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ABSTRACT

Diet rich in fruits and vegetables has been associated with a decreased risk of cardiovascular
diseases (CVD). Polyphenols, such as flavonoids and phenolic acids, are ubiquitous in plants and
thus potential protective compounds in them. Several epidemiological studies have suggested a
high intake of dietary flavonoids to be associated with a decreased risk of coronary heart disease,
but the studies on stroke are limited. In addition, out of tens of potentialy health beneficial
polyphenols, studies have concentrated on a few. The most popular hypothesis for the protective
mechanism(s) is the ability of polyphenols to act as antioxidants, but the studies have resulted in
inconsistent findings.

The aims of this work were to study the relation between dietary polyphenol intake and carotid
atherosclerosis, and risk of CVD. In addition, our aim was to explore possible mechanisms of
action by studying the effects of polyphenol supplementation on oxidative stress in humans.

In the first study, the association between flavonoid intake and atherosclerosis, assessed with
the common carotid artery intima-media thickness (CCA-IMT), was explored in 1380 middle-aged
men participating in the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) study. In this cross-
sectional study, the high intake of flavonoids was associated with a decreased CCA-IMT.

In a consequent follow-up study, we studied the relation between flavonoid intake and the risk
of ischemic stroke and CVD death in 1950 middle-aged men of the KIHD study. In this study, the
high intake of flavonoids, especialy flavonols, was associated with a decreased risk of ischemic
stroke.

In athree week supplementation trial, we studied the effects of chocolate polyphenols on serum
lipids and lipid peroxidation in 45 healthy, nonsmoking volunteers. We found that chocolate
polyphenols increased the concentration of serum high-density lipoprotein (HDL) cholesterol in a
dose dependent manner, but had no effect on lipid peroxidation.

We also assessed the effects of three week consumption of coffee (0, 450 or 900 ml/d), which
isrich source of phenolic acids, on lipid peroxidation in 45 healthy, nonsmoking men. In this study,
no effect of coffee on lipid peroxidation was observed.

In a four week double blind supplementation study, we assessed the effects of catechin rich
phloem on serum lipids and lipid peroxidation in 75 nonsmoking, hyperlipidemic, but otherwise
healthy men. In the study phloem decreased lipid peroxidation, measured as oxidation
susceptibility of whole serum, while no changes in other the parameters were observed.

In summary, these results suggest that the high intake of dietary flavonoids may be associated
with decreased carotid atherosclerosis and the risk of ischemic stroke. We found little support for
the hypothesis that flavonoids and other polyphenols would decrease lipid peroxidation in humans.

National Library of Medical Classification: QU 85, QU 95, QU 220, QV 223, QV 325, QZ 180,
WB 438, WG 120, WL 355

Medical Subject Headings: Antioxidants; Cacao; Coffee; Cardiovascular Diseases/prevention and
control; Cerebrovascular Accident/prevention and control; Cholesterol, HDL ; Diet; Double-Blind
Method; Finland; Flavonoids; Fruit; Heart Diseases/prevention and control; Lipid Peroxidation;
Male; Middle Aged; Oxidative Stress; Phenols; Phloem; Plant Bark; Risk Factors; Vegetables
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YHTEENVETO

Kasvisten, hedelmien ja marjojen sy6nnin on havaittu vdhentdvan riskid sairastua sydén- ja
verisuonitauteihin. Kasvikunnan tuotteiden siséltdmien flavonoidien ja muiden fenolisten
yhdisteiden on esitetty olevan yksi tekija tdmén suojavaikutuksen takana. Epidemiologisissa
tutkimuksissa etenkin runsaan flavonoidien saannin on havaittu suojaavan sepelvaltimotaudilta.
Vaikutuksia muihin sydan- ja verisuonisairauksiin, kuten aivohalvauksiin on tutkittu vain vahan.
Kymmenistd péivittdin ravinnosta saatavista yhdisteistd, epidemiologiset tutkimukset ovat
keskittyneet vain muutamiin. Havaitun suojavaikutuksen mekanismiksi on esitetty néiden
yhdisteiden antioksidanttiominai suuksia, vaikkakin tutkimustulokset ovat hyvinristiriitaisia
ateroskleroosiin sekd sydan- ja verisuonitautiriskiin keski-ikéisilla, itdsuomalaisilla miehilla
Sepelvaltimotaudin  vaaratekijdtutkimusaineistossa (SVVT). Lisdks selvitettiin - mahdollisia
mekanismeja tutkimalla flavonoidien ja fenolisten yhdisteiden vaikutuksia oksidatiiviseen stressiin,
kuten veren rasva-aineiden hapettumiseen.

Ensin selvitettiin  poikkileikkaustutkimuksessa ravinnosta saatavien flavonoidien yhteytta
ateroskleroosiin 1380:11& SVVT-tutkimukseen osallistuneella mieheld, joiden kaulavaltimoiden
seindmien paksuutta oli mitattu ultra@@nimittauksilla.  Tutkimuksessa havaittiin - runsaan
flavonoidien saannin olevan yhteydessd merkitsevasti pienentyneeseen kaulavaltimoiden
ateroskleroosiin vain vahén flavonoideja saaviin verrattuna.

Seurantatutkimuksessa  selvitettiin -~ ravinnon  flavonoidien  yhteyttd sydan-  ja
verisuonitautiriskiin 1950 SVVT-tutkimukseen osallistunedla miehell& Tutkimuksessa havaittiin
runsaan flavonoidien saannin olevan yhteydessa merkitsevésti pienentyneeseen aivohalvausriskiin
vain vahan flavonoideja saaneisiin verrattuna.

Kolmas tutkimus selvitti suklaan kaakaomassan flavonoidien vaikutuksia veren rasvoihin ja
niiden hapettumiseen 45 terved 14, tupakoimattomalla tutkittavalla. Koehenkil 6t nauttivat péivittain
kolmen viikon gjan 75 grammaa joko valkoista, tummaa tai kaakaon flavonoideilla rikastettua
tummaa suklaata. Tutkimuksessa havaittiin tumman suklaan nostavan veren HDL-kolesterolin
pitoisuutta. Kaakaon flavonoideilla & havaittu olevan vaikutuksia veren rasva-aineiden
hapettumiseen.

Neljas tutkimus selvitti kahvin vaikutuksia veren rasva-aineiden hapettumiseen 45 terveellg,
tupakoimattomalla miehella. Kolme viikkoa kestdneessa kokeessa ei kahvin juonnilla havaittu
olevan lyhyt- tai pitkdaikaisia vaikutuksia veren rasva-aine den hapettumiseen.

Viides osatyd selvitti flavonoidga sisdltéavan, mannyn kuorikerroksesta saatavan, petun
vaikutuksia veren rasvoihin ja niiden hapettumiseen 75 lievasti hyperkolesterolemisella, mutta
muuten terveelld ja tupakoimattomalla miehelld. Nelja viikkoa kesténeessi kokeessa havaittiin
eniten pettua saaneiden miesten ryhméssa edul linen vaikutus seerumin hapettumisal ttiuteen.

Naiden tutkimusten perusteella runsaalla flavonoidien saannilla néyttdisi olevan edullisia
vaikutuksia ateroskleroosiin ja aivohalvausriskiin. Syoéttokokeissa e kuitenkaan saatu vahvistusta
sille, etta tutkittujen yhdisteiden suojavaikutus vélittyisi niiden edullisten antioksidanttivaikutusten
kautta.

Yleinen Suomalainen Asiasanasto: antioksidantit; ateroskleroosi; aivohalvaus; flavonoidit; HDL-
kolesteroli; hedelmét; It&Suomi; kahvi; keski-ik8iset; miehet; pettu; suklaa; polyfenalit;
ruokavaliot; sydan- ja verisuonitaudit; riskitekijat; vihannekset






To my parents






ACKNOWLEDGEMENTS

Thiswork was carried out in the Research I nstitute of Public Health, University of Kuopio, Finland
during 2000-2007. | fed very fortunate for having had the opportunity to work in thisinstitute with
excellent research facilities and surrounded by supporting people. | wish to thank all of you who

have given me advice and support along the way.

| feel very fortunate for having had skilful and supporting instructors. | want to express my
gratitude to Professor Jukka T. Salonen MD, PhD, MScPH for the opportunity to work in his
group. | am impressed with his expertise, continuous optimism and tremendous drive. | have been
very fortunate to work with such colleagues as Sari Voutilainen, PhD, who has offered me
countless hours of guidance, encouragement, and entertaining moments during these years. | want
to express my deepest gratitude to Tarja Nurmi, PhD, for fruitful collaboration, uncountable
amount of support and friendship. | also want to thank Jari Kaikkonen, PhD, who has given me

skilful guidance and encouragement along the way.

| wish to thank reviewers of this thesis, Professor Marina Heinonen, PhD, and Peter Hollman, PhD,

for skilful advices and constructive criticism.

| want to express my gratitude to Rector Matti Uusitupa, Professor Hannu Mykkénen and those in
the Department of Clinical Nutrition who have crossed my path during my MSc studies for
inspiring guidance to the field of nutrition. Especially the skilful guidance and encouragement
given by Marjukka Kolehmainen for my MSc thesis have been acknowledged with deepest
gratitude.

My sincere thanks are due to co-authors Meri Helleranta, PhD, Anu Ruusunen, MSc, Pertti
Happonen, MD, Kristiina Nyyssonen, PhD, Sudhir Kurl, MD, Elina Porkkala-Sarataho, PhD, Riitta
Salonen, MD, PhD and Georg Alfthan, PhD for collaboration and valuable contribution to this
work. Especially, | want to thank Professor Tomi-Pekka Tuomainen, MD, PhD, whose scientific
knowledge and enthusiastic attitude have had positive impact on me. | am grateful to my colleague
Tiina Rissanen, PhD, for guidance and support during these years. | aso want to express my

gratitude to Jyrki Virtanen, PhD, who has shared these years as a colleague and a friend.



I wish to thank Anna Nurmi, MSc, for editing the language of this thesis, valuable comments and
good travel company. | want to thank Kimmo Ronkainen, MSc and Maarit Korhonen, PhD, for
statistical advices. | am also grateful to all the people in the institute, Jarmo Tiikkainen, Janne
Asikainen, Jouni Karppi, Tero Kananen, Pirkko Kanerva, Annikki Konttinen, Sonja Rissanen,
Leila Antikainen, Paivi Rytkoénen, Sirkku Karhunen, Birgit Lylander-Sonninen, Auli Airas, Arja
Malkki, Merja Turunen and Irja Pietikéinen for invaluable help.

I owe my deepest gratitude to my friends whose role has been more valuable than you can imagine.
Thelove and support provided by my family has meant moreto methan | can ever put into words.

Financial support for this work provided by the Aarne ja Aili Turusen S&éti6, Finnish Cultural
Foundation, Finnish Foundation for Cardiovascular Research, Juho Vainio Foundation, Research
Foundation of Orion Corporation, University of Kuopio, Yrjd Jahnsson Foundation, Oy Karl Fazer
Ab, Meiji Seika Kaisha Ltd., Institute for Scientific Information on Coffee, ISIC, Physiological
Effects of Coffee Committee, PEC, and Finnpettu-osuuskunta is acknowledged with deep
gratitude.

Kuopio, May 2007




ABBREVIATIONS

ALAT
AMI
ANOVA
ASAT
ATBC
BMI

C

CBG
CCA-IMT
CHD

Cl
COMT
Ccv
CvD
DC
DPPH
EDTA
ELISA
FINMONICA
FRAP
GC-MS
GPX
v-GT
HDL
HP
HPC
HPLC
ICD
ICso
IHD
KIHD
LDL

LP

LPH
MDA
MI
MONICA

MUFA
NO
OHFA
ORAC
PBS
PON

Alanine aminotransferase

Acute myocardial infarction

Analysis of variance

Aspartate aminotransferase
Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study
Body mass index

Carbon, e.g. in numbering C-1

Cytosolic B-glucosidase

Common carotid artery intima-media thickness
Coronary heart disease

Confidence interval

Catechol-O-methyl transferase
Coefficient of variation

Cardiovascular disease

Dark chocolate
1,1-diphenyl-2-picrylhydrazyl
Ethylenediamine tetraacetic acid
Enzyme-linked immunosorbent assay
Finnish part of the MONICA project
Ferric reducing ability of plasma

Gas chromatography-mass spectrometry
Glutathione peroxidase
Gamma-glutamyltransferase
High-density lipoprotein

High polyphenol

High polyphenol chocolate

High performance liquid chromatography
International Classification of Diseases
Concentration yielding 50% inhibition

I schemic heart disease

K uopio Ischaemic Heart Disease Risk Factor Study
L ow-density lipoprotein

L ow polyphenol

L actase phlorizin hydrolase

M alondialdehyde

Myocardial infarction

M onitoring of Trends and Determinants of Cardiovascular
Disease project

M onounsaturated fatty acid

Nitric oxide

Hydroxy fatty acid

Oxygen radical absorbance capacity
Phosphate-buffered saline

Serum paraoxonase



PUFA

ROS
RR
SAFA

SOD
TBARS
tHcy
TRAP
UK
us
USDA
uv
VLDL
wcC
WHO

Polyunsaturated fatty acid

Pearsons correlation coefficient
Reactive oxygen species

Rate ratio

Saturated fatty acid

Standard deviation

Superoxide dismutase

Thiobarbituric acid-reactive substances
Total homocysteine

Total radical trapping antioxidant parameter
United Kingdom

United States

US Department of Agriculture
Ultraviolet

Very-low-density lipoprotein

White chocolate

World Health Organization



LIST OF ORIGINAL PUBLICATIONS

This dissertation is based on the following original publications referred to in the text by

their Roman numerals |-V:

Mursu J, Nurmi T, Tuomainen T-P, Ruusunen A, Salonen JT, Voutilainen S.
The intake of flavonoids and carotid atherosclerosis. the Kuopio Ischaemic
Heart Disease Risk Factor Study. British Journal of Nutrition 2007. In press.

Mursu J, Voutilainen S, Nurmi T, Tuomainen T-P, Kurl S, Salonen JT. The
high intake of flavonoids is associated with decreased risk of ischemic stroke in
middle-aged Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor
Study. Submitted.

Mursu J, Voutilainen S, Nurmi T, Rissanen TH, Virtanen JK, Kaikkonen J,
Nyysstnen K, Salonen JT. Dark chocolate consumption increases HDL
cholesterol concentration and chocolate fatty acids may inhibit lipid
peroxidation in healthy humans. Free Radical Biology and Medicine
2004;37:1351-13509.

Mursu J, Voutilainen S, Nurmi T, Alfthan G, Virtanen JK, Rissanen TH,
Happonen P, Nyysstnen K, Kaikkonen J, Salonen R, Salonen JT. The
effects of coffee consumption on lipid peroxidation and plasma total
homocysteine concentrations: a clinical trial. Free Radical Biology and
Medicine 2005;38:527-534.

Mursu J, Voutilainen S, Nurmi T, Helleranta M, Rissanen TH, Nurmi A,
Kaikkonen J, Porkkaa-Sarataho E, Nyyssdnen K, Virtanen JK, Salonen R,
Salonen JT. Polyphenol-rich phloem enhances the resistance of total serum
lipids to oxidation in men. Journal of Agricultural and Food Chemistry
2005;53:3017-3022.






