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ABSTRACT

In the modern society, osteoarthrosis (OA) is the most common joint disease with significant
sociological and economical impact. OA is characterized by the progressive degeneration of the
structure and function of articular cartilage and subchondral bone. Current diagnostic techniques
of OA can only detect late-stage changes. The rapid progress in surgical techniques to repair local
cartilage lesions has also augmented the need for accurate monitoring of cartilage healing.

Quantitative ultrasound techniques have been developed to permit a characterization of articu-
lar cartilage. Previously, an ultrasound indentation instrument was shown to be able to distinguish
in vitro normal tissue from enzymatically degraded cartilage tissue. Subsequently, quantitative
ultrasound imaging (QUI) was demonstrated to be suitable for diagnosing the cartilage surface
degeneration as well as the parallel changes in the cartilage-bone interface.

In the present thesis work, the ability of an ultrasound indentation instrument to distinguish
different histological degenerative grades of bovine articular cartilage during a spontaneous de-
generation process was investigated in vitro. Furthermore, the suitability of QUI for detecting
mechanically induced, enzymatically induced, or spontaneously developing degenerative changes
was investigated. Ultrasound reflection from the articular surface as well as from the cartilage-bone
interface were quantified and compared with the histological, biomechanical and biochemical refer-
ence measurements. Furthermore, a novel approach for quantifying the cartilage surface roughness
from 2D ultrasound images was devised in this thesis work.

A significant linear correlation (r = 0.883) was observed between the dynamic modulus, mea-
sured with the ultrasound indentation instrument, and the reference modulus from bovine articular
cartilage (n = 70). Furthermore, the instrument sensitively distinguished histologically normal car-
tilage from spontaneously degenerated tissue. QUI detected sensitively experimentally induced or
spontaneously developing degenerative changes before these characteristic OA alterations could be
visualized. The ultrasound roughness index (URI) was demonstrated to be sensitive and specific
for histologically confirmed surface fibrillation of articular cartilage tissue. Ultrasound reflection
from the cartilage-bone interface increased statistically significantly during the progression of tissue
degeneration. All quantitative ultrasound parameters exhibited moderate or good reproducibilities.

These present results indicate that quantitative mechano-acoustic measurements are a feasi-
ble way to sensitively characterize articular cartilage. The ultrasound indentation technique was
capable of determining short-term mechanical properties of cartilage. The instrument has now
been validated; the next stage will be its further development for clinical use. One major ben-
efit of QUI, as compared to more localized measurement techniques, is the possibility to obtain
information rapidly from larger areas of articular surfaces as well as from underneath the carti-
lage surface. QUI techniques could be applied in vivo by developing an arthroscopic imaging probe.

Universal Decimal Classification: 534-8, 534.7, 534.8, 681.88
National Library of Medicine Classification: QT 34, QT 36, WE 26, WE 300, WE 348, WN 208
Medical Subject Headings: osteoarthritis/diagnosis; cartilage; cartilage, articular/ultrasonography;
collagen; proteoglycans; biomechanics; acoustics; ultrasonics; ultrasonography; numerical analysis,
computer-assisted
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ABBREVIATIONS

1D One-dimensional
2D Two-dimensional
ACR American College of Rheumatology
B-scan 2D ultrasound image
CC Amide I absorption (collagen content)
COX Cyclo-oxygenase
CV Coefficient of variation
dGEMRIC Gadolinium Enhanced T1 MRI mapping of cartilage
FE Finite element
FFT Fast Fourier Transform
FMC Medial femoral condyle
FT-IRIS Fourier transform infrared spectroscopy
GAG Glycosaminoglycan
LPG Lateral patello-femoral groove
Mankin score Cartilage tissue histological degenerative grade
MS Mankin score
MTP Medial tibial plateau
MRI Magnetic resonance imaging
NSAID Non-steroidal anti-inflammatory drug
OA Osteoarthrosis
OCT Optical coherence tomography
PAT Patella (lateral upper quadrant)
PBS Phosphate-buffered saline
Rho Intraclass correlation coefficient
RMS Root mean square
sCV Standardized coefficient of variation
SEM Scanning electron microscopy
SD Standard deviation
X-ray Radiographic imaging





SYMBOLS

A Area of the surface or amplitude of the ultrasound signal
A0(z, f) Frequency and depth-dependent attenuation function
a Radius of the indenter (or ultrasound transducer)
α Attenuation coefficient
c Speed of sound
C Compliance
Cijkl Elastic stiffness matrix
d Distance
∆f Frequency bandwidth
E Young’s (elastic) modulus
E(f) Acoustoelectric transfer function
Edyn Dynamic modulus
EDynRef Reference dynamic modulus
ǫ Strain
ǫkl Strain tensor
F Force
f Frequency
G(f) Acquisition system transfer function
Ha Aggregate modulus
Hs(z, f)2 Surface-integrated diffraction function
H2O Water content
h Cartilage thickness
I Intensity of the ultrasound signal
IRC Integrated reflection coefficient (for the cartilage surface)
IRCbone Integrated reflection coefficient (for the cartilage-bone interface)
J(t) Creep compliance
k Permeability or wave number
kcreep Creep rate
κ(a/h, ν) Theoretical scaling factor (indentation geometry)
L Thickness or measurement length
λ Wavelength
m Number of 1D ultrasound scan lines
n Number of samples or data points
ν Poisson’s ratio
ω Angular temporal frequency
P Ultrasound signal power
p Statistical significance or acoustic pressure
Qg Ultrasound signal amplifying-correction factor
R Ultrasound reflection coefficient (for the cartilage surface)



Rbone Ultrasound reflection coefficient (for the cartilage-bone interface)
Ra Average surface roughness
Rq RMS surface roughness
Rc Ultrasound reflection coefficient for the cartilage surface

in the time domain
RdB

c (f) Energy reflection coefficient for the cartilage surface
in the frequency domain

r Pearson’s correlation coefficient
rs Spearman’s correlation coefficient
ρ Density
S0 Unprocessed ultrasound signal
SH Hamming windowed ultrasound signal
Sc(z, f) Frequency domain ultrasound signal from the cartilage surface
Sr(z, f) Frequency domain ultrasound signal from the perfect reflector
σ Stress
σij Stress tensor
T Ultrasound transmission coefficient or length of time window
t Time
u Particle displacement
URI Ultrasound roughness index (for the cartilage surface)
v Ultrasonic wave velocity
x Distance
y(x) 1D surface profile
Z Acoustic impedance
z Distance or depth
〈...〉 Spatial average
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Chapter I

Introduction

Articular cartilage is specialized connective tissue that covers the ends of the bones
in the diarthrodial joints. The main functions of articular cartilage are to dissipate
contact stresses during joint loading, to contribute to lubrication mechanisms in
the joint, and to provide an almost frictionless articulation in a diarthrodial joint
[90, 104]. In order to accomplish these tasks, articular cartilage has unique mechan-
ical properties: the tissue is a biphasic material with an anisotropic, unhomogenous
and nonlinear behaviour. This complex mechanical behaviour is a result of the spe-
cialized composition and structural organization of the tissue. Articular cartilage
consists of one cell type, the chondrocyte, and of an extracellular matrix. The inter-
stitial water contributes 70-80 % to the wet weight of cartilage, while the structural
macromolecules, i.e. collagens, proteoglycans and noncollagenous proteins, make
up the remaining 20-30 % [90, 93]. It is widely accepted that collagen fibrils are
mainly responsible for the cartilage tensile stiffness and the dynamic compressive
stiffness, while proteoglycans are primarily responsible for the time-dependent and
equilibrium properties during compression [13, 64, 71].

Osteoarthrosis (OA) is a very common and severe joint disease causing suffering
to the patients and a high economical burden to society [37, 132]. OA is char-
acterized by the progressive degeneration of the articular cartilage along with the
abnormal growth of the subchondral bone [21, 31]. Specific OA changes in the
cartilage tissue include the progressive disruption of the collagen network and pro-
teoglycans and an increased water content [21]. Previous studies have indicated
that the superficial tissue layer in particular contributes significantly to the normal
mechanical behaviour of the cartilage [43, 66] and, therefore, degenerative changes
in this layer are believed to be highly deleterious to the joint function. In addition
to changes in the cartilage tissue, thickening of the subchondral bone, i.e. sclerosis,
and ostephyte formation are involved in OA [21, 31]. These degenerative changes
lead to a decrease in cartilage stiffness [8, 59] impairing the mechanical function of
cartilage in the joint. The clinical symptoms of OA include pain, limited mobility

13



14 1. Introduction

and joint deformity.
Currently, OA is diagnosed with radiography (X-ray), followed by magnetic reso-

nance imaging (MRI) or arthroscopy when necessary. Unfortunately, these diagnos-
tic techniques can only detect major OA changes i.e. typically near the endpoint of
the disease. Visual evaluation and subjective palpation of articular surface during
arthroscopy have also been claimed to be unsuitable indicators of early degenera-
tion [8, 30]. Today, there is increased interest in surgical cartilage repair after local
cartilage injuries but these techniques need more sensitive evaluation methods of
cartilage properties [73].

During the past few years, numerous quantitative techniques have been intro-
duced for the diagnosis of cartilage quality [7, 22, 28, 30, 34, 41, 45, 47, 81, 95, 121].
Most of these techniques are still in the preclinical stage. Clinically, it is important
that a diagnostic technique is able to differentiate between the different stages of
degeneration but it also needs to be simple to perform and to give reproducible
results.

In a recent study, the prototype of an ultrasound indentation instrument was
introduced for the diagnosis of cartilage degeneration [70]. The instrument dis-
tinguished sensitively between normal and enzymatically degraded cartilage in vitro

[70], and detected site-dependant variation of cartilage properties in the bovine knee
joint in situ [69]. In spontaneously degenerating cartilage, however, tissue changes
are not as specific as those seen after enzymatic degradation, thus the instrument
needs to be capable of detecting these natural degenerative alterations. In this thesis
(Study I), the ability of an ultrasound indentation instrument to distinguish differ-
ent histological degenerative stages of bovine articular cartilage during spontaneous
degeneration process was investigated in vitro. Furthermore, the results of earlier
studies [69, 70] were combined (Study II) with the results of obtained in Study I.
The ability of the ultrasound indentation instrument for detecting dynamic stiffness
accurately in heterogenous sample population was investigated.

Quantitative ultrasound measurements have been demonstrated to be suitable
for the diagnostics of cartilage surface degeneration [28, 34, 45, 61, 72, 73, 114, 119].
Furthermore, it has been proposed that ultrasound reflection from the subchondral
bone would increase in OA due to bone sclerosis [50, 114]. In this thesis work,
the suitability of quantitative 2D ultrasound imaging was investigated to detect
mechanically induced, enzymatically induced, or spontaneously developed degener-
ative changes (Studies III-V). Ultrasound reflections from the articular surface, as
well as from the cartilage-bone interface, were quantified and related to histological,
biomechanical and biochemical reference measurements.

In addition to ultrasound reflection from the cartilage surface, cartilage surface
roughness can also serve as an index of cartilage degeneration [4, 27, 38, 48]. Unfor-
tunately, most of the cited methods are applicable only under laboratory conditions,
and no quantitative technique capable of measuring the articular surface roughness
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in vivo has been described. This study attempted to investigate a novel approach
for quantifying the cartilage surface roughness from 2D ultrasound images (Study
III). The new method was tested with normal, mechanically, enzymatically or spon-
taneously degenerated cartilage samples (Studies III-V). The main goal is to devise
a roughness parameter which can also be used in vivo.
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Chapter II

Structure and composition of articular cartilage

”Articular cartilage was made for the purpose of providing a cushion between hard

bone and the soft members, so that the latter should not be injured when exposed

to a blow or fall, or compression... In the case of joints, it prevents the tissues

from being torn by the hard bone.” [16]. This citation from the Persian physician
Avicenna (980-1037) reveals that the main function of the articular cartilage in the
joint was, in general terms, recognized over a thousand years ago. In this chapter,
the current knowledge of the cartilage composition and structure is briefly reviewed.

Articular cartilage is composed of two distinct phases. Solid phase (or solid
matrix) of the cartilage tissue consists of collagen fibrils, negatively charged pro-
teoglycans and cells, i.e. chondrocytes. Articular cartilage is relatively acellular
tissue as, in adult tissue, only 2 % of the total cartilage volume is occupied by the
chondrocytes. Collagen molecules constitute 60-80 % of the cartilage dry weight or
approximately 20 % of the wet weight. The collagen molecules assemble to form
small fibrils and larger fibers that vary in organization and dimensions as a function
of cartilage depth. The diameter of the cartilage collagen fibrils is approximately
20 nm in the superficial zone and 70-120 nm in the deep zone. The collagen fibrils
of the cartilage tissue consist mainly of type II collagen which, by definition, helps
make tissue a hyaline cartilage. In contrast to the hyaline cartilage, fibrocartilage,
e.g., meniscal cartilage, contains mainly type I collagen. In addition to collagen
fibrils, proteoglycan macromolecules constitute 20-40 % of the cartilage dry weight
or approximately 5-10 % of the wet weight. The proteoglycan aggrecan is composed
of a protein core and numerous glycosaminoglycan (GAG) chains attached to the
core. Many aggrecan molecules are further bound to a single hyaluronan chain to
form a proteoglycan aggregate. [89, 90, 93, 104]

Fluid phase of the cartilage tissue consists of interstitial water and mobile ions.
The water phase constitutes 70-80 % of the cartilage total weight and is an important
determinant of the physical properties of the tissue. [12, 90, 93]

The typical thickness of human articular cartilage is only a few millimeters, and

17



18 2. Structure and composition of articular cartilage

the structure of the tissue is highly organized and layered. The basic structure of
articular cartilage can be divided into four zones (Figure 2.1), i.e. superficial zone,
middle zone, deep zone and calcified cartilage. In the superficial zone (approximately
10 % of the cartilage thickness), the chondrocytes are flattened and aligned in parallel
to the surface. In this region the collagen fibrils are relatively thin and run parallel
to each other and the articular surface. The proteoglycan content is at its lowest
and the water content is at its highest. In the middle zone, the collagen fibrils have a
larger diameter and are oriented randomly. Here the cell density and water content
is lower and proteoglycan content is higher than in the superficial zone. In the deep
zone, the diameter of the collagen fibrils is at its largest, and the collagen fibrils are
oriented roughly perpendicularly to the articular surface. The cell density and water
content are at their lowest, the proteoglycan content at its highest but the collagen
content is variable in the deep zone. The calcified zone, located between the deep
zone and the subchondral bone, joins the cartilage tissue to the subchondral bone.
Here the chondrocytes usually express a hypertrophic phenotype. [12, 89, 90, 104]

Superficial zone

Middle zone

Deep zone

Calcified cartilage

Subchondral bone

Chondrocyte

Collagen fibril

Tidemark

Bone marrow

Figure 2.1: Zonal arrangement of cartilage tissue. Tissue can be divided into four

zones according to the structure and composition. The subchondral bone is located

underneath the cartilage tissue.



Chapter III

Osteoarthrosis

3.1 Background

Osteoarthrosis (OA), also referred to as degenerative joint disease, degenerative
osteoarthritis, osteoarthritis or hypertrophic osteoarthritis, is the most common joint
disease and it has significant health, sociological and economical impact [132]. It has
been estimated that approximately 59 million people will be affected by degenerative
joint diseases by the year 2020 in the United States [37].

OA can be regarded as a physiologic imbalance, i.e. a ”joint failure” similar to
”heart failure”, in which mechanical factors play a role [110]. Age is the greatest risk
factor for OA and, consequently, OA is typically a disorder of elderly people. OA
occurs normally in the foot, knee, hip, spine and hand joints. Clinical symptoms of
OA include pain, restriction of motion, crepitation with motion, joint effusions and
deformity [21]. Inflammatory episodes are frequently encountered in OA and, there-
fore, the disease is often called osteoarthritis. However, primary OA can develop
without any known cause. Secondary OA can develop, e.g., after joint or ligament
injury, after infection or in a variety of hereditary, metabolic and neurological dis-
orders [21].

It is known that collagen damage, leading to fibrillation of the articular surface,
is more harmful to the tissue than the proteoglycan depletion since in mature hu-
man cartilage, the turnover time of collagen has been estimated to be more than one
hundred years [125]. These degenerative changes lead to a decrease in cartilage stiff-
ness, impairing the ability of the tissue to cope with the high mechanical demands
placed on the joint [8, 59]. In addition to changes in the cartilage tissue, specific
osteoarthrotic alterations in the subchondral bone include remodeling, thickening
(sclerosis), cyst formation and osteophyte formation [21, 31].

It was suggested as early as the 1960’s that changes in bone remodeling could
precipitate degeneration of cartilage tissue [14]. In 1986, Radin et al. proposed that
alterations of the subchondral bone, i.e. increased bone mass and sclerosis, would

19
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occur before deterioration of cartilage structure and properties [110]. The assump-
tion behind the hypothesis was that the mechanical progression of cartilage lesions
requires, initially, a stiffening of the subchondral bone. In such situations, transverse
stresses at the base of the articular cartilage could cause deep horizontal splits in the
tissue [110]. Today it is still not known whether changes in the subchondral bone
precede cartilage degeneration or vice versa. However, it has become clear that sub-
chondral bone and articular cartilage comprise a unique functional unit and that the
operation of this unit is disturbed in OA. Therefore, it is important that diagnostics
and treatment methods of OA should not concentrate solely on the cartilage tissue,
but also on the subchondral bone [14].

