
TIMO KOPONEN

Evaluation of Maintenance Processes in
Open Source Software Projects

Through Defect and Version
Management Systems

JOKA
KUOPIO 2007

KUOPION YLIOPISTON JULKAISUJA H. INFORMAATIOTEKNOLOGIA JA KAUPPATIETEET 9
KUOPIO UNIVERSITY PUBLICATIONS H. BUSINESS AND INFORMATION TECHNOLOGY 9

Doctoral dissertation

To be presented by permission of the Faculty of Business and Information Technology of

the University of Kuopio for public examination in Auditorium, Mediteknia building,

University of Kuopio, on Friday 21st September 2007, at 12 noon

Department of Computer Science

University of Kuopio

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEF Electronic Publications

https://core.ac.uk/display/15167343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Distributor : Kuopio University Library
 P.O. Box 1627
 FI-70211 KUOPIO
 FINLAND
 Tel. +358 17 163 430
 Fax +358 17 163 410
 www.uku.fi/kirjasto/julkaisutoiminta/julkmyyn.html

Series Editors: Professor Markku Nihtilä, D.Sc.
 Department of Mathematics and Statistics

 Assistant Professor Mika Pasanen, D.Sc.
 Department of Business and Management

Author’s address: Department of Computer Science
 University of Kuopio
 P.O. Box. 1627
 FI-70211 KUOPIO
 FINLAND

Supervisors: Development and research manager Virpi Hotti, Ph.D.
 Department of Computer Science
 University of Kuopio

Reviewers: Professor Markku Tukiainen, Ph.D.
 Department of Computer Science and Statistics
 University of Joensuu

 Docent Jussi Koskinen, Ph.D.
 Department of Computer Science and Information Systems
 University of Jyväskylä

Opponent: Professor Reijo Sulonen, Ph.D.
 Software Business and Engineering Institute
 Helsinki University of Technology

ISBN 978-951-781-988-6
ISBN 978-951-27-0107-0 (PDF)
ISSN 1459-7586

Kop i j yvä
Kuop io 2007
F in l and

iv

Koponen, Timo. Evaluation of Maintenance Processes in Open Source Software
Projects Through Defect and Version Management Systems. Kuopio University
Publications H. Business and Information Technology 9. 2007. 92 p.
ISBN 978-951-781-988-6
ISBN 978-951-27-0107-0 (PDF)
ISSN 1459-7586

ABSTRACT

While Open Source Software (OSS) is becoming more widespread and popular, its
maintenance has become an important issue. However, several aspects of Open Source
Software maintenance are unclear; for example, maintenance processes are usually de-
scribed briefly in the project documentation and the descriptions are very informal and
inaccurate. Several earlier studies have examined Open Source Software projects
(OSSPs) but they have not provided information about maintenance because they have
concentrated on several other aspects such as development and community models.
Therefore, in this thesis we study the maintenance of Open Source Software.
First, we present an evaluation framework for Open Source Software that can be used to
create a general overview of the software, project and related services. From the view-
point of the software, we cover attributes such as the type of software and intended audi-
ence. From the project viewpoint, we cover aspects of the development model and man-
agement systems. Since most OSSPs do not provide services to users, it is reasonable to
cover external service providers.
Second, we present an Open Source Software maintenance process framework. It was
developed by studying maintenance activities and the project documents in OSSPs and
using ISO/IEC and IEEE standards for software maintenance as a guideline. As a result
of this, we noticed that from the theoretical viewpoint the maintenance processes in
OSSPs are quite similar to those in the standards. However, maintenance activities may
not be performed as described in the project documents. Therefore, we decided to iden-
tify attributes and metrics that could be used to measure maintenance processes in the
real world.
Third, we present an evaluation framework for Open Source Software maintenance that
can be used to study OSS maintenance processes through defect reports and software
change histories by using defect management systems (DMS) and version management
systems (VMS) as data sources. While those systems provide more than enough data
about maintenance processes, data retrieval can become a problem. One OSSP can have
over 35000 defect reports and 7000 changes in the source code, so manual retrieval and
evaluation of the data is not a realistic option. Therefore, we developed an automatic
tool, Remote analysis System for Open Source Software (RaSOSS), for data retrieval
and analysis.
The main contributions of this thesis are these three frameworks and RaSOSS.

Universal Decimal Classification: 004.413, 004.415.5
Inspec Thesaurus: computer software; public domain software; software maintenance;
software management; project management; system documentation; software standards;
error analysis; error handling; data analysis

v

vi

Acknowledgements

It gives me much pleasure to conclude a few years of work by expressing my gratitude to
individuals and institutions that have supported the research presented in this thesis. I
would like to thank my supervisor Virpi Hotti for her guidance and motivation. I wish
also to thank the Department of Computer Science at Kuopio University and all col-
leagues.

Finally, I also want thank my parents Eva and Esa, and my dear wife Sanna.

(Almost) Anything is possible; just will and hard work is needed.

Kuopio 21.9.2007

Timo Koponen

vii

viii

ORIGINAL PAPERS

Paper I: Koponen T, Hotti V. Evaluation Framework of Open Source
Software. Proceedings of The International Conference on
Software Engineering Research and Practice SERP'04, Vol. II.,
Las Vegas, Nevada, USA, June 21-24, 2004, pp. 897-902.
CSREA Press, 2004.

Paper II: Koponen T, Hotti V. Open Source Software Maintenance
Process Framework. Proceedings of The Fifth Workshop on
Open Source Software Engineering, St. Louis, USA, 17.5.2005,
ACM SIGSOFT software engineering notes Vol. 30. Issue 4,
pp. 1-5. New York: ACM Press, 2005.

Paper III: Koponen T, Hotti V. Defects in Open Source Software Main-
tenance - Two Case Studies: Apache and Mozilla. Proceedings
of The 2005 International Conference on Software Engineering
Research and Practice SERP'05, Vol. II., Las Vegas, Nevada
USA, June 27-30, 2005, pp. 688-693. CSREA Press, 2005.

Paper IV: Koponen T. Life Cycle of Defects in Open Source Software
Projects. IFIP International Federation for Information
Processing 203, Open Source Systems; Proceedings of the 2nd
International Conference on Open Source Systems (OSS 2006)
(IFIP Working Group 2.13 Foundation on Open Source Soft-
ware), Como, Italy. June 8-10, 2006. pp. 195-208, Springer.

Paper V: Koponen T., Lintula H.: Are the Changes Induced by Defect
Reports in Open Source Software Maintenance? The 2006 In-
ternational Conference on Software Engineering Research and
Practice, Vol I., June 27-30, 2006, Las Vegas, USA. pp. 429-
435, CSREA Press.

Paper VI: Koponen T.: Evaluation Framework for Open Source Software
Maintenance. The International Conference on Software Engi-
�������� �	
����� ������������ October 2006, Tahiti, French
Polynesia. pp. 52. IEEE Press.

Paper VII: Koponen T.: RaSOSS - Remote Analysis System for Open
Source Software. The International Conference on Software
������������ �	
����� ������������ October 2006, Tahiti,
French Polynesia. pp. 54. IEEE Press.

ix

x

Table of Contents
1 INTRODUCTION .. 1

1.1 OBJECTIVES .. 2
1.2 ORGANIZATION OF THESIS .. 3
1.3 ORIGINAL PUBLICATIONS .. 5

2 OPEN SOURCE ... 7
2.1 LICENSING .. 8
2.2 COMMUNITY AND DEVELOPMENT MODELS ... 10
2.3 SERVICES .. 12
2.4 EVALUATION FRAMEWORK FOR OPEN SOURCE SOFTWARE .. 13

3 SOFTWARE MAINTENANCE.. 15
3.1 ISO/IEC SOFTWARE MAINTENANCE PROCESS .. 17
3.2 OPEN SOURCE SOFTWARE MAINTENANCE PROCESS .. 18
3.3 DIFFERENCES BETWEEN MAINTENANCE PROCESSES .. 20

4 DEFECT MANAGEMENT SYSTEMS ... 21
4.1 RELATIONSHIP BETWEEN A DMS AND THE MAINTENANCE PROCESS... 21
4.2 A DMS AS A DATA SOURCE ... 24
4.3 EXAMPLE SYSTEMS ... 26

5 VERSION MANAGEMENT SYSTEMS ... 32
5.1 RELATIONSHIP BETWEEN VMS AND DMS .. 33
5.2 A VMS AS A DATA SOURCE ... 34
5.3 EXAMPLE SYSTEMS ... 37

6 OSS MAINTENANCE PROCESS EVALUATION ... 40
6.1 PROCESS ACTIVITY ... 41
6.2 PROCESS WORKFLOW ... 43
6.3 VM PROCESS WORKFLOW AND MANAGEMENT .. 44

7 REMOTE ANALYSIS SYSTEM FOR OPEN SOURCE SOFTWARE.............. 48
7.1 ARCHITECTURE ... 48
7.2 DATABASE .. 49
7.3 USER INTERFACE .. 52

8 CASE STUDIES ... 54
8.1 PROCESS ACTIVITY .. 55
8.2 PROCESS WORKFLOW .. 56
8.3 VM PROCESS WORKFLOW AND MANAGEMENT .. 57

9 CONCLUSIONS AND FUTURE WORK .. 61
9.1 CONTRIBUTION OF THE THESIS .. 61
9.2 FUTURE WORK .. 64

BIBLIOGRAPHY .. 65
APPENDICES

APPENDIX I: Trend metrics of the case studies (7 pages)

xi

1

1 INTRODUCTION

Open Source Software (OSS) is becoming increasingly important and widespread. OSS
covers a wide range of software types from desktop software such as Open Office and
Mozilla Firefox, to Enterprise Resource Planning (ERP) such as Compiere and ERP5.
These software are used in countless companies, governments, communities and homes.

The major difference between OSS and proprietary software is that OSS has been devel-
oped within a community and licensed with a license that has been approved by the
Open Source Initiative (OSI) [OSI06]. OSI approved licenses give users the rights to
use, redistribute and modify software. These rights make distributed software develop-
ment possible, where almost anyone can participate and help to develop the software.

However, distributed development and free participation is fundamentally different from
software engineering, which is defined in the IEEE Standard Glossary of Software Engi-
neering Technology (IEEE 610.12) as [IEE04]:

"The application of a systematic, disciplined, quantifiable approach to the
development, operation and maintenance of software, that is, the applica-
tion of engineering to software."

Whereas software engineering uses a systematic and strictly controlled approach, OSS
projects (OSSP) use a more liberal approach, where almost anyone can participate in
project activities such as defect reporting, development and maintenance. Because of the
free participation and large number of developers, OSSPs use several systems for man-
agement. These management systems, such as defect management system (DMS) and
version management system (VMS), are used for the management of defect reports and
source code. Usually, these systems are freely available to users and developers. While
they help with the management of the project, they also provide a large amount of the
data that can be used in the analysis of the project and its processes. However, in spite of
the management systems and project guidelines, development and maintenance
processes are not well known.

Nowadays, processes are measured and improved to gain better quality and more effi-
ciency. However, in this thesis the purpose is not to measure process from that view-
point. The purpose is to describe and evaluate the maintenance process, and determine
whether it is reliable from the viewpoint of users. The Software Engineering Institute
(SEI) defines reliability as follows [SEI06]:

"The capability of an implementation to maintain its level of performance
under stated conditions for a stated period of time."

Generally, reliability, quality specifications and certificates rely on well-described and
audited processes, while in OSSPs the processes and practices are poorly described and
the boundaries between activities are unclear. For example, OSS is being developed and
maintained simultaneously, but maintenance is rarely even mentioned.

2

The IEEE and ISO standards define maintenance as a post-delivery process whose pur-
pose is to adapt the software to changed requirements or environments [IEE04]. In many
OSSPs, the software has been delivered to the users and modifications are post-delivery
activities. Since the users are also developers, they test software simultaneously. In this
study, the approach is from the viewpoint of software maintenance instead of software
development because the majority of users are not developers and the software has al-
ready been delivered.

Companies, governments and communities have got used to the fact that software manu-
facturers or service providers support software and guarantee required modification.
OSSP usually does not have one particular actor who produces and maintains software.
The majority of OSS developers and maintainers are volunteers and they may not be
committed to maintenance. The continuity of maintenance relies on the number of de-
velopers and availability of the source code. To be sure that the needed changes will be
made, one must make them oneself or be a friend of a developer who promises to make
them. Otherwise, we can only hope that changes will be made.

This study researches the OSS maintenance processes. The purpose of this thesis is to
analyse OSS maintenance processes and create a descriptive model. The model could be
used to evaluate the reliability of the maintenance process in OSSPs. The objectives of
this thesis are presented in Section 1.1. Section 1.2 outlines the structure of the thesis;
the original publications are presented in Section 1.3.

1.1 Objectives

The purpose of this work was to create an approach and frameworks for the evaluation
of maintenance processes in OSSPs. The objectives were to:

i. Establish a framework for the technical characteristics of Open Source Software
projects.

ii. Establish a framework for the Open Source Software maintenance process.

iii. Create an evaluation framework and a tool that can be used to analyze Open
Source Software maintenance processes.

iv. Validate the suitability of the evaluation framework and tool by analyzing Open
Source Software maintenance processes through case studies.

Issues related to the framework for the basic characteristics of Open Source Software
projects. OSS can be any kind of software and its target audience can vary from devel-
opers to users of desktop software [KoH04]. One or many leaders may lead OSSPs, or
OSSPs can be bazaar-stylish [Ray99]. OSSPs or companies may offer user support and
other services, or users may be left on their own [LeT00, LeT02, KoH04]. The purpose
of the framework is to provide a general view of OSSPs.

Issues related to the framework for the Open Source Software maintenance process.
Several standards and studies (e.g. IEEE standard for maintenance [IEE04], Software

3

Engineering: software life cycle processes [ISO02a, ISO02b], Software maintenance:
concepts and practice [TaG03], IT Infrastructure management [OGC02a], IT application
management [OGC02b]) describe the activities involved in the maintenance process, but
they are not directly applicable in the OSS maintenance process. By mapping and com-
paring the maintenance activities of the OSS maintenance process to standards, it is
possible to provide a framework that describes the general activities of the OSS main-
tenance process.

Issues related to the evaluation framework and tool that can be used to analyze Open
Source Software maintenance processes. DMS and VMS are used to monitor defects and
the source code of the software, but they also provide a large amount of data that can be
used to analyze OSS maintenance processes [ADH04, Kop06a, Kop06b]. Therefore, we
have created an evaluation framework for Open Source Software maintenance that has
three aspects of the maintenance process of OSSPs: process activity, workflows and
management. Because of the large amount of data, analyzing manually is almost imposs-
ible. Earlier studies have a few analysing systems for these DMSs and VMSs, such as
SoftChange [Sof06], GlueTheos [Lib06] and CVSAnalY [CVA06]. However, none of
them provides information for the evaluation of the maintenance. In addition, they ana-
lyse either VMS or DMS only. Therefore, we built a system that retrieves and analyses
data from VMS and DMS.

Issues related to analyzing Open Source Software maintenance processes. Since we
created an evaluation framework and automatic analysis system, we tested and validated
them using seven OSSPs. In addition, analysis of these OSSPs provided information
about the maintenance processes of OSSPs.

1.2 Organization of thesis

The organization of the thesis is presented in Figure 1.1. The figure shows the relations
between the research objectives, topics of the thesis and original publications.

As we see from the figure, to provide an answer to the first (i) research objective Section
2 introduces the basic concepts of Open Source Software and the evaluation framework
for Open Source Software. The section starts by describing the three major factors in
OSS: licensing, community and services. Then it reviews the definition of the Open
Source licenses and points out major differences between popular licenses. The section
also briefly describes different organizational structures of the communities and the
services provided.

The basic concepts and definitions of the software maintenance process are introduced in
Section 3. We present an overview of the maintenance process described in the IEEE
and ISO standards, and a proposal for the Open Source Software maintenance process
framework, which provides answers to the second (ii) research objective.

4

Figure 1.1. Research objectives, topics of the thesis and original publications.

Topics of the
thesis

1.
Introduction

2.
Open Source

3.
Software mainte-

nance

4.
Defect manage-
ment systems

5.
Version manage-

ment systems

6.
OSS maintenance
process evaluation

7.

RaSOSS

8.
Case studies

9.

Conclusions

Original publi-
cations

I

II

III

IV

V

VI

VII

Research
Objective

i

ii

iii

iv

5

To answer the third (iii) research objective, we present, in Sections 4 and 5, DMS, VMS,
and their roles in the maintenance process. The sections start with an overview of the
systems and their roles in the maintenance process. Then, they continue with a descrip-
tion of how the systems can be used as data sources in the evaluation of the maintenance
process. We also introduce the most popular Open Source DMSs and VMSs and their
purposes, usage and suitability for research. Then, in Section 6, we present the evalua-
tion framework for the Open Source Software maintenance process. Section 7 presents
the RaSOSS.

Finally, we evaluate the evaluation framework for the Open Source Software mainten-
ance process with seven case studies, to obtain an answer for the fourth (iv) research
objective. The results are presented in Section 8. Section 9 reviews the results of this
thesis and introduces future work.

