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ABSTRACT

The amount of chemicals in the environment has increased considerably as society becomes
more and more industrialized. Parallel, the health risk incurred by chemicals with unwanted
biological activity has also increased. Estrogenic regulation and cytochrome P450 metabolism are
examples of biochemical systems, which can suffer from the action of the chemicals. The
estrogenic system maintains the reproductive capability of humans and other animals, with the
estrogen receptor playing a crucial role due to its ability to bind the hormones and form a ligand-
receptor complex that regulates gene activation and the gene transcription processes. Disturbances
in the estrogenic systems may lead to reproductive problems, development problems and provoke
the growth of tumours.

The estrogenic activity of chemicals can be measured with in vivo and in vitro assays, but these
tests are time consuming, laborious and expensive. Computational QSAR methods can be of
assistance in this situation, providing tools for the prediction of the activity based solely on the
molecular structure of the compound and this will decrease the number of animals used in the tests
and conform to the EU recommendations. Moreover, QSAR models can also be employed by
pharmaceutical and chemical industries in the development of new medicines and chemicals.

The most widely used QSAR-method is CoMFA, which is based on the molecular fields
calculated from the 3D-structure of the molecules. One shortcoming of CoMFA is its need for
alignment, i.e. the arrangement of the molecular structures with each others, which is time
consuming, laborious and sometimes even impossible, if the set of compounds used for the study
contains molecules with extensive structural variation. The main goal of this research was to
examine the performance of several simple and fast-performing QSAR methods, such as PLS,
MLR, kNN, and SOMFA, for the prediction of estrogenic activity, as alternatives to the more
complicated QSAR methods. The performance of some methods was also examined with
cytochrome P450 data sets. Moreover, three classification methods (DT, LVQ, and kNN) were
employed for the discrimination of the estrogenic compounds into active and inactive compounds.

Models employing consensus kNN, a modified kNN method developed during this research,
and PLS employing spectroscopic EEVA descriptors produced promising models. Their
performance was even better than that of the previously reported models. In the classification
study, models employing kNN and LVQ methods produced models with a good level of
performance, and even models with an excellent level of performance with data sets comprising
structurally similar compounds. The results obtained here are also in line with the previous results
indicating that the performance of QSAR models is clearly dependent on the data sets employed.
Overall, the results indicate that QSAR models can be employed for the prediction of estrogenic
and cytochrome P450 activities, although the usefulness in terms of general applicability for
prediction of new chemicals of these “small and congeneric” models is of little value. The
performance of a QSAR model is at its best when the structural variation among the chemicals is
small and the number of compounds to be evaluated is not very large.

Universal Decimal Classification: 504.064, 541.69, 577.175.8
National Library of Medicine Classification: WA 671, QV 627, WP 522, WH 190

Medical Subject Headings: organic chemicals; environmental pollutants; estrogens;
receptors, estrogen; cytochrome P-450 enzyme system; risk assessment;
quantitative structure-activity relationship; models, molecular; computer simulation; classification
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1. General introduction

1 GENERAL INTRODUCTION

1.1 Background

The passage of chemicals into the environment has increased in parallel with rate of
industrialization of modern society and the introduction of technology. The development
of pharmaceutical and chemical industry, not only has beneficial effects, it also increases
the risk of harmful effects for humans and wildlife produced by the chemicals released
into the environment. One important group of these environmentally concerning
chemicals are those which have biological activity for the hormonal systems of humans
and animals. The hormonal system includes several receptors, including the estrogen
receptor (ER), which maintains the activity of the endocrine system so it is ready for
reproduction and sexual development. Chemicals having unwanted activity at ER, called
endocrine disruptors (EDs), can interfere with or interrupt the normal action of ER and
induce serious health related problems, such as infertility and growth of tumours.

The estrogenic activity of a chemical can be a wanted feature, as is the case with
some drugs (e.g. tamoxifene, raloxifene and toremifene) or it can be unwanted or even
unknown feature. Several in vivo and in vitro testing methods are available for the
measurement of the estrogenic activity, but conducting these tests in a large group of
chemicals is both time consuming and costly. The use of various computational methods
can be of assistance in these situations, including the screening of the chemicals already
present in the environment and which possibly possess estrogenic activity or for
chemicals being developed which have the possibility of becoming EDs. The effect of
structural features for the biological activity can be estimated with structure-activity
relationship (SAR) and quantitative structure-activity relationship (QSAR) models
providing a possibility to identify which chemicals should be prioritized for testing with
more precise experimental assays.

Thus, the purpose of this research was to find easy-to-use and rapid computational
methods to be used with diverse sets of compounds for the prediction of their estrogenic
activity. The selection of methods was based on their simplicity, computational speed and
the promising results obtained with those methods in previous studies. The methods
tested with various sets of estrogenic compounds were partial least squares (PLS)
employing spectroscopic electronic eigenvalue (EEVA) and eigenvalue (EVA),
comparative spectra analysis (CoSA), k-nearest neighbours (kNN), consensus kNN (using
averages of the predictions of several individual kNN models, a method developed during
this research), and self-organizing molecular field analysis (SOMFA). In some situations
it is not necessary to know the exact binding affinity of the chemical, simply the
knowledge of whether a chemical is either active or inactive will suffice. To this end, the
performance of three classification methods (learning vector quantization (LVQ),
decision tree (DT) and kNN) was also tested with several estrogenic data sets.

Since cytochrome P450 enzymes play a major role in the biochemical processes
involved in the metabolism of various compounds, it is possible that compounds having
no estrogenic activity themselves are oxidized by cytochrome P450 enzymes to
compounds possessing estrogenic activity. As a representative example, the oxidation of
naphthalene to 1-naphthol and 2-naphthol by cytochrome P450 enzymes was also tested.
Additional QSAR models were derived for a data set comprising of the inhibitory
activities of several compounds for coumarin 7-hydroxylase employing comparative

Kuopio Univ. Publ. C Nat. and Environ. Sci. 191 (2006) 13
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molecular field analysis (CoMFA), Hansch-type QSAR, and PLS with EEVA and EVA
descriptors.

1.2 Estrogen receptor

1.2.1 Function and structure

The estrogen receptor (ER) is a member of the hormone nuclear receptor (NR)
superfamily, which includes also thyroid hormone receptor (TR), retinoid receptor
(RAR), steroid xenobiotic receptor (SXR), progesterone receptor (PR), and androgen
receptor (AR), which regulate the function of a large group of hormones (McLachlan
2001). Each receptor is responsible for the function of a group of specialized hormones
(ligands) and can be classified according to the similarity of the ligands which they are
binding (Weatherman et al. 1999). The receptor-hormone complex influences some cell
or organ function, such as reproduction, maintenance of normal levels of glucose or ions
in the blood, blood pressure, general metabolism, and other muscle or nervous system
functions (Lintelmann et al. 2003). ER modulates the activity of hormonal steroids, such
as estrogen and testosterone, resulting in effects on the reproductive, central nervous,
immune, and cardiovascular systems and skin and bone. These tissue specific estrogenic
responses occur when an estrogenic compound binds to the estrogen receptor activating
the receptor-ligand complex to bind to specific sites of the DNA and in this way to
change the expression of estrogen-responsive genes (Gaido et al. 1999).

The ER, like all steroid hormone nuclear receptors, consists of six functional domains
labelled as A to F, of which the C domain is the DNA binding domain (DBD) and the E
domain is the ligand binding domain (LBD) (Weatherman et al. 1999). Two estrogen
receptors subtypes have been identified (ERa and ER[) having the same structural
features, but one of the two ER subtypes is dominant depending on the tissue in question
and thus both ER subtypes regulate different hormonal processes (Gustafsson 1999). The
domain structure, percentages of the domain homologies and the numbering of the amino
acids are presented in Figure 1 for human ERo and ER.

184 208 301 333 396

1
ERo | 1

DOMAINS A/B

' e
ERB vvvvvvvvvvvvvv : '

HOMOLOGY 18% DBD (97%}3 Hinge (30%) LBDE7%) 18%

Figure 1. Domain structure, percentages of the domain homologies and the numbering of the
amino acids for human ERo and ERP (modified from Figure 1 of Kong et al. 2003).

The amino acid sequences of the ERa and ERB have been identified for several

species, such as human, mouse, rat, horse, pig and several fishes, and for the human ER«
and ERP sequence alignments are presented in Appendix 1. Also the crystallographic

14 Kuopio Univ. Publ. C Nat. and Environ. Sci. 191 (2006)



1. General introduction

structures for ER of several species are available from the RCSB Protein Data Bank
(http://www.rcsb.org/pdb/).

1.2.2 Ligands

The structural variability of the ligands with estrogenic activity is very broad, and this
feature makes ER unique compared to the other nuclear receptors, which tend to bind
ligands with very constricted structural features. 17p-estradiol (E,, Figure 2) is the most
active of the endogenous estrogenic compounds, and structure activity relationship
studies have revealed several factors essential for activity i.e. hydrophobicity, a ring
structure, H-bond donor mimicking the 17B-OH, precise steric hydrophobic centers
mimicking steric 7o0- and 1103-substituent and phenolic ring mimicking the 3-OH for
possession of H-bonding ability, which is the most important feature (Fang et al. 2001).
Also the presence of small hydrophobic substituents at positions 3, 12, 14 and 16a
enhance the binding activity, and larger hydrophobic substituents are tolerated at
positions 7o, 11B and 170 (Anstead et al. 1997). Some examples of the structures of
steroidal and non-steroidal ligands are presented in Figure 2.

Estradiol (E,) Mestranol

OH

HO

ICI 164384 Genistein Diethyistilbestrol

Figure 2. The structures of some steroidal and non-steroidal ER ligands.

1.2.3 Ligand binding domain

The ability of ER to bind compounds having wide variations in structures is due to the
flexibility of the LBD. The residues forming the binding cavity of the ER are positioned
differently depending on the ligand binding to the ER and this is schematically shown for
ER with E; and raloxifene in Figure 3. There are also differences in the LBD between
species and this means that some ligands may have estrogenic activity in one species, but
not for the other species or the binding affinity is much smaller for one species than for
others (see Table A2 in Appendix 2). Although ERa and ERP are homologous, the
homology of the LBD is only about 50% depending on the species. This may provide an
explanation why some ligands possess different activity towards ERa and ERB, and are
involved in different transcriptional responses (Kuiper et al. 1997; Barkhem et al. 1998;
Gustafsson 1999).

