

models, using the log-transformed 48-h personal exposure as

the dependent variable and the independent variables were

the ambient concentrations, ETS exposure, exposure to gas

appliances and the time spent in traffic, varied from 0.08

(Helsinki) to 0.59 (Milan).

The analysis of short-term (15-min) exposure levels

showed that in all cities the time spent in traffic corresponded

to the highest personal exposure events. Exposure during

time spent outdoors was second in Athens, Helsinki and

Milan, but not in Basle and Prague. Time spent indoors

resulted on average in the lowest exposure.

Bruinen de Bruin et al. (2004a) studied the CO measure-

ments conducted in Milan in more detail focusing on the

contribution of indoor sources on the microenvironment

concentration and personal exposure levels. Bruinen be Bruin

also calculated running 1- and 8-h average exposures and

compared the personal running maxima to corresponding

ambient levels. For the 1-h running average, the personal

exposures were found to be higher than the ambient levels,

indicating that short-term exposure peaks cannot be seen in

ambient data.

Bruinen de Bruin et al. (2004a) also calculated propor-

tional contributions of microenvironments to the 48-h

personal exposures. It was found that exposures in indoor

environments contributed approximately 82% of the total

CO exposures. While only 7.5% of time was spent in traffic,

the contribution to 48-h exposures was clearly higher, 16%,

indicating higher CO levels in traffic. Both ETS and gas

cooking were statistically significantly connected to micro-

environment concentrations (Po0.05). Multiple linear re-

gression models, using ambient levels and the presence of

indoor sources (ETS and gas cooking, yes/no) as indepen-

dent variables, explained 49, 36 and 89% (adjusted R2) of

the microenvironment concentrations in home indoor, work

indoor and other indoor, respectively.

NO2

Kousa et al. (2001) analyzed NO2 levels and exposures in

Basle, Helsinki and Prague. The mean residential indoor and

outdoor levels were lowest in Helsinki (24 and 18 mg/m3,

respectively), intermediate in Basle (36 and 27 mg/m3) and

highest in Prague (61 and 43 mg/m3). Workplace levels were

highest in Basle, followed by Prague and Helsinki (36, 30

and 27 mg/m3, respectively). Time-weighted average micro-

environment exposure model predicted 74% of the personal

exposure variation. Regression models using log-transformed
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residential outdoor and ambient levels and home and

workplace characteristics (work location, use of gas appli-

ances and keeping windows open) as predictors explained 48

and 37% of the personal exposure variation. Regression

model using only ambient monitoring explained 19% of

exposure variation for all centers and only 11% in Helsinki

with the largest data set.

Rotko et al. (2001) studied microenvironment, behavioral

and sociodemographic factors in relationship to personal

NO2 exposures in Helsinki. Differences in exposures were

analyzed by comparing subpopulations created by grouping

exposures according to behavioral, socioeconomic and

demographic factors. Factors associated with statistically

significant differences between the population groups were

work and residence location, housing characteristics, traffic

volume near residence, season and keeping windows open.

Exposure to ETS and use of gas stove were also associated

with elevated NO2 exposures, although the latter were rare in

Helsinki. Increased education associated with decreasing

exposures. Employed men had lower exposures on the

average than unemployed men, but otherwise the occupa-

tional status did not link to exposure levels.

Participation Bias
Oglesby et al. (2000b) analyzed the characteristics of the

EXPOLIS participants in Basle and in Helsinki for

participation bias. Participants of intensive exposure mon-

itoring (exposure sample) were compared to subjects that

completed only the questionnaire study (diary sample). The

comparison was based on home locations and traffic densities

on the nearby street. In Basle exposure study, participants

were more likely to live along streets with low traffic volume.

Adjusted for sex, age and nationality, an increase of 100 cars

per hour was associated with 14% decrease in participation.

In Helsinki, the corresponding finding was qualitatively

similar but not statistically significant.

Air Pollution Annoyance
Rotko et al. (2002) compared the perceived air quality to

measured PM2.5 and NO2 exposures in six cities (Athens,

Basle, Helsinki, Milan, Oxford and Prague). The measured

microenvironment concentrations and personal exposures

were compared to the annoyance levels reported in the

questionnaires for home, work and traffic.