Unfortunately, no cure for OA exists although much effort has been devoted to
this research all over the world. In the following sections, the progression of OA as
well as the current treatment and diagnostic options are briefly reviewed.

3.2 Progress of osteoarthrosis

According to Buckwalter and Mankin (1997), the progression of OA can be divided
into three phases [21]:

1. Early degeneration: There is an increase in the cartilage water content [85]
and a decline in proteoglycan aggregation. Simultaneously, alterations in the
collagen fibril network, i.e. changes in the relative amounts of the minor
collagens and the collagen fibrils, can be observed. These changes weaken the
integrity of the collagen network matrix and, consequently, lead to cartilage
swelling and increased water content. Hence, tissue permeability increases,
allowing free water flow in and out of the tissue. All of these changes together
debilitate the mechanical performance of articular cartilage by decreasing its
mechanical stiffness. It is noteworthy that in this stage, the cartilage surface
is frequently still glossy, and no visible surface fibrillation can be seen. In the
subchondral bone, an increased density, cyst-like bone cavities or thickening
can be observed.

2. Advanced degeneration: This stage begins when tissue chondrocytes detect the
tissue damage or changes in osmolarity and charge. After the detection of the
damage, mediators are released into the tissue by chondrocytes, initiating the
cartilage repair process. The repair process involves an increased synthesis
of matrix macromolecules and cell proliferation and can last for years. In
this stage, the cartilage surface loses its visually glossy appearance and may
become discoloured. Furthermore, surface fibrillation and superficial or deep
defects reaching the subchondral bone can be observed. Subchondral bone
thickening continues and bone cavities are more frequent at this stage.
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3. Late degeneration: The final stage of OA begins when the chondrocytic re-
sponse fails to restore cartilage and, consequently, cartilage tissue can be al-
most completely worn out. The loss of articular cartilage causes severe pain
and the other typical clinical symptoms of OA. In this stage, the subchondral
bone can be vastly thickened and very dense. The shape of the articulating
bone ends may change due to the abrasion induced by the loss of the overlying
articular cartilage.

3.3 Treatment of osteoarthrosis

Non-invasive treatment
The clinical conservative treatment is mainly focused on pain reduction, maintaining
or improving joint mobility and limiting functional impairment. The recommenda-
tions, published by the American College of Rheumatology (ACR), state that the
non-pharmacologic treatment (including patient education, physical therapy, weight
loss, exercise or assisting devices) should be the initial choice, followed by oral med-
ication for pain relief, if needed [1, 101]. The oral medications initially includes
non-steroidal anti-inflammatory drugs (NSAIDs, e.g. ibuprofen) and, subsequently,
if their response is inadequate, cyclo-oxygenase (COX)-2-selective inhibitors [1, 101].
However, it has been demonstrated that NSAIDs as well as COX-2-inhibitors may
have serious adverse effects, especially with long-term use and this must be balanced
against the benefits of these oral medications [101].

It has been proposed that glucosamine sulfate could be a safer and more effective
oral medication for treatment of OA [51]. Glucosamine sulfate is a slow-acting drug,
as compared to traditional NSAIDs, and it is usually delivered orally. Glucosamine
is believed to play a part in the repair and maintenance of cartilage tissue. It stim-
ulates cartilage cells to produce GAGs and proteoglycans and, thus, helps tissue to
recover from the proteoglycan depletion occuring in OA [51]. In 2001, James et al.
performed a large literature review of clinical studies that focused on the efficacy
of glucosamine sulfate in the treatment of OA [51]. A significant reduction in knee
pain, an improved range of motion and a decreased swelling were reported when
glucosamine sulfate was compared to placebo. From these data, James et al. (2001)
concluded that [51]: ”Glucosamine sulfate appears to slow the process of articular

degeneration and facilitate the recovery of normal joint mobility.” However, con-
flicting results have been also published. Lammi et al. (2004) and Qu et al. (2006)
concluded, based on biochemical in vitro experiments with bovine normal and os-
teoarthritic cartilage tissue, that glucosamine sulphate did not increase proteoglycan
synthesis in bovine primary chondrocytes [76, 107]. ”Our results raise questions how

orally administered glucosamine can manifest its suggested effects on articular carti-

lage.” [107]. Thus, an unequivocal assessment of the benefits of glucosamine sulfate
remains to be done.
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Several available treatment methods concentrate exclusively on the cartilage tis-
sue. Very recently, calcitonin has been introduced for the treatment of OA [57].
Calcitonin has long been known to inhibit bone resorption but now it has also been
hypothesized, based on in vitro and in vivo results, to have a direct chondropro-
tective effect on the cartilage [57]. As described earlier, subchondral bone and ar-
ticular cartilage comprise a unique functional unit and, therefore, this kind of drug
may represent an effective treatment attacking both cartilage and subchondral bone
metabolic imbalances [57]. However, more randomized clinical studies are needed
to support that hypothesis.

Invasive treatment
One potential minimally invasive treatment option is an intra-articular hyaluronan
injection. The hyaluronan is a typical polysaccharide found normally in the ex-
tracellular matrix in soft connective tissues [101]. In knee OA, both synovial fluid
viscosity and hyaluronan concentration are reduced, and hyaluronan injections have
been thought to act as fluid replacement [101]. Clinically, a significant reduction of
pain and improvement in joint function with few adverse effects have been reported
for knee OA. Recently, ACR guidelines were also updated to include hyaluronan
injections as an option for OA treatment [1, 101].

Traditional, and probably the most common, invasive methods for treating painful
joint conditions in OA are lavage and debridement [49]. Both methods can be con-
ducted during arthroscopy. In lavage, a solution of sodium chloride is injected into
the patient’s joint. Over 10 liters of fluid can be used in the procedure [88]. In
debridement, the rough articular surfaces are shaved, loose debris is removed, all
torn or degenerated meniscal fragments are trimmed, and the remaining meniscus
is smoothed to a firm and stable rim [88]. In clinical studies, approximately 50 %
of treated patients report relief from pain after these arthroscopic procedures [88].
However, there is still much doubt about the true efficacy of these methods [32]. It
has been even reported that pain relief in knee OA is no better after arthroscopic
lavage or arthroscopic debridement than after a placebo procedure [88]. This is an
interesting result since in the United States, the annual cost of these arthroscopic
procedures amounts to approximately 3.25 billion dollars [88]. Nonetheless, it was
claimed in a very recent study that carefully selected patients may still benefit for
arthroscopic debridement [120].

When OA reaches the end-stage, the most common treatment is the installation
of an endoprosthesis. When cartilage defects are confined to a small localized area,
surgical cartilage repair techniques may offer treatment approach. Usually, these
localized cartilage injuries occur after joint trauma. Cartilage repair techniques can
be divided into two types: intrinsic and extrinsic [49]. In the intrinsic type, the
cartilage tissue is stimulated to heal via its own spontaneous repair mechanisms. In
the extrinsic techniques, active biological compounds are installed in the cartilage
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defect in order to induce tissue regeneration. Mosaicplasy and autologous chon-
drocyte transplantation are the most common extrinsic cartilage repair techniques
[49]. For a more detailed description of the current status and prospects of cartilage
repair techniques, the reader is recommended to read the review by Hunziker (2002)
[49].

3.4 Diagnostics of osteoarthrosis

3.4.1 Clinical diagnostic techniques

Clinical examination and X-ray imaging
The basis of OA diagnostics, as in most diseases, is clinical examination. In the
examination, the joint is palpated and pain, restriction of joint motion, crepitation
with joint motion, joint effusion and joint deformity are evaluated. The clinical
examination is usually followed by a radiographic (X-ray) examination (Figure 3.1).
Joint space narrowing, a result of the cartilage wear and subchondral bone sclero-
sis, is a typical sign of the advanced or late stages. Since the water content of the
cartilage tissue can be as much as 80 % of the total weight, cartilage tissue does not
significantly attenuate X-rays. Therefore, it is not possible to evaluate the status of
cartilage tissue from native radiographic images. Thus, the early stage of the disease
cannot be visualized in X-ray images.

Figure 3.1: X-ray images (ap/pa) of a healthy knee joint (left) and an osteoarthrotic

knee joint (right). Typical advanced or late stage changes can be observed in the

right-hand image, i.e. joint space narrowing and subchondral bone sclerosis.

Arthroscopy
Other common method used in OA diagnostics is arthroscopy in which an arthro-
scope is inserted into the joint through a hole. Simultaneously, various surgical in-
struments can be guided into the joint through the other portal. Cartilage integrity,
surface fibrillation, defects of the surface, joint ligaments etc. can be visually evalu-
ated through the arthroscope. Furthermore, cartilage stiffness is normally evaluated
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by manually palpating the articular surface with a blunt probe. Currently, it is not
possible to evaluate the cartilage internal structure and the subchondral bone dur-
ing routine arthroscopy. Despite being current clinical practice, visual evaluation
and subjective palpation of the articular surface during arthroscopy are claimed to
be insufficient indicators of early degeneration [8, 30]. Clearly, these methods are
subjective and significantly dependent on the evaluator [20].

MRI imaging
Magnetic resonance imaging (MRI) is the most promising non-invasive method for
OA diagnostics [22]. In routine MRI, thinning and irregularity of cartilage tissue,
as well as subchondral bone changes, can be qualitatively evaluated during OA.
Recently, Gadolinium enhanced T1 MRI mapping of the cartilage (dGEMRIC) has
been suggested to be able to detect the cartilage proteoglycan concentration and dis-
tribution [22, 23, 98], also in vivo [15]. T2 mapping with MRI has been suggested to
be a sensitive way to measure the cartilage tissue collagen content, the orientation
of the collagen fibrils as well as the collagen integrity [22, 99, 100, 130]. Recently,
it has been reported that both dGEMRIC and T2 mapping predict indirectly me-
chanical stiffness of the human cartilage in vitro [67, 115]. It has also been proposed
that the relationship between T2 values and cartilage dynamic stiffness is significant
at the clinical field strength (1.5 T) [75]. However, it was alleged in a very recent
study that clinical use of T2 mapping is not possible due to many competing factors
affecting T2 measurements [23]. The main weakness of MRI imaging is its limited
resolution and only the moderate relation between cartilage mechanical stiffness and
MRI parameters. Thus, MRI evaluates the tissue microstructure and composition
but does not directly measure the mechanical competence of the articular cartilage.

3.4.2 Pre-clinical diagnostic techniques

Indentation measurements
Traditionally, the mechanical performance of the articular cartilage has been quanti-
fied with indentation measurements. In this technique, the cartilage surface is com-
pressed with a cylindrical or spherical indenter to a predefined strain. Consequently,
the force by which the cartilage resists the induced deformation is measured and used
as an indicator of cartilage stiffness. Several indentation instruments have been in-
troduced for arthroscopic measurements of cartilage stiffness [7, 10, 30, 81, 95].
With these instruments, however, it is not possible to determine tissue thickness
and this is a factor that affects the indentation results, especially with thin cartilage
[46, 83, 133].
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Ultrasound indentation
To overcome the limitation of unknown cartilage thickness, a technique called ultra-

sound indentation has been introduced for the determination of cartilage mechanical
properties. In this technique, the cartilage tissue is compressed with an ultrasound
transducer and, simultaneously, the thickness and deformation are calculated from
the ultrasound signal reflected from the cartilage-bone interface [58, 70, 121, 134].
Consequently, the material stiffness of tissue can be calculated from the measure-
ments, provided that a realistic mechanical model for cartilage is in use.

In 2002, a handheld ultrasound indentation instrument for the diagnosis of car-
tilage degeneration was developed in the University of Kuopio [70]. The instrument
consists of an unfocused miniature contact ultrasound transducer (diameter = 3.0
mm) mounted on the tip of an arthroscopic indentation instrument (Artscan 200,
Artscan Oy, Helsinki, Finland). In the ultrasound indentation technique, cartilage
is compressed manually with the ultrasound transducer and the ultrasound signal
is collected simultaneously (Figure 3.2A). The resisting force is measured with the
strain gauge inside the instrument. Thickness and deformation of the cartilage are
detected in real-time from the ultrasound signal. From this information, the car-
tilage dynamic (instantaneous) modulus can be calculated. Furthermore, manual
creep experiments can be conducted with the instrument by inducing and main-
taining a constant stress on the cartilage surface and simultaneously measuring the
time-dependent change in the strain [70]. In addition to mechanical measurements,
ultrasound reflection from the cartilage surface can be determined with the instru-
ment. In order to keep the transducer at a constant distance from the articular
surface, a sleeve has been attached over the ultrasound transducer (Figure 3.2B).
The echo amplitudes of the reflected sound from the articular surface are measured
and normalized with the echo signal from the perfect reflector, i.e. from the saline-
air interface.

The ultrasound indentation instrument has been demonstrated to be able to dis-
tinguish sensitively normal and enzymatically degraded cartilage from each other
in vitro [70]. Furthermore, the instrument has enabled an objective registration of
the site-dependent variation of cartilage properties in the bovine knee joint in situ

[69]. Typical values for the dynamic modulus, as measured with the instrument,
were 3.4-10.0 MPa and 3.0-4.7 MPa for healthy and degenerated tissue, respectively
[69, 70]. The creep rate (kcreep = dJ(t)

d ln t
, where J(t) is the creep compliance and t

is time), determined manually in a creep experiment, was typically 21.6-27.8 kPa/s
in healthy compared to 29.0-62.0 kPa/s for degenerated tissue [70]. The ultrasound
reflection coefficient for the cartilage surface was typically 4.2-5.7 % and 2.3-4.8 %
for healthy and degenerated tissue, respectively [69, 70].

Optical coherence tomography
Recently a novel imaging modality, optical coherence tomography (OCT) was in-
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Figure 3.2: A) Schematic presentation of the indentation geometry of the ultrasound

indentation instrument [70]. B) Ultrasound reflection from the cartilage surface is

also quantified with the instrument by attaching a plastic sleeve over the ultrasound

transducer.

troduced for the assessment of articular cartilage microstructure [47]. The physical
background of OCT is somewhat analogous to ultrasound - OCT measures reflection
of infrared light instead of sound. The resolution of OCT is very high, being typi-
cally in the range of 10-20 micrometers [102]. OCT imaging has been demonstrated
to be capable of measuring cartilage thickness [112], collagen network organization
[35] as well as other histologically confirmed structural changes [3, 80]. In addition
to in vitro studies, OCT has been tested arthroscopically in vivo with porcine [102]
and rat [3] articular cartilage, and with human cartilage during open knee surgery
[80]. There is one main limitation of cartilage OCT imaging, and in that way it is
similar to MRI, i.e. it provides information on tissue microstructure but not directly
on the cartilage mechanical properties. Furthermore, the penetration of light in the
cartilage is limited.

Electromechanical measurements
Novel electromechanical diagnostic methods have been tested in pre-clinical inves-
tigations [41, 79, 108, 113]. In these techniques, electromechanical properties, such
as streaming potentials, of cartilage tissue are measured, in unconfined compression
or in indentation geometry, with a mechanical tester coupled with a microelec-
trode. The technique has been reported to be especially sensitive for detecting the
degradation of cartilage proteoglycans [79]. Electromechanical measurements do not
provide information about tissue thickness, which could possibly affect the deter-
mination of cartilage electromechanical properties. Furthermore, electromechanical
measurements do not permit acquisition of high resolution images of the tissue.
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High-frequency ultrasound analysis
Various studies have been published to test the suitability of using high-frequency ul-
trasound in the detection of cartilage degeneration [2, 5, 28, 29, 34, 45, 50, 61, 72, 73,
78, 103, 106, 114, 119, 123, 124]. In this technique, an ultrasound wave pulse is trans-
mitted through the cartilage tissue, and the reflection or backscattering of sound is
measured. The ultrasound technique has been demonstrated to be especially sen-
sitive for superficial collagen degeneration. Furthermore, ultrasound measurements
offer great potential for direct determination of cartilage surface roughness.

Ultrasound imaging has theoretically greater potential, compared to other tech-
niques, for providing direct information about the mechanical performance of car-
tilage since the ultrasound is a mechanical wave motion. The main weakness of
the ultrasound technique is that it requires at least a minimally invasive approach
in clinical use. Some kind of non-invasive ultrasound imaging of articular cartilage
could also be an option, although the ultrasound penetration would then be limited
to small areas in the joint. More detailed information of the ultrasound technique
for the characterizing acoustic properties of cartilage can be found in the chapter
”Ultrasonics of articular cartilage”.
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Chapter IV

Mechanical characteristics of articular cartilage

4.1 Background

In order to accomplish the demanding task of minimizing and dissipating large
stresses in the joints, articular cartilage has unique mechanical properties. Carti-
lage tissue is an inhomogeneous, layered poroelastic material with nonlinear and
anisotropic mechanical properties [126]. When an external load is applied onto the
joint, cartilage deforms to increase the contact area and to enhance joint congruence.
Consequently, a combination of compressive, tensile and shear stresses is generated
in cartilage. The response of the tissue can be significantly different for each of these
stress types. It is known that the collagen network is mainly responsible for the dy-
namic compressive and tensile response of the cartilage tissue whereas proteoglycans
are mainly responsible for the static compressive stiffness of cartilage [64].