Kuopio Univ. Publ. C Nat. and Environ. Sci. 191 (2006) 15
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Figure 3. Schematic representation of the interactions made by E; (a) and raloxifene (b)
within the binding cavity (modified from figure 2 by Brzozowski et al. 1997).
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1. General introduction

1.3 Endocrine disruptors

1.3.1 Compounds

Endocrine disruptors (EDs), i.e. the chemicals that can interfere with the action of ER
as well as other nuclear receptors, have been defined by the U.S. Environmental
Protection Agencys (EPAs) Endocrine Disruptor Screening and Testing Advisory
Committee (EDSTAC) as follows (EPA 1998):

“The EDSTAC describes an endocrine disruptor as an exogenous chemical substance
or mixture that alters the structure or function(s) of the endocrine system and causes
adverse effects at the level of the organism, its progeny, the populations, or
subpopulations of organisms, based on scientific principles, data, weight-of-evidence, and
the precautionary principle.”

These compounds may be naturally occurring (such as herbal steroids called
phytoestrogens) in the environment or man-made chemicals released intentionally (such
as pesticides) or unintentionally by chemical accidents or as industrial pollutants to the
environment. EDs include chemicals from the following chemical groups:
polychlorinated biphenyls (PCB), polycyclic aromatic hydrocarbons (PAH), phenols,
bisphenols, flavonoids, alkylphenol ethoxylates, synthetic nonsteroids (such as
diethylstilbestrol (DES)), and pesticides (such as DDT and DDE) with their metabolites
though many other chemicals may be active as well. The structures of these chemicals
and natural estrogens can be found in Figure A2 in appendix 2.

1.3.2 Function

Endocrine disrupting chemicals can act as agonists or antagonists at the estrogen
receptor. Agonists disturb the action of the ER system by binding to the ER in the same
way as the natural ligand and activate the ligand-receptor complex producing the same
effects as seen with the natural ligand. An antagonist is a compound which binds to the
ER and inhibits the binding and action of the endogenous ligands of the ER. ED
chemicals can also alter the synthesis and metabolism of natural hormones and in that
way modify the hormone receptor levels (Sonnenschein and Soto 1998). The agonist and
antagonist effects of the different ligands may be a consequence of the flexibility of LBD,
which adapts and forms diverse bonds with the ligand, depending on its structure. These
differences can be seen in Figure 3, where the interactions of ER with E, and raloxifene
are presented.

The harmful effects attributable to ED chemicals include infertility, development
defects, cancer, and problems with reproduction, which all have been detected with many
species in laboratory experiments and in several case studies from natural wildlife (Danzo
1998; Tyler and Routledge 1998; McLachlan 2001). However, there are also critical
comments about whether the results obtained in the laboratory can be extrapolated to the
effects occurring in the natural environment, because it is a complex task to prove the
cause and effect relationships in wildlife. This makes it almost impossible to determine
conclusively which problems occurring in nature are really attributable to the endocrine
disruptors (Cooper and Kavlock 1997; van der Kraak 1998; Li and Li 1998).

Kuopio Univ. Publ. C Nat. and Environ. Sci. 191 (2006) 17
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1.3.3 Activity assays

The bioactivity of a chemical can be measured with several in vivo and in vitro
binding activity assays. With in vivo assays it is possible to examine the effects of
estrogenic compounds on the total hormonal mechanisms, such as reproductivity, by
using long-term animal tests. In in vitro tests only some tissue or a model of the tissue is
used as research material and these tests are suitable for the situation in which the actual
binding activity of a chemical is under investigation. For a comprehensive perspective of
the bioactivity of a chemical both in vivo and in vitro tests need to be conducted, because
the results of in vitro tests are not fully comparable with the real situation, where the
whole organism with all its metabolising systems is involved (Reel et al. 1996; Shelby et
al. 1996; Jobling 1998).

Competitive binding assays are one of the most widely used in vitro assays. In these
tests the uterine cytosol of some species, such as human, rat, mouse or lamb, or the
cytosol of human breast adenocarcinoma cell line MCF-7 or semi-purified human ER
protein is used as the material containing the ER. Usually the binding of E; is used as the
reference and the relative binding affinity (RBA) is the ratio of the molar concentration of
E, to that of the competing chemical required to decrease the binding of E, by 50%
multiplied by 100 (eq. 1).

RBA = (ICsy of E, / ICs of test chemical) x 100 (D

The main problems associated with in vivo and in vifro tests are that the tests are time-
consuming, costly and very laborious, and the use of several approaches to conduct the
same tests in different conditions leads to criticism about the comparability and reliability
of the results (Zacharewski 1998).

1.3.4 Metabolism through cytochrome P450

Many molecular families do not exhibit estrogenic activity per se, but metabolic
oxidation can transform inactive compounds into estrogens. In biological systems, the
oxidation processes are often mediated by the family of cytochrome P450 enzymes so
that the reaction chain is schematically:

“Pro-estrogen” (ox., P450) --> “estrogen” (o0x., P450) --> quinone, epoxide etc.

The connection between cytochromes P450 and the estrogenic activity of molecules is
not simply of academic interest — it is the topic of intensive research (Charles et al. 2000;
Sugihara et al. 2000; Fertuck et al. 2001; Sanoh et al. 2002; Fujimoto et al. 2003;
Kitamura et al. 2003; Mikamo et al. 2003; van Lipzig et al. 2005a; van Lipzig 2005b). It
seems likely that the oxidative metabolism can increase considerably the number of
endocrine disruptors. For example, naphthalene is a compound which itself does not
possess any estrogenic activity, but it may be oxidized by cytochrome P450 to
compounds having the structural properties leading to estrogenic activity.
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1.4 QSAR

The idea behind QSAR is to identify some relationships between the structural
descriptors of molecules and their biological activity. Computational QSAR modelling
has become an important tool in the fields of chemistry, biochemistry, and toxicology. In
recent decades, the development of computer technology has stimulated the use and
development of various QSAR methods, and today QSAR is regarded as a scientifically
credible tool in environmental toxicology and drug discovery. The relevance of the
QSAR modelling for the manufacturing of new chemicals has been noted by the U.S.
Environmental Protection Agency’s (EPA) chemical assessment and control program
(pre-manufacturing notice, PMN) and by the new EU Policy for Chemicals (REACH).
The use of QSAR in toxicology has been reviewed recently by Schultz et al. (2003) and
there is a review with the emphasis on estrogenic data sets by Schmieder et al. (2003).

1.4.1 Classical Hansch-type QSAR

In classical QSAR, physicochemical parameters, steric properties or some structural
features are used as descriptors. Thus these models rely on the assumption that the
biological activity of a chemical is dependent on its structure. The relationship between
lipophilicity and some biological properties, such as narcotic and toxic properties, have
been known over a century (Lipnick 1989), but it was not until the 1960’s (Hansch et al.
1963, Hansch and Fujita 1964) when Hansch and his co-workers formulated a general
QSAR equation (eq 2) combining hydrophobic, electronic and steric properties of
molecules:

log(1/C) = a(logP) + b(logP?) + c(c) + d(Ey) + e 2

in which logP is the term describing hydrophobicity (measured often as octanol-water
partition coefficient, logP., or m = logP — logPy), 6 is electronic Hammett substituent
constant, and the steric term Eq is typically Taft’s substituent constant (Hansch and Leo
1995). Since then, Hansch-type QSAR equations have been presented for hundreds of
biochemical systems, including estrogenic (Gao et al. 1999) and cytochrome P450
(Hansch et al. 2004) data sets. One weakness of the Hansch method is that it is not
suitable for the data sets containing compounds with wide structural variability (i.e. the
congenericity principle).

An example of the regression equation obtained with Hansch method for the
estrogenic activity of a data set with lamb uterine ER is presented in equation 3 (Gao et
al. 1999) and for the inhibition activity of data set of mouse cytochrome P450 CYP2AS
enzyme in equation 4 (Hansch et al. 2004), respectively.

logRBA = 1.38(x0.32)m,11 - 1.08(£0.39)MR, 11 - 0.71(£0.23)/ + 1.92(x0.24)  (3)
n=230,R*=0.82,s=0.30

log 1/C = 10.1(£2.35)MgVol — 24.12(+8.81)MgVol* — 4.14(+1.57) )
n=28,R*=0.90,s =0.44, Q* = 0.88

in which « is hydrophobicity, MR is molar refraction, 11 refers to the numbering of the
estrogenic skeleton (Figure 2), and I is an indicator variable {1 for the compounds
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containing a 160-OH group and O for other compounds), MgVol is McGowan’s
characteristic volume, n is the number of compounds, R? is the conventional correlation
coefficient, s is the standard error of estimation and Q7 is the cross-validated correlation
coefficient

1.4.2 Modern QSAR methods

The Hansch method represented the beginning of the modern QSAR, which has now
advanced toward more complex modelling as the processing power of the computers
continues to increase and several new methods have been introduced into the field of
QSAR. These methods can be roughly divided into 2-dimensional (2D) and 3-
dimensional (3D) modelling depending on whether the descriptors are calculated using
2D or 3D structure of the compounds. However, nowadays this kind of subdivision is not
so straightforward, as there are several methods, such as k-nearest-neighbours (kNN) and
partial least squares (PLS) that employ both 2D and 3D theoretical descriptors.

3D modelling methods together with molecular dynamics (MD) simulations are the
most advanced techniques, and they should be, at least in principle, able to take into
account the interactions between the ligand and the receptor and to predict the behaviour
of the whole ligand-receptor complex producing more precise predictions, comparable
with the situation prevailing in real life. The shortcomings of these methods are their
complexity and that they are not suitable for structurally diverse sets of compounds.

The methods for real life screening applications as well as being reliable should be
easy to use and rapid to perform. Therefore, the applicability of several modern QSAR
methods for the prediction of estrogenic activity and coumarin 7-hydroxylase inhibition
for cytochrome P450 enzymes with some comparable examinations using the Hansch
method was evaluated in this research. Additionally, the suitability of three classification
methods for discriminating estrogenic compounds into inactive and active compounds
was also tested. The methods used are described in more detail in the Material and
Methods section.

20 Kuopio Univ. Publ. C Nat. and Environ. Sci. 191 (2006)



2. Aims of the present study

2 AIMS OF THE PRESENT STUDY

Broadly, the purpose of this study was to investigate the suitability of several
computational approaches for the prediction of the estrogenic activity of structurally
diverse sets of compounds simply on the basis of their structure. The main objective was
to find an easy-to-use and rapid method to provide an additional tool for the preliminary
screening of compounds, and for distinguishing which of the compounds should have
highest priority for evaluation in the more elaborate and expensive testing procedures.

The detailed objectives were as follows:

To investigate the performance and suitability of several QSAR methods for the
prediction of the estrogenic activity of a large, diverse sets of compounds (I-111,
VI).