CONTENTS

L1 INTRODUGCTION Lceiiiiiiiiiie ettt sttt e st st e sttt e s ssteeessbeeessbeaesasseeasbseaaseessasbeesasbeassssenesnsenaansen 17
2. REVIEW OF THE LITERATURE......ct ittt 19
2.1 CARDIOVASCULAR DISEASES AND ATHEROSCLEROSIS. .....uvviiuriiiriaiiesieesiresneesreesiee e esresssee s sneessee s 19
2.1.1 Public health relevancy of cardiovascular diSEASES ..........cccveririieenenineenese e 19

2.1.2 Pathogenesis Of ather OSCIEIrOSS.......ccvvieeriiieeiere et eesre e aesaeeneens 19

2.1.3 The oxidation hypothesis and atherOSCIEr0SIS.........cciveiiiiiciiii s 20

2.1.4 Measurement Of OXITALIVE SITESS.........cuiiueeriirieieierest ettt anen 21

2.1.5 Risk factorsfor cardiovascular iSEASES...........couierieririeiee et 21

2. 2POLYPHENOLS .....vtesetetest ettt s ettt bbb bt e bbbt b bbbttt bt ettt b et b e 22
2.2.1 Nature oOf POIYPNENOIS. ... ciiieieierieriee sttt s e e tesne e e e steeneeneesseeneeneesaeanenns 22

2.2.2 Occurrence of polyphenolSin foods......... ..o 23

2.2.3 Dietary intake and Sources of POlYPNENOIS. .......cc.oiiriiiiririee e e 26

2.2.4 Biocavailability and MEtabOliSIM.........eecieriiiieee e ens 28

2.3 POLYPHENOLS AND CARDIOVASCULAR HEALTH ...oiuiiiiiiiie ittt st 31
ARG = o1To 1= g0 o Foo Tor= TN = o =g ot NSRS 31

2.3.2 MEChaNi SIS Of ACHIONS.........ceueriiiieietiitee ettt e et b et ebe st e e et e see e eneanen 36

2.3.3 Safety of polyphenol CONSUMPLION..........ccciiiiiiiiiisr e 42

2.4 SUMMARY OF THE LITERATURE REVIEW ....c.vtiueireireeieesresreseenesnesseessessesseesnesnesseenesnessesnssnessesnnennesnes 43
3. AIM S OF THE STUDY ...ttt sttt et sttt e bt e s ae e st e e be e saeesaeeanbeenbeesbeeannas 44
4, MATERIALSAND METHODS. ... ettt sttt sttt e st e e e s e e e eaneeas 45

4.1 THE Kuorio IscCHAEMIC HEART DISEASE Risk FACTOR (KIHD) Stuby (WoORKs| AND 1)

4.1.1 Sudy population (WOFKS 1 @nd I1).........ccerrieeriesiiieiese e e s e e eeesreeneas
4.1.2 Measurement of CCA-IMT (WOTK 1) ...vvrieieieeee ettt s 45
4.1.3 Ascertainment of foll OW-Up events (WOIK 11) .....cvveeeeiereiieeese e 46
4.1.4 Other measurements (WOrkSs | and ) ..o 46
4.1.5 Assessment of nutrient intakes (WOrks I and I1)........coeoveveienenieeeseeeesesee e 47
4.1.6 Satistical analyses (WOTKS | @nd 11) .....ceerueieeiereeieiere e enees 48
4.2 CLINICAL SUPPLEMENTATION STUDIES (WORKS V) ..o 48
A TS 10 Vo o] o 1F | =1 o] S 48
4.2.2 SUdy deSIGNS (WOTKS THT-V) .ttt st sbe e e e beesreeanee 49
4.2.3 Measurements Of OXI0atiVE SITESS...........ccuiiiiireiiinee s 51
4.2.4 Other 1aboratory MEASUNEIMENES...........veueriereeeereseeeseeseesreeeessesseseessessesseeseessesseessessessesssessessees 53

4.2.5 Measurements of polyphenol content of the study supplements and biological samples............... 54



4.2.6 Satistical methods in supplementation studies (WOrks HH-V) .....ooeceevvieeeneneeee e 55

B RESULT S ettt h et h e b e bt bt ae b e Rt e Rt e e e e R e Rt e R e e Rt R e n e nne e nenne e 56
5.1 THE INTAKE OF FLAVONOIDS AND CAROTID ATHEROSCLEROSIS (WORK I) ..cevvviieiiiiiiciciiinieeecniee 56
5.2 THE INTAKE OF FLAVONOIDS AND THE RISK OF ISCHEMIC STROKE AND CV D DEATH (WORK I1)........... 57
5.3 THE EFFECTS OF CHOCOLATE ON HDL CHOLESTEROL AND LIPID PEROXIDATION (WORK I11) ............... 58
5.4 THE EFFECTS OF COFFEE ON LIPID PEROXIDATION AND PLASMA THCY (WORK V) ...cveiiiiiiiiicicienee 60
5.5 THE EFFECTS OF POLYPHENOL-RICH PHLOEM ON LIPID PEROXIDATION IN MEN (WORK V) ......cccuvennee. 61

6. DISCUSSION ...ttt sttt se e a et e e sb ek e s bt eae e s e bt e se e e e e R e ese e e e nreebeennennesreenenne e 64
6.1 METHODOLOGICAL CONSIDERATIONS .....eeutieuteeteesueesuteesseesueesaseeseesueesssesnseesseesseesssesnsesssesssneansesssenns 64

6.1.1 SUAY POPUIALIONS. .. c.veveerieeestieiiestesteeeestessesseessessesseesessesseessessesseessessesseessensesssessnssesseeenssessenns 64
6.1.2 SUAY GESIGNS...c.eiviriiiiiritei ettt ettt et b et b e bbbt erearea 64
6.1.3 Measurements and coll€Ction Of OULCOME BVENES.........ccvrvrierierrieee e seeee e e see s e 65
6.1.4 Dietary assessment and flavonoid database..... ..66
6.2 DIETARY INTAKE OF FLAVONOIDS......coeviviniieeeens ...66
6.3 FLAVONOID INTAKE, ATHEROSCLEROSISAND CVD .....coiiiiiiiiiiiiii e ... 67
6.4 EFFECTS OF POLYPHENOL SUPPLEMENTATION ON SERUM LIPIDS AND OXIDATIVE STRESS.......cccecvveneen. 68

T SUMMARY ettt bt h e h et bt b e bt bt e he b bt eh e et e bRt et e nheehe e b b ne e nente e 70

8. CONCLUSIONS......cccecteiteeeete ettt st e s r e e e e e s r e ee e e e nreeneen e nresreenenne e 71

9. FUTURE DIRECTIONS. ...ttt ettt r e mennesbeenennesneennenne e 72

10. REFERENGCES ... e s 73



17

1. INTRODUCTION

Cardiovascular diseases (CVD) remain to be the main public health problem in Finland as well as
in the other Western countries. Despite the decline by over 60% from the world highest mortality
rates in 1960s, over 25% of all deaths in Finland are still caused by coronary heart disease (CHD)
D).

Accumulating evidence suggests that diet rich in vegetables, fruits and berries decreases the
risk of CVD (2-4). Several nutritional factors in these foods, such as dietary fiber, p-carotene,
vitamins C and E, are considered to contribute to the protection. Vegetables are also rich sources of
flavonoids and other phenolic compounds making them candidates for the protective compoundsin
them. Polyphenols are a large group (>8000 compounds) of secondary plant metabolites and they
are essential to the physiology of plants, with functions e.g. in growth, structure, pigmentation, and
ultraviolet (UV) radiation protection (5).

Flavonoids were discovered by Hungarian scientists Rusznyak and Szent-Gydrgyi in 1936 who
observed that some factor in a fruit juice decreased the permeability and fragility of human
capillary (6). After isolating the compound from lemon juice, Szent-Gydérgyi hamed the compound
"vitamin P" for permesability. Later work, however, questioned these findings showing that the
results were likely attributable to traces of vitamin C in the flavonoid preparations. Further studies
did not provide evidence for their vitamin status and the name was replaced with "bioflavonoids” in
the 1970s. For decades, flavonoids were still considered to play arole in capillary strength, but the
interest towards the effects on health waned, as no support for the absorption of flavonoids in
humans was found (7).

The biological effects of polyphenols became again a focus of scientific interest in 1990s. First,
in 1993 Frankel et al. found that red wine polyphenols inhibited the oxidation of low density
lipoprotein (LDL) in vitro providing a plausible explanation for the "French paradox" (7, 8). The
French have low CHD mortality despite the fact that their diet is high in saturated fat, a paradox
that has been suggested to be related with a high consumption of red wine (9). In 1993, Hertog and
colleagues found that the high intake of flavonoids protected against CHD in the Zutphen Elderly
Study (10). A few yearslater, Hollman et a. showed, contrary to previous findings, that flavonoids
were absorbed in humans (11). These findings began a new era of polyphenol research. Several
epidemiological studies have evaluated a relation between the polyphenol intake and the risk of
chronic diseases such as CVD. In addition, in vitro, animal and human studies have assessed the
mechanisms of action. The results of epidemiological studies have been inconclusive, but favoring
the hypothesis that a high intake of flavonoids decreases the risk of CHD (12, 13). The most
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popular hypothesis for the protective mechanism has been related with the antioxidant properties of
flavonoids (14). In vitro and animal studies have provided strong and consistent support for this
hypothesis, while the studies assessing the antioxidant effects in humans have resulted in
inconsistent findings (14, 15).

The aim of this work was to study the role of polyphenols in CVD by assessing relations
between the intake of polyphenols and carotid atherosclerosis, and the risk of CVD. In addition, our
aim was to explore the possible protective mechanism(s) by studying the effects of polyphenol
supplementation on oxidative stress, especially lipid peroxidation, in humans. In this work, the
focus was on flavonoids and phenolic acids, as they are the main polyphenols in the habitual
Finnish diet.



19

2. REVIEW OF THE LITERATURE

2.1 Cardiovascular diseasesand atherosclerosis

2.1.1 Public health relevancy of cardiovascular diseases

Despite the drastic decline in CVD mortality since 1960s in Finland, in 2005 over 40% of the total
mortality was still caused by CVD (1). CVD cover a collection of various heart and vascular
diseases, but the main public health problems are CHD and cerebrovascular diseases. In Finland,
over 25% of all deaths are caused by CHD alone, a number higher than in most Western countries.
Stroke mortality is the third leading cause of total mortality causing annually over 9% of all deaths.
In addition CVD include numerous other pathological events such as heart failure, hypertension,
peripheral artery disease, degp venous thrombosis and pulmonary embolism, congenital heart
disease, cardiomyopathy, valvular disease, rheumatic heart disease, functional disorders of the

heart infections, and tumours of the heart and vessdls.

2.1.2 Pathogenesis of atherosclerosis

CVD as complex diseases have multiple causes, but majority originates from the complications of
atherosclerosis. The pathophysiology of atherosclerosis is caused by narrowing of the arteries
resulting in inadequate blood-flow and oxygen supply for the brain, heart and/or legs. The early
phase of atherosclerosis is characterized by the accumulation of cholesterol deposits in
macrophages in the intima of the arteries. These foam cells can aggregate to form fatty streaks.
Later, fatty streaks can mature into a fibrous plaque, which is a hallmark of established
atherosclerosis. Fibrous plaque is covered by a connective tissue cap with embedded smooth
muscle cells. If the plaque continues to grow, it gradually restricts the blood flow causing ischemia.
The clinically important complications of atheroma usually involve rupture of a fragile fibrous cap,
causing exposure of highly thrombogenic collagen and resulting intraluminal thrombus. Activated
platelets trigger vasoconstriction and further propagation of the thrombus, which may result in total
cease in blood flow, and subsequent clinical event (16, 17). Despite the fact that major explanatory
hypotheses for the pathogenesis of atherosclerosis were proposed by pathologists von Rokitansky
(18) and Virchow (19) in the mid 19th century, the pathogenesisis still not fully understood.
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2.1.3 The oxidation hypothesisand atheroscler osis

Several supplemental hypotheses have been postulated to complete the theory of pathogenesis of
atherosclerosis. One such is the "oxidation modification hypothesis* proposed originally in 1989 by
Steinberg and colleagues (20). The basic concept of the theory isthat LDL cholesteral in its native
state is not atherogenic. However, the chemical modification, i.e. oxidative modification, of LDL
may lead to its enhanced uptake by macrophages via "scavenger receptor pathway" resulting in
foam cell formation (21). In addition, oxidized LDL is considered to be atherogenic by blocking
the resident macrophages from leaving the intima, increasing the recruitment of circulating
monocytes into the intima, and being cytotoxic for endothelium resulting in endothdial dysfunction
(22).

Oxidative modification of LDL is initiated by "free radicals' produced in the intima by
macrophages, endothelial cells and smooth muscle cells (22, 23). Free radicals are highly reactive
atomic or molecular species resulting from normal oxygen metabolism in the human body (24, 25).
The most common reactive oxygen species (ROS) are superoxide, hydroxyl, and nitric oxide (NO)
radicals. The high reactivity of these species is related to unpaired electron or electrons. Increased
production of ROS can cause oxidative damage to nucleic acids, lipids, proteins and carbohydrates.
Especially double bonds of polyunsaturated fatty acids found e.g. in the LDL cholesterol are prone
to oxidative modification. On the other hand, ROS also have an essential role in several beneficial
physiological functions e.g. regulating the vascular tone, antimicrobial activity and regulation of
celular proliferation and growth.

Humans have effective antioxidant defence which includes antioxidant enzymes, as well as
non-enzymatic radical scavengers referred to as antioxidants. The enzymes include e.g. superoxide
dismutase (SOD), catalase, and glutathione peroxidase (GPX). The role of antioxidant enzymes is
to maintain a reducing tone within cells. The most extensively studied non-enzymatic radical
scavengers are B-carotene, vitamin E, vitamin C, urate and thiols. Normally, the antioxidant
defence system stay in balance with the production of oxygen-derived species. The balance may be
disrupted e.g. by depletion of antioxidants or increased formation of ROS leading to "oxidative
stress’ (26). Increased formation of ROS is suggested to result eg. from smoking, chronic
inflammation, drugs, or toxins, while depletion of antioxidants can be caused e.g. by inadequate
intake of antioxidant vitamins. According to the "antioxidant theory", dietary antioxidants, such as
vitamin C and E, can decrease oxidative stress and lipid peroxidation, and thus prevent
atherosclerosis (23).
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2.1.4 M easurement of oxidative stress

The assessment of oxidative stress in human body has turned out to be a challenging task, and
currently there is no agreement with regard to a reference method(s). Several different approaches
have been used, such as different measurements of total antioxidant capacity, lipid peroxidation,
and activity of antioxidant enzymes.

The methods most often used for measuring total antioxidant capacity are total radical trapping
antioxidant parameter (TRAP) and oxygen radical absorbance capacity (ORAC) (27, 28). In these
measurements, after induction with a pro-oxidant, the oxidation of hydrophilic fraction of plasma
or serum is monitored. Another approach is to measure the ability of hydrophilic fraction of plasma
to quench radicals without pro-oxidant induction. Example of such a method is ferric reducing
ability of plasma (FRAP) assays.

Several methods have been developed to assess the lipid peroxidation. Measurement of
thiobarbituric acid-reactive substances (TBARS) is a robust method based on measuring end
products of peroxide breakdown, such as malondialdehydes (MDA) (29). Ex vivo oxidation
susceptibility of isolated LDL fractions or whole serum are among the most widely used methods
(29). In these methods, oxidizing agents such as transition metals are used as initiators of lipid
peroxidation and oxidation is assessed by measuring the formation of conjugated dienes. F,-
isoprostanes are oxidation products of arachidonic acid and their levels are mainly determined by
gas chromatography-mass spectrometry (GC-MS) or by enzyme-linked immunosorbent assay
(ELISA) (30). Currently, Fo-isoprostanes are considered to be the most reliable marker of in vivo
lipid peroxidation (31-34). Hydroxy fatty acids (OHFAs), which are oxidation products of
unsaturated fatty acids, are also in vivo markers of lipid peroxidation (35). In addition, the activity
of various antioxidant enzymes, such as blood/plasma GPX, SOD or catalase, are considered to
reflect the state of oxidative stress in the human body.

The aforementioned methods are widely used for assessing the effects of antioxidants on
oxidative stress in humans. However, the rdevancy of these measurements as a predictor of

atherosclerosis and CVD is unclear (34, 36).

2.1.5Risk factorsfor cardiovascular diseases

A substantial number of factors are considered to contribute to the risk of CVD. The major and
independent risk factors are male gender, cigarette smoking, elevated blood pressure, elevated
serum total cholesterol and LDL cholesterol, low serum high-density lipoprotein (HDL)
cholesterol, diabetes mellitus, and ageing (37). In addition, obesity and low physical activity are
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major predisposing risk factors. Potential risk factors include eg. devated plasma total
homocysteine (tHcy), prothrombotic factors, and inflammatory markers, but their causative,
independent, and quantitative role has not been clearly established.

Numerous nutritional factors are also considered to modulate the risk. The high intake of
saturated fatty acids (SAFA), salt, and alcohol are considered to increase the risk, while the high
intake of mono- (MUFA) and polyunsaturated (PUFA) fatty acids, whole grains, fruits and
vegetables decrease the risk (38). The protective compounds in fruits and vegetables are not
entirely known, but fiber, various vitamins and other micronutrients are thought to be responsible.
Vegetables are also rich in polyphenals, such as flavonoids, and these compounds may also play a

rolein the protection.

2.2 Polyphenols

2.2.1 Nature of polyphenols

Polyphenols are a wide and complex group of secondary plant metabolites (39-41). So far, over
8000 compounds have been identified. Structures of the compounds range from simple molecules
such as phenalic acids, to highly polymerized compounds like proanthocyanidins. Polyphenols are
essential for the physiology of plants, having functions in growth, structure, pigmentation,
pollination, allelopathy, and resistance for pathogens, UV radiation and predators (5). In addition,
sensory qualities of plant foods and beverages, such as astringency and bitterness are related to
their polyphenol content (39). In nature, polyphenols occur primarily in conjugated forms with one
or more sugar residues attached to hydroxyl groups (39, 41). Conjugation increases the polarity of
the molecule, which is necessary for storage in plant cell vacuoles. The most common sugar
resdue is glucose, and residues can be in the form of monosaccharides, disaccharides or
oligosaccharides. In plants, polyphenols are relatively resistant to heat, oxygen, dryness, and to
some extent also to acidity, but the sensitivity to light differs according to their chemical structure
(41, 42).