1.3 Original publications

This thesis is based on and extended from the author's contributions to the publications
below. The author of this thesis is responsible for the contribution of papers IV, VI and
VII. Joint work with the second author of Papers I, II and III helped to clarify the objec-
tives of the thesis. In Paper V, the second author participated mainly in the writing of the
research paper.

In Paper I, OSS is examined from the viewpoints of the product, project and services.
The evaluation framework for Open Source Software was created and validated with
eight OSS case studies: three operating systems, three server software, and two office
software were evaluated. The results show that the framework was appropriate for the
basic evaluation of OSS. It helped in classifying Open Source software products and
projects. However, that approach does not include deeper analysis of the software or
project processes.

Previously, the OSS maintenance process has been considered to be unorganized and
unstable. Paper II presents the Open Source Software maintenance process framework.
The study and the framework described show that the maintenance process of the OSSPs
was similar to the ISO/IEC maintenance process model. The major difference was that
the Open Source Software maintenance process did not have retirement activity, which
existed in the ISO/IEC Maintenance process. Furthermore, the study show that the De-
fect management system (DMS) and Version management system (VMS) play essential
roles in the OSS maintenance processes.

Papers I and II show that the DMS is used in OSSPs for management. Therefore, Paper
III presents a study of the defects. It starts with two hypotheses. The first hypothesis was
that the rate of enhancement requests is a metric for the maturity of the software. The
second hypothesis was that the rate of useless defect reports is a metric for the quality of
the defect reports. The paper presents two case studies, the Apache HTTP server and
Mozilla Firefox browser, which were studied to test the hypotheses. Defects were ga-
thered from DMSs. The study show that the rate of the enhancements was low in both

6

projects. Furthermore, the rate of defects reports which did not lead to any changes
ranged from 50 to 70 percent.

When Paper III showed that the majority of defect reports do not lead to changes, we
started to evaluate defect life cycles in Paper IV. The paper describes an approach for
defect life cycle analysis. We analyzed two case studies to test the approach and found
out that defect life cycles were much simpler than the framework for Open Source Soft-
ware maintenance process suggests. The majority of the defect reports were just opened
and resolved without any other steps in the life cycle.

When Paper III shows that only a small proportion of defect reports lead to changes, we
started to study, in Paper V, the version management system more intensively. We
created an approach that can be used to analyze the relationship between the changes in
the source code and defect reports. The approach maps the changes in the source code to
the defect reports if they are related. We evaluated our approach with two case studies,
Apache and Mozilla, and found it suitable. The case studies show that the majority of the
changes are not related to the defect reports.

When Papers IV and V showed that only a small proportion of defects led to changes
and the majority of the changes were not due to the defect reports, we created a tool that
could be used to evaluate more OSSPs. The tool, RaSOSS, implemented approaches that
had been described in earlier papers. Paper VII is dedicated to the descriptions of the tool
and its metrics. The paper presents the modular structure of the tool, database structures
and the systems that are supported.

When we had finished RaSOSS, we selected seven case studies for testing. The evalua-
tion framework for Open Source Software maintenance and results are presented in Pa-
per VI. These cases reinforced the previous finding that defect life cycles have two or
three steps. The majority of the defect reports were just opened and resolved without any
other steps in the life cycle, which indicates inefficient usage of DMS. Furthermore, we
analyzed the same case studies using the approach presented in Paper V and found out
that in these cases, the majority of the changes in the source code were not related to the
defect reports.

7

2 OPEN SOURCE

Nowadays, Open Source is more than a description of the practices that are used to de-
velop products. The difference between the terms Open Source, Open Source Software
and Open Source Software projects is the following: Open Source (OS) describes prac-
tices such as licensing and development models. Open Source Software (OSS) is a soft-
ware which has been licensed with an Open Source license and has been developed
using Open Source practices. Software development is nowadays considered to be a
project. A project is defined in ISO 9000 as follows [ISO00]:

"A project is a unique process consisting of a set of coordinated and con-
trolled activities with start and finish dates, undertaken to achieve an ob-
jective conforming to specific requirements, including the constraints of
time and resources."

An Open Source Software project (OSSP) is a temporary process to create unique soft-
ware. Originally, the term Open Source refered to the users' right to get the source code
of the software. The Open Source Initiative (OSI), which is a non-profit organization,
launched the term in 1999 and its purpose is to promote OSS [OSI06]. The initiators of
OSI were Bruce Perens and Eric Raymond. OSI has summed up the idea of OSS as fol-
lows [OSI06]

"When programmers can read, redistribute, and modify the source code for
a piece of software, the software evolves. People improve it, people adapt
it, and people fix bugs. And this can happen at a speed that, if one is used
to the slow pace of conventional software development, seems astonish-
ing."

The term Free Software (FS) has a similar meaning as Open Source. The major differ-
ences between the terms are their issuers and political viewpoints. Richard Stallman
issued FS in 1983 when he started the GNU project. The Free Software Definition
[FSF06a] defines FS, and it has been published by the Free Software Foundation (FSF).
The definition describes four rights [FSF06a]:

- Freedom 0: "The freedom to run the program, for any purpose."

- Freedom 1: "The freedom to study how the program works, and adapt it to your
needs. Access to the source code is a precondition for this.

- Freedom 2: "The freedom to redistribute copies so you can help your neigh-
bour."

- Freedom 3: "The freedom to improve the program, and release your improve-
ments to the public, so that the whole community benefits. Access to
the source code is a precondition for this."

Although it mentions the rights stated in the OSI, the definition does not claim that the
software should be free of charge. However, this term did not convince companies and

8

other parties, and they launched the OSI in 1999. Libre Software is a synonym for FS,
which emphasizes freedom.

To understand OSSPs practices, three major issues need to be explained: licensing mod-
els, community and development models, and services. Software is always a combina-
tion of these issues for the user. A license describes explicitly the users' rights and obli-
gations. Open Source licensing models are described in Section 2.1. A community is an
actor that users deal with, and its organizational structure affects the development mod-
els of the software. The community and development models are presented in Section
2.2. The community or companies [DOS99, Ros00] may provide services such as main-
tenance and support. Service types and their providers and importance are presented in
Section 2.3 [DOS99, Ros00]. The framework for Open Source Software is presented in
Section 2.4, but the original framework is presented in Paper I.

2.1 Licensing

The software is protected by copyrights which protect the results of creative work. The
copyright gives (to the creator) exclusive right to distribute and copy the work. In Fin-
land, copyright is defined in the Copyright Law (Tekijänoikeuslaki) [Fin06] and it is
recognized internationally [Ros04].

Open Source licenses give users the right to redistribute and modify software, which was
previously the right of the copyright holder only. The fundamental requirements for
Open Source licenses are defined in the Open Source Definition released by the Open
Source Initiative [OSI06]. The definition has ten clauses [OSI06]:

1. Free Redistribution
2. Source Code
3. Derived Works
4. Integrity of The Author's Source Code
5. No Discrimination Against Persons or Groups
6. No Discrimination Against Fields of Endeavour
7. Distribution of License
8. License Must Not Be Specific to a Product
9. License Must Not Restrict Other Software
10. License Must Be Technology-Neutral

These clauses give users the freedom to use, modify and distribute the software. They
also eliminate the possibility of artificial limitations, which are against the spirit of free-
dom [OSI06]. Although all Open Source licenses provide these rights, there are also
differences between licenses. The major differences are in the implementation of copy-
left, which allows the user to freely copy and modify source code. It also allows the
redistribution of software for a price or for free as long as the source code is licensed
with the same license. Open Source licenses can be classified in terms of the implemen-
tation of copyleft (presented in Table 2.1). [Ins06]

9

Table 2.1. Characteristics of classified licenses.
Characteristic Licenses

without
copyleft
effect

Licenses
with
strong
copyleft
effect

Licenses
with
restricted
copyleft
effect

Licenses
with
limited
freedom
of choice

Licenses
with privi-
leges

Derivate work can be
released with a differ-
ent license

Yes No Yes3 Depends Yes1

Source code can be
combined with soft-
ware that has been
licensed with a differ-
ent license

Yes No Yes2 Depends

Binary software can
be released without
the source code

Yes No No Depends Yes1

Viral No Yes Yes Depends Yes

Persistent No Yes Yes Depends Yes

1) If defined in the special privileges
2) With technical limitations
3) With a limited set of licenses

Licenses without copyleft effect give all the rights and privileges from the Open Source
Definition. These licenses also give the right to re-license a program with another li-
cense, if the work is modified. These licenses are meant to spread new technology and
distribute the software. Examples of these licenses are Apache, Berkeley Software Dis-
tribution (BSD), Massachusetts Institute of Technology (MIT), and X licenses.

Licenses with strong copyleft effect are viral and persistent. Derived work must be distri-
buted with the same license when the license is persistent, and combined work must be
licensed with the same license if it is viral. A viral license is the 'virus' that infects all
combined work. It might not be possible to combine source code from different software
if they have been licensed with different licenses that have viral effects. Examples of
these licenses are the Gnu Public License (GPL) and IBM Public License.

Licenses with restricted copyleft effect share similarities with licenses with strong copy-
left effect, but they allow changing of the license with some restrictions, for example
license change is allowed from the Lesser Gnu Public License (LGPL) to the GPL. Be-
cause the viral effect is limited, it is possible to create software libraries that can be used
as a part of other software. Examples of these licenses are the Lesser Gnu Public License
(LGPL) and Mozilla Public License (MPL).

Licenses with limited freedom of choice may limit the distribution method of the derived
work. The license may require that the original name of the software is not used with the

10

modified software, or that derived work is distributed as patch files. Examples of these
licenses are the Artistic License and Latex Project Public License.

Licenses with privileges include special privileges for a company or foundation. These
privileges might be the right to redistribute executable software with a proprietary li-
cense. Examples of these licenses are the Apple Public Source License (APSL) and Sun
Industry Standards Source License (SISSL) [Ins06].

Some licenses, such as those with strong copyright effect, limit the usage of the software
and it may not be a part of any other software which is not licensed with same license.
Sometimes this may become a problem.

For example, let us assume that software A has been licensed with the GPL and software
B has been licensed with the Apache license. Parts of software A cannot be included in
software B because the GPL prohibits changing the license. However, controversially,
any part of software B can be included in the software because the Apache license al-
lows re-licensing. If the modified parts of the new combined work, they cannot be re-
turned to the software A due different licenses.

Another licensing issue may become a problem if the software has been licensed with a
license that includes special privileges. For example, this may happen if software A has
been licensed with the SISSL and some developers are concerned that Sun Microsystems
may distribute (sell) software without the source code, and retire from the project.

In addition, too liberal licensing may become a problem. If the license gives too many
rights, the project may fork into multiple projects which are competitors to each other.
The developers will be divided between the forked projects, which leaves fewer devel-
opers for each project.

2.2 Community and development models

The users and developers of software form a community which always has an organiza-
tional structure with roles. The members of the community can be categorized according
to their roles as users, developers, core developers and associates [NYN02]. The users
use the software and they may give feedback. The developers use and develop the soft-
ware. The core developers are the initiators of the development or play a distinguished
part in the development. The associates are foundations or companies that support de-
velopment by donating resources such as hardware or knowledge, promoting the soft-
ware to potential users and developers, or by giving financial support. Furthermore, the
associates can assign their employees to participate in the development[San01].

The organizational structure of the community is used for monitoring people and to
share tasks. OSSPs have two basic structures for the community: hierarchical and net-
work. A community with a hierarchical structure (Figure 2.1) has a definite leader or
leaders who control the development of the software. A community with a network

11

structure (Figure 2.2) has distributed leadership and therefore it is more like a peer
group[San01].

Figure 2.1. Community with a hierarchical
structure.

Figure 2.2. Community with a net-
work structure.

In a hierarchical community, the leaders, who may be persons, communities or compa-
nies, make decisions and plan the future. The users and associates follow instructions
from the leaders. To earn a higher position in the hierarchy participants have to contri-
bute significantly to the project, because positions are earned with respect and trust
[San01].

In a community with a network structure, the positions and influence of the participants
are related to social contacts with the other members. The absence of leaders causes
more inconsistent and inaccurate planning and management than in a community with a
hierarchical model [San01].

In addition to community models, software always requires a development model. Eric
Raymond in The Cathedral and the Bazaar [Ray99] presents two development models, a
cathedral and a bazaar. These models have been foundational to research of Open Source
development models. They are theoretical but their characteristics can be recognized in
the communities. In the cathedral model, developers will implement software from the
designs of the leaders. Therefore, the cathedral model is considered to be similar to the
approach of software engineering. In the bazaar model, the development and design are
open and everyone is allowed to participate by creating modifications. In the bazaar
model, there are no exact plans or design for the software.

However, Raymond [Ray99] did not present the roles that were associated with the mod-
els. Rothfuss has studied the development of OSS and defined several roles in the devel-
opment process [Rot02]. He describes two actor groups, the users and contributors. He
also argues that there are two types of contributors, insiders and learners. The learners do
not have enough knowledge or skills to make significant contributions but they can help

Devel-
oper

Devel-
oper

Devel-
oper

Devel-
oper

Devel-
oper

Leader

De-

velo-
per

De-

velo-
per

De-

velo-
per

De-

velo-
per

De-

velo-
per

De-

velo-
per

De-

velo-
per

De-

velo-
per

12

in minor things. The contributors are actual developers in the project. In addition to
actors, he defined several roles for each actor type and an overview of the process. How-
ever, we would add a third actor type: an associate, as suggested by Nakakoji et al.
[NYN02].

Capiluppi, Lago and Morisio [CLM02] have presented general characteristics of the
Open Source process. The management processes of OSSPs have been studied more
carefully. Erenkranz [Ere03] presented a process for release management in the Linux
kernel and Apache development. Asklund and Bendix have presented a model for the
configuration process in OSSPs [AsB02].

Since OSSPs use a distributed approach to development despite the organizational struc-
ture, they need channels to communicate and coordinate work. The communication
channels can be email, mailing lists, newsgroups, bulletin boards, instant messengers or
chat forums. However, these channels may be hard to manage if there are very many
defects. OSSPs use DMSs to manage defects and enhancements requests. They also use
VMS to manage the source code of the project. DMS and its basic concepts will be pre-
sented in more detail in Section 4. VMS and its basic concepts will be presented in more
detail in Section 5

2.3 Services

The usage of OSS is usually an interaction between these three actor groups: users, de-
velopers and associate companies. While proprietary software companies usually pro-
vide services to support their software products, the developers of OSS do not provide
similar services. Regardless of the type of software, users require different kinds of ser-
vices, such as consulting and training, and there are vendors who provide the missing
services [LeT00, LeT02]. The availability of the services depends on the software devel-
opers and associates.

The most important services are maintenance, customization, and consulting and train-
ing. Usually, software is built to meet quite general user needs. However, some users
may require features that are not so general. The developers may not be willing to im-
plement these specialities and then the user needs a service that produces a custom ver-
sion of the software, which is the result of customization. The community rarely pro-
vides customization service.

Consulting services, such as support services, and training services are usually not pro-
vided by the community. The developers may provide some support in mailing lists and
bulletin boards. However, the level of these services can vary from nothing to the very
professional. If there are a large number of active users and developers, this service is
more likely to be available, but there is no guarantee of that. Therefore, associates who
have commercial purposes provide the consulting and training services

13

Usually, the community maintains the software but it may not guarantee the continuity
of maintenance. Since some users require and are ready to purchase maintenance and
support services, this creates an opportunity for companies to offer such services.

2.4 Evaluation framework for Open Source Software

The development processes have been studied through the roles, development and li-
censing models, economics and release management [Rot02, Ros04, LeT00, LeT02,
MFH02, NYN02, Gia05, HNH03, and Lon05]. Since the characteristics of OSSPs have
been presented in earlier studies, we created a framework using those characteristics.
The evaluation framework for Open Source Software, presented in Paper I, can be used
to create a general view of a project.

The framework gathers information from the viewpoint of the information product,
project and services. The information product viewpoint observes the type of software,
the scale of the user group and the licensing model. The project viewpoint gathers in-
formation about the organization of the community and management systems such as
DMS and VMS. The service viewpoint gathers information about what services are
provided, and by whom they are provided. An outline of the framework is presented in
Table 2.2.

Table 2.2. Outline of the evaluation framework for Open Source Software.
Viewpoint/attribute Type
Information Product
Software name String
Software type String
Available since Month and year
Number of available languages Number
Number of users Estimate number
License and License group Name and group
Copyright holder Name of company, foundation or person
Project
Project leader Name of company, foundation or person
Associate Name of company, foundation or person
Intended audience String
Development model Cathedral, bazaar or other
Public DMS No/Yes and type
Public VMS No/Yes and type
Services
Software customization No/Yes and provider
Consulting and training services No/Yes and provider
Maintenance No/Yes and provider

As we can see from the table, each viewpoint is divided into several attributes. The
attributes of the information product viewpoint collect general information about the

14

software and immaterial rights. They can be used when searching for candidates for the
software. The software type, availability and license are general attributes that cannot be
ignored. The number of users describes how widely the software is used. The purpose of
the project viewpoint is to provide information about the project itself and its environ-
ment. It can be used to evaluate the general structure of the project. The project leader
and development model provide a brief overview of the style of management in the
project. The availability of DMS and VMS provide the users with a channel to partici-
pate in and they provide more information for researchers and acquirers about manage-
ment and processes. In addition, if the project has many plausible associates, it may be
more trustworthy. The availability of services is very important for some users and ac-
quirers.

