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ABSTRACT

Obesity is associated with chronic low-grade inflammation and dysregulations in the
endocrinological functions of peripheral tissues, including adipose tissue. It predisposes
the individual to chronic diseases, including cardiovascular diseases and type 2 diabetes
(T2D), but also to other conditions affecting the quality of life, such as age-related
macular degeneration (AMD). Many of the obesity-related conditions exhibit abnormal
angiogenesis as a part of the pathophysiology. Previous studies by our group have
demonstrated that long-term weight reduction can change the gene expression profile of
adipose tissue in overweight individuals with impaired fasting glucose or impaired
glucose tolerance (IGT). One of the most downregulated genes was tenomodulin
(TNMD). TNMD is located in the X-chromosome and has been shown to inhibit
angiogenesis.

   The role of TNMD as a susceptibility gene for obesity- and inflammation-related
traits was investigated by studying the association of single nucleotide polymorphisms
(SNPs) with obesity and indicators of glucose and lipid metabolism in 507 overweight
individuals with IGT who participated in the Finnish Diabetes Prevention Study (DPS),
and in a cross-sectional population-based cohort of middle-aged men (the METSIM
study, n=5298). In addition, the association with proinflammatory markers was studied
in DPS and the association with AMD in a separate sample of 475 non-diabetic
individuals.

Three markers were associated with conversion from IGT to T2D in DPS, but not
with the prevalence of T2D in METSIM. The same genotypes that had elevated risk for
developing T2D were associated with elevated serum concentrations of inflammation
markers in DPS and with higher serum cholesterol concentrations in the obese men of
both study populations. In women, the sequence variation of TNMD was associated with
serum concentrations of proinflammatory factors, central obesity and prevalence of
AMD. The associations with inflammatory mediators were modified by central obesity
and the status of glucose metabolism.

In conclusion, these results suggest that the genetic variation of TNMD might be
related to the risk for components of metabolic syndrome, a constellation of
dyslipidaemia, central obesity, insulin resistance and chronic low-grade inflammation,
especially in the high-risk individuals.

National Library of Medicine Classification: QZ 50, WD 200.5.H8, WK 810, WK 820

Medical Subject Headings: Cholesterol; Diabetes Mellitus, Type 2/genetics;
Dyslipidemias; Finland; Genetic Variation; Genotype; Glucose Intolerance/genetics;
Glucose/metabolism; Insulin Resistance/genetics; Lipid Metabolism; Metabolic
Syndrome X; Middle Aged; Obesity/genetics; Polymorphism, Genetic; Polymorphism,
Single Nucleotide/genetics; Quality of Life; TNMD protein, human; X Chromosome
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DGAT2* diacylglycerol O-acyltransferase 2
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DPS the Finnish Diabetes Prevention Study
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ELISA enzyme-linked immunosorbent assay
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ER endoplasmic reticulum
ERK/MAPK extracellular-signal regulated kinase/mitogen-activated  protein kinase
FADS1* fatty acid desaturase
FASN* fatty acid synthase
FDR false discovery rate
FPG fasting plasma glucose concentration
FTO* fat mass and obesity- associated gene
HDL high-density lipoprotein
HHEX* homeobox, hematopoietically expressed
HMGCR* 3-hydroxy-3- methyl-glutaryl- CoA reductase
HR hazard ratio
HSL* hormone-sensitive lipase
HWE Hardy-Weinberg equilibrium
IFG impaired fasting glucose
IDF International Diabetes Federation
IGT impaired glucose tolerance
IL interleukin
IQ interquartile
JAZF1* juxtaposed with another zinc finger gene 1



KCNJ11* potassium inwardly rectifying channel, subfamily J, member 11
KO knock-out
LD linkage disequilibrium
LDL low-density lipoprotein
LGR5* leucine-rich repeat-containing G protein coupled receptor 5
LPL* lipoprotein lipase
MBTPS2* membrane-bound transcription factor protease, site 2
METSIM the Metabolic Syndrome in Men- Study
MIF macrophage migration inhibitory factor
MSTN* myostatin
NAFLD non-alcoholic fatty liver disease
NCEP:
ATP III National Cholesterol Education Program’s Adult Treatment Panel III
NOTCH2* Notch homolog 2 (Drosophila)
OGTT oral glucose tolerance test
OR odds ratio
PEDF* pigment epithelium-derived growth factor
PFKP* phosphofructokinase, platelet type
PPAR* peroxisome proliferator- activated receptor
RANTES regulated upon activation, normally T-expressed, and presumably secreted
RT receiving treatment
RT-PCR reverse-transcriptase-polymerase chain reaction
SAA serum amyloid A
SCD* stearoyl coenzyme A desaturase
SCX* scleraxis
SEM standard error of the mean
sICAM soluble intercellular adhesion  molecule 1
SNP single nucleotide polymorphism
SREBP* sterol regulatory element binding protein
T2D type 2 diabetes
TCF7L2* transcription factor 7-like 2
TGF-�  transforming growth factor �
THADA*  thyroid adenoma associated gene
TNMD* tenomodulin
TNF-� tumour necrosis factor-�
TSP* trombospondin
TSPAN8* tetraspanin 8
UTR untranslated region
VEGF* vascular endothelial growth factor
VLDL very low-density lipoprotein
WT wild-type
WHR waist to hip-ratio
WHO World Health Organization
XM maternally inherited X- chromosome
XP paternally inherited X- chromosome

*the genes are indicated with italic font and proteins with normal font
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1 INTRODUCTION

Obesity, defined as body mass index (BMI) �30 has become a major public health

problem, especially in the developed countries but also in the rapidly-developing

countries. The aetiology of obesity is a complex interplay between environmental,

genetic and behavioural factors even though the fundamental cause is known, i.e. the

imbalance between energy expenditure and intake. The storage of this surplus energy

into adipocytes evokes disturbances in the cellular organization and secretory functions

of adipose tissue, thereby leading to various metabolic abnormalities and chronic low-

grade inflammation.

Excess fat mass, especially in the abdominal region, is one key component of

metabolic syndrome, a cluster of metabolic abnormalities including dyslipidaemia,

insulin resistance, glucose intolerance, hypertension and inflammation. The obesity

epidemic has also resulted in a higher prevalence and the incidence of obesity-related

conditions, including diseases which can dramatically shorten the life span, for

example, cardiovascular diseases, certain types of cancer and type 2 diabetes (T2D). In

addition, obesity predisposes to other conditions with tremendous effect on the quality

of life, such as osteoarthritis and age-related macular degeneration (AMD).

In addition to the inflammatory mediators, adipose tissue produces and secretes

molecules that regulate angiogenesis. Interestingly, many of the related conditions,

including cardiovascular diseases, AMD and microvascular complications of T2D

exhibit vascular dysfunction and dysregulation as an essential part of their

pathophysiology.

It is also known that alterations in body weight and fat mass influence the gene

expression profile of adipose tissue. In a previous study, tenomodulin (TNMD),  a

putative angiogenesis inhibitor, was one of the most extensively downregulated genes

during long-term weight reduction in overweight individuals with impaired fasting

glucose (IFG) or impaired glucose tolerance (IGT). This finding provided the impetus to

investigate whether TNMD could  be  a  susceptibility  gene  for  obesity  and  its  related

conditions.

The purpose of this work was to investigate the association of common sequence

variation in the TNMD gene with obesity- and inflammation-related phenotypes,

including 1) anthropometric measurements, 2) glucose metabolism and incidence or
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prevalence of type 2 diabetes, 3) low-grade inflammation indicated by serum levels of

systemic immune mediators, 4) serum levels of lipids and lipoproteins and 5)

prevalence of age-related macular degeneration.
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2 REVIEW OF THE LITERATURE

2.1 Obesity

Obesity is characterized by the excess accumulation of adipose tissue, often to an extent

that endangers an individual's health. The adipose tissue mass can be measured by

various methods such as bioelectrical impedance, underwater weighing, total body water

or potassium content or by different imaging methods (1-3). Apart from bioelectrical

impedance, these techniques are rather cumbersome and expensive and thus different

surrogate measures are applied in the clinical settings. The most common surrogate

marker for body fat content is BMI, calculated as weight in kilograms divided by height

in meters squared. According to World Health Organization (WHO) guidelines (4),

determined on the basis of mortality statistics from the United States (5), overweight is

defined as BMI>25 kg/m2 and obesity as BMI 30 kg/m2. Since abdominal obesity is

specifically associated with the metabolic risk factors (6), the measures of central

obesity, such as waist circumference or waist to hip-ratio (WHR) are also feasible in the

estimation of abdominal and general fat mass (1,2). The cut-offs for central obesity in

European populations, based on the definitions of metabolic syndrome according to

WHO (7) and the European Group for the Study of Insulin Resistance (EGIR) (8) are

waist circumference �80 cm in women and �94 cm in men (8) and/or WHR �0.85 in

women and �0.9 in men (7).

In the population-based FIN-D2D survey, which was conducted in Finland between

October 2004 and January 2005,  24% of men and 29% of women were classified as

obese, 50% of men and 38% of women were overweight and 69% of men and 76% of

women fulfilled the criteria for central obesity (9). These numbers are in line with

estimations from many other developed countries, as for example in the United States

where 31.1% of men and 33.1% of women were obese in 2004 (10) while 17.8% of

Australian men and 15.1% of women were obese and 61.9% of men and 45% of women

were overweight in 2006 (11). In the majority of European countries, the prevalence of

obesity increased by up to 40 % between 1989 and 1999 (2).

2.1.1 Lifestyle-related risk factors of obesity

The high and constantly increasing prevalence of obesity is due to two major

environmental factors: changes in food intake and physical activity (6). During the last



18

decades, the energy intake has increased due to larger portion sizes and higher energy

density of foods (12-15). In combination with decreased physical activity (15,16), these

plentiful supplies of food in the developed countries have resulted in the mushrooming

of obesity, which represents a major challenge for modern society. Accordingly, a multi-

faceted approach including urban planning, lifestyle education and changes in the food

policy is needed to overcome these factors (17).

2.1.2 Genetic risk factors of obesity

The obesity epidemic can be considered as having strong genetic determinants since 30-

80% of the variation in body fat has been attributed to genetic factors (18-20). The

inheritance  of  abdominal  obesity  is  also  high,  e.g  in  a  sample  of  post-menopausal

women genetic factors were considered to explain 60% of the variance in abdominal fat

(21). Many of the characterized genetic risk factors are related to regulation of food

intake and metabolic pathways (22), but susceptibility genes with unknown functions

have also been identified (23-27).

The genetic risk factors can be divided into variants that cause mono- or polygenic

obesity. The human obesity gene map published in 2005 (22), lists a total of 11 genes in

which mutations cause monogenic obesity, such as the leptin (28), leptin receptor (29)

and melanocortin 4 receptor genes (30). However, since these mutations with high

penetrance and a large effect are rare, they are not feasible markers at the population

level.

The recent technological advancements which have made genome-wide scans easier

and more affordable have facilitated the identification of common variants. For

example,  the  association  of  the  genes  encoding  fat  mass  and  obesity-  associated  gene

(FTO) (23-26), catenin, �-like 1 (CTNNBL1) and phosphofructokinase platelet type

(PFKP) (25,27) with obesity have been replicated in more than one large study

population, but as these variants have low penetrance and a relatively small effect size,

they are currently not useful predictors for the propensity to obesity at the general

population level. For example, the individuals who harbour the risk genotype (AA) of

the marker rs9939609 within the gene encoding FTO weigh approximately 3 kg more

than individuals without the risk allele (genotype rs9939609-TT) (24). The effect of the

marker rs6013029, which is located in the CTNNBL1 is stronger, since the individuals

with the rs6013029-TT genotype have 2.67 units higher BMI and 5.96 kg higher fat

mass than individuals with the rs6013029-GG genotype (27).
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In addition to these genes and variants in which the associations have been

replicated, there are a number of genes with conflicting results, such as peroxisome

proliferator-activated receptor-� (PPAR-�)  (31,32).  The failure in replication can result

from differences in the study populations, heterogeneity in the disease aetiology or from

dissimilar ascertainment schemes, for example recruiting subjects with mild or severe

obesity (33). The replication studies might also have been conducted in different ethnic

groups with allele frequencies that differ from those observed in the original study

population (34). Inadequate sample sizes, failure to attribute positive results to chance

in the initial studies (35) or environmental differences can also account for the

heterogeneity between different genetic association studies.

2.2 Obesity-related co-morbidities

In obese individuals, the mass of adipose tissue, a major endocrine organ with various

para- and autocrine functions, is increased. Therefore it is not surprising that obesity is

the main risk factor for a number of metabolic abnormalities (1,2,4). Almost all, 90%,

of individuals who have type 2 diabetes (T2D) are overweight (36). Furthermore,

obesity increases the risk for various other conditions, many of which are associated

with vascular dysfunction and disturbances in neovascularization, such as

cardiovascular disease, certain types of cancer and age-related macular degeneration

(1,2,4).  In  addition,  central  obesity  is  a  key  component  of  the  metabolic  syndrome,  a

constellation of metabolic abnormalities and cardiovascular disease risk factors (6,7,37).

2.2.1 Metabolic syndrome

The concept of the  metabolic syndrome has existed for at least 80 years and was

originally defined as the clustering of hypertension, hyperglycaemia and gout but in

1940´s upper body adiposity was also included in the definition (38). In 1988, Reaven

underlined the importance of insulin resistance in his description of the metabolic

syndrome, or syndrome X, a combination of hyperinsulinaemia, glucose intolerance,

hypertension and dyslipidaemia (39). It is notable that central obesity was not included

in this definition.

Nowadays, the definition of metabolic syndrome as a constellation of metabolic

abnormalities has been widely accepted, but the exact diagnostic criteria were defined

for the first time in 1998 when WHO (7), EGIR (8) and the National Cholesterol
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Education Program’s Adult Treatment Panel III (NCEP: ATP III) (40) formulated their

consensus statements. Subsequently, various other criteria, including those of

International Diabetes Federation (IDF) (41), American Heart Association/National

Heart, Lung and Blood Institute (42) and Association of American Clinical

Endocrinologists (43) were introduced (Table 1).

All of these six definitions include central obesity, hyperglycaemia, hypertension

and dyslipidaemia as indicated by elevated serum triglycerides and/or decreased high-

density lipoprotein (HDL) concentration, but the cut-off points and the amount of

criteria that need to be fulfilled vary to some extent. This discrepancy between criteria

naturally affects the absolute prevalence estimates of the metabolic syndrome, but

regardless of the applied criteria, the explosion in the numbers of individuals with these

metabolic abnormalities is a growing burden to health care systems (41).