To test the performance of LVQ method and compare it with the performance of
decision tree and kNN methods for the classification of estrogenic compounds
into active and inactive groups (IV).

To examine the oxidation of naphthalene to 1- and 2-naphthol by CYP2AS and
CYP2A6 enzymes (V).

To investigate the performance of CoMFA and PLS with spectroscopic EEVA
and EVA descriptors for QSAR modelling of coumarin 7-hydroxylase inhibitory
activity with CYP2AS and CYP2AG6 data sets (V, VI).

To compare the effect of different data sets for the performance of the QSAR
method employed (II1, IV, VI).

To evaluate the suitability of the tested QSAR methods for real applications.
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3 MATERIAL AND METHODS
3.1 Biological data

3.1.1 Activities

The information about the data sets used for QSAR modelling, comprising of the
binding activities for ER (I-IV, VI) of several species and of the coumarin 7-
hydroxylation inhibition activities for two cytochrome P450 enzymes (V, VI), is
presented in Table 1.

Table 1. Summary of the biological data sets and the modelling methods used in  the
studies I-VI.
Study | Reference n' Receptor/ Structures/ Methods
enzyme activities
PLS/EEVA
Sadler et al. .
I (1998) and 36 Mouse ER Flgure .l aqd Table 1 | PLS/EVA
Sippl (2000) in publication I CoSA
PP SOMFA
, , kNN
11 EDKB 142 Rat ER Appendix 2 consensus kNN
CalfER
Human ERa
1l | EDKB? 245 | Human ERB | Appendix 2 consensus kNN
Mouse ER
Rat ER
CalfER
2 Human ERa .
EDKB 339 Human ERB Appendix 2 DT
v Mouse ER LvVQ
Rat ER kNN
Saliner et al. .
(2003) 117 Human ERa Saliner et al. (2003)
Juvonen et al. CYP2A5S
\% (2000) 24 CYP2AG Poso et al. (2001) CoMFA
Juvonenetal. | 28 CYP2AS5 Figure 1 and Table 1 | Classical QSAR
(2000) CYP2A6 in publication VI PLS/EEVA
v e | T e sand s | PSEVA
apoicnoct | 3 | {guppr | Figure 2and Table2 | gy o
al. ( ) in publication MLR/EVA

" Number of the compounds in the data set.
> EDKB = endocrine disruptor knowledge base (http://edkb.fda.gov/databasedoor. html)

3.1.2. Oxidation of naphthalene
Mouse CYP2AS and human CYP2AG6 enzymes were obtained as liver samples, which

were used for the determination of the inhibitory activity of naphthalene for coumarin 7-
hydroxylation and for the measurement of the naphthalene oxidation to 1- and 2-naphthol.
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Experiments were performed with the incubation procedures which are described in detail
in publication V.

3.2 Molecular modelling

In the studies I-IV and VI, the three-dimensional structures of the molecules were
modelled with the HYPERCHEM program package (Hypercube, Inc) and minimized
with MM+ force field. The structure of the lowest energy conformer was then fully
minimized with AM1 (Dewar et al. 1985) calculations as implemented either in
HYPERCHEM (IV) or in AMPAC program package (QCPE No. 506, version 2.11) (I-
III, VI). In study V, the 3D-structures were modelled by using the sketch option in the
SYBYL 6.6 program package (Tripos Inc.), and the structures were further minimized
with MMFF94 force field (Halgren 1992).

3.3 Structural descriptors and variable selection

3.3.1 Spectroscopic descriptors

The computation of spectroscopic QSAR descriptors by means of Gaussian smoothing
involved the following steps: (i) eigenvalues of molecular orbital energies and vibrational
frequencies for EEVA and EVA descriptors were calculated employing the
HYPERCHEM program package and the >C and 'H NMR chemical shifts for CoSA
were calculated employing the gauge-invariant atomic orbitals (GIAQO) method (Wolinski
et al. 1990) (see publication I for detailed information about the calculations), (ii)
eigenvalues were transformed to a bounded scale, (iii) a Gaussian kernel of fixed standard
deviation ¢ was placed over each eigenvalue, and (iv) the descriptors were calculated by
summing the overlaid kernels at intervals of L (usually set at /2, eq 5):

N 1 . ,
Descriptor(x) = Z_e (x~E)? /20 )

o O~ 27

where E; is the ith eigenvalue of the molecule in question and N is the number of
eigenvalues.

The adjustable parameter ¢ has to be optimized separately for each data set and this
was performed employing leave-one-out cross-validation (LOO-CV) tests for a large
number of reasonable ¢ values, and choosing the value producing the best predictive
performance. Performing LOO-CV and the validation of the best performing model are
described in detail in section 3.5. The selected ¢ value was then used for the external
models employing randomized training and test sets. The effect of ¢ value for the
performance of the models is described in Figure 2 in publication L.

3.3.2 Molecular descriptors

With the other methods tested in this research, in addition to the Hansch type QSAR,
the used molecular descriptors were calculated with DRAGON program package (version
3.0, Todeschini et al.; Todeschini and Consonni 2000) (II-IV) employing either simulated
annealing (SA) (II, IIT), which is described more detailed by Kirkpatrick et al. (1983) and
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by Zheng and Tropsha (2000), or principal component analysis (PCA) (IV) (described in
the next section) as the variable selection method. The typologies of the molecular
descriptors calculated by DRAGON are listed in Table I in publication I. With Hansch-
type QSAR (VI), the used descriptors were McGowan’s characteristic volume and its
square (MgVol and MgVol?) in the study employing the CYP2AS and CYP2AG6 data sets,
and molar refraction (MR), hydrophobicity (n) and an indicator variable in the study
employing the lamb ER data set.

3.3.3 Principal component analysis

Principal component analysis (PCA) (Wold et al. 1987) is a linear method for the
reduction of the dimensionality of the set of descriptors by finding uncorrelated linear
combinations of the original descriptors (principal components, PC), which explain as
much of the variance in the original descriptors as possible. PCA is especially suitable for
situations where the number of descriptors is larger than the number of compounds.

Since the same number of PCs can be calculated as the number of original descriptors,
the number of significant PCs has to be determined in some way. Three methods are
mainly used for carrying out this procedure. The simplest is Kaiser’s criterion, in which
PCs with eigenvalue greater or equal to one are selected. The second alternative is the
Cattell’s scree test, in which the eigenvalues are plotted and the number of PCs is
determined by visually inspecting the inflection point of the eigenvalue curve. The third
method is called Humphrey-Ilgen parallel analysis, in which data with random numbers
of the same size as the original data is analysed with PCA, the eigenvalues of both data
sets are plotted and the intersection point of these curves determines the number of PCs to
be selected. Each method is suitable for different situations, depending of the composition
of the original data.

In this research, PCA was employed in the classification study (IV) as an easy to use
descriptor reduction method employing Humphrey-Ilgen parallel analysis as the selection
criteria (see Figure 1 in publication IV). PCA calculations were performed with the
MATLAB program package (version 5.3). The number of PCs was further reduced with
the feature selection option of the TOOLDIAG program package (version 2.1) provided
by Rauber.

3.4 Computational methods

The modelling methods used in each study are listed in Table 1 on page 22 and
described briefly below. More detailed information is available from the references
mentioned in the text. The selection of the tested methods was based on their simplicity
and for the promising results obtained with these methods in previous studies conducted
by other research groups.

3.4.1 Multiple linear regression

Multiple linear regression (MLR) is a simple method to find relations between several
independent descriptors and a dependent variable (such as biological activity) by fitting a
linear equation to the data by the means of the least squares. The limitation of MLR is
that the independent descriptors should be uncorrelated with each other, but this can be

24 Kuopio Univ. Publ. C Nat. and Environ. Sci. 191 (2006)



3. Material and methods

controlled by using the appropriate methodologies. The result of the MLR is a regression
equation (such as equations 3 and 4 on page 19), which can be employed for the
prediction, and it was employed in this research to construct a few simple regression
equations to be compared with the performance of PLS employing spectroscopic EEVA
and EVA descriptors, and with GRID/GOLPE and CoMFA methods (VI).

3.4.2 Partial least squares

Partial least squares (PLS) (Geladi and Kowalski 1986) is a modelling method, which
is suitable for the situations where the number of descriptors is much larger than the
number of compounds and the effect of individual descriptors and the underlying effect of
the combinations of the original descriptors on dependent variable are difficult to verify.
It has the advantage of being able to handle multicollinearity among the independent
descriptors (i.e. the descriptors can be correlated with each other). With PLS, PCs are
constituted as mutually independent linear combinations of original descriptors, which are
chosen in such a way that they provide maximum correlation with the dependent variable
(in this case, biological activity).

With PLS, as with PCA, the optimum number of the principal components included to
the models has to be determined. This is empirically carried out with the cross-validation
by constructing PLS models using an increasing number of components and the number
of PCs producing a model with smallest standard error of prediction is chosen (Spicss
value, see Table 2).

PLS was employed in this research with all the QSAR methods tested (I-VI). Most of
the PLS analyses were performed using in-house MATLAB scripts written by the
authors. The scripts employ an efficient modification of the PLS algorithm, SVDPLS
(singular value de-composition PLS), which facilitates very rapid cross-validation runs.

3.4.3 Spectroscopic methods

Spectroscopic QSAR methods are a group of simple performing tools employing
either experimental or theoretically calculated spectra as descriptors, which can be based
on various molecular features such as orbital energies (EEVA) (Tuppurainen 1999),
vibrational frequencies (EVA) (Ferguson et al. 1997), ®C and 'H nuclear magnetic
resonance (NMR) chemical shifts, infrared absorption (IR) or electron ionization mass
spectra (EI MS). Modelling methods commonly used with spectroscopic descriptors are
PLS, Comparative Spectra Analysis (CoSA) (Bursi et al. 1999) and Artificial Neural
Networks (ANN) (Vracko 1997). All these methods have produced comparable results as
have been obtained with more complicated QSAR methods employing various data sets.
With the estrogenic data set, CoSA employing *C NMR data have yielded models with
good predictive abilities (Beger et al. 2000; Beger et al. 2001a). This encouraged us to
test the performance of PLS employing EEVA and EVA descriptors and the performance
of CoSA employing °C and 'H nuclear magnetic resonance (NMR) chemical shifts also
in this research (I, VI).