4.2 Measurement techniques

Traditionally, cartilage mechanical properties have been measured in three differ-
ent measurement configurations [90]: unconfined compression, confined compression

and indentation. In unconfined compression, cartilage tissue (without the subchon-
dral bone) is compressed between two smooth metallic plates, allowing the fluid
flow only in the lateral direction (Figure 4.1A). In confined compression, a carti-
lage sample, with or without the subchondral bone, is placed in a chamber and,
subsequently, compressed with a porous filter (Figure 4.1B). In this approach the
fluid can only flow axially through the tissue surface into the filter. In indentation,
cartilage is typically compressed with a cylindrical plane-ended or spherical-ended
indenter (Figure 4.1C). Fluid flow outside the indenter-cartilage contact is possible
in both the lateral and axial directions. As the cartilage tissue is naturally attached
to the subchondral bone, indentation measurements can be performed in vivo while
the other configurations are limited to in vitro studies.

29
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When cartilage tissue is compressed, a loss of volume occurs since the inter-
stitial fluid flows out from the tissue. This phenomenon is primarily responsible
for the time-dependent viscoelastic behaviour of cartilage during compression. The
movement of interstitial fluid through the tissue is limited by frictional drag forces
between the fluid and the solid matrix and, consequently, high hydrostatic pressures
are developed within the matrix [90]. The behaviour of cartilage under constant
compressive loading (stress) is called creep (Figure 4.2A) and the behaviour under
constant compressive displacement (strain) is called stress-relaxation (Figure 4.2B).
When the tissue reaches its equilibrium state, no fluid flow or pressure gradients
exist and, consequently, the entire stress is carried by the solid matrix [90].

Metallic plate

Metallic plate

Cartilage
sample Confining

chamber

Porous
filter

Cartilage
sample Indenter

Cartilage tissue

Subchondral
bone

Load

Load
Load

A) B) C)

Figure 4.1: Schematic presentation of the typical measurement configurations in

use for mechanical testing of the articular cartilage. A) Unconfined compression:

the tissue is compressed between two smooth metallic plates allowing fluid flow in

the lateral direction. B) Confined compression: the tissue is placed in a metallic

chamber and compressed with a porous filter allowing fluid flow axially through the

filter. C) Indentation: the tissue is compressed with a cylindrical plane-ended or

spherical-ended indenter allowing fluid flow in both lateral and axial directions.
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Figure 4.2: A) In a creep measurement, cartilage tissue deformation (strain) is

recorded under a constant load (stress) applied at t0. B) In a stress-relaxation mea-

surement, the cartilage tissue load (stress) is recorded under a constant deformation

(strain) applied at t0.
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Table 4.1: Basic equations for the determination of isotropic elastic parameters of

cartilage.

Parameter Equation Number

Stress (σ) σ = dF
dA

(1)

Strain (ǫ) ǫ = L′
−L
L

(2)
Young’s modulus (E) (stress-strain ratio
in unconfined compression) E = σa

ǫa

(3)

Poisson’s ratio (ν) (unconfined compression) ν = ǫl

ǫa

(4)

Shear modulus (µ) µ = E
2(1+ν) (5)

Aggregate modulus (HA) (stress-strain ratio
in confined compression) HA = 1−ν

(1+ν)(1−2ν)E (6)

Young’s modulus (indentation geometry) E = (1−ν2)πa

2κh
σ
ǫ

(7)

Shear modulus (indentation geometry) µ = (1−ν)πa

4κh
σ
ǫ

(8)

Explanation of the symbols:
F Reaction force
A Area of the surface in which the force is acting
L Initial thickness
L′ Thickness after compression
σa and ǫa Axial stress and strain
ǫl Lateral strain
a Indenter radius
h Cartilage thickness
κ(a/h, ν) Theoretical scaling factor due to finite and variable cartilage thickness [46].

When cartilage is compressed under constant stress (creep measurement) or
strain (stress-relaxation measurement), its mechanical properties can be directly
determined by measuring the displacement and force as a function of time. At me-
chanical equilibrium, the measured stress (eq. (1) in Table 4.1) and strain (eq. (2) in
Table 4.1) can be used to calculate the elastic (equilibrium) modulus for the tissue.

In unconfined compression geometry, the Young’s modulus (E) at equilibrium
can be calculated using equation (3) (Table 4.1). Poisson´s ratio (ν) is determined
by equation (4) (Table 4.1). In an isotropic elastic material, the shear modulus
(µ) is related to the Young’s modulus and Poisson’s ratio according to equation (5)
(Table 4.1).

In confined compression geometry, the elastic modulus can be determined anal-
ogously to Young’s modulus in unconfined compression. This modulus in confined
compression is called the aggregate modulus (HA), and it can be related to the
Young’s modulus and Poisson’s ratio in elastic and isotropic materials (eq. (6) in
Table 4.1).

In indentation geometry, it can be shown, after an elaborate calculation, that the
Young’s modulus at equilibrium can be derived from equation (7) (Table 4.1). The
shear modulus in indentation geometry can be calculated from equation (8) (Table
4.1).

The elastic properties of articular cartilage have been widely characterized in the
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literature. Young’s modulus (E) or aggregate modulus (HA) values around 0.2-1.5
MPa have been reported for healthy cartilage tissue depending on the measurement
geometry used [8, 9, 11, 24, 33, 54, 55, 56, 60, 63, 71, 91, 92, 129]. Equilibrium
Poisson’s ratio (ν) values for healthy tissue have been reported to be in a range of
0.00 - 0.43 [11, 33, 56, 63]. The instantaneous or dynamic (t → 0) modulus has been
reported to be around 1.5 - 20 MPa [24, 40, 71, 77, 109].

4.3 Theoretical models for mechanical behaviour of articu-
lar cartilage

4.3.1 Single phasic elastic model

In a homogeneous elastic material, the mechanical properties are constant within
the material, and in an isotropic elastic material, the mechanical properties are
uniform in all directions [6]. Otherwise the material is said to be inhomogeneous
and anisotropic. The linear relationship between the stress and strain is described
by the generalized Hooke’s law:

σij = Cijklǫkl, (4.1)

where σij is the stress tensor, Cijkl is the elastic stiffness matrix and ǫkl is the
strain tensor. In order to characterize the mechanical behaviour of an anisotropic
material altogether 21 stiffness components (elastic constants, Cijkl) are needed.
If the material has mutually perpendicular planes of elastic symmetry (orthotropic
material), nine elastic constants are needed. If we assume the same properties in one
plane (e.g. x-y plane) and different properties in the direction normal to this plane
(e.g. z-axis), the material is called transversely isotropic, and it can be described by
five independent elastic constants. Finally, if the material is perfectly isotropic, i.e.

it has the same elastic properties in all planes, two independent elastic constants
are needed: the Young’s modulus (E) and Poisson’s ratio (ν).

4.3.2 Biphasic model

As articular cartilage is composed of two distinct phases, i.e. solid and fluid, the
mechanical response of the cartilage tissue to the applied load is time-dependent,
i.e. the tissue exhibits viscoelastic behaviour. This behaviour is related to the inter-
stitial fluid flow through the porous-permeable solid matrix as well as to the time-
dependent viscoelastic deformation of the solid matrix itself [90, 93]. Consequently,
a linear single phasic elastic model is inadequate for characterizing time-dependent
mechanical behaviour in cartilage. The most traditional model for characterizing the
mechanics of articular cartilage, taking the interstitial fluid movement into account,
is the linear isotropic biphasic model [91]. In the biphasic theory, the solid matrix
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is assumed to be isotropic, linearly elastic and incompressible. The fluid phase is
assumed to be incompressible and inviscid [91]. Consequently, in addition to elastic
parameters which can be calculated from equation (4.1), a knowledge of the tissue
permeability (k) is needed for characterizing the time-dependent behaviour of the
tissue.

The tissue permeability (k) can be determined direcly or indirectly. In the di-
rect determination, the cartilage tissue specimen is positioned under the pressure
gradient and the rate of fluid flow through the tissue is measured. In the indirect
technique, experimental mechanical measurements are conducted and, subsequently,
the theoretical model is fitted to the experimental data. The permeability of the
normal articular cartilage is in the order of 10−15 − 10−16 m4/Ns [90].

The biphasic model indicates that articular cartilage behaves like an equivalent
incompressible (ν=0.5) single phasic elastic material during instantaneous loading
(t → 0). In an equilibrium state, the Young’s modulus (E) (or the shear modulus
(µ)) and the Poisson’s ratio of the true solid matrix can be determined [83].

4.3.3 Extensions of biphasic model

Cartilage tissue is known to exhibit different responses during compression and ten-
sion experiments. Therefore, neither the single phasic elastic theory nor the isotropic
biphasic theory provides a comprehensive characterization of cartilage mechanics.
Consequently, several more advanced models have been introduced. The most im-
portant ones of these models are listed below [128]:

Transversely isotropic model
Transversely isotropic model has six material parameters: Young’s modulus (E1)
and Poisson’s ratio (ν12) in the transverse plane (parallel to the articular surface),
Out-of-plane Young’s modulus (E3) and Poisson’s ratio (ν31), Out-of-plane shear
modulus (µ13) and permeability (k). Typical values for material parameters are
[65]: E1 = 1-19 MPa, E3 = 0.46 MPa, ν12 = 0.5, ν31 = 0, µ13 = 0.4-6.3 MPa,
k = 0.2− 5.0× 10−15 m4/Ns. The most crucial advantage obtained with this model,
as compared to elastic isotropic models, is the inclusion of the response of those
collagen fibrils oriented parallel to the surface in the superficial cartilage layer. This
is important as it has been demonstrated that the superficial layer significantly con-
tributes to the stiffness of articular cartilage measured in indentation geometry [66].
However, this model still fails to predict the compression-tension nonlinearity of the
tissue.

Fibril reinforced model
In the fibril reinforced model, the compression-tension nonlinearity is taken into ac-
count by inclusion of the collagen fibril network, running in three mutually orthog-
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onal directions. The collagen network is simulated with the elastic or viscoelastic
springs embedded in the isotropic matrix. The material parameters of the fibril
reinforced model are Young’s modulus (Em) and Poisson’s ratio (νm) of the drained
porous matrix, permeability (k), and the Young’s modulus of the fibril network
(Ef = Eǫ

fǫf + E0
f , where ǫf is tensile srain). Typical values for material parameters

are [64]: Em = 0.10 - 0.34 MPa, νm = 0.42, Eǫ
f = 20 - 190 MPa, E0

f = 0.10 - 1.00 MPa
and k = 0.6 − 4.0 × 10−15 m4/Ns. The advantage of the fibril reinforced model, as
compared to the transversely isotropic model, is that the fibrils resist only tension.
Thus, the compression-tension nonlinearity can be characterized with this model.
Furthermore, time-dependent deformation related to intrinsic matrix viscoelasticity
can be taken into account [82].

Triphasic theory
Triphasic theory is an extension of the biphasic model but incorporates three phases:
an incompressible solid, an incompressible fluid and a monovalent ionic phase [74,
122]. The model assumes that the total stress of the tissue is composed of the fluid
stress, solid stress and chemical potentials. This model can be used to faithfully
include the effect of cartilage tissue swelling. However, the model, in its current
formulation, fails to predict the compression-tension nonlinearity as well as the re-
sponse of those collagen fibrils oriented parallel to the surface in the superficial
cartilage layer.



Chapter V

Basic physics of ultrasound

5.1 Ultrasonic waves

Waves in One Dimension
In the following presentation, it is assumed that the material in which the ultrasonic
wave is propagating is homogenous, linear and isotropic.

In the ultrasonics of materials, two distinct types of plane waves can be gen-
erated: transverse and longitudinal. In the transverse wave type, a particle moves
perpendicularly to the direction of wave propagation. Since the particle motion in
transverse waves is associated with shear stress, the transverse wave type is often
called a shear wave. Shear waves cannot be generated in low-viscosity fluids such as
water or air. In the longitudinal wave type, a particle moves parallel to the direc-
tion of wave propagation. This wave type is often called a pressure wave or P-wave
since the stress of the periodic compression and tension of the particles is along the
direction of propagation. [36, 118, 127]

The single particle displacement (u) in a material, in which the ultrasonic wave
is propagating, is a function of distance (x) and time (t), i.e. u = u(x, t). It can be
shown that the particle displacement satisfies the linear wave equation [118]:

∂2u

∂x2
− 1

v2

∂2u

∂t2
= 0, (5.1)

where v is the phase (wave) velocity. The common solitary wave function satisfying
the wave equation is of the following type [118]:

u(x, t) = u0e
j(ωt−kx), (5.2)

where ω is the angular temporal frequency (ω = 2πf , f=frequency) and k is the
wavenumber (k = 2π

λ
, λ=wavelength).

In longitudinal type waves, compressive stress (σ) is associated with the wave
motion [118]. In a long, thin rod, the phase velocity of the longitudinal wave in

35
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a homogenous isotropic medium (vl) is related to the Young’s modulus (E) and
material density (ρ) (eq. (1) in Table 5.1).

In transverse type waves, shear stress is associated with the wave motion [118].
As with longitudinal type waves, it can be presumed that the phase velocity of the
transverse wave (vt) is related to the elastic shear modulus (µ) and material density
(ρ) (eq. (2) in Table 5.1).

It can be derived that the acoustic pressure (p), driving the traveling longitudi-
nal type wave in linear elastic material, is related to the Young’s modulus and the
particle displacement (∂u

∂x
) (eq. (3) in Table 5.1). [118]

Waves in Three Dimensions (bulk waves)
If one assumes that bulk waves travel as a planar wave front in isotropic, homoge-
nous material, the major difference between bulk waves and one dimensional waves
will be in the Poisson’s effect, i.e. the medium is compressed in one direction and
simultaneously expanded in other directions. In this kind of situation, the phase
velocity of the 3D longitudinal type wave (vl) can be presented as a function of
Young’s modulus (E), material density (ρ) and Poisson’s ratio (ν) (eq. (4) in Table
5.1). [36, 118, 127]

In contrast to 3D longitudinal type waves, the shear deformation in bulk mate-
rial causes no new elastic effects, and so the volume does not change. This means
that the phase velocity of 3D transverse type waves (vt) is the same as in the 1D
situation (eq. (2) in Table 5.1). [36, 118, 127]

Acoustic impedance and intensity
The acoustic impedance can be shown to be linearly related to the density of the
material (ρ) and the longitudinal wave velocity (vl) (eq. (5) in Table 5.1). A
more generalized form of the specific acoustic impedance includes absorption and
anisotropic material effects. In this kind of situation, the acoustic impedance can
be mathematically expressed as complex variable, Z = R + iX (where R is the
real resistive component, X is the reactive component related to absorption and
i =

√
−1). At a boundary, the difference in acoustic impedances between two mate-

rials defines the amount of ultrasound energy reflected from, or transmitted through,
the boundary. [36, 118, 127]

The energy intensity (energy per unit time per unit area) of a longitudinal type
wave is proportional to the acoustic pressure and acoustic impedance, as seen in
equation (6) (Table 5.1). Hence, for a given acoustic energy, the pressure can be
quite large in a material with high acoustic impedance. In experimental ultrason-
ics, it is often necessary to compare measured ultrasonic signal intensity or pressure
amplitude with the reference intensity or amplitude. These differences in intensities
(∆I) or amplitudes (∆A) are conveniently expressed in a decibel (dB) scale (eqs.
(7) and (8) in Table 5.1). [36, 118, 127]
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Ultrasonic reflection and refraction
Ultrasonic reflection and refraction deal with the situation when a propagating plane
wave arrives at the interface between two materials, e.g., from water to air. If a wave
arrives in normal incidence, i.e. perpendicular to the interface, from material one to
material two, part of the wave is reflected back and part of the wave is transmitted
through the interface. This ratio of the incident (i) wave pressure amplitude and
reflected (r) or transmitted (t) wave pressure amplitude is characterized by the re-
flection (R) or transmission (T ) coefficients (eqs. (9) and (10) in Table 5.1). It can
be shown that the the reflection (R) or transmission (T ) coefficients in an isotropic,
homogenous medium are dependent on the acoustic impedances around the inter-
face (eqs. (9) and (10) in Table 5.1).