Visceral, rather than the subcutaneous fat depot is generally believed to be the main

culprit of the metabolic syndrome (44), as it is considered to be more metabolically

active and it is able to deliver endocrinal factors to the portal veins and can thus directly

impact on the liver (45). The amount of the subcutaneous depot can exceed that of

visceral by 3-4 times (46), and thus it should not be ignored. However, a recent study in

the Framingham Heart Study population showed that while abdominal adiposity in

general was related to a higher risk of metabolic and cardiovascular disease,

subcutaneous abdominal fat was not associated with a linear increase in the prevalence

of components of metabolic syndrome, including low HDL, high triglycerides and

hypertension among  obese individuals (47).

It has been suggested that especially the visceral adipose depot has a central role in

the development and maintenance of a proinflammatory state, as reflected in the

elevated serum C-reactive protein (CRP) concentration and prothrombotic state, evident

as increased plasma concentrations of plasminogen activator inhibitor and fibrinogen

(44,45). These two states are also characteristics of the metabolic syndrome, but they

are not included in the diagnostic criteria (7,8,40-42). Both features are likely caused by

multiple mechanisms, but there is a growing body of evidence suggesting that these

states are metabolically interconnected and result from the dysregulation in the

expanding adipose tissue (6,48-51).
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2.2.1.1 Genetic risk factors for metabolic syndrome

In addition to obesity, many of the other individual components of metabolic syndrome

have genetic background, although they also are strongly influenced by environmental

factors. Insulin resistance clusters in families, since 45% of first-degree relatives of

patients with T2D are insulin resistant on the basis of euglycaemic insulin clamp

technique, compared with 20% of people without a family history of T2D (52,53). The

heritability estimates for other components of the metabolic syndrome range from 0.3 to

0.92 (Table 2). Findings from twin and family studies suggest that in addition to the

individual components, the clustering of metabolic syndrome factors is also heritable

(54-56).

Table 2. The heritability estimates for the components of metabolic syndrome.

Component Heritability Reference

Glycaemic disturbances 0.57-0.92 (55)

Blood pressure 0.4-0.5 (57)

Dyslipidaemia 0.3 (55)

Albumin excretion 0.3 (58)

Abdominal visceral fat 0.42-0.6 (21,59)

Body fat 0.3-0.8 (18-20)

2.2.2 Type 2 Diabetes

T2D is a heterogeneous group of diseases, characterized by hyperglycaemia resulting

from defects in insulin secretion and insulin responses (60,61). Prolonged

hyperglycaemia is associated with dysfunction, damage to and even failure of different

tissues and organ systems, including eyes, kidneys, heart, nerves and blood vessels

(61,62). The related conditions include microvascular complications such as diabetic

nephropathy, retinopathy and neuropathy and macrovascular complications, including

cardiovascular, cerebrovascular and peripheral vascular diseases (62,63). The WHO

1985 and 1999 diagnostic criteria for impaired glucose regulation which are based on

the determination of fasting plasma glucose concentration (FPG) and 2-hour venous

plasma glucose concentration (2h-PG) in an oral glucose tolerance test (OGTT) are

presented in Table 3.
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Table 3. The WHO 1985 and 1999 diagnostic criteria of impaired glucose regulation (60,62).

1985 criteria 1999 criteria

FPG (mmol/l) 2h-PG
(mmol/l)

FPG
(mmol/l)

2h-PG
(mmol/l)

Normoglycaemia <7.8 implied <7.8 implied <6.1 <7.8 implied
IFG Not defined �6.1, <7 <7.8
IGT <7.8 �7.8, <11.1 �6.1, <7 �7.8, <11.1
T2D �7.8 �11.1 �7.0 �11.1

The category of IFG was introduced in the WHO criteria in 1999, with the main

aim of creating a fasting category which would be analogous to IGT. The suitable lower

cut-off for this glucose tolerance class has been disputed. In 2003, the American

Diabetes Association recommended that it should be lowered to 5.6 mmol/l (64), while

the cut-off proposed by WHO 1999 criteria is 6.1 mmol/l (62).  The rationale was to

identify similar proportions of the population with IFG and IGT, and to produce

equivalent  predictive  power  for  progression  to  diabetes  from  the  IGT  and  IFG

categories (64). The European Diabetes Epidemiology Group estimated that the change

in cut-off would have resulted in two-to five-fold increase in the prevalence of IFG

across the world and since the total benefits or costs of designating individual as at risk

for diabetes were not known, they did not recommend the lower threshold (65).

In parallel with the obesity epidemic, the prevalence of T2D has increased during

the last decades (66). According to the FIN-2D2 survey of 2004-2005, 16 % of Finnish

men and 11 % of women had T2D, while 42% of men and 33 % of women had

abnormal glucose regulation (IFG, IGT or T2D) (9). The global prevalence

approximation of T2D in 2000 was 2.8%, which is estimated to increase to 4.4% in

2030 (67). The highest increases in T2D prevalence are predicted to take place in the

Middle Eastern Crescent (163%), Sub-Saharan Africa (161%), Latin America and the

Caribbean and in Asia (regionwise estimates ranging from 104 to 151%).

2.2.2.1 Environmental risk factors of type 2 diabetes

Obesity, especially in the abdominal region, increases the risk of T2D and accordingly,

the main environmental risk factors of T2D are related to lifestyle (68,69). Several

studies have indicated that metabolic syndrome predicts future diabetes (70,71).

However, as hyperglycaemia and insulin resistance are the key components of EGIR´s

(8) and WHO´s (7) diagnostic criteria for metabolic syndrome and they also belong to

the other definitions of metabolic syndrome (40-43), this is not unexpected. Other non-
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genetic risk factors include age (69), low physical activity (68,69) and intrauterine

exposure to hyperglycaemia and malnutrition (72,73). The nutritional risk factors

include a high fat diet rich in saturated fatty acids and low intake of dietary fibre (74). In

addition, consumption of foods with a high glycaemic index has been linked to an

increased risk of T2D (75-79), but these findings are controversial (80,81).

The successfulness of lifestyle intervention on preventing the onset of T2D in

high-risk individuals has been demonstrated in different study populations, including

Finnish (82,83), Swedish (84), Chinese (85) and American (86) individuals. In the

Finnish Diabetes Study (DPS) (83), 522 middle-aged overweight individuals with IGT

were randomized into two groups. The intervention group received intensive,

individualized diet and exercise counselling while the control group received general

information about diet and exercise instructions. During the actual study period which

had a median follow-up time of four years, the risk of T2D was reduced by 58% in the

intervention group (82). This reduction was directly associated with lifestyle changes

(82) and the reduction in the incidence of T2D was sustained when the participants were

further followed up for a median of three years (87). In the 6-year Malmö feasibility

study which examined Swedish middle-aged men, a 50% risk reduction in the incidence

of  T2D  was  observed  among  those  who  volunteered  to  participate  in  the  diet  and

exercise intervention in comparison to those who refused to participate (84). The

Chinese Da Qing- Study investigated the efficacy of diet, exercise or their combination

in reducing the incidence of T2D during six years of follow-up (85). All three

approaches were almost equally effective, since the incidence of T2D was 67.7% in the

control group, 41.1% in the exercise group, 43.8% in the diet group and 46% in the

group that combined diet and exercise. The Diabetes Prevention Program, conducted in

the US, compared the efficacy of lifestyle modification and oral administration of

metformin in preventing or delaying the onset of T2D among high-risk individuals (86).

Similar to the DPS, the participants were overweight and had IGT. Metformin treatment

reduced the risk of T2D by 31%, while the risk reduction achieved by lifestyle

modification was identical to that observed in the DPS (58%).

2.2.2.2 Genetic risk factors for type 2 diabetes

The genetic determinants of T2D are indicated by familial clustering (52,53), marked

differences in the prevalence among various ethnic and racial groups (88-91) and

different concordance rates between monozygotic and dizygotic twins (55,92). The
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general pattern of inheritance of T2D in families is consistent with it being a complex,

multifactorial disease with polygenic background (93,94). Accordingly, only a few

monogenic forms have been described and they are estimated to account for only

approximately 5% of the total T2D in most populations (95). The genetic risk factors

are estimated to account for 40-85% of total disease susceptibility (96).

Many genes with a modest effect size have been identified with the candidate gene

approach (93,94,97,98), the best-established being PPAR-� (99-102) and potassium

inwardly-rectifying channel, subfamily J, member 11 (KCNJ11) (26,101,103-107). The

associations of these two genes have been replicated in the genome-wide scans

(25,26,108), which have also revealed many new, promising candidates, including the

genes encoding transcription factor 7-like 2 (TCF7L2), FTO, homeobox

hematopoietically expressed (HHEX) and cyclin-dependent kinase inhibitor-2A/B

(CDKN-2A/B). The most consistent associations have been observed with TCF7L2

(26,107,109-111). A meta-analysis of 29195 controls and 17202 cases provided a

pooled odds ratio (OR) of 1.46 for the rs7903146-TT genotype (112). The variants of

TCF7L2 increase the risk of T2D independently of BMI (26,107,113) and have been

linked to impaired insulin secretion (113). In most of the studies, the variants of FTO

have been shown to increase the risk of T2D by affecting the body size (24-26,114), but

in a German cohort a BMI-independent effect was observed (107). The OR for the risk

genotype rs9939609-AA  ranges between 1.22-1.27 (24,26,114).  The associations of

HHEX and CDKN-2A/B have been replicated in populations of Asian and Caucasian

origin, with the ORs for risk genotypes being between 1.1-1.4 (26,107,108,114). In

addition, in a recent meta-analysis of three genome-wide scans for T2D, six new loci

were identified, including juxtaposed with another zinc finger gene 1 (JAZF1), thyroid

adenoma associated gene (THADA)  and  a  disintegrin  and  metalloproteinase  with

thrombospondin type 1 motif, 9 (ADAMTS9) and the intergenic regions between the

genes encoding  cell division cycle 123 homolog (S. cerevisiae)  (CDC123) and

calcium/calmodulin-dependent protein kinase 1D (CAMK1D), tetraspanin 8 (TSPAN8)

and leucine-rich repeat-containing G protein coupled receptor 5 (LGR5), and between

Notch homolog 2 (Drosophila)  (NOTCH2) and a disintegrin and metalloproteinase

domain 30 (ADAM30) (115). The OR for the individual risk alleles range between 1.05

and 1.11.
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2.2.3 Age-related macular degeneration

Age-related macular degeneration is a progressive, chronic disease with a multifactorial

background (116). According to the prevalence estimates from WHO, it is the most

common cause of blindness in the developed countries (117) as it has been estimated to

be  the  cause  of  half  of  all  cases  of  blindness  in  Western  populations  over  65  years  of

age (118). AMD is associated with aging and it gradually destroys sharp, central vision

(116) as degenerative tissue alterations occur at the interface between the neural retina

and underlying choroid (119,120).

AMD can be divided into atrophic (dry) and exudative (wet) subforms, with the

former being more common and accounting for approximately 80% of AMD cases

(121). Drusens are one of the most common early manifestations, followed by

geographic atrophy in the atrophic form of AMD, or by neovascularization in the

exudative form. The atrophic form involves modifications in pigment distribution, loss

of retinal pigment epithelium cells and photoreceptors, and reduced retinal function due

to an overall atrophy of the cells (116,122). Together these changes gradually blur the

central vision. The hallmark feature of the exudative form is the proliferation of

abnormal, fragile choroidal blood vessels, which enter into the subretinal space thereby

resulting into retinal detachment, hemorrhages, exudates and glial proliferation with

scarring (116,122).

Although the exact pathogenic process is still unclear, the roles of oxidative stress

(119) and dysregulated angiogenesis (123) are now well established. The expression

levels of inhibitors and stimulators of neovascularization are known to be altered during

the development of AMD (123-125). For example, vascular endothelial growth factor

(VEGF), is strongly involved in choroidal neovascularization (125) and accordingly, the

VEGF-blocking compounds are emerging as the most successful treatment for

exudative AMD (126-129).

2.2.3.1 Environmental risk factors for age-related macular degeneration

In addition to age (116), gender and smoking, obesity and its related conditions such as

hypertension and hypercholesterolemia predispose to AMD (130-135). Interestingly,

many of these environmental risk factors, such as smoking status, dietary habits,

obesity, high serum cholesterol, gender and age are associated with the amount of

macular pigment (136,137), which seems to be a protective factor from photo-oxidative

damage (138).
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2.2.3.2  Genetic risk factors for age-related macular degeneration

Family  and  twin  studies  have  underlined  the  presence  of  genetic  risk  factors.  First-

degree relatives of patients with AMD have a higher risk of AMD than those without a

family history (139,140). They are also affected at a younger age and have an increased

lifetime risk of late AMD (141,142). Accordingly, the heritability estimates are

relatively high, 0.46-0.71 for AMD (139), 0.67-0.85 for macular pigment density (143)

and 0.63 for the amount of small hard drusens (144).

The importance of genetic risk factors, specifically of those related to the

complement system, has been demonstrated with genome-wide scans and the candidate

gene approach. Recently, an association between the rs1061170 (also known as Y402H)

of the complement factor H gene CFH and AMD was revealed in several different

populations (145-151) with ORs generally ranging between 2.45 and 5.57 for the

homozygotes of the risk allele rs1061170-C. An association between the

LOC387715/HTRA1 locus and AMD in both Caucasian and Japanese and Chinese

populations has been documented (152-159). The odds ratios range between 1.69 and

2.61 for heterozygotes and between 2.20 and 9.90 for homozygotes of the risk

genotypes. A common polymorphism (rs2230199) in the complement component 3

gene  (C3) has also been associated with AMD (160,161). Other suggested candidates

include genes related to fatty acid metabolism, such as apolipoprotein E (162-164),

ATP-binding cassette, subfamily A, member 4 (ABCA4) (165,166) and elongation of

very long chain fatty acids-like 4 (ELOVL) (150,167), but their roles in AMD

pathogenesis are controversial.

The role of angiogenesis regulators as susceptibility genes for AMD has also been

studied, but the genetic association studies on the role of VEGF polymorphisms in the

exudative AMD have resulted into conflicting results (168-171). However, there is

some evidence on the association between polymorphisms of the gene encoding the

antiangiogenic pigment epithelial growth factor (PEDF) and AMD (172,173).

