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KUOPIO UNIVERSITY PUBLICATIONS C. NATURAL AND ENVIRONMENTAL SCIENCES 204

EEVA BOMAN

Radiotherapy Forward and Inverse
Problem Applying Boltzmann

Transport Equation

Doctoral dissertation
To be presented by permission of the Faculty of Natural and Environmental Sciences

of the University of Kuopio for public examination in Auditorium L22,
Snellmania building, University of Kuopio,

on Saturday 27th January 2007, at 12 noon

Department of Physics
University of Kuopio

KUOPION YLIOPISTO

KUOPIO 2007



Distributor: Kuopio University Library
P.O.Box 1627
FI-70210 KUOPIO
FINLAND
Tel. +358 17 163 430
Fax +358 17 163 410
http://www.uku.fi/kirjasto/julkasutoiminta/julkmyyn.html

Series editors: Professor Pertti Pasanen, Ph.D.
Department of Environmental Sciences

Professor Jari Kaipio, Ph.D.
Department of Physics

Author’s address: Department of Physics
University of Kuopio
P.O.Box 1627
FI-70210 KUOPIO
FINLAND
Tel. +358 17 162 361
Fax +258 17 162 373
E-mail: Eeva.Boman@uku.fi

Supervisors: Docent Jouko Tervo, Ph.D.
Department of Mathematics and Statistics
University of Kuopio

Docent Marko Vauhkonen, Ph.D.
Department of Physics
University of Kuopio

Reviewers: Professor Simon Arridge, Ph.D.
Department of Computer Science
University College London, UK

Associate Professor Bengt Lind, Ph.D.
Department of Oncology-Pathology, Medical Radiation Physics
Karolinska Institutet and Stockholm University, Sweden

Opponent: Docent Mikko Tenhunen, Ph.D.
Department of Oncology
Helsinki University Central Hospital

ISBN 978-951-27-0682-2
ISBN 978-951-27-0457-6 (PDF)
ISSN 1235-0486
Kopijyvä
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ABSTRACT
The aim of radiotherapy is to destroy the unhealthy tumorous tissue with ionizing
radiation, while the other parts of the human body are saved. The absorbed dose
is used as a measure of the ionizing radiation. In external radiotherapy treatment
planning, one tries to select the treatment settings such that the high dose volume
conforms the planning target volume, while other sensitive organs and normal tis-
sue receive as low dose as possible. To be able to do this, one needs a physical dose
model, which describes the dose distribution within the patient domain, when the
treatment settings or radiation flux intensities at the patient boundary are known.
This is often referred to a radiation therapy forward problem.

Three coupled time independent linear Boltzmann transport equations can be
used to describe the traveling of ionizing radiation, taking rigorously into account
tissue inhomogeneities and different scattering phenomena. From the solution
of this coupled system the absorbed dose can be computed. In this thesis, the
solving of the coupled system of time independent linear Boltzmann equations
with assigned boundary conditions is called as the radiotherapy forward problem.

The time independent linear Boltzmann transport equation is a integro-
differential equation, whose solution has spatial, angular and energy variables.
In practical geometries, numerical methods are needed to solve the forward prob-
lem. In this thesis, finite element method is utilized to solve the radiotherapy
forward problem and the existence of the solution is studied. The theories are
tested via finite element simulations in two and three spatial dimensions.

Radiotherapy treatment planning is an inverse problem. This means that one
knows the desired dose distribution within the patient and the problem is to solve
the boundary flux intensities or some treatment settings. In this thesis, the in-
verse problem of radiotherapy is considered using boundary control optimization
method. The novel approach of parametrization is used to make the global op-
timization possible. With parametrization the number of unknowns is reduced
significantly and global optimization is more practical to implement than it would
be without the parametrization. These methods are tested with numerical simu-
lations in two spatial dimensions.
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1D One dimensional
2D Two dimensional
3D Three dimensional
BTE Boltzmann transport equation
B-CSDAE Boltzmann-CSDA equation
CSDA Continuous slowing down approximation
FEM Finite element method
IMRT Intensity modulated radiation therapy
IRTTP Inverse radiation therapy treatment planning
keV Kilo electron volts
MC Monte Carlo
MeV Mega electron volts
MLC Multileaf collimator
MV Mega volts
PTV Planning target volume
SAAF Self-adjoint angular flux
SVD Singular value decomposition
sr steradian





List of symbols (and units)

(·)Br Refers to electron bremsstrahlung process
(·)C Refers to photon Compton effect
(·)h finite element approximation
(·)Ie Refers to electron inelastic scattering
(·)R Refers to electron elastic scattering
(·)sd Refers to steam-line diffusion method
(·)T Transpose operator
(·)∗ Adjoint operator
(·)′e, (·)e Refers to electron before and after scattering
(·)j Refers to particle j
(·)′p, (·)p Refers to photon before and after scattering
(·)pr Refers to scattered primary electron
(·)s Refers to scattered secondary electron
(·)+ Positive part of the function
(·)− Negative part of the function
| · | Absolute value
‖ · ‖ Euclidean norm⊕

Direct sum

α Unknown vector in FEM approximation
or parameter for the coercivity considerations

γ Parametrization vector
Γ, Γi Patch on the boundary
δ Stream-line diffusion parameter
δ(·) Delta function, defined by equation (2.14)
θ Scattering angle of polar coordinates (rad)
κ Coercivity parameter
µ Cosine of the scattering angle θ
ρ Density (g/cm3)
σa Absorption cross section (cm−1)
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Chapter I

Introduction

The purpose of radiotherapy treatment is to destroy the tumorous tissue with
ionizing radiation by localizing high dose concentrations in the tumor volume
while the healthy tissues and organs receive as low dose concentration as possible
[188, 106]. In external radiotherapy the ionizing radiation is directed to the patient
from the external source. Another possibility is the internal radiotherapy, in which
the sources of ionizing radiation are implanted inside the patient [198]. This study
considers the external beam radiotherapy, in which the photon and electron beams
are the most often used external radiations in clinical applications. The heavy
particles such as neutrons and protons are still rarely used because of the enormous
cost involved [165, 106].

In external electron or photon radiotherapy, the treatment unit is typically a
linear accelerator, in which electrons are accelerated to high energies using high-
frequency electromagnetic waves [177, 106]. In electron treatments, electrons are
accelerated to desired energy and then directed to the patient. The electrons
entering to the patient surface are almost monoenergetic having the maximum en-
ergy achieved in the acceleration. In photon treatments, the incoming photons are
produced by making the high energy electrons to strike a target such as tungsten,
which produces x-rays in bremsstrahlung progress (see 2.4.2). The photon beam
is heterogeneous in energy, having the maximum energy to be near the maximum
energy of the incident electrons before the strike. Also the lower photon energies
are present in the photon beam due to bremsstrahlung progress.

In treatment planning, one seeks the best alternatives for the beam orientations
and different field settings to achieve the desired dose distribution in the tumor
volume and as low dose as possible in the healthy tissue and organs. Nowadays the
use of three dimensional (3D) imaging techniques, such as computer tomography
(CT) and magnetic resonance imaging (MRI), enable more accurate patient 3D
imaging. This enables the use of conformal radiotherapy, in which the goals of the
radiotherapy treatment are met, i.e the high dose volume conforms the planning
target volume (PTV) and other healthy tissue and organs receive as low dose as
possible. The intensity modulated radiation therapy (IMRT) can be utilized for
the conformity purposes [35, 5, 191, 190, 146]. In IMRT, the intensities of the ex-
ternal radiation fluxes are modulated using different field settings such as wedges,
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16 1. Introduction

multileaf collimator (MLC). Typically, in IMRT treatments several fields are used
with a static [169, 109, 15, 154, 61], dynamic [174, 25, 6, 52, 105] or interrupted
dynamic sequences [129]. Other possibility is, for example tomotherapy, in which
several small beams are directed to the target [126].

Traditionally, in finding the best treatment plan, the treatment settings (in-
coming radiation direction and intensity, MLC parameters, wedge angles etc.) are
selected by a trial-and-error sequence [48]. However, the use of IMRT greatly in-
creases the degree of freedom in selecting the treatment settings and that is why
different optimization techniques are becoming more general [37]. These tech-
niques include direct optimization techniques, in which the intensity modulation
apertures, for example the MLC parameters are used directly as free variables
in the dose optimization [129, 169, 25], and intensity optimization techniques, in
which the beamlet weights of the field intensities are used as free variables in the
dose optimization [57, 76, 110]. These optimization problems are often referred to
an inverse radiation therapy treatment planning (IRTTP) problems.

From the mathematical point of view, the radiotherapy treatment planning is
an inverse problem, i.e. the problem is to find the best source arrangements to
receive the desired dose distribution within the patient. In solving the inverse
problem, one needs a solution of the forward problem, i.e. a solution for the model
of the dose calculation. In the forward problem of the external radiotherapy, one
computes the dose distribution in a patient resulted from the external sources of
ionizing radiation with some aperture settings. Several models have been devel-
oped for the dose calculation [4, 164, 144, 95, 114, 84]. Nowadays, the Monte Carlo
(MC) method is assumed to be the most accurate method for the dose calculation
for the external photon or electron fluxes [142, 8, 22, 23, 104, 158]. In MC, the
paths of the scattering particles are followed by randomly selecting the new direc-
tions and energies of the particles. In different scattering interactions, the particles
loose their energy, other particles are created and energy is absorbed to matter
affecting the dose. With several millions particle histories MC method gives an
estimate for the dose distribution. The drawback of the MC method is the long
computation time and that is why still so-called pencil-beam models are the most
commonly used in treatment planning systems [4, 81, 180]. In pencil-beam models,
the dose in a patient is achieved as a superposition of appropriately weighted dose
deposition kernels. The kernels can be modeled with Monte Carlo methods, using
some approximations or using empirical beam data [167, 42, 31, 151, 110].

Most of the dose calculation models have their roots in Boltzmann trans-
port equation (BTE). The previously presented MC method uses BTE to sim-
ulate particle transport in a medium [142, 8, 123, 104, 152]. The Fokker-
Plank and Fermi equations can be shown to be approximations of the BTE
[149, 150, 33, 28, 111, 138, 24]. In it’s original form, the BTE takes rigorously into
account the patient inhomogeneity and scattering effects [30]. It is an integro-
partial differential equation and it is studied in many fields of physics, for ex-
ample in nuclear reactor physics [18, 79, 197], astrophysics, optical tomography
[103, 89, 43, 10], x-ray spectra and electron microbeam analysis [72, 73, 135]. Ex-
cellent books, which consider BTE in detail in variety of fields are for example
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[50, 47, 67, 196, 148]. The linear stationary BTE can be used in radiation therapy,
because the high energy particles move nearly at the speed of light and the inter-
actions of particles with each other are negligible [147, 30]. In applications, which
include pulsed sources, nuclear bursts, reactor kinetics or dynamic movement, the
time-dependent form of the BTE is needed [14, 186]. In some applications such as
electron gas in semiconductor the nonlinear BTE is used [127, 147].

BTE describes particle traveling in a medium and it is based on the particle
equilibrium in a small volume [67]. The unknown function in the BTE based for-
ward problem is the particle angular flux, from which the dose can be calculated
[123]. In stationary case, it has six variables, three spatial, two angular and one
energy variable. BTE can be solved analytically only in very simplified geome-
tries, in which it does not have very much of practical use. Instead of finding an
analytical solution of the BTE, one can seek for a numerical solution, which can
be stochastic or deterministic [168]. For example MC and the closely related phase
space evolution method [91, 86, 136] are stochastic methods for solving the BTE.

Solving the BTE with deterministic methods is studied by many authors and
several production codes are generated in the field of radiation therapy physics
[168, 137, 195, 194]. In deterministic methods, the stationary BTE is usually solved
using some grid-based numerical method, in which the phase space is discretized in
spatial, angular and energy domains [119, 59]. The energy discretization is often
done by multi-group approximation, in which the energy range is divided into
energy groups and the interaction cross sections are replaced by multi-group cross
sections [124, 67, 7]. This leads to the coupled system of monoenergic equations,
which only need to be discretized in spatial and angular domains and are often
studied without energy variable [11, 12, 55, 118]. The often used methods for
angular discretization are for example the discrete ordinates [64, 112, 125, 138,
185], and spherical harmonic approximations [113, 128]. Finite difference and finite
element methods (FEM) are usually used in spatial discretization [3, 118, 156]
and some times also for angular discretization [41, 130, 131, 54, 141]. Also finite
element discretization is used for all variables simultaneously [26, 173]. Often
also discontinuous FEM is used [183, 184]. Other methods, which are successfully
used to solve the BTE, are the method of characteristics [194, 83], the method of
moments [115], the electron multiple scattering theory [93, 98, 97, 94, 99, 96, 100,
151, 77], the collocation method [172] and hybrid collocation-Galerkin-Sn method
[139]. Mainly due to computational problems, BTE based deterministic models
are not used in dose calculations in clinical applications.

There exist several techniques to overcome the difficulties to solve the BTE.
The integral form of the BTE is mostly used in special geometries, in which it
is easy to solve [67, 119]. Also some MC applications are based on the integral
form of the BTE [142]. It is also used in the studies of gases [77]. The even-
parity [1, 65, 66] form is derived in the monoenergetic case to be used for example
with multigroup method. The second order form [140, 121, 122] is derived in the
case, in which angular discretization is done for example using discrete ordinates.
The transport of charged particles is difficult to model using grid based numerical
methods because of the large interaction probability in forward directions. To
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accomplish this for example a continuous slowing down approximation (CSDA)
can be used [17, 116, 117]. Quite accurate models are derived by dividing the
scattering coefficients into forward and backward scatterings, and using the CSDA
to the forward parts [111, 121, 134, 143, 149, 155, 192, 200, 46]. This approximate
form of the BTE is often referred to Boltzmann-CSDA equation (B-CSDAE).

In different interactions, the high energy particles are changed to other types of
particles and three coupled BTEs are needed to describe the radiotherapy forward
problem, which takes into account photon, electron and positron interactions with
medium atoms [124]. Typically positron production is neglected and two coupled
BTEs with some boundary conditions are used to model the external radiotherapy
forward problem [65, 83, 121, 125]. Also often the bremsstrahlung production is
neglected in the electron incident radiotherapy and only one BTE with appropriate
approximations is used to describe the electron transport [201, 100, 86, 132, 133,
143].

When deterministic methods are considered, one should guarantee that the
solution exists and that it is unique. For time-dependent BTE the existence and
uniqueness of the solution can be proven [147, 67]. The existence and uniqueness
of variational form of the stationary BTE is studied in [59], in which some addi-
tional restrictions are demanded on the scattering parameters. Recently, similar
restrictions are shown to hold for the coupled system of BTEs [26]. From the
coercivity result the Cea’s estimate for FEM convergence can be derived in prin-
ciple [53, 172]. The FEM convergence for the BTE is also studied, for example in
[179, 7]. The existence, uniqueness and FEM convergence analysis of the solution
for the approximative forms of the BTE (B-CSDAE, even-parity, second order)
are not presented in the literature.

Although MC methods are thought to be one of the future dose calculation
models, it is not evident that the MC methods are more efficient than deterministic
BTE based models [78, 29, 164]. The deterministic methods have advantages
in solving the related inverse problem, which can be directly formulated to the
deterministic BTE based model. With MC methods one needs to solve the forward
problem several times by changing the incoming source arrangements in solving
the related inverse problem [92]. Fast MC methods are generated to accomplish
the computational costs [74, 163]. Still deterministic methods are worth studying,
because of the advantages in inverse problems and because it is not clear if the
MC methods are more efficient than the deterministic methods.

The inverse problem in radiotherapy is usually based on the physical or biolog-
ical criteria [38]. The physical criteria for the IRTTP problem are defined by the
physically measurable quantities such as volume and dose [34]. With biological cri-
teria one tries to quantify the influence of the dose deviation on tumor control and
normal tissues reactions, i.e. quantify the probability that the patient will have a
desirable treatment outcome [39, 40]. The physical criteria are the most often used
quantities in the IRTTP problems. This is probably because the biological criteria
are more difficult to implement than the physical criteria and because the biologi-
cal criteria contain parameters such as normalized dose-response gradient and the
dose causing 50% probability of tumor control or severe normal tissue reactions,
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from which the normalized dose-response gradient varies from patient to patient
and is difficult to determine. In optimization, these criteria are usually connected
using cost function, which is then minimized by pre-selecting the weights for dif-
ferent criteria. The unified model [49] handles the physical criteria by proximity
function, in which the resulted iterative scheme converges to the feasible solution.
The problem of selecting the weights for different criteria in an optimum way can
be avoided using method such as the deterministic iterative least-squares method
[51] and multi-criteria optimization [36, 160, 159].

Maybe because of the computational problems the IRTTP problems based on
BTE and deterministic methods are rarely presented in literature. In the field
of image reconstruction and particle transport, the studies based on BTE can
be found for example in [16, 145, 70, 71], from which the two latter are based
on the computations of the original BTE and it’s adjoint form. Related studies
are recently done in the field of radiotherapy in the optimization of the dose
distribution within the spatial domain [176, 175].

The aims and the contents of the thesis

The purpose of this thesis is to use a BTE based model in radiotherapy purposes.
The first aim is to solve the radiotherapy forward problem using the coupled BTEs
and/or the coupled B-CSDAEs. The second aim is to used this forward model in
solving the radiotherapy inverse problem with the optimal control approach.

The BTE based model consists of three coupled BTEs to describe photons,
electrons and positrons with related boundary conditions. The variational form is
formulated and the existence and uniqueness of the solution are analyzed. From
the existence analysis of the coupled system some restrictions on the scattering
coefficients are resulted. Also the coupled system B-CSDAEs is considered and the
variational form is presented and the existence and uniqueness of the solution are
discussed. The derived forward problem is simulated in three (3D) and two (2D)
spatial dimensions using FEM for two coupled B-CSDAEs with photon boundary
conditions and for one B-CSDAE with electron boundary condition. The results
are compared with the MC simulations using EGSnrcr code system [104].

Some of the results presented in this thesis have been published earlier in the
articles [26, 27, 176] and in the University of Kuopio Report series [172, 171]. This
thesis summarizes the results of the published works and also gives new theories
for the existence of the solution of the coupled B-CSDAEs, uses B-CSDAE for
charged particles, presents the stream-line diffusion with FEM discretization and
simulates the coupled system and B-CSDAEs in 3D using FEM. Also the BTE
based inverse problem in radiotherapy purposes is presented and simulated.

This thesis is divided into six chapters. In Chapter 2, the principles of the
external radiotherapy are presented. The chapter also presents detailed the main
interactions and the related physical quantities, which are needed to describe the
traveling of high energy particles in a medium. This chapter forms the physical
basis for the thesis.

In Chapter 3, the coupled system of BTEs is derived from the particle equi-
librium in a small element. The chapter also presents the formula for the dose
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and external radiotherapy related boundary conditions for photons and electrons.
Also, the integral form of the BTE and different approximations such as the B-
CSDAE are presented. This chapter gives a solid basis for the BTE in radiotherapy
purposes.

The radiotherapy forward problem using FEM and transport equations are
discussed in Chapter 4. The chapter derives the variational forms for the coupled
BTEs and for the coupled B-CSDAEs. The existence of the solution of these
equations are studied. Also the related convergence results based on the coercivity
analysis are presented. The finite element discretization is given including the
stream-line diffusion method. The radiotherapy forward problem is simulated at
the end of the Chapter 4 using two and one B-CSDAEs in 2D and 3D.

A radiotherapy inverse problem based on the BTEs is presented in Chapter 5.
The boundary control optimization method is used to solve the related radiother-
apy inverse problem. Also a novel approach using the application of parametriza-
tion is presented in finding the solution of the control problem. These theories are
simulated by one BTE in 2D.



Chapter II

Radiotherapy treatment related physics

The determination of absorbed dose in a patient is one task in radiotherapy treat-
ments [4]. In external radiotherapy, the detectors can be used at the patient sur-
faces, but there is no information how the dose is distributed inside the patient.
That is why one has to use a model to simulate the absorbed dose distribution
in patient based on the knowledge of high energy particle fluxes at the patient
surface and on the knowledge of the patient inhomogeneity. In the BTE based
dose calculation models one has to know the physics behind high energy particles
i.e. photons, electrons and positrons [124, 104]. The interactions for photons and
electrons (positrons) are significantly different, because photons are uncharged and
electrons (positrons) are negative (positive) in charge. The transport of photons,
electrons and positrons is coupled due to the fact that incident photons produce
electrons, electrons produce photons and sometimes photons produce positron
electron pair or this pair produces photons in different interactions with medium
atoms.

In this chapter, the main physical features of ionizing radiation are explained
for the purposes of the external radiotherapy treatment. The different interactions
of high energy particles with medium atoms are presented. In Section 2.1, ionizing
radiation and absorbed dose are presented. After that, Section 2.2 describes the
scattering probabilities via differential and total cross sections and stopping power,
which are needed in the BTE based transport models. In Sections 2.3, 2.4 and 2.5,
the differential and total cross sections in different interactions are described for
photons, electrons and positrons, respectively. In the last Section 2.6, a method is
presented to divide the scattering interaction of charged particles into catastrophic
and soft collisions and for these purposes the restricted cross sections and restricted
stopping powers are derived.

2.1 Ionizing radiation

Ionizing radiation is used in radiotherapy treatments because of its ability to dam-
age living tissue [13]. The intended high local concentrations of absorbed energy
can kill a cell either directly or through the formation of highly reactive chemical
species such as free radicals in water, which are always present in a human tis-
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sue. A free radical is an atom or a compound with unpaired electron. Ionizing
radiation excites and ionizes medium atoms while it is traveling through medium
[13]. It is classified into directly ionizing radiation, such as electrons and positrons,
which deliver energy to medium directly, and indirectly ionizing radiation, such as
photons, which first transfer their energy to charged particles, which then deliver
energy to medium.

Photons consist of x-rays and gamma rays named according to their mode of
origin although their properties are the same [161, 13]. Electromagnetic radiation
emitted by charged particles in changing atomic energy levels is called charac-
teristic or fluorescence x-rays. Continuous or bremsstrahlung x-rays are emitted
from inelastic collisions of charged particles in which they slow down in Coulomb
force field. Gamma rays are electromagnetic radiation emitted from the nucleus
or in annihilation reactions. Annihilation radiation is emitted when positron and
electron are combined. β-rays (negative or positive) and δ-rays consist of electrons
and positrons [13]. β-rays are emitted from the nucleus and δ-rays are resulted
from the charged particle collisions.

Because photons are uncharged they travel quite a long distance in a medium
without interacting with medium atoms [193]. On the other hand, charged parti-
cles, such as electrons and positrons, travel only a small distance until they undergo
interactions with medium atoms. Thus, photons undergo only few interactions un-
til they attenuate and secondary electrons born, while electrons loose their energies
in many small interactions with medium atoms along their trajectories [13].

The energy absorbed from the ionizing radiation is usually described by the
absorbed dose D(x), which is the expectation value of the high energy imparted
to medium per unit mass in a point x ∈ R3 [13]. Thus,

D(x) =
dε

dm
, (2.1)

where dε = dεin − dεout + dεmass is the mean energy imparted in an infinitesimal
volume dV , dεin is the energy that comes into dV (including charged and un-
charged particles), dεout is the energy that comes out from dV and dεmass is the
net energy derived from rest mass in dV . dm is the mass of dV . The unit of the
absorbed dose is Jkg−1 or gray (Gy), having a relation 1 Gy = 1 Jkg−1 ≈ 6.24·109ρ
MeVcm−3, in which ρ is the density of the medium.

2.2 Interaction probability and stopping power

High energy particles interact with medium atoms in different ways resulting in
their energy to be imparted to matter [13]. In these interactions, the original
direction Ω′ and energy E′ of the particle are changed to Ω and E. Sometimes
other types of particles result. These interactions are statistical in nature and can
be described by probability distributions such as differential cross section and total
cross section. Also stopping powers are used to describe the energy absorption to
the medium.
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2.2.1 Differential cross section

The differential cross section describes the laws for the emission of scattered par-
ticles in energy and angle [119]. It is defined by the probability distribution

d2σ
dEdΩ (x, E′, E,Ω′ · Ω)dEdΩ, which is the probability per unit path length that

a particle in a point x, having an energy E ′ and coming from a direction Ω′ to
scatter into an energy interval dE about E into a solid angle dΩ about Ω. The

function d2σ
dEdΩ (x, E′, E,Ω′·Ω) is now the differential cross section and it has unit

of per centimeter per MeV per steradians i.e. cm−1MeV−1sr−1. The small solid
angle dΩ′ = sin θdθdϕ in standard polar coordinates (ϕ, θ) on an unit sphere
S ⊂ R3 (see Figure 3.1). Here the scattering is assumed to be isotropic meaning
that the scattering does not depend on the azimuthal angle ϕ and depends only
on the cosine of the scattering angle cos θ = Ω′ ·Ω, not on Ω′ and Ω individually.

2.2.2 Total cross section

Total cross section σ(x, E′) is a sum of absorption cross section σa and integrated
scattering cross section σs [123], which are obtained by integrating the differen-

tial cross sections for absorbed particles d2σa

dEdΩ and for scattered particles d2σs

dEdΩ ,
respectively, over the energy and angle intervals. Hence,

σa(x, E′) =

∫

I

∫

S

d2σa

dEdΩ
(x, E′, E,Ω′ ·Ω)dEdΩ

and

σs(x, E
′) =

∫

I

∫

S

d2σs

dEdΩ
(x, E′, E,Ω′ ·Ω)dEdΩ,

where I is the energy interval, say [Emin, Emax]. d2σa

dEdΩ is the differential cross
section describing an interaction, in which a particle is disappeared (absorbed)

and another different type of particle is created. d2σs

dEdΩ describes an interaction, in
which a particle is scattered to some angle having some new energy. For isotropic
scattering the integrated cross sections are totally independent on the scattering
angle Ω. Basically, σ(x, E′) is the probability per unit path length for particle of
energy E′ to scatter or to absorb in a point x.

The unit of total cross section is cm−1 or cm2g−1, if the previous is divided by
density (g/cm3). Then it is also called the macroscopic cross section [124]. If the
cross section is defined per atom (cm2/atom) or per molecule (cm2/molecule), it
is called as microscopic cross section. The relation between the macroscopic σma

and microscopic σmi cross sections is

σma =
NA

M
σmi,

where NA = 6.022 · 1023 mole−1 is the Avogadro’s constant and M is the gram-
atomic weight of an element or the gram-molecular weight of a molecule. Typically
the cross sections are defined as microscopic cross sections for an element (unit
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cm2/electron). The macroscopic cross section for a compound σcp can then be
computed from the microscopic cross sections σi (i indicates the element) using
weighted sum

σcp =
NA

M

∑

i

NiZiσi,

where M is a molecular mass in moles for a compound, Ni is the number fraction of
the element i in a compound (i.e. the number of atoms in element i in one molecule)
and Zi is the number of electrons per atom of an element. If the microscopic cross
section σi does not depend on the element i, the macroscopic cross section for a
compound becomes

σcp =
NAZ

M
σ,

where Z is the number of electrons per molecule of a compound and σi = σ ∀i.
Similarly, the differential cross section for a compound is

d2σcp

dEdΩ
=
NAZ

M

d2σ

dEdΩ
,

where d2σ
dEdΩ is the element independent microscopic differential cross section per

electron.
The total cross sections for different photon interactions are very well tabulated

in the literature (for example in [13]). One can use also an easy access photon
total cross section generating code XCOM [19] developed by National Institute
of Standards and Technology (NIST). The differential cross sections are also well
formulated in the literature (for example in [124, 104], although those are gener-
ated for different purposes than what is needed here and can not be used directly).
However, the cited references give the differential cross sections with exact formu-
las, from which the needed data can be generated. These formulas are given in
Sections 2.3 and 2.4.

Instead of total cross section, one often describes ionizing radiation using a
variable such as a mean free path, which is the average path length that the
particle will travel without interaction [67]. In fact, the mean free path is defined
by the total cross section as σ−1.

2.2.3 Stopping power

One important element used to describe the charged particle behavior in a medium
is the stopping power. The stopping power τ(x, E ′) is the average rate at which
the charged particles lose energy at any point along their tracks, i.e. τ(x, E ′) =(

dE′

dx

)
(x, E′) [87]. Total stopping power is a sum of collision stopping power τ Ie

and radiative stopping power τBr. The collision stopping power is the average
energy loss per unit path length due to inelastic collisions (see Section 2.4.1) while
the radiative stopping power is the average energy loss per unit path length due
to the emission of photon in a bremsstrahlung process (see Section 2.4.2). The
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stopping powers are well tabulated in the literature for different materials (see for
example [87, 106, 13]). The stopping power is given by the formula

τ(x, E′) =

∫ ∞

0

(E′ − E)
dσ

dE
(E′, E)dE, (2.2)

where dσ
dE is the differential cross section differential in energy including inelastic

scattering and bremsstrahlung. The stopping powers are needed for example in
the computation of the dose (see Section 3.3). The unit of the stopping power is
typically MeVcm−1.

2.3 Photon interactions

Photons by themselves do not impart energy to matter, but in different interactions
the electrons of medium atoms obtain energy from photons and these electrons
then impart that energy to matter in many small interactions along their tracks
[13]. Photon interactions are dominated by absorption and inelastic scattering
collisions, in which photon’s energy is reduced. The most important interactions
for photons are Compton effect, Photoelectric effect, Pair production and Rayleigh
scattering. Figure 2.1 shows the total cross sections for these photon interactions
at different energies in water. The values of the total cross sections are compara-
ble to the interaction probabilities. A schematic presentation of different photon
interactions are presented in Figure 2.2. To use the same energy units throughout
the whole book, the photon energies are described in units (MeV) instead of the
standard (MV) unit.