A considerable proportion of the adults surveyed

was annoyed by air pollution. Female gender, self-reported

respiratory symptoms, downtown living and self-reported

sensitivity to air pollution were directly associated with

high air pollution annoyance score for exposure in traffic,

but association for smoking status, age or education level

were statistically significant. Population level annoyance

averages correlated with the city average exposure levels of

PM2.5 and NO2. A high correlation was observed between

the personal 48-h PM2.5 exposure and perceived annoyance

at home as well as between the mean annoyance at work and

both the average work indoor PM2.5 and the personal work

time PM2.5 exposure. With the other determinants (gender,

city code, home location) and home outdoor levels, the

model explained 14% (PM2.5) and 19% (NO2) of the

variation in perceived air pollution annoyance in traffic.

Compared to Helsinki, in Basle and Prague the adult

participants were more annoyed by air pollution while in

traffic.

Reporting to Study Participants
Helm et al. (2000) compared reporting procedures used in the

German Environmental Survey (Seifert et al., 2000) and the

Helsinki part of the EXPOLIS study. Both independently

reported personal results in a similar fashion. Apparently, a

lot of thought and planning was found to be necessary to

produce reports containing a quantity and depth of expert

information that is easily and correctly understood by

laymen.

Simulation of Population Exposures
Development of probabilistic simulation modeling technique

was one of the original goals of the EXPOLIS study

(Jantunen et al., 1998). The Dutch Institute for Public

Health and the Environment (RIVM) coordinated the

development of worksheet-based framework for building

population exposure simulation models. The framework

development is described by Kruize et al. (2003). Kruize et al.

demonstrate the modeling environment by presenting two

examples.

The first example was built around the EXPOLIS

database; PM2.5 exposures are simulated for Athens, Basle,

Helsinki and Prague using a simple microenvironment

approach. The model inputs were formed directly from the

EXPOLIS measurements in residential indoor, outdoors and

workplace. Time-activity distributions were created from the

EXPOLIS time-microenvironment-activity diaries; the EX-

POLIS population was not divided into any subpopulations.

The model outputs roughly predicted the mean exposures in

each city and the simulated mean exposures ranked into same

order as the observed exposures. The differences between

model output and observed distribution were bigger for

standard deviation (SD) estimates.

The second example modeled PM10 exposures of the whole

Dutch population. Rural and urban populations were

modeled separately and each of them was divided into four

age/occupation categories. Indoor concentrations are mod-

eled using constant effective penetration factor. ETS

exposures were modeled as an indoor source in each

microenvironment. Model outputs were presented for the

current situation (including ETS exposures) and for the

hypothetical scenario where the ETS exposures are excluded.

The results showed that ETS exposures contribute remark-

ably to the population exposure distribution as was to be
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expected. The exposures of the highest quartile were

approximately doubled with ETS.

Hänninen et al. (2003) used the EXPOLIS simulation

framework to perform detailed validation and model

component evaluation tests using Helsinki PM2.5 data.

Four models were built using different approaches to

microenvironment and subpopulation definitions. All models

were based on microenvironment concentration distributions

observed in the EXPOLIS study. The two simple models

did not exclude ETS affected environments from the

data and modeled the target population time activity with

single beta distributions for each microenvironment. The two

more detailed models excluded ETS cases from the data

and modeled time activities of employed and nonemployed

subpopulations separately. The model outputs were com-

pared to corresponding observed distributions both

graphically and numerically. All models compared reason-

ably with the validation data, but the two detailed models

were clearly closer to the observed values especially in the

higher percentiles of the population distribution. The

population averages were quite close to observed values

(e.g. for model 4 both levels were 9.2 mg/m3), but the

SDs were slightly underestimated by the simpler models

(23–35%). The results showed, as expected, that the

microenvironment modeling approach accurately predicted

the exposures when the true microenvironment concentration

distributions were known.

In their follow up work, Hänninen et al. (2004) developed

the microenvironment-based modeling approach further,

using the effective penetration factor approach to model

indoor concentrations from ambient PM2.5 concentrations in

Helsinki. Three different approaches to model ambient

concentrations were tested. Penetration factors were analyzed

from the EXPOLIS elemental data using sulfur as a marker

for particle fraction of ambient origin. Fourth model was

calculated including ETS indoor source. The non-ETS

models predicted the mean population exposure level within

5–6% of the observed value; the ETS-included model

underestimated the mean by 15%. All models under-

estimated the highest percentiles slightly and thus the

modeled SDs were approximately 30% lower than the

observed values.

Bruinen de Bruin et al. (2004b) used the simple micro-

environment model approach demonstrated by Kruize et al.

(2003) and validated by Hänninen et al. (2003) for PM2.5 to

model CO exposures in Milan. Bruinen de Bruin et al.