Out of the large variety of compounds, the most common groups of phenolic compounds are
phenolic acids and flavonoids (39, 41) (Figure 1). Phenolic acids can be further distinguished into
two groups, hydroxybenzoic acids and hydroxycinnamic acids (40). Flavonoids represent the most
common and widely distributed group of polyphenols. Insofar, thousands of flavonoids have been
identified (41). Flavonoids have diphenylpropane (C6-C3-C6) structure, which consists of two or

more aromatic rings connected with three carbons. The basic structure of aflavonoid allows a wide
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variety of different substitution in the A, B, and C rings, resulting in multiple subclasses (43). The
main substituents are hydroxyl, methoxyl, or glycosyl groups, which can be further substituted
forming very complex structures (44). Classification of flavonoids into subclasses is based on the
functional groups in the C ring. Subclasses include anthocyanidins, flavan-3-ols, flavones,
flavonols, flavanones, and isoflavonoids. This work did not include isoflavonoids because the
intake of these compounds is generally low in Finland. Oligomeric or polymeric forms of flavan-3-
ols are referred to as proanthocyanidins or condensed tannins (44). The chemical nature of
flavonoids depends on their structura class, degree of hydroxylation, other substitutions and
conjugations, and degree of polymerization (41). In nature most flavonoids occur as glycosides (i.e.

aglycone conjugated with sugar moiety), except flavan-3-ols which occur as aglycones (43).

2.2.2 Occurrence of polyphenolsin foods

Polyphenols are ubiquitous in plant kingdom and practically all plant foods and beverages contain
a least some amounts of these compounds (39-41). The richest sources are fruits, berries,
vegetables, cereals, legumes, nuts, and beverages such as wine, tea, coffee and cocoa. However, the
types and amounts of compounds may vary grestly between different foods (Table 1).

Out of two groups of phenalic acids, hydroxybenzoic acids and hydroxycinnamic acids, the
latter is much more common (40). The most common hydroxycinnamic acids are caffeic and
ferulic acid (45). Caffdc acid mainly occurs in esterified form with quinic acid forming
chlorogenic acid. Caffeic acid and chlorogenic acid are present in very high amounts in coffee (46).
Ferulic acid is present in food items rich in cereals (40, 47).

Flavonols occur widely in fruits and vegetables as well as in beverages (40, 45, 48). Quercetin,
which is the most common flavonal, is especialy rich in onions and kale (40). Flavan-3-subclass,
which consists of both monomeric (catechins) and polymeric (proanthocyanidins) forms, are one of
the most ubiquitous flavonoids in plant foods (40). Rich sources of flavan-3-ols are berries, nuts,
dark chocolate, red wine, green and black tea. Anthocyanidins are pigments of red fruits and
berries, and high amounts of anthocyanidins are found in black currants, blueberries, black grapes,
cheries, and rhubarb (40). Citrus fruits and citrus juices are the main sources of flavanones.

Flavones are less common, but significant amounts can be found in parsley and celery.
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Figure 1. Structures of selected flavonoids and phenalic acids. 1. Quercetin (flavonal), 2. Lutealin (flavone), 3.
Hesperetin (flavanone), 4. Cyanidin (anthocyanidin), 5. Catechin (flavan-3-ol), 6. Epicatechin (flavan-3-al), 7.
Epicatechin-3-gall ate (flavan-3-ol), 8. Epicatechin-(4p-8)-epicatechin (proanthocyanidin), 9. Chlorogenic acid, 10.
Caffeic acid, 11. Ferulic acid, 12. p-Coumaric acid (9-12, cinnamic acid derivatives), 13. Protocatechuic acid, 14. Gallic
acid (13-14, benzoic acid derivatives), 15. 3,4-Dihydroxyphenyl propionic acid, 16. 3-Hydroxyphenylpropionic acid, 17.
3,4-Dihydroxyphenylacetic acid, 18. 3-Hydroxyphenylacetic acid (15-19, propionic and acetic acid derivatives,
metabolites).
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Table 1. Polyphenolsin foods

Subclass Individual compounds Primary food sources Paolyphenal
content
(mg/100g)
Hydroxybenzoic acids Gallic, vanillic, syringic, p- Black currant 4-13
hydroxybenzoic acid Raspberry 6-10
Strawberry 2-9
Hydroxycinnamic acids Caffeic, ferulic, p-coumaric, sinapicacid  Blueberry 100
Coffee beverage 35-175
Anthocyanidins Cyanidin, dephinidin, mavidin, Black currant 130-400
pelargonidin, peonidin, petunidin Black grape 30-750
Blueberries 25-500
Cherry 35-450
Rhubarb 200
Strawberry 15-75
Flavonals Quercetin, kaempferol, myricetin, Apple 2-4
isorhamnetin Broccoali 4-10
Cherry tomato 1.5-20
Kae 30-60
Leek 3-23
Onion 35-120
Flavones Luteadlin, apigenin Celery 2-19
Pardey 24-184
Flavanones Hesperetin, naringenin, eriodictyol Grapefruitsjuice 10-65
Lemon juice 5-30
Orangejuice 20-70
Flavan-3-ol monomers Catechin, epicatechin, gall ocatechin, Apple 2-12
epigallocatechin, epicatechin-3-gallate, Apricot 10-25
epigallocatechin-3-gallate, theaflavin, Black teabeverage 6-50
theaflavin gallate, theaflavin digallate, Cherry 5-24
thearubigins Chocolate 46-60
Grape 3-18
Green tea beverage 10-80
Peach 5-14
Red wine 8-30
Flavan-3-ol polymers Almond 184
(procyanthocyanidins) Apple, with peel 43-136
Blueberry 329
Cranberry 419
Dark chocolate 234
Hazelnut 501
Plum 247
Red wine 62
Strawberry 142

Modified from (40, 49).

The polyphenol content in plants is mainly determined by genetic factors such as plant phyla,
order, family and population variations within species (41, 48). Several environmental factors, such
as light, climate, and seasonal variation also affect the types and the amounts (50). Biosynthesis of
polyphenols is stimulated by sunlight and thus sunny climates usually increase the concentrations.

Dueto sunlight, the highest concentrations of phenolic compounds are usually found either in plant
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leaves or in the skin of fruits, while only minor amounts are found in the inner parts (39, 41). Other
factors such as the degree of ripeness influence the amount as well as the types of compounds
found in foods (40). In general, higher the degree of ripeness, lower the amounts of phenolic acids
and higher the content of flavonoids.

Polyphenol content of foods is to some extent affected by food processing and cooking (43,
44). In fruits, flavonoids are almost completely found in the ped, and thus pedling causes great
losses. For example, peeling the apple eliminates almost all quercetin (51). Processing can aso
cause transformation of polyphenols. For example, the oxidation process in the fermentation of
green tea to black tea causes reduction of flavan-3-ols with a concomitant increase in theaflavins
and thearubigens (43, 48).

The knowledge of the polyphenol composition of plant foods is still incomplete. Thisis mainly
because methods for detecting some polyphenols, e g. anthocyanidins, from foods have been
available only for a few years. In addition, there is a vast diversity of compounds and a huge
amount of plant foods that needs to be analyzed. Also, the lack of agreement on the appropriate
methods to analyze the content makes comparison between results from different studies very
difficult. Apples are considered to be one of the few foods for which the composition has been
described in detail. (40, 45)

2.2.3 Dietary intake and sources of polyphenols

The earliest estimations about the daily intake of polyphenols was proposed in 1976 by Kiihnau,
who suggested that the average intake in the United States (US) would be around 1 gram per day
(42). This estimate was, however, presented at a time when no reliable methods to analyze
polyphenol content of the foods were available. Appropriate analytical methods were developed in
1990s, but most of the more recent calculations on the intake are still suggestive as they have
mainly included only two flavonoid subclasses, flavonols and flavones (Table 2). It has been
estimated that at least five subclasses, atotal of 20-30 individua flavonoids, are common in daily
diet (52).

In addition to flavonoids, phenolic acids contribute significantly to the daily intake, but data for
their intake is limited. Also, estimates may not be representative for the whole population. Data is
mostly derived from the epidemiological studies which have assessed the relation between the
intake and disease in some specific subgroup of population (e.g. derly men), and not the absolute
intake at population level.
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Table 2. Population based surveys estimating mean daily flavonoid intake'

Study and reference Country  Age (y), Dietay  Flavonoid Intake  Main dietary sources
gender method subclasses (mg)
ATBC Study (53) Fl 50-69 M Dietary Flavonols 9.7 Vegetables, teg, fruits and
higtory Flavones 0.1 berries
Finnish Mobile Clinic Fl >15 M+F Dietary Flavonols 4.0 Apples, onions, white
Health Examination history Flavones <0.1 cabbage, citrusfruits,
Survey (54) Flavanones 20.2 berries
Zutphen Elderly Study NL 65-84 M Dietary Flavonals, 259 Tea (61%), onions (13%),
(10, 55) history flavones apples (10%)
Black tea (87%), apples
Flavan-3-ols 72 (8%)
Rotterdam Study (56) NL >55 M+F FFQ Flavonols 28.6 Not reported
Caerphilly Study (57) UK 45-50 M FFQ Flavonols 26 Tea (>80%)
Health Professional us 40-75M FFQ Flavonals, 19.9 Tea (25%, onions (25%),
Follow-up Study (58) Flavones 0.2 apples (10%), and broccali
(7%)
lowa Women's Health us 55-69 F FFQ Flavonols 138 Tea (36%), apples (17%),
Study (59, 60) Flavones <0.1 and broccoli (9%)

Tea (59%), apples and
peas (26%), chocolate
Flavan-3-0ls 254 (6%), and other fruitsthan

apples or pears (5%)
Women's Health Study us >45F FFQ Flavonals, 24.6 Tea (31%), onions (23%),
(62) Flavones broccoli (8%), and apples
(8%)

TATBC=Alpha-Tocopherol, Beta-Carotene Cancer Prevention, F=females, FFQ=food frequency questionnaire,
FI=Finland, M=men, NL=Netherlands, UK=United Kingdom, US=United States.

Currently, alot of data for the intake of flavonols and flavones in Western populations is available.
The daily intake of flavonols has varied from a few to tens of milligrams, while the intake of
flavones has been mainly less than 1 mg. In Finland, the intakes of flavonols and flavones are
dlightly less than generally in Europe and US. The intake of flavanones has rarely been studied, and
the intake has been reported to be 20 mg in Finland (54) and 58 mg in Greece (62). Limited amount
of calculations has been made for monomeric catechins (flavan-3-ols), and the daily intake has
been 72 mg in the Netherlands (55), 25 mg in the US (60) and 11 mg in Greece (62). Only a few
estimates for anthocyanidin intake are available, but as their concentrations are high in several
commonly consumed foods, the daily intake could be hundreds of milligrams (40). Similarly, no
reiable estimates of the intake of proanthocyanidins are available, but it has also been suggested to
be hundreds of milligrams per day (63). The intake of phenolic acids is strongly dependent on
coffee consumption. Coffee is rich in phenolic acids (~100 mg/dl) and thus among coffee drinkers

the daily intake can easily be several hundreds of milligrams (46). In summary, reliable estimations
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of intake of many polyphenols are still lacking, but the original suggestion for the total intake of
polyphenols may eventually end up being surprisingly accurate.

The main sources of flavonoids have been reported to be tea, onions, fruits, especially apples,
berries and broccoli with some variation between countries. However, thorough evaluation of the

sources is possible when the food composition data and estimates about the intake are complete.

2.2.4 Bioavailability and metabolism

To induce biological effects in vivo, sufficient amount of polyphenols have to be absorbed and
reach the target tissues. Bioavailability studies are an important part of the puzzle when
determining the compounds which could have effects on biological functions. Due to a vast
diversity of polyphenolic compounds, an extensive metabolism, and methodological difficulties in
studying the metabolism in the human body, the knowledge is still limited. Studies have mainly
focused on measuring concentrations in plasma and/or urine after consumption of pure compounds,

plant extracts or foodstuffs rich in polyphenols (64).

Absor ption of polyphenols

For decades, polyphenols were considered not to be absorbed (42). This was because in foods the
majority of polyphenols occur in glycosylated forms, and enzymes capable of cleaving the
glycosidic bonds were not known to be secreted in the gut. Absorption was thought to be possible
only for aglycones which, however, only occur in minor amounts in foods. In the early work of
Gugler and colleagues in 1975, they were not able to detect quercetin in human plasma or urine
after supplementation of purified quercetin aglycone (7) and thus it was reasoned that even
aglycones are not absorbed.

Later in 1995, Hollman and colleagues challenged these early findings by showing in their
studies that quercetin was absorbed (11). They also found that the glucosides were absorbed more
efficiently than aglycones. The absorption of quercetin glucosides from onions was found to be
52%, while absorption of pure aglycone and quercetin rutinoside were 24% and 17%, respectively.
Similar findings have been later reported also by others (65, 66). Plasma concentrations of
flavonols have mainly varied from 0.13 to 7.6 pmol/l after the supplementation (64). The
bioavailability of flavan-3-ols has varied between compounds (64). Catechin monomers are
relatively efficiently absorbed, while polymeric forms (proanthocyanidins) are poorly absorbed.
Plasma concentrations of monomers have mainly been <1 pmol/l, but consumption of cocoa has
yielded higher concentrations. The poor bicavailability of proanthocyanidins is thought to be

related to their polymeric structure and large molecular weight. Absorption is thought to be limited
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to only some dimers (B2) (40). The bioavailability of anthocyanidins is also considered to be poor.
After consumption of berry products, the concentrations in plasma have only been 10-50 nmol/I
(64). However, to some extent the absorption may have been underestimated because of difficulties
in the analysis (64, 67). Some important metabolites may have been neglected and the poor
stability of anthocyanidins in biological samples has complicated the work further. The
bioavailability of flavanones and flavones is scarcely studied. Absorption of flavanones is
considered to be rdatively efficient and after the supplementation the plasma concentrations have
varied from 1 to 6 umol/l (64).

Bioavailability of phenolic acids have been evaluated much less than flavonoids, and studies
have concentrated mostly on hydroxycinnamic acids; caffeic acid and chlorogenic acid (64).
Absorption of caffeic acid is efficient, but esterification reduces the absorption significantly. Olthof
et a. (68) found out that in ileastomy subjects, absorption of the caffeic acid was as high as 95%,
while for chlorogenic acid the absorption was reduced to 33%. The absorption of phenalic acids is
rapid and peak plasma concentrations are found at 1 h (69). Ferulic acid is efficiently absorbed
from high bran cereals (70) or beer (71) when present in free form, while esterification hampers the
absorption.

In general, the biocavailability of most polyphenols is relatively poor (64, 67). The rate and
extent of intestinal absorption and the metabolites found in plasma and urine are largely determined
by the chemical structure of the compound (39, 45, 64). The concentrations in plasma vary usually
between 0 to 4 uM after polyphenol supplementation (45, 64). Absorption is quite rapid and the
peak concentrations in plasma are measured 1-2 h after ingestion. The absorption is considered to
be dose-dependent even though this has been demonstrated only for one compound,
epigallocatechin-3-gallate (72). Even though scarcely studied, the food matrix may affect the
bioavailability, and basically concomitant consumption of any food may hinder the absorption (40).
Variation aso exists between individuals in the absorption and metabolism of phenolic compounds
which may berelated e.g. to differences in the microflora or intestinal enzymes (64, 66).

Small intestine and colon are the main sites of polyphenol absorption (Figure 2). Some
aglycones, such as quercetin, can be absorbed at the gastric level, but not glycosides which are
resistant to acid hydrolysis in the stomach (73). In the small intestine, minor part of the polyphenols
can be absorbed by passive diffusion (39, 40). Those compounds include free phenolic acids and
flavonoid aglycones. In foods, maost polyphenols are in the form of esters (glycosides or polymers)
which cannot be absorbed as such, but must first be hydrolyzed to aglycones by gastrointestinal
mucosa or colonic microflora (45). In the small intestine, glycosides are deglycosylated either by
lactase phlorizin hydrolases (LPH) or cytosolic B-glucosidases (CBG) (74, 75). Aglycones are then



30

able to diffuse into the intestinal cells. Glycosides may be transported into the enterocytes without
hydrolysis by sodium-dependent glucose transporter and then hydrolyzed by CBG.

Those compounds that are not absorbed enter colon and are hydrolyzed by microflora (40). The
formed aglycones are then further metabolized to phenolic acid derivates which might be absorbed
later. Absorptioninthe colon is considered to be less efficient than in the small intestine because of
the smaller exchange area and lower density of transporters (64). The role of microflora in the
metabolism may be more significant than currently estimated and the amount of microflora-derived

metabolitesin the blood as well as in the urine may be higher than tissular metabolites (40).