2.3.1 Compton effect

The Compton effect is dominant at energies under about 30 MeV and above about
20 keV in mediums like human tissue or water (number of electrons per molecule
Z = 10). The dominance region is narrower for high Z mediums. In Compton
effect, the incident photon (energy E ′p, direction Ω′p) collides with an electron and
gives some of its energy to that electron. After the collision the incident photon
energy and direction are changed to Ep and Ωp, respectively. Also the electron has
now kinetic energy Ee and direction Ωe. If the electron is assumed to be initially
at rest and unbounded, then Ee = E′p−Ep and the relation between Ω′p and Ωe is
obtained by kinematics and is defined later in this section in equation (2.9). Then
the macroscopic differential cross section, differential in angle for Compton effect
for scattered photon in a compound (in units of cm−1sr−1), is obtained from the
Klein-Nishina equation [13]

dσC

dΩp
(x, E′p, Ep,Ω

′
p ·Ωp) =

NAZρr
2
0

2M

(
Ep

E′p

)2(E′p
Ep

+
Ep

E′p
− sin2(ωp′,p)

)
, (2.3)

where ωp′,p = arccos(Ω′p·Ωp) is the photon scattering angle for isotropic scattering,
the classical electron radius r0 = 2.818 · 10−13 cm, M is the molecular weight in
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Figure 2.1: The total cross sections σ(cm−1) for different photon interactions

in water at different energies E(MeV) in logarithmic scale.

units (g/mole) and ρ is the density in units (g/cm3) . The energy of the scattered
photon is

Ep =
E′p

1 +
E′p
E0

(1−Ω′p ·Ωp)
, (2.4)

where the electron rest energy E0 = 0.511 MeV.
Because the angle and energy of the scattered photon are kinematically re-

lated, the Klein-Nishina cross section differential in angle in equation (2.3) can
be expressed as a cross section that is differential in energy [124]. From equation
(2.4)

cos(ωp′,p) = Ω′p ·Ωp = 1 +
E0

E′p
− E0

Ep
, (2.5)

where Ep ∈ [
E′p

E0+2E′p
,
E′p
E0

]. From equation (2.5) one receives by differentiation a

relation ∣∣∣∣
dΩp

dEp

∣∣∣∣ =
2πE0

E2
p

, (2.6)

where dΩp = 2π sin(ωp′,p)dωp′,p. Hence, from equations (2.3) and (2.6) one ob-
tains the differential cross section, differential in the energy of the scattered photon
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for Compton effect,

dσC

dEp
(x, E′p, Ep,Ω

′
p ·Ωp) =

dσC

dΩp
(x, E′p, Ep,Ω

′
p ·Ωp)

∣∣∣∣
dΩp

dEp

∣∣∣∣

=
NAZρπr

2
0E0

M(E′p)2

(
E′p
Ep

+
Ep

E′p
− 1 +

(
1 +

E0

E′p
− E0

Ep

)2
)
, (2.7)

where also equation (2.5) is used with equation sin2(ωp′,p) + cos2(ωp′,p) = 1.

The differential cross section, differential in scattered electron direction for
Compton effect, is of the form

dσC

dΩe
(x, E′p, Ee,Ω

′
p·Ωe) =

dσC

dΩp
(x, E′p, Ep,Ω

′
p·Ωp)

(1 +
E′p
E0

)2(1−Ω′p ·Ωp)2

(Ω′p ·Ωe)3
, (2.8)
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where now the cosine of the electron scattering angle is

Ω′p ·Ωe = cos(ωp′,e) =
E0 + E′p
E′p

(
2E0

Ee
+ 1

)−1/2

, (2.9)

where Ee ∈ [0,
2(E′p)2

E2
0+2E′pE0

]. Again by differentiation one receives from equation

(2.9) a relation ∣∣∣∣
dΩe

dEe

∣∣∣∣ =
E0 + E′p
E′p

2πE0

E2
e

(
2E0

Ee
+ 1

)−3/2

. (2.10)

Substituting equations (2.3), (2.5) and (2.9) to equation (2.8) and multiplying
it by equation (2.10) one obtains the differential cross section differential in the
energy of the scattered electron for Compton effect

dσC

dEe
(x, E′p, Ee,Ω

′
p ·Ωe) =

NAZρπr
2
0E0

ME2
e

(
1− Ep

E′p

)2(E′p
Ep

+
Ep

E′p
− sin2(ωp′,p)

)
. (2.11)

If one uses the fact Ep = E′p − Ee, then equation (2.11) is the same as equation
(2.7) and

dσC

dEe
(x, E′p, Ee,Ω

′
p ·Ωe) =

dσC

dEp
(x, E′p, E

′
p − Ee,Ω

′
p ·Ωp). (2.12)

In Compton effect, the energy and angle are kinematically related and that
is why the differential cross section, differential in angle and energy for scattered
photon in Compton effect (in units of cm−1sr−1MeV−1), is obtained from

d2σC

dEdΩp
(x, E′, E,Ω′ ·Ω) =

dσC

dEp
(x, E′, E,Ω′ ·Ω)δ(Ω′ ·Ω−Ω′p ·Ωp), (2.13)

where the function δ(t) is of the form

δ(t) =

{
1, if t = 0
0, elsewhere.

(2.14)

Equation (2.13) is written for general variables E ′, E,Ω′ and Ω. The value of
Ω′p · Ωp is obtained from equation (2.5). Similarly, the differential cross section,
differential in angle and energy for scattered electron in Compton effect, is of the
form

d2σC

dEdΩe
(x, E′, E,Ω′ ·Ω) =

dσC

dΩe
(x, E′, E,Ω′ ·Ω)δ(Ω′ ·Ω−Ω′p ·Ωe), (2.15)

where Ω′p ·Ωe is obtained from equation (2.9).
The scattering cross section for Compton progress is achieved by integrating

the equation (2.7) over the scattered photon energy Ep ∈ [
E′p

E0+2E′p
,
E′p
E0

]. This

results in

σC
s (x, E′) =

2πNAZρr
2
0

M

(
2

ε2
+

1 + ε

(1 + 2ε)2
+

(
ε2 − 2ε− 2

2ε3

)
ln(1 + 2ε)

)
,
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where ε =
E′p
E0

. The absorption cross section is the energyloss probability, in which
photons are scattered and attenuated to other particles. Thus, for Compton effect
the absorption cross section is obtained by integrating equation (2.11) over the

electron scattering energy Ee ∈ [0,
2(E′p)2

E2
0+2E′pE0

]. By noting that the differential cross

section differential in scattered electron energy can be computed from the equation
of the differential cross section differential in scattered photon energy, then one
sees that the absorption cross section σC

a (x, E′) in Compton effect is the same as
the scattering cross section σC

s (x, E′). The total cross section σC(x, E′) is then the
sum of absorption and scattering cross sections. Thus, σC(x, E′) = 2σC

a (x, E′).
As it was mentioned, these differential cross section equations for Compton

effect assume electrons to be unbounded and initially at rest. In actual case, the
electrons in atoms have some binding energy depending on the energy level. Also
these electrons are in motion. However, the resulting errors from the use of un-
bounded and stationary assumptions are only minor in radiotherapy applications
at high energies. More accurate differential cross sections for Compton process
are obtained by using an impulse approximation, which takes into account the
target electron binding effects and the Doppler broadening of the Compton line
[44]. The Doppler broadening is caused from the momentum distribution of the
target electrons. This leads to the double-differential cross section, differential in
energy and angle.

2.3.2 Photoelectric effect

In the photoelectric effect, an incident photon gives all its kinetic energy to a
tightly bound electron, such as those in the inner shells of an atom [13]. The
photoelectric effect can only occur when the kinetic energy of incident photon is
greater than the electron binding energy. However, the photoelectric effect is more
probable in lower energies, as long as the energy is more than the binding energy
of an electron. The photoelectric effect is dominant at energies below about 20
keV for low Z media. The energy range increases as Z increases.

Photoelectric effect is an event in which an incident photon is disappeared and
a so called photo-electron is emerged. The affected cap in the atomic shell is then
immediately filled with another electron from the outer less bound atomic shell
resulting an emission of the characteristic x-ray, sometimes called fluorescence
x-ray or an Auger electron(s) with kinetic energy.

2.3.3 Pair production

In pair production, the incident photon with a minimum energy of 2E0 = 1.022
MeV is absorbed and electron and positron are born [13]. Pair production is
more dominant at high energies. It can only take place in a Coulomb force field,
which is usually near an atomic nucleus. Sometimes pair production can occur in
the field of an atomic electron. Then the interaction is called triplet production,
because the initial electron achieves also kinetic energy and thus two electrons
and one positron has now a significant amount of kinetic energy. An opposite
interaction to pair production is an annihilation process, in which electron and
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positron disappear and two photons emerge. The differential cross sections for
pair or triplet production can be found for example in [124, 104].

2.3.4 Rayleigh scattering

In Rayleigh scattering, the incident photon is scattered by the combined action of
the whole atom [13]. That is why it is also called coherent scattering. Rayleigh
scattering is elastic, which means that no energy is lost in the interaction, in
which the atom moves just enough to conserve momentum and initial photon is
redirected in a small angle.

Rayleigh scattering is more significant at low energies, in which the photon
scattering angle is bigger. The differential cross sections differential in angle (en-
ergy is not changed) can be found for example in [107, 104].

2.4 Electron interactions

Because electrons are charged particles their interaction probabilities are much
bigger than those of uncharged particles. For example photons need only few in-
teractions to dissipate all of its kinetic energy rather than electron would typically
undergo about 105 interaction before losing all of its kinetic energy [13]. Because
photons may pass a slab of matter without any interaction or it may lose all of its
kinetic energy in a few interaction, it is impossible to predict individual photon
traveling distance. On the contrary, because electrons interact almost with every
atomic electron or nucleus it passes and loses its kinetic energy gradually in a small
friction like processes, it is customary to describe electron traveling by stopping
power, range and yield. These are expectation values for a charged particle en-
ergy loss per path length, for a path length and for an electromagnetic radiation
production, respectively.

Because of the nature of the charged particle, it is not customary to describe
charged particle interactions by total cross sections and differential cross sections,
which are needed in the Boltzmann transport equation (3.14) and these are found
more rarely in the literature than those for photons. These can be found for
example in [199, 104, 124].

Electron interactions are elastic scattering, inelastic scattering and radiation
processes, which take place in a form of bremsstrahlung and electron positron
annihilation [104]. The bremsstrahlung process dominates at high energies where
as the inelastic scattering dominates at low electron energies in high Z media.
In tissue like materials, the inelastic scattering dominates at all energies and the
influence of the bremsstrahlung progress is only few percents [13]. The total cross
sections for electron interactions are shown in Figure 2.3. Electron interaction
chart illustrates the typical electron interactions in Figure 2.4.

2.4.1 Inelastic electron scattering

Electrons scatter inelastically from the atomic electrons ejecting them from the
atom with considerable kinetic energy [13]. The result for the electron inelastic
scattering is that incident electron (with energy E ′e and direction Ω′e) scatters
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Figure 2.3: The total cross sections σ (cm−1) for different electron interactions

in water at different energies E (MeV) in logarithmic scale.

(with new energy Epr and direction Ωpr, in which pr indicates now the primary
scattered particle) and produces an extra electron (with kinetic energy Es and
direction Ωs, in which s indicates the secondary particle. This is sometimes called
as electron-electron scattering. The higher energy electron after inelastic scattering
is considered as the primary electron [124].

If the electron binding effects are ignored, the electron-electron scattering can
be described by Møller scattering [87]. The macroscopic differential Møller cross
section differential in the energy of the secondary electron for the electron-electron
scattering in a compound (in units of cm−1MeV−1) is of the form

dσIe

dEs
(x, E′, Es) = C

β2

(
1
E2

s
+ 1

(E′−Es)2 + ε2

(ε+1)2E′2 − 2ε+1
(ε+1)2Es(E′−Es)

)
, (2.16)

where ε = E′

E0
, β2 = 1 − (1 + ε)−2 and C = NAZρ2πr2

0E0M
−1. The other

notations are similar as in Section 2.3. The energy of the scattered particle is
related due to the conservation of the energy. If the binding effects are neglected
then E′ = Epr + Es.

The scattering angles for inelastic electron scattering are highly forward peaked
and are defined by kinematics [124]. The scattering angle for scattered primary
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Figure 2.4: The typical interactions for a high energy electron. In

bremsstrahlung and annihilation processes secondary photons are emitted.

electron can be obtained from the equation

Ω′ ·Ωpr =

√
Es(E′ + 2E0)

E′(Es + 2E0)
(2.17)

and for the scattered secondary electron from the equation

Ω′ ·Ωs =

√
(E′ − Es)(E′ + 2E0)

E′(E′ − Es + 2E0)
. (2.18)

The macroscopic differential cross section for the inelastic electron scattering
resulting scattered primary electron (in units of cm−1sr−1MeV−1) is then of the
form

d2σIe

dEprdΩpr
(x, E′, E,Ω′ ·Ω) =

dσIe

dEs
(x, E′, E′ − E)

1

2π
δ(Ω′ ·Ω−Ω′ ·Ωpr), (2.19)

where Ω′·Ωpr is obtained from the equation (2.17) and where E ∈ [Emax/2, Emax].
Emax is the maximum primary electron energy. Similarly, the macroscopic differ-
ential cross section for the inelastic electron scattering resulting secondary electron
is of the form

d2σIe

dEsdΩs
(x, E′, E,Ω′ ·Ω) =

dσIe

dEs
(x, E′, E)

1

2π
δ(Ω′ ·Ω−Ω′ ·Ωs), (2.20)
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where Ω′ ·Ωs is obtained from the equation (2.18) and where E ∈ [0, Emax/2[.
The Møller cross section takes into account relativity, spin effects and two

scattered particles indistinguishability [87]. Because the electron with higher en-
ergy after scattering is considered to be the primary, the scattering cross section
for Møller interactions is obtained via integration of the equation (2.16) from
[Emax/2, Emax]. The absorption cross section is the same as the scattering cross
section σs and σ = 2σs. The Møller cross section increases rapidly to infinity
as the energy of the secondary electron tends to zero. That is why the inelastic
scattering is usually divided into catastrophic and soft collisions (see Section 2.6).

2.4.2 Bremsstrahlung

The bremsstrahlung process takes place when initial electron passes near atomic
nucleus and inelastic radiative interaction occurs [13]. In that process, a photon
is emitted and the initial electron gives significant amount of its kinetic energy to
this photon and slows down. The name bremsstrahlung is a German word meaning
breaking radiation. The bremsstrahlung event is relatively insignificant in tissues
at electron energies below 10 MeV.

The formulas of the differential cross section differential in emitted photon

energy dσBr

dEp
(x, E′, Ep) can be obtained for bremsstrahlung event from [104, 124]

or one can use the tabulated data from [162]. All these references use the original
paper of Koch and Motz [108] as a reference.

When the differential cross section differential in emitted photon energy is
known, then the differential cross section differential in both emitted photon energy
and scattering angle can be approximated [124]

d2σBr

dEpdΩp
(x, E′, Ep,Ω

′
e ·Ωp) =

dσBr

dEp
(x,E′, Ep)

1

2π

1− β2

4π(1− βΩ′e ·Ωp)2
,

where β is as in Møller scattering in previous section. If dσBr

dEp
is in units of

cm−1MeV−1 then d2σB

dEpdΩp
is in units of cm−1sr−1MeV−1.

It can be approximated that the initial electron does not undergo angular
deflection in a bremsstrahlung event. In these circumstances, the differential cross
section differential in scattered electron energy and angle is

d2σBr

dEedΩe
(x, E′, Ep,Ω

′
e ·Ωe) =

dσBr

dEp
(x,E′, Ep)δ(Ω′e ·Ωe − 1.0).

As in the case of electron inelastic scattering, bremsstrahlung cross sections
tend to infinity as the energy loss becomes small and are often divided into catas-
trophic and soft collisions as in Section 2.6.

2.4.3 Elastic electron scattering

When electrons scatter elastically, only the direction is changed without a change
in electron energy [13]. Thus, electron elastic scattering does not contribute energy
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to the medium, but is important mechanism in deflecting electrons. This scattering
can be described in a terms of screened Rutherford scattering [104, 124, 199]. The
Rutherford macroscopic differential cross section differential in the cosine of the
electron scattering angle is then (in units of cm−1sr−1)

dσR

dµ
(x, E′,Ω′ ·Ω) =

2πNAρZ
2r2

0

M

E2
0(E′ + E0)2

E′2(E′ + 2E0)2

1

(1−Ω′ ·Ω + 2η(E′))2
, (2.21)

where η is so-called screening parameter, which have different approximations.
One screening parameter, developed by Moliere [199], is of the form

η(E′) =
Z2/3E0

4(0.885 · 137)2E′(E′ + 2E0)

(
1.13 + 3.76

(
Z

137β

)2
)
.

Because the energy does not change in elastic scattering, the differential cross
section differential in both angle and energy is (in units of cm−1sr−1MeV−1)

d2σR

dEdµ
(x, E′, E,Ω′ ·Ω) =

dσR

dµ
(x, E′,Ω′ ·Ω)δ(E′ − E).

The total cross section for elastic Rutherford scattering is achieved by integrat-
ing the differential cross section in equation (2.21) over the cosine of the scattering
angle µ ∈ [−1, 1]. Thus,

σR(x, E′) =
πNAρZ

2r2
0

M

E2
0(E′ + E0)2

E′2(E′ + 2E0)2

1

η(E′)(1 + η(E′))
.

The screened Rutherford formulas are adequately accurate in tissue-like media
at energies above 100 keV [104]. More accurate models for electron elastic scat-
tering at low energies can be achieved by taking into account the spin effects with
the help of partial wave analysis [90]. Also one could use the plurar and multiple
small-angle scattering theories to approximate the Rutherford cross section [21].

2.5 Positron interactions

Positrons are charged particles and thus behave similarly as electrons. Positron
interactions with matter are pretty much the same as those for electrons. Positron
inelastic scattering from the atomic electrons can be described by Bhabha scat-
tering [104]. Positron elastic scattering can be expressed in a terms of Rutherford
scattering. Usually positrons are annihilated with atomic electron forming two
photons. The differential cross section for this can be obtained for example from
[104].

2.6 Restricted charged particle cross sections

The charged particle inelastic and bremsstrahlung collisions tend to infinity as
the energy loss of the primary particle becomes small [124]. These interactions
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are difficult or even impossible to implement accurately by numerical grid based
methods and are often divided into catastrophic and soft collisions. The catas-
trophic interactions result from large energy losses and soft interactions from small
energy losses. In catastrophic scattering, the energy loss of the primary particle
is more than some threshold, say Ecut. The soft collisions are those, in which the
energy loss of the primary particle is less than that threshold. In soft collisions
the primary particle energy loss is small, which means that the scattering angles
of primary and secondary particles are small i.e. the scattering is almost forward
peaked. Thus, the soft collisions can be approximated by the continuous energy
loss of an electron with no change in direction. The electron transport is then
described by restricted CSDA (see Section 3.6.2), in which the soft collisions are
handled with a restricted stopping power. The catastrophic scattering is accounted
by restricted differential and total cross sections. The relation between the catas-
trophic and soft collision events with respect to scattering angle is shown in Figure
2.5, in which an arbitrary differential cross section differential in scattering angle
is drawn.

In inelastic collisions, the restricted differential cross section for secondary elec-
tron scattering is obtained from the equation (2.20), in which now the energy of
the scattered secondary electron is E ∈ [Ecut, Emax/2[. Similarly, the restricted
differential cross section for primary electron is obtained from the equation (2.19),
in which now E′−E > Ecut. The restricted total cross section σr,Ie is achieved by
integrating the differential cross section (defined by equation (2.16)) differential in
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secondary particle energy Es over Es from Ecut to Emax/2. This results in

σr,Ie(x, E′) =
C

β2

(
C1 + C2

ε2

(ε+ 1)2
+ C3

2ε+ 1

(ε+ 1)2

)
,

where C1 = 1
Ecut
− 1
Emax−Ecut

, C2 = Emax−2Ecut

2E2
max

and C3 = 1
Emax

ln
∣∣∣ Ecut

Emax−Ecut

∣∣∣. The

restricted stopping power for inelastic collisions τ r,Ie describes the energy loss of
primary particle in inelastic soft collision. One can compute the stopping power
related to the inelastic catastrophic collisions τ c,Ie(x, E′) from the equation

τ c,Ie(x, E′) =

∫ Emax/2

Ecut

Es
dσIe

dEs
(x, E′, Es)dEs

=
C

β2

(
C4 + C5

τ2

(τ + 1)2
+ C6

2τ + 1

(τ + 1)2

)
, (2.22)

where dσIe

dEs
(x, E′, Es) is obtained from equation (2.16) and where

C4 = 2 − Emax

Emax−Ecut
+ ln

∣∣∣ E2
max

4Ecut(Emax−Ecut)

∣∣∣, C5 = 1
8 −

E2
cut

2E2
max

and C6 = ln
∣∣∣Emax

2Ecut

∣∣∣.
Then the restricted stopping power τ r,Ie is obtained from

τ r,Ie(x, E′) = τ Ie(x, E′)− τ s,Ie(x, E′),

where τ Ie(x, E′) is the tabulated electron collision stopping power.
Similarly for the bremsstrahlung progress, the restricted differential cross sec-

tions are those, in which the energy loss of the primary electron is more than Ecut.
This means that the produced photon has an energy Ep > Ecut and that scattered
electron has an energy Ee < E′ − Ecut in bremsstrahlung process. The restricted
total cross section σr,Br is achieved by integrating the differential cross section
differential in Ep over Ep from Ecut to Emax. The restricted radiative stopping
power τ r,Br(x, E′) is obtained from

τ r,Br(x, E′) = τBr(x, E′)− τ c,Br(x, E′),

where τBr(x, E′) is the tabulated electron radiative stopping power and τ c,Br(x, E′)
is the stopping power related to catastrophic collisions in bremsstrahlung event.
τ c,Br(x, E′) is obtained from equation

τ c,Br(x, E′) =

∫ Emax

Ecut

Ep
dσBr

dEs
(x, E′, Ep)dEp.



Chapter III

Particle transport

As described in the previous chapter, the high energy particles travel in a medium
and interact with medium atoms via different interactions. This particle transport
in a medium can be described by the coupled time independent linear BTE, which
is an integro-partial differential equation and coupled due to the fact that particles
change into other types of particles in different interactions. This chapter first
makes the definitions needed to present the BTE by particle fluxes. In Section 3.2,
the BTE is derived from the particle conservation. After that the dose computation
from the charged particle flux is presented in Section 3.3. Section 3.4 outlines the
needed boundary conditions for the external radiation therapy. In Sections 3.5
and 3.6, the integral form and the most often used approximations of the BTE are
presented.

3.1 Definitions

The high energy particles, photons, electrons and positrons, are assumed to travel
in a seven dimensional phase space (x, E,Ω, t) ∈ V × I × S × [0, t0], in which
x = (x1, x2, x3) is the spatial coordinate, E is the energy variable, Ω is the particle
direction and t is the time. The domain V ⊂ R3 is assumed to be open and
bounded and the boundary ∂V is assumed to be piecewise smooth. The energy
interval can be for example I = [Emin, Emax]. The particle direction Ω is a point
on a unit sphere S ⊂ R3 and can be defined in terms of particle velocity v and
speed v = ‖v‖ i.e.

Ω =
v

v
= (cosϕ sin θ, sinϕ sin θ, cos θ), (3.1)

where (ϕ, θ) are standard spherical coordinates on S, ϕ ∈ [0, 2π[ and θ ∈ [0, π[
(see Figure 3.1).

Particle traveling in a medium can be described by particle distribution
f(x, E,Ω, t), which is sometimes referred to particle angular density [47] or parti-
cle phase space density [67]. It is defined that f(x, E,Ω, t)dxdEdΩ is the expected
number of particles in the volume element dx about the point x with energies in
dE about E and with directions in dΩ about Ω at time t. The unit of f is typically
cm−3MeV−1sr−1.

37



38 3. Particle transport

PSfrag replacements

x1

x2

x3

θ

ϕ

r

er

eϕ

eθ

Figure 3.1: Polar coordinates (r,ϕ,θ) indicating the direction of the particle in

a standard coordinate system for x = (x1, x2, x3) with r = 1.

Closely related to angular density f(x, E,Ω, t) is the angular current or phase
space current density j(x, E,Ω, t) = vf(x,E,Ω, t), in which v is a particle velocity
vector. The angular current is defined such that

j(x, E,Ω, t) · dsdEdΩdt = vf(x, E,Ω, t) · dsdEdΩdt

is the number of particles with energies in dE about E and with directions in dΩ
about Ω which cross a small area ds with unit normal n in a time dt.

The transport of particles is often described in terms of angular flux or phase
space flux ψ(x, E,Ω, t) = vf(x, E,Ω, t) in units of cm−2MeV−1sr−1s−1. Close to
that is the integrated flux ψI(x, t) (cm−2s−1), which is obtained by integrating the
angular flux over all angles and energies, thus

ψI(x, t) =

∫

I

∫

S

ψ(x, E,Ω, t)dEdΩ. (3.2)

In the field of radiotherapy physics, the particle flux term is quite uncommon.
However, it is a general term in the particle physics community [196, 67]. The
International Commission on Radiation Units and Measurements (ICRU) recom-
mends to use term particle fluence or fluence rates [88], which are in fact the
integrated particle fluxes in stationary and time-dependent cases, respectively. An
alternative for the particle flux according to ICRU would be a particle fluence
differential in energy and angle, which is quite a long term and quite uncommon
also in the field of radiotherapy physics. For these reasons it is chosen to use the
particle flux term in this thesis.
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3.2 Boltzmann transport equation

BTE is a partial-differential-integral equation. It was first derived by Ludvig Boltz-
mann for dilute gases in a year 1872 from the Liouville equation with appropriate
approximations [50]. Although it was generated for ideal gases, it is still used as a
basis in nowadays gas theory and adopted from there to the other fields of particle
physics. In radiation therapy, the interactions of particles with each other are
negligible and the linear BTE can be used to describe the evolution of particles in
a medium [147, 30].

3.2.1 Deriving a coupled BTE

BTE is basically a balance equation. In addition to gas theory and Liouville
equation, from which the Boltzmann equation was originally derived, the linear
BTE can be derived from the particle conservation within a small volume element
of a phase space [47]. Here the BTE is derived for the coupled system, including
photons, electrons and positrons, assuming particle conservation. The particles are
assumed to interact only with medium atoms, not with each other. The particles
are also assumed to travel with straight lines between the interactions.

Consider a small volume ∆V with surface ∆S about the point x. The number
of particles dNj of type j in this volume with energies in dE about E and with
directions in dΩ about Ω in time dt is achieved by integrating the time derivate
of the angular density over the volume element i.e.

dNj = dEdΩdt

∫

∆V

∂fj(x, E,Ω, t)

∂t
dx, (3.3)

where now the lower index j specifies the particles, j = 1, 2, 3 referring to pho-
tons, electrons and positrons, respectively. In terms of angular flux ψj(x, E,Ω, t),
equation (3.3) can be written in the form

dNj = dEdΩdt

∫

∆V

1

vj

∂ψj(x, E,Ω, t)

∂t
dx. (3.4)

Equation (3.4) should be in balance with the particles with energies in dE
about E and with directions in dΩ about Ω in time dt that enter and leave the
volume ∆V , suffer collisions i.e are attenuated, are born in the different scattering
interactions and are produced by sources in ∆V . Thus, one has a balance relation

dNj = −Nj,out −Nj,att +Nj,sec +Nj,so, (3.5)

where Nj,out is the net number of particles j flowing out of the volume ∆V through
the surface ∆S in time dt, Nj,att is the number of particles j that are attenuated in
∆V in time dt, Nj,sec is the number of particles j that are born in the scattering
interactions with medium atoms in ∆V in time dt and Nj,so is the number of
particles j produced by the sources inside the volume ∆V in time dt.

Nj,out is achieved by integrating the angular current jj over the surface ∆S.
The surface integral can be changed to volume integral using Gauss’s theorem [9].
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Thus,

Nj,out = dEdΩdt

∫

∆S

(jj(x, E,Ω, t) · n)ds

= dEdΩdt

∫

∆V

∇ · jj(x, E,Ω, t)dx, (3.6)

where n is the unit outward normal to ds. By the definition jj = Ωψj and
equation (3.6) is of the form

Nj,out = dEdΩdt

∫

∆V

(Ω · ∇ψj(x, E,Ω, t))dx. (3.7)

Nj,att is obtained using the total cross section σj(x, E), which is defined in
Section 2.2.2 to be the probability per unit path length for particle j of energy
E to attenuate. The attenuation frequency depends on the particle speed vj [67].
Thus,

vjσj(x, E)

is the attenuation frequency for a particle j to be absorbed in unit distance that
the particle travels. Moreover, the number of particles attenuated Nj,att in a small
volume element ∆V is then

Nj,att = dEdΩdt

∫

∆V

vjσj(x, E)fj(x, E,Ω, t)dx

= dEdΩdt

∫

∆V

σj(x, E)ψj(x, E,Ω, t)dx. (3.8)

Similarly to attenuation, Nj,sec is obtained using differential cross section

σj′→j := σj′→j(x, E′, E,Ω
′,Ω) = d2σ

dEdΩ (x, E′, E,Ω′ ·Ω), which is defined in Sec-
tion 2.2.1 to be the probability per unit path length that a particle j ′ with energy
E′ and direction Ω′ will produce a secondary particle j with energy E and di-
rection Ω. Assume particles j ′ = 1, 2, 3 to have initial energy E ′ and direction
Ω′. Then the rate at which these particles are scattered to secondary particles j,
which are of interest now, is [67]

(v′1σ1→jf1 + v′2σ2→jf2 + v′3σ3→jf3) dE′dΩ′

=
∑3
j′=1 v

′
j′σj′→jfj′(x, E

′,Ω′, t)dE′dΩ′, (3.9)

where an abbreviation fj′ := fj′(x, E
′,Ω′, t) is used. Using the previous equation

(3.9) Nj,sec can be obtained from equation

Nj,sec = dEdΩdt

∫

∆V

∫

I

∫

S

3∑

j′=1

v′j′σj′→jfj′(x, E
′,Ω′, t)dE′dΩ′dx

= dEdΩdt

∫

∆V

∫

I

∫

S

3∑

j′=1

σj′→jψj′(x, E
′,Ω′, t)dE′dΩ′dx. (3.10)
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This is formulated in the general case. In radiotherapy, there are no interactions
that change electrons to positrons. Thus, the differential cross section σ2→3 is zero
for all energies and angles.

Nj,so is obtained from

Nj,so = dEdΩdt

∫

∆V

Qj(x, E,Ω, t)dx, (3.11)

where Qj(x, E,Ω, t) is the source term for particle j inside the volume ∆V .
Qj(x, E,Ω, t)dxdEdΩ is the number of particles j, which appear per unit time at
t in dxdEdΩ [196].

Finally, using equations (3.7), (3.8), (3.10) and (3.11) the balance equation
(3.5) can be written in the form

dEdΩdt

∫

∆V


 1

vj

∂ψj
∂t

+ Ω · ∇ψj + σjψj −
∫

I

∫

S

3∑

j′=1

σj′→jψj′dE
′dΩ′ −Qj


dx = 0,

in which the shortenings σj and σj′→j are used for the total and differential cross
sections, respectively. The previous balance equation equals zero if and only if the
function inside the parenthesis equals zero. Hence,

1

vj

∂ψj
∂t

+ Ω · ∇ψj + σjψj −
∫

I

∫

S

3∑

j′=1

σj′→jψj′dE
′dΩ′ −Qj = 0, (3.12)

which is the linear time dependent BTE for particle j. When written to all types
of particles (j = 1, 2, 3), the coupled system of the BTEs is of the form

1
v1

∂ψ1

∂t + Ω · ∇ψ1 + σ1ψ1 −
∫
I

∫
S

∑3
j′=1 σj′→1ψj′dE

′dΩ′ = Q1

1
v2

∂ψ2

∂t + Ω · ∇ψ2 + σ2ψ2 −
∫
I

∫
S

∑3
j′=1 σj′→2ψj′dE

′dΩ′ = Q2 (3.13)

1
v3

∂ψ3

∂t + Ω · ∇ψ3 + σ3ψ3 −
∫
I

∫
S

∑3
j′=1 σj′→3ψj′dE

′dΩ′ = Q3.