(2004b) tested different levels of grouping of the EXPOLIS

time-activity diary categories to simulate CO exposures with

different averaging times. The most detailed microenviron-

ment model used the original 11 diary microenvironments

directly. The second approach grouped traffic microenviron-

ments and all stationary outdoor microenvironments to-

gether producing five microenvironments (home, work, other

indoors, outdoors and traffic). The simplest microenviron-

ment model used only home and workplace microenviron-

ments. Each of these three microenvironment models were

run for running maximum exposures for 24-, 8- and 1-h

averaging times.

All models predicted the mean population exposure within

711% of the observed value; results for the 24-h averaging

time were closest for the 5- and 11-microenvironment

models. All models underestimated the population SD by

3–25%. The results demonstrated that the modeling

approach can be used even for averaging times below 24 h

and that the model is not very sensitive to the number

of microenvironments included even in the case of CO,

which has much steeper within-city concentration gradients

than PM2.5.

Oxford Results
Lai et al. (2004) reported a summary of results for all

pollutants measured in Oxford, UK. They found that the

exposure levels were in general higher than those observed in

EXPOLIS-Helsinki, but lower than those in the all other

EXPOLIS cities. They looked also at the correlations for

exposure levels of different pollutants; the only statistically

significant correlation was found between TVOC and PM2.5

(for log-transformed data r¼ 0.41, Po0.05). They con-

cluded that various pollutants cannot be used as markers for

each other.

Implications for policy and research in Europe

Numerous epidemiological studies have connected air

pollutant levels to adverse health effects, including premature

mortality (e.g. Laden et al., 2000; Pope et al., 2002). While

there has been much controversy about the accuracy of the

exposure estimates used in such studies, and thus in the actual

value of the dose–response factors, there is no doubt about

the finding itself: current urban levels of air pollution have a

statistical connection with complications of health.

It is possible to observe this connection to public health

using merely proxies of true exposuresFsuch as ambient air

pollution levels measured at fixed monitoring stations within

the urban areas under studyFbut any health effect caused by

air pollution to a specific individual at a specific time must be

caused by the actual personal exposure of this individual.

Development of science-based policies for promotion of

public health requires careful analysis of exposures within the

population, including emission sources, exposure routes,

behavioral determinants and population groups at risk.

When information about these critical factors accumulates,

also more specific dose–response factors for various pollu-

tants are needed. The strength of the epidemiological dose–

response factors is in the fact that they represent real

population in an existing exposure scenario, but they often

lack information on the differences between population
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groups and specificity to causal agents. Since exposures to a

specific pollutant vary from subpopulation to another, and

various policy options affect these exposures with largely

different efficacies, exposure and risk analysis should be

carried out in population group level. In the case of

particulate matter, the pollutant itself consists of different

fractions, with presumably different toxicities, and thus in

this case also the dose–response factor should be determined

for each of these fractions to allow efficient policy optimiza-

tions.

Value of Exposure Databases
Databases with representative data on exposure factors on

population level as well as data on actual exposures are

necessary to analyze population exposures for efficient

management. The published data analyses based on the

EXPOLIS database show that the data collection and storage

were successful, and that the database has made it possible to

extract and combine these data in many different useful ways.

The data analysis of the EXPOLIS data is by no means

complete. This can been seen clearly from the summaries in

Tables 3 and 4, but also the analyses already performed are

not comprehensive and leave room for more detailed or

focused analyses of the same data even in scientific sense.

Exposure databases can be valuable administrative tools in

exposure management even after they have been scientifically

completely exploited, as shown earlier by THERdbASE

(Hern et al., 1997).

Documentation of complex data systems is always a

challenge. Scientists and analysts need information on the

data structures, units of measure and many other things that

are not necessarily self-evident from the data itself. Thus,

there is a clear need to produce and make available project

documents containing this information, allowing the scien-

tists to use the existing and available data to its maximum.

Documentation of the EXPOLIS databases, including

description of data entry, quality control and processing

tools, is available in the Internet (Hänninen et al., 2002a,

http://www.ktl.fi/expolis/bb.html).

Indoor Air Pollution
For some pollutants, the personal exposures are driven

mainly by pollution of ambient origin. For these, controlling

of ambient sources and ambient concentrations is the most

effective approach to protect public health. For many others,

the indoor pollutant levels are higher than the ambient levels

and modify the personal exposures to such extent that it is

not possible to protect public health by only looking at

ambient environment. These pollutants, like many VOCs,

carbon monoxide or fine particles, have significant indoor

sources, which raise the concentrations in closed compart-

ments with limited air ventilation to high levels even when the

pollutant emission indoors would be small compared to

ambient emissions.