Kuopio Univ. Publ. C Nat. and Environ. Sci. 191 (2006) 25



Arja Asikainen: Computational tools for predicting biological activity

3.4.4 3D methods

The methods based on the 3D structure of the compounds employing some molecular
field, such as CoMFA (Cramer et al. 1998), CoMSIA (comparative molecular similarity
indices analysis) (Klebe et al. 1994) and SOMFA (Robinson 1999), are perhaps the most
reliable QSAR methods available. The shortcomings of these methods are the need for
structural alignment, which is a time consuming procedure and has a major effect on the
predictive power of the models. The alignment also becomes more difficult as the
structural variability of the compounds increases, so these methods are not suitable for
use with complicated data sets.

CoMFA is the most popular of the field based methods, which has also been employed
extensively with estrogenic data sets (Gantchev et al. 1994; Waller et al. 1995; Waller et
al. 1996; Tong et al. 1997; Tong and Perkins 1997; Wiese et al. 1997; Sadler et al. 1998;
Tong et al. 1998; Xing et al. 1999; Shi et al. 2001; Coleman et al. 2003; Waller 2004).
The descriptors for the CoMFA models are calculated from the grid-based molecular
fields, usually steric (representing the shape of the compound) and electrostatic fields,
based on the aligned 3D structures of the compounds. The alighment of the compounds is
usually performed as a ligand-based alignment, although the receptor based alignments
have been claimed to produce models with better predictive abilities (Sippl 2000; Sippl
2002). PLS is usually employed for the calculation of the correlations between biological
activities and CoMFA descriptors. The previous models employing CoMFA for
estrogenic data sets were used as comparison in several studies in this thesis and as a
primary modelling method with the cytochrome P450 data set for the inhibitory activity
of the compounds against coumarin 7-hydroxylase (V).

SOMFA is another 3D grid-based method employing molecular fields with no need to
use any additional statistical tools such as PLS. The grid can be calculated with any
molecular field, also with the steric and electrostatic fields usually employed with
CoMFA. Robison et al. introduced SOMFA in 1999 and since then many SOMFA
models with predictive ability comparable with COMFA have been published (Li et al.
2003; Smith et al. 2003; Martinek et al. 2005). Therefore SOMFA was tested with the
estrogenic data set employing steric (shape), electrostatic and polarizabilty fields as the
descriptors (I).

3.4.5 Molecular dynamics simulations

One step forward from the 3D methods are methods employing molecular dynamics
simulations used for the calculation of the interactions of receptor-ligands complexes.
These methods are able to create the situation closest to the situation prevailing in the real
life systems. Since Qostenbrink et al. (2000) and van Lipzig et al. (2004) have proved that
the free energy of the estrogenic compounds can be calculated accurately with molecular
dynamics simulations of ligand-receptor complex and furthermore, the relationship
between the binding energies and the binding activities of the estrogenic compounds has
been verified by Hanson et al. (2003), we decided to study the relationship between
binding activities and the binding energies calculated from MD simulations.

The method used for the calculation of the binding energies was based on the
molecular mechanics—Poisson—Boltzmann surface area (MM-PBSA) method (Vorobjev
1998; Kollman 2000), and its capability to calculate free energies was first tested with the
data set introduced by Oostenbrink et al. (2000). The data set used for the modelling
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consisted of 39 compounds with the binding affinities for human ERa obtained from the
EDKB. The crystallographic structure of the LBD for the human ERa was obtained from
the RCSB Protein Data Bank (http://www.rcsb.org/pdb/). The 3D-structures of the
molecules were constructed with HYPERCHEM optimized with Gaussian 98. Fitting of
the compounds to LBD was performed against the crystallographic structure of DES
(diethylstilbestrol), which was obtained with the structure of the LBD, using the SYBYL
program package. MD simulations were performed with the Sander program code, which
is a part of the AMBER program package (Pearlman et al. 1995, Ponder and Case 2003).
These calculations will remain as unpublished data, for the reasons discussed in detail in
the section 4.1.3.

3.4.6 kNN and consensus kNN

k-nearest-neighbour is perhaps the simplest pattern recognition method ever presented,
and it can be used for classification with a categorical dependent variable or for
regression problems with continuous dependent variable. Zheng and Tropsha (2000)
introduced the kNN method in the field of QSAR, employing simulated annealing (SA)
as an automated variable selection method for evaluating an estrogenic data set and these
workers obtained promising results. Moreover, kNN is a simple, rapid and highly
automated method and it provides a useful alternative to the more complicated 3D
modelling methods

Each data point is described with independent descriptors and a dependent variable,
i.e. biological activity in this thesis, and the similarity of the descriptor vectors is
calculated using Euclidian distances. For predictive purposes, the weighted average of the
dependent variable of the &k nearest neighbours is used as the outcome. The optimum
number of neighbours (k,,,) used for prediction is the most important factor affecting the
results of the kNN models and this needs to be set to a value large enough to minimize
the probability of misclassification but small enough so that the used & nearest neighbours
are close enough to the molecule to be predicted. The number of & is usually defined with
LOO-CV method, choosing the value producing the model with the best predictive power
(the use of LOO-CV is described in section 3.5).

The consensus or ensemble models are a combination of several models using the
average of the predictions for the final prediction. This approach has been used with
many methods, especially with neural networks (Devillers et al. 1998; Manallack et al.
2002; Tetko 2002; Tetko and Tanchuk 2002), producing better predictive performances
than can be achieved with the individual models. With estrogenic data sets, the decision
forest (i.e. a combination of decision tree models) has been employed by Tong et al.
(2004). As a consequence, the use of the consensus kNN method, in which the average of
the predictions of 50 individual kNN models was used as the final result, was decided to
be tested in our research. The differences between the individual models were the
descriptor pools selected with SA and the number of the & nearest neighbours used for
prediction. In addition to our group, the consensus KNN method has been employed by
Votano et al. (2004) in their QSAR study employing a data set of 3363 compounds with
Ames genotoxicity as the biological activity and its performance was found to be better
than that of the individual models.

In this research, kNN was tested for both regression (II) and classification (IV)
problems, and the consensus kNN approach was tested only with the regression problem
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(II, III). The calculations were performed with the MATLAB program package
(MathWorks, Inc., version 5.3) employing the scripts written by our research group. More
details of the calculations can be found in publications II, III and IV.

3.4.7 Learning vector quantization

Learning vector quantization (LVQ) is a supervised neural network method, similar to
self-organizing maps (SOM) (Kohonen 1998; Kohonen 2001). Both are capable of
converting relationships of high-dimensional data into a simple low-dimensional form,
with the difference that SOM is an unsupervised method. The LVQ network is trained by
using model vectors, which are adapted according to the LVQ updating rule, such that the
coordinates of the model vectors will eventually be characteristic of the original
descriptor vectors in each class. The difference between the training of the LVQ and
SOM is that no self-organizing between model vectors takes place in the LVQ as it does
with SOM. The difference between LVQ and kNN is that the original vectors are used for
the prediction with KNN whereas these vectors used for the tuning of the models vectors
in LVQ. More information about the equations used for the training of the LVQ models is
provided by Kangas and Kohonen (1996), for example.

The main parameters impacting on the predictive ability of the LVQ model are the
number of training epochs used during the model development and the number of model
vectors. Both parameters are dependent on the data sets and have to be adjusted prior to
the modelling. The effect of the number of model vectors to the performance of the model
is described in Figure 4 in publication I'V. As far as I am aware, LVQ has not been
employed with estrogenic data sets earlier but Baurin et al. (2004) did describe excellent
performing models employing LVQ in their screening test with a COX-2 inhibition data
set and therefore the performance of LVQ was tested in this research and compared with
the other classification methods employed (IV). The calculations were performed with
MATLAB (version 6.5), using the codes included in the Neural Network Toolbox
(version 4.0).

3.4.8 Decision tree

Decision tree (DT) is a supervised rule based method, which is typically used for
classification problems, although it can also be employed for regression problems. The
earliest applications of the decision trees were introduced in the 1960s (Morgan and
Sonquist 1963), but the wider use of DT originates from the work of Breinman et al.
(1984) who introduced the classification and regression tree (CART) method, which has
been in widespread use since that time. The basis of DT is to find some features from the
descriptor pool typical for compounds in each class using a training set and based on
these features some rules are created, called the nodes or leafs of the tree. After the tree is
trained with a teaching set, it is possible to use it for predictive purposes. The advantages
of the DT are its ability to handle noisy data, its rapidity and its capability to model
nonlinear problems.

Decision trees and decision forest, i.e. combinations of several decision trees, have
been employed earlier with estrogenic data, producing good performing models (Hong et
al. 2002; Tong et al. 2003). The results of these earlier studies were the main reason for
choosing DT as one of the classification methods to be compared with the performance of
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LVQ (IV). The models reported here were constructed with the C++ program written by
Borgelt (freely available on the Internet at
http://fuzzy.cs.uni-magdeburg.de/~borgelt/doc/dtree/dtree.html, accessed in May 2004),
with the default parameters. More details of the DT algorithm can be found in Borgelt
(1998).

3.5 Validation of the models

The validation of a QSAR model, i.e. the determination of the predictive power of the
model, is one of the most important steps to produce reliable and useful models (Eriksson
et al. 2003; Tropsha et al. 2003). Cross-validation, specifically leave-one-out (LOO) and
leave-n-out methods are commonly used. LOO-CV, in which a compound is left out from
the input data, then a QSAR model is constructed and the activity of the omitted
compound is predicted, after which the cycle continues until all the activities have been
predicted once, is an unambiguous and simple method, which provides comparable
results between models obtained with different methods (Wold 1991). Leave-n-out cross-
validation is a similar procedure leaving »n compounds out instead of single one
compound, leading to two sets of compounds, of which one is used for training of the
model and the other as the test set. This process is repeated with different subsets until
each compound is used once for the test set (Shao 1993). The predictive power of the
cross-validated models is evaluated with S, (cross-validated standard error of
prediction) and Q* (cross-validated correlation coefficient) values (Table 2).

LOO-CV is a measure of internal predictability of a QSAR model and provides a
simple way to compare different models and methods with each other, but for the real life
situation, the external predictive power, i.e. the performance of the model for the
prediction of unknown biological activities, is much more significant. Since good internal
performance achieved with cross-validation does not necessarily guarantee good external
predictive power, some external validation tests need to be done with all of the present
QSAR models (Golbraikh and Tropsha 2002a). This is usually carried out by using
external test sets, which are not used during the modelling until the final model has been
constructed and then the dependent responses (i.e. biological activities) of the external
test set are predicted (Tropsha et al. 2003).

The main problem associated with external validation is how to choose the compounds
to be used in the test set. One solution is to divide the set of compounds randomly into
training and test sets with some ratio (for example 2/3), calculate a model, and then repeat
this procedure several hundreds of times, employing different training and test sets. This
method gives perhaps the most realistic impression of the external predictability of the
model. Another approach is to group the compounds according to their activity and
structure and then to choose the compounds covering most extensively the variations in
the activities and structures by means of various clustering methods (Golbraikh and
Tropsha 2002b; Gramatica et al. 2004).