2.3 Pathophysiological changes in obesity

A long-term imbalance between energy expenditure and intake has harmful systemic

effects (Figure 1), many of which are attributable to adipose tissue dysfunction

(48,174,175). In addition to increased adipocyte size which itself is an independent

marker for metabolic abnormalities (176), other adverse events take place in the adipose
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tissue. The number of preadipocytes and mature adipocytes is in a dynamic equilibrium,

which is regulated by various stimuli, including nutritional status (177) and exposure to

medication and cytokines and other signalling molecules (178,179). In obesity, this

equilibrium is disrupted, as obese individuals have approximately three-fold higher

necrosis rate of adipocytes in comparison to lean persons (180). Impaired adipocyte

differentiation has also been demonstrated in insulin resistant states (181-183) and this

probably accounts, at least in part, for both the increased serum free fatty acids (FFAs)

and  the  altered  pattern  of  adipokine  secretion  observed  in  obesity.  One  of  the  crucial

events is the activation of the Wnt-signaling pathway which, in turn, impairs normal

adipocyte differentiation as well as the secretion of adipokines (182-184).

The connection between inflammation and adipocyte differentiation is highlighted

by the negative correlation between the degree of adipocyte differentiation and

activation of proinflammatory molecules. For example, undifferentiated human

preadipocytes express high levels of many proinflammatory genes, which are then

downregulated as the cells differentiate (48) and the classic proinflammatory factor,

tumour necrosis factor � (TNF-�) has been shown to inhibit normal adipogenesis by

inhibiting the Wnt pathway (184). Inflammation, together with the other consequences

of adipocyte hypertrophy causes metabolic stress in the endoplasmic reticulum (ER) and

mitochondria (185,186), which can have detrimental effects on lipid and cholesterol

metabolism (185,187).

Normally, adipocytes have a large capacity to synthesize and store triglycerides

during feeding and to hydrolyse and release triglycerides as FFAs and glycerol during

the fasting state (188,189). During the early stages of excess energy intake, the

adipocytes continue to actively store additional triglycerides and maintain a nearly

normal rate of lipolysis during fasting (190). Circulating FFA levels can become

elevated, but skeletal muscle maintains high insulin sensitivity (191). As the energy

imbalance continues, the enlarged adipocytes develop a diminished capacity to store fat

and their endocrine functions change so that they produce excessive  amounts  of

cytokines that promote inflammation, atherosclerosis and insulin resistance (48,175).

When adipocytes become insulin-resistant, they fail to secrete normal amounts of

insulin-sensitizing adipokines. This sets off a vicious cycle further promoting insulin

resistance and evoking chronic low-grade inflammation which further disposes to other

metabolic diseases such as metabolic syndrome and T2D (48,175,192). These changes

in adipocyte function and lipid metabolism can ultimately result in ectopic fat
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accumulation and lipotoxicity in various tissues when the fatty acid spillover exceeds

the needs of oxidative metabolism and enhances metabolic flux into harmful

nonoxidative metabolism pathways (193). One of the complications of obesity that

seems to be related to these processes is non-alcoholic fatty liver disease (NAFLD), a

spectrum of liver damage including steatosis and fibrosis (194-196). NAFLD is defined

as an excess of fat in the liver in which at least 5% of hepatocytes display lipid droplets

(197).

In addition to these inflammatory and insulin-sensitizing effects, the secreted

compounds are involved in many diverse processes, including the regulation of

neovascularization and the extracellular matrix (198-200). For example, monobutyrin

has been shown to act as an adipose tissue-specific promoter of angiogenesis (201).

Other well-known adipose tissue derived angiogenesis regulators include VEGF,

transforming growth factor � (TGF-�) and leptin (198-200,202-204). Angiogenetic

changes have been described, both in obese (202) and hyperglycaemic states (205,206).

Figure 1. A simplied diagram showing the pathophysiological changes in obesity. NAFLD non-alcoholic
fatty liver disease, T2D type 2 diabetes, WAT white adipose tissue
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2.3.1 Glucose homeostasis in obesity

Insulin resistance that accompanies obesity is related to a deterioration in glucose

disposal in peripheral tissues, including skeletal muscle and adipose tissue, but also in

liver (207,208). Obesity contributes to alterations in glucose metabolism in different

ways, including, but not exclusively due to, enhanced lipolysis, lipotoxicity, elevated

serum FFA concentrations and dysregulation in fat accumulation, mitochondrial

function and cytokine production in peripheral tissues (174,193,209,210).

Increased lipolysis results in elevated levels of circulating FFAs and triglycerides,

thereby contributing to lipid overload and the flow of fatty acids into skeletal muscle

and liver and interfering with the insulin signalling pathways in the skeletal muscle

(174,210-212). The hypothesis that FFAs are the mediators of insulin resistance  is

consistent with the strong association between obesity, insulin resistance and high

circulating FFA levels (213) and the observation that elevated levels of circulating

FFAs can cause peripheral insulin resistance in both animals and humans (214,215).

Moreover, acute lowering of FFAs with an antilipolytic drug (Acipimox; 6-methyl-1-

oxido-pyrazine-2-carboxylic acid) has been shown to enhance the ability of insulin to

promote glucose uptake in peripheral tissues (216). It has been shown that FFAs

compete with glucose as fuel for skeletal muscle and can thereby cause impaired

glucose uptake and failure of insulin to suppress hepatic gluconeogenesis

(214,217,218).

In addition to the distribution of lipids, the proliferation and differentiation

capacity of adipocytes have been suggested to contribute to the altered glucose

metabolism occurring in obesity. Enlarged abdominal adipocytes have been shown to

predict the development of type 2 diabetes independently from insulin resistance and

insulin secretion (176). Impaired fat oxidation has also been suggested to cause ectopic

fat accumulation, since the inhibition of fat oxidation was shown to increase

intracellular lipid content and to decrease insulin action in rats (219). In humans,

decreased postabsorptive fat oxidation was shown to predict weight gain and to be

associated with reduced insulin sensitivity (220,221). This "inadequate fat oxidizing

machinery" as proposed by Heilbronn et al (209) may result from decreased

mitochondrial capacity (222) and lower mitochondrial DNA copy number among obese

individuals (223), although these hypotheses have been challenged by data from mouse

studies (224-226). In addition, changes in sympathetic nervous system activity have

been proposed to affect the fat oxidation capacity (227,228). Interestingly, in the study
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of Perseghin et al (229) with nonobese and obese individuals with similar insulin

sensitivity and intramyocellular lipid content, the obese individuals were shown to have

higher fasting lipid oxidation rates. This indicates that increased fat oxidation might be

an adaptative mechanism that is aimed at maintaining normal intramyocellular lipid

concentrations and insulin sensitivity despite the increase in the amount of body fat.

The role of adipose tissue in glucose homeostasis is further illustrated by the

observation that an insufficient mass of adipose tissue is associated with elevated

circulating triglyceride and fatty acid concentrations and leads to insulin resistance, both

in mice (230-232) and humans (233-235). The observations from humans with

lipodystrophies have demonstrated that inadequate adipose tissue mass leads to ectopic

fat storage in liver, pancreas and skeletal muscle, which then may trigger insulin

resistance and other metabolic alterations (235,236). Lipodystrophies are linked to

insulin resistance also via impaired adipokine secretion (237-239). For example,

individuals with lipodystrophies have low circulating levels of leptin and adiponectin

(238) and the administration of leptin has been shown to improve the glycaemic control

and to decrease serum triglyceride levels in lipodystrophic patients (237).

In contrast to individuals with lipodystrophy, obese persons have a large mass of

adipose tissue, although they have similar metabolic perturbations. Therefore, it has

been suggested that obesity is another ectopic fat accumulation syndrome because the

adipose tissue is not sufficient to store the excess energy (209). This is in line with the

increased content of triglycerides within skeletal muscle in obesity and T2D (215), the

strong association between the increased intramyocellular lipid content and insulin

resistance (209,210,235,240) and the concept that fatty acid overload in pancreas results

in  �-cell  dysfunction  and  apoptosis  (193).  The  association  of  hepatic  fat  content  with

insulin resistance (241) and impaired suppression of hepatic glucose production by

insulin (242) also support this hypothesis.

2.3.2 Lipid metabolism in obesity

The connection between obesity and serum lipid and lipoprotein levels has been

established in many large epidemiological studies, including the Framingham Heart

Study (243,244). Changes in body weight have also been shown to result in alterations

in  serum lipoprotein  concentrations  and  thereby  to  affect  the  risk  of  atherogenic  traits

(245). The serum concentrations of total and low-density lipoprotein (LDL) cholesterol

are generally increased and the concentrations of HDL cholesterol, an acceptor of
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cholesterol efflux, are decreased in obese individuals (244,246), and these are believed

to account for at least some of the increased risk of cardiovascular events (245,247).

During constant positive energy balance both the triglyceride pools of adipose tissue

and triglyceride synthesis in the liver are increased. This promotes the overproduction

of very low density lipoprotein (VLDL)-triglycerides in obese people (248,249). The

excess production is stimulated by constant, increased influx of nutrients into the liver

as excess energy is derived from the diet in the postprandial state (190,250), and the

plasma concentration of FFAs is increased in the fasting state (191,192). The increased

input of fatty acids into the liver may be accentuated by central obesity, because visceral

adipose tissue directly releases fatty acids into the portal circulation (45).

 Obese individuals have lower cholesterol absorption rates (251), but their

cholesterol synthesis is increased in comparison to individuals with normal body size

(252).  Weight reduction has been shown to increase the absorption of cholesterol (253).

Restriction of caloric and dietary sterols has been shown to decrease cholesterol

synthesis and improve glycaemic control in obese individuals with T2D, linking glucose

and lipid metabolism (254). The production of VLDL-triglycerides and consequently,

VLDL-apolipoprotein B and LDL-apolipoprotein B are increased in obese individuals

(249,255-258). The elevated concentrations of VLDL- and LDL-particles suppress

LDL-receptor activity and thereby raise the serum LDL levels (248,249,258). Excessive

intake of saturated fatty acids and cholesterol have been suggested to contribute to

overproduction of VLDL, and consequently, to the higher production of LDL (250,259).

However, the high-fat diet-induced elevations of total and LDL cholesterol levels result

mainly from suppressed LDL receptor activity (260,261).

The reduced HDL concentrations in obesity (246) have been suggested to result

from the increased synthesis of LDL which drains away HDL-cholesteryl esters and

HDL-apoA-I thereby limiting the HDL synthesis (248,262). Another hypothesis is that

the excess adipose tissue simply removes HDL from the circulation (246).

Many of these changes are identical to the characteristic disturbances of lipid

metabolism occurring during the acute-phase response to infection as well as

inflammation (263), and the major acute-phase reactants CRP and serum amyloid A

(SAA) have been shown to be involved in the rapid recycling of cholesterol (264).

During the acute-phase response, the cytokine-mediated changes in lipid metabolism are

aimed at decreasing the toxicity of harmful biological and chemical agents by

redistributing nutrients to cells which are important in host defense (264-267). The
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inflammatory cascade induces a decrease in HDL, impaired reverse cholesterol

transport, elevated serum triglycerides, changes in serum apolipoproteins, related

enzymes, antioxidant capacity and adenosine tri-phosphate binding cassette A1

(ABCA1)-transporter dependent cholesterol efflux (263,266-268). Thus, increased

serum triglycerides and decreased HDL, the classic lipid changes associated with the

metabolic syndrome and T2D, could be regarded also as a highly conserved

evolutionary response aimed at tissue repair (264).

2.3.3 Angiogenesis in obesity

Adipogenesis and angiogenesis are temporally and spatially coupled processes during

embryogenesis and their reciprocal crosstalk via paracrine signaling systems continues

throughout adult life (202). Each adipocyte is nourished by a well-organized capillary

network in normal weight individuals (203,204,269). Adipocytes and other cells in the

adipose tissue produce many angiogenic factors including angiopoietins, hepatocyte

growth factor, VEGF and TGF-�, but also traditional adipokines such as leptin and

adiponectin have been suggested to be involved in the regulation of angiogenesis

(Figure 2) (203,204,270,271).

The common ground between adipogenesis and angiogenesis is highlighted in

several ways: human adipose tissue–derived stem cells can differentiate into endothelial

cells and improve postnatal neovascularization (270), and adipocytes and their

accompanying endothelial cells seem to share a common progenitor that can

differentiate into adipocytes or endothelial lineages depending on the type of exposure

in different environments (272). Accumulating evidence shows that capillary

endothelial cells communicate with adipocytes via paracrine signaling pathways,

extracellular components, and direct cell-cell interactions (204,273,274).

These two processes also share some common molecular factors such as PPAR-�

and VEGF. PPAR-�, an essential mediator of preadipocyte differentiation, is involved

in the regulation of adipose tissue angiogenesis and inhibition of adipocyte

differentiation by overexpression of a dominant-negative PPAR-� construct (Leu468 and

Glu471 �Ala) has been shown to impair both adipogenesis and angiogenesis (275). It

has also been shown that rosiglitazone, a PPAR-� agonist, stimulates angiogenic

sprouting in adipose tissue fragments (276). The inhibition of the VEGF signalling

system also inhibits angiogenesis and preadipocyte differentiation (275). The role of

adipose tissue-derived VEGF in angiogenesis was recently highlighted by Ledoux et al
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(277), who also demonstrated that both subcutaneous and visceral depots have

equivalent angiogenic potencies.

Figure 2. Angiogenetic factors secreted by adipose tissue (modified from Cao 2007 (202)). Different cell
types of adipose tissue contribute to the production of pro- and antiangiogenic factors. In addition, leptin
indirectly stimulates the secretion of VEGF. IL interleukin, TGF-� transforming growth factor-�, TNF-�
tumour necrosis factor-�, VEGF vascular endothelial growth factor

Recently, it was reported that also macrophages may stimulate angiogenesis in

adipose tissue by secreting platelet-derived growth factor and that way they can regulate

the tube formation of endothelial cells (278). The secreted compounds stimulate

neovascularization during fat mass expansion, either acting alone or in co-operation

with other angiogenic factors (202-204,270). Since the secretion of these factors is often

induced by hypoxia, it has been suggested that expansion of adipose tissue is associated

with local hypoxia. In agreement with this hypothesis, the tip region of epididymal

adipose tissue in adult mice is extremely hypoxic and expresses high levels of

angiogenesis-promoting factors (279).

It has been speculated that when the growth rate of adipose tissue becomes

stabilized,  high  expression  levels  of  angiogenesis  inhibitors  are  required  to  restrict

further vessel growth (202). In agreement with this hypothesis, expression of
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thrombospondin-1 (TSP-1), a well-known angiogenesis inhibitor is downregulated in

preadipocytes and upregulated in differentiated adipocytes (280,281). Administration of

angiostatin, endostatin, and TNP-470 (5-Methoxy-4-(2-methyl-3-(3-methyl-2-butenyl)-

1-oxaspiro(2,5)oct-6-yl(chloroacetyl)carbamate), a compound that arrests the

endothelial cell cycle, results in a dose-dependent and reversible weight reduction and a

loss of adipose tissue in both genetic and diet-induced obesity in mice. Since angiostatin

and endostatin specifically target endothelial cells, these effects are solely due to the

antiangiogenic properties of these molecules (282,283).