As our first (i) research objective was to provide a framework for the evaluation of OSS
from a general viewpoint, this framework fulfils that objective. However, the problem
with the framework is that it is quite superficial from many perspectives and so it is
suitable only for searching for candidates for further analysis. It leaves several open
questions, such as maintenance. If maintenance is not provided by the commercial ven-
dor, can it be trusted? If maintenance is provided by the community or developers, can it
be trusted?

Some answers to those questions can be provided by studying DMSs and VMSs. These
systems provide information that can be analyzed and used to answer those questions.
The simplest approach to analyze and evaluate the maintenance process from the Open
Source process is to use publicly available data from their DMS and VMS if they are
used in the project.

15

3 SOFTWARE MAINTENANCE

In a changing environment, the software is also supposed to change. Software mainten-
ance is one of the processes in the software life cycle. Its purpose is to keep software
operational, to prevent and correct faults in the software, and enhance the functionality
of the software [Ben00, IEE04, ISO02a, ISO02b]. According to the Software Body of
Knowledge (SWEBOK) [IEE04], software maintenance is defined in the IEEE Standard
for Software Maintenance as follows [IEE04, p. 6-1]:

��������	
�������	 software product after delivery to correct faults, to im-
prove performance or other attributes, or to adapt the product to a mod-
ified envi�����
��

Over the years, several maintenance models have been proposed, each one emphasizing
a particular aspect of software maintenance. However, these models share some common
activities. Before the arrival of actual maintenance process models, several models de-
fined software change activities and tasks. The majority of the models had the following
three activities: understanding software, implementing change within an existing system,
and retesting the modified system.

To define a software maintenance methodology or processes, it is useful to take into
account international standards. IEEE 1219 [IEE98], ISO/IEC 14764 [ISO99] and ITIL
[OGC02a] are three internationally regonized standards that define maintenance process
models [KaM06]. These standards specify the activities needed and their inputs and
outputs [IEE04, p. 6-6] but they do not provide step-by-step instructions for maintainers,
and this lack sometimes make maintainers� work more difficult. Although it is difficult
to provide guidelines with universal validity, the standards expose the necessity to ex-
ecute some activities and tasks.

A process model at a higher abstraction level is required to understand the relationship
between the users and software change. The processes are always initiated by an input.
In the maintenance process, an input is needed for a change such as a defect, bug or
problem report, or enhancement request. These reports and requests are used to describe
software functionality that is not fulfilling requirements, or some needed improvements.
The defect is defined in the ISO 9000 standard as [ISO00]:

�The non-fulfilment of intended usage requirements. The departure or ab-
sence of one or more quality characteristics from intended usage require-
ments. It is also a lack of quality in a product in relation to its use (minor if
this does not hamper usage, major if it prevents one from using it, and crit-
ical if it prevents a broader entity from functioning) resulting from deviat-
ing from the specification or a faulty specifica
�����

We use, in this thesis, the term defect because it is used in ISO 9000 and it may have the
widest meaning. Because of variations in the term, DMSs are also called bug manage-

16

ment and bug tracking and problem management systems in some contexts. These terms
have similar meanings but they emphasize different aspects or uses.

The software maintenance process starts with the input defect report. Thereafter, the
defect report may generate a change request, which is an input for the software change
activities. These activities produce a new modified version of the software for the users.
Figure 3.1 presents the context of the maintenance process.

Figure 3.1. Context of the software maintenance process.

While the context diagram gives an overview of the software maintenance process, it
does not define the tasks or even the activities to be executed. As we stated earlier, the
activities and tasks of the maintenance process are described in several standards such as
ISO/IEC 12207, IT Infrastructure Library (ITIL) and ISO/IEC 14764. ISO/IEC 12207
describes all the processes that exist in the software life cycle and therefore it is quite
general. The ISO/IEC 14764 standard elaborates a description of the maintenance
process of the ISO/IEC 12207 standard [IEE04].

The IEEE 1219 and ITIL description are separate from the ISO/IEC standards, although
the activities of the IEEE and ISO/IEC standards are similar [IEE04]. ITIL describes the
maintenance process a bit differently, because it describes it from the viewpoint of the
infrastructure and service management [OGC02a, OGC02b]. Takang and Grubb
[TaG03] have developed earlier maintenance process models that were the basis of the
development of standard models.

These process models are quite general but to provide a basis for understanding the OSS
maintenence process we present, in Section 3.1, the software maintenance process that is

Generate
change
request

Software
change
activities

Operate
software

Defect report

Change
request

Modified
software

17

described in the ISO/IEC 12207 and ISO/IEC 14764 standards. Then in Section 3.2, we
present briefly the Open Source Software maintenance process framework. The ISO/IEC
and OSS maintenance processes have been compared in Paper II. Furthermore, Paper II
presents the framework and evaluates case studies.

3.1 ISO/IEC Software Maintenance Process

An overview of the ISO/IEC maintenance process is presented in Figure 3.2. As the
figure shows, the ISO/IEC maintenance process has been divided into six activities. The
activity Process Implementation is considered to be only a pre-delivery activity in the
process. Pre-delivery activities are performed in the planning or development state of the
software life cycle. The purpose of pre-delivery activities is to create an environment and
plans for the maintenance process. Other activities are considered post-delivery activities
and are performed after product delivery. Their purpose is to plan and implement mod-
ifications in a controlled way. Furthermore, they support software migration and retire-
ment. [IEE04, ISO02a, ISO02b]

Problem and
Modification

analysis

Maintenance
Review/

Acceptance

Modification
Implementation

Process
Implementation

Retirement Migration

Figure 3.2. ISO/IEC 14764 maintenance process. [IEE04, p. 6-7]

The activity process implementation includes the following tasks: developing mainten-
ance plans and procedures, establishing procedures for modification requests, and im-
plementing the configuration management process. The purpose of process implementa-
tion is to form an environment for the effective management of the maintenance process.

The problem and modification analysis is a post-delivery activity. Its purpose is to pro-
vide procedures for the initial analysis of the problem and modification, problem verifi-
cation, and documenting that the problem or modification request is stored in an appro-

18

priate way. Another purpose is to develop initial options for implementation and obtain
approval for the modification.

After approval, the process continues with the activity modification implementation. Its
purpose is to analyze the problem or modification with more details and develop it. The
modification implementation activity includes the testing of the modification.

The maintenance review and acceptance activities are a part of the quality control. Their
purpose is to ensure that the modification fulfils the requirements of quality manage-
ment.

The purpose of migration is to ensure a smooth transition to the corrected or enhanced
software. This activity includes the development of plans, user notification, migration
and reviews. The actions in migration should be planned in a way that minimizes the
disadvantages of migration. The activity should ensure that the data and system are
available after migration.

Retirement ensures that the information will be available after the software is replaced
with another one. Therefore, the retirement activity describes the replacement of the
system. It should include procedures that ensure the availability of the data after the
replacement.

3.2 Open Source Software maintenance process

When we analyzed the OSS maintenance process in Paper II, we found it quite similar to
the ISO/IEC maintenance process model. The most visible difference was that the Open
Source Maintenance process does not have well-described migration and retirement
activities, and planning tasks are also not so disciplined. The OSS developers and users
are distributed geographically and therefore management of the defect reports and source
code is an important factor for the success of the project. Therefore, OSSPs use, at least,
two kinds of management systems: a defect management system (DMS) and a version
management system (VMS). The purpose of a DMS is to establish procedures for man-
aging defect reports. DMSs give procedures for reporting and assigning the defect re-
ports and modification requests. Furthermore, DMSs provide flexible possibilities for
tracking and controlling defects because they store all the changes made in defect re-
ports. VMSs establish an environment for source code management. Figure 3.3 presents
the activities of the OSS maintenance process.

19

Figure 3.3. Activities of the OSS maintenance process.

The activities involve the following:

1. Users may find a defect and report it to the DMS. The users may also
check that similar defects that have not yet been reported.

2. Developers retrieve defect information from the DMS, ensure the existence
of the defect, analyse it and complete missing attributes of the defect.

3. In the implementation phase, the developer checks out (=retrieves) the
source code from the VMS and modifies the source code to fix a defect or
implement an enhancement. Furthermore, the developer submits the mod-
ification to the VMS.

4 . The modification is reviewed before it is accepted and merged to the main
version of the source code in the VMS.

5. The status and resolution of the defect is updated into the DMS.

6. Later, a new version of the software is available from the VMS or from the
project web site. Then the users can retrieve the modified version.

After the maintenance activities, the DMS and VMS should have similar information
about the resolution and status of the defect. The defects are resolved during the main-

DMS VMS

DeveloperUser

3.
 Retrieves
Modifies

4.
Updates

 2.
 Retrieves
 Analysis

5.
Updates 1.

 Reports
 6.

Sees
Retrieves

20

tenance process but there are several possible resolutions because not all defects lead to
modifications of the source code.

3.3 Differences between maintenance processes

Maintenance processes have been described in several standards but none of them was
directly applicable to the OSS maintenance process. The framework presented in Paper
II showed that the DMS and VMS play significant roles in the OSS maintenance
process. Comparison of the standards and the Open Source Software maintenance
process framework showed that the processes are quite similar but there are also signifi-
cant differences. The major differences were a lack of the retirement activity, and ob-
scure migration activity. Another difference between the ISO/IEC 14764 maintenance
process and the OSS maintenance process is in modification review and acceptance
[AsB02].

Modifications are accepted before implementation in the ISO/IEE maintenance process
but after implementation in the OSS maintenance process [AsB02]. Although this may
seem irrelevant, it has a very significant effect on the maintenance process. In ISO/IEC
14764 maintenance, the process resources can be allocated effectively but the OSS de-
velopers assign their work independently. In addition, in the ISO/IEC 14764 mainten-
ance process changes are accepted before implementation, but in the OSS maintenance
process but they are not specifically assigned to anyone. The developers can retrieve any
of the defects and start to implement the required modifications. After implementations,
the modification is reviewed and can still be rejected. Rejection of the modifications
means that the work that has already been done was wasted.

21

4 DEFECT MANAGEMENT SYSTEMS

In software development, defect reports and enhancement requests can easily become
unmanageable. When the flow of reported defects, requested enhancements and support
requests increases, it is impossible to manage all of them with email and post-it stickers.
Therefore, many companies and OSSPs have built systems for managing these reports
and requests.

Management systems store requests and reports in databases where they can be re-
trieved, assigned, processed and closed. The basic function of these management sys-
tems is to create a ticket which describes the related request or report, work in progress
and all related communications. These management systems are also referred to as tick-
et-tracking systems [OCG02a]. They are widely used in helpdesks and their customer
support services.

Ticket-tracking systems are provided by for example IBM, CA, and Remedy. However,
due to their price and the ideology behind Open Source, OSSPs have created their own
ticket-tracking systems. However, these OSS systems are not called ticket-tracking sys-
tems although their functionality and purpose are the same. OSSPs use many names for
their systems, such as bug-tracking systems, defect management systems, and issue
management systems. All these terms have a similar meaning, although they may em-
phasize different aspects. For example, bug-tracking systems are intended for bugs only,
while an issue-tracking system may also handle other issues such as support requests. In
this thesis, we use the term defect management system (DMS).

Maintenance standards (e.g. ISO/IEC 14764) classifies maintenance into four categories:
preventive, corrective, perfective and adaptive. Furthermore, it refers to preventive and
corrective maintenance as corrections, and perfective and adaptive maintenance as en-
hancements [IEE04, p. 6-3]. Nevertheless, other classifications are also used [KaM06].
In OSSPs, classification is simpler and has two categories: defects and enhancement
requests. Defects include bugs, errors, faults and failures, even if they are separated in
other contexts.

Next, Section 4.1 overviews the relationship between a DMS and the maintenance
process; Section 4.2 describes the use of a DMS as a data source; and Section 4.3
presents a few example DMSs with a brief comparison.

4.1 Relationship between a DMS and the maintenance
process

As we saw in Section 3, DMSs provide procedures for defect reporting and management.
The reported defects are stored as defect reports in the database of the DMS. The users
are able to browse and search defect reports; they are also able to retrieve summaries.

22

The developers can modify the stored information about the defect reports, assign de-
fects and close defects. The common features of DMSs are presented in Table 4.1.

Table 4.1. Features of a DMS.
Feature Explanation
Defect reporting Users and developers can submit defect reports to a DMS.
Storing data of
defects

All essential attributes presented in Section 4.2 are stored in
the system.

Defect status man-
agement

Developers can change the status of the defect, so users and
developers know where the defect is going.

Assignment of
defects

It must be possible to assign a defect to a single developer or
group of developers, so that overlapping work can be
avoided.

Defect resolution
management

It must be possible to assign a descriptive resolution for
defects, so users and developers know how the defect was
resolved.

In many cases, defects can be classified into three groups according to the type of resolu-
tion. Therefore, we grouped defects according to results into three groups: not resolved,
fixed and non-fix-inducing. The first group contains all defects that do not have a resolu-
tion. The second and third groups contain defects that are already resolved and have
caused changes. More specifically, the second group contains defects whose resolution is
fixed. The third group contains defects whose status is also resolved but their resolution
other than fixed. These three groups are presented in Table 4.2.

Table 4.2. Outcomes of defects.
Group Resolution Explanation
Not resolved (empty) Defect does not yet have a resolution.

Fix-inducing Fixed Defect is fixed and changes to source code
are imported

Non-fix-
inducing

Works for me Defect does not occur with other users

Won�t fix Defect is not a fault or a problem or it is a
feature

Invalid Defect report is invalid
Duplicate Defect report duplicates another
Other Other non-described resolution

The classification of defects by outcome is quite similar in OSSPs. Figure 4.1 presents a
classification of the defects according to the resolution and related activities of the main-
tenance process.

23

Figure 4.1. Classification of Defects according to resolution.

As the figure shows, a well-formed and accurate defect report could also be considered
to be a modification request. When a defect induces changes to the software or the defect
is resolved with reconfiguration of the users� system, the defect becomes resolved and
fixed. When a defect is considered to be a copy, or in other ways describes an earlier
reported defect, the defect becomes resolved and duplicate. When a defect report is bad-
ly formed, information is missing or it does not describe an actual defect, it is resolved
and invalid. A software modification changes the source code of the software, which
changes software behaviour. Furthermore, other resolutions, such as later and works for
me, are possible but usually they do not lead to software modifications.

Defect
report

Dupli-
cate
defect

Software
modifi-
cation

Invalid
defect

Fixed defect

Defect or enhancement
request

Change in-
ducing

Non-change
inducing

Other

Notice

Report

Analyze

Implement/
Resolve

Review

ActivityDefect

Closed
Close

24

Not all of these defect reports report an actual bug. Therefore, it is useful to have a clas-
sification for different types of defects. Actually, some systems such as Tracker [Tra06]
and Issue Tracker [OOo06e] use the term issue instead of defect. In their classification, a
defect is one subtype of issues and there are other subtypes such as enhancement and
support request. However, most DMSs do not have a specified attribute for defect types.
For example, Bugzilla [Moz05] uses the attribute severity, which can have the following
values: enhancement, and bug with several subtypes. Issue Tracker has an attribute for
types that can have the following values: enhancement, bug, support and patch. Using
these systems as a source, we created a generalized classification as shown in Table 4.3.
However, most of the projects that were studied used only defects and enhancements in
the classification.

Table 4.3. Classification of defects.
Type Subtypes Explanation
Enhancement Request for new feature
Defect (bug) Blocker Blocks next release

Critical Blocks use
Major Prevents use of some essential functionality
Normal Software is still functional with all major functio-

nalities
Minor Does not prevent use
Trivial Cosmetic or other user-interface problem

Support request Similar to support service such as help desk
Patch Users can submit improvements via DMS

4.2 A DMS as a data source

Since DMSs store a large amount of data about the maintenance process, they could be
used for the analysis of the defects and process. The DMSs that were used in the case
studies used a similar set of attributes to describe a defect and its status. These attributes
are presented in Table 4.4.

Table 4.4. Attributes of the defect report.
Attribute Usage
Id Identification number
Environment Identifies software and its environment where defect occurs

such as product, component, version and platform
Status Current status of the defect, such as resolved or new
Resolution How was the defect resolved - did it induce fix or not?
Assigned to Who is resolving the defect?
Severity How significant is the defect?
Reporter Who reported the defect?
Summary Description of the defect
Type/Classification Bug, enhancement, etc.
Activity log What changes have been made to the defect reports?

25

In the defect analysis, we focus on statuses, resolutions and number of defects. When
analysing the process itself we use an activity log to model workflows. But let us start
with the method of the process analysis. An event-based process discovery framework
was presented in 1995 by Cook and Wolf [CoW95]. The framework is based on a view
where processes are considered to be a sequence of actions separated by events. The
activities are performed by agents. The agents can be any kind of actors such as systems
or persons. In the event-based process model, events are used to characterize behaviour.
The framework was used to study bug repair in OSSPs models in 2003 by Ripoche and
Gasser [RiG03a, RiG03b]. When an OSSP uses a DMS for defect management, the
DMS produces an activity log that describes the changes that are made to the attributes
of the defect reports. An example of an activity log is shown in Figure 4.3.