3.2.2 Time independent BTE in external radiotherapy

The transport of high energy particles can be described by the stationary BTE,
because the high energy particles move at a speed relative to the speed of light
and the steady state is achieved in a time which is much smaller than the time
the beam is usually on [30]. Thus, the time dependency can be neglected and
the time derivative vanishes in equation (3.13). For simplicity the same notations
ψ := ψ(x, E,Ω) for particle flux and Qj := Qj(x, E,Ω) for the source terms
are used in the stationary case as in the time-dependent case. The unit of the
stationary particle flux is cm−2MeV−1sr−1. The coupled system of the stationary
linear BTEs for external radiation therapy is then of the form

Ω · ∇ψ1 +K1ψ = Q1

Ω · ∇ψ2 +K2ψ = Q2 (3.14)

Ω · ∇ψ3 +K3ψ = Q3,
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where the notations ψ := (ψ1, ψ2, ψ3) and

Kjψ(x, E,Ω) = σj(x, E)ψj(x, E,Ω) (3.15)

−
∫

I

∫

S

3∑

j′=1

σj′→j(x, E
′, E,Ω′,Ω)ψj′(x, E

′,Ω′)dE′dΩ′

have been made. In the coupled system (3.14), the first term Ω · ∇ψj describes
the transfer of the particles j. The collision term Kjψ combines attenuation
and secondary production. In the equation (3.15), σj(x, E) is the total cross
section for particle j (j = 1, 2, 3, referring to photons, electrons and positrons,
respectively). σj′→j(x, E′, E,Ω

′,Ω) is the differential cross section that changes
particle j′ (j′ = 1, 2, 3) to particle j. If the interaction is not possible, zero
differential cross section is used.

In external radiation therapy, the incoming beams are usually photon or elec-
tron beams, which are controlled by boundary conditions. The source term
Qj(x, E, t) is then usually zero. However, it is still included in the coupled system
of BTEs for the sake of generality.

Traditionally the BTE is derived for one species of particles such as neutrons
or electrons (neglecting the secondary photon production). Then the BTE is of
the form

Ω · ∇ψ(x, E,Ω) +Kψ(x, E,Ω) = Q, (3.16)

where ψ is the flux of one type of particles and

Kψ = σt(x, E)ψ(x, E,Ω)−
∫

I

∫

S

σd(x, E′, E,Ω′,Ω)ψ(x, E′,Ω′)dE′dΩ′,

where σt(x, E) and σd(x, E′, E,Ω′,Ω) are the total and differential cross sections,
respectively.

3.3 Dose calculation

As it was mentioned in Section 2.1, the absorbed dose describes the energy ab-
sorption in the matter. Photons, by themselves, do not deposit dose, but photons
create high energy charged particles by secondary particle production, which de-
posit the dose. If the solution of the coupled system (3.2) is known, i.e the angular
fluxes ψj(x, E,Ω) for all particles are known, then the absorbed dose D(x) can
be calculated from the formula [123, 153]

D(x) =

3∑

j=2

∫

I

τ Ie
j (x, E)

∫

S

ψj(x, E,Ω)dΩdE, (3.17)

where τ Ie
j (x, E), (j = 2, 3) are the collision stopping power parameters for elec-

trons and positrons to represent the effects of inelastic collisions.
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3.4 Boundary conditions for external radiotherapy

In external-beam radiotherapy, the high energy particles are directed to the PTV
from outside of the domain V , which is for example a human body or a water tank
[188]. The boundary of the V is typically assumed to be a free surface, in which
the particles can only escape from the V through the surface ∂V , but they can not
reenter it [18, 67]. This assumption is approximatively valid for convex domains, in
which a straight line segment connecting any two points in the region lies entirely
within the region. In the convex boundary, a particle can not intersect with the
surface again once it has left the domain, if the direction of the particle does
not change. In practice, the free surface assumption is an idealization, because
particles have always some probability to return to the V once they have left it,
because of the scattering processes [18]. However, this probability is negligible and
it is always possible to choose the boundary to be far enough from the volume of
interest so that the free surface assumption is valid.

In the following, the boundary conditions are defined for photon and electron
incoming fluxes. Besides of these boundary conditions, one could define a boundary
condition for mixed photon and electron incoming fluxes in the situation, in which
both photon and electron fluxes are directed to the target.

3.4.1 Photon inflow

In the exterior photon therapy, photon flux enters outside to the domain. This
exterior photon flux can be added to the transport problem by setting a bound-
ary condition, which states the photon inflow at the free surface [18, 170]. Let
n(x) = (n1(x), n2(x), n3(x)) be an outward unit normal vector at a point x on
the boundary. The particles, which fulfill the condition n(x) ·Ω > 0 at the point x
on the boundary, will be crossing the surface in an outward direction, whereas the
particles for which n(x) ·Ω < 0 will be crossing the surface in an inward direction.
The condition n(x) ·Ω < 0 for the inward flux means the relation

n1(x) cosϕ sin θ + n2(x) sinϕ sin θ + n3(x) cos θ < 0, (3.18)

which is obtained by using equation (3.1).
Once the inward flux is specified, it is possible to set a boundary condition

for the inward flux on the boundary. Typical boundary condition for the inward
photon angular flux is of the form [170]

ψ1 =

{
0, for (x, E,Ω) ∈ ∂V \ Γ× I × S such thatn(x) ·Ω < 0
ψ0, for (x, E,Ω) ∈ Γ× I × S such thatn(x) ·Ω < 0

ψ2 = ψ3 = 0, for (x, E,Ω) ∈ ∂V × I × S such thatn(x) ·Ω < 0,

(3.19)

where Γ is a patch on the surface ∂V of the domain V and ψ0 is the photon angular
flux per unit area incident on Γ. Thus, only the inward photon angular flux on
Γ obtain nonzero values. Elsewhere on ∂V the photon inward flux is zero. Also
electron and positron fluxes are zero on ∂V . The outward flux of the particles is
not constrained.
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3.4.2 Electron inflow

Similarly to photon inflow, electron incident boundary condition can be stated for
inward electron angular fluxes on a patch Γ on the surface ∂V . The boundary
condition is typically of the form

ψ2 =

{
0, for (x, E,Ω) ∈ ∂V \ Γ× I × S such thatn(x) ·Ω < 0
ψ0, for (x, E,Ω) ∈ Γ× I × S such thatn(x) ·Ω < 0

ψ1 = ψ3 = 0, for (x, E,Ω) ∈ ∂V × I × S such thatn(x) ·Ω < 0,

(3.20)

where now ψ0 is the electron angular flux per unit area incident on Γ.

3.5 The integral form of the BTE

The integral form of the BTE can be derived from the time dependent form of the
BTE defined by equation (3.12) using the Laplace transform in time [196]. Besides
of the Laplace transform, in time independent case the integral form of the BTE
can be achieved directly by solving a resulted system of first order differential
equations with boundary conditions. This procedure is detailed in the following.
Assume V to be convex. Define t(x,Ω) > 0 to be the number for which x −
t(x, E)Ω ∈ ∂V . Thus, x − τΩ (τ ∈ [0, t(x,Ω)]) is the particle trajectory from
point x to the boundary in direction −Ω as shown in Figure 3.2. t(x,Ω) is the

length of the trajectory. With these definitions Ω · ∇ψj = −∂ψj∂τ (when ψj =
ψj(x − τΩ, E,Ω) with fixed E and Ω) and from the coupled system of BTEs
(defined by equation (3.14)) one obtains

−∂ψ1

∂τ
(x−τΩ, E,Ω) + σ1(x−τΩ, E)ψ1(x−τΩ, E,Ω) = q1(x−τΩ, E,Ω)

−∂ψ2

∂τ
(x−τΩ, E,Ω) + σ2(x−τΩ, E)ψ2(x−τΩ, E,Ω) = q2(x−τΩ, E,Ω) (3.21)

−∂ψ3

∂τ
(x−τΩ, E,Ω) + σ3(x−τΩ, E)ψ3(x−τΩ, E,Ω) = q3(x−τΩ, E,Ω),

where qj , (j = 1, 2, 3) includes the source and scattering terms i.e. qj(x, E,Ω) =

Qj(x, E,Ω) +
∑3
j′=1

∫
I

∫
S
σj′→j(x, E′, E,Ω

′,Ω)ψ(x, E′,Ω′)dE′dΩ′.
One finds that n(x−t(x,Ω)Ω)·Ω < 0, when V is convex. The photon incident

boundary condition (3.19) is then

ψ1 =

{
0, for (x−t(x,Ω)Ω, E,Ω) ∈ ∂V \ Γ× I × S
ψ0, for (x−t(x,Ω)Ω, E,Ω) ∈ Γ× I × S

ψ2 = ψ3 = 0, for (x−t(x,Ω)Ω, E,Ω) ∈ ∂V × I × S.
(3.22)

If it is assumed that the right hand side of the equation (3.21) is known,
then these first order differential equations with boundary conditions defined by
equation (3.22) can be solved and the obtained system of integral equations are
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t(x,Ω)

x
−Ω

Figure 3.2: The particle traveling trajectory from the point x to the bound-

ary ∂V along a straight line in the direction of Ω. t(x,Ω) is the length of the

trajectory.

resulted

ψ1 = ψ0(x−t(x,Ω)Ω, E,Ω)e−
R t(x,Ω)
0 σ1(x−sΩ,E)ds

+

∫ t(x,Ω)

0

e−
R τ
0
σ1(x−sΩ,E)dsq1(x−τΩ, E,Ω)dτ

ψ2 =

∫ t(x,Ω)

0

e−
R τ
0
σ2(x−sΩ,E)dsq2(x−τΩ, E,Ω)dτ

ψ3 =

∫ t(x,Ω)

0

e−
R τ
0
σ3(x−sΩ,E)dsq3(x−τΩ, E,Ω)dτ.

The integral form of the BTE can be simplified in some geometries such as
plane or spherical geometries. It has been used in many applications and can be
used also with numerical methods for solving the BTE [67, 119, 196, 47, 50].

3.6 Different approximations of the BTE

Several different approximative forms of the BTE can be derived from the original
BTE equation (3.16), which may ease the numerical solvability of the BTE. Fokker-
Plank equation, CSDA equation and restricted CSDA equation are approximative
forms of the BTE [121]. Even-parity equation [65] and self-adjoint angular flux
(SAAF) equation [140] can be derived from the energy and angle independent
forms of the BTE, respectively. These approximative forms are typically used in
the radiotherapy applications. The diffusion approximation of the BTE [67] is
typically used in the applications of optical tomography and is not presented here.

3.6.1 Boltzmann Fokker-Plank equation

If the particle scattering is assumed to be highly forward peaked, the scattering
term −Kjψ of the linear stationary BTE can be approximated with a partial
differential operator using Taylor expansion techniques [138, 121, 133, 155, 46].
This differential operator is often referred to the Fokker-Planck operator LFP. It
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is typically used to approximate electron scattering. The Fokker-Plank operator is
defined by the spherical coordinates (ϕ, θ) with µ = cos θ and the particle angular

flux is defined as ψ̃(x, E, µ, ϕ). The Fokker-Planck operator LFP is then of the
form

LFPψ̃(x, E, µ, ϕ) =
∂(τ(x, E)ψ̃(x, E, µ, ϕ))

∂E
+
∂2(τ∗(x, E)ψ̃(x, E, µ, ϕ))

∂E2
+

χ(x, E)

2

(
∂

∂µ
(1− µ2)

∂ψ̃(x, E, µ, ϕ)

∂µ
+

1

1− µ2

∂2ψ̃(x, E, µ, ϕ)

∂ϕ2

)
, (3.23)

where the first term describes continuous energy loss with the stopping power τ
defined by equation (2.2). τ ∗ is a mean-square stopping power defined as

τ∗(x, E′) =

∫ ∞

0

(E′ −E)2 dσ

dE
(E′, E)dE, (3.24)

where dσ
dE is particle differential cross section differential in energy. The final term

includes a momentum transfer

χ(x, E) = 2π

∫ 1

−1

dσ

dµ
(x, E, µ)(1− µ)dµ, (3.25)

where dσ
dµ is the particle differential cross section differential in direction cosine µ.

The Fokker-Planck approximation of the linear stationary BTE is then

Ω · ∇ψ̃(x, E, µ, ϕ) = LFPψ̃(x, E, µ, ϕ) + Q̃(x, E, µ, ϕ). (3.26)

This equation is known as the Fokker-Planck equation. It is used to approximate
electron traveling. Further assuming monoenergetic case with µ = 1 results in the
Fermi equation, which has an analytical form in homogeneous domain [31, 32].
The Fermi-Eyges theory uses Fermi equation and assumes the momentum transfer
χ(x, E) to be a function of approximate electron energy at each depth [85, 114].
Typically empirical correction factors are used to make the results to match the
dosimetric data. Different electron dose calculation methods and pencil beam
methods have roots on Fermi-Eyges theory [93, 33].

The Fokker-Planck approximation neglects the backward scattering and is thus
a quite coarse approximation of the BTE. The backward scattering is taken into
account in Boltzmann Fokker-Planck (BFP) equation, in which the scattering is
divided into backward scattering, which is described by the integral term, and
highly forward peaked scattering, which is approximated by the Fokker-Planck
operator. The BFP equation is then

Ω · ∇ψ̃(x, E, µ, ϕ) + σb(x, E)ψ̃(x, E, µ, ϕ) = Q̃(x, E, µ, ϕ) (3.27)

+

∫ 2π

0

∫ 1

−1

∫

I

σ̃b(x, E′, E, µ)ψ̃(x, E, µ, ϕ)dE′dµdϕ+ LFPψ̃(x, E, µ, ϕ),

where σb(x, E) and σ̃b(x, E′, E, µ) are the total and differential cross sections
describing the backward scattering.
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3.6.2 CSDA for BTE

In Section 2.6, the electron inelastic and bremsstrahlung processes were divided
into soft and catastrophic collisions to describe small and large energy losses,
respectively. The soft collisions can be treated with CSDA, which approximates
the soft collisions as a continuous energy loss without angular deflection [121]. In
the CSDA, the energy-loss straggling is ignored and thus τ ∗ = 0 in LFP term in
equation (3.27). Also the stopping powers are now restricted stopping powers,
which are defined only for soft collision. This means that some small threshold
energy is assigned to separate soft and hard collisions. Furthermore, the total and
differential cross sections are defined for the catastrophic collisions, neglecting the
small energy transfers which are taken into account in the CSDA.

The CSDA equation can be simplified even more for typical electron transport
problems, in which the momentum transfer term in the Fokker-Planck operator
(3.23) is only important for heavy-charged particle transport and electron beam
problems [121]. The equation obtained to describe approximatively electron or
positron transport is called as a Boltzmann-CSDA equation (B-CSDAE)

Ω · ∇ψ(x, E,Ω) + σr
t(x, E)ψ(x, E,Ω) = Q(x, E,Ω) + (3.28)∫

S

∫

I

σr
d(x, E′, E,Ω′,Ω)ψ(x, E′,Ω′)dE′dΩ′ +

∂ (τ r(x, E)ψ(x, E,Ω))

∂E
,

where σr
t(x, E) and σr

d(x, E′, E,Ω′,Ω) are the restricted total and differential cross
sections, respectively, and τ r(x, E) is the restricted stopping power.

Because the B-CSDAE (3.28) includes partial derivate respect to energy vari-
able, one should set an adequate initial energy point for the charged particle fluxes.
In [115], it is demanded that limE→∞ ψ2(x, E,Ω) = 0. Now if the energy inter-
val I = [Emin, Emax], one could demand that ψ2(x, Emax,Ω) = ψ3(x, Emax,Ω) =
0 ∀x ∈ V,Ω ∈ S, which is physically relevant, if the maximum energy Emax is
selected such that it is more than the maximum energy of the incoming particle
fluxes and more than the energy of the internal sources.

If the B-CSDAE is used for the charged particle transport, the coupled system
is of the form [123]

Ω · ∇ψ1 +K1ψ = Q1

Ω · ∇ψ2 +Kr
2ψ = Q2 (3.29)

Ω · ∇ψ3 +Kr
3ψ = Q3,

where the collision term for photons is of the form

K1ψ(x, E,Ω) = σ1(x, E)ψ1(x, E,Ω) (3.30)

−
∫

I

∫

S

3∑

j′=1

σj′→1(x, E′, E,Ω′,Ω)ψj′(x, E
′,Ω′)dE′dΩ′,
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for electrons

Kr
2ψ(x, E,Ω) = σr

2(x, E)ψ2(x, E,Ω) (3.31)

−
∫

I

∫

S

σ1→2(x, E′, E,Ω′,Ω)ψ1(x, E′,Ω′)dE′dΩ′

−
∫

I

∫

S

σr
2→2(x, E′, E,Ω′,Ω)ψ2(x, E′,Ω′)dE′dΩ′

−∂ (τ r
2(x, E)ψ2(x, E,Ω))

∂E

−
∫

I

∫

S

σ3→2(x, E′, E,Ω′,Ω)ψ3(x, E′,Ω′)dE′dΩ′

and for positrons

Kr
3ψ(x, E,Ω) = σr

3(x, E)ψ3(x, E,Ω) (3.32)

−
∫

I

∫

S

σ1→3(x, E′, E,Ω′,Ω)ψ1(x, E′,Ω′)dE′dΩ′

−
∫

I

∫

S

σr
3→3(x, E′, E,Ω′,Ω)ψ3(x, E′,Ω′)dE′dΩ′

−∂ (τ r
3(x, E)ψ3(x, E,Ω))

∂E
.

In the previous collision term equations, σr
2(x, E) and σr

3(x, E) are the restricted
total cross sections, σr

2→2(x, E′, E,Ω′,Ω) and σr
3→3(x, E′, E,Ω′,Ω) are the re-

stricted differential cross sections that does not include soft inelastic interactions
and τ r

2, τ
r
3 are the restricted stopping powers.

The boundary conditions are as those stated in Section 3.4. In addition, one
demands that

ψ2(x, Emax,Ω) = ψ3(x, Emax,Ω) = 0, when x ∈ V, Ω ∈ S (3.33)

Qj(x, Emax,Ω) = 0, when x ∈ V, Ω ∈ S, (3.34)

where Emax is selected such that the conditions (3.33) and (3.34) are fulfilled being
more than the maximum energy of the incoming fluxes and internal sources. The
energy interval I = [Emin, Emax].

3.6.3 Even-parity BTE equation

The standard BTE contains a first order spatial derivate term causing that the
Boltzmann transport operator is neither symmetric nor positive definite [65, 119].
In the even-parity approach, the BTE (3.16) is modified by extracting the even-
and odd-parity components of the particle flux and then by solving the two com-
ponents separately. The advantage of the even-parity approach is that the nu-
merical discretization results in a symmetric positive definite linear system. The
disadvantages arises for example in full angular flux determination, in reflective
boundary conditions, in pure scattering regions and in vacuums [140]. The even-
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and odd-parity equations are used for energy-independent situations. The energy
dependence is typically handled with multi group method, which gives a group of
coupled equations, which are energy independent [124, 67].

3.6.4 SAAF form of the BTE

To accomplish some of the even- and odd-parity equation disadvantages (those
arising from splitting the angular flux into two components), the SAAF presenta-
tion of the BTE can be used [140]. It is a second order self-adjoint equation that
has the whole angular flux as the unknown. It can be derived from the first order
form of the BTE. The SAAF formulation is done to discrete ordinates form of the
BTE, in which the angular domain is discretized into discrete directions [124, 67].
The SAAF formulation can be done also for the B-CSDAE.



Chapter IV

Forward problem in radiotherapy using FEM

In the forward problem of the external radiotherapy, one solves the particle flux
from the coupled system of BTEs (3.14) or from the coupled system of B-CSDAEs
(3.29) with the inflow boundary conditions as stated in Section 3.4. The absorbed
dose distribution can be computed from the solved particle flux using equation
(2.1).

The full FEM discretization of the BTE for all variables is rarely presented
in the literature [173, 26, 7], maybe because of the difficulties in handling the
resulted big linear system of equations. Increased computer power and parallel
computing enables to use FEM discretization for all variables. In this chapter,
the FEM discretization is formulated for the coupled system of BTEs and for the
coupled system of B-CSDAEs to simulate the radiotherapy forward problem. In
Sections 4.1 and 4.2, the FEM is explained in general and some function spaces
are introduced to be used in the existence analysis. The variational forms are
derived in Sections 4.3 and 4.5. The existence and uniqueness of the solutions of
the coupled systems are studied in Sections 4.4 and 4.6. The FEM discretization
and convergence are discussed in Section 4.7. At the end of the chapter, the FEM
simulations and their discussions are presented.

4.1 Finite element method

In FEM, the domains of the phase space are partitioned into sub-regions which
are called elements [2]. In 3D, typical elements are bricks, triangular prisms and
tetrahedrons. In 2D, the elements are usually triangular or quadrilateral in shape.
A one dimensional (1D) interval is divided into sub-intervals. Typically the bound-
aries of the spatial elements are located near the surfaces of different materials and
one can assume the material properties to be the same within an element.

The FEM discretization is applied to a variational form (weak form) of the
original equation [101]. The variational form is achieved by multiplying the orig-
inal equation by a test function v and integrating over the whole phase space
domain. When applying the Green’s formula (4.5), the boundary conditions can
be appended in the variational form. Typically, the variational form is of the form

B(u, v) = F (v),

50
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where B(u, v) is a bilinear form and u is an unknown function to be solved.

When using any numerical scheme in finding the solution, one has to ensure
that the problem has a solution and it is unique [59]. For these the existence
and uniqueness analysis of the variational form should be performed. One can
prove that a variational problem has a unique weak solution, if the bilinear form
is bounded and coercive in appropriate spaces, using for example generalized Lax-
Milgram Lemma [178]. The boundedness and coercivity conditions also result in
an estimate for the error of the FEM (the Cea’s estimate) [101].

Finally, the finite element approximation uh of an unknown function u is pre-
sented by a finite sum [101, 59]

uh =

N∑

k=1

αkφk,

where φk is a basis function associated to the node k within elements, αk is the un-
known value and N is the number of nodes. The basis functions are usually some
piecewise smooth functions such as piecewise linear, quadratic or cubic polynomi-
als. The nodes are typically at the corners or edges of an element. Applying uh to
the variational form N linear equations with unknown vector α = (α1, ..., αN )T are
obtained, which can be solved using iterative methods such as conjugate gradient
[101, 82]. The superscript T denotes the transpose operation.

4.2 Some function spaces

Here some function spaces are presented to be used in the variational formulations
and existence analysis. Let L2(G) be a Lebesgue space of real valued square
integrable functions on G = V × I × S. The inner product in L2(G) is defined as

〈f, g〉L2(G) =

∫

S

∫

I

∫

V

f(x, E,Ω)g(x, E,Ω)dxdEdΩ.

Denote Ḡ := V̄ × I × S, where V̄ is the closure of the domain V . Let I =
[Emin, Emax] and C(Ḡ) to be a function space of continuous functions on Ḡ and

C1
V :=

{
f ∈ C(Ḡ)

∣∣ ∂f
∂xj
∈ C(Ḡ)

}

C1
V,E :=

{
f ∈ C(Ḡ)

∣∣ ∂f
∂xj

,
∂f

∂E
∈ C(Ḡ)

}

C1
V,E,0 :=

{
f ∈ C1

V,E

∣∣ f(·, Emax, ·) = 0
}
.

Furthermore, let H1 be the completion of C1
V with respect to the inner product

〈f, g〉H1
= 〈f, g〉L2(G) +

∫

S

∫

I

∫

∂V

|Ω · n|fgdsdEdΩ,
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where
∫
∂V

(·)ds is a surface integral. Let H2 be the completion of C1
V with respect

to the inner product

〈f, g〉H2
= 〈f, g〉L2(G) + 〈Ω · ∇f,Ω · ∇g〉L2(G).

Denote H := H1 ∩H2. Now H is equipped with the inner product

〈f, g〉H = 〈f, g〉H1
+ 〈f, g〉H2

and of course H is a subspace of H1.
Moreover, let H̃ be the completion of C1

V,E,0 with respect to the inner product

〈f, g〉 eH = 〈f, g〉H + 〈 ∂f
∂E

,
∂g

∂E
〉L2(G).

and let H̃1 be the completion of C1
V,E,0 with respect to the inner product

〈f, g〉 eH1
= 〈f, g〉H1

+ 〈f(·, Emin, ·), g(·, Emin, ·)〉L2(V×S).

One sees that H̃ ⊂ H̃1, since for f ∈ C1
V,E,0 one obtains

|f(·, Emin, ·)| = |f(·, Emin, ·)− f(·, Emax, ·)|

=
∣∣−
∫

I

∂f

∂E
dE
∣∣ ≤

∫

I

∣∣ ∂f
∂E

∣∣dE

≤
√
Emax − Emin

(∫

I

∣∣ ∂f
∂E

∣∣2dE

)1/2

,

where the Cauchy-Schwartz inequality

|〈f, g〉L2(I)| ≤ ‖f‖L2(I)‖g‖L2(I)

is used. Then one finds that

‖f‖2eH1
≤ ‖f‖2L2(G) +

∫

S

∫

I

∫

∂V

|Ω · n|f2dsdEdΩ +

∫

S

∫

V

|f(·, Emin, ·)|2dsdEdΩ

≤ ‖f‖2eH ,

which is an adequate condition for H̃ to be a subspace of H̃1.
The inner product of the product space X3 is obtained by summing the indi-

vidual inner products as

〈f, g〉X3 =

3∑

j=1

〈fj , gj〉X .
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4.3 Variational form of the coupled BTEs

The variational equation is used in a finite element scheme to find the so called
weak solution of the related problem. Here the variational formulation is derived
for the coupled system of the BTEs (3.14) with the incoming photon (3.19) and
electron (3.20) boundary conditions. In the variational formulation of the coupled
BTEs (3.14), one can first assume that ψ, v ∈ (C1

V )3. To simplify the notations,
operators T : H3 → L2(G)3 and K : L2(G)3 → L2(G)3 are defined as

Tψ = Ω · ∇ψ := (Ω · ∇ψ1,Ω · ∇ψ2,Ω · ∇ψ3)

and
Kψ = (K1ψ,K2ψ,K3ψ),

where ψ = (ψ1, ψ2, ψ3). T is a linear partial differential operator and K is a
linear integral operator. Now the coupled system of the transport equations can
be written in a form

(T +K)ψ = Q, (4.1)

where Q = (Q1, Q2, Q3).
Multiplying equation (4.1) by a test function v ∈ (C1

V )3 (v = (v1, v2, v3))
componentwise and integrating over G, one obtains for ψ ∈ (C1

V )3

3∑

j=1

〈Ω · ∇ψj , vj〉L2(G) +
3∑

j=1

〈Kjψ, vj〉L2(G) =
3∑

j=1

〈Qj , vj〉L2(G) (4.2)

or
〈Tψ, v〉L2(G)3 + 〈Kψ, v〉L2(G)3 = 〈Q, v〉L2(G)3 . (4.3)

The first inner product 〈Ω · ∇ψj , vj〉L2(G) in equation (4.2) can be written in the
form

〈Ω · ∇ψj , vj〉L2(G) =

∫

S

∫

I

∫

V

Ω1
∂ψj
∂x1

vj + Ω2
∂ψj
∂x2

vj + Ω3
∂ψj
∂x3

vjdxdEdΩ, (4.4)

where dx = dx1dx2dx3 and Ωj (j = 1, 2, 3) are the components of Ω. The Green’s
formula [9] ∫

V

∂ψj
∂xl

vjdx = −
∫

V

ψj
∂vj
∂xl

dx+

∫

∂V

ψjvjnlds (4.5)

is applied to all the
∫
V
∂ψj
∂xl

vjdx terms in (4.4). In equation (4.5), nl (l = 1, 2, 3) is

the lth component of the unit normal n = (n1, n2, n3) in a point x on the surface
∂V . Hence, one can write

〈Ω · ∇ψj , vj〉L2(G) = −
∫

S

∫

I

∫

V

Ω1ψj
∂vj
∂x1

+ Ω2ψj
∂vj
∂x2

+ Ω3ψj
∂vj
∂x3

dxdEdΩ

+

∫

S

∫

I

∫

∂V

Ω1ψjvjn1 + Ω2ψjvjn2 + Ω3ψjvjn3dsdEdΩ

= −〈ψj ,Ω·∇vj〉L2(G) +

∫

S

∫

I

∫

∂V

ψjvj(Ω · n)dsdEdΩ. (4.6)
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Using (4.6) to equation (4.2) results in

3∑

j=1

−〈ψj ,Ω·∇vj〉L2(G) +

3∑

j=1

∫

S

∫

I

∫

∂V

ψjvj(Ω · n)dsdEdΩ

+

3∑

j=1

〈Kjψ, vj〉L2(G) =

3∑

j=1

〈Qj , vj〉L2(G). (4.7)

By adding the boundary condition (3.19) to the coupled system, the surface inte-
gral in equation (4.7) can be written in the form

3∑

j=1

∫

∂V

ψjvj(Ω · n)ds =

∫

∂V

ψ1v1 [(Ω · n)+ − (Ω · n)−] ds

+

∫

∂V

ψ2v2 [(Ω · n)+ − (Ω · n)−] ds

+

∫

∂V

ψ3v3 [(Ω · n)+ − (Ω · n)−] ds

=

∫

∂V

ψ1v1(Ω · n)+ds−
∫

Γ

ψ0v1(Ω · n)−ds

+

∫

∂V

ψ2v2(Ω · n)+ds

+

∫

∂V

ψ3v3(Ω · n)+ds

=
3∑

j=1

∫

∂V

ψjvj(Ω · n)+ds−
∫

Γ

ψ0v1(Ω · n)−ds.

The terms (·)+ and (·)− refer to the positive and negative parts of the function.
From the boundary condition (3.19) one has that ψ2|∂V = ψ3|∂V = 0, when
Ω · n < 0, so the integrals

∫
∂V
ψ2v2(Ω · n)−ds and

∫
∂V
ψ3v3(Ω · n)−ds disappear.

Also ψ1|Γ = ψ0, when Ω · n < 0, zero otherwise, which implies that
∫
∂V
ψ1v1(Ω ·

n)−ds =
∫

Γ
ψ0v1(Ω · n)−ds.

The variational form of the transport problem (3.14) is finally

B(ψ, v) = Fj(v) + q(v), v ∈ (C1
V )3, (4.8)

where B(ψ, v) : (C1
V )3 × (C1

V )3 → R is the (nonsymmetric) bilinear form

B(ψ, v) =

3∑

j=1

−〈ψj ,Ω·∇vj〉L2(G) +

3∑

j=1

∫

S

∫

I

∫

∂V

ψjvj(Ω · n)+dsdEdΩ

+

3∑

j=1

〈Kjψ, vj〉L2(G). (4.9)
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The stated photon (3.19) or electron (3.20) boundary conditions are indicated by
a lower index j = 1, 2, respectively, and

Fj(v) =

∫

S

∫

I

∫

Γ

ψ0vj(Ω · n)−dsdEdΩ. (4.10)

The internal source term q(v) is of the form

q(v) =
3∑

j=1

〈Qj , vj〉L2(G). (4.11)

4.4 Existence and uniqueness analysis of the coupled BTEs

As noted in Section 4.1, the use of numerical methods requires one to ensure that
the problem has a unique solution. Here the existence of the solution is proven for
the variational equation (4.8) of the coupled BTEs. The presentation is based on
the generalization of the Lax-Milgram lemma ([178] page 403) and have similarities
in the coercivity considerations as described in [59] for the one BTE and in [170, 26]
for the coupled system.