If a wave arrives at an oblique incidence from material 1 to material 2, the trans-
mitted (t) wave is also refracted at the interface according to Snell’s law (eq. (11)
in Table 5.1). After geometrical calculations, one can derive the pressure reflection
and transmission coefficients in that kind of situation (eqs. (12) and (13) in Table
5.1). Equation (9) (Table 5.1) is especially suitable in diagnostic ultrasound when
reflected (pr) and incident (pi) ultrasound signal pressure amplitudes are measured,
and the acoustic impedance of the first medium is known. In that kind of situation,
the calculated reflection coefficient is related to the acoustic impedance of the second
material and, therefore, also to the mechanical properties of the second material.
[36, 118, 127]

Ultrasound attenuation
In an ideal material, the acoustic pressure of a traveling ultrasonic wave remains
constant and, hence, the energy is conserved. However, in real materials, the acous-
tic energy of a traveling wave does not remain constant, i.e. an attenuation phe-
nomenon takes place. The attenuation process can be divided into three components:
absorption, scattering and beam spreading. In absorption, the energy of motion is
converted into heat energy. In scattering, the energy of motion is diverted from the
”main” wave into waves traveling at different directions. In beam spreading, the
energy is redistributed over a different area but remains still part of a single wave.
Mathematically, attenuation by absorption or scattering of an ultrasonic wave can
be represented as a decaying exponential (eq. (14) in Table 5.1). Furthermore,
the ultrasound signal attenuation coefficient (α) is significantly dependent on the
frequency (α = bfd, where f is the frequency and b and d are experimentally deter-
mined coefficients). [36, 118, 127]
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Table 5.1: Basic equations for the ultrasonic wave propagation in a material. The

numerals one and two refer to the material before and after the acoustic interface,

respectively.

Parameter Equation Number

Longitudinal wave velocity in 1D (vl) vl =
√

E
ρ

(1)

Transverse wave velocity in 1D (vt) vt =
√

µ
ρ

(2)

Acoustic pressure (p) p = E ∂u
∂x

(3)

Longitudinal wave velocity in 3D (vl) vl =
√

E
ρ
( 1−ν
(1+ν)(1−2ν) ) (4)

Acoustic impedance (Z) Z = ρvl (5)

Intensity (I) I = p2

2Z
(6)

The difference in ultrasonic signal
intensities (∆I) in decibel-scale ∆I = 10 log I1

I0

(7)

The difference in ultrasonic signal
amplitudes (∆A) in decibel-scale ∆A = 20 log A1

A0

(8)

Reflection coefficient (R) in normal incidence R = pr

pi

= Z2−Z1

Z2+Z1

(9)

Transmission coefficient (T ) in normal incidence T = pt

pi

= 2Z2

Z2+Z1

(10)

Snell’s law sin θi

sin θt

= v1

v2

(11)

Reflection coefficient (R) in oblique incidence R = pr

pi

= Z2 cos θi−Z1 cos θt

Z2 cos θi+Z1 cos θt

(12)

Transmission coefficient (T ) in oblique incidence T = pt

pi

= 2Z2 cos θi

Z2 cos θi+Z1 cos θt

(13)

Exponential attenuation law p(x) = p0e
−αx (14)

The explanation of the symbols:
E Young’s modulus
ρ Material density
µ Shear modulus
u Single particle displacement
x Distance
ν Poisson’s ratio
v Ultrasonic wave velocity
p Acoustic pressure
I1 and I0 Ultrasonic signal intensity and reference signal intensity
A1 and A0 Ultrasonic signal amplitude and reference signal amplitude
pr Pressure amplitude of the reflected ultrasonic wave
pi Pressure amplitude of the incident ultrasonic wave
pt Pressure amplitude of the transmitted ultrasonic wave
Z1 Acoustic impedance of the material before the interface
Z2 Acoustic impedance of the material after the interface
θi Angle between the incident ultrasonic wave and the normal of the interface
θt Angle between the transmitted ultrasonic wave and the normal of the interface
v1 Ultrasonic wave velocity in the first material before the interface
v2 Ultrasonic wave velocity in the second material after the interface
p(x) Ultrasonic signal pressure amplitude at a distance x in an attenuating material
p0 Ultrasonic signal pressure amplitude before attenuating material
α Pressure amplitude attenuation coefficient

5.2 Generation of medical ultrasonic images

Ultrasonic waves are created (or transduced) from electrical or optical signals by
ultrasonic transducers. Transducers can also convert ultrasonic waves back into
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electrical or optical signals. The most common transducer type is the piezoelectric

transducer. The principle of this transducer is based on the direct piezoelectric

effect in which a piezoelectric material responds to a mechanical deformation by
developing a charge on its surface. The applied mechanical stress is related to the
output voltage (or current). The reverse phenomenon, the indirect piezoelectric effect

produces a mechanical deformation when the piezoelectric material is subjected to
an electric field. Hence, the desired ultrasound pulse can be produced by applying an
alternating voltage pulse to the faces of the piezoelectric material. Conversely, if an
ultrasonic wave passes through the piezoelectric material, the material contracts and
expands producing an alternating electric field, i.e. voltage, across the measuring
electrodes. More details of the generation of the ultrasound transducers is in the
literature, e.g., by Shull and Tittmann (2002) [118].

The most common configuration for transmitting and receiving ultrasound sig-
nals in medical ultrasonics is the pulse-echo method. In this method, a single trans-
ducer acts as the transmitter and the receiver. This method is especially suitable
for analysis of materials with limited access to a single side. In most cases, this is
the situation in medical ultrasonics.

In medical ultrasonics, phased ultrasonic arrays are commonly used. Every single
ultrasound transducer independently transmits and receives the ultrasound signal.
The data from each scan line is collected, analyzed and some predetermined value
(e.g. amplitude or time of flight) is calculated and plotted against position (or
depth). When this is repeated in all adjacent scan lines, a 2D ultrasound image is
generated. Thus, the typical medical ultrasound 2D image (B-scan) contains the
location in a lateral direction plotted in the x-axis, and the location in the axial
direction (depth) plotted in the y-axis. In medical devices, the depth of different
tissues is determined by measuring the exact time of flight of the ultrasound signal
travelling from the transducer to the acoustic interface. The speed of sound is
assumed to be constant in human tissues and, subsequently, the depth corresponding
to the time of flight can be calculated. It is also possible to generate an ultrasound
2D image by using a single transducer which is moved mechanically by a motor in
a lateral direction.

The frequency range of an ultrasound transducer specifies the resolution in the
axial direction, i.e. a better resolution is achieved with a higher ultrasound fre-
quency. However, tissues attenuate higher frequencies more than lower frequencies
limiting the possible scan depth in the tissue. Consequently, in medical ultrasonics,
the optimal frequency range depends on the depth of the tissue to be investigated,
and it is always a compromise between the axial resolution and scan depth. For
instance, a center frequency of 3.5 MHz is used in the abdomenal area, a center
frequency of 7 MHz is used for breast imaging, whereas frequencies as high as 30
MHz can be used for skin imaging.
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Chapter VI

Ultrasonics of articular cartilage

6.1 Ultrasound measurement techniques

Contact technique
In the contact technique, cartilage tissue is often detached from the subchondral
bone and, subsequently, installed between an ultrasound transducer and a metal-
lic plate. Thus, the transducer is in direct contact with the cartilage surface. An
ultrasound wave is transmitted through the cartilage and the echoes from the inter-
face between cartilage and metallic plate are recorded. An ultrasound transducer
may also be connected to the high-resolution material testing device allowing si-
multaneous mechanical measurements in unconfined compression geometry (see e.g.

[96]). Hence, the cartilage sample can be compressed to a predefined strain and the
force by which the tissue resists deformation can be measured simultaneously as the
ultrasound signal is collected. This configuration is designed for in vitro testing.
With this set up, the speed of sound and attenuation in the tissue with or without
mechanical testing can be determined [96, 123].

The contact technique may also be applied without detaching cartilage from the
subchondral bone. In this case, the echoes from the interface between cartilage and
subchondral bone are recorded. With this set up, it is possible to determine a value
for the ultrasound reflection coefficient for the cartilage-bone interface. Further-
more, the cartilage thickness can be determined by calculating the time of flight
and assuming a constant speed of sound. This technique is suitable for in vivo

testing, and it is applied in ultrasound indentation measurements [58, 70, 121, 134]
enabling the determination of mechanical and acoustic properties of tissue.

Non-contact technique
In the non-contact technique, an ultrasound transducer is immersed in a coupling
medium, e.g., water or saline solution, and set at a constant distance from the car-
tilage surface. Thus, an ultrasound wave arrives first at the interface between the

41
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coupling medium and the cartilage surface, and part of the wave is reflected back
while the rest is transmitted into the tissue. Subsequently, the transmitted wave
arrives at the interface between the cartilage and subchondral bone, and is reflected
back. Consequently, values for the ultrasound reflection coefficients for the cartilage
surface and for the cartilage-bone interface can be determined in the non-contact
technique. In addition, the thickness of the cartilage tissue can be calculated from
the flight time information between these two acoustic interfaces.

Quantitative ultrasound imaging of the articular surfaces is based on the non-
contact method [5, 28, 34, 61, 72, 73, 119]. In addition, an ultrasound indentation
instrument, when an external sleeve is attached over the ultrasound transducer [70],
utilizes a non-contact method in point-like measurements for ultrasound signal re-
flection. Zheng et al. (2004) applied the non-contact tehnique for investigating
the feasibility of ultrasound monitoring for assessing the transient depth-dependent
osmotic swelling and solute diffusion in normal and degenerated articular cartilage
samples [137].

Other techniques
Other ultrasound measurement techniques have been utilized in the characterization
of cartilage mechano-acoustic properties. Zheng et al. (2002) measured the depth-
dependent equilibrium strains of cartilage tissue under axial compression [135]. In
that measurement geometry, ultrasound pulses were transmitted into the cartilage
through a thin layer of subchondral bone under the sample [135]. The same au-
thors used a similar geometry for mapping the transient interstitial displacements of
full-thickness cartilage samples in situ [136]. Fortin et al. (2003) measured the in-
ternal solid radial displacement profiles in cartilage-subchondral bone samples under
unconfined compression [39].

6.2 Ultrasound reflection from the cartilage surface

Reflection coefficient in the frequency domain
A quantitative method for determining the ultrasound reflection coefficient for the
cartilage surface was introduced by Chérin et al. (1998) [28]. In the following presen-
tation, the linearity of the system (linear acoustics, linear transduction) is assumed
and the measurement geometry is a non-contact pulse-echo method in which the
sample is immersed in saline.

Let Sc(z, f) be the frequency domain ultrasound signal reflected from the carti-
lage sample surface back to the ultrasound transducer (z is the distance or depth
between the transducer and the cartilage surface and f is the ultrasound frequency).
This reflected signal can be presented as follows:

Sc(z, f) = E(f) × G(f) × A0(z, f) × Hs(z, f)2 × Rc(f), (6.1)
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where E(f) is the acoustoelectric transfer function, G(f) is the acquisition sys-
tem transfer function, A0(z, f) is the frequency and depth-dependent attenuation
function in saline, Hs(z, f)2 is the surface-integrated diffraction function (in the
pulse-echo method) and Rc(f) is the ultrasound reflection coefficient for the carti-
lage surface. The following assumptions are included in the equation (6.1):

1. The sample surface is uniform, i.e. the reflection coefficient is constant all over
the surface.

2. The sample surface is perpendicular to the incident ultrasound signal and there
is no curvature of the surface.

3. The distance between the transducer and each surface point (z) is large enough
in comparison with the transducer dimensions. Thus, attenuation and diffrac-
tion functions can be separated.

4. The dimensions of the cartilage surface are small as compared to the distance
between the transducer and surface (z). Thus, the attenuation term is constant
across the surface and Hs(z, f)2 can be defined by integration of the transducer
diffraction function over this insonated surface.

In order to calculate the ultrasound reflection coefficient for the cartilage surface
(Rc(f) in eq. (6.1)), the attenuation function, the surface-integrated diffraction
function and the characteristics of the acquisition system need to be known.

By assuming that the acquisition system is the same as in the cartilage sample
measurements, the frequency domain ultrasound signal reflected back from the per-
fect reflector (Sr(z, f)), immersed in saline at the same distance z, can be presented
as follows:

Sr(z, f) = E(f) × G(f) × A0(z, f) × Hs(z, f)2 × Rr(f), (6.2)

where the reflection coefficient of the perfect reflector (Rr(f), e.g., from the water-
air interface [127]) is assumed to be independent of the frequency and equal to 1.
Rc(f) from equation (6.1) can be presented as follows:

Rc(f) =
Sc(z, f)

E(f) × G(f) × A0(z, f) × Hs(z, f)2
. (6.3)

By combining equations (6.2) and (6.3) we obtain:

Rc(f) =
Sc(z, f)

Sr(z, f)
. (6.4)

With this method, one can eliminate the effects of the attenuation function as well as
the surface-integrated diffraction function and the characteristics of the acquisition
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system. In principle, the ultrasound reflection coefficient for the cartilage surface
can be quantified by measuring the ultrasound reflection from both the cartilage sur-
face and from the perfect reflector using any acquisition system and measurement
geometry. The frequency spectra, Sc(z, f) and Sr(z, f), are typically determined
with the Fast Fourier Transform (FFT) method.

Before conducting FFT, the ultrasound signal is Hamming windowed to include
only the reflection from the cartilage surface. Hamming window enhances the contri-
bution of the specular reflection as compared to the scattering occurring beneath the
surface. Hamming window operation can be conducted, e.g., with the LabVIEW-
software:

SH = So

[

0.54 − 0.46 cos
2πi

n

]

, i = 0, 1, 2, ..., n − 1; (6.5)

where SH is the Hamming windowed signal, S0 is the original unprocessed signal
and n is the amount of data (time) points in the window. The Hamming window
operation is not needed with a reference signal from the perfect reflector since no
scattering occurs in it. After the Hamming window operation, the length of both
the cartilage ultrasound signal and the reference signal is expanded with the zero-
padding operation. With zero-padding, it is possible to increase the resolution of
the frequency domain in FFT.

The energy reflection coefficient for the cartilage surface (RdB
c (f)) can be deter-

mined as follows:

RdB
c (f) = 10 × log10

〈

|Rc(f)|2
〉

, (6.6)

where 〈...〉 indicates the spatial average over all scan lines within the 2D ultrasound
image. Finally, the integrated reflection coefficient (IRC) is defined as follows:

IRC =
1

∆f

∫

∆f

RdB
c (f)df, (6.7)

where ∆f is the frequency bandwidth.

Reflection coefficient in the time domain
The ultrasound reflection coefficient can also be determined in the time domain. The
method makes the same assumptions as in frequency domain analysis. Let Ac be
the maximum peak-to-peak amplitude of the time domain ultrasound signal Sc(z)
reflected from the cartilage sample surface back to the ultrasound transducer at a
distance z (Figure 6.1). Similarly, Ar is the maximum peak-to-peak amplitude for a
perfect reflector signal at the same distance z. The ultrasound reflection coefficient
for the cartilage surface in the time domain (Rc) can be presented as follows:

Rc =
Ac

Ar

· 100%. (6.8)
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The equation (6.8) indicates the relative amount of reflected ultrasound pressure
amplitude from the cartilage surface as compared to the perfect reflector.
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Figure 6.1: Typical ultrasound signal from a healthy bovine articular cartilage mea-

sured by the non-contact, pulse-echo technique. Two distinct reflected wavefronts

are generated from the cartilage surface and from the cartilage-bone interface. Ac is

determined as a peak-to-peak amplitude for the cartilage surface.

6.3 Acoustic properties of articular cartilage

The typical degenerative changes which occur in OA significantly affect the acous-
tic properties of articular cartilage [28, 52, 94, 97]. In many studies, the acoustic
properties have been measured for full thickness cartilage samples. However, as the
tissue is inhomogeneous and anisotropic, it would be predicted that acoustic prop-
erties would vary as a function of tissue depth as well.

Speed of sound
Speed of sound (measured at 10 MHz) has been reported to be strongly dependent
on the cartilage tissue composition, i.e. water content, proteoglycan content and
collagen content [123]. Furthermore, it has been demonstrated that the orientation
of the collagen fibrils significantly affects the sound speed (measured at 100 MHz)
[5]. A significant decrease in the sound speed was reported in degenerated cartilage
as compared with healthy tissue [52, 94, 123]. The speed of sound in normal carti-
lage is typically 1600-1770 m/s [94, 123], whereas in degenerated tissue the sound
speed is reduced, i.e. 1560-1600 m/s [94, 123].
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Ultrasound attenuation
In 1990, Agemura et al. demonstrated that ultrasound attenuation in cartilage tissue
(measured at 100 MHz) is significantly dependent on the integrity of the cross-links
in the collagen fibres [5]. In that study, proteoglycan depletion had no effect on
the attenuation and speed [5]. However, it was proposed later that attenuation is
significantly related to both collagen and proteoglycan contents [96]. Ultrasound
attenuation for bovine cartilage tissue has been reported to be 1.8-2.7 dB/mm [96],
2.8-6.5 dB/mm [116] and 92-147 dB/mm [5] at frequency ranges of 5-9 MHz, 10-
40 MHz and 100 MHz, respectively. For human articular cartilage, attenuation is
6.2-7.1 dB/mm at the frequency of 30 MHz [52]. Based on these results, it is clear
that ultrasound attenuation in cartilage tissue is highly dependent on the frequency
used, i.e. attenuation increases at higher frequencies.