Figure 4.3. Activity log of a defect in Bugzilla. [Moz06a]

The activity log of Bugzilla stores the author (Who), time (When), attribute name
(What), and old (Removed) and new value (Added) of each activity as an event. The
activity log allows users and developers to trace the activities that have been done to the
defect reports. In addition, the activity log makes it possible to analyse and model
processes when all necessary events are logged. As we can see from the figure, one
event can have one or more attribute changes. However, in this case, an event is an entry
of the activity log that includes change of attribute status. So the event ends the previous
activity of the process and starts the next activity.

Activities and statuses are presented in Table 4.5. The statuses shown in the table are
omitted from Bugzilla but other DMSs use a similar set of statuses; however, they might
also have some additional statuses such as need info and started.

26

Table 4.5. Activities and statuses.
Activity Status
Report Unconfirmed
Ensure existence New
Analyze Assign
Implement/Modify Resolved
Review Verified
Close report Closed

As the table shows, each activity should change the status and therefore produce an
event. Since events are extractable from the activity log, it is possible to model the
workflow by chaining the events of each defect report. However, DMSs make it possible
to transit from any of the statuses to resolved or closed, and then it is not always possible
to establish a real workflow for each defect. For example, a defect report that is invalid
or duplicate can transit directly to the status resolved from the statuses unconfirmed and
new. However, it is not always possible that a defect follows the described workflow.
Therefore, we model defect life cycles by using an event-based process discovery
framework.

4.3 Example systems

There are many systems for OSS defect management, such as:

- Ticketing systems:
o OTRS - Open Ticket Request System [OTR06]
o Request Tracker [Bes06]
o IssueTrackerProduct [ISS06]
o Argus [ARG06]

- Defect management systems:
o Bugzilla [Moz06a]
o Tracker [Tra06]
o IssueZilla/ IssueTracker [OOo06e]
o Scarab [Tig06a]
o Mantis [Man06]
o Eventum [Eve06]
o Gnats [FSF06b]
o KDEBugTracking system [KDE06]
o PhpBugTracker [PHP06]

Next, we briefly present five DMSs (Bugzilla [Moz05], Issue Tracker [OOe06], KDE
Bug tracking system [KDE06], Eventum [Eve06] and Tracker [PHP06] that were used in
the case studies.

Bugzilla is a well-known and widely used DMS in OSSPs. It was released in 1998 at the
same time as Mozilla, which is one of the OSS pioneers. Its primary purpose was to
manage bug reports in the Mozilla project. However, it was also adopted rapidly by other

27

projects. Bugzilla is a server based software and used through a web user interface. It
stores all the attributes that were presented in Table 4.4 and many other attributes. Figure
4.4 shows a general view of a defect report in Bugzilla.

Figure 4.4. Defect report in Bugzilla. [Moz05]

Bugzilla has most of the attributes from Table 4.4. It does not have an attribute for the
classification of defect types such as support request or feature request. The attribute
severity is used for separating enhancements from requests. When enhancement requests
are represented as defects, users may be confused.

Although Bugzilla has become a commonly used DMS, it has disadvantages. As we saw
earlier, Bugzilla was created to manage only bugs, which is its major disadvantage. Oth-
er requests, such as support requests, were not manageable with Bugzilla. Therefore,
several other DMSs have been developed and some of the other DMSs, such as Issue

28

Tracker and KDE Bug tracking system, are derived from Bugzilla. Issue Tracker was
formerly known as IssueZilla and it is used in the OpenOffice.org projects. The KDE
Bug tracking system is used in KDE projects. Since they are derivatives of Bugzilla, they
store a quite similar set of attributes. Figure 4.5 and 4.6 show defect reports in the Issue
Tracker and KDE Bug tracking system.

Figure 4.5. Defect report in Issue Tracker. [OOo06e]

Figure 4.6. Defect report in the KDE Bug tracking system. [KDE06]

29

The figures show that both systems have most of the attributes described in Table 4.4.
The layout and user-interface of Issue Tracker are similar to those of Bugzilla. However,
the layout and user-interface of the KDE Bug tracking system looks more simplified
than the others, because it seems to store less information. However, actually almost the
same information is stored but only a part is shown. The most important improvement in
Issue Tracker is the ability to manage support requests and other kinds of activities. The
severity attribute in Bugzilla has been replaced with the attribute issue type, which de-
scribes the type of issue, for example a defect, enhancement request or support request.
In the KDE Bug tracking system, the improvements are mainly in the user interface.

However, even though many DMSs are derived from Bugzilla, not all of them have
based their systems on Bugzilla. For example, MySQL have developed their own DMS,
Eventum [Eve06], which is used to manage defects in their own products. Another ex-
ample is Tracker [Tra06], which is a part of the VA Software's SourceForge product.
The SourceForge product is an environment for collaboration and distributed software
development [VAS06]. Example defect reports in these systems are shown in Figures 4.7
and 4.8.

Figure 4.7. Defect report in Eventum. [Eve06]

30

Figure 4.8. Defect report in Tracker. [PHP06]

We can see from the figures that Eventum and Tracker have all the major attributes that
were presented earlier in Table 4.4. However, Eventum does not have types for the de-
fects, although it is possible to use severity to express enhancement requests. A major
improvement in Eventum is the integration to VMS, more specifically to CVS. Tracker,
in contrast, does have categories for defects, enhancements, support requests and patches
as default.

Although these DMSs are quite similar, they store slightly different information about
defects. The features and attributes of DMS are shown in Tables 4.6 and 4.7. The fea-
tures are separated to correspond to Table 4.1. The attributes were divided into groups
that correspond to those in Table 4.4. However, this list is not complete, because DMSs
store additional information that is not presented in the default form of the defect reports.

31

Table 4.6. Feature comparison of DMSs.
Bugzilla Issue

Tracker
KDE Bug
Tracker

Eventum Tracker

Defect reporting
Enhancements X X X X X
Support
requests X X

Defect status
management X X X X X1

Assignment of defects
For whom X X X X X
Status X X
Defect
resolution
management

X X X X X

1) Only the statuses open, pending, closed and deleted are available.

Table 4.7. Attribute comparison of DMSs.
Bugzilla Issue

Tracker
KDE Bug
Tracker

Eventum Tracker

Id X X X X X
Environment X X X X X
Status X X X X X
Resolution X X X X
Assigned to X X X X X
Severity X X X
Reporter X X X X X
Summary X X X X X
Type/Classification X X
Change set X
Activity log X X X X

As we can see from the tables, the features and attributes are quite similar in these
DMSs. Two major differences are the lack of an activity log in Eventum, and support for
different types of defect reports in Tracker and Issue Tracker. The lack of an activity log
makes it impossible to model and analyse the workflows of the maintenance processes in
the OSSPs that use Eventum.

32

5 VERSION MANAGEMENT SYSTEMS

The software developers have worked with the source code for long time. In the software
development, the source code is modified daily but sometimes changes are not good, so
developers must be able to restore older versions of the source code. Moreover, nowa-
days when many developers around the globe work concurrently, modifications have to
be merged in a controllable way. A version management system (VMS) is used to fulfil
these requirements. In some contexts, a VMS is also called a version control system or
source code management system.

VMSs are nowadays considered to be a part of software configuration management
(SCM) and configuration management (CM). Configuration management is defined as
[IEE04, p. 7-1]:

"A discipline applying technical and administrative direction and surveil-
lance to: identify and document the functional and physical characteristics
of a configuration item, control changes to those characteristics, record
and report change processing and implementation status, and verify com-
pliance with speci�������������
���

However, the difference between CM and SCM can be unclear, but they are often used
concurrently. When software is developed parallel to hardware items, SCM takes place
with software activities and CM takes place with hardware activities [IEE04, p. 7-2].

Asklund [Ask02] considers CM from two different perspectives, those of management
and of the developer. From the management perspective, the purpose of CM is to direct
and control the maintenance by controlling and identifying components and changes in
them. From the developer perspective, the purpose of CM is to maintain current compo-
nents and store their history. There are several aspects of CM to be considered, such as
[Ask02]:

- Version control (version management)
- Configurations
- Concurrency control
- Build management
- Release management
- Workspace management
- Change management

Asklund argues that version management is a key feature in CM; it is the core functio-
nality in several CM tools. From our viewpoint, it is necessary to look more closely at
aspects of version management and change management, and leave other aspects out of
further analysis. [Ask02]

As shown in Section 3, the most common input for the change process should be a defect
report or a modification request. Because the change processes uses VMS, Section 5.1
describes relationship between VMS and DMS. Then Section 5.2 presents the usage of

33

VMS as a data source in the evaluation of the maintenance process. Section 5.3 com-
pares some popular VMSs.

5.1 Relationship between VMS and DMS

The purpose of VMS is to create an environment for controlling software configuration
in the concurrent development, testing and maintenance processes. VMSs store each
change, so every revision is retrievable.

Table 5.1. Features of VMS.
Function Usage
Source code checkout Source code check out allows the developer to lock files

which he is modifying, so other developers cannot modify
them.

Source code revision-
ing

Revisioning allows developers to create source code for new
revision.

Source code commit
(submission)

Submission merges changes to the soft�	����source code.

Logging Logging allows the tracing of changes made to files.
History History lists modules or files which have been changed

lately.
Support for projects One system can manage multiple projects without mixing up

their configuration items.
Multi-user Support for multiple simultaneous users.
Branching Support for branches of the source code.
Atomic commits Changes to multiple files submitted simultaneously by one

author are made as a transaction.
Change sets A difference between any two versions of software is avail-

able as one set of changes.

The data are stored in a VMS as configuration items, which are usually files. The most
common configuration item is a source code file in OSSPs. When configuration items
are modified, a new revision of the configuration item is created. Configuration items
can have multiple modifications between versions, which are published revisions. How-
ever, one version of the configuration item can be incompatible with some target sys-
tems, so several parallel revisions and versions can be kept in branches. The branches are
parallel development lines of the configuration items and software. The source code of
the configuration item is duplicated, so different branches can be developed or main-
tained separately. [APC98]

The software has usually at least two parallel source code branches in OSSPs. The first
branch is a stable version, which is maintained and only small enhancements are imple-
mented. The second branch is the development version, which is under evolution and all
new enhancements are implemented there.

34

However, if all revisions and versions were stored as complete configuration items, the
amount of storage space required would be huge. Therefore, the changes in the configu-
ration items are stored as deltas. A delta is the difference between two configuration
items. Usually, the size of the delta is much smaller than the size of a new version of a
changed configuration item, because the new version is derived from its predecessor.
[CMB06]

In the Open Source Software maintenance process framework, it is assumed that a defect
report causes a change of the source code. The changes can be classified by this charac-
teristic. This classification categorizes changes of the source code into two groups: de-
fect-initiated and non-defect-initiated changes. A defect-initiated change of the source
code has followed the described maintenance process, but a non-defect-initiated change
of the source code has not followed the maintenance process described in the framework
or is documented incorrectly. Figure 5.1 shows how defects are coupled to the changes
of source code.

Figure 5.1. Link between changes and defect reports. [SZZ05]

The box represents the software modification and the document is a defect report. When
the change includes the number of a defect and a sign that defect was fixed, the change
can be assumed to be initiated by the defect report.

However, the approach has some problems. First, the description of the changes can be
quite ambiguous in OSSPs. In addition, the quality of descriptions can be quite low be-
cause it depends on multiple factors such as the developer and project. In spite of the
quality variations, most of the software changes can be classified as defect-initiated and
non-defect-initiated changes for further analysis. The details of the classification method
are presented in more detail in Section 5.2 and Paper V. Sliwerski et al. [SZZ05] have
described a similar approach.

5.2 A VMS as a data source

A CVS includes all the essential attributes and functions presented in Table 5.1. From
our viewpoint, the logging and history functions are the most interesting ones. The log-
ging and history should store at least the attributes shown in Table 5.2 [Fog90, CVS05].

35

In addition to these attributes, the initial version of each configuration item has to be
stored. Later versions can be stored as deltas.

Table 5.2. Attributes of the changes of the source code in a VMS.
Attribute Explanation
Date and time When was the modification submitted?
Submitter Who submitted the modification?
Filename(s) What or which files were modified?
Revision(s) Are there new revisions of the modified files?
Branches What is the revision of the new branch? (if branched)
Number of added, deleted
or modified lines

How many source code lines were added, modified or
deleted?

Comment Description of the change
Modified lines What lines were added, modified or deleted, and how?

With the attributes in the table, it is possible to model evolutions of the source code or
software and analyse several aspects of the changes and project such as authors, number
of changes and number of changed files per submission.

Examples of CVS log entries are presented in Example 5.1. The logs are presented here
to provide a basis for the description of the approach given in Section 5.1. The first box
in the example presents general information about the configuration item such as the file
name (RCS file) and number of revisions (total revisions). The other boxes are
log entries. They present the revision, date, author, status and amount of added and de-
leted lines (lines). The italic text is a comment of the change, which should express
associated defect reports.

Example 5.1. Output of the CVS log.
RCS file: /trunc/src/main.c
Working file: src/main.c
head: 1.10
branch:
symbolic names:
 RELEASE_1_0: 1.9
 RELEASE_0_9: 1.8
keyword substitution: kv
total revisions: 15; selected revisions: 15
description: ----------------------------
revision 1.10
date: 2006/04/18 14:18:14; author: MrX%foo.bar; status: Exp;
lines: +10 -10
Changed license version (1)

revision 1.9
date: 2006/01/15 06:14:13; author: MrX%foo.bar; status: Exp;
lines: +2 -5
Fixed Bug #24321. (2) Parameters should be read correctly.

revision 1.8
date: 2005/10/09 01:54:06; author: MrX%foo.bar; status: Exp;
lines: +8 -0
Added function foo(). (3)

36

If we analyse the comments of these changes more carefully, we can see that only one of
them is related to the defects reports. The comment of the change (2) expresses clearly
that it was related to the defect report whose id is 24321, and it actually fixed it. Other
changes such as (1) did not relate to defect reports because (1) changes only the version
of the license. However, change (3) may have a relation to the defect reports because it
added a new function foo(), which probably brings new functionality to the software.
Although the comment of this change does not state that, it would be defect related. The
submitter of the change might have forgotten to express this relation..

Log entities do not include the changed lines of the source code. However, every change
can be examined in details in the CVS, which uses diff(a file comparison utility that
lists the differences between two files) for recognizing changes between files. It was
originally developed in the 1970s. Nowadays, there are multiple implementations and
their outputs are compatible. Example 5.2 presents details of the changes between ver-
sions 1.9 and 1.8 of the file. In the example, the first box presents the name, revisions
and dates of the changed file. The second box presents the source code before any
changes, and the third box presents the source code after the changes. Lines marked with
"-" were deleted between revisions, and lines marked with "+" were added.

Example 5.2. Output of the CVS Diff.
RCS file: /trunc/src/main.c
retrieving revision 1.15
retrieving revision 1.16
diff -c -r1.15 -r1.16
*** /trunc/src/main.c 9 Oct 05 01:54:06 1.15
--- /trunc/src/main.c 15 Jan 06 06:14:13 1.16

*** 49,50 ****
 static void main(ARGS[]) {
- param1 = getParam("X;");

... --- 49,50 ----
 static void main(ARGS[]) {
+ param1 = getParam("X");
...

As we can see from the example, only one character was removed from the source code.
However, since the CVS and other systems handle configuration items in rows, a whole
line has to be removed and added again. Example 5.3 is the log in SVN [Tig06b].

Example 5.3. Output of the SVN log.
r8 | MrX | 2005-07-14 08:15:29 -0500 | 1 line
Changed paths:
M /trunk/src/main.c
Fixed Bug #24321. Parameters should be read correctly.
--
r7 | MrX | 2005-07-03 08:15:29 -0500 | 1 line
Changed paths:
M /trunk/src/main.c
M /trunk/src/main.h
A /trunk/src/doc/README
Updated License version and added README file.

37

In SVN, a change can influence multiple files, as the example shows. The attributes are a
revision (r8), author (MrX), date, changed file (M /trunk/src/main.c) and com-
ments. The attribute revision expresses the identification number of the revision, which
is sequential. The attributes author and date express who made the changes and when.
The attribute changes files expresses which files were modified (M), added (A) or deleted
(D). The attribute comment indicates the purpose of the changes and possible connection
to the defect report.

Example 5.3 showed that the log entries do not include changed lines of the source code.
However, SVN is able to provide diff-stylish differences between two revisions, as
shown in Example 5.4.

Example 5.4. Output of the SVN diff.
Index: main.c

--- main.c (revision 1.8)
+++ main.c (revision 1.9)
@@ -1,50 +1,50 @@

 static void main(ARGS[]) {
- param1 = getParam("X;");
+ param1 = getParam("X");
...

In the example, the box includes the name (main.c) and revisions of the file (revision
1.8 and 1.9), and these are compared. In addition, it presents the file before and after
changes. Lines that were deleted are marked with "-" and lines that were added are
marked with "+".