The generalized Lax-Milgram lemma states [178]:

Lemma 1 Let X be a Hilbert space, X ′ a linear subspace of X, B̃(·, ·) a bilinear
functional on X ×X ′ having the following properties:

1. there is C > 0 such that

|B̃(u, v)| ≤ C‖u‖X‖v‖X′ , u ∈ X, v ∈ X ′ (boundedness)

2. there is c > 0 such that

|B̃(v, v)| ≥ c‖v‖2X , v ∈ X ′ (coercivity).

Let F̃ : X → R be a continuous linear functional. Then there exists ũ such that

B̃(ũ, v) = F̃ (v), for every v ∈ X ′.

For the sake of generality, the differential cross sections are defined on C(V̄ ×
I2×S2) although the angle dependence is often of the form Ω′ ·Ω. For the coupled
BTEs one can formulate the following.

Theorem 1 Assume that

σj(x, E,Ω) ∈ C(V̄ × I × S)

σj′→j(x, E
′, E,Ω′,Ω) ∈ C(V̄ × I2 × S2).

Assume also that there exists κ > 0 such that for v ∈ (C1
V )3

〈Kv, v〉L2(G)3 ≥ κ ‖v‖2L2(G)3 . (4.12)
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Then there exists C > 0 such that

|B(ψ, v)| ≤ C‖ψ‖H3
1
‖v‖H3 , ψ ∈ (C1

V )3, v ∈ (C1
V )3 (boundedness) (4.13)

and c > 0 such that

|B(v, v)| ≥ c‖v‖2H3
1
, v ∈ (C1

V )3 (coercivity). (4.14)

Proof. For the boundedness condition (4.13) one finds that the bilinear form
(4.9) fulfills for ψ, v ∈ (C1

V )3

|B(ψ, v)| ≤
3∑

j=1

|〈ψj ,Ω·∇vj〉L2(G)|+
3∑

j=1

|〈Kjψ, vj〉L2(G)|

+
3∑

j=1

|
∫

S

∫

I

∫

∂V

ψjvj(Ω · n)+dsdEdΩ|

≤
3∑

j=1

‖ψj‖L2(G)‖Ω·∇vj‖L2(G) +
3∑

j=1

‖Kjψ‖L2(G)‖vj‖L2(G)

+
3∑

j=1

(∫

S

∫

I

∫

∂V

ψ2
j |(Ω · n)+|dsdEdΩ

)1
2
(∫

S

∫

I

∫

∂V

v2
j |(Ω · n)+|dsdEdΩ

)1
2

≤ C‖ψ‖H3
1
‖v‖H3 ,

where the following inequalities are used:

|a+ b| ≤ |a|+ |b|, a, b ∈ R
|(Ω · n)+| ≤ |(Ω · n)|
|〈f, g〉L2(G)| ≤ ‖f‖L2(G)‖g‖L2(G) (Cauchy − Schwartz) (4.15)

‖Kjψ‖L2(G) ≤ C1(j)‖ψj‖L2(G) +
3∑

j′=1

C2(j′, j)‖ψj′‖L2(G),

where C1(j) = ‖σj‖L∞(V×I) and

C2(j′, j) = 2
√

4πµ(I) sup
(x,E,Ω)∈G

(∫

S

∫

I

σj′→j(x, E
′, E,Ω′,Ω)dE′dΩ′

)1
2

.

In the previous, µ(I) is the measure of the energy interval I and ‖f‖L∞(V×I) =
sup(x,E)∈(V×I)|f(x, E)|.

To prove the coercivity condition (4.14) the bilinear form (4.9) is written in
the form

B(v, v) =

3∑

j=1

−〈vj ,Ω·∇vj〉L2(G) +

3∑

j=1

∫

S

∫

I

∫

∂V

v2
j (Ω · n)+dsdEdΩ

+ 〈Kv, v〉L2(G)3 . (4.16)
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When applying the Green’s formula (4.5), one obtains for vj ∈ C1
V

〈Ω·∇vj , vj〉L2(G) = −〈vj ,Ω·∇vj〉L2(G) +

∫

S

∫

I

∫

∂V

v2
j (Ω · n)dsdEdΩ

and further from the previous one obtains

〈vj ,Ω·∇vj〉L2(G) =
1

2

∫

S

∫

I

∫

∂V

v2
j (Ω · n)dsdEdΩ, (4.17)

because 〈Ω·∇vj , vj〉L2(G) = 〈vj ,Ω·∇vj〉L2(G) (for real valued functions). Adding
equation (4.17) to equation (4.16) and writing (Ω ·n) = ((Ω ·n)+− (Ω ·n)−) one
obtains

B(v, v) = −1

2

3∑

j=1

∫

S

∫

I

∫

∂V

v2
j ((Ω · n)+ − (Ω · n)−)dsdEdΩ

+

3∑

j=1

∫

S

∫

I

∫

∂V

v2
j (Ω · n)+dsdEdΩ + 〈Kv, v〉L2(G)3

=
1

2

3∑

j=1

∫

S

∫

I

∫

∂V

v2
j |(Ω · n)|dsdEdΩ + 〈Kv, v〉L2(G)3 ,

since |(Ω · n)| = ((Ω · n)+ + (Ω · n)−). Thus,

|B(v, v)| ≥ 1

2

3∑

j=1

∫

S

∫

I

∫

∂V

v2
j |(Ω · n)|dsdEdΩ + κ‖v‖2L2(G)3

and there exists c ≥ 0 such that coercivity condition (4.14) holds, because of the
assumption (4.12). �

By the continuity (4.13) the bilinear form B(·, ·) can be uniquely extended on
H3

1 ×H3 and the estimates (4.13) and (4.14) are valid for the extension, which is
still denoted by B(·, ·). Combining Lemma 1 and Theorem 1 with the extension
analysis one can show the following.

Corollary 1 Assume that

σj(x, E,Ω) ∈ C(V̄ × I × S)

σj′→j(x, E
′, E,Ω′,Ω) ∈ C(V̄ × I2 × S2)

Qj ∈ L2(G), ψ0 ∈ L2(∂V × I × S).

Assume also that there exists κ > 0 such that for v ∈ H3 inequality (4.12) holds.
Then the variational equation (4.8) has one and only one solution ψ ∈ H3.

Proof. The details of the uniqueness considerations are omitted. The existence
of the solution follows straightforwardly from Lemma 1 and Theorem 1. The
completion analysis are omitted.�
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Because of the coercivity assumption (4.12), additional conditions are required
on the cross sections. For one particle system it is known that a sufficient condition
for the coercivity is that there exists α > 0 such that for (x, E,Ω) ∈ G

σj(x, E,Ω)−
∫

S

∫

I

σj→j(x, E,E
′,Ω,Ω′)dE′dΩ′ ≥ α

and

σj(x, E,Ω)−
∫

S

∫

I

σj→j(x, E
′, E,Ω′,Ω)dE′dΩ′ ≥ α.

Here the interactions are only for one particle (from j to j, (j = 1, 2, 3)). Theorem
2 is formulated earlier for the coupled system in [26] and here the formulation
is repeated. Note that all differential cross sections are included to simplify the
notations. In real situations σ2→3 = 0.

Theorem 2 Assume that

σj(x, E) ∈ C(V̄ × I)

σj′→j(x, E,E
′,Ω,Ω′) ∈ C(V̄ × I2 × S2).

Suppose that there exists α > 0 for all j = 1, 2, 3 such that for (x, E,Ω) ∈ G

σj(x, E)−
∫

S

∫

I

3∑

j′=1

σj→j′(x, E,E
′,Ω,Ω′)dE′dΩ′ ≥ α (4.18)

and

σj(x, E)−
∫

S

∫

I

3∑

j′=1

σj′→j(x, E
′, E,Ω′,Ω)dE′dΩ′ ≥ α (4.19)

Then there exists κ such that inequality (4.12) holds.

Proof. The same idea is used here for the coupled system of BTEs as presented
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in [59] for one particle system. By direct calculation one can write

〈Kv, v〉L2(G)3 =
3∑

j=1

〈Kjv, vj〉L2(G)

=
3∑

j=1

∫

V

∫

S

∫

I

[
−
∫

S

∫

I

[
σ1→j(x, E

′, E,Ω′,Ω)v1(x, E′,Ω′)vj(x, E,Ω)

+ σ2→j(x, E
′, E,Ω′,Ω)v2(x, E′,Ω′)vj(x, E,Ω)

+ σ3→j(x, E
′, E,Ω′,Ω)v3(x, E′,Ω′)vj(x, E,Ω)

]
dE′dΩ′

+σj(x, E)v2
j (x, E,Ω)

]
dEdΩdx

=
3∑

j=1

∫

V

[
−
∫

SI

∫

SI′
σ1→jv

′
1vj −

∫

SI

∫

SI′
σ2→jv

′
2vj −

∫

SI

∫

SI′
σ3→jv

′
3vj

+

∫

SI

σjv
2
j

]
dx. (4.20)

In equation (4.20), the following simplified notations are used: vj := vj(x, E,Ω),
v′j := vj(x, E

′,Ω′), σk→j := σk→j(x, E′, E,Ω
′,Ω), σj := σj(x, E) (j, k = 1, 2, 3),

and
∫
SI

:=
∫
S

∫
I

dEdΩ and
∫
SI′ :=

∫
S

∫
I

dE′dΩ′. The double integrals
∫
SI

∫
SI′

can be approximated by applying the Cauchy-Schwartz inequality (4.15), which
results in

∫
SI

∫
SI′fg ≤ ‖f‖L2(S2×I2)‖g‖L2(S2×I2). Hence, one obtains

∫

SI

∫

SI′
σk→jv

′
kvj ≤

(∫

SI

∫

SI′
σk→jv

′2
k

) 1
2
(∫

SI

∫

SI′
σk→jv

2
j

) 1
2

=

(∫

SI

∫

SI′
σ′k→jv

2
k

) 1
2
(∫

SI

∫

SI′
σk→jv

2
j

) 1
2

, (4.21)

where in the first product term in equation (4.21), the notations (E ′,Ω′) are
changed to (E,Ω) and vise versa. The notation σ′k→j := σk→j(x, E,E′,Ω,Ω

′) is
also made. Therefore, by taking into account the minus sign, one can write

〈Kv, v〉L2(G)3 ≥
3∑

j=1

∫

V

[
−
(∫

SI

∫

SI′
σ′1→jv

2
1

) 1
2
(∫

SI

∫

SI′
σ1→jv

2
j

) 1
2

−
(∫

SI

∫

SI′
σ′2→jv

2
2

) 1
2
(∫

SI

∫

SI′
σ2→jv

2
j

) 1
2

−
(∫

SI

∫

SI′
σ′3→jv

2
3

) 1
2
(∫

SI

∫

SI′
σ3→jv

2
j

) 1
2

+

∫

SI

σjv
2
j

]
dx. (4.22)
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By summing the conditions (4.18) and (4.19), one obtains a condition (j = 1, 2, 3)

σj ≥ α+
1

2

∫

SI′

(
σj→1 + σj→2 + σj→3 + σ′1→j + σ′2→j + σ′3→j

)
. (4.23)

By adding condition (4.23) to the equation (4.22), writing all sum-terms, re-
organizing the terms and using the notation

∫
:=
∫
SI

∫
SI′ , one achieves

〈Kv, v〉L2(G)3 ≥
∫
V

[
−
(∫
σ′1→1v

2
1

) 1
2
(∫
σ1→1v

2
1

) 1
2 + 1

2

(∫
σ′1→1v

2
1 +

∫
σ1→1v

2
1

)

−
(∫
σ′2→2v

2
2

) 1
2
(∫
σ2→2v

2
2

) 1
2 + 1

2

(∫
σ′2→2v

2
2 +

∫
σ2→2v

2
2

)

−
(∫
σ′3→3v

2
3

) 1
2
(∫
σ3→3v

2
3

) 1
2 + 1

2

(∫
σ′3→3v

2
3 +

∫
σ3→3v

2
3

)

−
(∫
σ′2→1v

2
2

) 1
2
(∫
σ2→1v

2
1

) 1
2 + 1

2

(∫
σ′2→1v

2
2 +

∫
σ2→1v

2
1

)

−
(∫
σ′1→2v

2
1

) 1
2
(∫
σ1→2v

2
2

) 1
2 + 1

2

(∫
σ′1→2v

2
1 +

∫
σ1→2v

2
2

)

−
(∫
σ′3→1v

2
3

) 1
2
(∫
σ3→1v

2
1

) 1
2 + 1

2

(∫
σ′3→1v

2
3 +

∫
σ3→1v

2
1

)

−
(∫
σ′1→3v

2
1

) 1
2
(∫
σ1→3v

2
3

) 1
2 + 1

2

(∫
σ′1→3v

2
1 +

∫
σ1→3v

2
3

)

−
(∫
σ′3→2v

2
3

) 1
2
(∫
σ3→2v

2
2

) 1
2 + 1

2

(∫
σ′3→2v

2
3 +

∫
σ3→2v

2
2

)

−
(∫
σ′2→3v

2
2

) 1
2
(∫
σ2→3v

2
3

) 1
2 + 1

2

(∫
σ′2→3v

2
2 +

∫
σ2→3v

2
3

)

+α
(∫
SI
v2

1 +
∫
SI
v2

2 +
∫
SI
v2

3

) ]
dx. (4.24)

In the previous equation (4.24), the terms are organized such that each row (except

the last row) consists of −(a)
1
2 (b)

1
2 + 1

2 (a+b) = −
√
ab+ 1

2 (a+b), where a and b are

the integrals presented in (4.24). It can easily be shown that −
√
ab+ 1

2 (a+ b) ≥ 0
for all a, b ≥ 0. Therefore equation (4.24) comes

〈Kv, v〉L2(G)3 ≥ α
∫

V

(∫

SI

v2
1 +

∫

SI

v2
2 +

∫

SI

v2
3

)
dx = α‖v‖2L2(G)3 .

�

A physical background can be easily found for the condition (4.18), where
the integrations over the energy and angular domains basically describe the total
absorption and scattering cross sections. The condition (4.18) states that the sum
of these cross sections cannot be larger than the total cross section itself. However,
by the definition of the total cross section, which is the sum of the absorption
and scattering cross section, α = 0 in the condition (4.18). This indicates that
the system is coercive only weakly and better convergence rate in finding the
solution would be obtained if some small value is added to total cross sections
σj . The physical meaning of the second condition (4.19) is not so clear. It states
that those integrated ’inverse’ cross sections, which change particles from j ′ to
j cannot be larger than the total cross section of the particle j. Although it is
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not so clear, it seems that this second condition also has physical foundations by
the assumption that no more particles cannot be created than is disappeared in
different interactions. It seems that the condition (4.19) is also near zero.

4.5 Variational form of the coupled B-CSDAEs

In this section, the variational formulation is derived for the coupled system of the
B-CSDAEs (3.29) with the boundary conditions (3.19) and (3.20). The variational
form of the coupled B-CSDAEs (3.29) has the same form as equation (4.8), but the
scattering terms Kjψ (j = 1, 2, 3) are defined by equations (3.30)-(3.32). Thus,
the variational equation of the coupled B-CSDAEs is

Br(ψ, v) = Fj(v) + q(v), (4.25)

where Fj is defined by equation (4.10) and q(v) by equation (4.11). The lower
index j = 1, 2 indicates photon (3.19) or electron (3.20) boundary conditions,
respectively. Br(ψ, v) : (C1

V,E,0)3 × (C1
V,E,0)3 → R is the bilinear form

Br(ψ, v) = −〈ψ,Ω·∇v〉L2(G)3 +

3∑

j=1

∫

S

∫

I

∫

∂V

ψjvj(Ω · n)+dsdEdΩ

+ 〈Krψ, v〉L2(G)3 , (4.26)

where Krψ = (K1ψ,K
r
2ψ,K

r
3ψ) is defined by equations (3.30)-(3.32).

4.6 On the existence of the coupled B-CSDAEs

Here the existence of the solution of the coupled system of the B-CSDAEs is
studied. The bilinear form (4.26) of the coupled B-CSDAEs can be extended on

H̃3
1 × H̃3 and Lemma 1 can be used to prove the existence of the solution. For

simplicity the same notations of the functions ψ and v are used in complete spaces
H̃3

1 and H̃3 as in (C1
V,E,0)3. Also the function notations are equal with the functions

used for the coupled system of BTEs in the previous Sections 4.3 and 4.4. For
the variational form (4.25) of the coupled B-CSDAEs one is able to formulate the
following.

Theorem 3 Assume that

σ1(x, E), σr
2(x, E), σr

3(x, E) ∈ C(V̄ × I)

σr
j→j(x, E

′, E,Ω′,Ω), σj′→j(x, E
′, E,Ω′,Ω) ∈ C(V̄ × I2 × S2) (j′ 6= j)

∂τ r
2

∂E
(x, E),

∂τ r
3

∂E
(x, E) ∈ C(V̄ × I)

τ r
2(x, E) ≥ 0, τ r

3(x, E) ≥ 0.

Suppose that there exists κ > 0 such that for v ∈ (C1
V,E,0)3

〈Krv, v〉L2(G)3 ≥ κ ‖v‖2L2(G)3 , (4.27)
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where Krv = (K1v,K
r
2v,K

r
3v) is defined by equations (3.30)-(3.32) with σj = σr

j

and σj→j = σr
j→j (j = 2, 3). Also suppose that there exists c̃ > 0 such that for

ψj ∈ C1
V,E,0 (j = 2, 3)

−〈
∂(τ r

jψj)

∂E
, ψj〉L2(G) ≥ c̃‖ψj(x, Emin,Ω)‖2L2(V×S). (4.28)

Then there exists C > 0 such that

|Br(ψ, v)| ≤ C‖ψ‖ eH3
1
‖v‖ eH3 , ψ ∈ (C1

V,E,0)3, v ∈ (C1
V,E,0)3 (boundedness) (4.29)

and c > 0 such that

|Br(v, v)| ≥ c‖v‖2eH3
1

, v ∈ (C1
V,E,0)3 (coercivity). (4.30)

Proof. The proof is similar to the proof of Theorem 1. Let ψ, v ∈ (C1
V,E,0)3.

To prove the boundedness condition (4.29) Br(ψ, v) can be written in the form

Br(ψ, v) = B(ψ, v)−
3∑

j=2

〈
∂(τ r

jψj)

∂E
, vj〉L2(G) (4.31)

= B(ψ, v) +

3∑

j=2

∫

S

∫

I

∫

V

τ r
jψj

∂vj
∂E

dxdEdΩ

+

3∑

j=2

∫

S

∫

V


Emax

Emin

− τ r
jψjvjdxdΩ (4.32)

= B(ψ, v) +

3∑

j=2

∫

S

∫

I

∫

V

τ r
jψj

∂vj
∂E

dxdEdΩ

+
3∑

j=2

∫

S

∫

V

τ r
j (x, Emin)ψj(x, Emin,Ω)vj(x, Emin,Ω)dxdΩ, (4.33)

where B(ψ, v) is the bilinear form (4.9) of the Boltzmann equation with σj =
σr
j and σj→j = σr

j→j , (j = 2, 3). The equation (4.32) is achieved by applying
integration by parts to the latter term of the equation (4.31). The substitution of
the limits with the assumptions that ψ2(x, Emax,Ω) = 0 and ψ3(x, Emax,Ω) = 0
produces the equation (4.33). Now one can use the condition (4.13) and Cauchy-
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Schwartz inequality (4.15) and receive for ψ, v ∈ (C1
V,E,0)3

|Br(ψ, v)| ≤ |B(ψ, v)|+
3∑

j=2

∣∣∣∣
∫

S

∫

I

∫

V

τ r
jψj

∂vj
∂E

dxdEdΩ

∣∣∣∣

+

∣∣∣∣
∫

S

∫

V

τ r
j (x, Emin)ψj(x, Emin,Ω)vj(x, Emin,Ω)dxdΩ

∣∣∣∣

≤ C‖ψ‖H3
1
‖v‖H3 +

3∑

j=2

C̃1(j)‖ψj‖L2(G)‖
∂vj
∂E
‖L2(G)

+

3∑

j=2

C̃1(j)‖ψj(·, Emin, ·)‖L2(V×S)‖vj(·, Emin, ·)‖L2(V×S)

≤ C̃‖ψ‖ eH3
1
‖v‖ eH3 ,

where C̃1(j) = ‖τ r
j‖L∞(V×I).

Similarly, in the proof of the coercivity condition (4.14) of the coupled BTEs,
one obtains for the bilinear form (4.26) of the coupled B-CSDAEs

Br(v, v) =
1

2

3∑

j=1

∫

S

∫

I

∫

∂V

v2
j |(Ω · n)|dsdEdΩ + 〈Krv, v〉L2(G)3 , (4.34)

where Krv = (K1v,K
r
2v,K

r
3v) is defined by equations (3.30)-(3.32), which differ

from the original BTE scattering terms only in the additional restricted stopping
power terms τ r

j with the notations σj = σr
j and σj→j = σr

j→j . Hence, one obtains
for Kr

〈Krv, v〉L2(G)3 = 〈Kv, v〉L2(G)3 −
3∑

j=2

〈
∂(τ r

j vj)

∂E
, vj〉L2(G)3 , (4.35)

where Kv = (K1v,K2v,K3v) is defined by equation (3.15) with σj = σr
j , σj→j =

σr
j→j and σ2→3 = 0. When applying the conditions (4.27) and (4.28) to equation

(4.35), one obtains

〈Krv, v〉L2(G)3 ≥ κ ‖v‖2L2(G)3 + c̃‖vj(·, Emin, ·)‖2L2(V×S). (4.36)

Using equation (4.36) in equation (4.34) one obtains

|Br(v, v)| ≥ 1

2

3∑

j=1

∫

S

∫

I

∫

∂V

v2
j |(Ω · n)|dsdEdΩ

+κ ‖v‖2L2(G)3 + c̃‖vj(·, Emin, ·)‖2L2(V×S)

≥ c‖v‖2eH3
1

,

where c > 0. �
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Similarly as in Section 4.4, the bilinear form Br(·, ·) (defined by equation (4.26))

can be uniquely extended on H̃3
1 × H̃3 by the continuity (4.29) and the estimates

(4.29) and (4.30) are valid for the extension, which is still denoted by Br(·, ·).
From Theorem 2, one obtains that the condition (4.27) holds, if the conditions

(4.18)-(4.19) are valid with σj = σr
j , σj→j = σr

j→j , (j = 2, 3) and σ2→3 = 0.
Also for the restricted cross sections, the conditions (4.18)-(4.19) have physical
foundations, because the restricted scattering cross section σr

s is achieved by in-
tegrating the restricted differential cross section σj′→j , in which the particle j′ is
scattered to different type of particle j. The restricted absorption cross section σr

a

is achieved by integrating the restricted differential cross section σr
j→j , in which

the energy and angle of particle j is changed. In fact, this results α = 0, but
small constant can be added to the restricted total cross sections such that the
conditions (4.18)-(4.19) are fulfilled.

If one makes some assumptions for the shapes of the restricted stopping powers
τ r
j (j = 2, 3), then it is possible to formulate the following theorem for the coupled

B-CSDAEs. Here also a consideration of the condition (4.27) is included.

Theorem 4 Assume that

σ1(x, E), σr
2(x, E), σr

3(x, E) ∈ C(V̄ × I)

σr
j→j(x, E

′, E,Ω′,Ω), σj′→j(x, E
′, E,Ω′,Ω) ∈ C(V̄ × I2 × S2) (j′ 6= j)

∂τ r
2

∂E
(x, E),

∂τ r
3

∂E
(x, E) ∈ C(V̄ × I)

τ r
2(x, E) ≥ 0, τ r

3(x, E) ≥ 0.

Suppose that there exists α > 0 such that the conditions (4.18-4.19) are valid with
σj = σr

j, σj→j = σr
j→j, (j = 2, 3) and σ2→3 = 0. Then there exists κ such that the

inequality (4.27) holds.
Further, assume that I = [Emin, Emax] and that for the restricted stopping

powers τ r
j

∂τ r
j

∂E
(x, E) ≤ 0, E ∈ I, x ∈ V (4.37)

holds. Then there exists c̃ > 0 such that the inequality (4.28) holds.

Proof. The condition (4.27) has already been proven to hold in the proof of
Theorem 2, if the conditions (4.18)-(4.19) are valid. Now only some of the cross
sections have been changed to the restricted cross sections, which does not change
the proofing procedure.

To prove the condition (4.28) denote P := −〈 ∂(τ r
jvj)

∂E , vj〉L2(G), where vj ∈
C1
V,E,0. It can be shown that P ≥ c̃‖vj(x, Emin,Ω)‖2L2(V×S), if the assumption

(4.37) is fulfilled. Now P can be cast into the form

P =

∫

S

∫

V

(∫

I

−τ r
jvj

∂vj
∂E

dE +

∫

I

−
∂τ r
j

∂E
v2
jdE

)
dxdΩ, (4.38)
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where the differentiation by parts is employed. The first energy integral in equation
(4.38)

∫
I
−τ r

j vj
∂vj
∂E dE can be performed using the generalized Mean Value Theo-

rem, if τ r
j is monotonic in the integration interval. The second energy integral in

equation (4.38) can be approximated as
∫
I
−∂τ

r
j

∂E v
2
jdE ≥ 0, because the integrand

−∂τ
r
j

∂E v
2
j ≥ 0, when the condition (4.37) holds. Hence, from equation (4.38) one

receives (ξ ∈ I)

P ≥
∫

S

∫

V

−1

2
τ r
j (x, ξ)v

2
j


Emax

Emin

dxdΩ

=

∫

S

∫

V

−1

2
τ r
j (x, ξ)

(
v2
j (x, Emax,Ω)− v2

j (x, Emin,Ω)
)

dxdΩ

=

∫

S

∫

V

1

2
τ r
j (x, ξ)v

2
j (x, Emin,Ω)dxdΩ

≥
∫

S

∫

V

1

2
τ r
j (x, Emax)v2

j (x, Emin,Ω)dxdΩ

≥ c̃2‖vj(x, Emin,Ω)‖2L2(V×S),

where c̃2 = infx∈V τ r
j (x, Emax) ≥ 0. �

Besides of the condition (4.37) for the shape of the restricted stopping power
function τ r

j , it is possible to prove similar results for different conditions. Here only
this simple case is studied, because τ r

j is based on physical data with the choice of
cut-off energy, which can be selected such that the condition (4.37) holds. However,
τ r
j may have different shapes depending on the energy and one should ensure that

the condition (4.28) is fulfilled. For example, by direct computations it is not
possible to fulfill condition (4.28) for τ r

j , which is of the form

∂τ r
j

∂E (x, E) ≤ 0, E ∈ [Emin, Ef ], x ∈ V
∂τ r
j

∂E (x, E) > 0, E ∈]Ef , Emax], x ∈ V ,

where I = [Emin, Ef ] ∪ [Ef , Emax]. Thus, one should select the cut-off energy such
that τ r

j fulfills the requirement (4.37) or to prove that the condition (4.28) is valid
for τ r

j , which has different shape from the presented ones. Also one could try to
prove the coercivity and boundedness conditions in different spaces than used in
here.

The presented Theorems 3 and 4 give foundations to prove the existence of
the solution of the coupled B-CSDAEs when combined with Lemma 1. Theorem
4 gives suggestions what should be demanded on the cross sections and restricted
stopping power data.

4.7 Numerical methods

FEM can be used to find a numerical approximation for the weak solution ψ ∈ H3

or H̃3 of the transport problems (4.8) or (4.25) with the stated boundary conditions
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(3.19) or (3.20). The systems of linear equations resulted from the variational
forms of the coupled BTE and coupled B-CSDAEs can be derived. Before FEM
can be used, one should assure the convergence of the FEM. Also one has to choose
the basis functions and compute the related integrals. After the linear system is
formulated, one has to use some numerical method to solve the system of linear
equations. These issues are discussed in the following subsections.

4.7.1 On the FEM convergence

The boundedness (4.13) and coercivity (4.14) conditions imply the Cea’s estimate
[53] of the variational problem (4.8) of the coupled BTEs. If same basis func-
tions φk (k = 1, ..., N) are used for all particles, one defines a linear hull Xh =
[(φ1, 0, 0), (φ2, 0, 0), ..., (φN , 0, 0), (0, φ1, 0), ..., (0, φN , 0), (0, 0, φ1), ..., (0, 0, φN )] =
[Φ1, ...,Φ3N ], which is a finite dimensional subspace of H3. The finite element ap-
proximation ψh = (ψh

1 , ψ
h
2 , ψ

h
3 )T of the solution vector ψ = (ψ1, ψ2, ψ3)T is defined

as a linear combination of the basis functions Φk (k = 1, ..., 3N). That is, the
finite element approximation is of the form

ψh(x, E,Ω) =

3N∑

k=1

αkΦT
k =

N∑

k=1

(
α(k), α(k+N), α(k+2N)

)T
φk(x, E,Ω), (4.39)

where αk are the unknown parameters and are found by demanding

B(ψh, v) = Fj(v) + q(v), ∀v ∈ Xh. (4.40)

If the assumptions of Theorem 1 are valid, the Cea’s estimate [53] for the error
ψ − ψh of the coupled BTEs is of the form

‖ψ − ψh‖H3
1
≤ C

c
inf
w∈Xh

‖ψ − w‖H3 , (4.41)

which can be used in principle to prove the convergence of the FEM, if for ψ ∈ H3

there exists a family of Xh such that limh→0 infw∈Xh
‖ψ − w‖H3 = 0.