The European Commission is currently starting to develop

methodologies to control indoor exposures to chemical

compounds. Analysis of the total exposures is required to

select the pollutants reasonably and new way of thinking is

needed to develop means for controlling them. European

industry has also expressed increasing concern for conducting

high-quality scientific exposure analysis, as it is in their

interests to avoid health relevant exposures that may lead to

expensive interventions. An example of such research funded

by the European industry is the EXPOLIS-INDEX project,

where the EXPOLIS time activity, indoor concentration and

personal exposure data are used to analyze exposure

determinants especially for the indoor environments.

ETS
ETS is known to be an important source for a large number

of pollutants. Approximately half of the gross population

exposure to fine particles can be attributed to ETSFand this

is not even taking into account direct inhalation of tobacco

smoke by active smokers. Technically speaking, by far the

most efficient way to reduce population exposures to

PM2.5Fand to many other air pollutants as wellFwould

be to abandon smoking. Good results have been achieved by

controlling exposures to ETS in North European countries

by setting restrictions to smoking in public spaces and

workplaces. Problems in exposures of special groups, like

restaurant workers or children of smoking parents, still

mostly remain.

Exposure Levels Against Current Guidelines
European Commission (EC) has set limit values for pollutant

concentrations in the ambient air based on the Framework

Directive 1996/62/EC (http://europa.eu.int/comm/environ-

ment/air/ambient.htm). Actual limit values have been set for

NO2, SO2, Pb and PM10 in Daughter Directive 1999/30/EC

and limit values for CO and benzene in Daughter Directive

2000/69/EC. Limit values for arsenic (As), cadmium (Cd),

mercury (Hg), nickel (Ni) and polycyclic aromatic hydro-

carbons (PAH) have been suggested, but they are not set yet.

WHO (2000) has set guidelines for slightly larger number of

pollutants (Table 5). In overlapping cases, the values are

identical or close to each other in most cases.

For NO2, EXPOLIS data is available from four cities

(Basle, Helsinki, Oxford and Prague). Population average of

personal exposures to NO2 exceeds the annual EC limit value

(40mg/m3) in Prague (Figure 3). The hourly limit value

(200 mg/m3) is not exceeded by maximum 48-h exposure in

any of the four cities with NO2 data, but in Basle the

observed maximum is very close (184 mg/m3), indicating a

high probability of hourly limit value exceedance, and also in

Oxford and Prague it is more than half of the limit

valueFlevels which must be considered high when the much

longer averaging time in the measurement is taken into

account.
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CO data is available from six cities (Athens, Basle,

Helsinki, Milan, Oxford and Prague). The 8-h EC

limit value (10mg/m3) is exceeded by the observed 95th

percentile in Athens and Prague (Figure 3) and by the

maximum observed 8-h exposure level in Basle and Helsinki

(Table 5). Even in Milan and Oxford the highest 1-h

exposure level is more than double compared to the 8-h limit

value. The WHO 1-h guideline (60mg/m3) is exceeded by

corresponding maximum exposures in Athens and Helsinki

(Table 5). CO is a good example of an air pollutant, for

which the highest exposures are not at all related to the

ambient concentrations.

Benzene exposures were measured in five cities (Athens,

Basle, Helsinki, Oxford and Prague). Population average

exceeded EC limit value for annual average benzene

concentration (5mg/m3) clearly in Athens and Prague, and

just slightly in Basel. Levels in Helsinki and Oxford are quite

close to the limit value as well. Highest observed personal

exposures exceed the limit value five-fold in Oxford and more

in the other cities (Table 5).

Particulate matter limit value has been set only to PM10

particles in Europe, although also PM2.5 limit values are

under consideration. USA Environmental protection agency

has set guidelines for PM2.5 as 65 mg/m
3 (24-h) and 15 mg/m3

(annual). The EC annual limit value for PM10 is 40 mg/m3,

which is not exceeded by the average population PM2.5

exposure in any of the five cities with personal data (Athens,

Basle, Helsinki, Oxford and Prague). Only microenviron-

ment levels are available from Milan, where both the average

residential indoor and the average workplace indoor air

concentration exceeded the annual limit value. Highest

observed personal PM2.5 exposure levels are two to five

times higher than the 24-h PM10 limit value (50 mg/m3) in all

other cities except in Oxford, where the observed maximum is

77 mg/m3 (being only 1.5 times higher than the limit value;

Table 5). These results show that a fraction of personal PM2.5
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(and thus also PM10) exposures in all cities exceed the limit

value set for the ambient air. It must be noted that when

comparing PM2.5 levels to PM10 limit values, a higher

observed level indicates a sure exceedance, while a level below

the limit value does not guarantee that the PM10 level would

not in fact reach the limit. This is due to the fact that by

definition all PM2.5 particles are also PM10 particles (i.e.

smaller than 10 mm in aerodynamic diameter).