Metabolism of polyphenolsin the body

After absorption into the mucosa, the aglycones are conjugated in the small intestine or later in the
liver (40). Polyphenols are mainly either methylated, sulfated or glucuronidated. Conjugation
restricts their potential toxic properties and enhances their biliary and urinary excretion. The
enzyme involved in methylation is catechol-O-methyl transferase (COMT). COMT s found in
wide variety of tissues, but the highest activity is found in the liver and kidneys. In the circulation
polyphenols are primarily bound to albumin (40). The metabolism of anthocyanidins may differ
from other flavonoids. For most polyphenols only traces of their native forms are found in plasma
or urine, while unchanged anthocyanidin glycosides have been the main forms detected. Recently,
methylated and glucuronidated forms of anthocyanidins have been detected (76-78).

A very little is known about the tissue uptake of polyphenols in humans. Polyphenols have
been detected in wide range of mouse and rat tissues such as liver, brain, endothelial cells, heart,
kidney, spleen, lung, pancreas, prostate, uterus, ovary, mammary gland, testes, bladder, bone, and
skin (79, 80). At the time it is not known whether polyphenols accumulate to these target organs
also in humans. Some compounds with long half-life, such as flavonols, may accumulate in blood

when consumed repegtedly (81).

Excretion of polyphenols

Polyphenols and their metabolites are excreted either in urine or bile (40). Small conjugetes are
suggested to be excreted in the urine while large conjugates are excreted in the bile. Compounds
excreted via biliary route into the duodenum can be deglycosylated by bacterial enzymes to be
reabsorbed. The excreted amount in the urine varies between <1 to 30% of the ingested amount
depending on the compound (64). It is characteristic for flavonols that their elimination isrelatively
slow when compared with the other polyphenols, half-lives ranging from 11 h to as long as 28 h

(64). On the other hand, the excretion of catechins is rapid. The excretion is very low for
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anthocyanidins (<1%), but higher for ferulic acid (27%) and cocoa epicatechins (30%) (40). Low
excretion suggests that anthocyanidins are ether poorly absorbed or extensively metabolized. The
excretion is probably underestimated for some compounds, such as anthocyanidins, and all
metabolites may not have been identified. Chlorogenic acid is extensively metabolized and only

traces are found in urine, while 1/3 of caffeic acid ingested is found in urine. (68).

Tissues

Dietary polyphenols

Small
intestine

~
()

Figure 2. The main metabolic routes of polyphenols.

2.3 Polyphenols and cardiovascular health
The main interest assessing the health effects of polyphenols has focused on CVD. Epidemiological
studies have explored the relation between polyphenol intake and the risk of CVD (T able 3), while

thein vitro, animal and clinical studies have mainly assessed the protective mechanism(s).

2.3.1 Epidemiological evidence

Earliest findings about the role of flavonoids in CVD published in 1993 stem from the Zutphen
Elderly Study, a small cohort of Dutch men (10). In this study, Hertog et a. explored a relation
between the intake of 5 flavonoids from flavonol and flavone subclasses and the risk of CVD. They
found that after 5 years of follow-up, the intake of flavonoids was associated with 68% [95%
confidence interval (Cl) 29-85%)] reduced risk of CHD mortality after adjustment for CHD risk
factors. Weaker inverse association was also found for the incidence of myocardial infarction (M1).
Later, Kdi and colleagues found that flavonoid intake was associated with 73% (95% CI 30-89%)
reduced risk of fatal or non-fatal stroke (82). Later, Hertog and co-workers repeated their analyses
for CHD mortality and found similar associations (83). Arts et al. assessed the role of 6 catechins

from the flavan-3-ol subgroup in the same study and found catechin intake to be inversely
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associated with 51% (95% Cl 22-73%) reduced risk of CHD mortality (55). For MI or stroke no
associations were found.

The role of flavonoids has been assessed also in the Finnish Mobile Clinic Health Examination
Survey, a cohort with long follow-up time; up to 28 years. In the earliest findings, the intake of 5
flavonoids (flavonols and flavones) was found to be associated with 33% (95% Cl 0-66%) reduced
risk of CHD mortality in men, but not in women (84). Later, Knekt and co-workers studied therole
of quercetin on the incidence of cerebrovascular disease, but did not find any association (85). In a
more recent study, flavonoid intake was associated with a reduced risk of cerebrovascular disease,
especially thrombotic stroke (54). More specifically, inverse associations were found for one
flavonol (kaempferol) and two flavanones (hesperetin and naringenin). Quercetin was aso found to
beinversely associated with the ischemic heart disease (IHD) mortality.

Therole of flavonoidsin CVD has also been studied in the US in the large Health Professionals
Follow-up Study. In their study Rimm and colleagues did not find flavonoid intake (flavonols and
flavones) to be associated with therisk of CHD mortality (58).

Hertog et al. studied the relation between flavonols and IHD mortality in the Caerphilly Study,
asmall cohort consisting of men who were residents of Caerphilly, South Wales (57). In contrast to
the previous findings, the flavonal intake was found to be associated with an increased risk of the
al-cause mortality (rate ratio (RR), 1.4 [95% Cl 1.0-2.0]). The authors speculated that this
unexpected finding could be related to the fact that in the United Kingdom (UK) tea, which was the
main source of flavonoids, is consumed with milk which could inhibit the absorption of flavonoids.
Later studies, however, have not supported this hypothesis (86). Residual confounding by lifestyle
factors may also have affected the results.

Yochum et a. found in the large lowa Women Hedth Study that flavonoid intake was
inversely associated with the risk of CHD death in postmenopausal women, while no association
was found for stroke (59). In the further analysis of the same cohort, Arts et a. included also
catechins from flavan-3-ol subclass (6 compounds), but did not find them to be associated with the
CHD mortality (60). Recently, Mink et al. evaluated the role of 7 subclasses and found flavanones,
anthocyanidins, and flavonoid rich foods to be inversaly associated with total, CHD, and CVD
mortality (87).

Therole of flavonoids has aso been studied in another Finnish cohort, the Alpha-Tocopherol,
Beta-Carotene Cancer Prevention (ATBC) Study. In their study, Hirvonen and co-workers did not
find the intake to be associated with the risk of stroke in male smokers (88). In the same study,

flavonoid intake was found to be associated with a significantly reduced risk of MI, but not with
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the CHD mortality (53). More recently, a trend for an inverse association between flavonol and
flavone intake and a risk of intermittent claudication was found (89).

In the Rotterdam Study, flavonol intake was found to be inversely associated with the fatal, but
not with nonfatal, M1 (56). Sesso et al. studied the relation between flavonoids and CVD in the
large Women's Health Study, but did not find the flavonoid intake to be associated with the risk of
CVD (61).

Hertog and colleagues evaluated the role of flavonoids in CHD in the cross-cultural Seven
Country Study (90). Study consisted of total of 12 763 men aged 40 to 59 from 16 different
cohorts. The study population included men living in Finland, Italy, Greece, former Yugoslavia,
Japan, US and Netherlands. In a cross-sectional analysis, the flavonoid intake explained 9% of the
total variance in CHD mortality. In another cross-sectional analysis consumption of flavonoid rich
foods was inversely related with therisk of CvD (91).

Huxley and Neil gathered the data published before September 2001 and evaluated the
association between flavonol intake and the risk of CHD (13). This meta-analysis consisted of 7
prospective cohorts and included a total of 105 000 people and 2087 fatal CHD events. After the
adjustment for CHD risk factors, and dietary factors related to CHD, individuals in the top thirds of
intake had a 20% reduced risk (95% CI 7-31%) as compared to those in the lower thirds.

Several case-control studies have also evaluated the role of polyphenolsin CVD. Lagiou et al.
found the intake of flavan-3-ols was associated with the decreased risk of CHD (62) and later
peripheral arterial occlusive disease (92) in a Greek study. Marniemi and co-workers found the
intake of two flavonoids, luteolin and kaempferal, to be inversdly associated with the risk of acute
myocardia infarction (AMI) in a Finnish population (93). Recently, the high intake of
anthocyanidins was found to be related with the decreased risk of AMI (94).

The relation between the intake of phenolic acids and a CVD risk has not been explored, but
numerous studies have assessed the role of coffee which is a rich source of phenolic acids.
Similarly, tea is a rich source of flavan-3-ols and the role of tea in CVD has been extensively
studied in epidemiological studies. Even though these beverages contain a mixture of compounds
(polyphenadls, caffeine etc.), these studies can provide information about the role of phenolic
compounds in CVD. Red wine was not included in this review as the distinction of the effects of
polyphenols from ethanol, which is known to affect the risk of CVD, is difficult.

The effects of coffee consumption on the risk of CVD have been studied for over 40 years. In
thefirst study published in 1963, the high consumption of coffee (>5 cups/d) was found to increase
therisk of MI (95). Even though the association was later found to be explained solely by cigarette
smoking, the study launched a series of further studies. A meta-analysis of 11 prospective studies



published between 1966 and 1991 reveal ed no association between coffee consumption and the risk
of CHD (96). Studies conducted after the meta-analysis have resulted in inconsistent findings.
Some have reported the high intake to be associated with an increased risk (97-100), and some
have not found an association (101-103), while in some studies moderate consumption of coffee
have been found to be beneficial (104-106). In some studies, the association has been J-shaped or
U-shaped (107-109).

Similar to coffee, the CVD effects of tea have been evaluated for over 40 years. A meta-
analysis, which included 10 cohort and 7 case-control studies published between 1966 and 2000,
found an 11% decreasein the risk of MI for moderate tea consumers (3 cups or 700 mi/day) (110).
The studies conducted after the meta-analysis have resulted in similar findings. Most studies have
suggested moderate to high consumption of tea to be negatively reated with CVD (56, 111, 112),
although this has not been found in all studies (113).

In summary, despite the inconsistency, the results from prospective cohort studies suggest that
flavonoids may modestly decrease therisk of CHD. Out of the 13 published studies, 8 longitudinal
studies have found flavonoids to be significantly associated with the decreased risk of CHD. The
number of studies on stroke is limited and out of 8 studies, only 2 have found a significant inverse
association. The high consumption of tea may also moderately decrease the risk of CVD, whilethe

coffee consumption does not seem to have a strong effect on therisk.
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2.3.2 Mechanisms of actions
The mechanism(s) through which flavonoids may decrease the risk of CVD is not currently known.
Flavonoids have eg. antioxidant, vasodilatory, antithrombotic and anti-inflammatory properties,

which may account for their protective effects.

Antioxidant effects

The most popular hypothesis for the protective mechanism of polyphenols against CVD is their
ability to act as antioxidants. Polyphenols have been suggested to decrease the oxidative stress in
human body and especialy inhibit the oxidation of LDL (114). Flavonoids may inhibit the
oxidative stress by: 1) scavenging free radicals by acting as reducing agent, hydrogen atom
donating molecules or singlet oxygen quenchers; 2) chelating metal ions; 3) sparing other
antioxidants (e.g. p-carotene, vitamin C and E); and 4) preserving HDL-associated serum
paraoxonase activity (114). Antioxidant properties of polyphenols are related to their chemical
structure and dependent on the number and arrangement of their phenolic hydroxyl groups (39,
115, 116).

In vitro studies about antioxidant effects of polyphenols

Large number of papers on the antioxidant properties of various polyphenols in vitro has been
published and most of the compounds have been found to be powerful antioxidants. The evidence
is especially extensive for monomeric (catechins) and polymeric (proanthocyanidins) flavan-3-ols.
Antioxidant properties have been shown for pure compounds (117, 118) as well as food items rich
in flavan-3-ols, mainly for black tea (118-121), green tea (118, 119, 122, 123), red wine (8, 119,
124), cocoa (125-128), and chocolate (127, 128). Also flavonols, especially quercetin, have been
found to be effective antioxidants in vitro (129, 130). Antioxidant properties of other flavonoids or
phenolic acids in vitro have been studied much less, but most of the compounds are considered to
possess antioxidant activity (116). Various fruits and vegetables, which are rich sources of
polyphenols, also have antioxidant activity (131).

In vivo relevancy of these in vitro experiments has been, however, questioned because the
bioavailability and metabolic aspects have often not been taken into consideration (15, 132).
Firstly, the concentrations of polyphenols which prevent oxidation in vitro have often been tens of
times higher as compared to those achieved in the human body. The concentrations required to
induce beneficial effect in in vitro range from <0.1 to >100 umol/l, while the concentrations

mesasured in the human body have usually been ~1 umol/l after supplementation. Secondly, in



37

humans polyphenols are extensively metabolized after the absorption and thus the chemical forms

that occur in foods, and often used in vitro studies, very rarely exist as such in the human body.

Animal studies about antioxidant effects of polyphenols

Animal studies have provided relatively strong and consistent evidence of the antioxidant and
cardioprotective effects of polyphenols. In large number of studies, supplementation with
polyphenols has inhibited oxidative stress (133-143) and attenuated the progression of
atherosclerosis (133-136, 138, 140-142, 144-146). The beneficia effects on oxidative stress or
atherosclerosis have mainly been found for various sources of monomeric and polymeric flavan-3-
ols; green and black teas (134, 136-139, 144), red wine polyphenols (140, 142, 145-147) and cocoa
(141). However, not al studies have found polyphenols to be beneficial in the inhibition of
oxidative stress (145, 146, 148) or atherosclerosis (149-152). Studies of the role of polyphenols
other than flavan-3-ols in animal models are limited. Some studies have aso suggested flavonols,
especially quercetin, to be able to inhibit lipid peroxidation and attenuate atherogenesis in animals
(143, 147). No changes in atherogenesis have been detected after anthocyanidins or black currant

juice supplementation (150).

Human supplementation studies about antioxidant effects of polyphenols

The antioxidant effects of polyphenols have been studied in humans since the mid 1990s. Asin the
case of in vitro and animal studies, these supplementation studies have focused on green and black
tea, red wine and cocoa (15). These studies can be categorized into two types; studies which have
assessed the effects of one bolus for 1 to 6 hours, and studies which have assessed relatively long-
term effects, mainly from 2 to 4 weeks. The supplemented amount of polyphenols has varied from
a few tens of milligrams to grams. In this review, the focus is in assessing the effects polyphenols
and thus only those red wine studies which were controlled for acohol were included.

In majority of the studies, the polyphenol supplementation has increased antioxidant capacity
(Tables 4-6). Enhanced capacity has been found for green tea and black tea (117, 122, 153-158),
red wine polyphenols (154, 159-161), grape juice (162) and cocoa polyphenols (163-166). In
addition, limited evidence suggests that other sources of polyphenols such as onions rich in
quercetin (167) and coffee rich in phenolic acids may enhance the capacity (168). The increase in
antioxidant capacity has lasted for a few hours, usually being highest at 1 to 2 hours after
consumption of polyphenols.

In contrast, studies which have evaluated the effects of supplementation on lipid peroxidation

have resulted in more inconsistent findings. Black tea or green tea have inhibited lipid peroxidation
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in some (118, 156, 157, 169-171), but not in all studies (119-121, 123, 155). Similar discrepancy
concerns studies on red wine polyphenols and cocoa. Some studies have found red wine
polyphenols to decrease the oxidative stress (160, 162, 172-177), while there are also several
studies which have not detected an effect (159, 178-180). For cocoa polyphenols, majority of
studies have suggested inhibition of lipid peroxidation (126, 163, 165, 166, 181-185), while some
studies have not found an effect (186-188). Limited amount of evidence suggests that other rich
sources of polyphenols, such as berries, may also decrease lipid peroxidation (131). Limited
amount of evidence support the putative decreasing role of quercetin in lipid peroxidation (175),
even though not all studies have detected an effect (167).

More specifically, the number of studies which have used F,-isoprostanes, which are
considered to be the most reliable marker of oxidative stress in vivo (31-33), are much more
limited. Majority of these studies have not detected beneficial effect on F-isoprostanes for tea
(189-192), cocoa polyphenols (163, 183, 186, 187), grape juice (162), fruit juice mixture (193) or
fruit rich diet (194). In some studies, decreased production of F,-isoprostanes has been detected
after consumption of red wine polyphenols (173, 195), cocoa (181) or diet rich in fruit and
vegetables (196).