The basis functions of the variational form (4.25) of the coupled B-CSDAEs has

to be defined in the space H̃3. In fact, Xh can be used for the coupled B-CSDAEs,
when the charged particle fluxes ψ2 and ψ3 are zeroed at maximum energy node.
Basically this means that these rows and columns are removed from the resulted
linear matrix equation. The finite element approximation (4.39) of the coupled
B-CSDAEs is defined as a solution of the variational equation

Br(ψh, v) = Fj(v) + q(v), ∀v ∈ Xh. (4.42)

If the assumptions of Theorem 3 are valid, then the error ψ−ψh satisfies the Cea’s
estimate

‖ψ − ψh‖ eH3
1
≤ C

c
inf
w∈Xh

‖ψ − w‖ eH3 ,

which gives basic estimate for the convergence analysis of the coupled B-CSDAEs.
Here the details of the convergence analysis are omitted.
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4.7.2 FEM matrix presentation of the coupled system

First the matrix presentation of the variational equation of the coupled BTEs is
derived. The finite element approximation and variational problem are defined
by equations (4.39) and (4.40), respectively. To test the validity of the varia-
tional equation, it is adequate to use the basis functions as test functions v = Φl

(l = 1, ..., 3N). The jth component of the vector Φk is denoted as Φk,j (j = 1, 2, 3).
Assume that Q = 0. With these definitions, one obtains a system of linear equa-
tions from the variational equation (4.40)

(A1 +A2 +A3)α = bj , (4.43)

where α = (α1, ..., α3N )T and Ai, i = 1, 2, 3 are 3N × 3N matrices such that

A1(l, k) = −
3∑

j=1

〈Φk,j ,Ω · ∇Φl,j〉L2(G), (4.44)

A2(l, k) =

3∑

j=1

∫

S

∫

I

∫

∂V

(Ω · n)+Φk,jΦl,jdsdEdΩ, (4.45)

A3(l, k) =
3∑

j=1

〈KjΦk,Φl,j〉L2(G), (4.46)

where

KjΦk = −
∫

S

∫

I

σ1→jΦk,1dEdΩ

−
∫

S

∫

I

σ2→jΦk,2dEdΩ

−
∫

S

∫

I

σ3→jΦk,3dEdΩ + σjΦk,j . (4.47)

bj (j = 1, 2) is a 3N × 1 vector such that

bj(l) =

∫

S

∫

I

∫

Γ

(Ω · n)−ψ0Φl,jdsdEdΩ. (4.48)

The matrix presentation of the coupled B-CSDAEs is obtained form the vari-
ational form (4.42) and it is of the form

(A1 +A2 +Ar
3)α = bj , (4.49)

where A1, A2 and bj are defined by equations (4.44), (4.45) and (4.48). Matrix
Ar

3 is defined as

Ar
3(l, k) =

3∑

j=1

〈Kr
jΦk,Φl,j〉L2(G), (4.50)
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where K1Φk is defined by equation (4.47) and

Kr
2Φk = σr

2Φk,2 −
∫

I

∫

S

σ1→2Φk,1dE′dΩ′ (4.51)

−
∫

I

∫

S

σr
2→2Φk,2dE′dΩ′ − ∂ (τ r

2Φk,2)

∂E

−
∫

I

∫

S

σ3→2Φk,3dE′dΩ′,

Kr
3Φk = σr

3Φk,3 −
∫

I

∫

S

σ1→3Φk,1dE′dΩ′ (4.52)

−
∫

I

∫

S

σr
3→3Φk,3dE′dΩ′ − ∂ (τ r

3Φk,3)

∂E
.

The matrices A := A1 +A2 +A3 or Ar := A1 +A2 +Ar
3 are sparse, from

which each consist of nine smaller sparse matrices. The matrices A3 or Ar
3 couple

the system of BTEs. Also it is worth noting that in equations (4.44) and (4.45)
only one of the summing terms j = 1, 2, 3 is nonzero depending on the values of k
and l.

4.7.3 Separable basis functions

To construct the presented linear systems (4.43) or (4.49), one has to select ba-
sis functions and compute the integrals. Typically, separable basis functions
φk = φxks

(x)φEke
(E)φΩ

ko
(Ω) (k = 1, ..., N) are used to present the unknown flux

ψh(x, E,Ω) and the same basis functions are used for all particles. Hence,

ψh(x, E,Ω) =

Ns∑

ks=1

Ne∑

ke=1

No∑

ko=1

(αk, αk+N , αk+2N )Tφxks
(x)φEke

(E)φΩ
ko

(Ω),

where φxks
(x) (ks = 1, ...Ns), φ

E
ke

(E) (ke = 1, ...Ne) and φΩ
ko

(Ω) (ko = 1, ...No)
are the basis functions for the spatial, energy and angular grids, respectively.
Ns, Ne, No denote the number of nodal points in each grid and N = NsNeNo.
The index k is a function of (ks, ke, ko) and depends on the order of Kronecker
tensor product. For example, here it is chosen k = ko +(ke−1)No +(ks−1)NeNo.
The separation of the test function gives φl = φxls(x)φEle (E)φΩ

lo
(Ω). The indexes

l and k refer to rows and columns in the matrices, respectively. The index l is a
function of (ls, le, lo) similarly as for k.

Also the cross section and stopping power data is presented using the same
basis functions. In the case of isotropic scattering, one obtains for the total cross
section

σj(x, E) =

Ns∑

ds=1

Ne∑

de=1

σjdφ
x
ds
φEde

,

where σjd is the value of σj(x, E) in a node, which is indexed as d, which is a
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function of (ds, de) as above for k. For the restricted stopping power

τ r
j (x, E) =

Ns∑

ds=1

Ne∑

de=1

τ j,rd φxds
φEde

,

where τ j,rd is the value of τ r(x, E) in a node, which is indexed similarly as that for
the total cross section. For the differential cross section

σj′→j(x, E
′, E,Ω′,Ω) =

Ns∑

ds=1

Ne∑

de=1

Ne∑

d′e=1

No∑

do=1

No∑

d′o=1

σj
′→j
dd φxds

φEde
φEd′eφ

Ω
do
φΩ
d′o
,

where dd is a function of (ds, de, d
′
e, do, d

′
o) as above for k and σj

′→j
dd is the value

of σj′→j(x, E′, E,Ω
′,Ω) in a related node. Similar expressions can be derived for

the restricted cross sections.

Because the differential cross sections are usually nearly delta-function shaped
with respect to energy or angle and because in FEM with linear basis the delta-
functions have always some width, depending on the discretization, the differential
cross sections are normalized such that the normalization condition

σj
′→j
dd

∫

S

∫

I

φxds
φEde

φEd′eφ
Ω
do
φΩ
d′o

dEdΩ =

∫

Sdd

∫

Idd

σj′→j(x, E
′, E,Ω′,Ω)dEdΩ

is fulfilled for every dd. The sub-domains Sdd and Idd include the elements, which
are connected to the nodes do and de, respectively. The normalization condition
means for example that one divides the differential cross section values σdd by the
value of the integral

∫
Sdd

φΩ
do

dΩ if the differential cross section is delta-function
shaped with respect to angle. Clearly, this normalization is needed in order the
conditions for the cross sections (4.18) and (4.19) to hold.

As mentioned earlier the matrices A or Ar consist of nine smaller matrices,
which means that the linear system Aα = bj defined by (4.43) is of the form




A1→1 D2→1 D3→1

D1→2 A2→2 D3→2

D1→3 0 A3→3


α = bj , (4.53)

where bj depends on the boundary condition and has a form

b1 =




b
0
0


 , b2 =




0
b
0


 , (4.54)

where j = 1 indicates photon boundary condition (3.19) and j = 2 electron bound-
ary condition (3.20). The matrices Aj→j and Dj′→j (j = 1, 2, 3, j′ = 1, 2, 3, j′ 6=
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j) can be formed for separable basis functions as

Aj→j(l, k) =

∫

I

φEke
φEledE

(
−
∫

V

φxks

∂φxls
∂x1

dx

∫

S

cosϕ sin θφΩ
ko
φΩ
lodΩ

−
∫

V

φxks

∂φxls
∂x2

dx

∫

S

sinϕ sin θφΩ
ko
φΩ
lodΩ

−
∫

V

φxks

∂φxls
∂x3

dx

∫

S

cos θφΩ
ko
φΩ
lodΩ

+

N∂V∑

i=1

∫

∂Vi

φxks
φxlsds

∫

S

(Ω · ni)+φ
Ω
ko
φΩ
lodΩ

)

+

Ns∑

ds=1

Ne∑

de=1

σjd

∫

I

φEde
φEke

φEledE

∫

V

φxds
φxks

φxlsdx

∫

S

φΩ
ko
φΩ
lodΩ

−
∑

dd

σj→jdd

∫

I

φEde
φEledE

∫

I

φEd′eφ
E
ke

dE

∫

V

φxds
φxks

φxlsdx

·
∫

S

φΩ
do
φΩ
lodΩ

∫

S

φΩ
d′o
φΩ
ko

dΩ (4.55)

and

Dj′→j(l, k) = −
∑

dd

σj
′→j
dd

∫

I

φEde
φEledE

∫

I

φEd′eφ
E
ke

dE

∫

V

φxds
φxks

φxlsdx

·
∫

S

φΩ
do
φΩ
lodΩ

∫

S

φΩ
d′o
φΩ
ko

dΩ. (4.56)

In the previous equations (4.55) and (4.56), σj
′→j
dd is the differential cross sec-

tion value, in which particle j ′ is changed into particle j, similarly σj→jdd is
the differential cross section value, in which the direction and angle of parti-
cle j are changed, and σjd is the total cross section value for particle j. The
boundary ∂V is assumed to consist of surfaces ∂Vi i = 1, ..., N∂V , where the
outward normal ni does not depend on x (that is V is polyhedron). For ex-
ample for cubic domain in 3D N∂V = 6 and the outward unit normals are
n1 = (1, 0, 0), n2 = (−1, 0, 0), n3 = (0, 1, 0), n4 = (0,−1, 0), n5 = (0, 0, 1)
and n6 = (0, 0,−1).

The known flux at the boundary ψ0 can be written using the same separable
basis functions by assuming ψ0(x, E,Ω) = 0, when x ∈ V \ Γ. Thus,

ψ0(x, E,Ω) =

Ns∑

is=1

Ne∑

ie=1

No∑

io=1

Ψ0
iφ
x
isφ

E
ieφ

Ω
io , (4.57)

where i is a function of (is, ie, io) similarly as for the index k. The nonzero values
of Ψ0

i are the values of the incoming flux at Γ. Because all the nodes are included
in the basis system, there are quite many zeros in the vector Ψ0 = (Ψ0

1, ...,Ψ
0
3N ).
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The vector b can be easily computed from equation b = MbΨ0, where the elements
of the matrix Mb are

Mb(l, i) =

( NV∑

j=1

∫

∂Vj

φxisφ
x
lsds

∫

S

(Ω · nj)−φΩ
ioφ

Ω
lodΩ

)∫

I

φEieφ
E
ledE. (4.58)

Originally in equation (4.48), there is an integration over Γ. In equation (4.58),
it is possible to integrate over the whole boundary ∂V , because the integration
over Γ is accounted in the coefficient vector Ψ0. Now it is easy to use the same
boundary integrations as needed for Aj′→j matrices.

The previous integral equations are for the linear system (4.43). Similarly
one obtains the integral equations for the linear system (4.49) of the coupled B-
CSDAEs, which is of the form




Ar
1→1 D2→1 D3→1

D1→2 Ar
2→2 D3→2

D1→3 0 Ar
3→3


α = bj , (4.59)

where bj is defined by equation (4.54) and the matrices Dj′→j are as those in
equation (4.56). The matrix Ar

j→j (j = 1, 2, 3) is

Ar
j→j(l, k) = Aj→j(l, k)−

Ns∑

ds=1

Ne∑

de=1

τ r,j
d

∫

I

∂(φEde
φEke

)

∂E
φEledE

·
∫

V

φxds
φxks

φxlsdx

∫

S

φΩ
ko
φΩ
lodΩ, (4.60)

where Aj→j(l, k) is obtained from equation (4.55) with restricted cross sections

σr,j
d and σr,j→j

dd .

The previous equations are written for the 3D case. In the simulations also 2D
spatial geometry is used. Then it is assumed that the particles travel and scatter
in the spatial 2D plane, in which x = (x2, x3), and the scattering out of the plane
is neglected. Hence, the angular variable is θ ∈ [0, 2π[ and Ω2D = (sin θ, cos θ)
meaning that θ = 0 is toward x3-axis. The angular integrals are now line integrals
over θ ∈ [0, 2π[ and the angular basis function is denoted by φθko

(ko = 1, ..., No).
The surface integral is also a line integral. The boundary ∂V is assumed to consists
of lines ∂Vi (i = 1, ..., N∂V ), in which the normal vector ni has constant values.
For example in rectangular domain N∂V = 4 and n1 = (1, 0), n2 = (0, 1), n3 =
(−1, 0), n4 = (0,−1).
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In 2D geometry, the matrices in the linear system (4.53) are of the form

Aj→j(l, k) =

∫

I

φEke
φEledE

(
−
∫

V

φxks

∂φxls
∂x2

dx

∫ 2π

0

sin θφθko
φθlodθ

−
∫

V

φxks

∂φxls
∂x3

dx

∫ 2π

0

cos θφθko
φθlodθ

+

N∂V∑

i=1

∫

∂Vi

φxks
φxlsds

∫ 2π

0

(Ω2D · ni)+φ
θ
ko
φθlodθ

)

+

Ns∑

ds=1

Ne∑

de=1

σjd

∫

I

φEde
φEke

φEledE

∫

V

φxds
φxks

φxlsdx

∫ 2π

0

φθko
φθlodθ (4.61)

−
∑

dd

σj→jdd

∫

I

φEde
φEledE

∫

I

φEd′eφ
E
ke

dE

∫

V

φxds
φxks

φxlsdx

∫ 2π

0

φθdo
φθlodθ

∫ 2π

0

φθd′oφ
θ
ko

dθ

and

Dj′→j(l, k) = −
∑

dd

σj
′→j
dd

∫

I

φEde
φEledE

∫

I

φEd′eφ
E
ke

dE

∫

V

φxds
φxks

φxlsdx

·
∫ 2π

0

φθdo
φθlodθ

∫ 2π

0

φθd′oφ
θ
ko

dθ. (4.62)

The vector bj is achieved similarly as in 3D case. The elements of the matrix Mb

are similar to those described in equation (4.58), in which now the angular integral

is changed to
∫ 2π

0
(Ω2D · ni)−φθioφθlodθ and the surface integral is a line integral.

Similar changes can be made to equation (4.60) to obtain the equation for the
matrix Ar

j→j in the coupled B-CSDAEs.

4.7.4 Stream-line diffusion method

The matrices Aj→j or Ar
j→j (j = 1, 2, 3) contain gradient term, which may produce

instability in the solution of the linear systems (4.43) or (4.49) [102, 75]. The
system can be stabilized using stream-line diffusion method, in which the test
function is chosen to be v + δΩ · ∇v, where δ > 0. The parameter δ may depend
for example on the spatial discretization and the values of the cross sections. For
example,

δjl,k = c min
de∈{1,...,Ne}

{
(σjd)

−1
}
, (4.63)

where l, k refer to nodes and c is a small constant [103]. This stabilizes the system
of linear equations and fastens the convergence of the solution method.

In the stream-line diffusion method, the variational form is achieved by apply-
ing the test function v+δΩ ·∇v in equation (4.3) resulting (assuming Qj = 0 (j =
1, 2, 3))

〈Tψ, v〉L2(G)3 + 〈Kψ, v〉L2(G)3 + 〈Tψ +Kψ, δΩ · ∇v〉L2(G)3 = 0.
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Then the Green’s formula (4.5) is applied to the first term as in Section 4.3 and the
variational form of the coupled BTE (3.14) with the stated incoming photon (3.19)
or electron (3.20) boundary conditions using the stream-line diffusion method is

B(ψ, v) +Bsd(ψ, v) = Fj(v), v ∈ H3, (4.64)

where B(ψ, v) and Fj(v) (Qj = 0) are defined by equations (4.9),(4.10) and where

Bsd(ψ, v) =
3∑

j=1

〈Ω·∇ψj , δΩ·∇vj〉L2(G) +
3∑

j=1

〈Kjψ, δΩ·∇vj〉L2(G). (4.65)

Similarly, the variational form of the coupled B-CSDAEs with the stream-line
diffusion method is

Br(ψ, v) +Br
sd(ψ, v) = Fj(v), v ∈ H3, (4.66)

where Br(ψ, v) is obtained from equation (4.26) and Br
sd(ψ, v) is similar to equation

(4.65) with Kjψ = Kr
jψ defined by the equations (4.47), (4.51) and (4.52).

If separable basis functions are used as test functions the variational form (4.64)
results in a linear system Asdα = bj , which is of the form




Asd
1→1 Dsd

2→1 Dsd
3→1

Dsd
1→2 Asd

2→2 Dsd
3→2

Dsd
1→3 0 Asd

3→3


α = bj , (4.67)

where bj is defined by equation (4.54). The elements of the matrix Asd
j→j are

Asd
j→j(l, k) = Aj→j(l, k) + δjl,k

(
Asd

1 (l, k) +Asd
2 (l, k)

)
, (4.68)
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where Aj→j(l, k) is defined by equation (4.55) and where Asd
1 (l, k) is of the form

Asd
1 (l, k) =

∫

I

φEke
φEledE

(∫

V

∂φxks

∂x1

∂φxls
∂x1

dx

∫

S

cos2 ϕ sin2 θφΩ
ko
φΩ
lodΩ

+

∫

V

∂φxks

∂x1

∂φxls
∂x2

dx

∫

S

cosϕ sinϕ sin2 θφΩ
ko
φΩ
lodΩ

+

∫

V

∂φxks

∂x1

∂φxls
∂x3

dx

∫

S

cosϕ cos θ sin θφΩ
ko
φΩ
lodΩ

+

∫

V

∂φxks

∂x2

∂φxls
∂x1

dx

∫

S

cosϕ sinϕ sin2 θφΩ
ko
φΩ
lodΩ

+

∫

V

∂φxks

∂x2

∂φxls
∂x2

dx

∫

S

sin2 ϕ sin2 θφΩ
ko
φΩ
lodΩ

+

∫

V

∂φxks

∂x2

∂φxls
∂x3

dx

∫

S

sinϕ cos θ sin θφΩ
ko
φΩ
lodΩ

+

∫

V

∂φxks

∂x3

∂φxls
∂x1

dx

∫

S

cosϕ cos θ sin θφΩ
ko
φΩ
lodΩ

+

∫

V

∂φxks

∂x3

∂φxls
∂x2

dx

∫

S

sinϕ cos θ sin θφΩ
ko
φΩ
lodΩ

+

∫

V

∂φxks

∂x3

∂φxls
∂x3

dx

∫

S

cos2 θφΩ
ko
φΩ
lodΩ

)
(4.69)

and Asd
2 (l, k) is of the form

Asd
2 (l, k) =

( Ns∑

ds=1

Ne∑

de=1

σjd

∫

I

φEde
φEke

φEledE

−
∑

dd

σj→jdd

∫

I

φEde
φEledE

∫

I

φEd′eφ
E
ke

dE

∫

S

φΩ
d′o
φΩ
ko

dΩ

)

·
(∫

V

φxds
φxks

∂φxls
∂x1

dx

∫

S

cosϕ sin θφΩ
ko
φΩ
lodΩ

+

∫

V

φxds
φxks

∂φxls
∂x2

dx

∫

S

sinϕ sin θφΩ
ko
φΩ
lodΩ

+

∫

V

φxds
φxks

∂φxls
∂x3

dx

∫

S

cos θφΩ
ko
φΩ
lodΩ

)
. (4.70)

The elements of the matrix Dsd
j′→j are

Dsd
j′→j(l, k) = Dj′→j(l, k)− δjl,k

∑

dd

σj
′→j
dd

∫

I

φEde
φEledE

∫

I

φEd′eφ
E
ke

dE

·
∫

V

φxds
φxks

φxlsdx

∫

S

φΩ
do
φΩ
lodΩ

∫

S

φΩ
d′o
φΩ
ko

dΩ, (4.71)

where Dj′→j(l, k) is defined by equation (4.56).
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Similarly for the variational form (4.66), the linear system Ar
sdα = bj is ob-

tained and it is of the form




Ar,sd
1→1 Dsd

2→1 Dsd
3→1

Dsd
1→2 Ar,sd

2→2 Dsd
3→2

Dsd
1→3 0 Ar,sd

3→3


α = bj , (4.72)

where bj is defined by equation (4.54) and Dsd
j′→j by equation (4.56). The elements

of the matrix Ar,sd
j→j (j = 1, 2, 3) are

Ar,sd
j→j(l, k) = Asd

j→j(l, k)−
Ns∑

ds=1

Ne∑

de=1

τ r,j
d

∫

I

∂φEde
φEke

∂E
φEledE

·
[ ∫

V

φxds
φxks

φxlsdx

∫

S

φθko
φθlodθ

+δjl,k

(∫

V

φxds
φxks

∂φxls
∂x1

dx

∫

S

cosϕ sin θφΩ
ko
φΩ
lodΩ

+

∫

V

φxds
φxks

∂φxls
∂x2

dx

∫

S

sinϕ sin θφΩ
ko
φΩ
lodΩ

+

∫

V

φxds
φxks

∂φxls
∂x3

dx

∫

S

cos θφΩ
ko
φΩ
lodΩ

)]
, (4.73)

where Asd
j→j(l, k) is obtained from equation (4.68).

In 2D case, the matrix Asd
j→j in equation (4.67) is defined by equation (4.68),

in which the matrix Aj→j is defined by equation (4.61) and in which

Asd
1 (l, k) =

∫

I

φEke
φEledE

(∫

V

∂φxks

∂x2

∂φxls
∂x2

dx

∫ 2π

0

sin2 θφθko
φθlodθ

+

∫

V

∂φxks

∂x2

∂φxls
∂x3

dx

∫ 2π

0

cos θ sin θφθko
φθlodθ

+

∫

V

∂φxks

∂x3

∂φxls
∂x2

dx

∫ 2π

0

cos θ sin θφθko
φθlodθ

+

∫

V

∂φxks

∂x3

∂φxls
∂x3

dx

∫ 2π

0

cos2 θφθko
φθlodθ

)
(4.74)
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and

Asd
2 (l, k) =

( Ns∑

ds=1

Ne∑

de=1

σjd

∫

I

φEde
φEke

φEledE

−
∑

dd

σj→jdd

∫

I

φEde
φEledE

∫

I

φEd′eφ
E
ke

dE

∫ 2π

0

φθd′oφ
θ
ko

dθ

)

·
(∫

V

φxds
φxks

∂φxls
∂x1

dx

∫ 2π

0

sin θφθko
φθlodθ

+

∫

V

φxds
φxks

∂φxls
∂x2

dx

∫ 2π

0

cos θφθko
φθlodθ

)
. (4.75)

The matrix Dsd
j′→j is defined similarly as in equation (4.71), but in 2D the angular

integrals are changed to
∫ 2π

0
φθdo

φθlodθ
∫ 2π

0
φθd′oφ

θ
ko

dθ and in which Dj′→j is defined

by equation (4.62). Similarly, the matrix Ar,sd
j→j in equation (4.72) is in 2D of the

form

Ar,sd
j→j(l, k) = Asd

j→j(l, k)−
Ns∑

ds=1

Ne∑

de=1

τ r,j
d

∫

I

∂φEde
φEke

∂E
φEledE

·
[ ∫

V

φxds
φxks

φxlsdx

∫ 2π

0

φθko
φθlodθ

+δjl,k

(∫

V

φxds
φxks

∂φxls
∂x2

dx

∫ 2π

0

sin θφθko
φθlodθ

+

∫

V

φxds
φxks

∂φxls
∂x3

dx

∫ 2π

0

cos θφθko
φθlodθ

)]
, (4.76)

where Asd
j→j(l, k) is obtained from equation (4.68) with 2D matrices defined by

equations (4.61), (4.74) and (4.75).

4.7.5 Integration over elements and basis functions

In FEM, the basic idea is that the integration over an element e is done by mapping
the actual global elements onto a master element e0, in which the integration is
easier to compute [182]. Figure 4.1 shows a transformation Fe, in which a master
element e0 is mapped onto an element e. Using this mapping the integration over
an global element is

∫

e

g(x1, x2, x3)dx =

∫

e0

(g ◦ Fe)(ξ, η, γ)|JFe |dξdηdγ,

where (g ◦ Fe)(ξ, η, γ) = g(Fe(ξ, η, γ)) is the composite function of Fe and g,
|JFe | is the absolute value of the determinant of the Jacobian JFe and Fe is the
transformation depending on the element type. In 3D, Fe is of the form

Fe(ξ, η, γ) =
8∑

i=1

ψ0,i(ξ, η, γ)(xi1, x
i
2, x

i
3),
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Figure 4.1: Mapping Fe from e0 onto e for the brick. Γ0 is the bottom face of

an element e0.

where (xi1, x
i
2, x

i
3) := xi (i = 1, ..., 8) are the nodes of the global element and ψ0,i

are the basis functions of the master element e0.

In FEM, the basis functions are typically such that the basis function ψi at
nodes xj fulfill

ψi(xj) =

{
1, i = j
0, otherwise

.

This results in a sparse matrices in the linear systems, because most of the integrals
become zero. The basis functions for a 3D brick of Figure 4.1 are [58]

ψ0,1 = ξ(1− η)(1− γ)

ψ0,2 = ξη(1− γ)

ψ0,3 = (1− ξ)η(1− γ)

ψ0,4 = (1− ξ)(1− η)(1− γ)

ψ0,5 = ξ(1− η)γ

ψ0,6 = ξηγ

ψ0,7 = (1− ξ)ηγ
ψ0,8 = (1− ξ)(1− η)γ,

where the indexes i = 1, .., 8 refer to the nodes, in which the basis function ψ0,i is
one i.e. to the points (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 0), (1, 0, 1), (1, 1, 1), (0, 1, 1),
(0, 0, 1), respectively.

The transpose of the Jacobian matrix JT
Fe

can be computed from

JT
Fe = L(ξ, η, γ)Xe,
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where

Xe =




x1
1 x1

2 x1
3

...
...

...
x8

1 x8
2 x8

3




is the node matrix for an element e and

L(ξ, η, γ) =




∂ψ0,1

∂ξ . . .
∂ψ0,8

∂ξ
∂ψ0,1

∂η . . .
∂ψ0,8

∂η
∂ψ0,1

∂γ . . .
∂ψ0,8

∂γ


 .

For the spatial domain one also needs the integrals over the face Γe of an
element e. This can be computed using the surface integral [182]

∫

Γe

g(x1, x2, x3)ds =

∫

Γ0

(g ◦ Fe)(ξ, η)

∥∥∥∥
∂Fe
∂ξ
× ∂Fe

∂η

∥∥∥∥ dξdη,

where Γ0 is the bottom face of the master element e0 as shown in Figure 4.1.

The basis functions and integrals derived previously are for 3D bricks, which
are used as spatial elements in 3D. The angular domain Ω can be considered as
a surface of a unit sphere. This surface can be divided into triangular elements
for example by dividing the faces of an octahedron into four smaller triangular
elements and in the same time keeping the distance of the new nodes from the
origin equal to one. Similar triangular mesh is used in [102], but the refinement is
started from an icosahedron. Here the octahedron is chosen as a starting point of
the refinements, because it is symmetric in x1− and x2−directions. The octahe-
dron based triangular meshes with one and two refinements are shown in Figure
4.2 (a) and (b). One could integrate directly over these triangles. However, this
triangular approximation of the unit sphere is quite poor, if coarse mesh is used,
because the triangles approximate the sphere only roughly. Instead, one can flat-
ten the refined angles in (ϕ, θ) ∈ [0, 2π[×[0, π[ plane and add extra nodes at angles
θ = 0, π, ϕ ∈]0, 2π] and ϕ = 2π, θ ∈ [0, π] to be used in computations with
spherical transformation. This flattening is shown in Figure 4.2 (c).

By triangular refinements one achieves nodes, which are arranged uniformly
on a unit sphere. These angles can then be used with spherical transformation to
model the surface of the sphere and the integrals over these triangular elements
are done by mapping the general element e into a local element e0. Thus, the
angular integrals can be computed using equation

∫

e

gdΩ =

∫

ϕe

∫

θe

g sin(θ)dθdϕ =

∫

e0

(g ◦ Fe,Ω)(ξ, η) sin ◦Fe,Ω,2|JFe,Ω |dξdη,

where ϕe and θe are the integration intervals of element e and Fe,Ω =∑3
i=1 ψ0,i(ξ, η)(ϕi, θi). The points (ϕi, θi) (i = 1, 2, 3) are the coordinates of the

triangle nodes of an element e. Fe,Ω,2 is the second component of mapping Fe,Ω.
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the plane.

PSfrag replacements

x1

x2

x3

ξ

η

(0, 0) (1, 0)

(0, 1)

(ϕ1, θ1)

(ϕ2, θ2)

(ϕ3, θ3)

e0

e

Fe,Ω

Figure 4.3: Mapping Fe,Ω from a master element e0 into general element e

The mapping Fe,Ω is shown in Figure 4.3. ψ0,i (i = 1, 2, 3) are the basis functions
for a master triangular element e0. The linear basis functions for e0 are [58]

ψ0,1 = 1− ξ − η
ψ0,2 = ξ

ψ0,3 = η.

The integration over the energy variable is 1D integral. Thus, the elements
are sub-intervals. Again the sub-interval e = [Ei, Ei+1] is mapped into a master

element e0 = [0, 1]. The mapping is now Fe,E =
∑2
i=1 ψ0,i(ξ)(Ei), where ψ0,i i =

1, 2 are the basis functions of the local element e0. The linear basis functions of
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e0 are [58]

ψ0,1 = 1− ξ
ψ0,2 = ξ.

In 2D spatial geometry, the spatial elements in 2D are chosen to be rectangular
in shape. The linear basis functions for these elements are used [58]. The surface
integral in 2D is a line integral. Also the angular integrals are line integrals over
θ ∈ [0, 2π[.

For simplicity the integrals over the basis functions are often computed using
numerical integration techniques such as Gaussian quadrature [58], in which the
integral is approximated with a finite sum

∫

e0

f =

n∑

i=1

wifi,

where wi are weighting coefficients and fi is the value of f at a specific integration
point. The coefficients and integration points depend on the shape of the master
element e0([58, 166, 20]).

4.7.6 Krylov subspace methods and parallel computing

The linear systems (4.53), (4.59), (4.67) and (4.72) contain matrices, which are
large and sparse. The integral term in the BTE causes the matrices contain much
more nonzeros than a typical differential equation with the same number of un-
knowns. Typically, the resulted big matrix is too big for the computer memory
or it is at least too expensive to form the whole matrix. Therefor special meth-
ods are needed to handle the resulted big matrices. One possibility is to use
Krylov subspace methods for solving the linear system Ax = b [181, 82, 102, 157].
m−dimensional Krylov subspace is spanned by a given vector x0, and increasing
powers of A applied to x0, up to the (m− 1)−th power, that is

Km(x0, A) = span{x0, Ax0, ..., A
m−1x0}.

In the Krylov space, the matrix free methods are possible, i.e. one does not need
to construct the whole matrix A, instead only the product of the matrix A and the
iterate xi and sometimes the product ATxi are needed. In the case of BTE, the
matrix A is constructed of smaller matrices including matrices for spatial, angular
and energy grids. These matrices can be computed beforehand and the products
Axi and ATxi can be computed using these smaller matrices, for example. These
computations can be divided into several parallel computers, which speeds the
calculations.

To solve the linear system using Krylov subspace methods, one can use for ex-
ample a Portable, Extensible Toolkit for Scientific Computation -package (PETSc)
[69], which is a library for the numerical solution of partial differential equations
and related problems on high performance computers. It is designed for large-scale
applications on parallel or serial computers and it uses Message Passing Interface
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(MPI) standard for all message-passing communication. In PETSc, the matrix free
method has several options for example conjugate gradient, bi-conjugate gradient,
generalized minimal residual and least squares method [181, 80].