The LOO-CV was used as the internal validation method in all of the studies included
in this thesis. The external validation was performed with a random selection of the
training and test set with all other methods except in the first study with the kNN (II), in
which the compounds for the test sets were selected with the second method described
above. The results of the validation and the goodness of a model are expressed with the
calculated parameters, which describe the predictive power of the model and the
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parameters with their abbreviations and equations used in this research are presented in
Table 2.

In addition to the internal and external validation, the possibility of chance
correlations, i.e. fortuitous correlations without any predictive ability, of the models
should be always checked. This can be performed with y-randomization tests, i.e. the
activities of the compounds are scrambled randomly between the descriptors and the
modelling is then repeated as with the correct data set. These tests were performed with
all models constructed within this research and no chance correlations were found.

Table 2. The names, abbreviations, equations, and definitions of the statistical parameters
used for the validation of the models.

Name Abbreviation | Equation Definition

Yobs = Observed activity, Ypred =
2 predicted activity. Optimal
PRESS Z(y“l” Vorea) number of PCs is determined
by minimizing PRESS value.
¢ =number of PCs, n =
number of compounds.
Cross-validated Estimates the standard error of
standard error of Spress \/(PRESS n=c=1) LOO validated model. The
prediction best performing internal
model can be determined by
minimizing Sy value.
Ymean = Mean value of the
observed activities; Estimates

Predicted residual
sum of squares

Cross-validated . PRESS the.predictive ability of LOO
correlation Q2 2 (v, -y )2 validated model, and can be

. obs mean used instead of S, .. value for
coefticient P

validating internal models. Q
> 0.5 indicates the model as
being statistically significant.
PRESS is calculated using
only the test set compounds, n
Standard error of P = number of test set
prediction SDEP PRESS /n compounds. Estimates the
standard error of external
prediction.

Yobs aNd Ypreq refers to the test
, | set compounds. yimean is the
Predictive 1— z (Vo =Y prea)” | mean of the training set
correlation Pr-R’ z Boss = Vean) activities. Estimates the
coefficient ' external predictive ability of
the model. Denoted also as
QzEXT-
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4 RESULTS AND DISCUSSION
4.1 Modelling of estrogenic data

4.1.1 Spectroscopic PLS/EEVA, PLS/EVA and CoSA methods

PLS employing spectroscopic EEVA and EVA descriptors, and CoSA with '°C and 'H
chemical shifts were tested with the mouse ER data set (I), and PLS/EEVA and
PLS/EVA also with the lamb data set (VI). With the mouse ER data, the internal
predictability only for CoSA C model was satisfactory, producing almost comparable
results to those obtained with the CoMFA model as reported by Sadler et al. (1998)
employing the same data set. These results are, however, clearly inferior to that achieved
with the same data set using a highly sophisticated CoMFA model that employed a
receptor-based alignment of ligands and smart region definition (SRD) for variable
selection (Sippl 2002). The Sy and Q? values for our models and for the CoMFA
models by Sadler et al. (1998) and by Sippl (2002) are presented in Figure 4. Detailed
numerical parameters for our models can be found in Table 2 in publication I.

1.2 )
0.99
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0.8 +—

0.6 +—
042

0.4 4

0.2 4+

0

Spress Q2
0O PLS/EEVA m PLS/EVA

BCoSARC B CoSA'H
@ CoMFA (Sadler et al. 1998) 1 CoMFA with SRD (Sippl! et al. 2002)

Figure 4. S, and Q2 values for the LOO-CV PLS/EEVA, PLS/EVA and CoSA models
(I), together with CoMFA model by Sadler et al. (1998) and CoMFA model employing smart
region definition (SDR) by Sippl (2002) with the same mouse ER data set.

As all other spectroscopic methods tested failed in internal prediction, the external
predictability was investigated only with CoSA “C method with 500 randomized test
runs. The results were not so encouraging since the average of SDEP was 0.86 and Pr-R?
was 0.49. The weak performance of the spectroscopic methods tested was surprising,
since previous studies with different receptor binding data sets employing both CoSA and
PLS/EEVA have produced models with good levels of performance with LOO-CV Q7
values being 0.71 (Beger et al. 2001b), 0.71 (Beger and Wilkes 2001a), and 0.78 (Beger
and Wilkes 2001b) in CoSA studies, and 0.82 (Tuppurainen and Ruuskanen 2000) and
0.84 (Tuppurainen et al. 2002) in PLS/EEVA studies.
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Examination of the data set used here (see Figure 1 in publication I for the structures)
revealed at least two features in the structures of the compounds which accounted for the
decline in the performance of the models. Both enantiomers and symmetric molecules
were present in the data set and this can cause problems for all spectroscopic QSAR
methods, since all of the physical properties of enantiomers (with the exception of for
their interaction with polarized light), including MO energies, IR frequencies and NMR
chemical shifts, are completely identical, although their biological activities may vary
considerably. As a consequence, all spectroscopic descriptors lack the information
required to distinguish the different activities of the enantiomer pair. Further, the
increasing symmetry of molecules may result in a loss of information, resulting in weaker
predictive ability of the spectroscopic methods for symmetric molecules. The influence of
enantiomers and molecular symmetry on the spectroscopic descriptors is further
discussed in publication I.

The performance of PLS/EEVA and PLS/EVA described above encouraged us to
perform further tests employing these methods. A data set with the activities for lamb ER
was tested with 500 randomized external test runs with PLS/EEVA and PLS/EVA, with
an additional Hansch- type QSAR model providing some kind of comparison to the
results obtained (VI). The averages of the SDEP and Pr-R* values for the 500 external test
runs are presented in Figure 5.
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Figure 5. Averages of the SDEP and Pr-R” values for the 500 randomized external test runs
for PLS/EEVA, PLS/EVA and Hansch-type QSAR models with lamb ER data set (VI).

These results support the assumption made above that the weak performance of
PLS/EEVA and PLS/EVA methods may be a result of the fact that the mouse ER data set
was not suitable for use with spectroscopic methods. The simple Hansch-type model
successfully related the estrogenic activity with molar refraction (MR), hydrophobicity
(m) and an indicator variable (1 for the compounds containing a 16a-OH group and 0 for
the other compounds). This supports the fact that Hansch-type QSARs are useful with
data sets comprising compounds with less extensive structural variations (see Figure 2 in
publication VI for the detailed structures of the data set used). In the comparison between
PLS/EEVA and PLS/EVA models, PLS/EEVA outperformed PLS/EVA.
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4.1.2 SOMFA

The performance of SOMFA was tested with the same mouse ER data set as employed
with PLS/EEVA, PLS/EVA and CoSA reported above. SOMFA models were tested with
the fields based on the shape (SOMFA 1), electrostatic potential (SOMFA 2) and, as a
theoretical novelty, polarizability (SOMFA 3) of the compounds producing internal
predictabilities with S;.s values of 0.63, 0.85 and 0.73, and Q2 values of 0.76, 0.55 and
0.67, respectively (I). The internal performance of all SOMFA models clearly
outperformed the PLS/EEVA and EVA models described above, and the SOMFA 1
model with the field based on the shape of the compound was better than that of the
CoSA "C model described above and almost comparable with the CoMFA model
presented by Sadler et al. (1998) (Figure 4).

The external performance of SOMFA models was tested with 500 randomized runs
producing results either as good as (SOMFA 2 model) or clearly better (SOMFA 1 and
SOMFA 3 models) than that of obtained with the CoSA C model described earlier.
SDEP and Pr-R? values for the SOMFA models with the values for CoSA "C model for
comparison are presented in Figure 6, and detailed statistical parameters can be found in
Table 3 in publication 1.
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Figure 6. Averages of the SDEP and Pr-R* values for 500 randomized external runs for CoSA
13C and SOMFA models employing mouse ER data set (1).

The enatiomers and symmetric compounds included in the data set did not cause any
problems with the SOMFA method, and the structures of the compounds in the data set
were sufficiently homogenous to permit alignment. The better performance of the
CoMFA models by Sadler et al. (1998) and by Sippl (2002) (Figure 4) compared to the
SOMFA models are due to the superiority of the receptor-based alignment which is
utilized in the CoMFA models over the field-fit alignment used here.

4.1.3 Molecular dynamics calculations

The results of the test with MD calculation have not been published, because the
predicted relation between the binding energies and ER binding activities was not found,
and the model failed to predict the binding activities of the used compounds. The
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calculated free energies were comparable to the experimental values (for those
compounds for which they were available), and it was demonstrated that the MM-PBSA
method did perform properly. Thus it seems evident that the reason for the failure of the
models was not due to the selected calculation method. As an alternative to QSAR
modelling, MD calculations can be used to study the effect of structural variations in the
binding affinities, as demonstrated by Wurtz et al. (1998).

One possible explanation for the inability of the MD modelling was that there was
excessively large structural variation of the compounds in the data set, although those
compounds having the most complex structures were omitted, but obviously there still
remained too many complicated compounds. In fact, this was detected during the fitting
of the compounds to the LBD, which proved to be a very difficult task with the
compounds having a clearly different structure than that of DES, employed for the fitting.
Overall, even if the MD model had been successful for prediction, the construction of the
MD models was laborious and time consuming compared to the other modelling
evaluated during this project, making MD calculations unsuitable for the goals of this
thesis.

4.1.4 kNN and consensus kNN

In the first experiment performed with kNN, the use of simulated annealing (SA) as
the variable selection method was tested and the effect of the size of the variable pool for
predictive ability was studied with a data set containing binding activities for the rat ER
(IT). The size of the variable pool did not have any significant effect on the predictive
ability of the models (see Table II in publication IT), and so 250 variables were selected to
be used with all of the kNN models built. The suitability of the SA as the variable
selection method was tested by constructing a model employing all the descriptors along
with the models using a SA validated descriptor pool, and the performance of the model
using all descriptors was clearly poorer than the performance of the other models. The
selection of training and the test sets was performed so that the structural variation of the
compounds and the variance of the activities were covered adequately. The effect of the
random selection of the training and test sets is further discussed in section 4.4.