The EC limit value for annual PM10 concentration is lower

than the US EPA guideline value for PM2.5 and thus the limit

value requirement is much tighter. On the average,

approximately half of the PM10 particle mass is caused by

particles smaller than 2.5 mm (i.e. by PM2.5 particles). This

approximation would imply that the annual EC limit value

would correspond to PM2.5 level of 25 mg/m
3, less than half

of the US guideline. The EC limit value for 24-h PM10 levels

is set first at 40 mg/m3, but then reduced to 20 mg/m3 between

2005 and 2010. The latter level would correspond to

approximately 10mg/m3 when translated to PM2.5 particles,

a level also tighter than the corresponding US guideline

(15mg/m3). Tight limit values support efficient public health

protection, but the observed exposure levels, when compared

against these values, indicate that in reality large fraction of

the urban European population is exposed to much higher

concentrations.

Elemental composition of PM2.5 is available from

five cities (Athens, Basle, Grenoble, Helsinki and Oxford).

Annual limit value has been set to lead (Pb; 0.5 mg/m3).

Neither average nor maximum observed exposure level

exceeded this in any of the cities. In the future, limit value

will probably be set also for arsenic (As), cadmium (Cd)

and nickel (Ni) (suggested limit values 6, 5 and 20 ng/m3,

respectively). The average population exposure level exceeds

the suggested arsenic limit value in two cities (Athens

and Grenoble) and maximum personal exposure level in

all five cities. The average exposure levels exceed

the suggested cadmium limit value in three cities and

the maximum personal exposures exceed it 6–10-fold in all

cities. There was a large variation in the cadmium blank

values and it is possible that the observed differences between

the cities are caused by the variability in the blank filter

contamination and thus the cadmium results were not

included in Table 5. It seems probable, however, that the

suggested cadmium limit value is exceeded in many of the

cities. The average exposure levels are below the suggested

nickel limit value in all cities, but the maximum personal level

exceeded it in Oxford.

All these exceedances indicate that during the 1996–1999

situation, population exposures to these substances were

considerable and that there indeed is a need to control these

exposures. Analysis of total exposures and corresponding

new control strategies are needed besides ambient air

guidelines and limit values to ensure also safe and healthy

indoor environment for the urban populations.

Traffic as a Emission Source and an Exposure
Microenvironment
During the last few decades tremendous progress has been

achieved in lowering industrial and energy production

emissions. At the same time the traffic, especially road traffic

has continued to increase. While auto industry has been able

to continuously provide new models with lower emission

rates, the increase in the traffic volume and ageing car fleet

have kept the total emission levels quite high. Since traffic is

by nature distributed evenly to the areas where most people

are, the emission-to-exposure ratio, the so-called intake

fraction (Bennett et al., 2002), is high. The determinant

analysis conducted this far on PM2.5, its elemental composi-

tion, BS and VOC exposures in the EXPOLIS study have

been able to indicate traffic originating fractions of the

exposures. The PM2.5 exposure level while in traffic seems to

be in average two times higher than the overall average

exposure level. About half of the total exposure to traffic-

generated fine PM appears to be acquired while commuting.

Thus time spent in road traffic is an important determinant of

personal exposure levels.

Exposure to traffic-generated pollutants occurs of course

also while persons are not in the traffic themselves. As the

time spent in traffic is typically something like 5–10% of the

total daily time, a substantial fraction of traffic-originating

exposures occurs outside traffic. Traffic-generated pollutants

infiltrate indoors and this can be controlled by building

design, ventilation systems and separating the occupied

indoor spaces from direct influence of vehicles by, for

example, using detached garages.