4.8 Photon incident simulations for the coupled system

Photon traveling in water was simulated using two coupled B-CSDAEs describing
photons and electrons. Positron production was neglected. For two coupled B-
CSDAEs the linear hull Xh = [(φ1, 0), (φ2, 0), ..., (φN , 0), (0, φ1), ..., (0, φN )] and
the finite element approximation

ψh(x, E,Ω) =

N∑

k=1

(αk, αk+N )
T
φk(x, E,Ω)

in 3D and in 2D

ψh(x, E, θ) =
N∑

k=1

(αk, αk+N )
T
φk(x, E, θ).

In the photon incident simulation, the linear system is of the form

(
Ar

1→1 D2→1

D1→2 Ar
2→2

)
α =

(
b
0

)
, (4.77)

where α = (α1, ..., α2N )T. The matrices Ar
j→j and Dj′→j (j, j′ = 1, 2) are defined

in 3D by equations (4.60) and (4.56), respectively. The vector b is obtained from
b = MbΨ0, where Mb is defined by equation (4.58). In 2D, the matrices Ar

j→j ,
Dj′→j and the vector b are defined at the end of the Section 4.7.3 at page 72.

At the energies around several MeVs the Compton effect (see Section 2.3.1) is
the main scattering event, which slows down photons and changes them to elec-
trons. In the coupled system simulations, the maximum energy of the incident
photon was around 10 MeV and only Compton effect was taken into account i.e.

σ1→1 = d2σC

dEdΩp
, σ1→2 = d2σC

dEdΩe
, which were defined by equations (2.13) and (2.15)

to describe the photon interactions. The total cross sections for photons σ1 at
different energies was obtained from the databases [19]. The electron inelastic
scattering was included and the bremsstrahlung and elastic scattering were ig-
nored. The bremsstrahlung production neglection means that σ2→1 = 0. The
electron inelastic interactions were handled by using the restricted cross sections

σr
2→2 = d2σIe

dEprdΩpr
+ d2σIe

dEsdΩs
(defined by equation (2.19) with E ≤ Ecut,ke

and (2.20)

with E ≥ Ecut,ke
). The cut-off energy was selected such that for incoming particle

with energy Eke
the cut-off energy Ecut,ke

= Eke
−Eke−2, where Eke−2 is a lower

energy node, when the nodes Eke
are ordered in increasing order for increasing

ke = 1, .., Ne. This means that primary particle catastrophic collisions were those,
in which the energy after scattering was less or equal to Eke−2 and secondary par-
ticle catastrophic collisions were those, in which the energy after scattering was
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more than Ecut,ke
. The restricted total cross section σr

2 was computed by integrat-
ing the restricted differential cross sections over angle and energy. In 2D, the total
and restricted total cross sections were multiplied by π to take into account the
scattering out of the plane. The restricted stopping power τ r

2 for electron was ob-
tained as described in Section 2.6. The resulted τ r

2(x, E) was non-monotonic with
respect to energy and it was approximated to be constant to fulfill the condition
(4.28). Because the equation for electrons in B-CSDAE include the differential
term with respect to the energy variable, an initial energy point for the electron
flux had to be defined. This additional condition was defined by equation (3.33)
and it was accounted by adding one extra energy node at point E = 11 MeV and
assigning the photon and electron flux values zero at those points by removing the
specific rows and columns from the linear system (4.77).

An MC simulation was computed using the EGSnrcr code system in a normal
PC (2 GHz Pentium with 2 GB memory) to be compared with the FEM simulation
results in 2D and 3D. Because the MC simulation could only be done in 3D, the
simulation was ran in a [−5, 5]×[−5, 5]×[0, 20] cm3 water tank and the results were
compared to 2D simulation results by considering a 0×[−5, 5]×[0, 20] cm2 slice as a
2D data. The incoming photon beam was directed to [−2, 2]× [−2, 2]×0 cm2 area.
The energy spectrum of the incoming beam was such that the maximum energy
was 10 MeV and the energy spectrum decreased linearly from one to zero, when E
went from 10 MeV to 8.35 MeV. 5 ·106 photon histories were run. The photon and
electron flux data were obtained from the scoring planes, which were perpendicular
to the incoming beam. The data was scored from the planes of area of [−1, 1] ×
[−1, 1] cm2 under the incident beam. The computations took approximately six
hours. The bremsstrahlung process was excluded to be comparable with FEM
simulation results. The results of the MC simulation are presented in Figure 4.4.

All the forward problem FEM simulations presented in this thesis were com-
puted in two steps. First the smaller matrices, in which the linear system could
be constructed using Kronecker tensor product, were generated using MATLABr

in a normal PC (2 GHz Pentium with 2 GB memory). These matrices were then
written to files in a sparse matrix format. Then the resulted linear system was
solved using PETSc and Krylov subspace matrix free methods in a PC cluster, in
which 13 2.99 GHz Pentium IV processors were connected in parallel with 48.2
GB of total memory. The least-squares solution algorithm without precondition-
ing was used from the PETsc package for solving the linear system with Krylov
methods [69].

photon1 2D

The first simulation was made in 2D spatial geometry in a [−5, 5] × [0, 20]cm2

domain, which consisted of water. The incoming photon flux was located at the
center of [−5, 5]cm interval such that Γ ∈ [−2, 2]cm, see Figure 4.5. The number
of spatial nodes was Ns = 357. The angular domain was divided into 64 evenly
distributed elements, θ ∈ [0, 2π[ (No = 64). In the incoming flux Ψ0, only the
forward node (θ = 0) had nonzero value. Thus, the angular spectrum decreased
linearly from 1 to 0, when θ went from 0 to the adjacent nodes θ = 2π/64 and
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Figure 4.4: The photon incident MC simulation results in 3D. On the upper left

corner there is the angle and energy integrated photon flux ψI
1|x1=0(x)(cm−2) at

the central slice (x1 = 0). On the upper right corner there is the energy spectrum

of the photon flux ψE
1 |x1=x2=0(x, E)(cm−2MeV−1) with respect to the x3-axis.

On the lower left corner there is the angle and energy integrated electron flux

ψI
2|x1=0(x)(cm−2). On the lower right corner there is the energy spectrum of the

electron flux ψE
2 |x1=x2=0(x, E)(cm−2MeV−1). The MC flux results are presented

per incident particle.
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Figure 4.5: On the left there is the spatial grid in a homogeneous domain. The

black circles at the bottom of the spatial grid illustrate the source nodes. On

the upper right corner there is the angular spectrum of the source for the first

FEM simulation (line) and for the second FEM simulation (dots). Below that,

the energy spectrum of the source is shown with energy nodes as dots.

θ = 2π − 2π/64. The energy domain E = [0.1, 11] MeV was divided into nine
elements (Ne = 10). The energy spectrum of the incoming flux presented 10 MeV
photons, thus the energy spectrum decreased linearly to zero when E went from
node E = 10 MeV to the adjacent nodes E = 8.35 MeV and E = 11 MeV. The
spatial grid and source information is shown in Figure 4.5. The total number of
unknowns was N = 2Ns(Ne − 1)No = 411264.

In the first photon incident simulation, the MATLABr computations took
approximately 8 minutes and the cluster computations took 3.7 hours. The
desired residual (10−6) was received after 6384 iterations. The solved inte-
grated photon ψI

1(x)(cm−2) and electron ψI
2(x)(cm−2) fluxes (angle and energy

integrated fluxes) are shown in Figure 4.6. In the same figure, also the pho-
ton ψE

1 |x2=0(x, E)(cm−2MeV−1) and electron ψE
2 |x2=0(x, E)(cm−2MeV−1) energy

spectra (angle integrated fluxes) with respect to x3-axis are shown. The FEM sim-
ulation results are normalized to match to the MC simulation data near the source.
With the same normalization the electron flux FEM results are also multiplied by
five to be comparable with the MC results.

photon2 2D

In the second photon incident FEM simulation, the angular domain was divided
only in eight evenly distributed elements (No = 8). In the incoming flux Ψ0, only
the forward node (θ = 0) had nonzero value and the angular spectrum decreased
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Figure 4.6: Results for PHOTON1 2D simulation. On the upper left cor-

ner there is the angle and energy integrated photon flux ψI
1(x)(cm−2). On

the upper right corner there is the energy spectrum of the photon flux

ψE
1 |x2=0(x, E)(cm−2MeV−1) with respect to the x3-axis. On the lower left

corner there is the angle and energy integrated electron flux ψI
2(x)(cm−2).

On the lower right corner there is the energy spectrum of the electron flux

ψE
2 |x2=0(x, E)(cm−2MeV−1).
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linearly from 1 to 0, when θ went from 0 to the adjacent nodes θ = 2π/8 and
θ = 2π − 2π/8. The spatial grid (Ns = 357), spatial source nodes, energy spec-
trum and energy grid (Ne = 10) were the same as in the first photon incident FEM
simulation in 2D (Figure 4.5). The total number of unknowns was N = 51408.
The MATLABr computations took approximately 1 minute and the cluster com-
putations took 14 minutes with 1500 iterations, reaching the residual of 10−6. The
photon and electron flux results are presented in Figure 4.7. The FEM results are
normalized to match the MC data near the source. With the same normalization
the electron flux FEM results are also multiplied by ten to be comparable with
the MC results.

photon1 3D

The third photon incident simulation was made in a 3D water tank, size of 10×10×
20 cm3. The tank was divided into cubic elements. The photon source was directed
to [−2, 2]× [−2, 2]×0 cm2 area. The number of spatial nodes was Ns = 1029. The
angular domain S was approximated by triangular elements with No = 66 being
as the angular grid in Figure 4.2 (b and c). In the incoming flux, only the forward
node (θ = 0) had nonzero value 1, and the angular spectrum decreased linearly to
the nearest nodes θ = π/8 (ϕ ∈ [0, 2π[) being symmetric in ϕ. The spatial grid
with source elements and the angular spectrum of the source are shown in Figure
4.8. The energy domain and the energy spectrum of the source was the same
as in the previous 2D simulations (Figure 4.5), but now with a finer energy grid
Ne = 13. The total number of unknowns was then N = 1629936. The MATLABr

computations took approximately 40 minutes and the cluster computations took
approximately 59 hours with 5551 iterations in order to reach the desired residual
10−6. The integrated photon and electron fluxes and energy spectra are shown
in Figure 4.9. The simulation results are normalized to match the MC data near
the source. With the same normalization the FEM electron flux results are also
multiplied by four.

photon2 3D

In the fourth photon incident FEM simulation, the computations were made at
the same spatial grid as in the previous 3D simulation (Ns = 1029), but now
the source was modeled to be more forward peaked (No = 66). Thus, only the
forward node (θ = 0) had nonzero value at the source value vector Ψ0. To model
better the forward directed source the nearest angular nodes to the forward node
were moved to points, in which θ = 0.1, ϕ remained the same. The spatial grid
with source elements, the angular grid and the source angular spectrum are shown
in Figure 4.8. The energy domain was as in the previous FEM 3D simulation
(Ne = 13). The total number of unknowns was N = 1629936. The MATLABr

computations took approximately 40 minutes. The convergence rate in solving
the linear system was poor and the cluster computations took approximately 110
hours when the maximum number of iterations (10000) was received with residual
10−5. The integrated photon and electron fluxes and energy spectra are shown in
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Figure 4.7: Results for PHOTON2 2D simulation. On the upper left cor-

ner there is the angle and energy integrated photon flux ψI
1(x)(cm−2). On

the upper right corner there is the energy spectrum of the photon flux

ψE
1 |x2=0(x, E)(cm−2MeV−1) with respect to the x3-axis. On the lower left

corner there is the angle and energy integrated electron flux ψI
2(x)(cm−2).

On the lower right corner there is the energy spectrum of the electron flux

ψE
2 |x2=0(x, E)(cm−2MeV−1).
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Figure 4.10. The simulation results are normalized to match the MC data near
the source. With the same normalization the FEM electron flux results are also
multiplied by three.

For better comparison of the simulations, the integrated photon and electron
fluxes are drawn with respect to x3-variable in Figure 4.11 for all photon incident
simulations. In Figure 4.12, the average doses with respect to depth (x3-axis) are
also shown for all photon incident simulations.

4.9 Discussion for the photon incident simulations

The photon incident forward problem was simulated using two coupled B-CSDAEs.
The coupled system of BTEs is not used here, because the electron interactions
would require very dense spatial grids and make the computations impossible in
these geometries with the used methods. With the B-CSDAEs the electron inter-
actions are handled with restricted cross sections and restricted stopping powers,
which enables to use sparser spatial grids. The FEM simulations are compared
with earlier ran MC results, in which the energy spectrum of the incident beam
was slightly different from the one in FEM simulations. However, it is assumed
that this has only minor effect on the results of the simulations.

In the PHOTON1 2D simulation, the coupled system was solved in 2D spatial
domain with very fine angular mesh. When comparing these results (Figure 4.6)
to the MC results (Figure 4.4), it can be seen that the PHOTON1 2D results are
in quite good agreement with the MC data. This can also be seen in Figures 4.11
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Figure 4.9: Results for PHOTON1 3D simulation. On the upper left corner

there is the angle and energy integrated photon flux ψI
1|x1=0(x)(cm−2) at the

central slide (x1 = 0). On the upper right corner there is the energy spectrum

of the photon flux ψE
1 |x1=x2=0(x, E)(cm−2MeV−1) with respect to the central

x3-axis. On the lower left corner there is the angle and energy integrated electron

flux ψI
2|x1=0(x)(cm−2). On the lower right corner there is the energy spectrum

of the electron flux ψE
2 |x1=x2=0(x, E)(cm−2MeV−1).
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Figure 4.10: Results for PHOTON2 3D simulation. On the upper left corner

there is the angle and energy integrated photon flux ψI
1|x1=0(x)(cm−2) at the

central slide (x1 = 0). On the upper right corner there is the energy spectrum

of the photon flux ψE
1 |x1=x2=0(x, E)(cm−2MeV−1) with respect to the central

x3-axis. On the lower left corner there is the angle and energy integrated electron

flux ψI
2|x1=0(x)(cm−2). On the lower right corner there is the energy spectrum

of the electron flux ψE
2 |x1=x2=0(x, E)(cm−2MeV−1).



4.9 Discussion for the photon incident simulations 91

0 5 10 15 20
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
MC
PHOTON1_2D
PHOTON2_2D
PHOTON1_3D
PHOTON2_3D

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10−3

PSfrag replacements

x3(cm)x3(cm)
ψ

I 2
| x 1

=
x

2
=

0

ψ
I 1
| x 1

=
x

2
=

0

Figure 4.11: All the photon incident FEM and MC simulation results. On the

left there are the angle and energy integrated photon fluxes ψI
1|x1=x2=0(x)(cm−2)

at the central axis with respect to depth x3. On the right there are the angle and

energy integrated electron fluxes ψI
2|x1=x2=0(x)(cm−2) with respect to depth x3.

The FEM and MC results are normalized to have the same value at the depth

x3 = 6 cm.

and 4.12. The integrated photon flux ψI
1 in the FEM results spreads more to the

x2 direction at the depth x3 = 20 cm than the MC photon flux. This error is
probably caused by the differences at the incident sources. In the MC simula-
tion, the incident photons were forward directed and the intensity of the incident
photon beam was not modulated. Thus, the incident beam has sharp intensity
profile at the edge of the incoming boundary. In the FEM simulations, incident
photons had small angular deviation, although it was selected to be small, and
the source spatial edges were modeled according to the spatial grid and decreased
linearly, when x2 went from the outermost source node to the nearest non-source
node. This spreading can also be seen from the integrated electron flux ψI

2 in
Figure 4.6. The photon energy spectrum ψE

1 of the PHOTON1 2D results differ
also at the small energies, in which the MC data has small integrated flux val-
ues. This is probably caused by the coarse energy mesh and by the neglection
of the photon elastic scattering and the photoelectric effect and also because the
minimum energy was 0.1 MeV in the PHOTON1 2D simulation. The differences
in between the PHOTON1 2D and MC results in the electron energy spectrum
ψE

2 are probably caused by the coarse energy mesh and by the use of the CSDA
for the forward peaked electron scattering. Also the neglection of electron elastic
scattering causes some error in the PHOTON1 2D electron flux. Also here the 2D
PHOTON1 2D data is compared to the 3D MC data, which alters the results, be-
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cause the scatterings from the surroundings are neglected in 2D results. However,
despite of these errors and comparison difficulties, the PHOTON1 2D simulation
results show that the radiotherapy forward problem can be solved quite accurately
using FEM in 2D.

In PHOTON2 2D, the angular spectrum of the source nodes was sparser than
in PHOTON1 2D simulation. PHOTON2 2D simulation was run to demonstrate
the effect of wider angular source distribution. The reason, why in PHOTON1 2D
simulation the angular mesh was divided into 64 evenly distributed elements, was
to model the forward directed source, which was the case in the MC simulation.
When the angular spectrum is wider the MC results are not comparable with
the PHOTON2 2D results, because in the MC code it was not possible to change
the angular distribution without using some scatterer, which would also create
incoming electrons. The effect of wider angular spectrum can be seen from PHO-
TON2 2D simulation results (Figure 4.7), in which the integrated angular fluxes
decrease much faster than the integrated fluxes with more peaked source (Figure
4.6). This is evident because with wider angular spectrum a greater part of the flux
is directed out of the central axis and thus the spreading at the deeper depths is
greater in both integrated photon and electron fluxes in PHOTON2 2D simulation
results than those in PHOTON1 2D simulation results. From Figure 4.11 it can
be seen that with wider angular distribution of the source, the integrated photon
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flux (with respect to depth) decrease near the source boundary much faster than
the MC or the PHOTON1 2D results. The PHOTON2 2D integrated electron
flux also increases faster near the source boundary and decreases faster at deeper
depths than the MC or the PHOTON1 2D results.

The MC simulation was run in a 3D geometry and some of the FEM simulations
were done in a 2D geometry. In 2D geometry, the scattering out of plane is
neglected, which may cause some inaccuracy in the results. However, these are
thought to be minor due to fact that the scattering from other parts than the
plane is only minor or at least the neglection of the scattering out of the plane
and to the plane does not change the shape of the particle fluxes at that plane
in homogeneous domain. Also these issues are not essential for the purpose of
this study, which is to demonstrate the use of transport equation in radiotherapy
purposes and not to use it as an accurate dose calculation procedure. These 2D
simulations are shown here to demonstrate that FEM is suitable in simulating the
transport of ionizing radiation with transport equations. However, the simulation
in natural 3D geometry is very important and that is why PHOTON1 3D and
PHOTON2 3D simulations were carried out in 3D spatial geometry. In 3D, it
was not possible to use as fine angular mesh as in the first simulation and the
effect of wider angular spectrum is seen in the PHOTON1 3D simulation results
(Figure 4.9). However, these results show that FEM can be used in actual 3D
geometry to solve the transport equations for radiotherapy purposes, but so far
the computations are too expensive to model forward peaked sources with finer
angular mesh. In the depth flux curves in Figure 4.11, one sees oscillations in
PHOTON1 3D simulation results. It might indicate that the spatial and angular
grids are too sparse. This oscillation is almost disappeared in PHOTON2 3D
simulation with more forward directed source.

In PHOTON2 3D simulation, the forward directed source was modeled by re-
ordering the nodes on a sphere. The resulted disordered angular mesh may not
be the best option, because it does not consider scatterings from other directions
equally. Also the used angular mesh with small element in the forward direction
clearly increased the number of iterations in finding the solution, which indicate
that the system is numerically unstable. Here the reordering of the angular nodes
was just used to demonstrate that with more forward peaked scattering the ob-
tained PHOTON2 3D results in Figure 4.10 are quite close to the MC results,
which can be seen better from Figures 4.11 and 4.12. Small oscillation can be seen
also from PHOTON2 3D results, which may indicate that the spatial grid is too
sparse.

In the coupled system simulations, the FEM results are normalized to agree
with the MC results at a specific point. This is done for both photon and electron
fluxes. At first it was assumed that only the normalization of photon flux would
be enough and that the same normalization factor could be used for the electron
flux. However, with the same normalization the FEM simulation electron fluxes
had to be multiplied by some value between five to ten depending on the angular
grid to make the FEM results comparable with the MC results. This is something
that is not clearly understood. The shape of the electron flux from the FEM
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results is the same, but its magnitude is less than the electron flux from the MC
results. It may be caused by the fact that photon Compton scattering is delta-
shaped and this is approximated in a mesh, in which the data has always some
width. The cross section data is normalized to fulfill the coercivity condition,
which may cause these errors to the computations. This data normalization can
be accounted, when computing the dose from the electron flux values, because if
the same normalization is used for all scattering data, then the resulted fluxes could
be handled according to this normalization. Further, because no exact dose was
sought in the simulations, these normalization issues are not the main concerns.

As a conclusion of this discussion, one can say that all the photon incident simu-
lations indicate that FEM can be used in solving the coupled system of B-CSDAEs.
Although problems exists in the simulation of the forward directed sources in 3D,
these problems are mainly computational and may disappear with more powerful
computers. Also it is worth noting that no preconditioning were used in the com-
putations. The use of preconditioning would decrease the computational times
significantly.

4.10 Electron incident simulations for one B-CSDAE

The electron traveling in medium was simulated using one B-CSDAE in 3D. The
photon production via bremsstrahlung event was neglected. Also positron produc-
tion was neglected. The linear hull was Xh = [φ1, ..., φN ] and the finite element
approximation of the electron flux was

ψh(x, E,Ω) =
N∑

k=1

αkφk(x, E,Ω).

The system of linear equations (4.49) reduced to Ar
2→2α = b, where α =

(α1, ..., αN )T and Ar
2→2 was obtained from equation (4.60) and b = MbΨ0, where

Mb was achieved from equation (4.58).
The electron incident simulations were done in a 3D geometry having simi-

lar spatial domain as in the coupled system 3D simulation in water (Figure 4.8)
with Ns = 1029. The angular domain consisted of triangular elements with one
refinement of the octahedron as shown in Figure 4.2 (a). The source was as-
sumed to have a direction to the positive x3−axis. Thus, only the forward nodes
(θ = 0, ϕ ∈ [0, 2π[) received nonzero value at the source value vector Ψ0 and
the source angular spectrum decreased from 1 to 0, when θ went from 0 to ad-
jacent node 0.79. The number of angular nodes was No = 18. The energy in-
terval I = [0.1, 11] MeV was divided into 12 sub-intervals (Ne = 13) and the
last node was removed from the linear system to take into account the condition
(3.33). The energy spectrum of the source nodes was the same as in the previ-
ous photon incident simulations (Figure 4.5). The total number of unknowns was
N = Ns(Ne − 1)No = 222264. The electron elastic scattering was also neglected
and only the inelastic scattering was considered. Thus, σr

2→2 and σr
2 were the

same as in the photon incident simulation in Section 4.8 with similarly defined
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Figure 4.13: The MC electron incident simulation results at the depths of

x3 = 1, 2, 3, 4, 5, 6 cm. On the left is the angle and energy integrated electron

flux ψI
2|x1=0(x)(cm−2) at the central slice. On the right is the angle integrated

electron flux ψE
2 |x1=x2=0(x, E)(cm−2MeV−1). The MC results are presented per

incident particle.

cut-off energy Ecut,ke
. Also the restricted stopping power τ r

2 was approximated to
be constant with respect to energy to fulfill the condition (4.28).

An MC simulation was run similarly as in Section 4.8, but now for the electron
incident flux with electron spectrum as in Figure 4.5. The MC computations took
approximately four hours in a normal PC (2 GHz Pentium with 2 GB memory)
and the results are shown in Figure 4.13.

electron1

For the first electron incident FEM simulation, the MATLABr computations took
approximately 9 minutes and the cluster computations took 1.3 hours. The number
of iterations needed to solve the linear system was 2377 with the residual of 10−6.
The integrated electron flux at the central slice (x1 = 0) and the energy spectrum
at the central axis (x1 = x2 = 0) are shown in Figure 4.14.
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Figure 4.14: ELECTRON1 simulation results. On the left there is the angle

and energy integrated electron flux ψI
2|x1=0(x)(cm−2) at the central slice. On the

right there is the angle integrated electron flux ψE
2 |x1=x2=0(x, E)(cm−2MeV−1)

at the depths of x3 = 0, 1, 2, 3, 4, 5, 6, 7 cm. The results are normalized to be

equal with the MC results near the source.

electron2

In the second electron incident FEM simulation, the stream-line diffusion was used
to stabilize the linear system. For one B-CSDAE the linear system with stream-
line-diffusion method is of the form Ar,sd

2→2α = b, where now Ar,sd
2→2 is obtained from

equation (4.73). The factor δ2
l,k was selected according to equation (4.63) with

c = 1, hence δ2
l,k = 0.01. The MATLABr computations took approximately 9

minutes and the cluster computations took 1.5 hours with 1166 iterations to obtain
the desired residual of 10−6. The integrated electron flux and energy spectrum
are shown in Figure 4.15. For better comparisons the integrated electron flux for
all electron incident simulations with respect to x3-variable at the central axis
(x1 = x2 = 0) is shown in Figure 4.16.

4.11 Discussion for the electron incident simulations

The transport of high energy electrons was simulated using one B-CSDAE in 3D
geometry. The use of one equation instead of three coupled equations means



4.11 Discussion for the electron incident simulations 97

0
5

10−5

0

5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0

5
0510

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

PSfrag replacements

x2(cm)

x3(cm)x3(cm) E(MeV)

ψ
I 2
| x 1

=
0

ψ
E 2
| x 1

=
x

2
=

0

Figure 4.15: ELECTRON2 simulation results, when the stream-line diffusion

method was used. On the left there is the angle and energy integrated elec-

tron flux ψI
2|x1=0(x)(cm−2) at the central slice. On the right there is the an-

gle integrated electron flux ψE
2 |x1=x2=0(x, E)(cm−2MeV−1) at the depths of

x3 = 0, 1, 2, 3, 4, 5, 6, 7 cm. The results are normalized to be equal with the MC

results near the source.

that positron and photon productions are neglected. The neglection of photon
production causes small error in the results. Also the use of B-CSDAE in electron
incident simulation causes errors to results, because the momentum transfer χ
(defined by equation (3.25)) is neglected. These errors are thought to be minor to
demonstrate that the transport of electrons work in general.

When comparing the angle and energy integrated fluxes ψI
2 and energy spec-

trum ψE
2 in Figures 4.13-4.15, it can be seen that the FEM results have similarities

with the MC results. Most of differences can be found at the energy spectrum at
small energies, in which the MC energy spectrum highly increases. In FEM simu-
lations this can not be seen. This error in FEM results is probably because of the
CSDA approximation for small energy transfers and the neglection of the electron
elastic scattering.

The effect of more wider source angular spectrum can be seen in FEM ψI
2

results, in which at the depth x3 = 3 cm the flux is slightly spread in x2 direction.
This spreading also causes the depth flux in FEM results in Figure 4.16 to decrease
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Figure 4.16: The angle and energy integrated electron fluxes

ψI
2|x1=x2=0(x)(cm−2) with respect to x3-variable at the central axis for

ELECTRON1 and ELECTRON2 simulations. The MC data is normalized such

that it equals the ELECTRON2 simulation results at depth x3 = 1 cm.

much rapidly than the MC results. However, this spreading is much smaller than in
the photon incident simulations, which were very sensitive to the source angular
spectrum. Probably this is because of the different scattering behavior. The
electron scattering is much more forward peaked than the photon scattering. Also
because of the CSDA, more sparser spatial grids can be used. Thus, the problems
that arose from too sparse spatial grids in photon incident simulations are not seen
in these electron incident simulations.

The electron incident simulations demonstrate well the effect of the energy
differential term in B-CSDAE. In photon incident simulations in Section 4.8, the
photon equation does not have the energy differential term and the photon energy
spectrum (Figures 4.6, 4.7 and 4.9) show that the photons travel through the
medium almost at the same energy. In electron incident simulations in Section
4.10, the energy differential term decreases the energy of the electrons while they
travel through the medium (see the energy spectrum in Figures 4.14 and 4.15).
The energy differential term may cause some instability in the solutions, in which
oscillating values near zero are obtained in the areas where the energy spectrum
should be zero. This can be seen mostly at the boundary of the incoming beam, but
smaller oscillations are also present for example the energy spectrum in Figure 4.14
at the depth of x3 = 6 cm and energy over 5 MeV, in which the energy spectrum
should be zero. These oscillations produce negative values to the angle and energy
integrated flux ψI

2 for example at the depth of x3 = 6 cm. These negative values
can also be seen in Figure 4.16, in which the first electron incident integrated flux
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is negative at the depth of x3 = 6 cm.
The stream-line diffusion method clearly stabilized the solution of the linear

system in ELECTRON2 simulation. The energy spectrum in Figure 4.14 without
stream-line diffusion oscillates highly at the boundary x3 = 0 cm. With stream-line
diffusion these oscillations are almost disappeared in Figure 4.15. The negative
flux values at energy spectrum are still present, but these are small. With the
stream-line diffusion method the negative integrated flux values disappear (Figure
4.16). Also the number of iterations needed in finding the solution of the linear
system was decreased to half. However, the matrix-free algorithms with Krylov
methods increased the computational times, because one matrix-vector calculation
took more time than what it took without stream-line diffusion method in the
ELECTRON2 simulation. The calculation of the matrix-vector product should be
implemented differently to make the stream-line diffusion method more powerful.
Here it was used to demonstrate the effect of the method and was added to the
earlier made code and that is why the computation time increased although the
number of iterations decreased.

From the mathematical point of view the instabilities occur because the coer-
civity requirements were only weakly fulfilled. For example, increasing the total
cross section makes the system more stable and oscillations are removed, but of
course then the results do not correspond to electron traveling. Also, it was found
that the B-CSDAE is very sensitive to the shape of the restricted stopping power.
Although the condition (4.37) for the restricted stopping power suggests that the
coercivity condition (4.28) is fulfilled for decreasing or constant function, it seems
that not all decreasing functions are valid. For example high negative gradients
at the restricted stopping power caused undesired oscillations in the results. For
these reasons the restricted stopping power was approximated to be constant with
respect to the energy in the simulations. However, this is not a poor approxima-
tion, because the restricted stopping power alter only slightly at high energies and
the high negative gradient occur only at the lowest energies.

One could assume that the neglection of electron elastic scattering is an impor-
tant cause for the errors to the results. If electron elastic scattering is considered
directly, then one should select the spatial grid such that approximately the length
of the grid equals the electron elastic scattering mean free path, which is the in-
verse of the elastic scattering cross section and is approximately few millimeters
[67]. The resulted dense spatial grids are not yet possible because of the memory
limits (at least in 3D) and some special methods has to be used when electron
elastic scattering is considered. In MC, electron elastic scattering is usually con-
sidered with electron multiple scattering theories [104, 22], which could probably
be used in deterministic transport codes when formulated properly.

The given simulations suggest that FEM can be used in solving one B-CSDAE
to simulate electron traveling in a medium. The used stream-line diffusion method
stabilized the linear system, although the stream-line parameter should be selected
carefully. Also here the use of preconditioning would shorten the computational
times.