Ultrasonically determined cartilage thickness
An increase in tissue thickness, measured with ultrasound, has been reported for
degenerated cartilage samples compared with intact specimens [28, 78, 114]. Thick-
ness measurements are typically based on the assumption of constant sound speed
in tissue and, thus, known variations in site- and depth-dependent composition and
structure of articular cartilage may cause uncertainty in the measured thickness val-
ues.

Acoustic impedance
Density of articular cartilage tissue is approximately 1050 kg/m3 [53]. Based on
the above results for the speed of sound, i.e. 1560-1770 m/s [94, 123], the acoustic
impedance of cartilage tissue could be approximated to be 1.64−1.86×106 kg/m2/s.

Ultrasound reflection from the cartilage surface and backscattering from
the internal tissue
Ultrasound reflection from the cartilage surface (measured at 22-55 MHz) has been
proposed to be a sensitive indicator of the superficial cartilage degradation [28, 50,
68, 97, 114, 119, 124], i.e. increased surface roughness and degeneration of super-
ficial collagen fibrils taking place during early OA [86]. In contrast, depletion of
superficial proteoglycans has no significant effect on the ultrasound reflection coeffi-
cient for the surface [70, 103]. The ultrasound reflection coefficient for the cartilage
surface in the time domain is approximately 2.6-5.7 % for intact bovine cartilage
samples [70, 97, 124]. In the frequency domain, the integrated reflection coefficient
(IRC) for intact rat articular cartilage has been reported to be approximately 21-24
dB lower (measured at 50-55 MHz) than the ultrasound reflection from the perfect
reflector [28, 29, 103].

Ultrasound backscattering from the internal cartilage matrix has been investi-
gated in rat cartilage tissue [28, 29, 103]. The results demonstrated that backscat-
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tering in intact bovine cartilage is approximately 38-52 dB lower (measured at 50-55
MHz) than that determined from the perfect reflector [28, 29, 103]. Furthermore,
both the ultrasound reflection coefficient for the cartilage surface as well as backscat-
tering from the internal tissue depend on the maturation stage of the tissue [29, 103].

Based on the existing literature, it can be proposed that porcine [61] or rat
[28, 29] internal cartilage tissue scatters ultrasound more effectively than bovine
[70, 97] or human [94] tissue. Consequently, it can be hypothesized that quantita-
tive measurement of ultrasound backscattering from the internal human tissue will
be quite complicated due to the potentially weak echo signal. However, it can be
anticipated that backscattering from the internal tissue will be dependent on the
ultrasound frequency and that the backscattering will be probably more intensive
at high frequencies.

Ultrasound reflection from the cartilage-bone interface
Quantitative ultrasound analysis of the cartilage-bone interface is challenging as the
attenuation, due to both absorption and scattering, in the overlying cartilage tis-
sue may significantly affect the results. It has been qualitatively evaluated that the
echogenicity of the cartilage-bone interface increases during OA [34, 72, 73, 114, 119].
Quantitatively, the frequency domain ultrasound reflection and backscattering coef-
ficient for the cartilage-bone interface in intact rat cartilage tissue was reported to
be approximately 30-34 dB lower than the ultrasound reflection from the perfect re-
flector [50]. It is noteworthy that the effect of attenuation in the overlying cartilage
tissue was not taken into account in the study [50]. By assuming a constant atten-
uation coefficient for cartilage, the reflection coefficient in time domain for intact
porcine cartilage has been reported to be approximately 15 % [72].
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Chapter VII

Surface roughness of articular cartilage

7.1 Surface roughness parameters

The surface roughness of materials can be experimentally determined with several
techniques. Typically, surface roughness is measured with a stylus profilometer in
which the surface profile for a predefined measurement length is determined and,
subsequently, a numerical parameter is calculated to indicate the surface rough-
ness. The stylus profilometers set very high requirements for the apparatus and
the environmental conditions as even the slightest trembling induces uncertainty
into the results. Furthermore, the mechanical profilometer requires direct contact
with the examined material, potentially damaging fragile samples such as biological
materials.

Optical methods, e.g., laser profilometry, are also widely used for the characteri-
zation of material surfaces. The benefit of optical devices, as compared to mechanical
profilometers, is that they do not require direct contact with the material surface.
In optical devices, the measurement is based on the backscattering of light from the
surface, this being detected with highly sensitive detectors.

When defining the statistical parameters for surface roughness it is assumed
that the baseline of the measured surface profile is perfectly straight. Then, one can
define the average roughness (Ra) and root mean square (RMS) roughness (Rq) as
follows:

Ra =
1

L

∫ L

0

|y(x)| dx, (7.1)

Rq =

√

1

L

∫ L

0

y(x)2dx, (7.2)

where L is the measurement length on the surface and y(x) is the one-dimensional
surface profile. The main difficulty in experimental situation is that the baseline
or, more generally, the base surface is not an ideal straight line or plane. This
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can be eliminated by conducting several measurements from different surface sites
to obtain a final roughness value as an average. There are also better alternatives
available, e.g., a high-pass filtering may be applied to the measured surface profile
by assuming that the variations in the low frequency range reflect only the contours
of the surface but not the true surface roughness. Another way to accomplish the
elimination of the large surface contour is to fit a smoothing spline to the measured
surface profile. After fitting, the smoothing spline is subtracted from the measured
profile at every point.

7.2 Ultrasound determination of articular surface roughness

In principle, ultrasound measurements have a great potential for direct determina-
tion of cartilage surface roughness. Säıed et al. (1997) proposed that defects of
40-50 µm size could be detected on 50 MHz ultrasound 2D (B-scan) images [114].
Moreover, mechanically created macroscopical superficial defects of the cartilage sur-
face (2 to 12 mm in diameter) can be qualitatively detected and semi-quantitatively
graded even using a clinical ultrasound (5-12 MHz) instrument [34]. The ultrasoni-
cally detected surface fibrillation is believed to originate from the disruption of the
subsurface collagen fibrils [28, 50, 97, 114, 124].

In the literature, one method has been described for the determination of car-
tilage surface roughness using ultrasound [4, 27]. In that method, the amount of
backscattered ultrasound energy is measured at different geometrical angles between
the ultrasound transducer and cartilage surface using the ultrasound signal (Sc(t),
t = time) reflected and backscattered from the cartilage surface to the ultrasound
transducer at an incident angle, i.e. the angle between the transducer and the
surface normal is 0◦. The ultrasound signal power (P0) is defined as follows:

P0 =

∫

T

[Qg(0
◦)Sc(t)]

2 dt, (7.3)

where T is the length of the time window and Qg(0
◦) is the signal amplifying-

correction factor at the incident angle. The normalized power at the oblique angle
(P (θ)) is defined as follows:

P (θ) =
1

P0

∫

T

[Qg(θ)Sc(θ, t)]
2dt, (7.4)

where Qg(θ) is the amplifying-correction factor at the angle θ and Sc(θ, t) is the
ultrasound signal reflected and backscattered from the cartilage surface to the ul-
trasound transducer at the angle θ. The signal power (dB) is smaller than zero at
every angle θ 6= 0. The rationale for using the amplifying-correction factor is to
compensate for the possible change in an electric amplifying at different angles.
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According to the acoustic theory, the intensity of backscattered ultrasound from
a rough surface can be divided into the coherent and incoherent components [26].
With flat or smooth surfaces, ultrasound backscattering is mainly coherent and
specular. In rough surfaces, ultrasound backscattering is mainly incoherent. When
measuring the backscattered ultrasound signal for small values of θ, the coherent
component dominates the signal intensity. When measuring the backscattered ul-
trasound signal for larger values of θ, the incoherent component dominates and,
therefore, changes in surface roughness can be detected with higher accuracy. As the
ultrasound backscattering is measured in the time domain at angles of 25◦−40◦ [27],
backscattering values for different angles are averaged. The final mean backscatter-
ing value is related to the roughness of the surface. However, this technique provides
no direct measure of roughness. Moreover, this method is suitable only under lab-
oratory conditions. At present, no quantitative technique capable of measuring the
surface roughness of articular cartilage in vivo has been described.

7.3 Values of articular surface roughness

In the literature, there are only a few studies devoted to the quantitative determina-
tion of cartilage surface roughness [4, 27, 38, 48]. In the work of Forster et al. (1996)
a contact stylus profilometer and a non-contact laser profilometer were employed for
determining the surface roughness of bovine articular cartilage (n=8 for stylus and
n=1 for laser, respectively) [38]. The average roughness (Ra) for healthy tissue was
0.8 µm and 1.6 µm as determined with the laser profilometer and stylus profilometer,
respectively [38]. In the work of Hu et al. (2001) atomic force microscopy was used
to determine the surface roughness of healthy rabbit articular cartilage (n=18) [48].
The average roughness (Ra) was 0.16-0.32 µm [48]. In the work of Chiang et al.

(1997) laser confocal microscopy was used for the determination of surface rough-
ness of human cartilage tissue in healthy (n=2) and osteoarthritic (n=4) samples
[27]. In that study, the RMS roughness (Rq) was determined and values in a range
between 5.4-99.2 µm were reported [27].
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Chapter VIII

Aims of the present study

Previous studies have indicated that mechano-acoustic methods do provide infor-
mation on the structure, composition and functional properties of normal and de-
generated articular cartilage. The main aims of the present study were:

1. To investigate the sensitivity of a recently developed ultrasound indentation
instrument to detect and distinguish different spontaneous degenerative stages
in bovine articular cartilage.

2. To investigate the relationship between the mechanical and acoustic properties
of cartilage.

3. To investigate the sensitivity of quantitative 2D ultrasound imaging for detec-
tion of superficial changes after mechanical, enzymatic or spontaneous degen-
eration of bovine articular cartilage.

4. To develop a novel methodology for quantification of cartilage surface rough-
ness in ultrasound 2D images.

5. To characterize the ability of quantitative 2D ultrasound imaging for detection
of site-dependent variation of the acoustic parameters and collagen content in
the bovine knee. The roles of cartilage surface roughness and the collagen
content as determinants of ultrasound reflection from the articular surface
were also clarified.

6. To investigate the sensitivity of 2D ultrasound imaging to quantitatively detect
osteoarthrotic changes occuring in the subchondral bone.
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Chapter IX

Materials and Methods

The present thesis consists of five independent studies (I - V). In this section, the
materials and methods used in the studies are summarized. An introduction to the
study design is presented in Table 9.1.

9.1 Articular cartilage samples and processing protocols

All articular cartilage samples were prepared from bovine knee joints (Figure 9.1).
Joints were obtained from a local slaughterhouse (Atria Oyj, Kuopio, Finland).
Joints were opened and the samples processed within 5 h postmortem (Studies I-III
and V) or stored overnight in the freezer (-20◦C) before processing (Study IV). In
Study II, part of the samples were extracted from the material of our earlier studies
[69, 70].

LPG
n=6, for study IV

FMC
n=6, for study IV

MTP
n=6, for study IV

PAT

n = 32 for studies I, II and V

n = 45 for study III

n = 12 for study IV

Distal end of the femur
Proximal extremity of

the tibia

Patella

Figure 9.1: Osteochondral samples for all studies were drilled from bovine knee

joints. Measurement sites were: medial femoral condyle (FMC), lateral patello-

femoral groove (LPG), medial tibial plateau (MTP) and lateral upper quadrant of

the patella (PAT).
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Table 9.1: Materials and Methods used in the Studies I-V. All articular cartilage

samples were prepared from bovine knee joints. Measurement sites are indicated in

Figure 9.1. In Study II, part of the samples and results are combined from our earlier

studies [69, 70]. All ultrasound and biomechanical measurements were conducted at

room temperature (characteristic range 20-23 ◦C).

Study Cartilage samples Methods Parameters

PAT (n=32) Ultrasound indentation Edyn, Ri, h
I Normal and spontaneously Biomechanical reference measurements EDynRef , E

degenerated samples Histological analysis MS
Biochemical analysis H2O, Uronic

PAT (n=32) Ultrasound indentation Edyn, Ri, kcreep

II Samples from earlier studies: Biomechanical reference measurements EDynRef , E
MTM (n=6), LPG (n=6) Acoustic reference measurements c
MFC (n=6), PAT (n=24) Histological analysis MS
PAT (n=45) Ultrasound imaging R, IRC, URI

III Enzymatically or mechanically
degraded samples Scanning electron microscopy Qualitative
FMC (n=6), LPG (n=6) Ultrasound imaging R, IRC, URI

IV MTP (n=6), PAT (n=12) Rbone, IRCbone

Scanning electron microscopy Qualitative
FT-IRIS-analysis CC

PAT (n=32) Ultrasound imaging R, IRC, URI
V Normal and spontaneously Rbone, IRCbone

degenerated samples
Scanning electron microscopy Qualitative
Acoustic reference measurements Attenuation
Biomechanical reference measurements EDynRef

Histological analysis MS

Explanation of the measurement parameters:
Edyn Dynamic modulus*
Ri Ultrasound reflection coefficient for the cartilage surface*
h Cartilage thickness*
kcreep Creep rate*
EDynRef Reference dynamic modulus**
E Young’s modulus**
MS Mankin score, as determined histologically using a light microscope
H2O Water content, as determined biochemically
Uronic Uronic acid content, as determined biochemically
c Speed of sound**
Attenuation Ultrasound attenuation**
R Ultrasound reflection coefficient for the cartilage surface

in the time domain***
IRC Ultrasound reflection coefficient for the cartilage surface

in the frequency domain***
URI Ultrasound Roughness Index = cartilage surface roughness***
CC Amide I absorption (collagen content), as measured

with the FT-IRIS technique
Rbone Ultrasound reflection coefficient for the cartilage-bone interface

in the time domain***
IRCbone Ultrasound reflection coefficient for the cartilage-bone interface

in the frequency domain***
*As measured with the ultrasound indentation instrument
**As measured with the mechano-acoustic material testing device
***As measured with the 2D ultrasound imaging device.

9.1.1 Enzymatically degraded samples

In Study III, intact bovine knees were collected, opened and specimens from the lat-
eral facets of intact patellar cartilage surfaces were used in the study (Figure 9.1).
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Cylindrical osteochondral plugs were taken from the patellae (n=18, diameter=16
mm). Three different enzymes were used for the degradation of the cartilage sam-
ples: Collagenase type VII (C 0773, Sigma Chemical Co., St Louis, MO) was utilized
for the degradation of the collagen network [117], Chondroitinase ABC (Seikagaku
Co., Tokyo, Japan) for the digestion of the proteoglycans [131] and Trypsin (T
0646, Sigma) for proteoglycan digestion with a slight simultaneous effect on the col-
lagen network [44]. The samples were divided into three groups according to the
used enzyme: Collagenase (n=6), Chondroitinase ABC (n=6) and Trypsin (n=6).
All samples were incubated under physiological conditions (37◦C, 5 % CO2 atmo-
sphere) and immersed in phosphate-buffered saline (PBS) containing antibiotics and
the enzyme [124]. A 44 h incubation time was used for Collagenase (30 U/ml) and
Chondroitinase ABC (0.1 U/ml) whereas a 60 min incubation time was utilized
for Trypsin (1 mg/ml). Quantitative 2D ultrasound images of each sample were
collected before and after enzymatic degradations. After the incubations and ul-
trasound measurements, all samples were stored in a freezer (-20◦C). Subsequently,
one representative sample from all groups (Collagenase, Chondroitinase ABC and
Trypsin) was thawed and processed for the scanning electron microscopy (SEM) of
the articular surface.

9.1.2 Mechanically degraded samples

In Study III, intact bovine knees were collected, opened and the lateral facets of in-
tact patellar cartilage surfaces were included in the study (Figure 9.1). Cylindrical
osteochondral plugs were taken from the patellae (n=26, diameter=6 mm). Four
different emery papers were used (60, 120, 240 and 360 grit) for mechanical degra-
dation of the sample surfaces. Average particle sizes (FEPA standard) of the emery
papers used were: 250 µm, 106 µm, 45 µm and 23 µm for 60 grit, 120 grit, 240
grit and 360 grit, respectively. The samples were divided into four groups according
to the grade of emery paper used: Paper-60 (n=8), Paper-120 (n=6), Paper-240
(n=6), Paper-360 (n=6). The grinding of sample surfaces was conducted with a
custom-made instrument (Figure 9.2). During grinding, the samples were immersed
in PBS. The samples were ground under a constant stress (55.5 kPa) with the emery
paper glued onto a metallic plate. The grinding protocol was as follows:

1. Constant stress of 55.5 kPa.
2. 10 mm slide against the emery paper.
3. Release of constant stress (55.5 kPa) and 90◦ rotation of the sample.
4. Constant stress of 55.5 kPa.
5. 10 mm slide against the emery paper.
6. Release of constant stress (55.5 kPa).

Thus, the surface of the cartilage was ground in two perpendicular directions. A
quantitative 2D ultrasound image of each sample was collected before and after me-
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chanical grinding. After mechanical degradation and ultrasound measurements, all
samples were stored in a freezer (-20◦C). Subsequently, one representative sample
from each group (Paper-60, Paper-120, Paper-240 and Paper-360 ) was thawed and
processed for SEM imaging of the articular surface.