The altered vascularization in obesity has been demonstrated in animal models: the

fat pads of obese mice have increased vascularization (284) and fat pads of obese rats

have increased perfusion and decreased vascular resistance (285). Voros et al (284)

showed that the increased blood content of adipose tissue in obese animals was not only

the consequence of functional modulations but also resulted from the growth of the

vascular network. In the same study, the protein expression of angiogenesis-promoting

angiopoietin-1 was lower, and the expression of TSP-1 was higher in the adipose tissue

of ob/ob mice when compared to the corresponding expression levels in the wild-type

mice. Recently, Varma et al (286) confirmed the previous observations on the TSP-1

expression in intra-abdominal adipose tissue in humans (287) and showed that TSP-1 is

a true adipokine, preferentially expressed in the adipocyte fraction and with higher

expression levels in obese, insulin-resistant individuals.

2.3.4 Chronic low-grade inflammation in obesity

Adipocytes and macrophages have the same evolutionary origin: the fat body which is

still present in insects has diverged to liver and adipose tissue during vertebrate

evolution  (288).  The  common  origin  of  these  organs  is  still  visible  in  the  similar

organization of metabolic cells, i.e. adipocytes or hepatocytes, in the close proximity to

inflammatory cells (macrophages or Kupffer cells). This has been proposed to account

for the links between adiposity, inflammation and metabolic disorders (289).

Adipocytes and macrophages share several functional similarities: under appropriate

stimulation, preadipocytes can achieve phagocytotic capacity (290) while macrophages

can also take up and store lipids. The gene expression profiles of these cells also

resemble each other: for example the transcription factor PPAR-�, fatty acid binding

protein aP2, interleukin (IL)-6 and matrix metalloproteinases are expressed in both

macrophages and adipocytes (291-294).
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Consistent with these findings, a gain in weight can evoke many inflammation-

related changes in the adipose tissue (Figure 3) (289,295). Furthermore, obesity is

associated with a chronic low-grade inflammation state, characterized by abnormal

cytokine production, increased serum concentrations of acute phase reactants and other

inflammatory mediators and activation of inflammatory signalling pathways (289,295-

297). The obesity-related inflammation seems to be one of the common links between

defects in fatty acid metabolism and insulin resistance (298). The elevated levels of

proinflammatory substances including TNF-�, SAA and IL-6 alter the lipid-storing

capabilities and affect insulin sensitivity by increasing lipolysis and decreasing

triglyceride synthesis (174,299-304). This results in elevated circulating FFA

concentrations, higher availability of triglycerides and accumulation of fatty acid

derivatives in the skeletal muscle, liver and �-cells, disrupting the normal metabolic and

secretory functions in these tissues (210,211).

Figure 3. Obesity-induced inflammation-related changes in adipose tissue (modified from Schenk et al
2008 (295)). Weight gain results to increased necrosis rate of adipocytes and thereby the characteristic
inflammatory response is evoked. This includes the increased production and release of proinflammatory
cytokines and chemokines and the recruitment of macrophages. The increased secretion of
proinflammatory substances further stimulates the chronic low-grade inflammation.
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The obesity-stimulated inflammatory response has been suggested to be mainly

triggered by adipose tissue, although other metabolic sites, such as liver are also likely

to be involved (293,305). In obesity, the secretion of proinflammatory factors is

upregulated and the secretion of anti-inflammatory factors such as adiponectin is

downregulated (200,297,306). Specifically, increased visceral fat is associated with a

shift in the normal balance of these adipokines resulting in a pro-inflammatory state

(44). Macrophages are the main targets for many of the secreted proinflammatory

substances and accordingly, obesity is associated with an increased accumulation of

macrophages in adipose tissue (307). The macrophages in obese individuals are in a

proinflammatory state, which is reflected in the high levels of secreted TNF-� (308).

One of the factors contributing to macrophage infiltration in adipose tissue is the

monocyte chemoattractant protein-1, a chemokine (C-C motif) receptor (CCR)-2 ligand

(309) which is upregulated in obesity (310). Recently also CCR-5 receptor and its

ligand chemokine (C-C motif) ligand (CCL)5, also known as regulated upon activation,

normally T-expressed, and presumably secreted (RANTES), have been shown to be

upregulated in the adipose tissue of obese human and rodents (306).

Inflammatory and metabolic processes are coordinately regulated by many

transcription factors, such as PPARs and liver X receptors (311,312). Ligands of all

three PPARs suppress production of proinflammatory mediators, mainly by inhibiting

nuclear factor �B (311,312). Reciprocally, TNF-� decreases the expression of

adipocyte-specific genes and transcription factors which are necessary for adipocyte

differentiation, including PPAR-� and CCAAT/enhancer-binding protein � (C/EBP-�)

(313,314). Liver X receptor is also able to suppress the production of inflammatory

mediators (315). Interestingly, the activation of liver X receptor improves glucose

tolerance by regulating glucose metabolism in liver and adipose tissue (316). This,

together with the anti-inflammatory properties of insulin (317) and the insulin-

sensitizing actions of adiponectin (318) represents a bridge between inflammation and

the characteristics of obesity and impaired glucose metabolism.

2.3.5 Effect of weight change on gene expression in peripheral tissues

It has been shown that weight loss can induce changes in the gene expression in human

adipose tissue (319-325), but also in other tissues such as skeletal muscle (326,327) and

peripheral blood mononuclear cells (328). In humans, the effects of overfeeding in

controlled clinical settings have been studied to a lesser extent, but also a positive
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energy balance has been shown to affect transcription levels (329,330). In addition to

the energy content, the composition of diet, such as the amount (331) and quality of fat

(332,333) and the amount (319,332-334) and glycaemic index of consumed

carbohydrates (335) of isocaloric diets all are factors which can influence the

transcription of genes in different tissues.

Meugnier et al (330) have reported that overfeeding alters the gene expression

profile of skeletal muscle. At the same time, these changes stimulate triacylglycerol

synthesis and the development of adipocytes, inhibit lipolysis and reduce fatty acid

oxidation. Promoter analysis of the regulated genes showed that sterol regulatory

element binding proteins (SREBPs) might be important players in the short-term

adaptation to fat overfeeding in human skeletal muscle. Accordingly, excess energy

intake has been shown to increase the mRNA expression of SREBP-1c in both

overweight and lean individuals (329).

As expected, weight reduction downregulates the mRNA expression of leptin,  IL-6

(319,331) and other proinflammatory factors and upregulates the expression of mRNAs

encoding anti-inflammatory factors (323). Many of the genes involved in fatty acid and

cholesterol metabolism, such as hormone-sensitive lipase (HSL) (331,336), fatty acid

synthase (FASN), fatty acid translocase (CD36), lipoprotein lipase (LPL) (331),

diacylglycerol O-acyltransferase 2 (DGAT2) (333), fatty acid desaturase (FADS1),

stearoyl conezyme A desaturase (SCD) (333,334), 3-hydroxy-3-methyl-glutaryl-CoA

reductase (HMGCR) and LDL-receptor (332) are also downregulated by weight loss,

both in adipose tissue (331,333,334) and mononuclear cells (332).

In a recent study, the genes defined by gene ontology groups of the extracellular

matrix and cell death were differentially regulated in adipose tissue by long-term weight

loss in persons with the features of metabolic syndrome (325). One of the most

extensively downregulated genes was tenomodulin (fold change 0.67). In that study, the

participants underwent a 12-week intensive weight reduction and were expected to

maintain their reduced weight for the following 20 weeks. A change of similar

magnitude in TNMD expression (0.75) was observed by Dahlman et al (334) when they

compared the effects of two different diets during a 10-week weight loss period.
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2.4 Tenomodulin

2.4.1 Structure and function of the tenomodulin gene and protein

Tenomodulin was identified in 2001 by Cros et al (337), who demonstrated that a novel

gene which they named myodulin, was two-fold downregulated in muscle atrophy in

mice. Simultaneously, other groups cloned the same gene and named it

chondromodulin-I-like (338), tenomodulin (339), and tendin (340). The tenomodulin

gene spans approximately 15 kb in chromosomal locus Xq22. TNMD has at least three

splice variants. In addition to the variant containing seven exons (341), a five-exon

splice variant is described in the UCSC Genome Browser (342), March 2006 Assembly

(http://genome.ucsc.edu/) and a three-exon variant in Ensembl´s Vega Transcript Report

((343), v.31 April 2008; http://vega.sanger.ac.uk/). The functions and tissue distribution

of these shorter transcripts have not been characterized.

TNMD belongs to the BRICHOS protein family (344). In a similar manner to the

other members of this family, TNMD is an integral type 2 transmembrane protein with

cytoplasmic N-terminal and extracellular C-terminal, from which the C-terminal part is

cleaved proteolytically (344,345). While two other members of the BRICHOS-family,

chondromodulin (CHM) and familial dementia BRI2 have a furin cleavage site, TNMD

contains an RXXR-cleavage motif (amino acids 233-236) that has been shown to be

functional  (345).  The  TNMD  protein  is  composed  of  short  N-terminal  cytoplasmic

domain (residues 1-30), a transmembrane domain (residues 31-51), BRICHOS-domain,

which has been suggested to function as an intramolecular chaperone for the cleaved

part (344,346) (residues 93-186) and a cysteine-rich C-terminal antiangiogenic domain

(residues 202-317) (337). Similar structural components are found in the CHM (Figure

4) (341).

TNMD does not have any close homologs, but it exhibits overall 33% amino acid

sequence identity with CHM, which is a chondrocyte growth factor (347) and

angiogenesis inhibitor (348). The similarities in the structural organization between

these two proteins are rather apparent (Figure 4).
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Figure 4. The domain architecture of human chondromodulin (CHM) and tenomodulin (TNMD) proteins
(according to Oshima et al 2004 (349)). Different domains are indicated with greyscale. The furin
cleavage site in the amino acid position 211-214 in CHM and RXXR-cleavage site in the position 233-
236 in TNMD are denoted by asterisks (*) and the eight conserved cysteine residues by C.

The  sizes  of  unprocessed  CHM  and  TNMD  precursors  are  almost  identical:  CHM  is

composed of 334 amino acid residues while TNMD consists of 317 amino acid residues

(341). Although the sequence similarity of this domain is quite high (65%), and the

cysteine residues that are needed for the correct folding are identically spaced in both

CHM and TNMD (345,347,348), the molecular weight of secreted part is different. The

secreted part of TNMD is only 16kDa (345), while that of CHM is 25 kDa (347,348).

The exact targets of this domain are unknown.

Functional studies performed in vitro have shown that the secreted parts of both

CHM and TNMD inhibit angiogenesis by preventing endothelial proliferation and tube

formation (349,350). However, TNMD-deficient mice did not exhibit any vascular

abnormalities (345), though this could be due to compensatory mechanisms which

maintain normal vasculature in the absence of tenomodulin. In addition, in vivo studies

performed in mice (345,351) and chicks (352)  have demonstrated the necessity of

TNMD for tenocyte proliferation and tendon maturation.

2.4.2 Expression profile and tissue distribution

TNMD is mainly expressed in hypovascular connective tissues such as tendons,

ligaments and eye. The main results from mouse studies are summarized in Table 4.
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Table 4. The expression of tenomodulin mRNA and protein in mouse tissues. RT-PCR reverse-
transcriptase-polymerase chain reaction

Tissue Expression level Method Author

Skeletal muscle (whole) High Northern blot,
RT-PCR

Cros et al (337)
Yamana et al (338)
Shukunami et al (339)
Brandau et al (340)

Skeletal muscle (epimysium
envelope and  tendon)

High In situ
hybridisation

Shukunami et al (339)

Skeletal muscle (ligament and
tendon)

High In situ
hybridisation

Brandau et al (340)

Whole rib High RT-PCR Yamana et al (338)
Thymus and brain High In situ

hybridisation
Brandau et al (340)

Eye (whole) High Northern blot Yamana et al (338)
Brandau et al (340)
Oshima et al (350)

Eye (cornea, sensory retina,
lens fiber and sclera)

High In situ
hybridisation

Oshima et al (350)

Eye (choroidal tissues, e.g.
retinal pigment epithelium)

Low In situ
hybridisation

Oshima et al (350)

Tenomodulin has not been reported to be expressed in the adipose tissue of mice,

but it has been shown to be expressed in human adipose tissue (325,334). It is not

known which actual cell types in the adipose tissue express tenomodulin, but according

to Gene Atlas database ((353) http://symatlas.gnf.org/SymAtlas/), TNMD expression is

detected in the adipocytes, albeit at a modest level. In addition, our preliminary studies

have shown that TNMD is expressed in adipocytes and blood vessels of adipose tissue

(unpublished observation). Other human tissues that exhibit relatively high mRNA

expression of TNMD are cardiac myocytes, tongue and certain regions of brain, such as

temporal lobe and globus pallidus (353).

2.4.3 Regulators of tenomodulin expression

The regulators of TNMD expression  are  not  very  well  known.   Scleraxis  (SCX),  a

transcription factor and a tendon-specific marker (354), has been shown to upregulate

TNMD expression in chick embryo and tenocyte cultures (352). Recently, Mendias et al

(351) reported that myostatin (MSTN) upregulates TNMD expression in tendon

fibroblasts. Myostatin, also known as growth and differentiation factor 8 is a member of

TGF-� superfamily, a large group of secreted growth and differentiation factors that are

essential for regulation of tissue development and homeostasis. The members of this

family are involved in myogenesis, angiogenesis and adipogenesis (202,355-357).
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Myostatin deficiency also influences the mechanical properties of tendons, as MSTN-

deficient mice have been shown to have stiff and brittle tendons with significantly lower

TNMD expression than their wild-type counterparts (351).

The MSTN gene has been widely studied, since the alterations in its expression

affect the body composition. MSTN-deficiency causes muscle hypertrophy (356-

361,361,362) and overexpression leads to decreased adipogenesis (363,364). The

importance of myostatin in adipose tissue development has been proven both in vitro

and in vivo. Rebbapragada et al (365) first demonstrated that MSTN blocks

adipogenesis in both mesenchymal precursor cells and preadipocytes. Subsequently,

Feldman et al (364) showed that myostatin modulates adipogenesis so that the

generated adipocytes had favourable metabolic characteristics including reduced lipid

accumulation, diminished incorporation of exogenous fatty acid into cellular lipids and

high insulin sensitivity. The cells resembled immature adipocytes, since they were

smaller than normal adipocytes and displayed low expression levels of LPL, PPAR-�,

leptin, adiponectin, TNF-� and resistin. In the study of Zimmers et al (366), the

pharmacological administration of myostatin in adult mice reduced fat mass by up to

50% without affecting muscle mass, but these results have not been successfully

duplicated (367). MSTN has not been studied in the context of human obesity, but it has

been  claimed  that  weight  loss  significantly  downregulates  the  expression  of MSTN in

the skeletal muscle of morbidly obese persons (368).