The results of the first KNN models indicated that the predictive ability of the kNN
with the used rat ER data set was very promising. Altogether S0 models validated with
LOO-CV methods were produced with the average values of S, and Q” being 0.95 and
0.70, and 50 external models validated with separate training and test sets were produced
with the average values of SDEP and Pr-R” being 1.12 and 0.57, respectively (see Tables
II and IV in publication II). In addition to the basic kNN, the rat ER data set was used for
preliminary testing of the consensus kNN method by calculating the averages of the
predictions of 50 models as the final results (50 models were confirmed to be a sufficient
amount of individual models by also calculating the average of 500 models too, but this
did not alter the final results), producing clearly better predictions (SDEP = 1.01 and Pr-
R’ = 0.65) than the corresponding conventional kNN models. Comparison of the
statistical parameters of the individual external models and the external consensus kNN
model revealed that only 6 of the 50 individual models were statistically better than the
consensus model.

The consensus kNN approach was further tested with a large set of compounds
divided into five subsets depending of the ER for which the binding assays were
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performed (calf ER; 53 compounds, human ERa; 61 compounds, human ERp; 61
compounds, mouse ER; 68 compounds and rat ER; 130 compounds) (III). The internal
predictability of the consensus models was impressive, producing models with Q? values
between 0.69 (human ERB) to 0.79 (human ERa). Statistical parameters for all internal
models can be found from Table 1 in publication III. The data sets of calf ER, rat ER and
mouse ER have been used in several previous studies employing various QSAR methods
and the LOO-CV validated results of internal consensus kNN models were compared
with the results of those models (see Figure 7 for Q? values and Table 2 in publication ITI
for detailed statistical parameters).

Consensus kNN outperformed all previous models, including the CoMFA models
presented. With the calf and mouse ER data sets the difference between the performance
of CoMFA and consensus kNN models was surprisingly large. Furthermore, the
consensus kNN model employing mouse ER data set performed better than the original
KNN model presented by Zheng and Tropsha (2000). The external performance of the
consensus kNN models was also impressive with Pr-R* values ranging from 0.62 for
human ERJ up to 0.77 for calf ER and mouse ER (see Table 3 and Figure 1 in publication
III for the results of all external models). The effect of the ER data set of different species
on the predictive ability of the consensus kNN models is discussed further in section 4.5.
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Figure 7. The Q° values of the consensus kNN models with calf ER, rat ER and mouse ER
data sets (I11I) compared with the results obtained in previous studies employing CoOMFA
and CODESSA with calf ER (Tong et al. 1997), COMFA with rat ER data (Shi et al. 2001),
CoMFA, FRED/SKEYS, HQSAR (Waller 2004) and kNN (Zheng and Tropsha 2000) with
mouse ER data.
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4.1.5 Classification tests

The performance of the three classification methods (DT, LVQ, and kNN) was tested
with the same data sets of calf ER, mouse ER, rat ER, human ERa and human ERf (IV),
which were employed with the above described consensus kNN models, along with an
additional data set including 311 compounds regardless of the species, by classifying the
compounds into inactive and active groups. The classification power of the
PCA/TOOLDIAG selected variables was tested with LOO classification performed with
TOOLDIAG. The percentages of the correctly classified compounds varied from 80.8 (rat
ER) to 99.3 (calf ER) confirming the classification ability of the selected variables (see
Table 2 in publication I'V). Result obtained with the calf ER data was exceptionally good
and it differed markedly from the results obtained with the other data sets.

The external performance of DT, LVQ and kNN was tested with 30 randomized test
runs, and the average of the correctly classified compounds in the 30 test sets is presented
in Figure 8. The detailed results can be found in Table 3 in publication I'V.
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Figure 8. The averages of the percentages of correctly classified compounds for the 30
randomized external test runs with DT, LVQ and kNN methods (IV).

The trend of the classification power between species for the external test runs follows
the trend obtained with LOO classification performed with TOOLDIAG. The
performance of all three methods with the calf ER data set is clearly better than the
performance with the other data sets. This can be explained by the homogeneity of the
structures of the compounds in the calf data set, which makes the classification simpler.
Furthermore, the active compounds were mixed with the inactive ones in the other data
sets, whereas they were more clearly divided into two groups in the calf data, which was
demonstrated with Sammon’s mappings (Figure 2 in publication IV).

Comparison of the results between the employed classification methods reveals that
kNN performs best for all other data sets except with that including all the compounds, in
that case virtually the same performance was achieved with all methods but overall, DT
had the weakest performance. Roggo et al. (2003) have noted the same trend between the
performances of the DT, LVQ and kNN in their classification study with IR data. The fact
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that all the methods tested, including DT, performed equally well with the data set that
included all the compounds indicates that the classificatory power of the LVQ and kNN
methods suffers if a broad diversity of structures is to be tested.

Tong et al. (2003) tested DT and decision forest (i.e. model ensemble DT) for their
classification ability with estrogenic compounds, achieving models with good
classificatory powers. Therefore the weak performance of the decision tree in our tests
was unexpected. Even pruning of the trees, i.e. deletion of improper decision links in
order to simplify the structure of the trees, did not improve the performance of the DT
models in our case.

To find some point of comparison for the performance of our models, a data set
employed by Saliner et al. (2003) in their multidimensional discriminant analysis (MDA)
study, was used with DT, LVQ and kNN models. The data set of 117 compounds was
randomly divided into training and test sets of equal size, and the calculations were
repeated 30 times. Although our results are not fully comparable with the results obtained
by Saliner et al. (2003) (as they reported the percentages of correctly classified
compounds for two randomly selected test sets only and without naming the compounds
selected for the test sets), the conclusion can be drawn that the performance of DT, LVQ
and kNN is as good as that of MDA (see Table 4 in publication I'V for detailed numerical
values of these models). In addition, this comparison revealed that LVQ (not kNN as with
our data sets) had the best classification power with this data set.

4.2 Modelling of CYP data

4.2.1 Oxidation of naphthalene

The oxidation tests of naphthalene to 1- and 2-naphthol by mouse CYP2AS5 and
human CYP2AG6 cytochrome P450 enzymes revealed that this metabolic route really does
take place, and the oxidation probably proceeds via 1R,2S- and 1S,2R-naphthalene
oxides. The results also indicated that 1-naphthol was the dominant oxidation product
over 2-naphthol, which supports the results obtained earlier by Jerina et al. (1970), and
that the mouse CYP2AS enzyme is more active than the human CYP2A6 enzyme in the
oxidation of naphthalene to 1- and 2-naphthol (V).

Admittedly, the oxidation tests of naphthalene conducted within this research were
very limited, and thus provided only weak support for the earlier results relating
estrogenic activity and metabolism via cytochrome P450 enzyme (Charles et al. 2000;
Sugihara et al. 2000; Fertuck et al. 2001; Sanoh et al. 2002; Fujimoto et al. 2003;
Kitamura et al. 2003; Mikamo et al. 2003; van Lipzig et al. 2005). In reality, the study of
the oxidation of the naphthalene was a minor portion of the study, e.g. we did not
evaluate the estrogenic activity of 1- and 2-naphthol, which would have provided further
information about the subject.

4.2.2 Modelling of the inhibitory activity of coumarin 7-hydroxylation

The inhibitory activity of various compounds (see Figure 1 in Publication VI for the
structures) against coumarin 7-hydroxylation was modelled with PLS employing EEVA
and EVA descriptors, and Hansch-type QSAR methods using data sets of mouse
CYP2A5 and human CYP2A6 enzymes (VI), which were used also by Poso et al. (2001)
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with CoMFA and GRID/GOLPE methods. Additional MLR models were constructed
using one PLS component derived from EEVA and EVA descriptors with McGowan’s
characteristic volume (MgVol) and its square, which were found to be good predictors by
Hansch et al. (2004) in their QSAR study employing the same CYP2AS data set, as the
supplement descriptor. The performances of all models were tested with an external test
set including five compounds (compounds 23-28), and additionally with 500 randomized
external tests with PLS/EEVA, PLS/EVA, and Hansch-type methods. The Pr-R* values
for the models with the five compound test set are presented in Figure 9. The detailed
statistical parameters for all models with five compound test set can be found in Table 3,
and the corresponding parameters for 500 randomized external tests with EEVA, EVA
and Hansch-type models in Table 4 in publication V1.
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Figure 9. The Pr-R? values for the models predicting the inhibitory activity of coumarin 7-
hydroxylation for CYP2AS5 and CYP2A6 enzymes with an external test set of five
compounds (VI). CoMFA and GRID/GOLPE results obtained from Poso et al. (2001).

As can be seen with the CYP2AS data set, all the methods have a good level of
performance, although PLS/EEVA and CoMFA do exhibit somewhat weaker
performances than the other methods. Furthermore, almost all methods showed clearly
better performance with the CYP2AS data set compared to the CYP2A6 data set, which
can be seen especially from the results of Hansch-type QSAR, although MLR/EEVA with
MgVol descriptors seemed to manage both data sets equally well. The different kind of
relationship between the MgVol descriptor and the activity of the inhibitors for the
CYP2AS and CYP2AS enzymes (Figure 3 in publication VI) seems to provide one
possible explanation for this difference between the models employing CYP2AS or
CYP2AG6 data sets. Further, the results suggest that the flexibility of the CYP2AS binding
site is larger than that of CYP2AG, i.e. the former tolerates somewhat larger ligands. As a
close relationship between octanol-water partition coefficient (logP) and biological
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activity is a common phenomenon, logP was tested as an additional descriptor with the
EEVA and EVA models, but this did not improve the predictive power of the models.

As a case study, the CoMFA model (V) originally presented by Poso et al. (2001) and
spectroscopic EEVA and EVA models (VI) were used for the prediction of the inhibitory
activity of naphthalene against coumarin 7-hydroxylation. The results of these tests are
presented in detail in Table 5 of publication VI. It appeared that the CoMFA model failed
to find any difference between the inhibitory activity of naphthalene for CYP2AS and
CYP2AG6 data sets with predicted values of 3.74 and 3.72 (experimental values 4.3 and
3.22, respectively), whereas EEVA and EVA models did detect this difference, although
not to the same extent as revealed in the experimental tests. One explanation for the
failure of the CoMFA may be the difference between the structures of the compounds
used for building the model and the structure of naphthalene, which may cause problems
for the alignment leading to unsatisfactory predictions. The performance of the models
with CYP2AS5 data was better than with CYP2A6 data, as was to be expected based on
the results obtained with the models described above. In the comparison between EEVA
and EVA models, EEVA outperformed EVA, especially with CYP2A6 data set.