5.3 Example systems

VMSs were also used in early software development. After manual management, the
first management systems were designed for personal use with one or a few files. These
first generation VMSs, such as the Revision Control System (RCS), became too limited
when network connections become common. The second generation VMSs, such as the
Concurrent Versions System (CVS), then replaced earlier systems. However, these sys-
tems also had limitations and new third and fourth generation systems, such as the Sub-
version (SVN) and the Git, were created.

The Revision Control System (RCS) was one of the pioneers of VMSs. It was developed
in the 1980s at Purdue University, and automated the storing, retrieval and logging of
revisions. However, it was replaced later because it was unable to manage whole
projects and multiple simultaneous users. [RCS06]

The weaknesses of RCS led to the development of CVS, which is now the most widely
used and best known VMS. Its most important improvements were support for projects

38

and multiple users. CVS was developed by Brian Berlinger in 1989. It is Open Source
licensed, and spread to multiple platforms such as Linux, Windows and Unix [Fog90].

Nowadays Subversion (SVN) is replacing CVS as a VMS. The development of SVN
was started in early 2000, when the limitations of CVS were found to be too disturbing.
SVN was created from scratch to avoid the limitations of CVS but includes advantages.
CVS was designed for concurrent distributed software development but the source code
could be corrupted if two developers submitted modifications at exactly the same time.
The modifications to the files were received from the first developer and therefore fur-
ther modifications to the same file could not be received if these developers were work-
ing with the earlier version of the file.

SVN resolves this problem with atomic commits. An atomic commit is a set of changes
that are considered as one transaction. If there is an error during an atomic commit or
some parts of a transaction fails, the whole transaction is cancelled. Therefore, either all
changes are made or none of them is made.

Since the source code is modified daily, there is usually more than one commit between
two releasable versions and therefore commits have to be grouped into change sets. A
change set is a list of the changes between two different versions of the software. For
example, CVS does not have software versions and manages individual files so cannot
support changesets. [CMB06]

However, not all users were satisfied with SVN because it had client-server architecture
instead of distributed architecture. This dissatisfaction led Linus Torwalds and Junio
Hamano to creat Git [Git06], which is a modern VMS that has a decentralized architec-
ture. It was initially created for the development of Linux kernel. In addition to decentra-
lized architecture, it has many other improvements such as support for non-linear devel-
opment and cryptographic authentication. It was made more time efficient on large-scale
projects such as Linux kernel, and it stored whole files instead of the changes. However,
support for storing changes was added later because the requirement for storage space
increased too much in some projects. [Git06]

Although distributed systems provide benefits, they also have drawbacks. With a distri-
buted system, the maintenance process is more difficult to manage, the forks of the soft-
ware can be more common, and the changes are not well identifiable.

Next, we will provide a brief comparison of these four systems through features that
were mentioned earlier. The comparison is presented in Table 5.3.

39

Table 5.3. Comparison of RCS, CVS, SVN and Git.
RCS CVS SVN Git

Product information
Licence Multiple GPL Apache/BSD

stylish
GPL

Released 1980 1986 2002 2005
Repository
architecture

Client-
server

Client-
server Client-server Distributed

Features
Source code
checkout X X X X

Source code revisioning X X X X
Source code commit X X X X
Logging X X X X
History X X X X
Support for projects X X X
Multi-user X2 X X
Branching X X X
Atomic commits X X
Change sets X1 X
1) Only between two sequential versions
2) Because there are no atomic commits, some problems may occur

As we can see from the table, RCS and CVS are much older than the other two options.
They have been used as examples when newer systems have been developed. CVS does
not have atomic commits or change sets like SVN and Git does, but still CVS is used
much more widely than the other systems. The lack of support for atomic commits
creates a problem when analysing commits from CVS. If a developer modifies several
files at once, these modifications have to be considered as one atomic change. An author,
comment of the change and time and date of the change are used to group the modifica-
tions. With this method, the logs of CVS can be compared with logs of other systems.

In addition to these four VMSs, there are multiple other VMSs such as:
- Aegis [Aeg06]
- Bazaar-NG [Baz06]
- Darch (David's Advanced Revision Control System) [Dar06]
- GNU Arch [Arc06]
- Mercurial [Mer06]
- Monotone [Mon06]
- OpenCM [OCM06]
- svk [SVK06]
- Vesta [Ves06]

40

6 OSS MAINTENANCE PROCESS
EVALUATION

There are two concurrent management processes in the maintenance process, DM and
CM. These processes are connected to each other because they produce and consume
deliverables of each other. The CM process is started when a defect report is assigned
and it should finish when the feedback is provided to the DM process. Therefore, we
analyse changes and their connection to the DM process.

The control is based on measurements, and improvements are based on the results of the
measurements. Fenton et al. have defined measurements in the following way [FeP97]:

"A process by which numbers or symbols are assigned to attributes of enti-
ties of the real world in such a way as to describe them according to clear-
ly defined rules."

The entity is an object, such as a person or room, or event, such as a journey or the test-
ing phase, and the attribute is a feature or property of the entity. The measurements are
connected together with relations that can be empirical or numeric.

Fenton et al. [FeP97] propose three entity types that could be measured in software engi-
neering: the process, product and resources. The process is a collection of related activi-
ties; products are results of the process such as artifacts, deliverables or documents.
Entities that are required by any of the process activities are resources. The most com-
mon attributes for the process are the duration, effort and number of incidents. The most
common attributes for the product are the size and quality aspects. The most common
attributes for the resources are the cost, magnitude and quality.

Although we have tools for presenting measurements and for calculating statistics and
figures, measuring is meaningless if we do not know what to measure. One widely rec-
ognized approach is the goal-question-metric (GQM) approach [BCR94]. The goal de-
scribes the purpose of the measurements. The questions are derived from the goals and
their answers provide information that is required to decide whether the goal is archived.
Metrics are results of the measurements that provide information for answering ques-
tions. A metric is usually defined as a controlled measurement system with base values
and interpretation for evaluating attributes. Metrics have base values (measurements)
that are used to define their domains and indicators. For example, one metric, which
describes the activity of the maintenance process, could be the number of new defects
that are reported in a month. The metric is measured by counting each of the defects that
are reported and the results are grouped by months, for example. The metric interprets
the value of the measurement with a model that is associated to the metric, which in this
case is higher value is related to the more activite process. As a result, this metric makes
it possible to measure the activity (which was the out attribute) of the maintenance
process (which was our entity).

41

The third research objective was to create an approach and framework for the evaluation
of the OSS maintenance process. Therefore, we present attributes and metrics for the
analysis of OSS maintenance processes. Paper VI presents original research and a
framework, but this section presents an elaborated description of the evaluation frame-
work for Open Source Software maintenance.

Fenton et al. [FeP97] propose that the process, product and resources are measurable
entities. In this thesis, we consider only process entities. We divide our attributes and
metrics into three sets that measure process from the viewpoints of process activity,
workflow and management. Attributes that measure resources were left out because they
are not practically measurable in volunteer groups such as OSSPs.

The first set of attributes and metrics describes the activity of the process. The GQM
approach for process activity is:

- Goal: Analyse the activity of the process
- Questions: How often are the activities of the process performed?
- Metrics: Metrics and attributes are described in Section 6.1.

The second set of attributes and metrics presents the maintenance process by modelling
the workflows of the defects. The GQM approach for these metrics is:

- Goal: Analyse maintenance process activities
- Questions: What is the life cycle of the defects?
- Metrics: Metrics and attributes are described in Section 6.2.

The third set of attributes and metrics describes the role of the DMS in the maintenance
process. The GQM approach of this viewpoint is:

- Goal: Analyse the connection between DM and VM
- Questions: How many changes are induced by defect reports?
- Metrics: Metrics and attributes are described in Section 6.3.

6.1 Process Activity

The process activity aspect describes the overall activity of the process. The first set of
metrics, which illustrates the activity of the maintenance process in evaluated OSSP, is
presented in Table 6.1. The number of modification requests, which are the same as
defect reports in this case, was used in [GHJ04] and the number of defects has been used
in a proprietary environment [CuS97] and in several DMSs such as in [Tra06]. The
number of changes was used in [Mas05] and [RKG04].

Table 6.1. Metrics for the activity of the process.
Metric Abb. Type Domain
Opened defects OD Absolute ��0
Resolved defects RD Absolute ��0
Fixed defects FD Absolute ��0
Changes of the source code CS Absolute ��0

42

While these four metrics illustrates the scale and activity of the maintenance process,
they also describe the sampled data. A large difference between the number of fixed
defects and the changes of source code or a large difference between the number of
opened defects and resolved defects expresses a potential problem in the defect man-
agement process. A sample metrics from the Apache project is presented in Table 6.2.

Table 6.2. Metrics for the activity of the process in the Apache case
study between September 2003 and August 2005

Metric Apache
Opened defects 1266
Resolved defects 943
Fixed defects 288
Changes of the source code 2877

As we can see from the table, there were on average fewer than two opened defects a
day, and fewer than four changes in the source code per day. The majority of the defects
were resolved but only less than 20 per cent of them were actually fixed. But more inte-
restingly, the number of changes is over two times higher than the number of defects and
ten times higher than the number of fixed defects. These results show that most of the
defects do not cause fixes and most of the changes do not seem to be originated from
defects.

The second set of the process activity metrics includes the trends of process activity.
These metrics are presented in Table 6.3.

Table 6.3. Metrics for the trends of process activity.
Metric Abb. Type Domain
Monthly opened defects MOD Absolute ��0
Monthly resolved defect MRD Absolute ��0
Monthly fixed defects MFD Absolute ��0
Monthly changes of the source code MCS Absolute ��0

They describe the evolution of the activity of the project. An example of the results is
presented in Table 6.4. Even the results presented in the table 6.2 gave the impression
that most of the defects were resolved, the table 6.4 shows that the defect management
activities are seasonal in the Apache project. MOD is quite constant, between 35 and 60
per month. MCS is also quite constant, between 90 and 200 per month. However, MRD
and MFD are zero before November 2004, when a huge number of defects were re-
solved. After that, MRD and MFD stabilized to a level that is slightly lower than MOD,
except in March 2005 when a huge number of defects were also resolved. As a conclu-
sion, these results show that defect reports were not processed actively before November
2004.

43

Table 6.4. Trend metrics of the Apache case study.
Month MOD MRD MFD MCS
04-09 65 0 0 197
04-10 47 0 0 100
04-11 40 1494 563 224
04-12 42 25 7 114
05-01 35 36 19 123
05-02 53 43 13 104
05-03 48 394 117 74
05-04 56 35 10 96
05-05 65 44 16 87
05-06 43 68 26 97
05-07 34 10 3 95
05-08 43 83 19 147

It is possible to analyse workflow of the process through events (presented in Section
4.2). Fenton et al. [FeP97] argue that the duration, effort and incidents are common me-
trics for the process. We model the workflow of the process and compare results with the
expected life cycle (presented in Section 3.2). In addition to process modelling, we in-
clude duration in the analysis. We distinguish duration of defects that caused changes
and those that did not cause changes. Even though Fenton et al. proposed that effort
should be used in metrics for the process, we exclude those attributes because it is not
possible to measure effort accurately and reliably from volunteers.

6.2 Process Workflow

The process workflow aspect characterizes process by modelling workflows in defect
management. These metrics describe the common defect life cycles in the analyzed
project. A defect life cycle describes the workflow of defect management. Ripoche et al.
[RiG03b] presented defect life cycles as metrics for measuring OSSPs. In addition to the
life cycle, the duration of the life cycle is also informative. The duration of defect resolv-
ing was proposed in [CoW06], [MFH02], [KiW06] and [KLH06] as a metric. However,
[CoW06] and [KiW06] presented only resolving times for defects that were fixed, while
[MFH02] and [KLH06] also presented resolution time for defects that did not cause
changes to the source code. These metrics are presented in Table 6.5.

Table 6.5. Metrics for process workflow.
Metric Abb. Type Domain
Statuses of life cycle ST Nominal Any string
Number of defects in the life cycle LC Absolute ��0
LC / All LC% Ratio 0�100%
Duration of all defects DurAl Ratio �����	��
Duration of non-fixed defects DurNF Ratio ��0 days
Duration of fixed defect DurFD Ratio ��0 days

44

The number of defects in the life cycle (LC) shows how many defects that life cycle had.
LC% presents the proportion of the defects that went through the described life cycle
(ST).

The results are presented in the table ordered according to the popularity of the life
cycle. These metrics provide a possibility to trace the maintenance process. If the defects
do not follow the described life cycle, it can be assumed that the process is poorly ma-
naged. An example of the result is given in Table 6.6. Med stands for the median, and
Avg stands for the average.

Table 6.6. Metrics for process workflow in the Apache case study.
LC LC LC%
New, Assigned, Resolved, Closed 36 4 %
New, Resolved 247 26 %
New, Resolved, Closed 511 54 %

DurAl DurFD DurNF
Avg 98 122 82
Med 36 65 24

The results in the table give the impression that defects are rarely assigned; over 80% of
the defects are resolved without assignment. The approach allows the user to study the
resolutions of the defect with the selected life cycle. In the case of the Apache project, it
turns out that 142 of those 511 defects had the life cycle New,Resolved, Closed, and
the resolution was fixed. It shows that even the defects that led to changes were not as-
signed. Overall resolution time for the defects were relatively long, even the not-chance
inducing defects were resolved a bit quicker.

However, the actual duration of the resolution does not necessarily correspond to the
time taken for the users to get a modified version of the software. The modified version
is available from VMS but most users wait for the release of installable software, which
can be much later. Usually, the time between the modification and release of the install-
able software depends on the severity of the defect.

6.3 VM process workflow and management

The VM process workflow and management aspect characterises the role of DMS in the
process. These metrics allows the evaluating of the relationship between the defect man-
agement process and software modification. The number of changes of the source code
has been used as a metric in several studies such as [MFH02]. Metrics are presented in
Table 6.7.

45

Table 6.7. Metrics for VM process workflow and management
Metric Abb. Type Domain
Defect-initiated changes DIC Absolute ���
Proportion of fixed defects FD% Ratio �������
Proportion of defect-initiated changes DIC% Ratio �������
Monthly defect-initiated changes MDC Absolute ��0
Proportion of monthly defect-initiated changes MDC% Ratio 0�100 %
Changes per author CPA Absolute ���
Defect-initiated changes per author ADC Absolute ��0
Proportion of defect-initiated changes per author ADC% Ratio 0�100 %

The low percentages of DIC%, MDC% and ADC% indicates that the maintenance process is
not managed by defect management. It may also indicate that the relationship between
defect management and changes of the source code is unreliable. As an example, Tables
6.8 and 6.9 present metrics that were measured from the Apache project.

Table 6.8. Metrics for the VM process workflow and management in the
Apache case study.

Metric Apache
Proportion of fixed defects 31 %
Changes of the source code1 2877
Defect-initiated changes 276
Proportion of defect initiated changes 10 %
1) see Table 6.2

46

Table 6.9. Metrics for the VM process workflow and management in the Apache
case study

Month MCS 1 MDC MDC%
04-09 197 26 13 %
04-10 100 14 14 %
04-11 224 10 4 %
04-12 114 7 6 %
05-01 123 7 6 %
05-02 104 10 10 %
05-03 74 1 1 %
05-04 96 5 5 %
05-05 87 7 8 %
05-06 97 12 12 %
05-07 95 2 2 %
05-08 147 9 6 %
1) see Table 6.4

As we can see from the table 6.9, MDC% is very low during the evaluation period. Since
the proportion is so low, most of the changes are not related to defects. The table shows
that maintenance is not managed with VMS in the Apache project. The low MDC%
could also be due to non-mature software or poorly commented changes; in any case, it
is still a sign of an unmanaged maintenance process.

Because of the low proportion, we should also look at statistics of each author separate-
ly. As an example, Table 6.10 presents metrics that were measured from the Apache
project.

Table 6.10. Metrics for the VM process workflow and management
in the Apache case study.

Developer CPA ADC ADC%
Author 1 197 26 13 %
Author 2 100 14 14 %
Author 3 224 10 4 %
Author 4 114 7 6 %
Author 5 123 7 6 %
Author 6 104 10 10 %
Author 7 74 1 1 %
Author 8 96 5 5 %
Author 9 87 7 8 %
Author 10 97 12 12 %
Author 11 95 2 2 %
Author 12 147 9 6 %
...

47

As we can see from the table, these developers act quite similarly, since ADC% varies
from one to 14 percent. It may be that some authors are not motivated to express linkag-
es to defect reports, or may not be familiar with procedures.

Usually, software has many developers, so we also analyse differences between devel-
opers and developer groups. For example, in Paper VII, we grouped authors according to
activity into developers and users. Developers had made more than 20 changes to the
source code in the last two years, and users had made fewer than 20 changes. In the
Apache project, developers made fewer defect-initiated changes than users, and the dif-
ference was statistically significant (p<0.05 with the independent T-test). The difference
might be explained by the different roles. Furthermore authors, might have different
types of roles, or perhaps new developers follows guidelines more precisely than do
more experienced ones.