Chapter V

Radiotherapy inverse problem with FEM

The aim of the conformal radiotherapy is to achieve a dose distribution, in which
the high dosage volume conforms the planning target volume (PTV), while other
healthy tissues and organs achieve as low dose as possible [188, 189]. To do this
one assigns criteria to the dose at certain locations at the patient domain. Thus, in
external radiotherapy inverse problem one knows the desired dose or particle flux
distribution in the patient and the problem is to find the optimal dose distribution
by defining the field intensity or incoming particle flux at the patient surface or
defining the field arrangements and settings i.e. defining the treatment plan.

In this chapter, the radiotherapy inverse problem using the BTEs and FE dis-
cretization with a control approach is presented. In Section 5.1, the optimization
criteria and related physical objective function are presented. In Section 5.2, the
variational forms for the inverse problem are derived. In Section 5.3, the optimal
control approach is used by omitting the nondifferentiable terms of a cost function
in finding an initial guess for inverse radiotherapy treatment planning (IRTTP)
problem and by the approach of parametrization in finding optimal controls for
IRTTP problem. In Section 5.4, the finite element discretization is presented for
the control systems and in Section 5.5, the parametrization is implemented for the
discrete system applying singular value decomposition (SVD). In Section 5.7, the
optimal control methods are tested by simulations. The chapter ends with the
discussion of the simulations.

5.1 Optimization criteria

Typically physical or biological criteria are used in IRTTP problems [38]. Here
the physical criteria are considered. Similar theories can be used for biological
criteria. The patient domain V ⊂ R3 consists of a target volume T i.e. PVT,
which includes the tumor and some safety margin, critical organs’ region C and
normal tissue’s region N. Thus, the patient domain is a mutually disjoint union
V = T∪C∪N. The dose D(x) can be computed from the particle flux ψ(x, E,Ω)
using equation (2.1). One can assign several physical criteria for the dose. One

100
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can simply set [30]

D(x) = D0 x ∈ T (5.1)

D(x) = 0 x ∈ V \T, (5.2)

where D0 is a prescribed uniform dose in target T. The criterion (5.2) is unrealistic
since radiation must pass through healthy tissue to reach the tumor. That is why
one usually demands condition (5.1) with conditions

D(x) ≤ DC x ∈ C (5.3)

D(x) ≤ DN x ∈ N, (5.4)

where DC and DN are the upper bounds of the dose in critical organs C and
in normal tissue N, respectively. Instead of condition (5.1), one can demand a
feasibility condition

dT ≤ D(x) ≤ DT x ∈ T,

where dT andDT are the lower and upper bounds for the dose in PTV, respectively.
The corresponding solution is a feasible solution.

Also so called dose volume constraints can be used [30, 25], which may be
necessary for certain structures, for example for critical organs C. Dose volume
constraint states that the dose D(x) can not be greater than some prescribed dose
dC in a volume fraction v(D) which is smaller than some volume v0. Thus, the
dose volume constraint for critical organ C is

v(D) ≤ v0, when D ≥ dC, (5.5)

where v0 is a given volume fraction and dC is a given dose. This volume fraction
function v(D) is the same as is the dose-volume histogram often used in radiother-
apy physics [106]. It is a decreasing function of dose having v(0) = 1 and v(D) = 0
for sufficiently large D values, say D ≥ Dmax. The dose volume constraint (5.5)
is equivalent to

v(dC) ≤ v0,

which means that
µ({x ∈ C | D(x) ≥ dC})

µ(C)
≤ v0, (5.6)

where µ is the Lebesgue measure. Let H : R→ R be a Heaviside function

H(x) =

{
1, x ≥ 0

0, x < 0
.

Then the dose volume constraint (5.6) can be expressed as

1

µ(C)

∫

C

H(D(x)− dC)dx ≤ v0. (5.7)
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To make dose volume constraints more practical to handle in numerical calcula-
tions, condition (5.7) can be replaced by an approximation

1

NC

NC∑

p=1

H(D(xp)− dC) ≤ v0,

where p = 1, ..., NC are the indexes of the discretization points in critical organ
C. In computations, it is useful to replace the exact Heaviside function H by the
modified smooth function like

Ha(x) = erfε(x) :=
1√
πε

∫ x

−∞
e−s

2/ε2ds,

where ε is a small number or by the functions like

Ha(x) = C1 + C2arc tan(C3x)

Ha(x) = C1 + C2 tanh(C3x),

where the constants Cj (j = 1, 2, 3) are selected such that the function Ha(x)
approximates the Heaviside function.

5.2 Variational form

Now assume that one has L fields si, i = 1, ..., L. This could mean that the gantry,
couch and collimator angles are predetermined and the whole treatment has L
different angle settings. Instead of the traditional predetermination of the beam
directions, one could only preset L fields such that a field only defines a boundary of
the incoming beam and use the angle and energy as free variables in optimization.
Then the intensities of the directions and energies at different locations in the field
boundary could be used as a free variable in dose optimization. Basically this
means that a field consists of several subfields which could be treated for example
using tomotherapy as indicated in Figure 5.1.

Let the incoming flux distribution of the ith field si be ui. Denote the corre-
sponding disjoint patches of ∂V by Γi. The union Γ := ∪Li=1Γi is mutually disjoint.
Further define ui ∈ L2(Γi × I × S) and denote u = (u1, ..., uL) ∈ L2(Γ× I × S) :=
L2(Γ1 × I × S)× · · · ×L2(ΓL × I × S). The space L2(Γ× I × S) is equipped with
an inner product

〈u, ũ〉L2(Γ×I×S) =

L∑

i=1

〈u, ũ〉L2(Γi×I×S).

The effect of incoming fluxes (consisting of particles of type j (j = 1 or 2)) is
given by the functional

Fj(v) =
L∑

i=1

∫

S

∫

I

∫

Γi

(Ω · n)−uivjdsdEdΩ, (5.8)
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Figure 5.1: Schematic patient domain V with four fields si, (i = 1, ..., 4) on the

patient surface ∂V to demonstrate a tomotherapy approach, in which the field

si consists of several subfields whose directions and energies can be used in dose

optimization.

which is the same as in equation (4.10), but now for L different fields. The bilinear
forms B(ψ, v) or Br(ψ, v) are defined by equations (4.9) or (4.26), respectively. The
variational forms are then

B(ψ, v) = Fj(v), v ∈ H3 (5.9)

and

Br(ψ, v) = Fj(v), v ∈ H̃3. (5.10)

The total dose D = D(x) is obtained from the functional, which is defined by
equation (3.17). Now denote Dψ(x) := D(x). One finds that D is a linear operator
L2(G)3 → L2(V ).

In the following sections, the derivations are made for the coupled system of
BTEs. The derivations for the coupled B-CSDAEs can be done similarly by the
variational form (5.10) and using appropriate function spaces.

5.3 Optimal control problem

In this section, the radiotherapy inverse problem is considered with the optimal
control approach. Let F̃j : L2(Γ× I × S)→ (H3)∗ be an operator defined by

(F̃ju)(v) =
L∑

i=1

∫

S

∫

I

∫

Γi

(Ω · n)−uivjdsdEdΩ, (5.11)
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where j = 1, 2 indicate the incoming particle. From equation (5.8) one finds
(F̃ju)(v) = Fj(v). Now the solution ψ = ψ(u) satisfies the variational equation of
the coupled BTEs, which is of the form

B(ψ(u), v) = (F̃ju)(v), v ∈ H3. (5.12)

Since F̃j is a linear function of u, one can show by the uniqueness of solutions that
the solution ψ is a linear function of u as well. Furthermore, the dose functional
D is a linear function of ψ. One can show that ψ : L2(Γ × I × S) → L2(G)3 and
D : L2(G)3 → L∞(V ) are bounded operators. Hence, D is Fréchet differentiable
and D′ψ = D.

Now assume that in the treatment planning, the dose Dψ(u)(x) should be as
near as possible the described dose D0 in tumor and the upper bounds of the dose
in critical organs and normal tissue should not be violated. Hence, one tries to
optimize the dose distribution by selecting the incoming fluxes ui such that these
hold. The concrete implementation of this leads to the following optimization
problem.

Define a cost functional by

J(u) = c1||D0 −Dψ(u)||2L2(T) (5.13)

+ c2||(DC −Dψ(u))−||2L2(C)

+ c3||(DN −Dψ(u))−||2L2(N)

+ c4



(
v0 −

1

NC

NC∑

p=1

Ha(Dψ(u)(xp)− dC)

)

−




2

+ c5||(u)−||2L2(Γ×I×S) + c6||u||2L2(Γ×I×S),

where ci, (i = 1, ..., 6) are positive weights. The minimization of the second and
third terms tries to take care of the requirements (5.3) and (5.4), respectively.
Also the dose volume constraint is added. The notation ()− is the negative part of
the function. To keep the admissible control set as the whole space L2(Γ× I × S)
or its suitable linear subspace U a penalty term c5||(u)−||2L2(Γ×I×S) is added to

hinder the violation of the constraint ui ≥ 0. The last (convex) term regularizes
the schemes and helps the optimization process in theory and in numerical consid-
erations. The minimization of ||u||2L2(Γ×I×S) may also be of practical importance,
since it minimizes the incoming flux.

One can state the corresponding optimization problem to the coupled BTEs.
Find the minimum

min
u∈U

J(u) (5.14)

such that (5.12) is valid.
The optimal control u0 minimizes the cost functional J among the set, say

Uad, of admissible controls u [120, 59]. The well known necessary condition for
the optimal control u0 is that u0 satisfies equation (5.12) and that

J ′(u0)(u− u0) ≥ 0 for all u ∈ Uad. (5.15)
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In the case, where Uad is the linear space U (as in the case here), the condition
(5.15) reduces to

J ′(u0) = 0. (5.16)

In the case, where J is a convex function, the condition (5.16) is also sufficient
for the optimal control. The functional J given by (5.13), however contains also
non-convex terms.

5.3.1 Initial solution for the optimal control approach

This optimal control approach is presented in [176], which is based on the (Fréchet)
differentiable approximation of a cost functional J (defined by equation (5.13), for
example). Then J is differentiable and a system of nonlinear equations is resulted.
Because of the nonlinearities the resulted discretized system has to be solved with
iterative techniques such as Newton iteration schemes [82] and a good initial guess
is a necessity in finding the solution of the nonlinear system. Here the initial
solution is considered using a convex quadratic cost functional

J0(u) = c1||D0 −Dψ(u)||2L2(T) + c6||u||2L2(Γ×I×S). (5.17)

Before the theory of the initial solution can be presented, the following opera-
tors are defined. Let A be a Lebesgue measurable subset of V . Furthermore, let
eA be the ”extension by zero operator” from a set A on V i.e eAf = f(x), x ∈ A
and eAf = 0, x ∈ V \A. An adjoint D∗ of the operator D is defined to satisfy the
following equation

〈f,Dg〉L2(V ) = 〈D∗f, g〉L2(G)3 , g ∈ L2(G)3.

Now the adjoint D∗ : L2(V )→ L2(G)3 of D (with the definition for the dose given
in equation (3.17)) can be computed and

D∗w = (0, τ Ie
2 w, τ

Ie
3 w), w ∈ L2(V ).

In addition, the adjoint F̃ ∗j : (H3)∗ → L2(Γ × I × S)(≈⊕L
i=1 L2(Γi × I × S)) of

F̃j (defined by equation (5.11)) is

F̃ ∗j v =
(
rΓ1

((Ω · n)−vj), ..., rΓL((Ω · n)−vj)
)
, (5.18)

where rΓi is the restriction operator on Γi.
The existences of the solutions of the variational problem (4.8) is discussed

in Section 4.4. The assumptions of Theorem 1 imply sufficient conditions for the
existence of the variational solutions ψ ∈ H3. Moreover, it can be proven that
the solution is unique. Similar considerations can be made for the variational
problem defined by equation (4.8) and one can prove that the adjoint problem
B(v, ψ∗) = F̂jv has a unique solution ψ∗ ∈ H3. F̂jv is defined later in the
definition of the adjoint problem in equation (5.21) by an inner product.

Now one possibility for the initial guess in radiotherapy optimization is to use
the solution of the following control problem.
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Theorem 5 Let the assumptions in the Theorem 1 be valid. Define the cost func-
tional J0 by equation (5.17). Then the optimal boundary control is

u0 =
1

c6
F̃ ∗ψ∗, (5.19)

where ψ∗ is uniquely obtained from equations

B(ψ, v) = 1
c6
F̃ (F̃ ∗ψ∗)(v), v ∈ H3 (5.20)

B(v, ψ∗) = c1〈v,D∗eT(D0−Dψ)〉L2(G)3 , v ∈ H3. (5.21)

Proof. The cost function J0 is now convex and condition (5.16) is necessary
and sufficient for the optimal control. Denote

J1(u) := 〈D0 −Dψ(u), D0 −Dψ(u)〉L2(T),

J2(u) := 〈u, u〉L2(Γ×I×S).

Then
J0(u) = c1J1(u) + c6J2(u),

whose derivative respect to u is

J ′0(u)w = c1J
′
1(u)w + c6J

′
2(u)w,

where

J ′1(u)w = −2〈D0 −Dψ(u),Dψ(w)〉L2(T)

= −2〈D∗eT(D0 −Dψ(u)), ψ(w)〉L2(G)3

and

J ′2(u)w = 2〈u,w〉L2(Γ×I×S).

Hence, one finds that J ′0(u)w = 0, if and only if

−2c1〈D∗eT(D0 −Dψ(u)), ψ(w)〉L2(G)3 + 2c6〈u,w〉L2(Γ×I×S) = 0,

which can be cast into the form

〈c1D∗eT(D0 −Dψ(u)), ψ(w)〉L2(G)3 = 〈c6u,w〉L2(Γ×I×S). (5.22)

Suppose that ψ∗ = ψ∗(w) is the solution of the adjoint problem defined by
equation (5.21). Then from the adjoint equation (5.21), one finds that

B(ψ(w), ψ∗) = 〈ψ(w), c1D∗eT(D0 −Dψ(u))〉L2(G)3 . (5.23)

When using equation (5.22) to the previous equation (5.23), one obtains

B(ψ(w), ψ∗) = 〈c6u,w〉L2(Γ×I×S). (5.24)
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On the other hand, from equation (5.12) one obtains

B(ψ(w), ψ∗) = (F̃jw)(ψ∗)

= 〈F̃ ∗j ψ∗, w〉L2(Γ×I×S), (5.25)

where also equations (5.11) and (5.18) are used. Combining equations (5.24) and
(5.25) leads to

〈F̃ ∗j ψ∗, w〉L2(Γ×I×S) = 〈c6u,w〉L2(Γ×I×S),

which can be cast into the form

〈F̃ ∗j ψ∗ − c6u,w〉L2(Γ×I×S) = 0,

from which the optimal boundary control (5.19) is received. Equation (5.20) is
obtained from equation (5.12) using boundary control equation (5.19). �

5.3.2 Optimal control applying parametrization

Here the optimal control is used for the coupled BTEs with the application of
so called parametrization. The method is presented in [175]. Let A : L2(G)3 →
L2(G)3 be an operator

D(A) = H3

Aψ = (Ω · ∇+K)ψ,

where D(A) is the domain of A. With these definitions the coupled BTEs (4.3)
with the stated incoming photon boundary condition (3.19) can be formulated as
follows

Aψ = 0 (5.26)

r̃ψ1 = u, r̃ψ2 = r̃ψ3 = 0, (5.27)

where r̃ : H3 → L2(∂V × I × S) is the restriction operator r̃ψj = ψ|Γ×I×S . The
electron incident boundary condition (3.20) can be given by

r̃ψ2 = u, r̃ψ1 = r̃ψ3 = 0. (5.28)

Now the problem (5.26) with photon (5.27) or electron (5.28) boundary condi-
tions can be given in a matrix form

Aj
(
ψ
u

)
= 0, (5.29)

where ψ = (ψ1, ψ2, ψ3)T. The boundary condition is indicated by a subindex
j = 1, 2. Thus, the matrices A1 and A2 are

A1 =




(Ω · ∇+K) 0
r̃ −1
r̃ 0
r̃ 0


 , A2 =




(Ω · ∇+K) 0
r̃ 0
r̃ −1
r̃ 0


 .
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Now, one finds that Aj is a linear operator

Aj : H3 × L2(Γ× I × S)→ L2(G)3 × L2(Γ× I × S)3. (5.30)

The control system (5.29) is said to be parametrizable, if there exists a normed
space X and a linear operator S : X → H3 × L2(Γ× I × S) such that

Aj
(
ψ
u

)
= 0⇔

(
ψ
u

)
= Sf, f ∈ X.

S is the compatibility operator of the given control system (5.29). The normed
space X depends on the given control system. Parametrizability is a kind of
structural (internal) property of the control system. It is related to the null space
of the system.

Let p1 and p2 be the canonical projections p1 : H3 ×L2(Γ× I × S)→ H3 and
p2 : H3 × L2(Γ× I × S)→ L2(Γ× I × S). Then

ψ = p1(Sf) := S1f, f ∈ X

and
u = p2(Sf) := S2f, f ∈ X.

Further, the optimal control u0 of the problem (5.14) is u0 = S2f0, where f0 ∈ X is
the global minimum (if it exists) of the unconstrained problem: Find the minimum

min
f∈X

J̃(f),

where

J̃(f) = c1||D0 −DS1f ||2L2(T) (5.31)

+ c2||(DC −DS1f)−||2L2(C)

+ c3||(DN −DS1f)−||2L2(N)

+ c4



(
v0 −

1

NC

NC∑

p=1

Ha((DS1f)(xp)− dC)

)

−




2

+ c5||(S2f)−||2L2(Γ×I×S) + c6||S2f ||2L2(Γ×I×S).

Instead of exact seeking of the compatibility operator S, the discretized control
system is considered in the following.

5.4 Finite element discretization of the control systems

Let ψh, defined by equation (4.39), be the finite element approximation of the
variational form (4.40) in a finite dimensional subspace Xh = [Φ1, ...,Φ3N ] as
in Section 4.7. Further, let Yh be a finite dimensional subspace of L2(Γ × I ×
S). The linear hull Yh = [(w1,1, 0, ..., 0), ..., (wM1,1, 0, ..., 0), (0, w1,2, 0, ..., 0), ...,
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(0, wM2,2, 0, ..., 0), ..., (0, ..., 0, w1,L), ..., (0, ..., 0, wML,L)] =: [Y1, ..., YM ]. Mi is the
number of nodal points in a field si and M = M1 + ...+ML. The basis functions
are denoted Yl, (l = 1, ...,M) and the ith component of the vector Yl is denoted
as Yl,i, (i = 1, .., L). Define the finite element approximation uh of the boundary
flux to be

uh = (

M1∑

m=1

β(m,1)wm,1, ...,

ML∑

m=1

β(m,L)wm,L)T, (5.32)

where wm,l = wm,l(x, E,Ω) and β(m,i) (m = 1, ...,Mi) are the unknown parame-
ters of the boundary fluxes ui (i = 1, ..., L). Then the finite element approximation
of the variational problem (4.40) of the coupled BTEs is defined as (again j = 1, 2
indicate the incoming particle)

B(ψh, v) = (F̃ju
h)(v), ∀v ∈ Xh, (5.33)

which leads to the matrix equation

Aα = Bjβ, (5.34)

where β = (β(1,1)..., β(M1,1), ..., β(1,L)..., β(ML,L))
T and A is the matrix needed for

the forward problem (Aα = bj) and can be defined for example by equation (4.43).
The matrix Bj ∈M(3N ×M) is defined such that

Bj(l, t) =
L∑

i=1

∫

S

∫

I

∫

Γi

(Ω · n)−Yt,iΦl,jdsdEdΩ, (5.35)

where Φl,j is the jth component of the vector Φl (l = 1, ..., 3N). The matrix
equation (5.34) can be cast into the form

(A, −Bj)

(
α
β

)
= 0, (5.36)

which is the discrete form of the control system (5.29).

5.5 Discrete system parametrization with SVD

The discrete control system is said to be parametrizable if there exist p ∈ N and
a matrix S ∈M(3N +M × p) such that

(A, −Bj)

(
α
β

)
= 0⇔

(
α
β

)
= Sγ, γ ∈ Rp. (5.37)

Let p1, p2 be the canonical projections p1 : R3N+M → R3N and p2 : R3N+M →
RM . Denote S1γ = p1(Sγ) and S2γ = p2(Sγ), where S1 ∈M(3N × p) and S2 ∈
M(M ×p). Then α = S1γ and β = S2γ. Thus, the finite element approximations
(4.39) and (5.32) are of the form

ψh(x, E,Ω) =

N∑

k=1

((S1γ)k, (S1γ)N+k, (S1γ)2N+k)
T
φk(x, E,Ω) =: S1γ (5.38)
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and

uh = (

M1∑

m=1

(S2γ)mw1,m(x, E,Ω), ...,

ML∑

m=1

(S2γ)M−ML+mwL,m(x, E,Ω))T =: S2γ,

(5.39)
where γ ∈ Rp. The notation (·)m is the mth component of the vector. Then the
discretized optimal control problem states: The finite element approximation uh

0

for the optimal control u0 of the problem (5.14) is

uh
0 = (

M1∑

m=1

(S2γ0)mw1,m(x, E,Ω), ...,

ML∑

m=1

(S2γ0)M−ML+mwL,m(x, E,Ω)),

where γ0 ∈ Rp is the global minimum of the unconstrained problem:

min
γ∈Rp

Ĵ(γ), (5.40)

where

Ĵ(γ) = c1||D0 −D(S1γ)||2L2(T) (5.41)

+ c2||(DC −D(S1γ))−||2L2(C)

+ c3||(DN −D(S1γ))−||2L2(N)

+ c4



(
v0 −

1

NC

NC∑

p=1

Ha(D(S1γ)(xp)− dC))

)

−




2

+ c5||(S2γ)−||2L2(Γ×I×S) + c6||S2γ||2L2(Γ×I×S).

An initial point for the global optimization can be achieved from the solution
of the quadratic problem

min
γ∈Rp

Ĵ0(γ), (5.42)

where

Ĵ0(γ) = c1||D0 −D(S1γ)||2L2(T) + c6||S2γ||2L2(Γ×I×S).

The elements of the matrices S1 and S2 are denoted by S1(k, l) and S2(m, l).
Then one can construct following.

Theorem 6 The minimum γ of the problem (5.42) satisfies the linear equations
(l = 1, ..., p)

c1
∑N
k=1〈D∗(eT(DS1γ)), (S1(k, l), (S1(N+k, l),S1(2N+k, l))Tφk〉L2(G)3 (5.43)

+c6〈S2γ, (
∑M1

m=1 S2(m, l)w1,m, ...,
∑ML

m=1 S2(M−ML+m, l)wL,m)T〉L2(Γ×I×S)

= c1
∑N
k=1〈D∗(eT(D0)), (S1(k, l), (S1(N+k, l),S1(2N+k, l))Tφk〉L2(G)3
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Proof. The minimum point satisfies Ĵ ′0(γ) = 0. One receives

Ĵ ′0(γ)y = −2c1〈D0 −DS1γ,DS1y〉L2(T) + 2c6〈S2γ, S2y〉L2(Γ×I×S)

= −2c1〈D∗(eT(D0 −DS1γ)), S1y〉L2(G)3

+2c6〈S2γ, S2y〉L2(Γ×I×S). (5.44)

For any v ∈ L2(G)3 it holds that

〈v, S1y〉L2(G)3 = 〈v,
N∑

k=1

((S1y)k, (S1y)N+k, (S1y)2N+k)Tφk〉L2(G)3

=

N∑

k=1

〈v,
p∑

l=1

(S1(k, l)yl,S1(N+k, l)yl,S1(2N+k, l)yl)
Tφk〉L2(G)3

=

p∑

l=1

yl

N∑

k=1

〈v, (S1(k, l),S1(N+k, l),S1(2N+k, l))Tφk〉L2(G)3 .

Similarly, for any w ∈ L2(Γ× I × S) it holds that

〈w,S2y〉L2(Γ×I×S) = 〈w, (
M1∑

m=1

(S2y)mw1,m, ...,

ML∑

m=1

(S2y)M−ML+mwL,m)T〉L2(Γ×I×S)

= 〈w, (
M1∑

m=1

p∑

l=1

S2(m, l)ylw1,m, ...,

ML∑

m=1

p∑

l=1

S2(M−ML+m, l)ylwL,m)T〉L2(Γ×I×S)

=

p∑

l=1

yl〈w, (
M1∑

m=1

S2(m, l)w1,m, ...,

ML∑

m=1

S2(M−ML+m, l)wL,m)T〉L2(Γ×I×S).

Substituting these into equation (5.44) and assigning it to zero leads to the linear
equations (5.43) when compared componentwise. �

Furthermore, γ can be solved easily from the linear equations (5.43), because

D∗(eT(DS1γ)) =

N∑

q=1

D∗
(
eT
(
D
(
((S1γ)q, (S1γ)N+q, (S1γ)2N+q)

Tφq
)))

=

p∑

r=1

γr

N∑

q=1

D∗
(
eT
(
D
(
(S1(q, r),S1(N+q, r),S1(2N+q, r))Tφq

)))

and

S2γ =

p∑

r=1

γr(

M1∑

m=1

S2(m, r)w1,m, ...,

ML∑

m=1

S2(M−ML+m, r)wL,m)T.

SVD can be used in the parametrization of the discrete system (5.37). First,
consider the parametrization of the general equation FX = 0, where F ∈M(m×
n). Hence, consider the existence of a matrix S ∈M(m× p) such that

FX = 0⇔ X = SY. (5.45)
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The SVD is defined as follows [80].

Theorem 7 If F is a real (m×n)-matrix with rank r, then there exist orthogonal
matrices

U = [U1, ..., Um] ∈M(m×m), V = [V1, ..., Vn] ∈M(n× n)

such that

UTFV =

(
Dr 0
0 0

)
:= D ∈M(m× n), (5.46)

where Dr = diag(σ1, ..., σr) and σ1 ≥ σ2 ≥ ... ≥ σr > 0.

In the previous Theorem 7, the singular values σj =
√
µj , (j = 1, ..., r), where

µj are the nonzero eigenvalues of the matrix FTF . Furthermore, V1, ..., Vr are
the orthonormal eigenvectors of FTF corresponding to eigenvalues µ1, ..., µr, re-
spectively. Vr+1, ..., Vm are the eigenvectors corresponding to zero eigenvalues i.e.
span{Vr+1, ..., Vm} forms the null space of FTF . For orthogonal matrix V it holds
that V TV = In, where In is the identity matrix of size (n× n). Because U and V
are orthogonal, one receives from equation (5.46)

F = UDV T, (5.47)

which is the SVD of F . Now it is possible to formulate the following.

Theorem 8 For any (m× n)-matrix F with rank r there exists an m× (n− r)-
matrix S such that equivalence (5.45) is valid. Moreover, S = [Vr+1, ..., Vn].

Proof. Let F = UDV T be the SVD of F . Define S = [Vr+1, ..., Vn] and let

P =

(
0

In−r

)
∈M(n× n− r), Y ∈M(n− r × 1).

Then for X = SY = V PY and one obtains

FX = FV PY = UDV TV PY = UDPY = 0,

because DP = 0 always.
Conversely, suppose that FX = 0. Then also UTFX = 0. Since V is non-

singular there exists Z ∈ M(n × 1) such that V Z = X. Denote Z = (Z ′, Z ′′)T,
where Z ′ ∈M(r × 1) and Z ′′ ∈M(n− r × 1). Then one finds that

0 = UTFX = (UTFV )Z = DZ =

(
DrZ

′

0

)
. (5.48)

Relation (5.48) implies that DrZ
′ = 0 and since Dr is nonsingular Z ′ = 0. This

shows that

X = V Z = V

(
0
Z ′′

)
= V

(
0

In−r

)
Z ′′ = V PZ ′′ = SZ ′′.
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�

Now Theorem 8 can be used for the parametrization of the discrete control
system (5.37) using F = [A, −B] and computing the vectors, which span the null
space of FTF . It should be noted that in FEM with linear basis the matrices A
and B have always full rank. Thus, the rank of matrix F is always r = 3N and
the size of γ is p = M .

5.6 Global optimization with Simulated Annealing

In finding the global minimum of the unconstrained problem (5.40), one needs to
use some optimizer to find the minimum of the function (5.41). Function defined
in equation (5.41) is non-convex i.e. it may contain multiple local extrema. One
possibility is to use a Simulated Annealing algorithm, which is a global optimiza-
tion algorithm, so, it does not easily stuck in a local minima [109, 56]. The values
of the decision parameters are changed randomly and objective function values
are calculated. If new objective function value F is better than the current best
objective function value Fbest, the new parameters are accepted. If new objective
function value is worse, the new parameters are accepted with probability

P = exp(−∆F

T
), (5.49)

where ∆F = F−Fbest and T is in the same magnitude as F and its value decreases
as the iteration proceeds.

5.7 FEM simulations for the radiotherapy inverse problems

To simulate the theories given in Sections 5.3-5.5, the presented control problems
were solved using FEM and only one BTE to describe the traveling of arbitrary
particles in a 2D plane (x = (x2, x3)). In fact, photon scattering data was used,
but because only one BTE equation was used, the dose computation was done
artificially from the photon flux using arbitrary stopping powers τ(x, E). The
particles were assumed to scatter in the spatial 2D plane. Thus, the angular
variable was θ ∈ [0, 2π[ and Ω2D = (sin θ, cos θ), which meant that θ = 0 was
toward the x3-axis. This caused small inaccuracy to the computations of the
forward problem, because the scattering out of plane was neglected. However,
it was thought to be unessential in the purpose of these simulations, which was
to show that the given inverse and control theories work in theory. All these
simulations were made using MATLABr in a normal PC (2 GHz Pentium with 2
GB memory).

For one BTE the linear hull is [φ1, ..., φN ] and the finite element approximation
in 2D is

ψh(x, E, θ) =

N∑

k=1

αkφk(x, E, θ).
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The linear system of one BTE is

Aα = b, (5.50)

where α = (α1, ..., αN ). A is as A1→1 and is defined by equation (4.61). The
right hand sides of the control problems are defined later. Separable basis func-
tions are used as in Section 4.7.3. The basis functions of the boundary fluxes are
defined in Section 5.4. The separable basis functions of the boundary fluxes are
defined as wt,i(x, E, θ) = wxts,i(x)wEte,i(E)wθto,i(θ), (i = 1, ..., L, t = 1, ...,Mi, ts =
1, ...,M s

i , te = 1, ...,M e
i , to = 1, ...,Mo

i ), where Mi is the number of nodes in a
field i, M s

i , M
e
i , M

o
i are the number of spatial, energy and angular nodes in a

field i, respectively, and Mi = M s
iM

e
iM

o
i . M =

∑L
i=1Mi is the total number of

nodes in all fields. The finite element approximation uh of the boundary flux is
defined by equation (5.32).

5.7.1 Initial point control problem simulation

Here the simulations for the control problem (5.19)-(5.21) are presented. The finite
element approximation of the adjoint particle flux is

ψ∗h(x, E, θ) =
N∑

k=1

α∗kφk(x, E, θ).