2.4.4 Tenomodulin knock-out mouse

Docheva et al. (345) have reported that the ablation of TNMD expression by gene-

targeting did not affect the viability or life span of mice. The body size, weight, basic

histology of the main organs (muscle, thymus, heart, liver, spleen, and lung) or skeletal

development were not affected by TNMD deficiency.

The TNMD-knock-out (KO) mice had a reduced tenocyte density due to impaired

proliferation and an altered structure of collagen fibrils. However, despite the lower cell

numbers, the tendons of KO mice were of the same size as those measured in the wild-

type (WT) mice, suggesting that either the remaining tenocytes were able to compensate

for the loss of cells or that the turnover of extracellular matrix was delayed in the

TNMD-deficient tendons. The tendons of TNMD-null mice also exhibited greater

variation in collagen fibril diameters and an increase in the maximal fibril diameters in

comparison to WT mice. Interestingly, knock-out of TSP-2 gene, a close homolog of the
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adipokine TSP-1 (369), results in similar phenotype in the tendons of these knock-out

mice (370).

At odds with the previously reported antiangiogenic activity (349), a loss of TNMD

expression did not affect tendon vessel density and mice lacking both TNMD and CHM

had normal retinal vascularization and neovascularization after oxygen-induced

retinopathy (345). Similarly, the deletion of the TSP-1 gene  in  mice  did  not  result  in

severe vasculature-related abnormalities (371).
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3 AIMS OF THE STUDY

Two  independent  studies  have  shown  that  weight  loss  decreases  the  expression  of

TNMD in the adipose tissue (325,334). TNMD mediates antiangiogenic effects

(349,350), and recently another angiogenesis inhibitor, TSP-1, was confirmed to be an

adipokine (286). Therefore the research hypothesis was that TNMD might  be  a

susceptibility gene for obesity and related conditions.

The  purpose  of  the  study  was  to  investigate  the  association  of  a  common  sequence

variation in the TNMD gene with obesity and related phenotypes. These association

studies were performed in three different study populations, both in longitudinal and

cross-sectional settings. The specific research questions were whether the common

single nucleotide polymorphisms (SNPs) in the TNMD gene would be associated with:

1. Obesity and anthropometric measurements (Studies I and III)

2.  Glucose  metabolism  and  incidence  or  prevalence  of  type  2  diabetes  (Studies I and

III)

3. Chronic low-grade inflammation status indicated by serum levels of systemic

immune mediators (Study II)

4. Serum levels of lipids and lipoproteins (Study III)

5. Prevalence of age-related macular degeneration (Study IV)
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4 SUBJECTS AND METHODS

4.1 Study populations

4.1.1 The Finnish Diabetes Prevention Study (Studies I-III)

The Finnish Diabetes Prevention Study (DPS) is a randomized, controlled lifestyle

intervention study conducted in the cities of Helsinki, Kuopio, Tampere Turku and Oulu

in Finland (82). The main aim of DPS was to investigate whether the onset of T2D

could be prevented or delayed among high-risk individuals by lifestyle modification.

The main inclusion criteria were BMI over 25 kg/m2, age 40 to 64 years and impaired

glucose tolerance tolerance (2h-PG 7.8–11.0 mmol/l and FPG<7.8 mmol/l) on the basis

of the mean value of two consecutive OGTTs. It should be noted that the glucose

tolerance status was diagnosed on the basis of WHO 1985 criteria (60) and according to

the current criteria (62), some of the participants would have been diagnosed with T2D

in the beginning of the study

Altogether 522 individuals were randomized into two groups according to the

centre, gender, and mean 2h-PG in OGTT. The intervention group (n=265) received

intensive individualized diet and exercise counselling and were given detailed advice on

how to achieve the objectives of the intervention, while the control group (n=257)

received general written and oral information about diet and exercise at baseline and

annual visits (82). Medical history questionnaires, anthropometric and laboratory

measurements  were  obtained  at  baseline  and  at  the  annual  visits.  DNA  was  available

from 507 individuals (166 men and 341 women).

 The study protocol was approved by the Ethics Committee of the National Public

Health Institute in Helsinki, Finland and the participants received both oral and written

information of the study and provided written informed consent.

4.1.2 Metabolic Syndrome in Men (Study III)

The Metabolic Syndrome in Men- study  (METSIM)  is  a  random  population-based

sample of 5298 Finnish 50-70 years old men living in the city of Kuopio in Eastern

Finland (113). The primary aim of this ongoing study is to investigate the genetic risk

factors of T2D and cardiovascular diseases. According to WHO´s 1999 criteria (62),
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3020 individuals were normoglycaemic, 984 had impaired fasting glucose, 436 had

impaired glucose tolerance and 811 had known or newly diagnosed T2D.

The Ethics Committee of the District Hospital Region of Northern Savo and Kuopio

University Hospital approved the study plan. The participants received both oral and

written information of the study and gave their written informed consent.

4.1.3 Study population for age-related macular degeneration (Study
IV)

Altogether 475 persons (162 men, 313 women) from the regions of Kuopio and

Helsinki were included in this study. Eighty-nine men and 175 women had exudative

AMD and 18 men and 25 women had atrophic AMD. The control group consisted of 55

men and 113 women. All participants were over 65 years old. Diabetes mellitus, based

on medical history and patient records was considered as an exclusion criterion. The

study was approved by the Ethics Committees of the Kuopio University Hospital and

Helsinki University Eye and Ear Hospital. All participants signed an informed consent.

The controls were patients with other ophthalmologic conditions (e.g. cataract) who had

no signs of AMD in biomicroscopy examination. Age-related macular degeneration was

diagnosed on the basis of choroidal neovascularization in fundus photographs and

fluorescein angiography in the Department of Ophthalmology at Kuopio University

Hospital or Helsinki University Hospital.

4.2 Methods

4.2.1 Anthropometric measurements (Studies I-III)

Weight and height were measured in light clothing and BMI was calculated as the

weight in kilograms divided by the square of the height in meters in both DPS and

METSIM studies. In the DPS, the waist circumference was measured midway between

the lowest rib and iliac crest and hip circumference over the great trochanters in the

standing position. Sagittal and horizontal diameters were measured with the person in

supine position on a hard surface as the distance from the surface to the highest point of

the abdomen (sagittal diameter) and the maximum width of the abdomen (horizontal

diameter) at the level of the iliac crest using especially built equipment. The exact

description for methdology in DPS is described in (83).
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4.2.2 Biochemical and diagnostics measurements (Studies I-IV)

In  both  METSIM  and  DPS,  the  glucose  tolerance  was  determined  by  2h  OGTT  with

75 g glucose dose after an overnight fast. Samples for plasma glucose and insulin

concentrations were drawn at 0, 30 and 120 min.

DPS. The plasma glucose concentrations were determined locally according to standard

guidelines while all other biochemical determinations were performed in the central

laboratory of the Department of Biochemistry, National Public Health Institute,

Helsinki. Serum insulin was determined with radioimmunoassay (Pharmacia, Uppsala,

Sweden). Serum total cholesterol, HDL-cholesterol and triglycerides were determined

with an enzymatic assay method (CHOD-PAP, Boehringer Mannheim, Germany,

Monotest). LDL-cholesterol was calculated with the Friedewald formula (372) and

applied only when triglyceride levels were <4.5mmol/l (83).

The serum concentrations of CRP and SAA were assessed by a high-sensitivity

latex-enhanced nephelometric assay and immunonephelometry, respectively with BN II

analyzer (Dade Behring, Marburg, Germany). Enzyme-linked immunosorbent assay

(ELISA) was used for determining the serum concentrations of IL-6 (Sanguin,

Amsterdam, Netherlands), soluble intercellular adhesion molecule-1 (sICAM-1;

Diaclone, Besancon, France), CCL3, CCL5 and macrophage migration inhibitory factor

(MIF; R&D Systems, Wiesbaden Germany for all three).

METSIM. The biochemical  analyses  were  performed at  the  Clinical  Research  Unit  in

the University of Kuopio. Serum insulin was determined with an immunoluminometric

method  (Avidia  Centaur  IRI)  on  Advia  Centaur  Immunoassay  System  (both  from

Siemens  Medical  Solution  Diagnostics,  Tarrytown,  NY,  USA).  The  plasma  glucose

concentration was determined by the hexokinase method (Thermo Fisher Scientific,

Vantaa, Finland). Serum total cholesterol and triglycerides were analyzed with an

enzymatic method and serum HDL and LDL were determined with direct enzymatic

assays (KoneLab Systems Reagents). KoneLab 20XTi Clinical Chemistry Analyzer was

used for both glucose and lipoprotein analyses.
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4.2.3 Genetic association studies

4.2.3.1 The selection and genotyping of single nucleotide polymorphisms

Studies I-II. The HapMap- (373) and the National Center for Biotechnology

Information databases were used for selection of TNMD SNPs for genotype analysis.

Specifically, two of two tag-SNPs of haploblock 1 (rs5966709 and rs4828037) and three

from five tag-SNPs of haploblock 2 (rs2073162, rs2076163, and rs4828038) were

selected from the HapMap database. The CEPH (Utah residents with ancestry from

northern  and  western  Europe  (CEU)  was  used  as  a  reference  population.  In  addition,

two SNPs were selected from the National Center for Biotechnology Information

database to cover the 5' and 3' ends of the gene (rs11798018 and rs1155974). The

selected markers cover 63% of the common sequence variation with r2>0.8 in the coding

region of TNMD.

Study III. Markers rs2073162, rs2073163 and rs1155974 that were associated with T2D

risk in the DPS (Study I) were genotyped from 2045 participants of the METSIM study,

but as the three markers were in complete linkage disequilibrium (LD), genotyping was

continued only for rs2073162 for the remaining 3253 individuals.

Study IV. Six markers covering 75% of the common sequence variation with r2>0.8 in

the  coding  region  of TNMD (15kb) and 10 kb up-and downstream from the coding

region (35kb) were selected with the Tagger algorithm (374). The markers rs2073163

and rs1155974 were forced in the selection procedure.

Genotyping for all studies was carried out using TaqMan Allelic Discrimination Assays

according to the manufacturer's instructions (Applied Biosystems, Foster City, CA,

USA). The genotyping reactions were amplified using GeneAmp PCR system 2700 and

allelic discrimination according to the fluorescent labels was performed with ABI Prism

7000 sequence detector (both from Applied Biosystems). The error rate for genotyping

was estimated by repeating a random sample of 3.5% of the METSIM study population

and 6.3% of the DPS- and AMD-study populations.
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4.2.3.2 Statistical analyses

Haploview software (375) was used for LD and Hardy-Weinberg equilibrium (HWE)

calculations. Statistical analyses were performed with SPSS14.0 for Windows (SPSS,

Chicago, IL, USA). The data are presented as median (interquartile range) (tables) or

means±standard error of the mean (SEM; figures) and p<0.05 was considered

statistically significant. Due to the X-chromosomal location of the TNMD gene, men

and women were analyzed separately. Data from women was analyzed with the additive

model in Studies I-IV,  and  with  dominant  (major  allele  homozygotes  vs.  other

genotypes) and recessive (minor allele homozygotes vs. other genotypes) models in

Studies II-IV.

The distribution of genotypes among genders and study groups was assessed with

Pearson´s �2-test. Normal distribution was tested with Lilliefors-corrected

Kolmogorov–Smirnov test (Studies I-III) and by plotting the residuals of each statistical

model  (Studies II-III). Appropriate transformations were performed to achieve normal

distribution when necessary. If the distribution of continuous variables could not be

normalized,  Kruskal-Wallis  or  Mann-Whitney´s  U tests  were  used.  The  association  of

TNMD SNPs with continuous variables in Studies I-III was analyzed with a general

linear models using univariate analysis of variance for baseline data and repeated

measurements for follow-up data from baseline and three annual visits. Adjustments for

age, BMI and intervention group were done when necessary, i.e. their contribution to

the model was p<0.1. Bonferroni correction was used in pairwise comparisons between

the three genotypes in women. In addition, the effects of genotype and intervention on

the changes in weight and waist circumference at year 1 (calculated as

measurementbaseline-measurementyear1) were assessed in Study I.

In Study II, three different models with either BMI, waist circumference or 2h-PG as

covariates were constructed on the basis of correlations between systemic immune

mediators and potential adjustment factors in this population (376). Both the main

effects and covariate*genotype-interactions were studied. Due to the observed

interactions,  the  data  was  stratified  according  to  median  2-hour  plasma  glucose

concentration (8.72mmol/l) and genderwise median BMI (29.43 for men, 31.21 for

women) and waist circumference (98.5 for men, 103.25 for women) to study whether

the genotype effect is modified by body size or the status of glucose metabolism. The

overlapping of median categories was analysed by Pearson´s �2-test.
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In Study III, the results were adjusted for age, BMI, use of statin and/or use of

reimbursed cholesterol-lowering medication. Due to observed genotype*BMI-

interactions, additional stratified analyses were performed according to the quartiles of

BMI in METSIM and according to the medians of BMI in DPS due to smaller number

of participants in the DPS. In the METSIM study, the ranges for the quartiles were

16.18-24.58 kg/m2, 24.59-26.72 kg/m2, 26.73-29.40 kg/m2 and 29.41-52.11 kg/m2. In

the DPS, the range for the lower median was 23.50-29.40 kg/m2 and 29.45-44.80 kg/m2

for the upper median.

The  association  of  SNPs with  conversion  of  IGT  to  T2D  was  analyzed  with  Cox

regression using appropriate covariates (Study I). The association of TNMD SNPs with

the prevalence of T2D in the METSIM study population Study III was  analyzed  with

logistic regression (adjusted for age and and BMI). The  associations  of TNMD SNPs

with the prevalence of total AMD and exudative and atrophic subforms were tested with

unadjusted logistic regression (Study IV).

THESIAS 3 (Study I) and THESIAS 3.1 (Studies II and IV) (377) were used for

haplotype analysis of LD-based haplotypes. In studies II and IV, the correction for

multiple hypothesis testing was performed with the false discovery rate (FDR) using Q-

value 1.0 software (378). �0 was estimated with a bootstrap method using 	 range from 0

to 0.9 by 0.05.
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5 RESULTS

5.1 Genotype frequencies and success and error rates

The genotype frequencies in DPS and AMD study populations are shown in Table 5. In

the METSIM population, the frequencies were 65.8% for rs2073162-G and 34.2% for

rs2073162-A. In DPS, all markers except rs4828038 (p=0.01) were in HWE, when the

cut-off of p
0.01 was applied. In the AMD study population, the markers rs7890586

and rs2073163 were not in HWE (p=0.002 and 0.009, correspondingly).