Motor
20.0 mm

Emery paper glued
on a metallic

plate

55.5 kPa

Osteochondral
sample

Figure 9.2: Schematic presentation of the cartilage grinding system used for me-

chanical degradation of the samples.

9.1.3 Spontaneously degenerated samples

In Studies I, II and V, numerous intact bovine knees were collected, opened and
the lateral facets of patellar cartilage surfaces (Figure 9.1) were visually graded
into four different degenerative grades: intact, slightly discoloured, superficial defect

and deep defect. Cylindrical osteochondral plugs (n=32, diameter=19 mm) were
taken from the specified site of the patella and used for the ultrasound indentation
measurements (Studies I and II) or quantitative ultrasound imaging (Study V).
Before the measurements, the samples were immersed in PBS containing protease
inhibitors and stored in a freezer (-20◦C) until measurements.

In the measurements, the samples were thawed and glued to the bottom of a
plastic container filled with PBS and protease inhibitors. Initially, mechanical mea-
surements were conducted for the osteochondral sample by using the novel ultra-
sound indentation instrument (Studies I and II). Second, quantitative 2D ultrasound
imaging was conducted at the center of the sample (Study V). After these measure-
ments, the samples were split into two pieces. The first piece of the osteochondral
sample was utilized for biomechanical (Studies I,II and V) and biochemical (Study
I) reference measurements. The second piece was processed to undergo a histological
evaluation (Studies I and V).

9.1.4 Intact samples from bovine knee joint

In Study IV, intact bovine knees were collected, opened and osteochondral blocks (n
= 30, diameter=16 mm, Figure 9.1) were processed from the medial femoral condyle
(FMC, n = 6), lateral patello-femoral groove (LPG, n = 6), medial tibial plateau



9.2 Ultrasound indentation instrument 59

(MTP, n = 6) and lateral upper quadrant of patella (PAT, n = 12). All samples
were imaged with the 2D ultrasound imaging instrument. Subsequently, small slices
of osteochondral samples were prepared from the location of ultrasound imaging
and processed for the Fourier Transform Infrared spectroscopy (FT-IRIS) analysis.
Furthermore, two intact osteochondral samples (10 × 10 × 10 mm) were prepared
from PAT and MTP to enable qualitative comparison of surface microtopography
with SEM.

9.2 Ultrasound indentation instrument

9.2.1 Experimental measurements

An ultrasound indentation instrument was used in Studies I and II. The instrument
[70] consisted of an unfocused, miniature, contact, broadband and an unfocused
ultrasound transducer (10.5 MHz, -6 dB bandwidth 5.5-15.5 MHz, diameter=3 mm;
Panametrics XMS-310, Panametrics Inc., Waltham, MA, USA) mounted on the
tip of a commercial arthroscopic indentation instrument (Artscan 200, Artscan Oy,
Helsinki, Finland). This instrument enabled simultaneous measurements of cartilage
thickness, deformation and applied stress during indentation test.

Dynamic modulus of the samples was quantified with the ultrasound indentation
instrument by generating manually two series of instantaneous compressions on the
sample (215 kPa prestress followed by a compressive strain of 4 %). The final
dynamic modulus was obtained as a mean of these two measurements. Thickness
and deformation of the samples were determined by the time of flight principle using
a predefined speed of sound (1627 m/s as measured for the mean ultrasound speed
in the bovine cartilage [123]). The dynamic modulus of the samples was calculated
using the linear elastic model (see Section 4.3.1) by assuming tissue incompressibility
(ν = 0.5).

In addition to dynamic measurements, long-term creep measurements were con-
ducted for four representative samples at different histological stages of degenera-
tion. The protocol for the manual creep measurements consisted of a 1 N (141 kPa)
pre-stress for 5 seconds, followed by the test load to induce instantaneously a 4 %
strain. The subsequent creep was registered for 20 seconds. The creep rate (kcreep),
defined as the slope of indentation compliance (C) vs. logarithmic time (C = in-
dentation strain-to-stress ratio, i.e. C = ǫ/σ), was calculated in order to evaluate
the time-dependent behaviour of the tissue.

For the determination of the ultrasound flight time, i.e. time between the carti-
lage surface and the subchondral bone, the Hilbert envelope was calculated for the
reflected ultrasound signal and the envelope was Hamming windowed. The ultra-
sound flight time was tracked in real-time from the point of the maximum value of
the Hamming windowed Hilbert-envelope.
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After the mechanical indentation measurements, ultrasound reflection from the
cartilage surface was determined with the same instrument. In order to keep the
transducer at a constant distance from the articular surface, a 3.5 mm long plastic
sleeve was attached over the ultrasound transducer. The contact force between the
sleeve and the articular surface was continuously monitored and minimized during
the measurements. For each sample, the maximum peak-to-peak echo amplitude was
measured twice and the average of the amplitudes was calculated. The reflection
coefficient was determined according to the equation (6.8).

9.2.2 Finite element modeling

In order to investigate the applicability of the long-term creep measurements con-
ducted with the ultrasound indentation instrument, numerical modeling of cartilage
mechanical behaviour was applied in Study II. The manual creep measurements
were modeled by using finite element (FE) code (ABAQUS 6.1, Hibbitt, Karlsson &
Sorensen Inc., Pawtucket, RI, USA). The axially symmetric transversely isotropic
poroelastic model of cartilage consisted of 8-node biquadratic elements (Study II:
Figure 4). The material parameters of the model were as follows: Young’s modulus
(E1) and Poisson’s ratio (ν12) in the transverse plane (i.e. the plane of isotropy,
parallel to articular surface), out-of-plane (i.e. perpendicular to the articular sur-
face) Young’s modulus (E3) and Poisson’s ratio (ν31), out-of-plane shear modulus
(µ13) and Permeability (k). The initial void ratio, i.e. the ratio of fluid to solid
content, was 3.5 [89]. The indenter (ultrasound transducer) diameter in the model
(3.0 mm) was similar to the transducer diameter used in the ultrasound indentation
instrument. Fluid was allowed to flow through the cartilage surface and through the
lateral edge, but not through the indenter or fixed cartilage-bone interface, again
similar to a realistic measurement situation.

First, the effect of cartilage thickness on the long-term behaviour of tissue was
investigated with five different values of cartilage thickness (1, 2, 3, 4 and 5 mm).
Material parameters for the model were adopted from the literature (Study II: Table
1). Subsequently, the predefined creep protocol was modeled, and the results of
the experimental creep measurements were compared with those of the numerical
analyses.

9.3 Quantitative ultrasound imaging

In Studies III and V, the sensitivity of quantitative 2D ultrasound imaging for
detecting degenerative changes, such as those typically seen in OA, in cartilage
surface or in cartilage-bone interface was investigated. Furthermore, in Study IV,
the site-dependent variation for the quantitative ultrasound imaging parameters and
the collagen content in the bovine knee was explored.
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A Dermascan-C apparatus (Cortex Technology, Hadsund, Denmark) equipped
with a 20 MHz focused transducer (spatial sampling interval = 60 µm, beam diam-
eter = 200 µm, focal length = 15 mm, focal zone depth = 3 mm, -6 dB bandwidth
= 6-28 MHz) was used for ultrasonic imaging of the samples (Figure 9.3). Raw
ultrasound radiofrequency (RF) signals were collected from the Dermascan RF out-
put and digitized at a sampling frequency of 250 MHz with an UltraPAC system
(Physical Acoustics Corporation, Princeton, NJ). During imaging, cartilage samples
were immersed in PBS and aligned to produce the maximum surface reflection, i.e.

in order to adjust the surface perpendicular to the transducer axis. Ultrasound RF
signals were analyzed with a custom-made LabVIEW 6.1 (National Instruments,
Austin, TX) and Matlab 6.0 (The Mathworks Inc., Natick, MA) programs.

Each 2D scan included 160 scan lines corresponding to a distance of 12.1 mm. All
ultrasound parameters were calculated from 60 scan lines, at the center of the scan,
corresponding to a distance of 4.5 mm. In each scan line, the reflected ultrasound
signal from the cartilage surface or from the cartilage-bone interface was windowed
(0.6 µs window and 1.0 µs window, respectively) before parameter calculations.

Ultrasound
probe

20 MHz

PBS
Osteochondral

sample

Scan

250 MHz
A/D transform

LabVIEW
 and Matlab
programs

Quantitative
ultrasound
parameters

Figure 9.3: Schematic presentation of the ultrasound imaging device used in this

study.

9.3.1 Ultrasound reflection parameters

Reference measurements from the perfect reflector
In order to quantitatively calculate the ultrasound reflection coefficients for the car-
tilage surface, or for the cartilage-bone interface, reference measurements from the
perfect reflector at the corresponding distance had to be carried out. Consequently,
flight times between the transducer and cartilage surface, or between the transducer
and cartilage-bone interface, were quantified line-by-line. For the quantification of
the flight times, the Hilbert envelope for the reflected signal was calculated using the
fast Hilbert transform and, subsequently, flight time was determined as the location
of the maximum value of the envelope. The corresponding distances were calculated
by multiplying the flight time by the speed of sound in PBS (1495 m/s at 20◦C) or
by the speed of sound in cartilage tissue measured specifically for all samples [123].
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Subsequently, these distance data were used for the normalization with the reference
measurement from the PBS-air interface at the same distance.

Measurements of the reflected amplitude and amplitude spectrum from the PBS-
air interface were conducted at 10 different distances covering the whole distance
range of the cartilage measurements. The measured reference signals were processed
both in the time domain and in the frequency domain. At first, peak-to-peak ampli-
tudes of the reflected signal were calculated for all 10 distances, and an exponential
function was fitted to the measured amplitude-distance data. Consequently, the
amplitude at any arbitrary distance could be determined from the exponential fit.
The amplitude spectra of the reflected signals from the PBS-air interfaces (at 10
distances) were obtained as absolute values of FFT. Furthermore, spline interpola-
tion, included in LabVIEW software, was applied for the determination of amplitude
spectra at any arbitrary transducer-cartilage distance. These reference data were
used in the calculation of ultrasound reflection parameters for the cartilage surface
or for the cartilage-bone interface.

Ultrasound reflection coefficients
Time domain ultrasound reflection coefficients for the cartilage surface (R, %) and
for the cartilage-bone interface (Rbone, %) were calculated as follows (compare with
equation (6.8)):

Rx =
1

m

m
∑

i=1

Ai

Aref
i

· 100%, (9.1)

where m is the number of scan lines (m = 60), Ai is the reflected peak-to-peak
amplitude from the PBS-cartilage or the cartilage-bone interface in scan line i and
Aref

i is the reference peak-to-peak amplitude measured from the PBS-air interface
(i.e. the perfect reflector) at the same distance as Ai.

The integrated frequency domain reflection coefficients for the cartilage surface
(IRC, dB) and for the cartilage-bone interface (IRCbone, dB) were calculated ac-
cording to equation 6.7, in which ∆f is 8-20 MHz and 5-12 MHz for PBS-cartilage in-
terface and cartilage-bone interface, respectively. The lower bandwidth for IRCbone

is due to the increased attenuation effect for higher frequencies by the overlying
cartilage layer.

In the determination of ultrasound reflection coefficients for the cartilage-bone
interface (Rbone and IRCbone), sample specific sound reflection at the cartilage surface
(R and IRC) and ultrasound attenuation in the overlying cartilage, measured in an
earlier study with the same samples [96], were taken into account.

9.3.2 Ultrasound Roughness Index

The microtopography of the cartilage surface was quantified by introducing a novel
ultrasound parameter, Ultrasound Roughness Index (URI, µm). URI was deter-
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mined from the cartilage surface profile using the line-by-line distances (as described
above) between the transducer and the PBS-cartilage interface as follows:

URI =

√

√

√

√

1

m

m
∑

i=1

(di − 〈d〉)2, (9.2)

where m is the number of scan lines (m = 60), di is the distance from the transducer
to the PBS-cartilage interface in scan line i and 〈d〉 is the average distance from
the transducer to the surface. Before calculation of URI, the natural articular
surface contour was eliminated by high-pass-filtering of the surface profile (or fitting
a smoothing spline to the measured surface profile), assuming that the true surface
roughness is rather in the high frequency range (Study III: Figure 3).

9.4 Reference methods

In order to investigate the sensitivity of the ultrasound indentation instrument as
well as quantitative 2D ultrasound imaging for detecting degenerative and site-
dependent changes in articular cartilage and subchondral bone, several reference
techniques were used. These included mechanical measurements, acoustic mea-
surements, histological analyses, scanning electron microscopy, Fourier transform
infrared spectroscopy and biochemical analyses.

9.4.1 Mechano-acoustic measurements

In Studies I, II and V, biomechanical and acoustic reference measurements were
conducted with a custom made high-resolution mechano-acoustic material testing
device (resolution 0.005 N and 0.1 µm for the force and position, respectively; Figure
9.4). The cartilage plugs (without subchondral bone) were placed between the trans-
ducer and a smooth metallic plate in unconfined compression geometry. Mechanical
testing was performed using the following stress-relaxation protocol: prestrain =
10 %, strain = 10 %, ramp speed = 2 mm/s, relaxation time = 2400 s. Dynamic
modulus and the Young’s modulus at equilibrium were determined as a stress per
strain ratio instantaneously after a 10 % step and after a 2400 s relaxation time,
respectively. Biomechanical reference data were used when investigating the ability
of ultrasound indentation and quantitative ultrasound imaging to predict the true
mechanical stiffness of cartilage tissue.

An unfocused ultrasound transducer (center frequency = 10.3 MHz, - 3 dB band-
width = 7.1-14.2 MHz) was used as a compressive plate in the material testing
apparatus. The transducer was excited electrically by a 0.5 to 100 MHz pulser-
receiver board (PAC-IPR-100, Physical Acoustic Corporation, Princeton, NJ). The
ultrasound signal was received by a pulser-receiver board, digitized at 500 MHz
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by an 8-bit A/D-board (PAC-AD-500, Physical Acoustic Corporation) and stored
for later analysis. Acoustic reference measurements included the determination of
attenuation and speed of sound [96, 123] in cartilage tissue.

Cartilage
sample

Saline solution

High-precision
actuator (0.1 mm)

High-precision
load-cell (0.005 N)

Ultrasound
transducer

Figure 9.4: Schematic presentation of the high-resolution material testing device

equipped with the ultrasound transducer. The transducer is in direct contact with the

cartilage sample without the subchondral bone. The cartilage sample is compressed

to a predefined strain and the force by which the tissue resists the deformation is

measured simultaneously as the ultrasound signal is collected. With this configura-

tion, in addition to the mechanical parameters, the speed of sound and attenuation

in the tissue can be determined.

9.4.2 Histological and biochemical analyses

In Studies I, II and V, the histological degenerative grade of the samples was obtained
with a semi-quantitative histological-histochemical grading system, i.e. Mankin
scoring system [84]. Using the Mankin score, it is possible to identify different stages
of cartilage degeneration by evaluating cartilage structure, cell alterations, safranin-
O staining (glycosaminoglycan content) and tidemark integrity (Study I: Table 1).
Before evaluation, the samples were randomized and blind-coded. Evaluation was
conducted by three investigators and the final Mankin score was obtained as a mean
value. In Study V, after histological evaluation, the samples were divided into two
groups according to their Mankin score: intact (Mankin score = 0, n = 11) and
degenerated (Mankin score = 1-10, n = 21).

Biochemical analyses, i.e. water content and uronic acid content, of the cartilage
samples were conducted as described in Study I. The uronic acid content is an
indicator of the tissue proteoglycan content [19].

9.4.3 Scanning electron microscopy (SEM)

In Studies III, IV and V, scanning electron microscopy (Philips XL30 ESEM, Fei
Co., Eindhoven, Netherlands) was conducted in order to qualitatively visualize the
surface structure of normal and degenerated cartilage tissue, and to compare SEM
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results to those obtained with quantitative ultrasound imaging.
In Study III, a qualitative comparison of normal and mechanically or enzymat-

ically degraded samples (n=8) was conducted with SEM. One sample was selected
from each group (i.e., paper-60, paper-120, paper-240, paper-360, collagenase, trypsin

and chondroitinase ABC ). Furthermore, one intact (control) sample without any ex-
perimental treatment was selected for SEM evaluation. In Study III, SEM images
of articular surface were obtained at a magnification of ×100.

In Study IV, SEM imaging was conducted to visualize the site-specific differences
in the structure of the cartilage surface at medial tibial plateau (MTP) and lateral
upper quadrant of patella (PAT). In Study IV, SEM images of articular surface were
obtained at a magnification of ×1000.

In Study V, SEM imaging of articular surface was conducted for two represen-
tative samples. The main aim was to visualize the difference in cartilage surface
roughness between a histologically normal sample (Mankin score = 0) and a sample
showing histological signs of early degeneration (Mankin score = 2). From the clin-
ical point of view, there is no difference in surface roughness of these samples which
can be visually observed, e.g., during arthroscopic examination, but a difference
may be determined with SEM or ultrasound imaging.