48

7 REMOTE ANALYSIS SYSTEM FOR OPEN
SOURCE SOFTWARE

Since DMSs and VMSs contain very large amounts of data, automated systems would
make analysis possible in reasonable time. There existed systems such as SoftChange,
GlueTheos and CVSAnalY that retrieved and analysed the data from these systems, but
none of them integrated the data from both systems. Antoniol et al. have proposed a
model for the integration [ADH04]. SoftChange was created by German et al. [Ger04,
GHJ04] when they studied CVS repositories. It visualizes the evolution of the software.
Robles et al. created GlueTheos [RGG04] which retrieved data from CVS and delivery
packages. Its purpose was to analyse the source code and its complexity. In addition to
GlueTheos, Robles et al. also created CVSAnalY [RKG04], which retrieved data from
CVS and provided historical and real-time data about source code and its contributions.
German et al. [Ger04] claim that SoftChange retrieves version management and defect
management data, but only the version management data was used in the analysis.

Therefore, we have created a prototype of an automatic system that retrieves and analys-
es data from DMSs and VMSs. Our system is primarily meant for people who are neither
involved in OSSPs or potential users of the software. Since the users are outside the
OSSP, they do not have direct access to the defect management or change management
databases. Our system retrieves data by using methods that are available to anyone, not
only project developers. The purpose of the system is to provide an overview of the
maintenance process and key metrics, so users could evaluate whether to acquire and use
the software or not. The main purpose of the metrics is to provide information that could
be used for deciding whether the users could rely on the maintenance of the software.
Since our software is meant for users, we also provide it for academic and scientific
purposes, so it could be used to understand OSS maintenance processes. In this section,
we will briefly present the architecture (7.1), database (7.2) and user-interface (7.3) of
the Remote analysis System for Open Source Software (RaSOSS).

7.1 Architecture

Since OSSPs use different systems for defect management and version management, we
had to provide support for several DMSs and VMSs. Therefore, the basic requirements
for the system are extensibility and independence from these management systems. To
achieve these requirements the architecture makes a distinction between data collection
and analysis (Figure 7.1). The distinction allows the adding of new data sources and
analysis modules to the system. RaSOSS has been programmed with PERL and it uses
GTK+ for graphical interface.

49

Figure 7.1. Design architecture of RaSOSS.

The figure shows that the architecture of RaSOSS is a mixture of typical pipe-filter and
blackboard architectures. The three main modules in the system are the defect data col-
lector, version history extractor, and analysis module. The defect data collector retrieves
defect data from DMS. The version history extractor retrieves the source code of the
software and the change history of source code files from VMS. After the data retrieval,
both modules export data to the database where the analysis module can classify and
analyze the defects and changes.

7.2 Database

The database schema records information in an original system independent form. The
database is organized as a collection of entities and relationships stored in a relational
database management system. The relational structure of the RaSOSS database structure
is shown in Figure 7.2 and the attributes are described in Tables 7.1 and 7.2. The data-
base structure has two parts because DMS and VMS are not integrated and there is only
a weak connection between the systems, as shown in Section 5.1. The first part of the
database is based on the entity Defect and the second part is based on the entity Revi-
sion.

50

Figure 7.2. Database structure for RaSOSS.

The entity Defect describes attributes that are directly related to the defect report. The
attribute Reporter expresses the name, nickname or email address of the person that
reported the defect. The attribute Opendate expresses the date when the defect was
opened. Current status describes the defect's status such as new or resolved. Resolu-
tion expresses the outcome of the defect. Component, Product, Version and
Platform describe the environment where defects appear. Entities Activity and
Attributes express when, by whom and what attributes were changed in the defect
report.

A revision of the software is a snapshot in the evolution. Every revision has an attribute
to describe the Author, Date and Comment of the revision. The comment describes
the authors� comment about the changes between revisions. The attribute Definit de-
scribes whether the changes between revisions were initiated by defect reports. The
entity file and its attributes describe what source code files were changed from the
previous revision.

Connection between
defects and changes

51

Table 7.1. Attributes of the defect in the RaSOSS database.
Entity/Attribute Type Data

type
Usage

Defect
Id Ordinal Integer Identification number of the defect report
OpenDate Interval Date Date when the defect report was opened
Priority Ordinal Integer Priority expresses urgency of the defect
Severity Ordinal String How severe is the defect? For example

Major, Critical, Minor etc.
Reporter Nominal String Who reported the defect initially?
Current_status Nominal String What is the current status? see Table 4.5
Assigned_to Nominal String Who is working/ worked on the defect?
Resolution Nominal String How was the defect resolved? see Table

4.2
Product Nominal String Indicates in which software, component,

version and system platform the defect
occurs.

Component Nominal String
Version Ordinal String
Platform Nominal String
Activity
Date Interval Date When were the attributes of the defect

report changed?
Author String Who made the changes?
Attributes
Attribute Nominal String Which attribute was changed?
Removed_value Nominal String What value was removed?
Added_value Nominal String What value was added?

Table 7.2. Attributes of the revision in the RaSOSS database.
Entity/Attribute Type Data

type
Usage

Revision
Id Ordinal Integer Identification number of the revision of

source code
Date Interval Date When was the revision created?
Author Nominal String Who created the revision?
Comment Nominal String How did the creator describe changes

from the previous revision?
Definit Nominal Boolean Were the changes of the revision initiated

by the defect report?
Files
Name Nominal String Filename
Path Nominal String Path

52

7.3 User Interface

RaSOSS is a set of PERL scripts that are executed mainly sequentially and partly con-
currently. Manual execution of the scripts is error prone and time consuming, so we built
a user interface for our system. The user interface of RaSOSS was designed to be as
simple as possible and highly automated. The only required inputs from the user are the
addresses of DMS and VMS, product names and database used.

The user interface has been divided into three screens. The first one is a start-up screen,
the second and third screens are main screens. Figure 7.3 shows the start-up screen.

Figure 7.3. User interface of Start-up.

The button Collect Data from Projects starts the data collector module. The
button Analyze Data From Database starts the data analysis module. Figure 7.4
shows the user interface of the data collector module.

Before any other action, the user has to fill in the name of the database which will be
used to the field Database Name. If the database is empty, the user can create tables
with the button Clear database. The user can also clear the database with the same
button, which will drop tables from the database if there are any, and create new tables.

After the database initialization, the user can continue to the data retrieval, but before the
data retrieval from VMS, the user has to fill in the URL of VMS in the field
SVN/CVSROOT. In addition, the user has to select the type of system and fill in the name
of the product in the field Product name.

Before the data retrieval from DMS, the user has to fill in the URL and type of target
DMS. In addition, the user has to know the name of the product and fill it in the field
Product name.

Then the user can retrieve data from VMSs (button Get CVS Data) and DMS (button
Get Bug data). However, one minor issue in the retrieval of the defect data is that the

53

execution time can be more than ten hours (with 1.5 Ghz Pentium-M laptop, with 512
Mb ram and 1Mb/s internet access) if the number of defects is over 30 000, because each
defect is retrieved separately. Although the retrieval method could be executed in paral-
lel fashion, this would increase the load of the target DMS and VMS, so it is not desira-
ble.

Figure 7.4. User interface of Data Collector module.

The module is also able to save and load settings (buttons Save Settings and Load
Settings). The textfield on the right side of the load and save setting shows the re-
sponse of the last action.

Figure 7.5 shows the user interface of the data analysis module. In the data analysis
module, the user has to select the database appropriate for the analysis to be performed.
In addition, the user has to select the sets of the attributes and metrics that will be calcu-
lated. The result of the analysis is presented in an HTML document.

Figure 7.5. User interface of the Analysis module.

54

8 CASE STUDIES

During the research, we analyzed two case studies, the Apache HTTP Server and Mozil-
la Firefox, manually and later, after the development of RaSOSS, we reanalyzed the
Apache HTTP Server [Apa06], and Mozilla Firefox [Moz06a] case studies to validate
RaSOSS. In addition, we analysed Gnu Glib [Gli06], Gimp [Gim06], KDE KWord
[KOf06], OpenOffice.org Calc [OOo06d], and Writer [OOo06f] as new case studies.
This section presents the results of the case studies briefly: the original research and
results are presented in Paper VII. We collected defect reports and the version history of
the source code from each project. Our snapshots are limited to between September 2003
and September 2005.

We selected case studies to cover a wide range of software types and target groups. Mo-
zilla Firefox, KDE Kword and Gimp are intended for end-users. Mozilla Firefox and
KDE Kword are meant for almost everyone, but Gimp is meant for digital imaging ama-
teurs and professionals. The Apache HTTP Server is meant for system operators and
administrators. Gnu Glib is meant for software developers who need basic data struc-
tures and functionalities. General information about the case studies is presented in Ta-
ble 8.1.

Table 8.1. General information about the case studies.

The Apache HTTP Server was originally created in the National Center for Supercom-
puting Applications by Rob McCool. In 1994, the development stalled and a variety of

Apach
e

Firefox Gimp Glib Kword Calc Writer

Software
type

Server
soft-
ware

Desktop
software

Desk-
top
soft-
ware

System
library

Office
soft-
ware

Office /
spread-
sheet

Office /
word
processi
ng

Intended
audience
group

Ad-
min/op
erator

End-user End-
user

Devel-
oper

End-
user

End-
user

End-
user

License
and its
group

Apach
e,
Li-
censes
with-
out
copy-
left

MPL,
Licenses
with
privileg-
es

GPL,
Li-
censes
with
strong
copy-
left

LGPL,
Licenses
with
re-
stricted
copyleft

GPL,
Li-
censes
with
strong
copyleft

LGPL,
Li-
censes
with
re-
stricted
copyleft

LGPL,
Li-
censes
with
re-
stricted
copyleft

DMS Bug-
zilla

Bugzilla Bug-
zilla

Bugzilla KDE
Bug
tracker

Issue
Tracker

Issue
Tracker

VMS SVN CVS CVS CVS CVS CVS1 CVS1
1) Transition to SVN is being planned.

55

improvement patches started to spread. In 1995, the development started to act like an
OSSP, the website was created and the software was renamed Apache. [Apa06]

The Mozilla Firefox project started in 2002, when it branched from the original Mozilla
web browser. Mozilla was based on the source code of Netscape, which was released in
1998 by the Netscape Company. The release led to the establishment of the community
that started to develop Mozilla projects. Version 1.0 was released in September 2004 and
it gained 10 percent of the market share globally. [Moz06a]

Gimp was originally created in the University of Berkeley by two students, Kimball and
Mattis. The first public version was released in 1996, and shortly after the release users
started to write websites and tutorials. New features were implemented daily. Later the
name was changed from General Image Manipulation Program to Gnu Image Manipula-
tion Program. In 1997 the original developers graduated and quit development. Thereaf-
ter, development shifted more closely to the OSS development model and DMS was
initiated. [Gim06]

Gnu Glib is a cross-platform utility library. At first, it was a part of GTK, Gnu Graphics
Toolkit, but it came to be used in other applications. Currently, Glib includes several
functionalities, such as threads, memory allocation and type conversions, and data types
such as strings and arrays. [Gli06]

KDE Kword is a free WYSIWYG-type word processor and it is a member of the KOf-
fice project. The first version was created in 1998. In 2000, KWord was hardly main-
tainable and no one was working on the known problems any longer, but in the same
year new maintainer started to fix and restructure the source code. After 2001, Kword
was stable and the number of users increased again. [KOf06]

OpenOffice.org Calc and Writer are part of the OpenOffice.org software suite. The Ope-
nOffice.org project was started in 2000 when Sun Microsystems released the source
code. Writer is word processing software that is GUI-based and very similar to Microsoft
Word. Calc is spreadsheet software that is similar to Microsoft Excel. The OpenOf-
fice.org suite also includes applications for presentations, vector drawing and databases.
Because of the project heritage, project documents describe explicitly the processes that
are related to maintenance and defects. [OOo06d, OOo06f]

As we showed in Section 6, our metrics were divided into three aspects - process activi-
ty, process workflow and VM process workflow and management. Next, Section 8.1 will
present the results of the first aspect, Section 8.2 the results of the second aspect and
Section 8.3 results of the third aspect.

8.1 Process activity

The metrics for the process activity give an overview of users� and developers� activity
in the case studies. First, we present, in Table 8.2, the number of defects, changes and
defect-initiated changes.

56

Table 8.2. Metrics for the activity of the process in the case studies.
Apache Firefox Gimp Glib Kword Calc Writer

Opened defects1 1266 27681 3088 786 568 9227 3432
Resolved defects2 943 20300 2725 674 369 6271 2459
Fixed defects3 288 2415 1114 390 207 1985 667
Changes of the
source code4 2877 2884 7102 1262 606 13384 8063

1, 2, 3, 4) see Table 6.1

Mozilla Firefox had had almost 170 million downloads before April 26 [Moz06b], which
explains the great number of defect reports. But Apache has been installed on over 26
million public web servers, and the number of defect reports is much smaller than for
Firefox (the ratio of installations: 15 % (26/170millions), the ratio of opened defects: 4.6
% (1266/27681)) [Net06]. The number of actual installations of Apache may be much
higher, because it is also used in non-public web servers. The number of users of Gimp,
Glib and Kword is not available, but the number of users of Glib at least is high, because
it is used in many other OSS products.

The proportion of fixed defects varied from Kword's 56 % (207/369) to Firefox's 12 %
(288/943). Other defect reports were duplicate, invalid or in other ways did not cause
modifications to the software.

In addition to a general view of the activity, the description is more detailed when ob-
serving the same metrics in shorter periods such as monthly. Monthly metrics are pre-
sented in Appendix I.

8.2 Process workflow

OSSPs may describe their development and maintenance activities and processes in their
project documentations. However, when DMS is used, it is possible to model mainten-
ance processes in the projects by using metrics changes of the defect reports as process
events, as we described in Section 4.2. Table 8.3 presents the most common defect life
cycles in the case studies.

Table 8.3. The most common life cycles in the case studies.
Project Defect life cycle (ST)1 LC2 LC%3

Apache New, Resolved , Closed 511 54 %
Firefox Unconfirmed, Resolved 11133 56 %
Gimp Unconfirmed, Resolved 1351 49 %
Glib Unconfirmed, Resolved 417 62 %
Kword Unconfirmed, Resolved 257 70 %
Calc Unconfirmed, Resolved, Closed 1302 50 %
Writer Unconfirmed, Resolved, Closed 2987 45 %
1-3) aee Table 6.5

57

The table shows that the defect life cycles were not expected in the case studies. There
was no significant use of the status assigned or started in any of the cases,. These
statuses should indicate that someone is implementing a modification. The status of
defects was transited directly to the status resolved, which indicates that all modifica-
tions have been implemented already.

The defect reports have to be resolved as quickly as possible to keep users satisfied. The
averages (Avg) and medians (Med) of the resolution times for the fix-inducing (DurFD)
and non-fix-inducing (DurNF) defects are presented in Table 8.4.

However, it is not sensible to compare the average or median resolution times of the
projects with each other because the case studies concern different types of software and
project organisations. The main purpose of the times is that the difference between fix-
inducing, non-fix-inducing times can be compared, and the scale of the resolution times
can be notified.

Table 8.4. Resolution times of the defects.
Metric Apache Firefox Gimp Glib KWord Calc Writer
All Med (days) 1 36 3 1 4 19 14 25

Avg (days) 2 98 54 36 56 137 64 72
DurNF Med (days) 3 24 1 0 2 33 3 7

Avg (days) 4 81 46 23 58 132 31 53
DurFD Med (days) 5 66 34 3 5 13 97 70

Avg (days) 6 122 91 50 49 129 138 103
1-6) see Table 6.6

Averages of the resolving time vary from the Gimp project's 23 days to the Kword
project's 132 days. However, the problem with measuring the time between opening and
resolving is that a defect may be reopened several times. Another problem is that many
defects are resolved the same day, while others may require several months. In addition,
the average is not representative because the distribution is skewed.

Medians of resolving times show the time where half of the defects were resolved. Table
8.4 shows that fix-inducing changes require more time than non-fix-inducing. However,
in the Kword project non-fix-inducing defects required more time than fix-inducing
ones. The defect resolving time was quite high in the Writer, Calc and Apache projects.
In the Kword, Glib and Gimp projects, fix-inducing defects were resolved quickly.

8.3 VM process workflow and management

Calc and Writer projects use Environmental Information System (EIS) to manage source
code branches, called child workspaces (CWS). Due to the usage of EIS and CWS, the
attribute comment in the CVS logs does not express reasons for changes or related de-
fects. The comment attribute is used to express the identification of CWS. Therefore,

58

metrics that are related to the defect-initiated changes cannot be extracted from Calc and
Writer. [OOo06a, OOo06b, OOo06c]

Table 8.5 presents the number of defect-initiated changes, which is one of the metrics for
the VM process workflow and management. However, it should be compared with two
metrics for the activity of the process: Fixed defects and Changes of the source code.