In DPS, the markers belonged to two haploblocks on the basis of their LD pattern

(Figure 5a), the first consisting of markers rs11798018, rs5966709 and rs4828037 and

the second of rs2073162, rs2073163, rs4828038 and rs1155974. In the AMD data set,

two markers, rs11798018 and rs5966709, formed the first LD-based haploblock (Figure

5b) and rs2073163 and rs1155974 made up the second. The frequencies of major

haplotypes of these two blocks in both study populations are represented in Table 6.

In the DPS and METSIM studies, the genotyping success rate was 100% for all

markers. In the AMD study population, the genotyping success rate was 98.5% for

rs7890586, 99.6% for rs1204384, and 100% for markers rs11798018, rs5966709,

rs2073163 and rs1155974. The genotyping error rate was 0% in all study populations.
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Table 6. Frequencies of the major (frequency >0.05) LD-based haplotypes in men and women of the
DPS- and AMD- study populations.

DPS AMD

Markers Men
(n=166)

Women
(n=341)

Markers Men
(n=161)

Women
(n=312)

Haploblock 1 Haploblock 1

rs
11

79
80

18

rs
59

66
70

9

rs
48

28
03

7

rs
11

79
80

18

rs
59

66
70

9

A G T 0.33 0.37 A G 0.39 0.44
C  T  C 0.33 0.35  C  T 0.38 0.33
C G T 0.32 0.25 C G 0.23 0.23

Haploblock 2 Haploblock 2

rs
20

73
16

2

rs
20

73
16

3

rs
48

28
03

8

rs
11

55
97

4

rs
20

73
16

3

rs
11

55
97

4

G T T C 0.43 0.51 T C 0.64 0.61
A C C T  0.22 0.33  C  T 0.30 0.33
G T C C 0.16 0.05
A T T C  0.11 0.07
G C C T 0.06 <0.05

5.2 TNMD, obesity and anthropometric measurements
(Study I)

The observed associations between the TNMD and anthropometric measurements in the

DPS are summarized in Table 7. In the follow-up data analysis, the intervention and

control groups of the DPS were analyzed together, because the allele distribution of

each marker was similar in both groups, and the genotype-randomization group

interaction was statistically non-significant in all analyses.

The SNP rs11798018 was associated with BMI and weight (p=0.038 and p=0.029,

respectively) during the 3-year follow-up in men, but no significant associations were

observed at baseline. The persons with the A-allele had lower BMI than individuals

with the C-allele (Table 7).
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Among the women of the DPS, rs2073162 was associated with horizontal diameter

at baseline. The individuals with the rs2073162-AA genotype had the smallest values.

Furthermore, rs4828037 was associated with the sagittal diameter such that the

individuals with rs4828037-TT genotype had the highest values (Table 7).

Table 7. The observed associations of the TNMD SNPs with anthropometric measurements in the DPS.
Numeric data are given as median (interquartile range).

*adjusted for age
**p for additive model adjusted for age and baseline BMI

During the 3-year follow-up, two markers, rs5966709 and rs4828037, were

associated with central obesity in women. In both cases, participants homozygous for

the minor alleles (5966709-TT and 4828037-CC) had lower values than the individuals

with other genotypes (Figure 6). The associations, apart from that of rs5966709 with

horizontal diameter, were considerably stronger when analyzed with the recessive

model (p=0.007 for waist circumference, p=0.009 for waist to hip-ratio and p=0.003 for

sagittal diameter with rs5966709 and p=0.007 for sagittal diameter with rs4828037).

Gender Marker Genotype Parameter Median
(IQ range)

p for
baseline

p for
follow-up

Men rs11798018 CC
AA BMI (kg/m2) 29.70 (4.56)

29.01 (4.70) 0.810* 0.038*

rs11798018 CC
AA Weight (kg) 90.30 (16.40)

86.60 (15.80) 0.064* 0.029*

Women rs2073162
GG
GA
AA

Horizontal
diameter (cm)

39.40 (4.25)
39.20 (5.00)
38.70 (6.70)

0.038** 0.266**

rs5966709
GG
GT
TT

Waist to hip-
ratio

0.89 (0.08)
0.89 (0.09)
0.87 (0.07)

0.316** 0.028**

rs5966709
GG
GT
TT

Sagittal
diameter (cm)

24.40 (4.68)
24.30 (4.30)
23.00 (3.58)

0.080** 0.014**

rs5966709
GG
GT
TT

Horizontal
diameter (cm)

39.20 (5.48)
39.50 (4.40)
37.95 (5.53)

0.055** 0.043**

rs5966709
GG
GT
TT

Waist
circumference

(cm)

99.00 (16.35)
99.50 (14.50)
94.35 (19.00)

0.068** 0.036**

rs4828037
TT
TC
CC

Sagittal
diameter (cm)

24.40 (4.80)
24.30 (4.40)
23.20 (4.10)

0.015** 0.026**

rs4828037
TT
TC
CC

Waist to hip-
ratio

0.89 (0.08)
0.89 (0.09)
0.87 (0.07)

0.479** 0.056**
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Figure 6. The mean±SEM values of waist circumference (a), WHR (b), horizontal diameter (c), and
sagittal diameter (d) in women according to the genotypes of rs5966709 during the 3-year follow-up
according to recessive model.

To study haplotype effects of haploblock 1 (Figure 5a) on body size measurements

at baseline in women, three-marker haplotypes (markers rs11798018, rs5966709, and

rs4828037) were constructed. Three major haplotypes with frequencies of >0.05 were

observed (Table 6). The results were consistent with the baseline analysis of individual

markers, since in comparison to the carriers of the reference haplotype AGT, the

individuals with the CTC haplotype had a lower sagittal diameter (p=0.044). The former

haplotype includes the rs4828037-C-allele, which was per se associated with a smaller

sagittal diameter.

The genotypes of rs2073162 were not associated with BMI (Study III),  weight  or

indicators of central obesity (p>0.1) in the men of METSIM study population.
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5.3 TNMD, glucose metabolism and type 2 diabetes (Studies

I and III)

In DPS, no genotype differences in insulin and glucose levels were observed at baseline,

except for rs2073162 in women. Specifically, the rs2073162-GG genotype was

associated with lower fasting plasma glucose levels than the other genotypes (p=0.021).

The   median  (interquartile  range)  FPG was  5.89  (0.88)  mmol/l  for  the  carriers  of  GG

genotype, 6.21 (1.03) mmol/l for GA  and 6.16 (0.87)mmol/ for the AA genotype. In

women, the same marker was associated with 2h-PG concentrations during the 3-year

follow-up,  but  contradictory  to  the  baseline  results,  the  lowest  levels  were  observed

with the AA-genotype.

Among the men of DPS, the markers rs2073163 and rs1155974 were associated

with 2h-PG during the 3-year follow-up. The marker rs2073163 was also associated

with conversion of IGT to T2D in men in DPS and a borderline association was

observed with rs1155974. The individuals with the minor alleles (rs2073163-C or

rs1155974-T), which were associated with higher 2-hour plasma glucose concentration,

were approximately two times more likely to develop T2D during the 5-year follow-up

than the major allele carriers. Asimilar association was also observed with rs2073162,

which was not associated with 2h-PG. In women, none of the SNPs contributed to the

risk of T2D. The observed associations with 2H-PG and T2D risk are summarized in

Table 8. The marker rs2073162 was not associated with plasma glucose or serum

insulin concentrations during OGTT in the METSIM study and the prevalence of T2D

was also similar between the genotypes (15.2 vs 15.1%).

Table 8. The observed associations of the TNMD SNPs with 2H-PG during the 3-year follow-up and T2D
risk in the DPS. HR hazard ratio (reported only for statistically significant associations), CI confidence
interval

Marker Gender 2H-PG  Risk genotype T2D risk
p* HR (95%CI) p**

rs2073162 Men 0.249 A 2.193 (1.105- 4.354) 0.025
rs2073162 Women 0.013 GG 0.755 (0.473-1.204) 0.238
rs2073163 Men 0.038 C 2.191 (1.092-4.394) 0.027

Women 0.056 TC/CC 1.012 (0.546-1.875) 0.971
rs1155974 Men 0.011 T 1.998 (0.989-4.036) 0.054

Women 0.065 CT/TT 1.082 (0.678-1.728) 0.741
*adjusted for age and baseline BMI
**adjusted for baseline BMI, waist-to hip-ratio, fasting plasma glucose and intervention
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To estimate the haplotype effect of these SNPs in DPS, three-marker haplotypes of

SNPs rs2073162, rs2073163, and rs1155974 were constructed and four major

haplotypes (frequencies >0.05) were observed (Table 6). The most common haplotype

(frequency=0.595) contained the rs2073162-G-, rs2073163-T- and rs1155974-C-alleles,

which were also individually associated with a lower risk of T2D. Interestingly, the

complement haplotype ACT, containing all individual risk alleles, was associated with a

2.3-fold risk for developing T2D (p=0.041; 95% CI, 1.034 to 5.175). Although this

analysis did not uncover a haplotype combination that would explain the results

substantially more than individual markers, the results support those obtained from

single-marker analysis.

5.4 TNMD and low-grade inflammation indicated by the
serum levels of systemic immune mediators (Study II)

The association of the common sequence variation in the TNMD gene with acute phase

reactants (SAA and CRP), proinflammatory cytokines (MIF and IL-6), ligands of CCR-

5, which induce the production of proinflammatory cytokines (CCL3 and CCL5) and

sICAM were addressed. In addition, the effect modification by the status of glucose

tolerance, central obesity and general body size (indicated by 2h-PG, waist

circumference and BMI, respectively) was assessed. As BMI and waist circumference

had almost identical effects, and the low-grade inflammation is more related to the

central  obesity  than  body  size  in  general,  only  the  results  in  the  medians  of  waist

circumference and 2h-PG are reported.

The three markers, rs2073162, rs2073163 and rs1155974, which were associated

with the risk of T2D in men in Study I were associated with serum concentrations of

CRP and SAA so that the individuals harbouring the genotypes (rs2073162-A,

rs2073163-C and rs1155974-T) related to higher T2D incidence had higher serum levels

of the three inflammatory markers (Table 9). The markers rs2073163 and rs1155974

were  also  associated  with  the  serum  levels  of  sICAM  so  that  the  men  with  the

rs2073163-C or rs1155974-T genotypes had higher concentrations than the individuals

with the other genotypes. In addition, two markers, rs5966709 and rs4828037, were

associated with serum levels of CCL5 in men so that the rs5966709-G and rs4828037-T

genotypes had higher serum concentrations (Table 9). In women, the same genotypes

were associated with elevated serum concentrations of CCL3 and the rs5966709-GG,

but not rs4828037-TT genotype was associated with higher CCL5 concentrations. Both
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of these markers were associated with central obesity in women (Study I). Furthermore,

all four markers from the second haploblock (Table 6) were associated with serum

concentrations of MIF and the genotype of rs11798018 was associated with serum

concentrations of IL-6 in women (Table 10).

The genotype effects were modified by the status of glucose metabolism so that the

effect was generally clearer in the individuals who had 2h-PG>median (Tables 9-10). In

addition, central obesity, as reflected in the waist circumference, modified the effect in a

similar manner, i.e., the genotype effect was more pronounced in the upper medians.

This was observed particularly in men. CCL5 was the only exception to this, as the

genotype effects were observed in the lower medians of the obesity parameters. In

general, central obesity modified the association of TNMD with acute-phase reactants,

while the association with CCR-5 ligands were more dependent on the status of glucose

metabolism (Tables 9-10).

As this was an explorative analysis, the multiple comparisons were necessary, and

some of the findings might be false positives. We applied FDR to control for the

multiple hypothesis testing and the FDR for association of rs2073163 and rs1155974

with acute phase proteins and sICAM and those of rs5966709 and rs4828037 with

CCL5  in  men  was  less  than  5%.  The  FDR  was  below  5%  also  for  the  association  of

rs5966709 with CCL3 and CCL5 and those of rs2073163 and rs1155974 with CCL5

and MIF in women.

The single-marker associations were mostly haploblock-specific. The markers from

the second haploblock (rs2073162, rs2073163, rs4828038 and rs1155974) were

associated with serum concentrations of acute-phase reactants in men and with serum

concentrations of MIF in women, while the markers from the first haploblock

(rs5966709 and rs4828037) were associated with CCL3-concentrations in women and

CCL5-concentrations in men. Markers from both haploblocks were associated with

CCL5-concentrations in women. However, the LD-based haplotype analysis did not

reveal a haplotype that explained the association substantially more than any individual

SNP, although the results of the analyses were in line with the single marker analyses

(data not shown).
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5.5 TNMD and serum lipids and lipoproteins (Study III)

The genotype of rs2073162 was not associated with the serum lipid or lipoprotein

concentrations in the unstratified METSIM population, but genotype*BMI interactions

were observed. In subsequent analyses when the data were subdivided according to the

quartiles of BMI, no associations were evident in the three lowest quartiles, but in the

highest quartile, the carriers of the rs2073162-A-allele had higher concentrations of

serum total, LDL and HDL cholesterol than carriers of the rs2073162-G-allele (Figure

7a-c). These differences remained statistically significant after additional adjustment for

cholesterol-lowering medication (p=0.016 for total cholesterol, p=0.033 for LDL and

p=0.038 for HDL). The median (interquartile range) for serum total, LDL and HDL

cholesterol were 5.17 (1.45), 3.23 (1.28) and 1.24 (0.39) mmol/l for the G allele carriers

and 5.25 (1.47), 3.37 (1.29) and 1.27 (0.40) mmol/l for the A allele carriers. No

differences were observed in the triglyceride levels.