9.4.4 Fourier transform infrared spectroscopy (FT-IRIS)

In Study IV, the superficial collagen content of the cartilage samples was determined
by using the FT-IRIS technique (Perkin Elmer Spotlight 300, Perkin Elmer, Shel-
ton, CO, USA) [25, 105, 111]. After the sample processing (see Study IV for more
details) for FT-IRIS measurements, proteoglycans were removed from the samples
with hyaluronidase treatment. Subsequently, three sections per sample were trans-
ferred onto 2 mm thick ZnSe windows and the FT-IRIS-analyses were conducted as
a mean of these three sections. The analysis was limited to the first 100 µm layer
of the cartilage surface and the area of the amide I absorption peak (wavenumbers
1710-1610 cm−1 with a resolution of 8 cm−1) was used to indicate the collagen con-
tent of the sample. In the lateral direction, the mean (±SD) analysis length was
2347 (±443) µm per sample.

9.5 Statistical analyses

The intention of statistical correlation analyses was to reveal the linear relation-
ships between measured variables. In all studies, Spearman’s correlation coefficient
(rs) was calculated for the comparison of non-continuous variables (Mankin score),
whereas Pearson’s correlation coefficient (r) was determined when comparing contin-
uous parameters. The statistical difference between two correlation coefficients was
tested by calculating the Fisher Z-transform for both coefficients and, subsequently,
evaluating the difference between transformed, normally distributed coefficients.
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In Study I, the non-parametric Kruskall-Wallis H and post-hoc tests were used
to reveal whether ultrasound indentation measurements could discern between the
visually different degenerative grades.

In Study II, the interoperator reproducibility test for the ultrasound indentation
instrument was conducted by three investigators. Intraclass correlation coefficients
(Rho and 95 % confidence interval) were calculated for the ultrasound indentation
parameters (h, Edyn and R). Visually healthy bovine patellar cartilage samples (n =
8) were used for the interoperator reproducibility measurements. The reproducibility
of the instrument was investigated by calculating the coefficient of variation (CV )
and the standardized coefficient of variation (sCV ) [17, 42].

In Study III, the non-parametric Wilcoxon signed rank test was applied when
evaluating the statistical significance of the difference in ultrasound parameters mea-
sured before and after enzymatic or mechanical degradation. The reproducibility
(CV and sCV ) of the quantitative 2D ultrasound imaging parameters was deter-
mined by repeating the same measurement three times on eight control samples with
repositioning between successive measurements.

In Study IV, the non-parametric Kruskall-Wallis H test was applied when test-
ing the site-dependent variation of the superficial collagen content and ultrasound
imaging parameters of the cartilage surface and of the cartilage-bone interface. The
Kruskall-Wallis post-hoc test was used for comparison of the differences in parame-
ters between the individual measurement sites.

In Study V, the non-parametric Mann-Whitney U test was used for the evalua-
tion of statistical differences between the two sample groups.

In all studies, SPSS 8.0-11.5 (SPSS Inc., Chicago, IL, USA) or Matlab 6.0 (The
Mathworks Inc., Natick, MA) software was used for statistical analyses.



Chapter X

Results

10.1 Ultrasound indentation instrument

10.1.1 Experimental measurements

There was a high linear correlation between the dynamic modulus, measured with
the ultrasound indentation instrument, and the reference dynamic modulus, mea-
sured with the high-resolution material testing device (Figure 10.1A). Furthermore,
the linear correlation within softer (degenerated) samples was also significant (Figure
10.1B). It is notable that some of the visually intact samples exhibited a reduced
dynamic stiffness highlighting the insensitivity of visual grading. In study II, in
which the results of earlier studies [69, 70] were combined with the results of study
I, a strong linear correlation was observed between the dynamic modulus, measured
with the ultrasound indentation instrument, and the reference dynamic modulus,
measured with the material testing device, in a more heterogenous material (Fig-
ure 10.1C). Interestingly, the correlation between the dynamic modulus (ultrasound
indentation) and the Young’s modulus (reference material testing device) was also
significant, though it was lower than that obtained for the correlation between dy-
namic moduli (Figure 10.1D).

For the determination of dynamic modulus, the agreement between the ultra-
sound indentation and the reference technique was strongest with the samples of
low (<10 MPa) stiffness (Figure 10.2A).

Mankin score, water content, uronic acid content and cartilage stiffness were sig-
nificantly interrelated with each other. Cartilage dynamic and equilibrium moduli
correlated positively (r ≥ 0.717, p < 0.05) with the tissue uronic acid content and
negatively (r ≤ −0.586, p < 0.05) with the tissue water content (Study I: Table 3).
The cartilage surface reflection coefficient, as measured with the novel instrument,
exhibited significant linear correlations with the uronic acid concentration, Mankin
score, reference dynamic modulus as well as with the water content (Study I: Figure
4).

67
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Visually different degenerative grades of articular cartilage were distinguished
effectively with both mechanical and ultrasound reflection measurements, as con-
ducted with the novel instrument (Figure 10.2B). However, a large variation of the
mechanical and acoustic properties was observed within visually intact cartilage
samples. Based on the microscopical grading, mean value of Mankin score for the
visually intact samples was 0.7 (range=0-3) whereas for the degenerated samples it
was 4.3 (range=0-10).

The intraclass correlation coefficients were found to be moderate for all ultra-
sound indentation parameters (Table 10.1). However, the large confidence intervals
diminished the reproducibility of some parameters. CV and sCV values indicated
moderate or good reproducibility (Table 10.1).
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Figure 10.1: A) Linear correlation between the cartilage dynamic modulus, as mea-

sured with the ultrasound indentation instrument and the reference dynamic modulus.

B) Linear correlation between same parameters among soft (degenerated) samples

only. C) Linear correlation between the same parameters in a more heterogenous

sample material. D) Linear correlation between the cartilage dynamic modulus, as

measured with the ultrasound indentation instrument, and the reference Young’s mod-

ulus. Symbols used in the figure: visually normal samples (×), visually degenerated

samples (+), and samples digested with chondroitinase ABC (2), collagenase (⋄) or

trypsin (△) [69, 70].
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Figure 10.2: A) Bland and Altman plot [18] between the dynamic moduli measured

with the reference material testing device (EDynRef ) and with the ultrasound inden-

tation instrument (Edyn). B) Mean values (±SD) of the dynamic modulus and ultra-

sound reflection coefficient, as measured with the ultrasound indentation instrument.

The instrument was sensitive of distinguishing between visually different degenerative

grades.

Table 10.1: As a measure of interoperator reproducibility of the ultrasound inden-

tation measurements, intraclass correlation coefficient (Rho) for three investigators

was calculated for thickness, dynamic modulus and ultrasound reflection coefficient.

In addition, the reproducibility was determined in the form of CV and sCV .

Reproducibility Thickness Dynamic Reflection
(h) modulus coefficient

(Edyn) (R)

Intraclass correlation coefficient (Rho) 0.905 0.669 0.786
Coefficient of variation (CV ) 5.0 % 17.2 % 5.5 %
Standardized coefficient of variation (sCV ) 0.5 % 4.3 % 0.4 %

10.1.2 Finite element modeling

Finite element analyses revealed that the cartilage thickness significantly affected
the time-dependent creep, as measured with the ultrasound indentation instrument
(Study II: Figure 7). The material parameters used in the numerical model, and ex-
perimentally measured creep rates obtained for four samples are presented in Table
10.2. The numerical results agreed well with the experimental findings (Study II:
Figure 8).

Significant differences in the material parameters were observed among samples
with different degenerative grades (Table 10.2). Young’s modulus (E1 or E3) and
shear modulus (µ13) decreased and permeability (k) increased as the degenerative
grade (Mankin score) increased. As seen from Table 10.2, the experimental find-
ings demonstrated also the same trend, i.e. Edyn decreased and kcreep increased as
degeneration progressed.
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Table 10.2: Material parameters for the transversely isotropic poroelastic finite ele-

ment model of articular cartilage and experimentally determined parameters. Numer.

and Experim. refer to numerical and experimental results, respectively.

Numer. Numer. Numer. Numer. Numer. Numer. Experim. Experim. Experim.

E1 E3 ν31 ν12 µ13 k × 10−15 Edyn kcreep MS
(MPa) (MPa) (MPa) (m4/Ns) (MPa) (1/kPa)

Sample 1 16.0 0.44 0.0 0.5 3.20 1.2 15.23 11 0
Sample 2 5.5 0.28 0.0 0.5 1.10 1.8 2.36 18 2
Sample 3 3.1 0.27 0.0 0.5 0.62 5.1 4.32 32 5
Sample 4 0.5 0.03 0.0 0.5 0.10 15.0 1.41 95 10

The explanation of the symbols:
E1 and ν12 In-plane Young’s modulus and Poisson’s ratio
E3 and ν31 Out-of-plane Young’s modulus and Poisson’s ratio
µ13 Shear modulus
k Permeability
Edyn Dynamic modulus measured with the ultrasound indentation instrument
kcreep Creep rate measured with the ultrasound indentation instrument
MS Histological degenerative grade (Mankin score).

10.2 Relation between cartilage mechanical and acoustic
properties

In study II, the relationship between the acoustic and mechanical parameters was
investigated in a heterogenous sample material. Significant linear correlations were
established between the ultrasound parameters (speed of sound and time domain
ultrasound reflection coefficient for the surface) and the cartilage reference mechani-
cal properties (dynamic modulus and Young’s modulus) (Figure 10.3). The speed of
sound predicted cartilage equilibrium modulus more accurately than the ultrasound
surface reflection (correlation coefficients was statistically different, p < 0.05). Im-
proved correlation was also observed between the speed of sound and the dynamic
modulus (r = 0.730), as compared to that between the ultrasound reflection co-
efficient and the dynamic modulus (r = 0.562), although the limit of statistical
significance was not reached (p = 0.09).

10.3 Quantitative ultrasound imaging

10.3.1 Enzymatically degraded samples

In enzymatically degraded samples, the values of ultrasound reflection coefficients (R
and IRC) diminished statistically significantly (p < 0.05) after collagenase digestion
(Study III: Table 1). Similarly, cartilage surface roughness (URI) increased after
collagenase digestion (p < 0.05). After chondroitinase ABC or trypsin treatment, no
significant changes were seen in the ultrasound imaging parameters (Study III: Table
1). Typical ultrasound image and ultrasonically determined surface profile before
and after collagenase digestion are presented in Figure 10.4A. It is notable that,
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Figure 10.3: Linear correlations between: A) dynamic modulus and speed of sound,

B) Young’s modulus and speed of sound, C) dynamic modulus and ultrasound re-

flection coefficient for the surface and D) Young’s modulus and ultrasound reflection

coefficient for the surface. Dynamic modulus, Young’s modulus and speed of sound

were measured with the high-resolution mechano-acoustic material testing device.

Ultrasound reflection coefficient for the surface was measured with the ultrasound

indentation instrument. Significant linear correlations were established between the

ultrasound parameters and the mechanical parameters. Symbols used in the figure:

visually normal samples (×), visually degenerated samples (+), and samples digested

with chondroitinase ABC (2), collagenase (⋄) or trypsin (△) [69, 70].

when assessed visually, samples digested with any of the enzymes exhibited normal
surface characteristics. However, when the samples were examined using SEM, the
degradation of the superficial collagen network could be clearly visualized. SEM
images of control (healthy) and enzymatically digested samples are presented in
Figure 10.5.

10.3.2 Mechanically degraded samples

In mechanically degraded samples, the values of the ultrasound reflection coeffi-
cients (R and IRC) diminished statistically significantly (p < 0.05) after grinding
with all four emery paper grades (Study III: Table 1). Similarly, surface roughness
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Figure 10.4: Characteristic 2D ultrasound images and ultrasonically determined

surface profiles of cartilage samples: A) Before and after collagenase digestion, B)

Before and after mechanical degradation with 360 grit (23 µm) emery paper.
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Figure 10.5: Scanning electron microscopic (SEM) images of the healthy control

sample, enzymatically digested cartilage samples, and sample after mechanical degra-

dation with 360 grit (23 µm) emery paper.

URI increased after mechanical grinding with all emery papers. Typical ultrasound
2D image and ultrasonically determined surface profile before and after mechani-
cal degradation with the smoothest emery paper (360 grit) are presented in Figure
10.4B. It is notable that the samples ground with 360 or 240 grit papers appeared
visually normal. However, SEM images of these samples, as seen in Figure 10.5 for
360 grit, revealed a clear degradation of the surface.

10.3.3 Spontaneously degenerated samples

The mean values (± SD) of quantitative ultrasound imaging parameters in intact

(Mankin score = 0) and histologically degenerated (Mankin score = 1-10) sample



10.3 Quantitative ultrasound imaging 73

Table 10.3: Mean values (±SD) of the quantitative ultrasound imaging parameters

and the cartilage reference dynamic modulus in intact (Mankin score = 0) and his-

tologically degenerated (Mankin score = 1-10) sample groups. Corrected values from

the cartilage-bone interface refer to attenuation correction of the overlying cartilage

layer.

Parameter Intact Degenerated Difference
(n=11) (n=21) (%)

R (%) 5.3±0.9 2.4±1.6 -54.1*
Cartilage surface: IRC (dB) -26.7±1.6 -34.1±5.5 -27.6*

URI (µm) 7.4±1.2 24.2±15.5 227.6*
Cartilage-bone interface: Rbone (%) 4.5±1.3 8.9±3.2 98.3*
Uncorrected values IRCbone (dB) -25.5±2.5 -19.9±3.9 22.1*
Cartilage-bone interface: Rbone (%) 8.3±2.4 15.0±5.3 80.1*
Corrected values IRCbone (dB) -16.9±4.7 -11.0±5.7 34.9*
Biomechanical reference: Edyn (MPa) 9.5±6.9 1.6±2.4 -83.6*

*Statistically significant difference (p < 0.05, Mann-Whitney U test) compared with the intact group.

groups are presented in Table 10.3. A systematic, statistically significant (p < 0.05)
increase in cartilage surface roughness was observed for degenerated samples as
compared to intact specimens (Table 10.3). Furthermore, ultrasound reflection at
the cartilage surface underwent a statistically significant (p < 0.05) decrease in the
degenerated samples.

For ultrasound reflection parameters of the cartilage-bone interface, a statisti-
cally significant (p < 0.05) increase was observed in degenerated samples compared
to intact counterparts (Table 10.3). The attenuation correction affected significantly
the measured absolute values of ultrasound reflection from the cartilage-bone inter-
face (Table 10.3).

The same pattern was observed in the reference dynamic modulus, i.e. it showed
a statistically significant (p < 0.05) decrease in degenerated samples (Table 10.3).
By using the SEM imaging, increased surface roughness was visualized for the sample
with signs of early histological degeneration (Mankin score = 2) compared to the
intact (Mankin score = 0) counterpart (Study V: Figure 3).

Significant linear correlations were observed between the ultrasound reflection pa-
rameters for the cartilage surface (R, IRC, URI) and the Mankin Score or dynamic
modulus (0.465 < |r| < 0.833, Study V: Table 2). Generally, Rbone and IRCbone

did not correlate significantly with the Mankin Score or Edyn (0.203 < |r| < 0.399,
Study V: Table 2). The attenuation correction of the overlying cartilage had no
effect on these correlations (0.163 < |r| < 0.374, Study V: Table 2).

Generally, measurements of traditional ultrasound reflection parameters (R and
IRC) were reproducible (Table 10.4). The reproducibility of URI, in the form of
CV , was lower. However, in the form of sCV , which takes into account the biological
variation, better reproducibility was obtained also for URI (Table 10.4).
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Table 10.4: Coefficient of variation (CV ) and standardized coefficient of variation

(sCV ) were determined to indicate the reproducibility of the ultrasound imaging

parameters. Eight control samples were measured three times with repositioning

between measurements.

Reproducibility R IRC URI

Coefficient of variation (CV ) 5.2 % 1.3 % 17.0 %
Standardized coefficient of variation (sCV ) 2.5 % 1.9 % 5.7 %

10.3.4 Intact samples from bovine knee joint

Articular cartilage thickness, ultrasound reflection coefficients for the surface (R and
IRC) as well as surface roughness (URI) showed site-dependent variation within
bovine knee (p < 0.05, Figure 10.6). Interestingly, cartilage surface roughness, quan-
tified by URI, showed stronger site-dependent variation than the time or frequency
domain ultrasound reflection coefficients (Figure 10.6). Qualitatively, SEM images
revealed higher surface roughness at MTP than at PAT (Figure 10.7).

The collagen content of the superficial cartilage, as determined by the FT-IRIS
technique, was significantly (p < 0.05) smaller in FMC than in PAT (Figure 10.8A).
The collagen content showed no correlation with the ultrasound surface reflection
coefficient (Figure 10.8B), whereas URI exhibited a strong linear correlation with
the ultrasound reflection coefficient both in the time (r = 0.793, p < 0.05, Figure
10.8C) and the frequency domains (r = 0.813, p < 0.05). However, the linear
correlation between URI and collagen content was weak (Figure 10.8D). There was
no statistically significant site-dependent variation in the acoustic properties of the
cartilage-bone interface (Study IV: Figure 7).
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Figure 10.6: Mean values (±SD) of intact cartilage thickness and quantitative ul-

trasound parameters for the articular surface in different sites within bovine knee

joint. A) Cartilage was significantly thinner in the FMC as compared to MTP or

PAT. B) A significant difference was observed between MTP and PAT for the ultra-

sound reflection coefficient in the time domain (R). C) A significant difference was

observed between MTP and PAT for the integrated surface reflection coefficient in

the frequency domain (IRC). D) Ultrasonically determined surface roughness (URI)

was the most sensitive acoustic parameter for detecting differences between different

anatomical locations: URI was significantly smaller in PAT, as compared to LPG or

MTP.