4.3 Variable selection

The selection of variables is a common problem in all predictive modelling, including
SAR/QSAR. With the spectroscopic methods tested in this research and with the methods
based on the calculation of some molecular fields, such as CoOMFA and SOMFA, separate
variable selection is not commonly used, although Sippl (2002) obtained clearly better
performing CoOMFA models employing smart region definition (SRD) as the variable
selection. With the method employing a large number of separately calculated physico-
chemical features or structural descriptors as the variables, some kind of variable
selection is an essential part of the modelling process. DRAGON descriptors were used as
variables in our kNN and consensus KNN models employing SA as the variable selection
method and in the classification models employing PCA and TOOLDIAGs feature
selection for variable selection.

With the kNN method the effect of the variable selection for the predictive power of
the models can be illustrated by examining Table II in publication II, where the
performance of the model including all the variables (Int»47) is clearly poorer than the
performance of the other models employing SA. The effect of the selected variable pool
can also be seen by viewing the fluctuation of the predictive power example inside the
internal model Intso for which the minimum of the Q2 value is 0.60 and the maximum is
0.75 (Table II in publication IT) or inside the external model Ext,sy for which the
minimum of the Pr-R? value is 0.33 and the maximum is 0.71 (Table IV in publication
II). These differences are based solely on the different variable pools. The above
described effect of the variable pool with kNN employing SA could be diminished by
running the SA procedure more thoroughly, i.e. testing more combinations of the original
variables, so that the best performing subset is more likely to be found. With consensus
kNN, however, this was not needed, since consensus kNN diminishes the effect of the
selected variable pool and performs properly without running SA so thoroughly. The
shortcoming of the SA is that the procedure is very time consuming, especially with large
data sets.
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PCA/TOOLDIAG employed with classification methods also proved to be a feasible
strategy for the discrimination between active and inactive compounds; at least their use
produced better performing models than that obtained by using all of the calculated
DRAGON descriptors. Of course, the SA method could have been employed also with
classification models, which would have provided an opportunity to use consensus
modelling with these models, but this procedure would have been computationally
demanding and time-consuming, and therefore the use of PCA was justified.

4.4 Selection of the training and test set

The random selection (usually 500 runs) of the training and test set was used for the
external validation of almost all of the models constructed here, except for the kNN and
consensus kNN QSAR models. The effect of the composition of the training and the test
set can be seen from the results obtained with CoSA “C and SOMFA methods for
external prediction producing Pr-R”* values with the standard deviations from 0.12 to 0.22
(Table 3 in publication I) and from the results obtained with classification methods tested
producing as much as 30% difference between the performances of the worst and best
models obtained with the same method (see, for example, the performance of the LVQ
with the human ERa data set in Table 3 in publication IV). Saliner et al. (2003) used the
random selection of the training and test set for two runs and selection of the training and
test set on the basis of the distribution of the most significant descriptors for two runs. As
expected, they obtained poorer results with the randomly selected training and test set,
indicating random selection to be the most revealing way of testing the true performance
of a model. This was also observed with the kNN model employing the rat ER data set by
producing 500 randomized external models with the average performance of Pr-R? value
being 0.40 (Figure 2 in publication IT) compared to the 50 models employing the same
training and test set (i.e. not random selection) with different descriptor pools producing
models with the average of Pr-R? value of 0.57. In view of the above, it seems reasonable
to propose that validation tests should be conducted in each QSAR study, as emphasized
recently by Tropsha et al. (2003).

However, with kNN and consensus kNN methods, the use of randomly selected
training and test sets is not so straightforward. The performance of the external model
fluctuates considerably even with the same training and test set due to the different
variable pools, as described in the previous chapter. For that reason, it would be
impossible to know which one of the two, the training set or the variable pool, is having
the greater impact on the predictive power of the model. Moreover, with the consensus
kNN method, the final prediction is the average of the models used for the consensus
model, and so it is essential that the compounds in the training and test sets are the same
for all models, if not, then the calculation of the consensus model becomes impossible.

4.5 Diversity and source of the data set

At present, one important reason for the unreliability of the SAR and QSAR models
has been the small number of the experimental studies, at least in the case of ER. The
usability of the models in the real life screening situations will increase as the structural
diversity of the compounds used for the modelling increases. In this study, the limiting
effect of too small structural variation in compounds used for the building of the model
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was noted with kNN and consensus kNN models, for which the model applicability
domain test (Tropsha et al. 2003) was performed in order to find out whether the test set
compounds were too dissimilar with the compounds used for building the model and this
would account for the poor predictive ability of the models. Indeed, some compounds
were found to be too dissimilar, and the external predictive ability of the first consensus
kNN model employing rat ER data set (II) improved clearly after these excessively
dissimilar compounds were omitted (Pr-R? value increased from 0.65 to 0.84). However,
in the second study employing consensus kNN, the predictive ability of the models did
not improve to any major extent by omission of the compounds considered as being too
dissimilar (Table 3 in publication IIT), and this indicates that consensus kNN is able to
diminish the impact of those compounds.

As present, since there are not experimental values available for compounds covering
a truly wide structural spectrum, the predictive power of the models will suffer, if there
are some dissimilar structures in the data set used for modelling and prediction. This was
noted in the classification tests performed in this research, as the classification ability of
the methods tested was clearly better with the calf data set comprising structurally similar
compounds than that with other data sets containing compounds with more diverse
structures. However, some difficulties may also arise as the structural diversity of the
compounds increases. In particular, it causes problems for the 3D-methods requiring
alignment of the compounds before QSAR modelling. The alighment becomes more and
more complicated and unreliable as the structural variation of the compounds increases
and the structures become more complex. This favours the use of QSAR methods which
do not need any structural alignments in the models, such as the consensus kNN
technique developed and validated in this project.

The data source may also cause some problems and increase the unreliability of the
models. The different methods used to perform the activity assays can give dissimilar
activities for the same compound. This can be avoided by using only the activities
obtained from the biological assays performed with the same method, but this reduces
even more the small number of compounds for which the data is available. In the studies
presented in this thesis, the difference between the source and particularly the difference
between the ER (human o, human B, rat, mouse or calf) or the enzyme (CYP2AS or
CYP2A®6) used for binding affinity measurements influenced the predictive powers of the
models. With the CYP2AS5 and CYP2A6 data sets, this has been discussed in section
4.2.2 and the situation is not so complicated, because both enzyme data sets contain the
same compounds. In contrast, the ER data sets are more complicated, since each data set
comprises different compounds, except for the data sets of human ERa and human ERp,
which have only two compounds which are not common for both data sets. Surprisingly,
the predictive power of the consensus kNN models employing the ER data sets grouped
according to the species (III), were clearly different for human ERa and human ER[}
(Figure 10), but unfortunately we do not have any sound explanation to offer for this
phenomenon. The low SDEP values in the external consensus kNN models obtained with
the calf ER data set are clearly attributable to the smaller variation between the binding
affinities of compounds included, whereas the high SDEP value with the rat ER data set
can be explained by the greater variation in the binding affinities.
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Figure 10. The SDEP and Pr-R* values for the consensus kNN models with the data sets
based on the different species (III).
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5 CONCLUSIONS
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The following conclusions can be drawn based on the results obtained and
observations made in this thesis:

Spectroscopic CoSA with '"H NMR chemical shifts, and especially PLS/EEVA
and PLS/EVA methods did not handle enantiomers and symmetric compounds
properly in the data set used for modelling, whereas CoSA with *C NMR
chemical shifts performed better.

SOMFA produced promising results with the tested estrogenic data sets, and it
also handled enantiomers and symmetric compounds included among the test
compounds, but the use of SOMFA is limited to structurally homogenous data
sets due to the fact that alignment is needed for modelling.

Estrogenic activity can be predicted with good accuracy employing consensus
kNN method. This technique produces better results than have previously been
obtained employing CoMFA, HQSAR, CODESSA and FRED/SKEYS methods
with the same data set.

LVQ and kNN were suitable methods for the classification of estrogenic
compounds especially if there was a structurally homogenous data set.
Naphthalene was oxidized by CYP2AS and CYP2A6 enzymes to 1- and 2-
naphthols, evidencing that compounds having no estrogenic activity can be
oxidized by cytochrome P450 enzymes to compounds potentially possessing
estrogenic activity.

EEVA outperformed EVA and performed more reliably and constantly when
employing the cytochrome P450 data set. Both EEVA and EVA performed better
than CoMFA.

Hansch-type QSAR is a very simple method to perform and it produced
predictions which were comparable to the more complicated QSAR methods with
congeneric data sets.

The performance of QSAR methods was greatly influenced by the data set used,
especially by the structural variability between the compounds.

PLS/EEVA and consensus kNN can be valuable tools for preliminary testing of
estrogenic activity of the compounds, especially in the situation where the
activity of individual compounds is to be tested (i.e. in the development of drugs
or new chemicals). LVQ and kNN can be employed in the same situation for
classification purposes.

Simulated annealing is a suitable variable selection method, but it is time-
consuming when employing large data sets.

Molecular dynamics calculations are too laborious and excessively time-
consuming and thus cannot be considered as supporting computational tools in
practical situations where one needs to evaluate large data sets.
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APPENDICES

Appendix 1. Amino acid sequences of the human ERa and ER.

Alignment was performed with protein information resource (PIR) pairwise alignment tool with
function SSEARCH [version 3.4t24 July 21, 2004]
(http://pir.georgetown.edu/pirwww/search/pairwise.html). The sequences used for the alignment
were retrieved from the ExXPASy (Expert Protein Analysis System) proteomics server of the Swiss
Institute of Bioinformatics (SIB) (http://kr.expasy.org/) with the ID numbers of P03372 for ERa
and Q92731 for ERJ.
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Appendix 2. The structures and the activities of the compounds used in studies II, IIT and
Iv.

Figure A2. Structures of the compounds used for the construction of the kNN (rat data
from compounds 1-245 and compounds 340-351) (IT) and consensus kNN (compounds 1-
245) (IIT) models. The inactive compounds used in the classification study (IV) are
numbered 246-339.
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Table A2. CAS numbers and /ogRBA values of the compounds used for the construction
of the kNN (rat data from compounds 1-245 and compounds 340-351) (II) and consensus
kNN (compounds 1-245) (IIT) models. Active compounds used in the classification
studies (IV) are compounds 1-245 and the inactive compounds are numbered 246-339
(N.D. = activity below detection limit).