Table 8.5. Metrics for defect-initiated changes in the case studies.
Metrics Apache Firefox Gimp Glib Kword

Fixed
defects 288 2415 1114 390 207

Changes of the source
code2 2877 2884 7102 1262 606

Defect-initiated
changes3 276 1762 1413 370 86

Proportion of fixed
defects4 31 % 12 % 41 % 58 % 56 %

Proportion of defect-
initiated changes5 10 % 61 % 20 % 29 % 14 %

1-2) see Table 6.1
3-5) see Table 6.7

As we can see from the table, the number of defect-initiated changes is much lower than
the number of changes of the source code. The low proportion of the defect-initiated
changes per fixed defects reflects he quality of the comments of the software modifica-
tion. The proportion of defect-initiated changes was very low in the majority of projects.
The Mozilla Firefox project was an exception, with quite a high proportion.

Low proportions in both metrics indicate a lack of efficiency and of communication in
the maintenance process. For example, if a comment on the change of the source code
does not show that the defect was fixed, other developers cannot know that the defect
was resolved. The proportion of defect-initiated changes should be evaluated in shorter
periods. Figure 8.1 presents monthly proportions of the defect-initiated changes in the
projects.

The figure shows that in most of the case studies the proportion of defect-initiated
changes is decreasing. However, in the Mozilla Firefox project, the proportion was in-
creasing, and reached 80 percent. An increasing proportion could be understood as in-
creasing role of DMS.

59

0,0 %

10,0 %

20,0 %

30,0 %

40,0 %

50,0 %

60,0 %

70,0 %

80,0 %

90,0 %

100,0 %

 03-09
 03-10
 03-11
 03-12
 04-01
 04-02
 04-03
 04-04
 04-05
 04-06
 04-07
 04-08
 04-09
 04-10
 04-11
 04-12
 05-01
 05-02
 05-03
 05-04
 05-05
 05-06
 05-07
 05-08

Month

Pr
op

or
tio

n
(%

) Apache
Firefox
Gimp
Glib
KWord

Figure 8.1. Proportion of defect-initiated changes in the case studies.

Instead of analysing all developers separately, we divided authors into three groups ac-
cording to their activity. According to [CLM03a, CLM03b], most OSSPs have only a
few core developers who make most of the changes. To cover the majority of changes
with a few developers per project,who submitted more than ten changes per month, .
which is more than 240 changes in the two-year evaluation period. They represented
over 75 % of all changes. The second group consisted of authors who had submitted
more than 24 modifications but fewer than 240, which is fewer than 10 per month. They
represent 20 % of all changes. In the third group, which the users included authors, have
submitted less than 24 modifications, which is less than one per month. Their proportion
of the changes was less than 5 %. The proportions of changes in the group are presented
in Figure 8.2.

60

0,0 %

10,0 %

20,0 %

30,0 %

40,0 %

50,0 %

60,0 %

70,0 %

80,0 %

90,0 %

Apache Firefox Gimp Glib KWord

User (avg)

Devel (avg)

Core (avg)

Figure 8.2. Average proportions of defect-initiated changes in different groups.

In the Glib and Gimp projects, active developers (Devel and Core) had a higher pro-
portion of defect-initiated changes. In contrast, in the Firefox project less active devel-
opers had a higher proportion of defect-initiated changes. In the other projects, there
were no significant differences between developer groups.

61

9 CONCLUSIONS AND FUTURE WORK

Open Source Software is quite a new phenomenon and there is ongoing research in sev-
eral fields. However, no information about the development and maintenance peculiari-
ties of OSS has been available to researchers. The purpose of this thesis was to study
maintenance processes in OSSPs. In this section we present a brief summary of the con-
tribution of the thesis (Section 9.1) and future work (Section 9.2).

9.1 Contribution of the thesis

The main contribution of this thesis is the approach for the evaluation of Open Source
Software maintenance processes and the tool, Remote analysis System for Open Source
Software (RaSOSS). RaSOSS retrieves and analyses data from public DMSs and VMSs,
which are used in OSSPs. A more detailed description of the contribution is presented in
Figure 9.1. The figure presents the relations between research objectives, topics of the
thesis, original publications and their contributions.

Our first research objective was to establish a framework for Open Source Software
projects. In Section 2 and Paper I we present three major characteristics of OSSP - an
information product, community and services. Regarding the information product, we
present software and license types. Regarding the community, we present community
and development models, and the roles of DMSs and VMSs. Finally, regarding services,
we present those which users may require but OSSPs do not necessarily provide.

Our second objective was to establish a framework for Open Source Software mainten-
ance process. Before presenting the framework, we present, in Section 3 and Paper II,
the standard model for the maintenance process from IEEE and ISO/IEC standards.
Thereafter, we studied the maintenance activities of OSSPs and placed these activities in
the framework. When we compared our OSS maintenance process framework with the
standard process model, we found that both processes have similar activities. However,
we also found that the OSS maintenance process does not have retirement activities,
which are found in the standard model to ensure that information about the software is
still available after the software trade-off.

Our third objective was to create an evaluation framework for Open Source Software
maintenance and a tool that can be used to analyze Open Source Software maintenance
processes. We present in Sections 4 and 5 defect management systems and version man-
agement systems and example systems that are used in OSSPs.

We started by studying defect management in OSSPs and found that most of the reported
defects did not cause changes to software because many of the reported defects were
duplicates or invalidly formed (Paper III). Furthermore, we found that defect reports
were rarely marked as assigned, although defect management systems and project guide-
lines requiring this (Paper IV). One explanation for this may be the style of change man-

62

agement processes: the changes are reviewed and accepted after their implementation.
Even traditionally, changes are accepted before implementation. We found that defect
management systems make it possible to study OSS maintenance processes remotely.

Figure 9.1. The relation between research objectives, topics of the thesis, original
publications and main contributions of the papers.

Research
Objective

i

ii

iii

iv

Topics of the
thesis

1.

Introduction

2.
Open Source

3.
Software mainte-

nance

4.
Defect manage-
ment systems

5.
Version manage-

ment systems

6.
OSS maintenance
process evaluation

7.

RaSOSS

8.
Case studies

9.

Conclusions

Original
publica-

tions

I

II

III

IV

V

VI

VII

Main contribution

Evaluation frame-

work for Open
Source Software

Framework for Open

Source Software
Maintenance process

Evaluation frame-
work for Open

Source Software
Maintenance

Remote analysis
System for Open
Source Software

(RaSOSS)

63

After studying OSSPs through defect management systems, we continued by studying
version management and their systems. After we had presented a general overview of
version management and example systems, we studied the relation between changes and
defect reports. The information about the changes makes it possible to couple the
changes to the defects if a defect has caused a change. We evaluated this approach by
using case studies in Paper V, and found that many of the changes were not initiated by
defects. However, we also found that the proportion of defect-initiated changes may
reflect the role of defect management in the OSS maintenance process.

By gathering measurements from studies of our earlier Papers I, II, III, IV and V, we
formed an evaluation framework for Open Source Software maintenance, which is pre-
sented in Section 6 and in Paper VI. However, when studying defect management and
version management, we found that the amount of information is too large to be ga-
thered, processed and analyzed manually. Therefore, we created RaSOSS for data ga-
thering, processing and analysis. This tool allows users to analyze OSSPs by just enter-
ing the addresses of defect management and version management systems. The tool is
presented in Section 7 and Paper VII.

Our fourth objective was to analyze Open Source Software maintenance processes. Dur-
ing the research, we analyzed seven OSSPs using our tool, RaSOSS. The results of the
analysis are presented in Section 8 and in Paper VI concurrently with the framework for
OSS maintenance process evaluation. We found that our framework is suitable for the
evaluation of maintenance processes and it provides information about maintenance
processes. However, the results and observations may not be generalizable to all OSSPs
because of the low number of case studies.

The main conclusion from the case studies is that, by using the framework, they revealed
that maintenance processes seem to be uncontrolled and untraceable. The main finding
of the case studies was that the framework and tool were suitable for evaluation. In addi-
tion, we found that the activity of the maintenance process was different in some case
studies such as Apache, Glib and Gimp. In these projects, defect reports were resolved
and fixed seasonally, and most of the time they were not resolved according to DMSs. In
the other case studies, rates were more constant and there were no such seasonal trends.
Another finding was that the number of source code changes was much higher than the
number of fixed defects or even defect reports. This can be the result of inefficient usage
of DMS, where defects are not marked as fixed or resolved. Alternatively, it can also be
the consequence of multiple changes per resolved defect. When the relationship between
the changes and defect reports were studied, we found that the majority of the changes
do not seem to be related to defect reports, which also suggests that DMS was used inef-
ficiently. Therefore, we analyzed the workflows of the maintenance process and found
that actual workflows are much simpler than project documents or DMSs suggest. The
most common workflow for a defect was that it was opened and then resolved, while
documents and DMSs suggest that the defects were first verified, assigned and then
resolved. All the projects had omitted these steps according to DMSs.

64

9.2 Future work

There are still open issues in the OSS maintenance processes which would be interesting
to study further. Let us propose a few examples. Our information retrieval used earlier
studies and data from public DMSs and VMSs, but OSSPs also use mailing lists, new-
sgroups and discussion boards. The evaluation of these data sources could provide useful
knowledge since possibly most of the communication between developers goes through
mailing lists, at least in a few cases such as Apache. However, Sandusky et al. [SaG05]
have reported that assignment was not a common discussion topic in the Mozilla project,
since assignment was related to only seven percent of the topics.

In addition, our study provided an evaluation of OSS maintenance processes from the
viewpoint of users and public data. We did not interview developers from OSSPs, but
their knowledge could be used to produce more understanding about maintenance
processes. By combining these approaches, actual maintenance processes would be well
analysable.

As we stated in Sections 4 and 5, a large number of different defect management and
version management systems are used in OSSPs. Since our RaSOSS currently supports
only a few major VMSs and DMSs, enhancements such as additional data retrieval mod-
ules would make it possible to analyze other projects.

Another interesting aspect of the OSS maintenance process is these management sys-
tems. One topic for further research could be their evaluation in details. As far as we
know, the systems that we worked with did not have major differences in stored infor-
mation.

Since we studied defect reports that were submitted manually, developers and projects
have been developing automated systems for crash reporting. Such systems have already
been built in Microsoft Windows XP and Mozilla Firefox 2.0. However, one problem
with these systems is that they report only if software crashes. They are not able to report
defects if software does not crash or if enhancements are required. But these systems
may cause changes in the number and type of defect reports.

65

BIBLIOGRAPHY

[ADH04] Antoniol G., Di Penta M., Hall H., Pinzger M.: Towards the Integration

of CVS Repositories, Bug Reporting and Source Code Meta-Models. In

the 2nd Workshop on Software Evolution through Transformations:

Model Based vs. Implementation-level Solutions, Rome, Italy, 2004.

Electronic Notes in Theoretical Computer Science, Elsevier.

[Aeg06] Aegis: Aegis 4.22. http://aegis.sourceforge.net. (27.7.2006)

[Apa06] Apache Foundation: Welcome - The Apache HTTPD Server Project.

http://httpd.apache.org. (27.7.2006)

[APC98] Appleton B., Perczuk S., Cabrera R., Orenstein R.: Streamed Lines:

Branching Patterns for Parallel Software Development.

http://www.cmcrossroads.com/bradapp/acme/branching/. (13.6.2006)

[Arc06] Free Software Foundation: GNU Arch - GNU Project.

http://www.gnu.org/software/gnu-arch. (27.7.2006)

[ARG06] SourceForge.net: SourceForge.net: Argus Issue Tracking System.

http://www.sourceforge.net/projects/argus-tracker. (27.7.2006)

[AsB02] Asklund U., Bendix L.: A study of Configuration Management in Open

Source Software Projects. IEEE Proc-Software. Vol. 149, No. 1, Febru-

ary 2002.

[Ask02] Asklund U.: Configuration Management for Distributed Development in

an Integrated Environment. Doctoral Dissertation, Lund University, Fa-

culty of Technology, Sweden. December 2002. ISBN 91-628-5470-4.

[Baz06] Canonical Ltd: Welcome - Bazaar NG. http.//bazaar-vcs.org.

(27.7.2006)

[BCR94] Basili V., Caldiera G., Rombach H.: The Goal Question Metric

Approach. Encyclopedia of Software Engineering, 1994.

66

[Ben00] Bennett K.: Software Maintenance - A Tutorial. Software Engineering

(Ed. R Thayer). IEEE Computer Society 2000, pp. 289-304.

[BeR00] Bennett K., Rajlich T.: Software Maintenance and Evolution: A Road-

In: Proceedings of the Conference on The Future of Software Engineer-

ing. pp. 73-87. ACM Press New York, NY, USA, 2000.

[Bes06] Best Practical Solutions: RT: Request Tracker.

http://www.bestpractical.com/rt. (27.7.2006)

[BPR06] BRP Online Learning Center: Reengineering and Process Metrics. ProS-

ci. http://www.prosci.com/metrics.htm. (1.8.2006)

[CLM02] Capiluppi A., Lago P., Morisio M.: Characterizing the OSS Process.

Proceedings of the International Conference on Software Engineering,

2nd Workshop on Open Source Software Engineering, Orlando, Florida,

May 2002.

[CLM03a] Capiluppi, A., Lago, P., Morisio, M., Characteristics of open source

Projects. Proceedings of the Seventh European Conference on Software

Maintenance and Reengineering, 2003, pp. 317-327, March 2003.

[CLM03b] Capiluppi, A.; Lago, P.; Morisio, M.: Evidences in the evolution of OS

projects through changelog analysis. Proceedings of the 3rd Workshop

on Open Source Software Engineering, ICSE'03, Portland, Oregon,

USA, 2003. pp. 19-24.

[CMB06] CM Crossroads: CM Crossroads. http.//www.cmcrossroads.com.

(15.7.2006)

[CoW95] Cook J., Wolf A.: Automating Process Discovery through Event-data

Analysis. Proceedings of the 17th International Conference on Software

Engineering (ICSE'95), 1995. pp. 73-82.

[CuS97] Cusumano M., Selby R.: How Microsoft Builds Software. Communica-

tions of the ACM, Vol. 40, No. 6, pp. 53-61, ACM Press New York,

NY, USA, 1997.

67

[CVA06] CVSAnalY. http://cvsanaly.tigris.org. (27.7.2006)

[CVS05] CVSHome: Domain Home Page. Collabnet Inc, 2005.

http://www.cvshome.org/. (27.7.2006)

[Dar06] Roundy D.: darcs. http://www.darcs.net. (27.7.2006)

[DOS99] DiBona C., Ockman S., Stone M.: OPENSOURCES, Voices from the

Open Source Rev���
��������������!�#�����	
��$�&�*	�
�>���@#$�\&#$�

1999.

[Ere03] Erenkranz, J.: Release Management Within Open Source Projects. Pro-

ceedings of the International Conference on Software Engineering, 3rd

Workshop on Open Source Software Engineering, Portland, Oregon,

February 2003.

[Eve06] Eventum: Main Page - Eventum. http://eventum.mysql.org. (23.5.2006)

[FeP97] Fenton N., Pfleeger S.: Software metrics: A Rigorous and Practical

Approach. PWS Publishing Co. Boston, MA, USA, 1997.

[Fin06] Finlex: Ajantasainen Lainsäädäntö - 8.7.1961/404. Tekijänoikeuslaki.

8.7.1961/404. http://www.finlex.fi/fi/laki/ajantasa/1961/19610404

(28.11.2006)

[Fog90] Fogel K.: Open Source Development with CVS. Coriolis Group, Arizo-

na, 1999.

[FSF06a] Free Software Foundation: Free Software Definition - GNU Project.

http://www.gnu.org/philosophy/free-sw.html. (12.3.2006)

[FSF06b] Free Software Foundation: GNATS - GNU Bug Tracking Software.

http.//www.gnu.org/software/gnats. (24.7.2006)

[Ger04] German D.: Mining CVS Repositories, the softChange Experience.

First International Workshop in Mining Software Repositories, 2004.

[GHJ04] German D., Hindle A., Jordan N.: Visualizing the Evolution of Software

Using softChange. In Software Engineering Knowledge Engineering

^&`{`��|}$�~��|�

68

[Gia05] Giacomo, P.: COTS and Open Source Software Components: Are they

Really Different on the Battlefield. Proceedings of the 4th International

Conference on COTS-Based Software Systems, Bilbao, Spain, February

2005.

[Gim06] Gimp.org: GIMP - The GNU Image Manipulation Program.

http://www.gimp.org. (21.4.2006)

[Git06] Git: Git - Fast Version Control System. http://git.or.cz. (24.7.2006)

[Gli06] GNU Project: GTK+ - The Gimp Toolkit. http://www.gtk.org.

(24.5.2006)

 [HNH03] Hertel G., Niedman S., Herrmann S.: PR Special Issue: Motivation of

Software Developers in Open Source Projects: An Internet-based Survey

of Contributors to the Linux Kernel.

http://opensource.mit.edu/papers/rp-hertelniednerherrmann.pdf.

(7.3.2003)

[IEE98] IEEE: IEEE Standard for Software Maintenance, IEEE Std 1219-1998.

The Institute of Electrical and Electronics Engineering, Inc. 1998.

[IEE04] IEEE: Guide to the Software Engineering Body of Knowledge (SWE-

BOK). IEEE Computer Society 2004, Los Alamitos, California.