150 µm

SEM 1000 X SEM 1000 X

PATMTP

150 µm

Figure 10.7: Characteristic SEM images of the articular cartilage surface at A)

bovine medial tibial plateau (MTP) and B) bovine patella (PAT). In qualitative terms,

patellar cartilage surface appeared to be smoother than the tibial surface.
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Chapter XI

Discussion

In the present thesis work, the sensitivity of ultrasound indentation technique for
detecting and distinguishing spontaneous degenerative stages of bovine articular
cartilage was investigated (Study I). The technique was further validated as it is
intended for the use during arthroscopic surgery. Furthermore, the ability of com-
bined mechanical and acoustic measurements to improve prediction of cartilage tis-
sue structural and functional integrity was clarified (Study II).

In Study III, the sensitivity of quantitative 2D ultrasound imaging for detect-
ing changes after mechanical or enzymatic degradation was investigated for bovine
articular cartilage tissue. Furthermore, a novel parameter, URI, for the quantifica-
tion of cartilage surface roughness in 2D ultrasound images was introduced (Studies
III-V). In Study IV, quantitative ultrasound 2D imaging was utilized to determine
ultrasound reflection parameters from the cartilage surface and from the cartilage-
bone interface in four anatomical locations of visually healthy bovine knee. In Study
V, quantitative 2D ultrasound images were acquired for healthy and spontaneously
degenerated bovine articular cartilage samples. The degenerative grade of the sam-
ples was determined histologically using the Mankin score method and cartilage
compressive modulus was determined as a biomechanical reference.

11.1 Ultrasound indentation instrument

When measuring the stiffness of articular cartilage in indentation geometry, such as
is the case in arthroscopic use, the finite and variable tissue thickness affects the in-
dentation response, and introduces uncertainty into the results, especially with thin
cartilage [46, 83]. To avoid the uncertainties related to unknown tissue thickness,
mechanical indentation and ultrasound were combined in a novel ultrasound inden-
tation instrument [70]. Ultrasound indentation enables a simultaneous measurement
of tissue thickness, indentation deformation and stress and, thereby, quantification
of tissue intrinsic mechanical properties. In addition to mechanical measurements,
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ultrasound reflection from the cartilage surface can be determined with the instru-
ment. In that way, the ultrasound reflection coefficient for the cartilage surface can
be locally quantified with this novel instrument [70].

In Study I, the dynamic modulus and ultrasound reflection coefficient, both de-
termined with the same instrument, were significantly related to tissue water and
uronic acid contents, evidence that the technique does provide information about
the cartilage composition. However, these associations are probably complex and
follow from the fact that cartilage degeneration is a process in which there are par-
allel alterations in proteoglycans, collagen network and tissue water content.

Distinct differences between the visually variable degenerative stages could be
observed with the measurements of dynamic modulus and ultrasound reflection.
The extensive variation of acoustic and mechanical properties within visually intact
cartilage samples revealed the insensitivity of visual evaluation for assessing carti-
lage integrity. This finding was also confirmed by the histological grading (Mankin
score) and the biomechanical reference measurements. Some of the visually intact
samples exhibited signs of early degeneration, such as depletion of proteoglycans in
the superficial tissue, as verified by histological and functional reference measure-
ments. In contrast, the ultrasound indentation instrument distinguished the normal
and histologically degenerated cartilage from each other. These results suggest that
visual evaluation, conducted routinely during arthroscopy, is inexact and inadequate
for judging the functional performance of articular cartilage.

In an earlier study, manual creep measurements were conducted with the ul-
trasound indentation instrument before and after enzymatic degradation of bovine
cartilage samples [70]. It was concluded that the proteoglycan depletion of carti-
lage could be determined with creep measurements. In Study II, the suitability of
creep measurements was further investigated both experimentally and numerically.
Poroelastic transversely isotropic FE-model revealed the strong effect of changes in
the values of Young’s moduli, shear modulus and permeability on the creep behav-
ior. Importantly, this finding was consistent with the experimental measurements
revealing a decrease of compressive modulus and an increase of creep rate as the
histological degenerative grade (Mankin score) increased. However, successful man-
ual creep measurements with the present instrument require a significant amount of
operator training. During arthroscopy, all measurements should be conducted with
ease and also quickly and reproducibly. Therefore, it might be necessary to develop
the technique further to facilitate long-term creep measurements in the clinic.

In Study II, a strong linear correlation was observed between the dynamic mod-
ulus, measured with the ultrasound indentation instrument, and the reference dy-
namic modulus (measured with the high-resolution material testing device) in a
large material (n = 70). Furthermore, the interoperator reproducibility, as well as
CV and sCV values, indicated moderate or good reproducibility of the ultrasound
indentation parameters. As the agreement between the ultrasound indentation and
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the reference technique was best for the samples with low stiffness, the ultrasound
indentation instrument seems to sensitively diagnose early cartilage degeneration.

11.2 Relation between cartilage mechanical and acoustic
properties

In Study II, mechano-acoustic techniques were used to characterize the elastic prop-
erties of normal and degenerated cartilage in compression. The ability of the acoustic
parameters, i.e. sound speed and surface reflection, to predict the tissue Young’s
modulus and dynamic modulus was experimentally studied. It was demonstrated
that the sound speed was significantly related to the compressive stiffness as well as
the integrity of the tissue. Again, part of these correlations may be secondary, re-
flecting the complex degenerative process in cartilage tissue with alterations in tissue
constituents. In the clinical situation, however, designing a simple and easy-to-use
technique for the thickness measurement, necessary for the determination of sound
speed, may be difficult and threaten successful diagnostic use. In the literature, one
technique, in situ calibration method, has actually been introduced for this purpose
[121]. However, the need for this kind of complex apparatus possibly will limit its
widespread clinical acceptance.

11.3 Quantitative ultrasound imaging

Ultrasound Roughness Index
In Studies III-V, a novel parameter, ultrasound roughness index (URI), was in-
troduced for direct determination of cartilage surface roughness from quantitative
ultrasound images. The cartilage surface profile was measured ultrasonically and
URI was calculated as the RMS average of deviations from the global surface pro-
file. This method is commonly used in material sciences but has not been earlier
adapted to the ultrasonic analysis of cartilage surface topography. The contribution
of the global shape (contour) of the cartilage surface was eliminated by high-pass
filtering or spline interpolation. In Study III, a significant increase in URI was
obtained after mechanical degradation or after collagenase digestion. In Study IV,
a significant site-dependent variation was observed for URI within the bovine knee
joint. In Study V, URI was significantly higher in histologically degenerated sam-
ples with inferior mechanical properties in comparison to intact specimens.

The calculation of URI from the ultrasound 2D image is based on the mea-
surement of ultrasound flight time between the transducer and the PBS-cartilage
interface in each scan line. Due to its apparent simplicity, URI might well be able
to be incorporated into clinical ultrasound devices, and applied for roughness char-
acterization of different acoustic interfaces within human tissue.

In contrast to traditional reflection parameters (R and IRC), ultrasound flight
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time does not directly depend on the perpendicularity between the ultrasound trans-
ducer and the cartilage surface. This may be a major advantage of URI since
achieving perfect perpendicularity is often challenging with naturally curved articu-
lar surfaces. Therefore, URI might be easier to use even in arthroscopic ultrasound
probes as its calculation requires only the determination of the ultrasound flight
time. However, more theoretical and experimental research is still needed: the ef-
fects of ultrasound beam diameter, temporal and spatial sampling frequencies and
the surface inclination need to be investigated.

In a recent study, ultrasound indentation, ultrasound imaging and MRI results
were compared for diagnosing the histological degenerative changes in bovine car-
tilage tissue [62]. The diagnostic potential of URI was highlighted in that study.
The combined sensitivity (0.91) and specificity (1.00) were greatest for URI over
other novel diagnostic techniques, including MRI and ultrasound indentation with
the novel instrument [62]. The results of that study, along with the present results,
suggest that URI, determined with instrumentation that has similar specifications
as the one used in the present study, represents a highly sensitive and promising
ultrasound parameter for OA diagnostics.

Ultrasound reflection from the cartilage surface
It is generally accepted that ultrasound reflection from the cartilage surface provides
an indication of the integrity of the collagen fibril network [28, 68, 97]. In parallel
with previous studies, it was found that ultrasound reflection from the tissue surface
decreased significantly after collagenase digestion. In contrast to the importance of
the collagen fibril network, it has been claimed that proteoglycans play a minor
role in ultrasound reflection from the articular surface [97, 103]. Again, this was
confirmed in the present thesis work: proteoglycan depletion with chondroitinase
ABC induced no significant changes in the ultrasound reflection (or URI) from the
surface. In Study V, when investigating ultrasound reflection from the cartilage sur-
face in spontaneously degenerated samples, a statistically significant decrease was
observed for R and IRC in degenerated samples compared to intact samples. Fur-
thermore, the results suggest that ultrasound reflection from the cartilage surface
also serves as a moderate predictor of cartilage true dynamic stiffness.

Ultrasound reflection from the cartilage-bone interface
Quantitative ultrasound analysis of the cartilage-bone interface is challenging as the
attenuation in the overlying cartilage tissue, as well as the reflection at the cartilage
surface, may significantly affect the results. In the published literature, ultrasound
reflection from the cartilage-bone interface has been quantitatively analyzed with-
out compensating the attenuation effect of the overlying cartilage [50], or by using
a constant attenuation coefficient for cartilage [72]. In Study IV, the ultrasound
attenuation coefficient in the overlying cartilage was also assumed to be constant.
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Consequently, only differences in attenuation due to variable cartilage thickness were
taken into account in the calculations of Rbone and IRCbone. However, in Study V,
the true sample-specific ultrasound attenuation in the overlying cartilage was ac-
tually measured, thus confirming its effect on the measured reflection parameters
for the cartilage-bone interface. Although the absolute values of Rbone and IRCbone

increased significantly after attenuation correction, linear correlations between Rbone

or IRCbone and Mankin score or dynamic modulus were not improved. These re-
sults suggest that the changes in cartilage-bone interface, typical to early OA, can
be detected without attenuation information. However, in order to determine the
absolute values of the reflection coefficients, sound attenuation in the overlying car-
tilage tissue needs to be known. When aiming at determining Rbone and IRCbone

arthroscopically in vivo, information on cartilage thickness is probably sufficient for
acceptable correction of the ultrasound reflection measurements from the cartilage-
bone interface.

The exact origin of the ultrasound signal reflecting from the cartilage-bone in-
terface is still under discussion. In earlier studies, it has been hypothesized that
this second ultrasound reflection would be generated from the interface between
the non-calcified and calcified cartilage, i.e. from the tidemark [87, 119]. However,
Disler et al. (2000) suggested that this ultrasound reflection may be generated at the
boundary between the cartilage and subchondral bone [34]. In the present study,
no tidemark or calcified cartilage layer could be histologically verified. This may
be related to different species (rabbit vs. bovine) or different stages of maturation
compared to earlier studies. Consequently, we believe that the second ultrasound
reflection in the present samples was generated from the immediate boundary be-
tween the cartilage and subchondral bone. Therefore, it reflects the integrity of the
subchondral bone. However, in adult human articular cartilage, tidemark and cal-
cified cartilage layer may exist and, in that case, the specular ultrasound reflection
may reflect more the integrity of calcified cartilage than that of subchondral bone.
This issue needs to be confirmed with human articular cartilage samples.

Site-dependent variation within bovine knee joint
A significant site-dependent variation was shown in quantitative ultrasound imag-
ing parameters for the surface (R, IRC and URI) and for the superficial collagen
content. Ultrasound reflection at the cartilage-bone interface (Rbone and IRCbone)
showed insignificant site-dependent variation. As compared to R and IRC, URI
proved to be the most sensitive parameter in detecting differences between the
measurement sites. Interestingly, the ultrasound reflection parameters of the sur-
face were not significantly related to superficial collagen content in healthy tissue,
whereas there was a high correlation between R and URI. These results suggest
that ultrasound reflection from an intact cartilage surface is mainly dependent on
the cartilage surface roughness (controlling ultrasound scattering) and that the col-
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lagen content (controlling acoustic impedance) has a less significant role. However,
it is probable that differences in superficial collagen content are relatively small in
different sites within a healthy knee joint. Therefore, a much larger variation in
collagen content can be expected for degenerated samples compared to healthy tis-
sue and, in that kind of situation, ultrasound reflection from the tissue surface is
possibly related to the superficial collagen content. This issue will require further
investigations.

11.4 Diagnostic potential of quantitative ultrasound tech-
niques

Ultrasound indentation instrument
The present results suggest that the ultrasound indentation technique would be ca-
pable of determining short-term mechanical properties of cartilage also in vivo. The
instrument provides direct information on cartilage mechanical function, sensitively
impaired in degenerative joint disease, and the in vivo measurements can be per-
formed during routine arthroscopy. However, the final judgement of the instrument
performance in vivo can be done only with human cartilage tissue, measured during
real clinical situations. It is also notable that indentation serves as highly point-
wise measurement and in vivo measurements of certain locations within the knee
can be challenging. At this stage, further technical developments of the prototype
instrument are needed before it can be used in clinical practice.

Quantitative ultrasound imaging
Based on the present results, quantitative 2D ultrasound imaging enables detection
of early experimentally induced or spontaneously developed degenerative changes
before degeneration can be visually seen. Furthermore, changes in ultrasound re-
flection from the cartilage-bone interface can be quantitatively determined with the
present ultrasound imaging technique. The major benefit of ultrasound imaging, as
compared to more local or point-like measurement techniques, is the possibility to
obtain extensive information from large areas of articular surfaces as well as from
underneath the cartilage surface. Furthermore, no direct estimation of cartilage sur-
face roughness is possible with the localized techniques.

Quantitative ultrasound imaging is not limited to 2D scans, but is also applicable
to 3D measurements. This could be a significant advantage because large areas of
the joint can be imaged and reflection or surface roughness values can be obtained
pixel-by-pixel in 3D, e.g., during open joint surgery. In principle, the clinical appli-
cation of these techniques may be achieved by using a high-resolution microarray
probe or by one moving (scanning) transducer. This kind of instrumentation sets
high demands for the development of an arthroscopic ultrasound imaging device as
well as for collection of reference values for ultrasound reflection and surface rough-
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ness. At the moment, no prototype of the high-resolution in vivo imaging device
exists. Therefore, development of the arthroscopic ultrasound imaging instrument
will be essential for further clinical investigations.
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Chapter XII

Summary and conclusions

In this thesis work, the ultrasound indentation instrument was validated and qual-
ified for further development towards its clinical use. Furthermore, quantitative
ultrasound imaging was demonstrated to be a sensitive and specific method for
detecting the structural and functional properties of normal and osteoarthrotic ar-
ticular cartilage tissue.

The main conclusions from the present study are summarized as follows:

1. Dynamic modulus and ultrasound reflection coefficient at the cartilage sur-
face, both measured with the ultrasound indentation instrument, are sensitive
for detecting spontaneously developed degenerative histological, compositional
and biomechanical changes in bovine cartilage tissue.

2. Mechanical stiffness of cartilage tissue (dynamic modulus or Young’s modulus)
is more closely related to the sound speed than to the ultrasound reflection
from the surface.

3. Quantitative ultrasound imaging parameters for the surface (R, IRC and
URI) sensitively detected differences after mechanically or enzymatically (col-
lagenase) degraded bovine cartilage tissue. Furthermore, R, IRC and URI
were able to discern histologically normal and degenerated cartilage tissue from
each other during spontaneous cartilage degeneration process.

4. A novel parameter for quantification of cartilage surface roughness, URI, was
demonstrated to be highly sensitive and specific for osteoarthrotic surface fib-
rillation of bovine cartilage tissue.

5. R, IRC and URI showed topographical variation across bovine knee joint sur-
faces, whereas the ultrasound reflection at the cartilage-bone interface (Rbone

and IRCbone) was not site-dependent. Ultrasound reflection parameters from
the intact cartilage surface (R, IRC) were mainly dependent on the cartilage
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surface roughness (URI) with the collagen content having a less significant
role.

6. Ultrasound reflection at the cartilage-bone interface (Rbone and IRCbone) dif-
ferentiated histologically normal and degenerated tissue from each other dur-
ing spontaneous cartilage degeneration process. Furthermore, it was quan-
titatively confirmed that true ultrasound attenuation in the overlying carti-
lage significantly affects the measured ultrasound reflection values from the
cartilage-bone interface.

7. The presented ultrasound indentation and imaging techniques are capable of
achieving highly promising results in laboratory measurements. In principle,
they can also benefit in vivo diagnostics of OA and monitoring of cartilage
repair. However, several technical challenges must be solved before they can
be succesfully exploited in the clinic.
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