In summary, even though the results are inconsistent, the evidence favours the hypothesis that
polyphenols enhance antioxidant capacity, while the evidence for inhibitory effects on lipid
peroxidation in vivo is inconsistent. Some criticism against the beneficial effects of polyphenols has
also been raised. Plasma total antioxidant capacity in human body is estimated to be >10° pmol/l
and in order to detect a significant change in the capacity, the minimum increase in the polyphenol
concentration of plasma should be at magnitude of 20-50 pmol/l (14, 197). The supplementation
has, however, increased the concentrations of polyphenols in plasma mainly 1 pmol/l, and this has
been suggested to be insufficient to exert biological effects. Alternatively, some have suggested
that postprandial changes are results of increased concentration of metabolic antioxidant, uric acid
(197).
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Vasodilatory effects on endothelial function

The vascular endothelium plays a key role in the regulation of vascular homeostasis and
accumulating evidence shows that endothelial dysfunction contributes to the pathogenesis of CVD
(199, 200). Oxidative stress and impaired endothelial function are closely related, and therefore
antioxidants, such as flavonoids, could also have an effect on endothelial function (201). Several
studies have found a beneficia effect of different flavonoids and flavonoid-rich foods on
endothelial function in humans. Beneficial effects have been observed for flavan-3-ols rich foods;
purple or red grape juice (202, 203), red wine (204) or red wine polyphenols (205), tea (190, 206-
208), and for cocoa polyphenols (186, 188, 209-212). Even though not all studies have found
beneficial effects for tea or red wine polyphenols (204, 213), the findings have been relatively
consistent. Flavonoids are proposed to improve endothelial function eg. by increasing the
production of NO (201). NO has vasodilatory, anti-inflammatory, antithrombotic, and growth-

suppressing properties.

Antithrombotic and anti-inflammatory properties

Polyphenolic compounds have been suggested to have anti-inflammatory and antithrombotic
properties. Platelet aggregation is a key factor in CVD and antiplatelet therapy reduces the risk.
Limited evidence suggests that consumption of grape juice, red wine polyphenols (214) cocoa
polyphenols (187, 214-217), black or green tea may inhibit platelet aggregation. Not all studies
have supported the hypothesis (166).

Atherosclerosis is a chronic inflammatory disease (16). Some (217), but not all studies (183,
190) have provided evidence of the anti-inflammatory properties. In addition, limited amount of
evidence suggests that polyphenols may decrease blood pressure (210, 218, 219) and increase
insulin sensitivity (210, 219). Originaly, it was suggested that polyphenols could have LDL
lowering properties, but studies have not supported this hypothesis. On the other hand, limited
evidence suggests that cocoa polyphenols may increase HDL cholesterol (166, 185), but majority
of studies have not found such an effect.

2.3.3 Safety of polyphenol consumption

Some concerns about the safety of polyphenol consumption have been raised. The consumption of
polyphenols is known to inhibit the absorption of non-heme iron and thus high intake of
polyphenols could be one contributing factor to developing anemia in those with marginal iron
stores (220).
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Consumption of coffee increases circulating levels of tHcy in humans, which has been
suggested to be an independent risk factor for CVD (221). Caffeine and chlorogenic acid have been
found to be responsible for the tHcy increase (222, 223), but the public health relevancy of these
findings remains a subject of argument.

Polyphenols may aso affect the biocavailability and pharmacokinetics of certain drugs.
Consumption of naringenin rich grapefruit has been found to inhibit cytocrome P450 3A4 mediated
metabolism of several drugs (224). Grapefruit has also been found to increase the bioavailability of
some benzodiazepines (225), lipid lowering drugs (226), and possibly thyroid medicines (227).
Orange juice has also been found to decrease the mean peak concentration of beta-blockers in
plasma (228).

In addition, polyphenols among the other antioxidants are considered to be potential pro-
oxidants when administrated in high amounts (34, 229). Some studies have reported pro-oxidant
properties of polyphenols in vitro (230). In humans, no increasing effects on lipid peroxidation
have been verified probably due to considerably lower amounts ingested and the extensive
metabolism of polyphenols.

Despite the fact that evidence does not support the adverse effects of polyphenols on humans,
some caution, especially with the dosing, is needed. The safety of supraphysiological doses, such
attainable through dietary supplements, can not be guaranteed. Swiss physician and chemist
Paracelsus in 17th century stated “ All substances are poisons...it is the dose that distinguishes a

poison from a remedy.”

2.4 Summary of theliterature review

In summary, polyphenols are a large group of compounds ubiquitous in plants. In humans, the daily
intake of polyphenolic compounds is estimated to vary from ten milligrams to one gram.
Polyphenols are absorbed into human body, but for most of the compounds the bioavailability is
relatively poor. Epidemiological evidence suggests that high intake of flavonoids may modestly
decrease the risk of CHD. However, the evidence concerns mainly flavonols, and the role of other
polyphenols in CVD has been studied much less. In addition, because of limited amount of studies,
the evaluation of the role of polyphenols in strokes is premature. The most popular explanation for
their mechanism of action is related to the antioxidant properties of polyphenols. Polyphenols are

strong antioxidants in vitro, but the effects observed in humans are inconsistent.



3. AIMSOF THE STUDY

In general, the aim of this study was to assess the role of dietary polyphenolsin CVD. First, theaim
was to explore relations between polyphenol intake and atherosclerosis, and the risk of CVD in
eastern Finnish middle-aged men. Second, the aim was to explore the suggested protective
mechanism of action by studying the effects of polyphenol supplementation on oxidative stress in

humans.

The specific aims of the present work were:

| To explorethereation between dietary flavonoid intake and common carotid

artery intima-media thickness (CCA-IMT) in middle-aged men.

I To study the association between dietary flavonoid intake and therisk of
cardiovascular diseasesin middle-aged men.

Il To study the effects of supplemented polyphenolsin chocolate, coffee and

phloem, on oxidative stressin humans.
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4. MATERIALSAND METHODS

4.1 The Kuopio I schaemic Heart Disease Risk Factor (KIHD) Study (Works| and 11)

4.1.1 Study population (Works| and 11)

The KIHD Study is an on-going population-based study of risk factors for CVD, atherosclerosis,
and related outcomes in men from Eastern Finland (231). The baseline examinations were carried
out between March 1984 and December 1989. The study sample consisted of 3235 men aged 42,
48, 54, or 60 years at baseline examination. Of these, 2682 (82.9 %) participated. The study
protocol was approved by the Research Ethics Committee of the University of Kuopio. All subjects
gave their written informed consent for participation. The cross-sectional work | included 1380
men for who complete data, including the CCA-IMT measurements, were available. For the work
I men who had history of CHD or stroke were excluded and a complete data were available for
1950 men.

4.1.2 Measurement of CCA-IMT (Work I)

Inwork I, CCA-IMT was assessed by high-resolution B-mode ultrasonography of the right and | eft
CCAs at the distal end, proximal to thecarotid bulb. The ultrasound equipment (Biosound Phase 2;
Biosound Inc, Indianapolis, US) was equipped with a high-resolution probe. Images were focused
on the posterior wall of the right and left CCAs and were recorded on videotape for image analysis.
The ultrasonographic examinations were carried out by well-trained ultrasound technicians and
were performed after the subjectshad rested in a supine position for 15 min.

CCA-IMT measurements were made through computerized analysis of the videotaped
ultrasound images with PROSOUND software (University of Southern California, Los Angeles,
US). This software uses an edge-detection a gorithm, specifically designed for use with ultrasound
imaging, that allows automatic detection, tracking, and recording of the intima-lumen and media-
adventitia interfaces, estimated at =100 points, in both the right and left CCAs ina 1.0-1.5 cm
section (232). For the present study, 2 measures of CCA-IMT were used. Mean CCA-IMT was
computed as the mean of =100 IMT measurements in the right CCA and another 100
measurements inthe left CCA. A separate study concerning the intra- and interobserver variability
of CCA-IMT measurements was carried out in 10 randomly chosen middle-aged men who had
participated in the KIHD study. The between-observer coefficient of variation (CV) was 10.5% for
the first assessments by 4 observers for both the right and left CCAs. The correlation coefficients
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ranged from 0.90 to 0.99. The intraobserver variability was described by the absolute value of
difference between the first and the third measurement by each observer. The mean absolute

difference was 0.087 mm, which is 8.1% of the mean of all measurements (233).

4.1.3 Ascertainment of follow-up events (Work I1)

For work 11, the collection of data and the diagnostic classification of strokes between 1984 and
1992 were carried out as a part of the multinational World Health Organization (WHO) Monitoring
of Trends and Determinants in Cardiovascular Diseases (MONICA) project, in which detailed
information of strokes were collected prospectively (234). In the Finnish part of the WHO
MONICA project (FINMONICA), regional coronary and stroke register teams collected data on
strokes from hospitals and wards of heglth centers and classified the events, as explained in detail
previously (235). Data on strokes from the beginning of 1993 were obtained by computer linkage
to the national hospital discharge and death registers. Strokes were collected and classified by a
neurologist using the same procedures as in the FINMONICA study (235). Each suspected stroke
(International Classification of Diseases, ICD-9 codes 430-438 and ICD-10 codes 160-168 and
G45-G46) was classified into 1) a definite stroke, 2) no stroke or 3) an unclassifiable event. Each
definite stroke was classified into 1) an ischemic stroke (ICD-9 codes 433-434, |CD-10 code 163)
or 2) ahemorrhagic stroke (ICD-9 codes 430-43, |CD-10 codes 160-161) (236).

CVD desaths were ascertained by computer linkage to the national death registry using the
Finnish social security number. All CVD deaths that occurred from the study entry to 31 December
2004 were included. There were no losses to follow-up. CVD deaths were coded according to the
9th1CD (code numbers 390 to459) and the 10th ICD (code numbers 100 to 199).

Definite ischemic strokes and CVD deaths were used as outcome events. If a subject had

multiple strokes during the follow-up, thefirst was considered as the end point.

4.1.4 Other measurements (Works| and I1)

For work | and Il, the study subjects were instructed to abstain from ingesting acohol for three

days, from smoking and eating for 12 hours. Fasting blood samples were drawn between eight and

ten o' clock in the morning after the subject had rested in the supine position for 30 minutes. Blood

was drawn with Terumo Venoject (Leuven, Belgium) vacuum tubes without using a tourniquet.
The main serum lipoprotein fractions, LDL and HDL cholesterol (Kone Instruments, Espoo,

Finland), and triglycerides (Boehringer Mannheim, Mannheim, Germany) were determined from

fresh serum samples using combined ultracentrifugation and precipitation. Maximal oxygen uptake
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was measured as previously described (237). Diabetes was assessed by previous diagnosis of
diabetes or fasting blood glucose concentration >6.7 mmol/l. Resting systolic blood pressure was
measured after supine rest of five minutes, three measurements in supine, one on standing and two
in sitting position with five minutes intervals with a random-zero mercury sphygmomanometer
(Hawksley, UK). The mean of al six measurements was used as the systolic blood pressure. Body
mass index (BMI) was computed as the ratio of weight to the square of height (kg/m?). The number
of cigarettes, cigars, and pipefuls of tobacco currently smoked daily, duration of regular smoking in
years, acohol consumption, history of myocardial infarction, angina pectoris, and medication were
recorded with a self-administered questionnaire, which was checked by an interviewer. A subject
was defined as smoker if he had ever smoked on a regular basis and had smoked cigarettes, cigars,
or pipe within the past 30 days. Repeated interviews to obtain medical history of CHD were
conducted by a physician. The family history of CHD was defined as positive if ether father,
mother, sister, or brother of the subject had a history of CHD.

4.1.5 Assessment of nutrient intakes (Works| and 11)

The consumption of foods at the KIDH study baseline was assessed at the time of blood sampling
with an instructed 4-day food recording by household measures. The instructions were given and
the completed food records were checked by a nutritionist. The intakes of nutrients were estimated
using the NutriceA computer software version 2.5 software. The intakes of nutrients used as
covariates in the Cox models were energy adjusted by the residual method (238). Energy
adjustment is based on the naotion that a larger, more physically active person requires a higher
caloric intake, which is associated with a higher absolute intake of all nutrients. Therefore energy
adjustment takes into account differences in energy requirements among individuals. Theresiduals
were standardized by the mean nutrient intake of a subject consuming 10 MJd, the approximate
averagetotal energy intakein this study population.

The measurement of total, subclass and individual flavonoid intake in work | and Il was based
on United States Department of Agriculture (USDA) flavonoid database (239). Database includes
total of 26 flavonoids from 5 subclasses; flavonols (quercetin, kaempferol, myricetin,
isorhamnetin), flavones (lutedlin, apigenin), flavanones (hesperetin, naringenin, eriodictyol),
flavan-3-ols ((+)-catechin, (+)-gallocatechin, (-)-epicatechin, (-)-epigallocatechin, (-)-epicatechin-
3-gallate, (-)-epigallocatechin-3-gallate, theaflavin, theaflavin-3-gallate, theaflavin-3'-gallate,
theaflavin-3,3-digallate, thearubigins) and anthocyanidins (cyanidin, delphinidin, malvidin,
pelargonidin, peonidin, petunidin). The USDA database is incomplete for antocyanidin-rich berries
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which are commonly consumed in Finland. Therefore, additional anthocyanidin data for those
Finnish berries were derived from the work conducted by Kéhkonen et al. (240).

4.1.6 Statigtical analyses (Works| and 1)

In work |, correlations between the intakes of flavonoids and other risk factors with CCA-IMT
were estimated with Pearson correlation coefficients (r). The heterogeneity of the means of
baseline variables between the quarters of total flavonoid intake was tested by using analysis of
variance (ANOVA). Frequency distribution of the categorical variables between quarters of total
flavonoid intake was compared by the x? test. Basdline risk factors used as covariates in the
ANOVA included age and technical covariates (examination years and baseline zooming depth
given separately for right and left side), history of atherosclerosis, smoking, BMI, diabetes, systolic
blood pressure, serum HDL and LDL cholesterol, maximal oxygen uptake, and intakes of alcohol,
saturated fat (percent of energy, E%), and energy adjusted intakes of folate, vitamin C and E. The
linear trend across flavonoid quarters was tested using ANOVA.

In work Il, the subjects were classified into quarters according to their energy adjusted
flavonoid intake. The relationship of flavonoid intake with the risk of CVD was analyzed using
Cox proportional hazards models. Modd 1 was adjusted for age and examination years, and model
2 in addition for BMI, systolic blood pressure, serum total, HDL and LDL cholesterol, serum
triglycerides, maximal oxygen uptake, smoking, family history of ischemic heart disease, diabetes,
alcohol intake, saturated fat intake (percent of energy, E%) and energy adjusted intake of fiber,
vitamin C and E. RRs adjusted for other risk factors, were estimated as antilogarithms of
coefficients for independent variables. The Cls were estimated based on the assumption of
asymptotic normality of estimates. The means were compared using ANOVA and categorical
variables using chi-square tests.

In works | and Il the distributions were expressed as means and standard deviations (SD). All
statistical tests were two-tailed. Data were analyzed using SPSS for Windows version 11.5
statistical software (SPSS Inc., Chicago, Illinois, US).

4.2 Clinical supplementation studies (Works|11-V)

4.2.1 Study populations
Study subjects in work 111 consisted of 45 non-smoking men and women (26+9 years), in work 1V

of 45 non-smoking men (26+6 years) and in work V of 75 non-smoking men (51+11 years). For
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works I11-V potential participants were screened in an interview for the following inclusion criteria:
1) BMI<32 kg/m? 2) no regular use of any drugs or supplements with antioxidative (B-carotene,
vitamins C or E), or lipid lowering properties; 3) no chronic diseases such as diabetes, CHD or
other major illness; and 4) willingness to consume study supplements; chocolate (work I11), coffee
(work 1V) or phloem enriched rye bread (V). For work V, an additional criterion for the
participation was elevated serum total cholesterol concentration (6-9 mmol/l). For all
supplementation trials, the participants were recruited from the Kuopio area. Works Il and IV were
advertised in a local university student newspaper and via email at the University of Kuopio and
study V in a local newspaper. Informed consents were obtained in writing from all participants
after they had read a description of the experimental procedures.

4.2.2 Study designs (Works|11-V)

The study protocol of works I111-V consisted of a run-in period and the supplementation period.
The lengths of the period and the content of the nutritional restrictions differed between the works.
The study protocols were approved by the Research Ethics Committee, Hospital District of
Northern Savo.

Run-in period

For the run-in period of work Il and V, subjects were advised to discontinue the use of tea, red
wine, cocoa and chocolate one week prior to the supplementation period. In work 1V the duration
of the run-in period was two weeks and during this period the use of coffee, tea, red wine, cocoa
and chocolate was prohibited. In addition, the intake of fruit- and berry-derived juices was
restricted to a maximum of 300 ml (2 glasses) per day. Subjects were given caffeine tablets to be
used if necessary for the withdrawal symptoms. The maximum daily amount of caffeine was the
amount comparable to that obtained from the daily study bolus in the long-term study (0, 300 or
600 mg). In al of these works, subjects were also advised to avoid the use of acohol and
analgesics for three days and vigorous physical activity for one day before visits. In al works these

study specific restriction were instructed to be maintained throughout the supplementation period.