[Ins06] Institut für Rechtsfragen der Frein und Open Source Software: License

Center. Institut für Rechtsfragen der Frein und Open Source Software,

http://www.ifross.de/ifross_html/lizenzcenter-en.html. (20.8.2006)

[ISO99] ISO/IEC: ISO/IEC 14764:1999: Information Technology � Software

Maintenance. ISO/IEC 1999.

[ISO00] ISO: Quality Management Systems � Fundamentals and Vocabulary

(ISO 9000:2000). ISO 2000.

[ISO02a] ISO/IEC: ISO/IEC 12207:1995/Amd 2002: Software Engineering: Soft-

ware Life Cycle Processes. ISO/IEC 2002.

69

[ISO02b] ISO/IEC: ISO/IEC 15288:2002: Software Engineering: Software Life

Cycle Processes. ISO/IEC 2002.

[ISS06] IssueTrackerProduct: IssueTrackerProduct (User Friendly Issue - Bug-

Tracking Open Source Web Application for Zope).

http://www.issuetrackerproduct.com. (24.7.2006)

[KaM06] Kajko-Mattsson M.: Applicability of IEEE 1219 within Corrective

Maintenance. The International Conference on Software Engineering

#��	�����^�@&`#���}� October 2006, Tahiti, French Polynesia. (In

Press). IEEE Press.

[KDE06] KDE: KDE Bug Tracking System. http://bugs.kde.org. (20.08.2006)

[KiW06] Kim S., Whitehead E.: How Long Did it Take to Fix Bugs? Proceed-

ings of the 2006 International Workshop on Mining Software Reposito-

ries (Shanghai, China, May 2006). MSR '06. pp. 173-174. ACM Press,

New York, NY 2006.

[KLH06] Koponen T., Lintula H., Hotti V.: Defect reports in Open Source Soft-

ware Maintenance Process - OpenOffice.org Case Study. In Proceed-

ings of the 10th IASTED SEA, Nov 2006. ACTA Press (In press).

[KOf06] The KOffice Project: KWord. http://www.koffice.org/Kword.

(23.07.2006)

[KoH04] Koponen T, Hotti V. Evaluation Framework of Open Source Software.

Proceedings of The International Conference on Software Engineering

Research and Practice SERP'04, Vol. II., Las Vegas, Nevada, USA, June

21-24, 2004, pp. 897-902. CSREA Press, 2004.

[Kop06a] Koponen T.: RaSOSS - Remote Analysis System for Open Source Soft-

ware. The International Conference on Software Engineering Advances

^�@&`#���}� October 2006, Tahiti, French Polynesia. (In Press). IEEE

Press.

70

[Kop06b] Koponen T.: Evaluation Framework for Open Source Software Main-

tenance. The International Conference on Software Engineering Ad-

�	�����^�@&`#���}� October 2006, Tahiti, French Polynesia. (In Press).

IEEE Press.

[LeT00] Lerner, J., Tirole J.: The Simple Economics of Open Source Software,

NBER Working Paper 7600, 2000. http://www.nber.org/papers/w7600

[LeT02] Lerner, J., Tirole J.: Some Simple Economics of Open Source. The

Journal of Industrial Economics, Vol. 50, No. 2, June 2002, pp. 197-234.

[Lib06] Libresoft: GlueTheos: http://libresoft.urjc.es/Tools/GlueTheos.

(3.7.2006)

[Lon05] Lonchamp J.: Open Source Software Development Process Modelling.

(S.T. Acuna, N. Juristo Eds.) Software Process Modelling, Springer,

2005. ISBN: 0-387-24261-9.

[Man06] Mantis.org: Mantis Bug Tracker. http://www.mantisbt.org. (14.7.2006)

[Mas05] Massey B.: Longitudinal Analysis of Long-timescale Open Source Re-

pository Data. Proceedings of the 2005 Workshop on Predictor Models

in Software Engineering. St. Louis, Missouri, May 2005. PROMISE '05.

ACM Press, New York, NY, pp. 1-5.

[Mer06] Mercurial: Mercurial. http.//www.selenic.com/mercurial. (27.7.2006)

[MFH02] Mockus A., Fielding R., Herbsleb J.: Two Case Studies of Open Source

Software Development: Apache and Mozilla. ACM Trans. Software En-

gineering and Methodology, 11(3), 309-346. ACM Press, 2002.

[Mon06] Monotone: Distributed version control. http://venge.net/monotone.

(23.7.2006)

[Moz05] Mozilla.org: Bugzilla. Mozilla.org, 2005.

http://www.mozilla.org/bugzilla. (22.2.2005)

[Moz06a] Mozilla: Firefox - Rediscover the Web. http://www.mozilla.org/firefox.

(22.6.2006)

71

[Moz06b] Mozilla: Firefox Downloads Counts.

http://feeds.spreadfirefox.com/downloads/firefox.xml. (27.7.2006)

[Net06] Netcraft: Netcraft. http://www.netcraft.com/. (13.5.2006)

[NYN02] Nakakoji K., Yamamoto Y., Nishinaka Y., Kishida K., Ye Y.: Evolution

Patterns of Open-Source Software Systems and Communities. In Pro-

ceedings of the International Workshop on Principles of Software Evo-

lution (Orlando, Florida, May 2002). IWPSE '02. ACM Press, New

York, NY, pp. 76-85.

[OCM06] OpenCM.org: OpenCM Website. http://www.opencm.org. (4.7.2006)

[OGC02a] Office of Government Commerce: Infrastructure Management. IT Infra-

structure Library (ITIL). The Stationary Office, Norwich, UK, 2002.

[OGC02b] Office of Government Commerce: Application Management. IT Infra-

structure Library (ITIL). The Stationary Office, Norwich, UK, 2002.

[OOo06a] OpenOffice.org: EIS. wiki.services.openoffice.org/wiki/EIS.

(27.7.2006)

[OOo06b] OpenOffice.org: CWS. wiki.services.openoffice.org/wiki/CWS.

(27.7.2006)

[OOo06c] OpenOffice.org: Tools: CWS Howto.

http://tools.openoffice.org/dev_docs/OOo_cws.html. (27.7.2006)

[OOo06d] OpenOffice.org: Spreatsheet Project. http://sc.openoffice.org.

(14.5.2006)

[OOo06e] OpenOffice.org: sc: Issue Tracker.

http://sc.openoffice.org/servlets/ProjectIssues. (7.5.2006)

[OOo06f] OpenOffice.org: Word Processing Project. http://sw.openoffice.org.

(22.5.2006)

[OSI06] Open Source Initiative: The Open Source Definition. Open Source Initi-

ative 2003. http://www.opensource.org/docs/definition.php. (6.8.2006)

72

[OTR06] OTRS.org: OTRS::Email Management::Trouble Ticket System:: Wel-

come. http://www.otrs.org. (27.7.2006)

[PHP06] PhpBugTracker: phpBugTracker. http://phpbt.sourceforge.net.

(27.7.2006)

[Ray99] Raymond E.: The Cathedral and the Bazaar: Musings on Linux and

Open Source by an Accidental Revolutionary. O'Reilly & Associates,

Inc. Sebastopol, CA, USA, 1999.

[RCS06] Free Software Foundation: RCS - GNU Project.

http://www.gnu.org/softwarercs/rcs.html. (27.7.2006)

[RGG04] Robles G., Gonzalez-Barahona J. Ghosh R.: GlueTheos: Automating the

Retrieval and Analysis of Data from Publicly Available Software Repo-

sitories. First International Workshop in Mining Software Re-positories

(MSR'04), 2004. pp. 28-31.

[RiG03a] Ripoche G., Gasser L.: Distributed Collective Practices and F/OSS

Problem Management: Perspective and Methods. In the Proceedings of

the Conference on Cooperation, Innovation & Technologies (CITE

2003). 2003.

[RiG03b] Ripoche G., Gasser L.: Scalable Automatic Extraction of Process Mod-

els for Understanding F/OSS Bug Repair. (Hamza H. eds.), Proceedings

of the 16th International Conference on Software & Systems Engineer-

ing and their Applications (ICSSEA-03). December 2003, ACTA press.

[RKG04] Robles G., Koch S., González-Barahona J.: Remote Analysis and Mea-

surement of Libre Software Systems by Means of CVSAnalY tool. Pro-

ceedings of the 2nd ICSE Workshop on Remote Analysis and Measure-

ment of Software Systems (RAMSS '04). 2004.

[Ros00] Rosenberg D.: Open Source: The Unauthorized White Papers. IDG

Books Worldwide , M&T Books, Forter city, CA, USA, 2000.

[Ros04] Rosen L.: Open Source Licensing : Software Freedom and Intellectual

Property Law. Prentice-Hall, USA, 2004.

73

[Rot02] Rothfuss G.J.: A Framework for Open Source Projects. Master�� Thesis

in Computer Science. Department of Information Technology, Univer-

sity of Zürich, 2002.

[San01] Sansdred J.: Managing Open Source Projects: A Wiley Tech Brief. John

Wiley & Sons Inc, NY, USA 2001.

[SaG05] Sandusky R., Gasser L.: Negotiation and the Coordination of Informa-

tion and Activity in Distributed Software Problem Management. Pro-

ceedings of the 2005 International ACM SIGGROUP Conference on

Supporting Group Work, Sanibel Island, Florida, USA, November 2005,

(GROUP '05). ACM Press, New York, NY, pp. 187-196.

 [Sei06] Software Engineering Institute: SEI Open Systems Glossary.

http://www.sei.cmu.edu/opensystems/glossary.html. (9.6.2006)

[Sof06] SoftChange: SoftChange. http://sourcechange.sourceforge.net.

(27.7.2006)

[SuW06] Sunghun K., Whitehead J.: How Long Did it Take to Fix Bugs? MSR

'06: Proceedings of the 2006 International Workshop on Mining Soft-

ware Repositories, Shanghai, China, 2006. pp. 173-174. ACM Press,

New York, NY, USA, 2006.

[SVK06] svk.elixus.org: The SVK Version Control System. http://svk.elixus.org.

(27.7.2006)

[SZZ05] Sliwerski J., Zimmermann T., Zeller A.: When Do Changes Induce

Dixes? In MSR '05: Proceedings of The 2005 International Workshop

on Mining Software Repositories. ACM Press, New York, USA, 2005.

[TaG03] Takang A., Grubb P.: Software Maintenance: Concepts and Practice.

World Scientific Publishing Company, 2003.

[Tig06a] Tigris.org: Scarab.tigris.org. http://scarab.tigris.org. (27.7.2006)

74

[Tig06b] Tigris.org: Subversion.tigris.org. http//subversion.tigris.org.

(22.11.2006)

[Tra06] SourceForge: E03. Tracker (en).

http://sourceforge.net/docman/display_doc.php?docid=24202&group_id

=1. (20.07.2006)

[VAS06] VASoftware: SourceForge Product Introduction.

http://www.vasoftware.com/sourceforge. (27.7.2006)

[Ves06] Vestasys: Vesta Configuration Management System.

http://www.vestasys.org. (20.07.2006)

APPENDIX I: Trend metrics of the case studies

Figures 1 to 7 present monthly statistics of the case studies.

0

100

200

300

400

500

600

700

 03-09
 03-10
 03-11
 03-12
 04-01
 04-02
 04-03
 04-04
 04-05
 04-06
 04-07
 04-08
 04-09
 04-10
 04-11
 04-12
 05-01
 05-02
 05-03
 05-04
 05-05
 05-06
 05-07
 05-08

Month

Am
ou

nt

 opened

 resolved

 f ixed

 duplicate

 invalid

 changes

 definit_ch

Figure 1. Monthly statistics of the Apache project.

In the Apache project (Figure 1), even though defects were reported between September
2003 and October 200, not a single defect was resolved. However, nearly 1500 defects
were resolved during November 2004. The same phenomenon also occurred in March
2005. Otherwise, the monthly number of defects and changes was quite constant.

0

500

1000

1500

2000

2500

 03-09

 03-10

 03-11

 03-12

 04-01

 04-02

 04-03

 04-04
 04-05

 04-06

 04-07

 04-08

 04-09

 04-10

 04-11

 04-12
 05-01

 05-02

 05-03

 05-04

 05-05

 05-06

 05-07

 05-08

Month

A
m

ou
nt

 opened
 resolved
 f ixed
 duplicate
 invalid
 changes
 definit_ch

Figure 2. Monthly statistics of the Mozilla Firefox project.

In the Mozilla Firefox project (Figure 2), the number of opened and resolved defects
increased and stabilized at a level of over a thousand per month.

0

200

400

600

800

1000

1200

 03-09

 03-10

 03-11

 03-12

 04-01

 04-02

 04-03

 04-04

 04-05

 04-06

 04-07

 04-08
 04-09

 04-10

 04-11

 04-12

 05-01

 05-02

 05-03

 05-04

 05-05

 05-06

 05-07

 05-08

Month

A
m

ou
nt

 opened
 resolved
 f ixed
 duplicate
 invalid
 changes
 definit_ch

Figure 3. Monthly statistics of the Gimp project.

In the Gimp project (Figure 3), defect reporting and resolving was quite constant during
the evaluation period but there were over a thousand resolved defects in December 2004.
The overall number of source code modifications decreased slightly.

Because Gimp has plug-ins, modifications to the main product are not always needed.
Developers add new functionalities, such as graphical filters, as plug-ins.

0

100

200

300

400

500

600

700

800

 03-09

 03-10

 03-11

 03-12

 04-01

 04-02

 04-03

 04-04

 04-05

 04-06

 04-07

 04-08

 04-09

 04-10

 04-11

 04-12

 05-01

 05-02

 05-03

 05-04

 05-05

 05-06

 05-07

 05-08

Month

A
m

ou
nt

 opened
 resolved
 f ixed
 duplicate
 invalid
 changes
 definit_ch

Figure 4. Monthly statistics of the Glib project.

In the Glib project (Figure 4), defect reporting and resolving were quite constant during
the evaluation period but there were over one thousand resolved defects in December
2004. However, the number of source code modifications increased since developers
were integrating new functionalities and adding support for new platforms.

0

10

20

30

40

50

60

70

80

 03-09

 03-10

 03-11

 03-12

 04-01

 04-02

 04-03

 04-04

 04-05

 04-06

 04-07

 04-08

 04-09

 04-10

 04-11

 04-12

 05-01

 05-02

 05-03

 05-04

 05-05

 05-06

 05-07

 05-08

Month

A
m

ou
nt

 opened
 resolved
 f ixed
 duplicate
 invalid
 changes
 definit_ch

Figure 5. Monthly statistics of the Kword project.

In the Kword project (Figure 5), the number of defects varied during the evaluation pe-
riod. The figure shows that development is active in the Kword project.

0

50

100

150

200

250

300

 03-09

 03-10

 03-11

 03-12

 04-01

 04-02

 04-03

 04-04

 04-05

 04-06

 04-07

 04-08

 04-09

 04-10

 04-11

 04-12

 05-01

 05-02

 05-03

 05-04

 05-05

 05-06

 05-07

 05-08

Month

A
m

ou
nt

 opened
 resolved
 f ixed
 duplicate
 invalid

Figure 6. Monthly statistics of the Calc project.

In the Calc project (Figure 6), defect reporting and resolving was quite constant during
the evaluation period. However, the source code was heavily modified between May
2004 and November 2004. At the end of the evaluation period, the number of source
code modifications decreased to fewer than one hundred per month.

0

100

200

300

400

500

600

700

800

 03-09

 03-10

 03-11

 03-12

 04-01

 04-02

 04-03

 04-04

 04-05

 04-06

 04-07

 04-08

 04-09

 04-10

 04-11

 04-12

 05-01

 05-02

 05-03

 05-04

 05-05

 05-06

 05-07

 05-08

Month

A
m

ou
nt

 opened
 resolved
 f ixed
 duplicate
 invalid

Figure 7. Monthly statistics of the Writer project.

In the Writer project (Figure 7), defect reporting and resolving was quite constant during
the evaluation period. However, the source code was heavily modified between May
2004 and November 2004. At the end of the evaluation period, the number of source
code changes decreased to fewer than one hundred per month.

Kuopio University Publications H. Business and Information technology

H 1. Pasanen, Mika. In Search of Factors Affecting SME Performance: The Case of Eastern Finland.
2003. 338 p. Acad. Diss.

H 2. Leinonen, Paula. Automation of document structure transformations.
2004. 68 p. Acad. Diss.

H 3. Kaikkonen, Virpi. Essays on the entrepreneurial process in rural micro firms.
2005. 130 p. Acad. Diss.

H 4. Honkanen, Risto. Towards Optical Communication in Parallel Computing.
2006. 80 p. Acad. Diss.

H 5. Laukkanen, Tommi. Consumer Value Drivers in Electronic Banking.
2006. 115 p. Acad. Diss.

H 6. Mykkänen, Juha. Specification of reusable integration solutions in health information systems.
2006. 88 p. Acad. Diss.

H 7. Huovinen, Jari. Tapayrittäjyys – tilannetekijät toiminnan taustalla ja yrittäjäkokemuksen
merkitys yritystoiminnassa.
2007. 277 p. Acad. Diss.

H 8. Päivinen, Niina. Scale-free Clustering: A Quest for the Hidden Knowledge.
2007. 57 p. Acad. Diss.