In  DPS,  genotype  differences  were  not  observed  in  either  gender  when  all

individuals were included in the analysis, but again genotype*BMI interactions were

observed. In the data stratified by the median of BMI, the genotype was not associated

with the serum lipoproteins or lipids in either median in women or in the lower median

in men. In the upper median of BMI in men, the genotype of rs2073162 was associated

with serum levels of total and LDL cholesterol (Figure 7d-f). The median (interquartile

range) for serum total and LDL cholesterol were 5.26 (1.16) and 3.30 (1.13)  mmol/l for

the G allele carriers and 5.49 (0.97) and 3.60 (1.06 mmol/l for the A allele carriers. No

associations with serum HDL cholesterol or triglyceride levels were observed. The

lower cut-off was very similar in both studies (29.41kg/m2 for the 4th quartile in

METSIM, 29.45 kg/m2 for the upper median in DPS).
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Figure 7. The serum concentrations of total, LDL and HDL cholesterol in the quartiles of BMI (ranges
13.18-24.58 kg/m2 for 1st, 24.59-26.72 kg/m2 for 2nd, 26.73-29.40 kg/m2 for 3rd and 29.41-52.11 kg/m2

for the 4th quartile) in the METSIM study population (a-c) and in the medians of BMI (ranges 23.50-
29.40 kg/m2 for the 1st and 29.45-44.80 kg/m2 for the 2nd median) in the DPS study population (d-f)
according to the genotypes of rs2073162. p is adjusted for the use of cholesterol-lowering medication.
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5.6 TNMD and age-related macular degeneration (Study IV)

In women, markers rs7890586 and 1155974 were associated with total prevalence

(atrophic or exudative form) of AMD and a trend was observed with rs2073163.

Specifically, these differences were due to an unequal prevalence of exudative AMD in

the genotype groups (Table 11). None of the markers were associated with prevalence

of AMD among men.

Haplotype analyses were performed according to the two LD-based haploblocks

(Table 6), one consisting of rs11798018 and rs5966709 and the other of rs2073163,

rs1155974 and rs1204384. Additional analyses were performed for combinations of

individual markers that were associated with AMD (rs7890586, rs2073163 and

rs1155974). Neither of these approaches revealed a haplotype that would explain the

results substantially more than the individual markers (data not shown).
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6 DISCUSSION

6.1 Methodological issues

These association studies were performed in a carefully phenotyped and selected set of

individuals who participated in a lifestyle intervention and were followed up for

approximately four years (Studies I-III), a large, cross-sectional extensively phenotyped

population-based sample of men (Study III) and finally in a smaller set of individuals

for which only limited background information was available (Study IV). In general, the

requirements for genetic association studies have changed during the last years and

especially in the field of complex diseases, large-scale genotyping of large sample sizes

are becoming a pre-requisite for studies that are considered to be of good quality (379).

6.1.1 Candidate gene approach

Genome-wide scans are potential tools for identifying common susceptibility variants

and they can be considered as a new approach for discovering candidate genes. In

comparison to the hypothesis-free genome-wide scans, the traditional candidate gene

studies are hypothesis-driven with the assumption that genes with functions relevant to

the phenotype of interest would represent putative susceptibility genes (380). In our

group, this approach is applied by studying genes whose expression in adipose tissue is

differentially regulated by weight loss. TNMD was selected as a potential candidate

gene since it was one of the most extensively downregulated genes in adipose tissue

during moderate weight loss in overweight individuals with features of the metabolic

syndrome (325). Recently, we have shown that TNMD is expressed in adipocytes and

blood vessels in adipose tissue (Figure 8, unpublished data) and therefore it might be

relevant for the adipose tissue biology. Investigation of the differences in mRNA

expression in adipose tissue of obese and lean subjects has identified candidate genes

for obesity and related traits (381) and led to discovery of novel adipokines (286,382).

Furthermore, combining gene expression profiles from the tissue of interest together

with genetic linkage information has been proposed as a strategy to identify

susceptibility genes for complex traits (383).
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Figure 8. TNMD expression in human formalin-fixed paraffin-embedded adipose tissue. TNMD was
detected with NovolinkTM polymer detection system (Novocastra Laboratories Ltd, Newcastle, UK) using
1:500 diluted TNMD primary antibody kindly provided by Prof. Reinhardt Fässler (Max-Planck Institute,
Martinsried, Germany). TNMD is expressed in a) adipocytes and b) blood vessels (Unpublished data).

6.1.2 Study populations

The  DPS  (Studies I-III) is nowadays considered as a small sample for genetic

association studies (n=507), although one of the original study aims was to investigate

the impact of genetic factors on T2D risk (384). The stratification of a relatively small

population into different groups by randomization and gender further weakens the

statistical power. We handled this issue by applying the mandatory stratification by

gender and used the randomization group as an adjustment factor, because this was

justifiable based on the lack of interaction between the genotypes and randomization

group and the similar allele frequencies in both groups. In Studies II-III, we stratified

the data into medians instead of other quantiles, which would have resulted in smaller

number of individuals in each strata and would have increased in the number of groups

thereby causing power loss. Despite these weaknesses, DPS is a representative sample

of Finnish middle-aged persons who had a high risk for developing T2D, as BMI>25

and IGT were part of the inclusion criteria. It is notable that the study enables the

investigation of long-term gene*environment-interactions, either with regard to lifestyle

modification in general or to specific components of dietary habits or physical activity.

The follow-up data of various quantitative and categorical traits also provides more

information than a single measurement of certain surrogate variable. The comparability

of  measurements  from  different  centres  is  good,  as  this  was  addressed  already  in  the

study design by standardizing the measurement methodologies between the laboratories.

The METSIM study (Study III) is currently cross-sectional, so the research setting is

very different from that applied in DPS. The participants are middle-aged men from the
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region of Kuopio and while the DPS is representative of a population in high risk for

T2D, the METSIM is a population-based sample thereby representing the general

population with the whole range of BMI and glucose metabolism. The advantage of this

cohort is that it is specifically collected for the purpose of genetic association studies

and the sample size is therefore appropriate.

The AMD study population (Study IV)  is  small,  and  especially  the  number  of

controls would need to be increased. This is highlighted in the analysis of studying X-

chromosomal gene which makes the stratification by gender mandatory and further

decreases the size of groups. Moreover, no further background data apart from age and

gender were available from this study population. The number of individuals with

atrophic AMD is too small for investigating the risk factors specifically accounting for

this  subtype,  but  the  original  aim  of  the  study  was  to  investigate  the  association  with

AMD in general.

Since all of the study participants were Finnish, the observed associations are

unlikely to result from population stratification. The Finnish population originates

mainly from a small group of founders and relatively little immigration has occurred

during the last 80-100 generations (385,386). The founder effects are more recent in the

Northern and Eastern Finland, as these regions can be viewed as being "founded" only

in the 1500s (385). The Finnish population has been referred to as a model population

for human genetic studies, especially in the context of linkage mapping (387), and it has

been claimed to offer substantial advantages for genetic studies (388).

6.1.3 Genotyping accuracy

The test for HWE is generally applied as a diagnostic test for genotyping errors (389).

However, HWE of genotype frequencies is a population-based characteristic assuming

discrete generations, random mating in an infinite-sized population and the absence of

selection, mutation or migration. Therefore, the deviations observed in these studies can

be a result of population properties or random chance rather than genotyping error, as

the inspection of discrimination plots did not reveal any unequivocal genotyping

mistakes. In addition, when a marker is associated with the disease, the corresponding

genotypes may no longer actually be a random sample and therefore it can lead to

deviation from HWE (390). As the associations with multiple continuous phenotypes
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were investigated in Studies I-II, the HWE was calculated from all individuals.

Interestingly, in Study IV two of the three markers that were associated with AMD risk

were not in HWE, which is in line with the theory of Li and Li (390).

The genotyping accuracy was also confirmed by re-genotyping a representative

random subsample from each population. The error rate for each studied marker in all

study populations was 0%, suggesting that factors other than genotyping errors must

account for the deviation from HWE.

6.1.4 Statistical issues

Investigating  the  association  of  multiple  markers  with  different  phenotypes  raises  the

issue of multiple hypothesis testing. Traditionally this has been addressed with

Bonferroni-correction or its derivatives, which are considered to be too conservative for

genetic association studies (391).

It should be noted that the results of Study I are not adjusted for testing of multiple

hypotheses, apart from pairwise comparisons in women. In Studies II and  IV, we

applied the false discovery rate (378), indicated as q-values. This approach

simultaneously corrects for the number of phenotypes and markers that are tested.

Statistically significant results (i.e. small p-value)  with  a  high q-value are likely to be

false positive findings. Instead of applying an arbitrary threshold, we chose to report the

exact q-value for each p.

In Study II, the FDR for the main results, i.e. for the associations with acute phase

reactants and sICAM in men and for CCR5 ligands and MIF among women were low,

suggesting that these findings are likely to be "true" and that TNMD might be related to

inflammatory status. Due to the limited power caused by relatively low number of study

participants and the further stratification into different groups, there may be some

undetected associations that would be significant if we had had access to larger study

populations. In addition, some of the observed associations that were no longer

statistically significant after correcting for multiple hypothesis testing (i.e., had

FDR>0.05), might remain statistically significant in a more powerful study.

In Study III, associations of a single marker were studied so the results were not

adjusted for testing of multiple hypotheses testing, although this might be justifiable

because multiple phenotypes were tested. In general, the FDR-computations in Q-value

work better with large number of p-values, although there are no recommendations for

the minimum amount of p-values. Our study contained data for only 4 phenotypes,
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meaning that the number is very low for applying FDR according to Storey et al (378).

Another possibility would have been to utilize a permutation-based method, for

example a modification of the procedure introduced by Kimmel et al (392).

In Study IV, the FDR for the associations of markers rs7890586, rs2073163 and

rs1155974 with AMD was less than 5%, apart from that of rs2073163 with total

prevalence of AMD (q=0.067; Table 11). This suggests that the results are unlikely to

be false positives. However, they should be replicated in a larger study and with

adjustment for possible confounders such as smoking and body size. Due to the low

genotype frequencies, the number of individuals was small in some of the analysis (e.g.

the number of persons with the rs7890586-AA-genotype) meaning that these results are

tentative and should be interpreted cautiously.

6.2 General discussion

6.2.1 Gender differences

Almost  all  of  the  observed  associations  were  gender-specific.  These  differences  can

arise from the genetic locus. X-chromosomal genes often display a significant variation

in expression and function between men and women, partly because of variation in gene

dosages and random inactivation of one of the X-chromosomes in women (393).

Accordingly, women had two times higher tenomodulin expression in adipose tissue

than men (325), evidence of dosage-specific expression levels. TNMD is located

approximately 27000 kb away from the X-inactivation centre (locus Xq13.2-q21-1)

(394), suggesting that the TNMD locus might avoid X-inactivation. The cellular

microenvironment can also differ in men and women because of differences in hormone

levels and gene expression (395).

The X-chromosome is an interesting locus for genetic association studies regarding

serum lipids, since the monosomy of the X-chromosome has been shown to be

specifically related to fat accumulation and serum lipid profile in women. In the study

of Van et al (396) women with Turner´s syndrome (45, X) had higher LDL-cholesterol

and  triglyceride  levels  and  smaller  LDL and HDL particle  sizes  than  women with  46,

XX. These effects were independent of lifestyle, body composition, insulin sensitivity

or hormonal status. As the only characterized difference was the presence of the second

X-chromosome, the authors speculated that the differences in lipid metabolism could be
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due to previously unrecognized disparity in X-chromosome gene dosage (396). Similar

results have been reported by Cooley et al (397). In both studies, the degree of

difference in lipid levels and particle size observed between women with one and two

copies of X-chromosome was similar to the genderwise differences (398,399). One

potential explanation for these observations is that X-chromosome gene or genes are

involved in lipid metabolism or transport. According to this hypothesis, membrane-

bound transcription factor protease, site 2 (MBTPS2, locus Xp22), encoding the site 2

protease that cleaves SREBP, is a key regulator of cholesterol metabolism (400).

Genomic imprinting of X-linked genes could lead to different gene expression in

men and women, since women are normally mosaic for maternally and paternally

inherited active X-chromosomes (XM and  XP, correspondingly), while men are

monosomic for the maternally inherited XM. Interestingly, in women with Turner´s

syndrome, the monosomy for XM is associated with greater visceral fat accumulation

and a more atherogenic lipid profile than monosomy for the paternal chromosome (401).

These differences between 45,XP and 45,XM women parallel the usual metabolic and

adiposity differences seen between women and men (398,399).

6.2.2 TNMD and obesity (Studies I and III)

The sequence variation of TNMD was associated with central obesity in women and

with the general body size, indicated by BMI and weight in men of the DPS (Study I).

We did not detect any association with indicators of body size in the larger cross-

sectional sample of METSIM (Study III), as the sample consisted only of men and only

the markers that associated with T2D risk in men were genotyped. These markers did

not  associate  with  body  size  in  the  DPS  and  since  the  association  with  T2D  was

considered the main result in men, the SNP that associated with body size was not

selected for replication in the DPS. Furthermore, the association with obesity measures

in men was observed in the longitudinal data, which was not available from the

METSIM.

With regard to the genetic association studies in general, without functional assays it

is difficult to know whether the causative variant truly is one of the studied markers or

simply a SNP that is in complete linkage disequilibrium with them, or whether the

associations truly arise from the TNMD locus. However, there are no known obesity or

T2D loci nearby (22,24-27,107,108). Apart from rs2073162, which is a nonsynonymous
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SNP located in the third exon, all of the selected markers were intronic. Therefore, if the

causative variant is indeed one of the selected SNPs, the effect does not result from

altered structural and/or functional properties secondary to the amino acid change.

However, the synonymous SNPs can affect transcription of the protein by modifying

transcription factor binding or the extent of the genemethylation or splicing.

Although tenomodulin is believed to mediate anti-angiogenic effects, its specific

function in adipose tissue is still unknown. In our further studies we have shown that

TNMD expression is induced during adipocyte differentiation (unpublished data). The

genes involved in angiogenesis are an interesting new group of susceptibility genes for

obesity and related traits. It has been shown that targeted induction of apoptosis in the

vasculature of adipose tissue can reverse obesity and normalize metabolism in ob/ob

mice (402), and the administration of angiogenesis inhibitors reverses both genetic and

diet-induced obesity in mice (282,283). It has also been suggested that changes in

adipose tissue blood flow may modulate the �-cell dysfunction in T2D in a rat model

(403). However, this data is solely based on animal studies. Still, one possibility is that

tenomodulin could regulate vasculature formation in adipose tissue and thereby also

modulate adiposity, glucose metabolism, and T2D risk. Interestingly, TSP-1 an

angiogenesis inhibitor with a similar knock-out mouse phenotype as TNMD, was

recently shown to be an adipokine that was associated with obesity, adipose tissue

inflammation and insulin resistance (286).