The role of long-range transported pollution has been

acknowledged for a long time. The contribution of traffic to

the formation of the long-range transported pollution,

however, has not been clearly separated from industrial and

natural emissions. As more than half of the PM2.5

concentrations in Europe are caused by long-range trans-

portation, it is very important to attribute this exposure

fraction to sources. When emissions are looked at local scale,

it appears to be clear that industrial emissionsFwith high

emission height and efficient emission controlsFare no

longer important for exposures locally, but this might not be

true for long-range-transported pollution. Also, the role of

emissions in developing countries or in Eastern Europe might

prove to be significant contributors to exposures in Europe

and they might be among the most cost-effective targets for

exposure controls.

Sensitive Population Groups
Exposure analysis is achieving the required level of sophis-

tication to produce exposure estimates for specific population

groups, including elderly, infants and persons suffering from

a specific disease, like lung or heart conditions. When

alternative and often expensive environmental policy scenar-

ios are compared, it is essential to look at their efficiencies in
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reducing population exposures especially in those subpopula-

tions where the burden of adverse health effects is the highest.

If this analysis is based on centrally monitored ambient air

quality data only, and dose–response factors obtained for the

general population, non-optimal policy may be selected. To

allow the risk analyst to use subpopulation-based exposure

analysis efficiently, they should have available dose–response

factors that would be specific to the target groups. The

epidemiological studies are coming out more and more with

this kind of information, but still much remains to be done in

both epidemiology and toxicology.

Mixtures of Pollutants
During the past decades, air pollutant control mechanisms

have been established using guideline levels for concentra-

tions in occupational and ambient environments. Such

guidelines might prove useful also for nonoccupational

indoor environments, but because of the diversity of such

environments, controlling the prevailing levels is not

straightforward. Thus probably also other indoor air quality

management approaches must be developed.

The guidelines are set for specified pollutants (WHO,

2000). When they are used, the concentration of the target

pollutant is compared to the guideline level, taking into

account the correct averaging time. This procedure does not

account for health stress from multiple pollutants at the same

time. Multiple stressors are taken into account in the

epidemiological studies, where the total observed health

effect is attributed to the explaining variables; there is no

guarantee that the effects would be attributed to the correct

causes, but the total effect of multiple stressors is seen. When

guidelines are set, the scientific evidence used as background

information may well include data on effects caused together

with coexisting pollutants to some extent. In a given

situation, however, dozens of air pollutants occur together

and contribute to the health stress in synergetic or additive

ways. For example, the analysis of the EXPOLIS data shows

that the same subjects are typically exposed to high levels of

many pollutants. New techniques and approaches are needed

to study the effects of these multiple stressor exposures. New

information is needed to create control mechanisms to

protect the public in situations where the concentration of

each single pollutant is below the guideline, but the

combination of these pollutants poses a risk to the health.

Conclusions

Production and availability of population-based exposure

data for exposure analysis has been a high priority goal for

exposure research during the last decade. Such data is needed

for development of efficient exposure control and reduction

strategies: when a pollutant has multiple routes of exposures,

the dominating route (s) should be controlled first. In cases of

multiple emission sources, reductions should be focused on

the sources contributing most to the exposures. The roles of

different routes and sources should always be analyzed before

making decisions about costlyFor otherwise harmfulFin-

terventions.

The TEAM studies (e.g. Wallace et al., 1987; Özkaynak

et al., 1996) and the NHEXAS research program (Lioy and

Pellizzari, 1995; Pellizzari et al., 2001) have produced such

data in the US and databases have been made available to

support maximal use of these data collected using public

funds. The current work describes the development and

content of the first European multipollutant, multicenter

exposure database focusing on inhalation exposures. A

European database was created, combining questionnaire,

air concentration and exposure data from seven cities

collected during 1996–1999. The database structures are

described in the project document Hänninen et al. (2002a)

and in the current paper. The EXPOLIS databases are

collected on a single CD-ROM disk containing both the local

databases from each of the study centers as well as the

combined CIDB with the main results.

The multipollutant exposure data from the same subjects

in the random population samples allows for analyses of the

determinants, microenvironments and sources of exposures

to multipollutant mixtures. Almost 30 papers have been

published in peer-reviewed journals presenting data analysis

results of the EXPOLIS data. These papers, reviewed shortly

in the current paper, prove the usability of the EXPOLIS

database and demonstrate many aspects of data analysis that

can be conducted using the data.

EC pursues to develop guidelines for new pollutants,

including PM2.5, and methodologies to control exposures to

pollutants and chemicals with significant indoor sources. The

collected exposure data in the EXPOLIS database should,

can and will be used to support these processes among other

available tools and exposure analysis techniques.
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