Supplementation period

The chocolate study (work I11) was a 3-week clinical supplementation study with 3 paralle groups.
Participants consumed daily 75 g of either white chocolate (white chocolate group, WC group),
dark chocolate (dark chocolate group, DC group), or dark chocolate enriched with cocoa
polyphenols (high polyphenol chocolate, HPC group). In order to enhance study compliance, the



50

subjects were allowed to choose the study group. The daily amount of flavan-3-ols in the study
chocolates were <1 mg, 273 mg and 418 mg in the WC, DC, and HPC groups, respectively. The
study chocolates were delivered by Oy Karl Fazer Ab, Vantaa, Finland and Meiji Seika Kaisha
Ltd., Chiyoda Sakado-shi Saitama, Japan.

The coffee study (work 1V) was 3-week clinical supplementation study in which subjects
consumed daily either 0, 450 ml (3 cups) or 900 ml (6 cups) of filtered coffee. The study was not
randomized for the same reasons as in the work Ill. Ingested amounts of phenolic compounds
through coffee were 0, 364 and 728 mg/d in the 0, 3 and 6 cup groups, respectively. The short-term
study in work 1V was conducted directly after obtaining the blood samples for the supplementation
period of the long-term study. The subjects remained in the same group as in the long-term study,
but consumed a single dose of 1/3 of thetotal daily dose consumed in the long-term study (O, 1 or 2
cups, 0, 150 or 300 ml, respectively). Blood sample was taken 1.5 hours after coffee ingestion. The
coffee used in this study was commercial finely ground coffee packed in 500 g packages and
delivered by Oy Paulig Ab, Hdsinki, Finland.

The phloem study (work V) was a 4-week randomized double-blind supplementation study.
Subjects were randomly allocated to consume daily 70 grams of normal dried rye bread (placebo
group, n=30), rye bread in which 7% of the rye flour was substituted with phloem powder (low
polyphenol, LP group, n=30) or bread in which 14% of the rye flour was substituted with phloem
powder (high polyphenol, HP group, n=15). Study was conducted in two parts; for the first part
15+15 men were recruited to the placebo and for the LP groups. To test the effects of higher
amount of polyphenolsinthe second part, 15+15+15 men were recruited to the placebo, LP and HP
groups. The placebo group received 0.6 mg, LP group 30.8 mg and HP group 62.0 mg of flavan-3-
ols daily from the study bread.

In works I11-V blood, samples were drawn with Venoject vacuum tubes (Terumo) after an
overnight fast (10 hours). In work 1V, subjects collected also a 24-h urine sample prior to the study
visits. All measurements were done at the baseline and after the supplementation period. In all
works (I11-V) a four-day food recording was required before and during the last week of the
supplementation period to check the compliance of the given instructions. The intakes of nutrients
were analyzed by using the Nutricad software (version 2.5).

The protocol of the study visits in supplementation studies was identical. During the first visit
before the trial the subjects were given information about the study, and if the consent form was
signed, more specific instructions were given. During the following study visit, a fasting blood

sample was drawn, the 4-day food record was checked with nutritionist, instructions concerning the
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study were repeated and the study preparation was given. At the end of the study, a fasting blood
sample was drawn and the food record was checked with the nutritionist.

4.2.3 M easurements of oxidative stress

Plasma free F,-isoprostanes (Works 111 and 1V)

A deuterated prostaglandin F,, internal standard was added to the plasma, and free F,-isoprostanes
were extracted using Cy;3 and silica mini-columns. The compounds were converted to
pentafluorobenzyl ester trimethylsilyl ether derivates and analyzed by a GC-MS assay (Agilent
Technologies, Espoo, Finland) (30).

Plasma hydroxy fatty acids (Works 111 and V)

In works Il and VI, plasma Cyg hydroxy fatty acids were measured using a CG-MS (Agilent
Technologies, Espoo, Finland) (35). Shortly, plasma fatty acids and fatty acid hydroperoxides were
stabilized by hydrogenation using platinum as a catalyst, saponified, esterified by diazomethane,
and finally, in order to separate hydroxy fatty acids from fatty acids, extracted by solid phase mini-
columns. Prior to the analysis, hydroxy groups were methylated with tetramethylammonium
hydroxide. Concentrations of different (methoxy) OHFA methyl esters were determined by
€l ectron impact mass spectrometer. C17 and C19 OHFAs were used as internal standards.

Serum LDL conjugated dienes (Works 111 and V)

The oxidation of LDL in vivo was assessed in work Ill and IV by following the formation of
conjugated dienes as described previously (241). In brief, serum LDL was isolated by precipitation
with buffered heparin. The precipitate was re-suspended in phosphate-buffered saline (PBS).
Cholesterol concentration was determined and the rest of the suspension was used for conjugated
diene measurement. Lipids were extracted from the LDL by mixture of chloroform and methanol
(3:1), dried under nitrogen, re-dissolved in cyclohexane, and the amount of conjugated dienes was
measured spectrophotometrically at 234 nm and 300 nm. Absorbance at 300 nm was subtracted
from that at 234 nm. The conjugated diene concentration was calculated per cholesterol

concentration in LDL.
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Oxidation resistance of serumlipids and very-low-density lipoprotein (VLDL)+LDL (Works|11-V)
The resistance of serum lipids to oxidation was measured as described previously (242). Briefly,
serum was diluted to a concentration of 0.67% in 0.02 mol/l PBS, pH 7.4. Oxidation was initiated
by the addition of 100 M of 1 mmol/l CuCl,to 2 ml of diluted, pre-warmed (30°C) serum. The
formation of conjugated dienes was observed by monitoring the change in the absorbance of 234
nm at 30°C on a Beckman DU-640i spectrophotometer (Fullerton, California, US) equipped with a
six-position automatic sample changer. The change in absorbance was recorded every 5 min for 4
hours. The time required from the start to reach the maximal rate of the reaction (lag time) was
determined.

In the work V, the oxidation resistance of VLDL+LDL fraction was also studied. Briefly,
VLDL and LDL were isolated in a combined fraction from fresh ethylenediamine tetraacetic acid
(EDTA) plasma by ultracentrifugation. EDTA and gradient salts were removed by gel permegation
columns, and VLDL+LDL was exposed to copper-induced oxidation and the lag time was
determined as previously described (241).

Plasma TRAP (Work I11)

In work 111, plasma TRAP was determined with a modification of the method originally published
by Metsd-Keteld (28, 241). Briefly, radical generator was added into luminol containing buffer and
the production of peroxyl radicals in the thermal decompoasition of 2,2'-azobis (2-amidinopropane)
hydrochlorine was followed with a luminometer (Model 1251, Bio Orbit Oy, Turku, Finland) at
32°C. Plasma sample was added after 15 min. The TRAP value was calculated from the duration of

the disappearance of chemiluminecence.

Activity of antioxidant enzymes (Work 1V)

Plasma GPX in work Il was determined by a commercial kit (Ransel RS 505, Randox
Laboratories, San Diego, California, US) by using Konelab 20 Anayzer (Thermo Clinical
Labsystems, Vantaa, Finland). Serum paraoxonase (PON) activity was measured from serum based
on its capacity to hydrolyze paraoxon. The formation of p-nitrophenol was monitored at 405 nmin
Tris-HCI buffer, pH 8.0, in the presence of Ca?* (243).
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Effects of the phloem breads and catechin on serumlag time in vitro (Work V)

To study the effects of phloem polyphenols on the oxidation resistance of total serum lipids in
vitro, the breads were ground and 100 mg were extracted 3 times with 3 ml of 80% MeOH.
Supernatants were taken into 10 ml volumetric flask after the centrifugation and flask was filled
with 80% MeOH. Into five different vials were taken 0, 10, 50, 100 and 200 m of phloem bread
extract which was then evaporated under N, flow. The dry residue was dissolved in control serum,
which was diluted to concentration of 0.67% with PBS buffer, at 30°C. The oxidation was initiated
by the addition of 1 mmol/l CuCl,. The formation of conjugated dienes was followed as described
above. The effect of catechin was studied with a pure compound in a separate assay. The in vitro
concentrations of phloem derived catechins in serum ranged from 0.01 to 0.24 ng/ml for placebo
bread, from 0.88 to 17.6 ng/ml for LP bread, and from 1.77 to 35.4 ng/ml for HP bread. The in

vitro concentration of catechin standard in serum ranged from 2.0 to 39.9 nmg/ml.

1,1-diphenyl-2-picrylhydrazyl (DPPH") radical scavenging capacity of study breads (Work V)

The radical scavenging capacity of study breads against DPPH" radical was analysed as follows;
extracts of the study breads were prepared by an ultra-sonication-assisted extraction with 50%
MeOH. The concentration of the extracts obtained was 250 mg raw material/ml solvent. These
extracts were diluted in MeOH into a range of concentrations to enable determination of ICspvalue.
600 m of DPPH" solution (60 uM in MeOH) was added to 600 ml of each diluted sample and the
resulting solution was allowed to react for 30 min in the dark at ambient temperature. The
absorbance caused by the DPPH" radical at 517 nm was determined by Unicam UV 500
Spectrophotometer (Unicam, UK) as described earlier (244, 245). Radical scavenging capacity is
expressed as 1/1Cs; and values are the means of 3 replicates.

4.2.4 Other laboratory measurements

Serum lipoproteins (Works 111-V)

In works 111-V, the serum cholesterol (Konelab, Espoo, Finland) and triglycerides (Roche
Diagnostics, Mannheim, Germany) were determined using enzymatic colorimetric tests. The serum
concentration of HDL cholesterol was measured on supernatant after magnesium chloride dextran
sulphate precipitation. Serum LDL cholesterol was determined by a direct cholesterol measurement
(Konelab, Espoo, Finland).



Serumand LDL fatty acids (Works I11-V)

Serum and LDL fatty acids were analyzed in work |11 and IV after extraction using chloroform-
methanol and methylation with sulphuric acid-methanol. The methylated fatty acids were analyzed
by a gas chromatograph (Hewlett Packard 5890, Avondale, Pennsylvania, US) equipped with a
flame ionization detector and an NB-351 capillary column (HNU-Nordion, Helsinki, Finland)
(246). Serum LDL was isolated by precipitation with buffered heparin. The precipitate was re-
suspended in PBS (247). The concentration of cholesterol was determined and the rest of the
suspension was used for measuring LDL conjugated diene and LDL fatty acids. The fatty acids of
serum and LDL are presented as percentages of the total amount of fatty acids analyzed.

Plasma tHcy (Work 1V)

In work 1V, plasma tHcy concentration was analyzed by high performance liquid chromatography
(HPLC) as described previously (248). The CV between batches (n=30) for two pooled plasma
samples were 5.7% (7.3 pmol/l) and 7.1% (10.5 pmol/l).

Plasma folate and vitamin By, (Work 1V)
In work IV, plasma folate and vitamin B, were measured simultaneously by radioimmunoassay
(Quantaphase 11, Bio-Rad, Hercules, California, US).

Safety measurements (Works I11-V)

In works [11-V blood cel profile, including erythrocyte, leukocyte and thrombocyte counts and
hemoglobin, was measured by a blood cell counter (Advia 60, Bayer, Tarrytown, New York, US).
Serum aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT) were measured with
a clinical chemistry analyzer (Kondab, Espoo, Finland). The activity of serum gamma
glutamyltransferase (y-GT) was measured with the International Federation of Clinical Chemistry
method (249).

4.2.5 Measurements of polyphenol content of the study supplements and biological
samples

Catechin and procyanidin content of the study supplements (Works 111 and V)

Flavan-3-ol content of the study preparations were analysed with a method modified from the
method originally published by Arts and co-workers (250). Analyses were carried out using an
HPLC with a coulometric electrode array detector (ESA Inc. Chelmsford, Massachusetts, US).
Analysed catechins included 7 compounds; (+)-catechin, (-)-catechin-gallate, (-)-gallocatechin, (-)-
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epicatechin, (-)-epicatechin-3-gallate, (-)-epigallocatechin, and (-)-epigall ocatechin-3-gallate and 3
procyanidin dimers; epicatechin-(4b® 8)-catechin (B1), epicatechin-(4b® 8)-epicatechin (B2), and
catechin-(4a® 8)-epicatechin (B4). The samples were analyzed in triplicate.

Phenolic acid analyses of coffee and urine (Work V)

Phenolic acid analyses were carried out with an HPL C using a coulometric electrode array detector.
Compounds were separated with gradient elution using end-capped C 18 column Inertsil ODS-3
(150 x 3 mm) packed with 3 nm particles and C 18 guard column (10 x 3 mm, 5 nm particles).
Mobile phase consisted of eluent A) 50 MM KH,PO, / H3PO, buffer pH 2.3 : MeOH 90:10 (v/v)
and B) 50 mM KH,PO, / HsPO, buffer pH 2.3 : MeOH :ACN 40:40:20 (v/v/v). Chlorogenic,
caffeic, ferulic, p-, m-, o-coumaric, sinapinic, protocatechuic and gallic acid were measured from
coffee and from wurine additionaly two metabolites 3,4-dihydroxyphenyl- and m-
hydroxyphenylacetic acids were measured. Coffee analysis was carried out after the combination of
the enzyme and base hydrolysis. 24-h urine samples were hydrolyzed with b-glucuronidase and
sulphatase obtained from Helix pomatia. Hydrolyzed samples were extracted with diethyl ether,
evaporated under N, flow and dissolved in MeOH. Samples were diluted with eluent prior to HPLC

run.

4.2.6 Statigtical methodsin supplementation studies (Works|11-V)

In works I11-V, the means across the study groups were compared by the ANOVA. Post-hoc
Tukey's test was used whenever a statistically significant heterogeneity between the groups was
shown by the ANOVA. P-value <0.05 was considered significant. Simple correlation and stepwise
linear regression analysis were used to estimate the contribution of changes in the formation of
conjugated dienes in work 111. Differences between baseline and end-point values within the pooled
groups were tested by paired t test. All tests of significance were two-sided. The results are
expressed as meanstSD. Data were analyzed using SPSS 10.0, 11.0 or 11.5 for Windows (SPSS
Inc., Chicago, Illinais, US).
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5.RESULTS

5.1 Theintake of flavonoids and carotid atherosclerosis (Work I)

In this cross-sectional study, the mean CCA-IMT was 0.78+0.17 mm. Mean intake of flavonoids
was 128.5+206.7 mg/d and each subclass contributed to the total intake as follows: flavan-3-ols
84% (107.7 mg/d); flavonols 7% (9.1 mg/d); anthocyanidins 6% (7.5 mg/d); flavanones 3% (3.9
mg/d) flavones less than 1% (0.3 mg/d). The intake of flavonoids was associated with healthy
lifestyle; men with the high intake were less likely to be smoker, had lower intakes of acohal, total
fat, and SAFA, but had higher intakes of folate, fiber, vitamin C and E (Table 7).

Table 7. Characteristics of the 1380 study subjects and according to the quarters of energy-adjusted flavonoid intake*
Quarters of flavonoid intake (mg/d)
All 1 (lowest) 2 3 4 (highest) P
CCA-IMT (mm) 0.78+0.17 0.79+0.19 0.81+0.18 0.77+0.16 0.761£0.15 <0.001
Flavonoid intake (mg/d) 128.5+207.7 3.6+1.8 18.2+7.2 85.9+37.5 406.4+253.7 <0.001
Flavonoid intake (mg/d)® ~ 1285+206.7  0.0#164  26.4+88  89.8+356  404.9+250.3  <0.001

Age(y) 52.4+6.4 51663  536£63 52463 52.0£6.6 <0.001
Body mass index (kg/m?) 26.6£3.5 265+37  267+36  26.8:34 26.6£35 0.739
SBP (mmHg) 132417 132416 13317 13117 133+16 0.426
S-LDL chol (mmol/l) 394+096  3.98+090 400+106  380+103  3.97+0.84 0.020
SHDL chol (mmol/l) 129:030 1313028  1.29:032  130#030  1.27+0.29 0.201
Sttriglycerides (mmol/l) 1424086  1.33:073  1.46:094  147+091  1.44+0.84 0.097
VOamax (Mi/kg/min) 30.6:7.4 315:7.3 29672 30.9+7.4 30.5+7.4 0.006
Smokers (%) 396 52.5 441 354 267 <0.001
Total fat intake (g/d)° 9924172  101.7+214 101.4+158 965+152  97.4#149  <0.001
SAFA intake (g/d)® 452+¢115  466+143  469+105 438+100  437+103  <0.001
Alcohol intake (g/d)? 11.8+202  14.0$269  11.3:186  11.8+167  10.1+166 0.087
Folate intake (ug/d)® 256161 234459 247+54 26961 27662 <0.001
Fiber intake (g/c)® 25.4+8.9 24.0t96)  250:68  26.5+7.7 26.27.4 <0.001
Vitamin Cintake (mg/d)® 7124510  51.8+343  658+451  864+553  80.9+585  <0.001
Vitamin E intake (mg/d)® 9.2425 8.8+2.8 8.9+2.4 9.4+23 9.5+26 <0.001

"Mean+SD. CCA-IMT=common carotid artery intima-media thickness, Chol=cholesterol, HDL=high-density lipoprotein,
LDL=low-density lipoprotein, S=serum, SAFA=saturated fatty acids, SBP=systolic blood pressure, SD=standard
deviation, VO ma=maxima oxygen uptake.