TNMD belongs to the family of BRICHOS-domain containing proteins, most of

which are associated with chronic diseases. These include BRI2, which is linked to

familial British and Danish dementia, chondromodulin-I related to chondrosarcoma,

CA11 related to stomach cancer and surfactant protein C, involved in respiratory

distress syndrome (344). TNMD, like other proteins of this family, is an integral

transmembrane  protein  with  a  type  2  orientation,  from  which  the  extracellular  part  is

cleaved proteolytically. The BRICHOS-domain has been suggested to function as an

intramolecular chaperone for the cleaved part (344-346) and mutations in the BRICHOS

region have been shown to cause endoplasmic reticulum (ER) stress and proteasome

dysfunction (346), providing another interesting functional link to the chronic diseases

caused by misfolded proteins. Chronic excessive nutrient intake has been shown to

cause ER stress in adipose tissue of ob/ob mice and mice fed with a high-fat diet

(404,405). Markers of ER stress are associated with obesity in non-diabetic individuals

(406). It has also been shown that obesity increases ER stress in human subcutaneous
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adipose tissue (407) and that the unfolded protein response, a mechanism aimed to

alleviate ER stress, is activated in subcutaneous adipose tissue of obese humans (408).

Data from cell culture and mouse studies suggest that leptin resistance might be one of

the linking mechanisms (409).

6.2.3 TNMD and glucose regulation (Studies I and III)

The SNPs  of TNMD were  associated  with  2h-PG,  and  consequently  with  risk  of  T2D

during the follow-up of DPS. We did not detect any cross-sectional differences between

the genotypes in men, either in the baseline data of DPS with respect to plasma glucose

or serum insulin levels (Study I), or in METSIM regarding prevalence of T2D, plasma

glucose or serum insulin levels (Study III).

The  METSIM  and  DPS  study  populations  are  essentially  different:  Both  men  and

women were included in the DPS and the sample was collected from five Finnish cities

and their surroundings. The individuals were also relatively homogeneous as all of the

study participants had BMI>25 kg/m2 and IGT. The METSIM study population is a

random sample of men aged from 45 to 70 years and living in the Kuopio area.

Therefore, the range for BMI is considerably larger (16.18-52.11 kg/m2)  and  all  four

glucose tolerance categories were included. Furthermore, in the METSIM study the

prevalence of T2D was determined cross-sectionally, while in the DPS study the

conversion of IGT to T2D was assessed. These differences between the studies might

explain why the association with T2D could not be replicated. In future, when the

longitudinal data from the METSIM becomes available, it will be interesting to see

whether the association observed in the DPS can be replicated, despite the different

baseline characteristics. It might also be that different genes operate in distinct phases of

the development of T2D.

Interestingly, the markers rs2073162 and rs2073163 that were associated with an

elevated  risk  of  T2D  in  the  DPS  are  located  within  the  region  that  encodes  the

BRICHOS-domain, and also rs1155974 is in close vicinity. ER stress has been

suggested to be one of the common links between obesity, T2D and insulin resistance in

adipocytes and liver (186,404,405,410). Treatment of obese and diabetic mice with

chemical chaperones has been shown to result into improved insulin sensitivity in

skeletal muscle, adipose tissue and liver, resolution of fatty liver disease and normalized

hyperglycaemia (411). Another interesting pharmacological link is provided by the

PPAR-agonists, since the treatment of mice with rosiglitazone or macelignan has been
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shown to alleviate ER stress in mouse liver and adipose tissue (412,413), although

pioglitazone treatment did not reduce ER stress in human adipose tissue (407).

6.2.4 TNMD and inflammation (Study II)

The sequence variation of TNMD was consistently associated with serum concentrations

of different systemic immune mediators in individuals with IGT, suggesting that the

chronic low-grade inflammation could be the link between the observed associations of

TNMD with  obesity,  dyslipidaemia,  AMD and T2D. All these states are also strongly

interconnected. In women, the same genotypes that were associated with elevated

concentrations of CCL3 and CCL5 were associated with a larger waistline, as indicated

by all four parameters for central obesity that were measured in Study I. In men, the

genotypes that were associated with the higher risk of T2D, were associated with higher

levels of CRP and SAA. In addition, the same genotype of rs2073162 that was related to

higher acute phase reactant concentrations and T2D risk, was correlated with higher

serum total and LDL cholesterol levels in the obese men and the markers rs2073163 and

rs1155974 that were associated with serum MIF concentrations among women, were

associated with the risk of exudative AMD in women.

Both angiogenesis and ER stress, and, therefore, both of the important functional

motifs of TNMD, namely the angiogenesis inhibiting C-terminal domain and

BRICHOS-domain can be connected to inflammation. Inflammation, together with

other harmful consequences of the expansion of adipose tissue mass, such as hypoxia

and oxidative stress causes dysfunctions in ER (185,186).  ER stress is linked to major

inflammatory and stress-signalling networks via a variety of mechanisms (185,186).

Hypoxia stimulates both angiogenesis and inflammation, but angiogenesis has been

suggested to also sustain inflammation, by providing oxygen and nutrients for the cells

present at the inflammatory sites (414). Angiogenesis and inflammation have been

connected in the pathogenesis of a number of chronic diseases and these two processes

can be initiated by the same molecular events (414). For example, both angiogenesis

and inflammation have actions at the endothelial cell-cell junctions and adhesion

molecules are therefore essential for both processes (415,416). Long-term angiogenetic

imbalance often accompanies inflammation (417) and inflammatory cells are known to

promote (lymph)angiogenesis in tumours (418).
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6.2.5 TNMD and serum lipoproteins (Study III)

The rs2073162-A genotype, which was associated with higher T2D incidence in Study I

and  elevated  serum  concentrations  of  CRP  and  SAA  in Study II, was associated with

elevated concentrations of serum lipoproteins in a BMI-dependent manner in two

independent studies including Finnish men. Specifically, in the METSIM study

differences in total, HDL and LDL cholesterol were observed, whereas in the DPS the

differences were found only in total and LDL cholesterol levels.

The associations were observed in those individuals who belonged to the highest

quantiles of BMI, and the results remained similar when the cut-off of 30kg/m2 was

used. It is difficult to determine whether these differences result from altered cholesterol

absorption or synthesis, since the data on the indicators of cholesterol metabolism was

not available. It has been established that serum total cholesterol is increased in obesity,

partially because of increased cholesterol synthesis (252). In this study, the differences

in serum total cholesterol between the genotypes were almost entirely due to the

difference  in  LDL  cholesterol  levels,  but  as  with  the  total  cholesterol  levels,  one  can

only speculate if they are caused by increased LDL synthesis or by decreased

catabolism. Since both SAA and CRP have been shown to be involved in cholesterol

recycling (264), it is possible that the observed association could be attributable to the

association with low-grade inflammation.

6.2.6 TNMD and age-related macular degeneration (Study IV)

The sequence variation of the TNMD gene was associated with the prevalence of AMD

in women. Specifically, the genotypes rs2073163-CC and rs1155974-TT, which were

associated with a higher risk of T2D and elevated serum acute phase reactant

concentrations in men, and with higher serum concentrations of MIF and CCL5 in

women, were linked with a higher prevalence of exudative AMD. We did not observe

any association with atrophic AMD, which was likely due to the small number of cases.

The same cytogenetic band, Xq22, has been linked to AMD previously by Zheng et al

(419), who  also observed gender-specific associations of the diaphanous 2 Drosophila

homologue- gene (DIAPH). However, DIAPH is located 3.5 Mb away from TNMD, and

there is practically no LD between the TNMD markers that were associated with AMD

and rs10521496 of DIAPH, which was associated with the risk of AMD in the previous

study (419). The pairwise r2 for rs10521496 and rs7890586 is 0.007, and for
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rs10521496 and rs2073163 or rs1155974 it is 0.1 in the CEU population of HapMap-

database (public release #26).

Abnormal neovascularization is an essential part of the pathophysiology of

exudative AMD, and genetic associations of angiogenesis regulators such as VEGF

(168-171) and PEDF (172,173) with AMD have been reported. In relation to these

previous association studies, the relationship between TNMD sequence variation and

exudative  AMD  raises  an  interesting  possibility  for  a  regulatory  role  of  TNMD  in

choroidal neovascularization and exudative AMD, but like other hypothetical

connections suggested in chapters 6.2.2-6.2.5, this will require replication in other study

populations and above all, functional studies. Interestingly, the ER chaperones (420)

and ER stress in general (421,422) are known to affect the expression of angiogenic

factors such as VEGF, and therefore TNMD could, in theory, affect the vascularization

via ER  stress  caused  by  the  dysfunction  of  the  BRICHOS-domain  and  the  resulting

accumulation of misfolded TNMD. Mutations in the BRICHOS-region of surfactant

protein C have been shown to increase ER stress via this mechanism (346).

In addition to angiogenesis, inflammation is involved in the pathogenesis of AMD

and the best established genetic risk factors are related to the complement system (145-

161,167,423-432). Thus, it might be that also these associations of TNMD could be due

to the association with the inflammatory status that was observed in DPS.

Unfortunately, there is no inflammatory marker data available from the AMD study

population.
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7 CONCLUSIONS

The sequence variation of TNMD was associated with glucose metabolism, serum

lipoprotein and inflammatory marker levels in men and with central obesity, serum

levels of systemic immune mediators and exudative AMD in women. All these

phenotypes are linked by inflammation and angiogenesis. As discussed in chapters

6.2.2-6.2.7, there are various parallels that provide an interesting basis for speculation.

The hypotheses depicting the mechanisms of the observed associations, based on the

available data from Studies I-IV are shown in Figure 9.

The effects of acute phase reactants and other inflammatory factors on lipolysis and

cholesterol synthesis are well recognized (263-265,433). It is also known that lipid

overload interferes with insulin signaling pathways, and that enhanced lipolysis and

dyslipidaemias contribute to the deterioration in glucose metabolism in obesity

(174,193,209,210). Therefore, it might be that the association of TNMD with

inflammation could explain many of the observed associations in men (Figure 9a). This

hypothesis is supported by the fact that the same genotype associated with elevated

serum concentrations of acute phase reactants in DPS, was related to elevated serum

LDL levels in obese individuals in DPS and METSIM, but controversially also to

increased HDL levels in the METSIM. In addition to this marker (rs2073162), two other

markers (rs2073163 and rs1155974) were associated with elevated serum

concentrations of CRP and SAA and elevated 2H-PG. In addition, these three markers

were associated with a higher risk of T2D in the DPS.

In  women,  the  same markers  that  were  associated  with  central  obesity  (rs4828037

and rs5966709) were associated with elevated serum concentrations of CCL3 and

CCL5. The sequence variation in the region of haploblock 2 was linked to

concentrations of CCL5 and MIF and two of these markers were associated with risk of

AMD. Therefore, one possible scheme is that the elevated serum levels of inflammatory

factors, secondary to central obesity, facilitate the pathophysiological changes related to

development of AMD (Figure 9b). In addition, due to its angiogenesis-inhibiting

properties, TNMD might also contribute to the altered neovascularization.
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Figure 9. Hypothesis for the putative mechanism for the observed associations of TNMD markers in a)
men and b) women. The events that were not measured in any of the study populations are indicated with
non-bolded cursive font. a) Acute phase reactants CRP and SAA can affect cholesterol metabolism and
SAA also promotes lipolysis. Altered lipoprotein metabolism and increased lipolysis disturb glucose
metabolism and thereby increase the risk of type 2 diabetes (T2D). b) Obesity, either general or central, is
associated with accumulation of macrophages in adipose tissue. These cells secrete proinflammatory
cytokines and other compounds, such as chemokine (C-C motif) ligands (CCLs) that further promote the
production of proinflammatory factors. Obesity and inflammation are related to vascular changes.
Inflammation and angiogenesis are essential in the pathogenesis of AMD, but obesity is also one of the
known risk factors.

7.1 Future implications

Since we performed only genetic association studies, it is difficult to suggest how

tenomodulin could participate in adiposity, glucose and lipid metabolism or

inflammation and therefore Studies I-IV generate new research hypotheses rather than

answering specific questions. The current published in vivo and in vitro studies with

TNMD do not provide explicit clues on the potential mechanisms. However, TNMD

shares interesting similarities with TSP-1. Both genes are expressed in adipose tissue

and the mRNA-levels correlate with obesity-related traits (286,325). The expression of

both genes is regulated via the extracellular-signal regulated kinase/mitogen-activated

protein kinase (ERK/MAPK)-signaling pathway (434-437) and high expression of both
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genes is associated with inflammation (438-440). The mRNA expression of these two

genes is also induced in the same phase during adipocyte differentiation (280,281).

Several adipokines, such as TSP-1 (286) and vaspin (382) have been identified by

investigating differences in mRNA expression in adipose tissue of obese and lean

subjects, and therefore it would be interesting to investigate if also TNMD could be an

adipokine. Our preliminary research has confirmed that TNMD is expressed in

adipocytes and blood vessels (Figure 8).

The  BRICHOS-domain  with  its  connection  to  ER  stress  and  the  C-terminal

angiogenesis-inhibiting domain provide interesting hypotheses for functional studies.

Since the TNMD-null mice were studied in the context other than obesity or T2D and

the mice did not harbour any drastic phenotypes in normal settings (345), the authors

did not conduct more detailed analyses. It would be interesting to investigate how the

TNMD-null mice would respond to a high-fat diet and to study the effect of TNMD

overexpression in a suitable model system on the phenotypes of interest. In addition, the

use of cell culture model systems might shed light on these putative connections.
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8 SUMMARY

These studies were carried out to examine the association between the variation in the

TNMD gene and obesity- and inflammation-related phenotypes. The conclusions from

the studies can be summarized as follows:

Study I: Three markers of the TNMD gene were associated with risk of T2D in men and

two other markers with central obesity in women during a follow-up of overweight

individuals with IGT. The association with T2D was not replicated in a cross-sectional

population-based sample. These discrepancies might be due to differences between

study populations or that different genes operate in distinct phases of T2D development.

Study II: The  markers  that  were  associated  with  the  risk  of  T2D  in  Study I, were

connected  to  the  serum  levels  of  CRP  and  SAA  in  overweight  men  with  IGT.

Furthermore, two of these markers were linked to the serum concentrations of sICAM.

The association was to some extent predictable, since the same genotypes which were

linked to a higher incidence of T2D had  higher serum levels of these inflammatory

markers. In addition, the association between TNMD sequence variation and serum

CCL5 concentrations was observed in men. In women, the genotypes that were

associated with central obesity were related to higher serum CCL3 levels. Furthermore,

an association with CCL5 and MIF was detected in women. These results suggest that

inflammation might be the link between TNMD, impaired glucose regulation and

obesity.

Study III: The same marker that was associated with T2D incidence and the

proinflammatory state was also associated with serum total and LDL-cholesterol in two

separate samples of Finnish men. These consistent, replicated findings further

strengthen the link between TNMD, metabolic syndrome and inflammation.

Study IV: Two markers that were associated with serum levels of MIF were related to

the higher prevalence of exudative AMD in women. This novel finding provides

another link to an obesity-related condition, which also has strong relationship to

angiogenesis and inflammation.
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