The unknown parameters αk and α∗k in finite element approximations are found
by demanding

B(ψh, v) = 1
c6
F̃ (F̃ ∗ψ∗h)(v) (5.51)

B(v, ψ∗h) = c1〈v,D∗eT(D0 −Dψh)〉L2(G)3 (5.52)

for all v ∈ [φ1, ..., φN ]. The basis functions are used as test functions v = φt,
(t = 1, ..., N).

If the problem (5.50) describes the forward problem of one BTE, then the
control problem (5.51)-(5.52) can be written in the matrix form

(
A − 1

c6
MΓ

c1MT AT

)(
α
α∗

)
=

(
0

c1bT

)
, (5.53)

where α∗ = (α∗1, ..., α
∗
N )T, the matrix A is defined as in equation (5.50),

MΓ(l, k) =
L∑

i=1

∫ 2π

0

∫

I

∫

Γi

((Ω2D · n)−)2φlφkdsdEdθ

=
L∑

i=1

NΓi∑

r=1

(∫

Γi,r

φxks
φxlsds

∫ 2π

0

((Ω2D · nr)−)2 − φθko
φθlodθ

)∫

I

φEke
φEledE, (5.54)
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MT(l, k) =

∫ 2π

0

∫

I

∫

T

(
τ(x, E)φl

∫ 2π

0

∫

I

τ(x, E′)φkdE′dθ′
)

dxdEdθ,

=

Ns∑

ds=1

Ne∑

de=1

Sd

Ns∑

d′s=1

Ne∑

d′e=1

τd′

∫

T

φxds
φxd′sφ

x
ks
φxlsdx

·
∫ 2π

0

φθko
dθ

∫ 2π

0

φθlodθ

∫

I

φEd′eφ
E
ke

dE

∫

I

φEde
φEledE (5.55)

and

bT(l) =

∫ 2π

0

∫

I

∫

T

D0τ(x, E)φldxdEdθ

= D0

Ns∑

ds=1

Ne∑

de=1

τd

∫

T

φxds
φxlsdx

∫

I

φEde
φEledE

∫ 2π

0

φθlodθ. (5.56)

In the previous, Γi is assumed to consist of NΓi patches Γi,r, in which the normal

vector nr is constant, i.e. Γi = ∪NΓi
r=1Γi,r. From the solution (α, α∗)T of the linear

system (5.53), the optimal boundary control u0 can be computed from equation
(5.19).

inicontrol1

The geometry and the source nodes of the fields for the first initial guess FEM
simulation are shown in Figure 5.2 with the optimized dose distribution. The
number of spatial nodes was Ns = 121. The angular domain θ ∈ [0, 2π[ was
divided into 8 evenly distributed elements and the energy domain E ∈ [0.1, 10]
MeV was divided into 5 evenly distributed elements. Thus, No = 8, Ne = 6
and N = 5808. The source nodes were allowed to have all energies and directions,
which were included in the optimization. Homogeneous dose D0 = 10 (in arbitrary
units) was assumed to locate at the target with c1 = 105 and c6 = 0.1. The initial
solution was computed from the linear system (5.53). The computations took 2
hours. The boundary fluxes at different energies are presented in Figure 5.3.

inicontrol2

In the second initial guess FEM simulation, three fields were assumed to locate at
the boundaries. The geometry and the source nodes for the fields can be found in
Figure 5.4. The number of spatial nodes was Ns = 121. The angular domain was
as in the previous INICONTROL1 simulation with No = 8. The energy domain
E ∈ [0.1, 10] MeV was divided into 3 evenly distributed elements. Thus, Ne = 4
and N = 8192. All energies and directions were included in the optimization, in
which D0 = 10 was desired to the target domain (c1 = 105 and c6 = 0.1). The
computations took 3 hours. The dose distribution is presented in Figure 5.4 and
the boundary fluxes at different energies are presented in Figure 5.5.
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Figure 5.3: The INICONTROL1 simulation results. On the left there are the

boundary fluxes u1(cm−2MeV−1sr−1) and u2(cm−2MeV−1sr−1) at the energy

E = 4 MeV for the fields s1 and s2, respectively. On the right there are u1 and

u2 at E = 10 MeV. Both boundary fluxes are in the same scale.

5.7.2 Control problem simulation using parametrization and SVD

In the control problem simulation with SVD parametrization, first the null space
of matrix F = [A, −B] ∈ M(N ×N + M) was computed from the matrix FTF
using the SVD. The matrix A was defined by the forward problem (5.50) and the
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matrix B ∈M(N ×M) was of the form

B =




B1 0
. . .

0 BL


 , (5.57)
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where the elements of matrix Bi, (i = 1, ..., L) were defined by

Bi(l, t) =

∫

S

∫

I

∫

Γi

(Ω · n)−wt,iφldsdEdθ

=

NΓi∑

r=1

(∫

Γi,r

φxlsw
x
ts,ids

∫ 2π

0

(Ω2D · nr)−φθlowθto,idθ
)∫

I

φElew
E
te,idE, (5.58)

where the index t was calculated from the formula t = to + (te − 1)Mo
i + (ts −

1)M e
iM

o
i , which came from the Kronecker tensor product. The rank of matrix

F was N . By Theorem 8, S = [VN+1, ..., VN+M ], which corresponds to the zero
eigenvalue eigenvectors of the matrix FTF . S = (S1, S2)T, where S1 ∈M(N×M)
and S2 ∈M(M ×M) were the parametrization matrices for α and β, respectively.
Thus, α = S1γ and β = S2γ.

An initial point for the global optimization was achieved by solving the linear
equations (5.43), which resulted in a matrix system

(
c1S

T
1 MTS1 + c6S

T
2 MΓ,0S2

)
γ = c1S

T
1 bT, (5.59)

where MT and bT are defined by equations (5.55) and (5.56). The elements of the
matrix MΓ,0 ∈M(M ×M) are of the form

MΓ,0(t, s) =

L∑

i=1

∫ 2π

0

∫

I

∫

Γi

wt,iws,idsdEdθ,

=
L∑

i=1

∫

Γi

wxts,iw
x
sx,ids

∫ 2π

0

wθto,iw
θ
so,idθ

∫

I

wEte,iw
E
se,idE.

For the global optimization one needs to compute D(S1γ). One obtains

D(S1γ) =

∫ 2π

0

∫

I

τ(x, E)S1γdEdθ

=

N∑

k=1

M∑

t=1

S1(k, t)γt

∫ 2π

0

∫

I

τ(x, E)φkdEdθ

= ST
1 Ddγ, (5.60)

where Dd ∈M(N ×Ns) is of the form

Dd(ls, k) =

Ns∑

ds=1

Ne∑

de=1

τdφ
x
ds
φxls

∫

I

φEde
φEke

dE

∫ 2π

0

φθko
dθ.

The FEM simulations using the SVD parametrization was done in a [−5, 5]×
[0, 10] cm2 domain, which consisted of water. The geometry and the source nodes
for the fields are shown in Figure 5.7. In the same figure, also the spatial grid
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and the optimized dose distribution are shown. The number of spatial nodes was
Ns = 144. The angular domain θ ∈ [0, 2π[ was divided into 8 evenly distributed
elements and the energy domain E ∈ [0.1, 10] MeV was divided into 3 evenly
distributed elements. Thus, No = 8, Ne = 4 and N = 1608. Only inward
directions (Mo = 3) and maximum energy E = 10 MeV (Me = 1) was allowed at
the source nodes (Ms = 32, M = 96). The computation of the matrix S took 3
hours. Because the spatial domain was homogeneous and the source nodes were the
same, the matrix S was the same in both PARA1 and PARA2 simulations. Thus,
only the objective function and the initial guess equation (5.59) were changed
before the global optimization.

PARA1

In the first parametrization FEM simulation, the target and critical organ are
shown in Figure 5.8 with the boundary flux results. D0 = 10 was assumed to locate
at the target. The initial solution was computed from the linear system (5.59),
in which c1 = 3 and c6 = 10−6. The initial computations took few seconds. The
results for the initial solution are presented in Figure 5.6. The global optimization
was done using Simulated Annealing algorithm (Section 5.6) and objective function
was as in equation (5.41), in which c1 = 3, c2 = 1.5, c3 = 0.5, c4 = 0, c5 =
100, c6 = 0 and D0 = 10, DN = 5, DC = 2. The global optimization took 20
minutes. The dose distribution is presented in Figure 5.7 and the boundary fluxes
at energy E = 10 MeV are presented in Figure 5.8.

PARA2

In the second parametrization FEM simulation, the target and critical organ are
shown in Figure 5.11 with the boundary flux results. The initial guess was com-
puted similarly as in the previous parametrization simulation. The computation
of the initial guess took a few seconds and the results are presented in Figure 5.9.
The global optimization was done similarly with the same weights and dose limits
as in the PARA1 simulation. The global optimization took 30 minutes. The dose
distribution is presented in Figure 5.10 and the boundary fluxes at energy E = 10
MeV are presented in Figure 5.11.

5.8 Discussion for the inverse simulations

The given inverse planning theories were tested by simulations in Section 5.7.
In the INICONTROL1 and INICONTROL2 simulations, the initial guess was
computed by minimizing the quadratic cost function J0 (5.17). It was found that
the convergence rate in solving the obtained matrix system (5.53) was quite poor
and the desired residual had to be quite small to achieve desirable results. This
was probably because J0 contained terms, in which the dose in the tumor was
desired to be as close as possible to the desired dose and at the same time the
incoming flux value was minimized. Thus, the goals were conflicting. From the
solution of the matrix system one received ψh and ψ∗h. By the theory, ψh should
be those particle flux values, which are affected by the boundary control u0, which
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can be computed from ψ∗h. However, probably because of the poor convergence
rate, the dose computed from ψh was much closer to the desired dose than what
was received by the forward computations using the boundary control u0. In
Figures 5.2 and 5.4, these afterward computed dose from the resulted boundary
controls are shown. Although the dose distributions are not very close to the
optimum, clearly the optimization had a right direction and the shapes of the
initial boundary fluxes are those that one would expect them to be. For example
in Figure 5.3, the integrated boundary fluxes uI

1 and uI
2 are slightly wedge like, i.e.

uI
1 is mostly decreasing for increasing x1 and uI

2 is mostly increasing for increasing
x2 just what one would expect them to be to get more dose at the upper left corner
of the square target T.

The initial guess method for the control problem did not control the dose in
normal tissue, but the minimization of the boundary flux did minimize the dose
in the whole volume by the minimization of the boundary control. That is why
the dose in the normal tissue was weakly considered in the optimization. Also,
the positivity of the boundary fluxes were not controlled in INICONTROL1 and
INICONTROL2 simulations. However, negative boundary flux values are only
slightly present at the results. This is probably due to the minimization of the
boundary flux value and because of the use of the adjoint operators.

The initial point control problem was considered here because it forms a linear
system of equations. One could derive the equations for the whole radiotherapy



122 5. Radiotherapy inverse problem with FEM

−5 0 5
0

2

4

6

8

10

20
20

2020

40

40

40 40

7070

70 70

70

70
8080

80

80

80

80

90

90

90

90
90

90

90

90
100100

100

100

100
100 100

10
0

100

100

PSfrag replacements

x2(cm)

x
3
(c

m
)

s1

s
2

s3

s
4

T

N

C

Figure 5.9: The initial results for the PARA2 simulation. On the left the spatial
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Figure 5.10: The PARA2 simulation results. On the left the optimized dose

profile is presented with isodoses 20, 40, 70, 90, 100, in which 100% describes

D0=10. On the right there is the dose volume histogram for percentage doses at

the target T, critical organ C and normal tissue N. The vertical lines illustrate

the dose limits.
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optimization problem and solve the resulted nonlinear equations using some non-
linear system solution algorithm. However, the resulted nonlinear equations are
multi-extremal and a good initial point is necessity. Here one alternative for the
initial guess is presented. It may not be good at all if the geometry is such that
the critical organs are at the locations where high dose values are obtained from
the solution of the initial problem. The critical organs could be considered in the
solution of the linear system for example by demanding some small dose value at
the critical organs. This is not considered here.

With parametrization the global optimization was easy to implement, because
the parametrization reduced the number of unknowns from N + M = 4704 to
M = 96. The boundary flux values in each field si (i = 1, ..., 4) at maximum
energy were solved to optimize the dose by taking into account the critical organ
and normal tissue dose limits. The simulation was made to demonstrate the to-
motherapy approach, in which the treatment consist of small subfields each having
some direction and energy. Now the source angular spectrum at each source node
illustrate these small fields, when only maximum energy was allowed. This means
that the energy was not exactly optimized, but in each source node the particle
flux was allowed to be zero. One could optimize the energy spectrum as well by
allowing the energy nodes to change freely, here only the maximum energy node
could be changed.

In Figures 5.7 and 5.10, the drawn isodose curves show that the dose in the
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tumor is quite smooth and 90% curve nearly rounds the target. Also the critical
organ receives a dose, which is quite low, although, it is slightly more than it was
allowed to be. In the PARA1 simulation the critical organ is quite close to the
target and it makes the dose distribution quite poor near the critical organ. In
the PARA2 simulation, the optimal dose distribution is clearly not yet achieved,
because in Figure 5.11 the boundary fluxes u1 and u4 have values at fields s1 and
s4 near the critical organ, which increases the dose in it. When a weighted cost
function is used, the effect of individual cost is disappeared and it is more difficult
to control the dose in critical organ individually.

The used initial guess method in the parametrization simulations does not
restrict negative boundary flux values. A big weight was given to restrict nega-
tive boundary fluxes in the global optimization. However, because initial guess
contained negative flux values, the initial point may not be a good choice. The
used Simulated Annealing global optimization algorithm is not a robust one and
to better the parametrization simulation results some other more effective global
optimizer should be used. In parametrization, the information of the boundary
flux and dose values are lost in γ and it is very difficult to assigns some bounds for
parameter γ in global optimization. In the simulations with Simulated Annealing
the parameter γ was allowed change freely. This makes the computations long and
impractical. The resulted dose distributions may not be optimal globally, because
of the used global optimization algorithm. Maybe with better global optimizer or
with better initial guess one could obtain slightly better results. However, clearly
from the optimized dose distributions one can see that the optimization works
in general, because it tend to minimize the dose in critical organs, and still the
targets receive almost desired dose.



Chapter VI

Conclusion

In this work, the BTE based model in radiotherapy purposes was studied. The
interaction cross sections were introduced in Chapter 2 with the definitions of
the ionizing radiation. The model consisting of three coupled BTEs was derived
in Chapter 3 with typical external radiotherapy boundary conditions. Also the
formulas for the dose and the coupled system of B-CSDAEs were presented.

In Chapter 4, the variational form of the coupled BTEs and coupled B-CSDAEs
were derived. Also the existence of the solution of these equations were studied. It
was found that some restrictions are demanded on the cross sections to fulfill the
coercivity criterion for the coupled BTEs. It was also found that these restrictions
have physical foundations and are thus physically relevant. Similar restrictions
were found for the restricted cross sections of the coupled B-CSDAEs to fulfill
the coercivity condition with an additional restriction for the restricted stopping
power. The conditions for the restricted cross sections are physically relevant,
because the restricted total cross section is computed by integrating the restricted
differential cross section. The additional condition for the restricted stopping
power was found not to hold for any data and it was suggested that the cut-off
energy of the restricted cross sections should be selected such that the restricted
stopping power would fulfill the demanded condition.

The finite element discretization of the forward problem was derived in Chapter
4 for the coupled BTEs and for the coupled B-CSDAEs. Also the stream-line
diffusion method and related discretizations of these equations were presented. The
radiotherapy forward problem describing photon incident external radiotherapy
was simulated using two coupled B-CSDAEs in 2D and in 3D spatial domain. The
electron incident external radiotherapy simulation was done for one B-CSDAE in
3D spatial domain. The results were compared with the MC computations. 2D
photon incident results were very close to the MC data. In 3D, the results had
similarities with MC data and most errors were assumed to be based on the sparse
finite element grids, which caused the angular spectrum of the photon source to
be wider than in the MC simulation and thus the photon flux spread more at
high depths. Also the differences between the cross sections used in FEM and
MC simulations explained some of the differences in the results. In the photon
incident simulations, the obtained electron flux had to be multiplied with some

125
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value to be comparable with the MC data. If the FEM results were normalized
according to the photon flux at some point, then the normalized electron flux was
much smaller than the MC electron flux. It was thought that this is probably
caused by the differential cross section normalization, in which the delta-function
shaped cross sections are divided by the size of the elements neighbor to the related
node to fulfill the coercivity criterion. With further study, this normalization can
be accounted in the calculation of the dose. Also one could integrate the cross
sections directly over the delta shaped angular domain and not present them with
separable basis. Also the electron incident simulation results had similarities with
the MC results, in which the FEM simulation results followed quite well the MC
results with respect the depth at the central axis. The stream-line diffusion method
was tested for electron incident simulations. It was found that the linear system
became stable and convergence was faster, although, the algorithm that was used
made the computational times much longer.

The simulations suggested that it is possible to use FEM to solve the ra-
diotherapy forward problem. However, the long computational times and mem-
ory problems due to discretization suggest that special methods are required to
shorten the calculations times. No preconditioning was used in the forward prob-
lem simulations. The use of preconditioning would decrease the computational
times significantly [60]. Also one could use for example multigroup method for
energy discretization [67]. The parallel domain decomposition methods [62, 171],
the selection of the basis functions, the use of spherical wavelet basis in angular
domain [45] and adaptivity [63, 68, 102, 157, 187] are also worth of further study.
Although the simulations were made for simplicity in homogeneous domains with
straight edges to demonstrate photon and electron scattering, the derived forward
problems are not restricted to these domains. With the finite element discretiza-
tion the patient heterogeneity and arbitrary body contours could be considered,
but to be practical it would require more dense grids, which would increase the
computation times significantly.

The radiotherapy inverse problem was presented in Chapter 5. There the con-
trol approach was used to find the optimal dose distribution within the patient.
The model for the inverse problems was derived using the coupled BTEs. An ini-
tial point was obtained from the solution of the quadratic problem. The approach
of parametrization made the transport model easier to handle with global opti-
mization techniques. These methods were tested by simulations using one BTE
in 2D spatial domain. The simulations suggested that the radiotherapy inverse
problem can be solved with parametrization and initial point can be obtained by
solving the quadratic problem.

The use of parametrization showed that the linear system could be reduced
and the global optimization was possible. The simple simulations showed that
the optimization process works in practice. The global optimization could be im-
proved by using more effective global optimization algorithm instead of Simulated
Annealing, using non-weighted methods such as multi criteria optimization [36] or
using more precise cost functions such as is suggested in [49, 51]. One problem
was also the computation of the parametrization, which is very costly. Special
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methods such as Lanczos methods [80] and the use of only approximative forms
of the vectors, which span the null space being still accurate enough for the dose
computation, should be studied for the parametrization purposes. Also the use
of other methods for the parametrization than those related directly to the null
space is worth studying.

As a conclusion one could say that FEM can be used in solving the radiotherapy
forward problem using transport equations. The coupled system of B-CSDAEs or
some other approximation has to be used to implement charged particle traveling
on sparse spatial grids. Further study has to be done in the modeling of the
electron elastic scattering and preconditioning. Also the adaptivity is worth of
further study. Also one could conclude that the radiotherapy inverse problem can
be solved using parametrization and BTE based dose calculation model. Further
study has to be done in the development of the parametrization, initial guess and
global optimization.
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[4] A. Ahnesjö and M.M. Aspradakis. Dose calculations for external photon beams in
radiotherapy. Phys Med Biol, 44:R99–R155, 1999.

[5] A. Ahnesjö, B. H̊ardemark, U. Isacsson, and A. Montelius. The IMRT information
process–mastering the degrees of freedom in external beam therapy. Phys Med
Biol, 51:R381–R402, 2006.

[6] M. Alber and F. Nüsslin. Optimization of intensity modulated radiotherapy under
constraints for static and dynamic MLC delivery. Phys Med Biol, 46:3229–3239,
2001.

[7] E.J. Allen. A finite element approach for treating the energy variable in the numer-
ical solution of the neutron transport equation. Transport Theor Stat, 15(4):449–
478, 1986.

[8] P. Andreo. Monte Carlo techniques in medical radiation physics. Phys Med Biol,
36(7):861–920, 1991.

[9] G. Arfken. Mathematical methods for physicists. Academic Press, Inc., 1985.
[10] S.R. Arridge, M. Schweiger, M. Hiraoka, and D.T. Delpy. A finite element approach

for modeling photon transport in tissue. Med Phys, 20(2):299–309, 1993.
[11] M. Asadzadeh. The discrete ordinates method for the neutron transport equation

in an infinite cylindrical domain. SIAM J Numer Anal, 35(4):1299–1314, 1998.
[12] M. Asadzadeh, P. Kumlin, and S. Larsson. The discrete ordinates method for the

neutron transport equation in an infinite cylindrical domain. Math Mod Meth Appl
S, 2:317–338, 1992.

[13] F.H. Attix. Introduction to Radiological Physics and Radiation Dosimetry. John
Wiley and Sons, Inc., 1986.

[14] A. Badruzzaman. Finite-moments approaches to the time-dependent Boltzmann
equation. Prog Nucl Energ, 25(2-3):127–157, 1991.

[15] W. Bär, M. Alber, and F. Nüsslin. A variable fluence step clustering and seg-

128



References 129

mentations algorithm for step and shoot IMRT. Phys Med Biol, 46:1997–2007,
2001.

[16] L.B. Barichello. Some comments concerning inverse problems in particle transport
theory. In 4th International Conference on Inverse Problems in Engineering, Rio
de Janeiro, Brazil, 2002.

[17] D.E. Bartine, R.G. Alsmiller, Jr., F.R. Mynatt, W.W. Engle, Jr., and J. Barish.
Low-energy electron transport by the method of discrete ordinates. Nucl Sci Eng,
48:159–178, 1972.

[18] G.I. Bell and S. Glasstone. Nuclear Reactor Theory. Van Nostrand Reinhold
Company, 1970.

[19] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar,
and D.S. Zucker. XCOM: Photon Cross Section Database (version 1.3). Na-
tional Institute of Standards and Technology, Gaithersburg, MD., 2005. Online
http://physics.nist.gov/xcom (January 24, 2007).

[20] J. Berntsen and T.O. Espelid. Algorithm 706: DCUTRI: An algorithm for adaptive
cubature over a collection of triangles. ACM Trans Math Softw, 18(3):329–342,
1992.

[21] A.F. Bielajew. Plural and multiple small-angle scattering from a screened Ruther-
ford cross section. Nucl Instrum Meth B, 86:257–269, 1994.

[22] A.F. Bielajew. A hybrid multiple-scattering theory for electron-transport Monte
Carlo calculations. Nucl Instrum Meth B, 111:195–208, 1996.

[23] A.F. Bielajew, R. Wang, and S. Duane. Incorporation of single elastic scattering in
the EGS4 Monte Carlo code system: Tests of Molière theory. Nucl Instrum Meth
B, 82:503–512, 1993.

[24] A.V. Bobylev and G. Spiga. On a model transport equation with inelastic scatter-
ing. SIAM J Appl Math, 58(4):1128–1137, 1998.

[25] E. Boman, T. Lyyra-Laitinen, P. Kolmonen, K. Jaatinen, and J. Tervo. Simulations
for inverse radiation therapy treatment planning using a dynamic MLC algorithm.
Phys Med Biol, 48(7):925–942, 2003.

[26] E. Boman, J. Tervo, and M. Vauhkonen. Modelling the transport of ionizing
radiation using the finite element method. Phys Med Biol, 50(7):265–280, 2005.

[27] E. Boman, M. Vauhkonen, and J. Tervo. Modeling radiation transport in a medium
with Boltzmann transport equation using finite element method. In ECCOMAS
2004, Jyväskylä, Finland, July 2004.

[28] C. Börgers. A fast iterative method for computing particle beams penetrating
matter. J Comput Phys, 133:323–339, 1997.

[29] C. Börgers. Complexity of Monte Carlo and deterministic dose-calculation meth-
ods. Phys Med Biol, 43:517–528, 1998.

[30] C. Börgers. Radiation therapy planning problem. In C. Börgers and F. Natterer,
editors, Computational Radiology and Imaging: Therapy and diagnostic. Springer-
Verlag, 1999.

[31] C. Börgers and E.W. Larsen. The transversely intergrated scalar flux of a narrowly
focused particle beam. SIAM J Appl Math, 55(1):1–22, 1995.

[32] C. Börgers and E.W. Larsen. Asymptotic derivation of the Fermi pencil-beam
approximation. Nucl Sci Eng, 123:343–357, 1996.

[33] C. Börgers and E.W. Larsen. On the accuracy of the Fokker-Planck and Fermi
pencil beam equations for charged particle transport. Med Phys, 23(10):1749–1759,
1996.

[34] T. Bortfeld. Optimized planning using physical objectives and constraints. Sem.



130 References

Rad. Onc., 9(1):20–34, 1999.
[35] T. Bortfeld. IMRT: a review and preview. Phys Med Biol, 51:R363–R379, 2006.
[36] T. Bortfeld, K.-H. Küfer, M. Monz, A. Scherrer, C. Thieke, and H. Trinkaus.

Intensity-Modulated Radiotherapy: A Large Scale Multi-Criteria Programming
Problem. 43. Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM,
2003. Online http://www.itwm.fraunhofer.de (January 24, 2007).

[37] A. Brahme, editor. Special issue: Optimization of the three-dimensional dose de-
livery and tomotherapy, volume 6. Int J Imag Syst Tech, 1995.

[38] A. Brahme. Treatment optimization: Using physical and radiological objective
functions. In A.R. Smith, editor, Radiation Therapy Physics, pages 209–246.
Springer, 1995.

[39] A. Brahme. Optimized radiation therapy based on radiobiological objectives. Sem
Rad Onc, 9(1):35–47, 1999.

[40] A. Brahme. Development of radiation therapy optimization. Acta Onc, 39(5):579–
595, 2000.

[41] L.L. Briggs, W.F. Miller, Jr., and E.E. Lewis. Ray-effet mitigation in discrete
ordinate-like angular finite element approximation in neutron transport. Nucl Sci
Eng, 57:205–217, 1975.

[42] I.A.D. Bruinvis, W.A.F. Mathol, and P. Andreo. Inclusion of electron range strag-
gling in the Fermi-Eyges multiple-scattering theory. Phys Med Biol, 34(4):491–507,
1989.

[43] T.A. Brunner. Forms of approximate radiation transport. Technical report
SAND2002-1778, Sandia National Laboratories, Albuquerque, New Mexico 87185
and Livermore, California 94550, July 2002.

[44] D. Brusa, G. Stutz, J.A. Riveros, J.M. Fernández-Varea, and F. Salvat. Fast
sampling algorithm for the simulation of photon Compton scattering. Nucl Instrum
Meth A, 379:167–175, 1996.

[45] A.G. Buchan, C.C. Pain, M.D. Eaton, R.P. Smedley-Stevenson, and A.J.H. God-
dard. Linear and quadratic octahedral wavelets on the sphere for angular discreti-
sations of the boltzmann transport equation. Ann Nucl Energy, 32:1224–1273,
2005.

[46] M. Caro and J. Ligou. Treatment of scattering anisotropy of neutrons through the
Boltzmann-Fokker-Planck equation. Nucl Sci Eng, 83:242–252, 1983.

[47] K.M. Case and P.F. Zweifel. Linear Transport Theory. Addison-Wesley, 1967.
[48] Y. Censor. Mathematical aspects of radiation therapy treatment planning: Con-

tinuous inversion versus full discretization and optimization versus feasibility. In
C. Börgers and F. Natterer, editors, Computational Radiology and Imaging: Ther-
apy and Diagnosis, volume 110, pages 101–112. Springer-Verlag, New York, NY,
1999.

[49] Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov. A unified approach for inver-
sion problems in intensity-modulated radiation therapy. Phys Med Biol, 51:2353–
2365, 2006.

[50] C. Cercignani. The Boltzmann equation and its applications. Springer, 1988.
[51] Y. Chen, D. Michalski, C. Houser, and J.M. Galvin. A deterministic iterative

least-squares algorithm for beam weight optimization in conformal radiotherapy.
Phys Med Biol, 47:1647–1658, 2002.

[52] C.-S. Chui, T. LoSasso, and S. Spirou. Dose calculation for photon beams with
intensity modulation generated by dynamic jaw or multileaf collimations. Med
Phys, 21(8):1237–1244, 1994.



References 131

[53] P.G. Ciarlet. The finite element method for elliptic problems. North-Holland Pub-
lishing company, 1978.

[54] G.G.M. Coppa, G. Lapenta, and P. Ravetto. Angular finite element techniques in
neutron transport. Ann Nucl Energy, 17(7):363–378, 1990.

[55] G.G.M. Coppa and R. Ravetto. Quasi-singular angular finite element methods in
neutron transport problems. Transport Theor Stat, 24(1-3):155–172, 1995.

[56] A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal
functions of continuous variables with the ”simulated annealing” algorithm. ACM
Trans Math Softw, 13(3):262–280, 1987.

[57] S.M. Crooks and L. Xing. Linear algebraic methods applied to intensity modulated
radiation therapy. Phys Med Biol, 46:2587–2606, 2001.

[58] C. Cuvelier, A. Segal, and A.A. van Steenhoven. Finite element methods and
Navier-Stokes equations. D. Reidel Publishing company, 1986.

[59] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for
Science and Technology. Springer-Verlag, 1993.

[60] E.F. D’azevedo, B. Messer, A. Mezzacappa, and M. Liebendörfer. An ADI-like
preconditioner for Boltzmann transport. SIAM J. Sci. Comput., 26(3):810–820,
2005.

[61] M. de Gersem, F. Claus, C. de Wagter, B. van Duyse, and W. de Neve. Leaf posi-
tion optimization for step-and-shoot IMRT. Int J Rad Onc Biol Phys, 51(5):1371–
1388, 2001.

[62] C.R.E. de Oliveira, C.C. Pain, and J.H. Goddard. Parallel domain decomposition
methods for large-scale finite element transport modelling. In ANS M&C Interna-
tional Topical Conference, Mathematics and Computations, Reactor Physics, and
Environmental Analyses, pages 490–498, Portland, Oregon, April 30 - May 4 1995.
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[77] R. Garćıa-Pelayo. Multiple scattering. Physica A, 258:365–382, 1998.
[78] K.A. Gifford, J.L. Horton, Jr, T.A. Wareing, G. Failla, and F. Mourtada. Com-

parison of a finite-element multigroup discrete-ordinates code with Monte Carlo
for radiotherapy calculations. Phys Med Biol, 51:2253–2265, 2006.

[79] H. Goldstein. Fundamental aspects of reactor shielding. Addison-Wesley Publishing
Company, 1959.

[80] G.H. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins Uni-
versity Press, 1989.

[81] A. Gustafson, B.K. Lind, and A. Brahme. A generalized pencil beam algorithm
for optimization of radiation therapy. Med Phys, 21:343–356, 1994.

[82] J. Haataja, J. Heikonen, Y. Leino, J. Rahola, J. Ruokolainen, and V. Savolainen.
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