%P value from the ANOVA (continuous variables) or P value from chi-square test (discrete variables).

SIntakes of nutrients are energy adjusted (238).

In the covariance analysis after multivariate adjustment, total flavonoid intake was inversely
associated with the mean CCA-IMT (P=0.018) (Table 8). Out of 5 subclasses, flavan-3-ols were
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inversely associated with CCA-IMT (P=0.046) after identical statistical adjustment. A
nonsignificant trend was found for flavonols and the mean CCA-IMT (P=0.055, after statistical
adjustment). The intake of other subclasses; flavones (P=0.505), flavanones (P=0.875), and
anthocyanidins (P=0.577) were not associated with the mean CCA-IMT.

TABLE 8. CCA-IMT of the 1380 study subjects according to the energy-adjusted quarters of flavonoid intake"
Quarters of flavonoid intake (mg/d)

1 (lowest) 2 3 4 (highest) P

Total flavonoid intake (mg/d)* <125 12.5-43.7 >43.7-166.3 >166.3

CCA-IMT (mm) 0.79+£0.19 0.81+0.18 0.77+£0.16 0.76 £ 0.15 0.018
Flavonal intake (mg/d) <37 3.7-6.6 >6.6-11.9 >11.9

CCA-IMT (mm) 0.81+£0.20 0.79+0.17 0.77+£0.16 0.76 £ 0.15 0.055
Flavone intake (mg/d) 0.0 >0.0-0.1 >0.1-0.3 >0.3

CCA-IMT (mm) 0.76 £ 0.17 0.80+0.19 0.79+0.17 0.77+0.16 0.505
Flavanone intake (mg/d) 0.0 >0.0-0.1 >0.1-0.5 >0.5

CCA-IMT (mm) 0.76 £ 0.17 0.79+0.17 0.80+0.19 0.77+0.16 0.875
Flavan-3-al intake (mg/d) <0.2 0.2-20.3 >20.3-140.6 >140.6

CCA-IMT (mm) 0.78+0.17 0.81+0.19 0.78+0.17 0.76 £ 0.15 0.025
Anthocyanidin intake (mg/d) 0.0 >0.0-1.3 >1.3-5.6 >5.6

CCA-IMT (mm) 0.78+0.17 0.78+0.17 0.79+0.17 0.78+0.18 0.577

IMeant+SD. CCA-IMT=common carotid artery intima-media thickness, SD=standard deviation.

2Adjusted P value from ANOVA. Adjusted for age, examination years, baseline zooming depth given separately for right
and left side, history of atherosclerosis, smoking, BMI, diabetes, systolic blood pressure, serum HDL and LDL
cholesterol, maximal oxygen uptake, and intakes of alcohol, saturated fat (percent of energy, E %), and energy adjusted
intakes of folate, vitamin C and E.

5.2 Theintake of flavonoids and therisk of ischemic stroke and CVD death (Work I1)
The mean flavonoid intake was 139.3mg/d and out of total intake, flava-3-ol subclass contributed
85.9% (119.7 mg/d), flavonols 7.2% (10.0 mg/d), anthocyanidins 4.5% (6.2 mg/d), flavanones
2.2% (3.1 mg/d), and flavones 0.2% (0.3 mg/d). The mean age of the study population was
52.4+5.3 years and during the average follow-up time of 15.2 years, men with no previous CHD or
stroke, experienced 102 ischemic strokes and 153 CVD desaths. As in work |, high intake of
flavonoids tended to be associated with healthier lifestyle. When comparing in quarters of
flavonoid intake, the men with the highest quarter of intake were more likely to be nonsmoker,
tended to have lowest alcohol and SAFA intakes and higher intakes of fiber, vitamin C and E,
when compared with the lower quarters.

In a Cox proportional hazards model adjusted for age and examination years, the RRs for the
intakes of flavonol and flavan-3-ols subclasses were 0.52 (95% Cl 0.30-0.90) in the highest quarter
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of flavonol intake versus the lowest, and for flavan-3-ols 0.52 (95% CI 0.28-0.99), respectively
(Table 9). After multivariate adjustment, the RRs for the ischemic stroke in the highest quarter of
flavonol and flavan-3-ol intakes were 0.54 (95% Cl 0.30-0.97) and 0.54 (95% CI 0.28-1.04),
respectively. The intakes of other subclasses; anthocyanidins, flavanones or flavones were not
associated with the risk of ischemic stroke. None of the subclasses were associated with the CVD

mortality.

Table 9. Relative risks (95% Cls) of CVD according to the quarters of energy-adjusted flavonoid intake®
Quarters of flavonoid intake (mg/d)

1 (lowest) 2 3 4 (highest)
Ischemic stroke
Flavonols 1 0.68 (0.40-1.14) 0.53(0.30-0.93) 0.54 (0.30-0.97)
Flavones 1 1.12(0.60-2.10) 1.91(1.08-3.37) 1.16 (0.62-2.18)
Flavanones 1 0.82(0.46-1.45) 0.96 (0.55-1.68) 0.90 (0.49-1.66)
Flavan-3-ols 1 1.21(0.71-2.05) 0.98 (0.56-1.72) 0.54 (0.28-1.04)
Anthocyanidins 1 0.88(0.48-1.63) 1.58(0.92-2.71) 0.91 (0.49-1.68)
Total sum of flavonoids 1 1.62(0.96-2.74) 1.04 (0.57-1.88) 0.67 (0.35-1.29)
CVD mortdity
Flavonols 1 1.29(0.82-2.04) 1.27 (0.79-2.03) 1.13(0.67-1.88)
Flavones 1 0.81(0.50-1.32) 0.88(0.55-1.39) 0.74 (0.46-1.19)
Flavanones 1 0.66 (0.40-1.07) 1.15(0.74-1.77) 0.63(0.39-1.04)
Flavan-3-ols 1 1.33(0.85-2.09) 1.05 (0.65-1.68) 0.99 (0.60-1.63)
Anthocyanidins 1 0.67 (0.40-1.15) 1.33(0.85-2.07) 1.16(0.73-1.85)
Total sum of flavonoids 1 1.91(1.23-2.97) 1.04(0.63-1.72) 1.15(0.69-1.91)

1Adj usted for age, examination years, BMI, systolic blood pressure, serum total, HDL and LDL cholesterol, serum
triglycerides, maximal oxygen uptake, smoking, ischemic heart disease in family, diabetes, alcohal intake, saturated fat
intake and energy adjusted intake of fiber, vitamin C and E. Cl=confidence interval, CVD=cardiovascular disease.

5.3 The effects of chocolate on HDL cholesterol and lipid peroxidation (Work I11)

All 45 recruited volunteers completed the study and no adverse effects were reported by the study
subjects or found in the laboratory analyses (ASAT, ALAT or y-GT) (Table 10). Mean weight
decreased during the study in the WC group (-1.1+2.7 kg) and increased in the DC group (0.4+0.7
kg) and in the HPC group (0.8+0.9 kg) (P<0.05, between study groups). During the study, the total
energy intake and the proportion of fat and saturated fat in the diet increased, whereas the
proportion of protein and carbohydrates decreased. No differences between the study groups were
found in the intake of nutrients. The compliance with the nutritional instructions was good and

none of the subjects reported consumption of the restricted foods.
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Table 10. Basdline values and changes after 3 week consumption of study chocolates

WC (n=15) DC(n=15) HPC (n=15)
Basdine Change Basdline Change Basdine Change P

BMI (kg/m?) 22.3+23  -04+10  21.5+29 0.1+0.2 24.1+35 0.3+0.3 0.012
S-ASAT (U/l) 23+7 -2+7 22+8 2412 20+6 4+9 0.230
S-ALAT (UNl) 24+13 -1+15 1748 -2+7 1649 4+18 0.478
S-gGT (Ul 15+7 0+5 14+6 -0+3 18+11 1+7 0.741
S-creatinine (mmol/l) 85+11 0£9 797 146 84+11 2+7 0.842
S-total chol (mmol/l) 521+0.72 -0.02+0.51 4.74+0.90 0.08+049 4.99+101 0.12+047 0.710
S-LDL chol (mmol/l) 2.80£0.57 0.17+0.60 257068 0.00+0.37 2.82+0.62 0.00+0.39  0.627
S-HDL chol (mmol/l) 149+0.32 -0.00£0.14 1.41+038 0.14+0.15 1.38+0.29 0.18+0.12 <0.001
S-triglyceride (mmol/l) 145+0.74 -0.15+0.59 1124055 -0.21+0.46 0.95+0.35 0.00+049  0.336
P-TRAP (mmol/l) 10574206  22+134 973+176 85+250  1155+170  92+229 0.657
S-lipid oxidation resistance

(lag time, min) 118+43  6+31(14) 122435  4+32(14) 160£61  -3+28(14) 0.711
S-LDL conjugated dienes

(nmol/mmol chol)® 16331  -4.0£69 16.7+2.6 -5.9+7.6 155+2.7  -4.6+57 0.496
P-Frisoprostanes (pg/ml) ~ 43.4+138  -25+7.9 487220 -53%159 454+112 -0.9+81 0.554
P-OHFA (nmol/1) 1.02+0.47 -0.02+0.41 1.04+048 -0.05+0.48 1.08+0.46 -0.04+0.32  0.987

IMean+SD. ALAT=alanine aminotransferase, ASAT=aspartate aminotransferase, BMI=body mass index,
Chol=cholesterol, DC=dark chocolate, g GT=gamma-gl ytamyltransferase, HDL=high-density lipoprotein, HPC=cocoa
polyphenol enriched dark chocolate, LDL=low-density lipoprotein, OHFA=hydroxy fatty acids, P=plasma, S=serum,

SD=standard deviation, TRAP=tota radical trapping antioxidant parameter, WC=white chocolate.

%p for the differences between the changes in the groups (one-way ANOVA).
3Significant differences between baseline and end-point values within the pooled groups (P<0.001, paired t

test).

Consumption of study chocolates increased the serum HDL cholesterol concentration in the DC

and HPC groups (11.4% and 13.7%, respectively), while a slight decrease was seen in the WC

group (-2.9%) (P<0.001, between study groups). No changes were seen in serum total or LDL

cholesterol or triglyceride concentrations.

The consumption of chocolates decreased lipid peroxidation as measured by the formation of

conjugated dienes in vivo. The production decreased in all study groups by a mean 11.9%

(P<0.001) with no difference between the groups. No changes were found in the antioxidant

capacity (plasma TRAP), or the other markers of lipid peroxidation; oxidation susceptibility of

serum lipids, plasma hydroxy fatty acids and F,-isoprostanes.
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5.4 The effects of coffee on lipid peroxidation and plasmatHcy (Work V)

Out of 45 men recruited, 43 completed the long-term study; of these, 35 participated in the short-
term study. One subject dropped out during the run-in period due to abstinence symptoms from
coffee drinking, and one was excluded due to dizziness during the process of drawing the blood
samples. At study baseline, age, BMI and the activities of ALAT and y-GT enzymes were higher in
the 900 ml group when compared with other groups (Table 11). The difference in the activity of
ALAT inthe 900 ml group was dueto high activities in two persons (149 and 140 U/l). During the
supplementation period no adverse effects because of coffee consumption were reported or
detected in the safety measurements (ALAT, ASAT or y-GT). Theintake of nutrients did not differ
between the groups.

The consumption of coffee increased the concentration of polyphenols and their metabolites in
urine. At baseline total excretion of phenolic acids was 123 (0 ml), 109 (450 ml) and 101 (900 ml)
mmol/d and 126, 152 and 157 mmol/d after the 3-week ingestion of coffee, respectively. The
increases in the concentrations of caffeic, ferulic, protocatechuic and 3,4 dihydroxyphenylacetic
acids were different between the study groups (P<0.05). The change in the total excretion of
phenolic acids in 450 ml and 900 ml groups represented 3.8% and 2.5% of the daily-ingested
amounts.

The consumption of filtered coffee did not have short- or long-term effects on serum lipids,
lipid peroxidation or activity of antioxidant enzymes. Plasma tHcy concentration increased by 5%,
16% and 26% in the 0, 450 and 900 ml groups, respectively (P=0.102). Because the mean age and
BMI differed between groups at the study baseline, we adjusted the change in the plasma tHcy for
age, BMI and the basdine concentration of tHcy. After adjustment the trend in the difference of
plasma tHcy change between study groups attenuated (P=0.494). The consumption of coffee did

not have an effect on plasma concentrations of folate or B-12 vitamin.
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Table11. Basdine valuesand changes after 3 wk supplementation period®

Daily coffee intake

0ml (n=15) 450 ml (n=14) 900 ml (n=14)
Basdine Change Basdine Change Basdine Change P

S-LDL chol (mmoal/l) 2.2+0.8 -0.0+0.3 2.3+0.6 -0.0+0.4 2.6+0.5 -0.0+0.5 0.948
S-HDL chol (mmoal/I) 1.0£0.1 -0.0£0.1 1.1+0.2 0.0£0.1 1.1+0.2 0.0+01 0324
S-triglycerides (mmol/l) 1.1+0.7 -0.0+0.6 1.1+06 -0.1+0.3 1.3+06 0.1+0.7  0.496
SHipid oxidation

resistance (lag time, min) 210+23 -14+29 200+43 6+46 210+54 -15#52  0.602
S-LDL conjugated dienes

(mmol/mmol chol) 14.8+36 1.3+38 16.5+4.5 -0.3+4.3 16.0+2.7 -0.8£38  0.597
P-F-isoprostanes (pg/ml) ~ 32.0+£7.3 -0.1+4.9 30.1+3.0 17474 31.6+9.4 -0.8+7.5 0.853
P-OHFA (umol/l) 0.70£0.18  -0.01+0.25 0.77+0.18  -0.04+0.21 0.75+0.17  0.09+0.18 0.374
P-GPX (U/l) 830.4+134.2 23.3+830 920.4+124.6 20.4+881 862.5+t1156 61.4+109.1 0.664
S-PON (U/1)? 105.3+63.2 -1.0£7.2 114.5+82.3 -0.6£7.9 114.3+82.6 ~ 24+130 0.542
P-folate (nmol/l) 6.7+2.1 -0.4+1.3 7.8£2.2 0.1£39 6.5£1.6 -04+0.8  0.593
P-B1, (pmol/l) 368.9+242.9 28.6+210.8 436.9+154.5 29.1+116.2 369.3+88.1 -21.1+752 0.955
P-tHcy (umol/1)? 11.4+94 0.5+1.2 8.6£2.2 14+19 11.7+35 3.0+50 0494

"M ean+SD. Chol=cholesterol, DC=dark chocolate, GPX=glutathi one peroxidase, HDL=high-density lipoprotein,
HPC=cocoa polyphenol enriched dark chocolate, LDL=low-density lipoprotein, OHFA=hydroxy fatty acids, P=plasma,
PON=paraoxonase, S=serum, tHcy=total homocysteine.

2p for differencesin the changes between the groups. In the ANOVA age, body massindex at baseline and the baseline
value of the parameter tested were used as a covariae.

5.5 The effects of polyphenol-rich phloem on lipid peroxidation in men (Work V)

All the 75 volunteers completed the study. Two participants were excluded, one in the placebo
group due to an insufficient dietary compliance and one in the LP group due to a high
concentration of serum triglycerides (8.8 mmol/l). At the study baseline, the activity of ASAT and
ALAT enzymes were higher in the HP group when compared with the other groups (P<0.05)
(Table 12). No other differences in the characteristics or the dietary intake of nutrients were found
between the groups at the entry. According to food records and the questionnaire, the compliance
of the volunteers to the given dietary and lifestyle instructions was good. No adverse effects were
reported by the subjects during the study.

An increase in the oxidation resistance of total serum lipids measured as alag time to maximal
oxidation rate was observed in the HP group (11.4+13.8%, P<0.01, between study groups), while
no change was seen in the LP group or in the placebo group. There were no significant differences
in the changes of the oxidation resistance of VLDL+LDL between the study groups. The
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consumption of placebo, LP or HP bread did not significantly alter serum lipids; total, LDL or
HDL cholesteral or triglyceride concentrations.