Number CAS Calf Human ¢ Human f8 Mouse Rat
1 88-18-6 -2.95
2 446-72-0 0.60 1.94 -0.17 -0.36
3 531-95-3 -0.82
4 486-66-8 -1.00 -0.30 -1.65
5 485-72-3 -2.98
6 1806-26-4 -1.70 -1.15 -2.31
7 55331-29-8 1.48
8 17924-92-4 0.85 0.70 1.64
9 117-39-5 -2.00 -1.40
10 528-48-3 -2.35
11 58-72-0 -2.78
12 2971-36-0 0.72 -0.60
13 153-18-4 -4.09
14 6665-83-4 -3.41
15 89-72-5 -3.54
16 99-71-8 -3.37
17 72-43-5 -2.42
18 -2.78
19 789-02-6 -2.00 -1.70 -1.04 -2.85
20 0.38 0.67 0.74
21 0.53 0.86 0.76 -0.64
22 585-34-2 -3.18
23 0.36
24 -0.06
25 53905-28-5 -0.13 -1.44
26 13049-13-3 -0.87 -3.25
27 92-04-6 -1.40 -2.77
28 28034-99-3 -1.59 -2.18
29 -1.69
30 -1.43
31 -1.31
32 -0.78
33 98-54-4 -2.79 -3.61
34 35693-99-3 -1.37
35 35065-27-1 -1.51
36 33979-03-2 -0.70




37 -1.39

38 115-29-7 -3.36

39 143-50-0 -1.22 -1.00 -0.73 -1.89
40 140-66-9 -2.00 -1.52 -0.70 -1.82
41 56-53-1 2.37 2.34 2.57 2.60
42 -0.28

43 0.38

44 1.78

45 80-05-7 -2.00 -2.00 -0.74 -2.11
46 521-18-6 -1.30 -0.77 -1.58 -2.89
47 50-28-2 2.00 2.00 2.00 2.00 2.00
48 50-27-1 1.15 1.32 1.27 0.90
49 53-16-7 1.78 1.57 1.78 0.86
50 57-63-6 2.94 2.28
51 129453-61-8 0.79 2.64 1.57
52 34184-77-5 -0.65

53 58-22-0 -2.04

54 362-05-0 0.85 1.04 1.47
55 25154-52-3 -1.30 -1.05 -0.50 -1.53
56 5976-61-4 1.11 0.85 1.82
57 34816-55-2 1.63 0.70 1.14
58 0.75 1.93 2.22 1.16
59 57-91-0 0.85 0.30 0.49
60 1852-53-5 -1.15 -0.52 -2.67
61 571-20-0 0.48 0.85 -0.92
62 1156-92-9 -0.30 -0.22

63 521-17-5 1.23 0.00

64 54-43-0 -1.40 -1.15

65 434-22-0 -2.00 -0.64

66 85-68-7 -2.46

67 68-22-4 -1.15 -2.00

68 84-16-2 1.34 248 2.37 2.48
69 84-17-3 235 2.61 1.30 1.57
70 10540-29-1 -0.44 0.60 0.48 0.21
71 68047-06-3 0.83 241 2.37 2.24
72 911-45-5 1.40 1.08 -0.14
73 1845-11-0 1.64 1.20 -0.14
74 603-45-2 -1.50
75 84-74-2 -2.58

76 491-67-8 -3.05
77 72-33-3 0.35
78 520-36-5 -0.52 0.78 -1.55
79 480-41-1 -2.00 -0.96 -2.13




80 60-82-2 -0.70 -0.15 -1.16
81 491-80-5 -2.37
82 5975-78-0 0.32
83 520-18-3 -1.00 0.48 -1.61
84 480-16-0 -3.09
85 479-13-0 1.30 2.15 0.45 -0.05
86 529-44-2 -2.75
87 71030-11-0 1.63
88 131-56-6 -2.61
89 77-09-8 -1.87
90 143-74-8 -3.25
91 80-09-1 -3.07
92 611-99-4 -2.46
93 4250-77-5 -3.05
94 6515-36-2 -3.73
95 97-23-4 -2.45
96 126-00-1 -3.13
97 500-38-9 -1.51
98 81-90-3 -3.67
99 92-69-3 -2.00 -3.04
100 82413-20-5 1.18
101 77-40-7 -1.07
102 89778-26-7 0.14
103 80-46-6 -3.26
104 92-88-6 -1.52 -2.00

105 620-92-8 -3.02
106 0.23

107 0.59

108 0.11

169 0.52

110 -0.30

111 0.41

112 -0.15

113 0.32

114 -0.22

115 0.28

116 123-07-9 -4.17
117 0.58

118 1.20

119 0.93

120 0.63

121 1.00

122 1.52




123 1.11
124 1.11
125 0.77
126 1.32
127 1.28
128 -0.10
129 0.76
130 1.26
131 0.66
132 0.98
133 1.20
134 0.54
135 0.66
136 0.36
137 1.36
138 0.23
139 -1.70
140 0.23
141 -0.26
142 -2.00
143 0.48
144 0.54
145 0.23
146 -0.22
147 0.34
148 0.87
149 -1.22
150 -0.89
151 -2.00
152 -1.22
153 485-63-2 -2.35
154 20426-12-4 -2.55
155 1.32
156 59-50-7 -3.38
157 106-44-5 -4.50
158 2657-25-2 -2.43
159 6335-83-7 -2.69
160 6052-84-2 -1.44
161 580-51-8 -3.44
162 659-22-3 -0.55
163 961-29-5 -1.26
164 63046-09-3 -0.82
165 552-80-7 1.52 1.16




166 -0.10

167 2.00

168 1.40

169 -0.52

170 0.30

171 1.15

172 2.00

173 2.47

174 2.36

175 2.25

176 70-70-2 -1.00

177 -0.80

178 1.30 1.31
179 1.00

180 2529-64-8 -0.30
181 53-63-4 1.14
182 566-75-6 0.11 -0.05

183 362-06-1 0.30 -0.70

184 1228-72-4 1.46 1.90

185 1.88 1.00

186 84449-90-1 1.84 1.20

187 -1.00 -0.89

188 -0.23 -0.70

189 -1.05 -1.52

190 -0.52 -0.30

191 -0.89 -0.92

192 -1.22 -1.40

193 -0.74 -0.64

194 -1.52 -1.70

195 -1.52 -1.40

196 -1.05 -1.00

197 -2.00

198 -1.15 -1.22

199 -1.00 -1.00

200 -1.00 -1.00

201 620-17-7 -3.87
202 28463-03-8 -0.89
203 13037-86-0 -2.88
204 75938-34-0 -0.63
205 14868-03-2 0.42
206 6515-37-3 -2.65
207 7773-34-3 -1.25
208 3601-97-6 -0.29




209 15372-34-6 -2.74
210 13026-26-1 0.97
211 53-45-2 -2.20
212 3434-79-5 -1.65
213 5108-94-1 -1.48
214 0.60
215 5394-98-9 -0.68
216 79199-51-2 1.19
217 0.95
218 5219-17-0 -0.05
219 65118-81-2 -0.02
220 103-16-2 -3.44
221 104-43-8 -1.73
222 94-26-8 -3.07
223 1570-64-5 -3.67
224 34883-43-7 -3.61
225 6640-27-3 -3.66
226 1229-24-9 -0.15
227 68-23-5 -0.16 -0.66 -0.67
228 1085-12-7 -2.09
229 5153-25-3 -1.74
230 94-18-8 -2.54
231 94-13-3 -3.22
232 120-47-8 -3.22
233 99-76-3 -3.44
234 552-59-0 -2.74
235 94-41-7 -2.82
236 42422-68-4 1.20 1.15 -0.19
237 -0.69
238 56-33-7 -3.16
239 -0.35
240 0.68

241 1.17

242 2.88

243 1.04

244 1.26

245 0.90

246 3424-82-6 N.D.
247 117-81-7 N.D.
248 487-26-3 N.D.
249 520-33-2 N.D.
250 101-61-1 N.D.
251 154-23-4 N.D.




252 525-82-6 N.D.
253 529-59-9 N.D.
254 6665-86-7 N.D.
255 481-30-1 N.D.
256 309-00-2 N.D.
257 135-98-8 N.D.
258 84-66-2 N.D.
259 57-74-9 N.D.
260 93-76-5 N.D.
261 2385-85-5 N.D.
262 76-44-8 N.D.
263 53-19-0 N.D.
264 1610-18-0 N.D.
265 122-34-9 N.D.
266 N.D.
267 118-74-1 N.D.
268 72-54-8 N.D.
269 72-55-9 N.D.
270 50-29-3 N.D.
271 1912-24-9 N.D.
272 58-89-9 N.D.
273 50471-44-8 N.D.
274 57-83-0 N.D.
275 480-40-0 N.D.
276 57-88-5 N.D.
277 131-53-3 N.D.
278 835-11-0 N.D.
279 131-57-7 N.D.
280 15972-60-8 N.D.
281 118-82-1 N.D.
282 54760-75-7 N.D.
283 97-54-1 N.D.
284 505-48-6 N.D.
285 575-43-9 N.D.
286 629-41-4 N.D.
287 94-25-7 N.D.
288 121-33-5 N.D.
289 52-39-1 N.D.
290 51-61-6 N.D.
291 73-31-4 N.D.
292 101-77-9 N.D.
293 95-57-8 N.D.
294 60-57-1 N.D.




295 94-75-7 N.D.
296 101-80-4 N.D.
297 14187-32-7 N.D.
298 915-67-3 N.D.
299 218-01-9 N.D.
300 63-25-2 N.D.
301 1563-66-2 N.D.
302 90-43-7 N.D.
303 N.D.
304 51218-45-2 N.D.
305 108-95-2 N.D.
306 480-18-2 N.D.
307 17817-31-1 N.D.
308 117-84-0 N.D.
309 131-11-3 N.D.
310 886-65-7 N.D.
311 97-53-0 N.D.
312 6554-98-9 N.D.
313 104-51-8 N.D.
314 50-02-2 N.D.
315 58-08-2 N.D.
316 115-86-6 N.D.
317 243-17-4 N.D.
318 10236-47-2 N.D.
319 90-00-6 N.D.
320 83-46-5 N.D.
321 103-23-1 N.D.
322 571-22-2 N.D.
323 621-82-9 N.D.
324 100-51-6 N.D.
325 111-71-7 N.D.
326 111-27-3 N.D.
327 7212-44-4 N.D.
328 2437-79-8 N.D.
329 32598-13-3 N.D.
330 2050-68-2 N.D.
331 2132-70-9 N.D.
332 59-30-3 N.D.
333 103-36-6 N.D.
334 28553-12-0 N.D.
335 84-69-5 N.D.
336 50-35-1 N.D.
337 98-01-1 N.D.




338 470-82-6 N.D.
339 1833-27-8 N.D.
340 -0.74
341 79-97-0 -0.60
342 3253-39-2 -2.82
343 2024-88-6 -1.64
344 -3.30
345 -3.05
346 -0.82
347 -0.82
348 1478-61-1 0.00
349 -2.12
350 5776-72-7 0.56
351 599-64-4 -2.30
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