Table 12. Baseline values and changes after 4 wk consumption of study breads*

Placebo (n=29) LP (n=29) HP (n=15)
Basdline Change Basdline Change Basdline Change P’
S-ASAT (U/l) 2616 0t5 27+7 -0+6 31+9 -3£12 0.318
S-ALAT (U/l) 31+11 3+11 34118 -1+15 44420 -5+11 0.139
S-Creatinine (mmol/l) 92+15 -2+14 94+11 -0+£7 93+10 7+8 0.037
S-LDL chol (mmol/l) 4.82+1.15 -0.20£t059 4.96+092 -0.11+0.78 4.77+090 -0.12+0.58 0.886

SHDL chol (mmol/l) 1.38:034 -0.02:0.15 126:024 000£015 119:023 0.02¢024 0776
Striglycerides (mmol/l) 172085  -0.18+0.75 174:092 024068 223t137 -001t1.09 0.152

SHipid oxidation

resistance (lagtime, min) ~ 165+25 -3+17(28)  180+22 -2424 175£27  20+23(12) 0.007
VLDL+LDL oxidation

resistance (lag time, min) 64+5 3+7 666 2+9 66+6 -1+3(14) 0.341

Mean+SD. ALAT=alanine aminotransferase, ASAT=aspartate aminotransferase, HDL=high-density lipoprotein,
HP=High polyphenol group, LDL=low-density lipoprotein, LP=low polyphenol group, S=serum, VLDL=very |low-density
lipoprotein.

2p for the differencesin the changes between the study groups (one-way ANOVA).

The serum creatinine concentrations increased significantly in the HP group (7.8+10.1%, P<0.05),
while no change was detected either in the LP group or in the placebo group. The change observed
in the HP group was largely due to an increase in a single subject from 84 to 111 mmol/I. No other
differences were detected in the laboratory measurements; blood cell count, hemoglobin, activity of
ASAT, ALAT or y-GT enzymes or concentrations of serum fatty acids between the study groups.

In thein vitro study, the phloem inhibited the oxidation of serum in a dose-dependent manner
(Figure 3). After incubation of the placebo, LP and HP breads, the oxidation resistance of serum
increased 18%, 90% and 137%, respectively. The pure (+)-catechin increased the oxidation
resistance by 42%. DPPH' also increased linearly with the amount of phloem in the study breads.
Theradical scavenging capacity of LP bread was 257% and HP bread 564% higher when compared
with the placebo bread.
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Figure 3.

The effects of study breads and catechin on the oxidation resistance of serum.
*Tests with catechin were conducted in a separate assay with different serum.



6. DISCUSSION

6.1 M ethodological considerations

6.1.1 Study populations

The KIHD study population in the works | and Il was selected using representative population
sample of middle-aged eastern Finnish men. Participation rate was high with no losses to follow-
up. Therefore, the results can be generalized for Finnish men, but not necessarily for women.
However, studies have not suggested that the effects of flavonoids on therisk of CVD would differ
between men and women. The reason for the selection of only men was the exceptionaly high
rates of CHD mortality among eastern Finnish men in the 1970s (251).

The study participants in the supplementation studies 111 and 1V were healthy, young (~26
years), nonsmoking subjects, while work V consisted of older (~51 years), hypercholesterolemic,
but otherwise healthy men. It is plausible that in order to benefit from antioxidant supplementation
the objects should have an increased rate of oxidative stress as a result of eg. smoking or
subclinical disease (36, 252). Decreased lipid peroxidation was seen in older subjects in work V,
while no effect was detected in younger subjects in works 11 and 1V. It is possible that subjectsin
work V have suffered from increased oxidative stress, and did therefore benefit from antioxidant
supplementation. However, this hypothesis is not supported by our findings showing that at
basdine the oxidative stress (as measured as oxidation susceptibility of serum) was similar in the
subjects participating in work V when compared with the studies subjects of works I11 and V.

6.1.2 Study designs

In general, the main strength of the KIHD study is a large amount of high quality data which
enables extensive adjustment for potential confounding factors. The main drawback of the work |
was cross-sectional analysis and thus evaluation of temporal reations is not possible. In contrast,
the work 11 was longitudinal study.

The supplementation work V was a randomized double-blind study, while works 111 and IV
were not randomized. Parallel design was chosen to enhance study compliance. In work IV, those
subjects who were not habitual coffee drinkers could have had difficulties to consume 900 ml of
coffee per day. Similarly, in work Il strong taste preferences on types of chocolate could have
affected the study compliance.
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Nonrandomized design resulted in selection bias in work V. At the baseline, those in the group
consuming the highest amount of coffee tended to be older and had higher BMI and activities of
ALAT and y-GT enzymes as compared to the groups which consumed either moderate amount or
no coffee. To control for the potential confounding, these factors were included as covariates in the
statistical models. The baseline values of the markers of oxidative stress, however, did not differ
between the study groups. We beieve that limitation in the study design did not have significant
effect on the outcomein works 111 and V.

In our supplementation works I11-V we used flavan-3-ols (catechins and proanthocyanidins)
and phenolic acids as sources of polyphenols. Flavan-3-ols were selected because they are
considered to be especially powerful antioxidants. Phenolic acids, as well as caffeine and other
methylxanthines have antioxidant activity, but so far the antioxidant effects of coffee in vivo have
been studied only scarcely (168).

The supplemented amount of polyphenols in supplementation studies were 270 or 420 mg/d
(work 111), 365 or 730 mg/d (work V), 30 or 60 mg/d (work V) and the duration of the
supplementation periods were 3 (works 111 and 1V) or 4 weeks (work V). We do think that the dose
and the length of the supplementation should have been sufficient as studies with similar doses and
durations have detected effects on oxidative stress. Supplemented amounts were also chosen to be

comparable with the amount attainable from a habitual diet.

6.1.3 M easurements and collection of outcome events

Atherosclerosis in the work | was assessed by ultrasonography of the carotid arteries. IMT has been
shown to be an independent predictor of cardiovascular disease (253, 254) and therefore non-
invasive IMT measurements of the carotid arteries can be used as a valid indicator of
atherosclerosis and the risk of CVD.

Data of ischemic strokes and CVD deaths in the work Il is reliable and the risk of
misclassification minimal. The collection of data and the diagnostic classification of strokes
between 1984 and 1992 were carried out regional teams from hospitals and wards of health centers
and classified the events as a part of the multinational WHO MONICA project (234, 235). Data on
strokes from the beginning of 1993 were obtained by computer linkage to the national hospital
discharge and death registers. CVD deaths were ascertained by computer linkage to the national
death registry using the Finnish social security number.

The main strength of supplementation studies was that we used a wide set of markers of
oxidative stress. We measured antioxidant capacity (work 1V), various markers of lipid

peroxidation; oxidation susceptibility of serum (111-V), oxidation susceptibility of LDL+VLDL
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(V), conjugated dienes in vivo (I11 and 1V), hydroxy fatty acids and F,-isoprostanes in vivo (111 and
1V), and activity of antioxidant GPX and PON enzymes (IV). In addition, we assessed the
antioxidant properties of administered breads in vitroin work V.

6.1.4 Dietary assessment and flavonoid database

In the KIHD study (works | and I1), the dietary intake of flavonoids was assessed using 4-day food
recording before the study visits. The intake of flavonoids may vary between different seasons,
being highest in summer and autumn when vegetables are consumed in higher amounts. Seasonal
variation may have caused some misclassification of subjects and may have caused
underestimation in the relation between flavonoid intake and the CVD.

We used USDA database (52) which enabled to assess the role of atotal of 26 compounds from
5 flavonoid subclasses. Earlier studies have included mainly 3 flavonols and 2 flavones, while the
role of other subclasses has been studied much less (T able 3). It has been estimated that out of 11
to 26 identified subclasses of flavonoids at least 5 subclasses (flavonals, flavones, flavanones,
flavan-3-ols, and anthocyanidins), a total of 20-30 compounds, may contribute significantly to the
daily intake and thus also to CVD hesalth (54).

Accurate data on the total intake is important in order to reveal the absolute strength of
association. In addition, studying the role of each subclass and possibly individual compounds is
important as chemical properties of the compounds differ and therefore possibly also the effects on
health. However, this is complicated by the fact that many of the compounds occur in the same
foods. For some subclasses, e.g. flavanones, separate analyses are possible as these compounds are
almost solely derived from citrus fruits.

Even though we did study the effect of larger set of compounds, the databaseis still incomplete
for anthocyanidins and procyanidins. This is mainly because the methods for the analysis of these
compounds have been available only for a few years. Drawback of this study was that because of
limitations in our computer software used to calculate the intakes of nutrients, we were not able to
study food sources of flavonoids.

6.2 Dietary intake of flavonoids

Thetotal intake of flavonoids was 129 mg/d (work 1) and 139 mg/d (work 1), and the flavan-3-ols
were the main contributor accounting almost ~85% of thetotal intake. Because the USDA database
included more compounds than used in most of the previous calculations the intake was higher than
reported previously for Finnish (8-24 mg/d) or for the other populations (14-72 mg/d) (Table 2).
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The KIHD study population consisted of middle-aged men who likely consumed low amounts of
vegetables and thus the intake is probably lower than average population. In addition, the actual
intake of some of the flavonoid subclasses is probably higher as databases are still incomplete. In
addition to flavonoids, other polyphenolic compounds, such as phenalic acids, are ubiquitous in
plant derived foods and have not been included in the calculations. Coffee is an especially rich
source of phenolic acids (~100 mg/dl) and among coffee consumers the daily intake of phenolic
acids alone may be around several hundreds of milligrams. Originally, Kihnau estimated in the
mid 1970s that the daily intake of polyphenols would be around 1 gram, and this early estimation

may eventually turn out to be surprisingly accurate (42).

6.3 Flavonoid intake, atherosclerosisand CVD

The main finding in the cross-sectional work | was that the high intake of flavonoids was
associated with decreased carotid atherosclerosis as measured as CCA-IMT. In work [, the intake
of flavonoids was associated with the decreased risk of ischemic stroke. However, for CVD death
no such association was found.

Ischemic stroke and most of the other CVD stem from atherosclerosis, and thus the intake of
flavonoids was expected to be associated also with CVD deaths. One possible explanation could be
that atherosclerosis might lead to stroke earlier because of smaller diameter of the cerebral
arterioles. Another explanation could be that despite similar etiology, some differences in the
pathogenesis could explain the differences in the risks. Elevated blood pressure is the main risk
factor for ischemic stroke, whileits role in the other CVD is less strong. However, in our study the
flavonoid intake was not associated with blood pressure and thus does not seem to explain the
differences.

Our results are partly in line with the previous epidemiologica findings. Out of 13 published
cohort studies, 8 studies have found the high flavonoid intake to be significantly associated with the
decreased risk of CHD (54, 82) (Table 3). Evidence for stroke is much more limited, and out of 8
studies only 2 have found significant inverse association (253). IMT has been shown to be an
independent predictor of CVD (12, 110), and thus our results in work | provided support for the
protective role of flavonoids against CVD. Contrary, in work Il the flavonoid intake was related
with the incidence of ischemic stroke, but not with CVD mortality. Inconsistency in the findings on
stroke may be partly explained by the differences in the study design or population studied; eg.
age, gender and types of stroke studied.

Despite optimism regarding beneficial effects of polyphenols against CVD, the high intake
could merely be an overall marker of healthy lifestyle rather than a causative factor. Polyphenol
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intake is strongly related with lifestyle habits. For example, the higher intake has been associated
e.g. with less smoking, physical fitness as well as healthier diet; higher intake of e.g. vitamin C,
vitamin E, carotenoids, folate, and fiber in our study and in other studies (197). Similar problem
concerns the studies which have evaluated the role of foods sources of polyphenols such as tea.
Therefore, the possibility that the protection at least partly results from other confounding lifestyle
factors cannot be ruled out. In addition, most of the nutrients which are considered to be protective
are often present in the same foods and therefore distinguishing the effects polyphenols from the

other nutrientsis difficult or even impossible.

6.4 Effects of polyphenol supplementation on serum lipids and oxidative stress

In three supplementation studies (works I11-V), we found a little support for the antioxidant effects
of polyphenols in vivo as only one marker of oxidative stress in one study showed beneficial
change. In work V, oxidation susceptibility of serum was inhibited after consumption of flavan-3-
ol rich phloem. However, no change was observed in the oxidation resistance of LDL+VLDL.
Flavan-3-ol rich dark chocolate in work 111 did not have similar effect even though the type of
flavonoids ingested was similar and the dose was several times higher than in the work V (62 mg
per day vs. 418 mg per day). In addition, no effect was seen for coffee which contains high amount
of phenolic acids. In work 111, the production of conjugated dienes in vivo decreased, but this was
probably due to fatty acids of chocolate, as an equal decrease was seen in all three study groups,
and it was not related to the polyphenol content which varied between the chocolates.

The antioxidant effects of polyphenols in humans have been studied intensively since mid
1990s and these studies have mainly used tea, chocolate, cocoa, or red wine as a source of
polyphenols (Tables 4-6). Majority of these studies favour the option that polyphenol
supplementation increases the antioxidant capacity for a few hours (197). The effects on the
markers of lipid peroxidation have been much more inconsistent (15). Studies which have included
F-isoprostanes as a marker of lipid peroxidation in vivo have mainly not found polyphenol
supplementation to have an effect. The inconsistency in the findings concerning the antioxidant
effects in humans is not known, but may be related to the differences in the polyphenols
supplemented (type and amounts), study subjects (age, health status, nutritional status, gender,
€etc.), study settings (duration, etc.) or methodology used to assess the effects. All in all, the results
of polyphenols supplementation studies in vivo are inconclusive and it is not possible to draw final
conclusions.

The main finding in work 111 was that cocoa increased the concentration of HDL cholesterol in

a dose-dependent manner. In this study we did not study further which compounds are responsible
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for the beneficia change in the HDL cholesterol. In addition to polyphenols, cocoa contains
numerous of other compounds, such as minerals and methylxanthines. Even though polyphenols
are not currently considered to have an effect on serum lipids, some supplementation studies (166,
185) have found cocoa to increase the HDL cholesterol as was in our study. The proportion of
studies showing beneficial changes is, however, minority of the total number of studies. Further
studies to verify the effects on HDL cholesterol are warranted.
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7. SUMMARY

The results of this work are summarized as follows:

I The high intake of dietary flavonoids was associated with decreased carotid atherosclerosis

measured as by common carotid artery intima-media thickness in middle-aged men.

Il The high intake of dietary flavonoids was associated with a decreased risk of an ischemic
stroke, while no association with cardiovascular disease mortality was found in middle-aged
men.

11l Flavonoids and other phenolic compounds do not seem to have measurable effect on
oxidative stress in humans.
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8. CONCLUSIONS

The results of this work suggest that the high intake of dietary flavonoids is associated with
decreased carotid atherosclerosis and risk of ischemic stroke in eastern Finnish middlie-aged men.
However, we cannot fully exclude the possibility that a high flavonoid intake is an overall marker
of hedthy diet and lifestyle and not an independent preventive factor. The results of the
supplementation studies do not support that the possible mechanism(s) by which flavonoids and
other phenolic compounds may decrease the risk of CVD would be related with their antioxidant
properties. More work is still needed to verify the effects of polyphenols on CVD and to identify

the protective mechanism(s).
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9. FUTURE DIRECTIONS

Therole of dietary polyphenolsin CVD is still unclear and further studies are still warranted. No
single type of approach will provide a definite answer, and thus different types of studies should be
carried out.

Epidemiological studies will provide useful information about the relation between the
polyphenol intake and the risk of CVD. However, because of potential residual confounding,
attention should be paid to the statistical adjustment. Furthermore, in order to evaluate the role of
al commonly consumed polyphenoals, efforts to update the databases should be continued.

The biomarkers of polyphenol intake have also been suggested for studying the effects of
polyphenols on the risk of CVD in observational studies. However, because of extensive
metabolism of these compounds, reliable evaluation of the total intake would require a great
number of biomarkers. Therefore, relatively simple calculations about the intake of polyphenols
will still be useful tool for epidemiological studiesin the future.

In vitro and clinical studies are needed to verify the possible mechanisms of action.
Antioxidant studies in humans have resulted in inconsistent findings and more studies should be
done before conclusion about the effects can be drawn. In addition, developing markers of
oxidative stress as well as establishing the role of these markers as predictors of CVD, should be
continued. Studies assessing vasodilatory, antithrombotic and anti-inflammatory properties of
flavonoids have provided promising results, but more evidence is needed.

Long-term randomized controlled trials are considered as a golden standard for establishing the
effect of eg. drugs. However, such approach has limitations in nutritional research. When studying
the effects of long-term supplementation of polyphenols on CVD, sufficient contrast of exposure is
difficult to arrange. A randomization of volunteers to follow diet rich in polyphenols (e.g.
vegetables) for a long period of time (years, decades), while contrast group would follow diet low
polyphenol diet, is impractica and unethical. Contrast could be possibly achieved with
supplements, but adding them to the habitual diet would unlikely provide further benefit. Most
nutrients have threshold behaviour i.e. the benefits are mainly achieved with a certain amount, but
increasing the dose does not have any additional effect. Problem concerns especially nutritional

studies, in which volunteers are likely to be more health conscious than average population.
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